UNCLASSIFIED

AD NUMBER

ADB010487

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; OCT 1975. Other requests shall be referred to Naval Surface Warfare Center, Dahlgren Laboratory, Code B60 Tech Lib, 17320 Dahlgren Road, Dahlgren, VA 22448.

AUTHORITY

usnwsc ltr, 2 may 1977

THIS PAGE IS UNCLASSIFIED

ADB010487

NSWC/DL TR-3416

EVALUATION OF A STEEL CARTRIDGE CASE

FOR USE WITH 76MM/62 CALIBER AMMUNITION

By William R. Hammer

October 1975

FOREWORD

This project was a continuation of work performed for the Technical Evaluation (TECHEVAL) of 76mm/62 Caliber ammunition. It was funded under NAVORD ORDTASK 55/065/090/4 Amendment A of 27 July 1973. This report was reviewed by Messrs J. A. Nunziato and R. Shank of the Technical Evaluation Department.

Released by:

W. (Anderson

W. L. ANDERSON, Head Technical Evaluation Department

ABSTRACT

A series of tests were performed to evaluate the suitability of a steel cartridge case as a replacement to the brass cartridge case used in the 76mm/62 Caliber family of ammunition. The scope of the test program conducted was limited to cartridge case integrity at service and proof conditions, and compatibility with the 76mm MARK 75 gun mount. Tests performed included cartridge case integrity and compatibility tests in the MARK 75 gun mount, and structural over ests (proof firings) in a single fire mount. One cartridge case out of 205 cases tested was found to have failed structurally upon firing. After examination of the cartridge case by the Naval Ordnance Station/Indian Head, Maryland, it was determined that the cause of the failure was the presence of a manufacturing defect in the case wall. As a result of the test program and analysis conducted, it is concluded that the steel cartridge case is a suitable replacement for the 76mm brass cartridge with respect to structural integrity and compatibility with the MARK 75 gun mount.

TABLE OF CONTENTS

-.

)Xin

1

TRBLE OF CONTENTS	Page
FOREWORD	. i
ABSTRACT	. ii
INTRODUCTION	. 1
ITEM DESCRIPTION	. 2
TEST DESCRIPTION	. 4
RESULTS	. 6
APPENDICES	
A. MOUNT COMPATIBILY TEST	A-1
B. SINGLE FIRE PROOF TEST	B-1
C. SINGLE FIRE SERVICE TEST	C-1
D. RAPID FIRE SERVICE TEST	D-1
E. REFERENCES	E-1
F. DISTRIBUTION	F-1

iii

LIST OF TABLES

B-1. Single Fire Proof Test; Summary of Results

- B-2. Single Fire Proof Test
- C-1. Single Fire Service Test
- D-1. Rapid Fire Service Test

LIST OF FIGURES

- 1. Drawing of 76mm/62 Caliber Steel Cartridge Case
- C-1. 76mm/62 Caliber Velocity vs. Temperature for Brass and SteeJ Cartridge Cases
- C-2. 76mm/62 Caliber Pressure vs. Temperature for Brass and Steel Cartridge Cases

D-1. View of Longitudinal Split in Steel Cartridge Case

D-2. 76mm/62 Caliber Rapid Fire vs. Target Board

iv

INTRODUCTION

The U.S. Navy secured manufacturing rights to the 76mm/62 Caliber OTO Melara automatic mount as a result of its favorable showing in a survey of the European ordnance field. Original prototype mounts purchased were subjected to a technical evaluation at the Naval Surface Weapons Center/Dahlgren Laboratory (references 1 and 2). Both versions of the 76mm mount evaluated, designated the MARK 75 MODs 0 and 1, essentially met baseline requirements established beforehand.

Fuzes used on Italian-manufactured ammunition were considered unsuitable for U.S. use; consequently, a program was required to manufacture suitable ammunition in the U.S.. Because of time constraints, it was decided to copy the basic Italian cartridge design. A 76mm ammunition program was implemented to provide (a) design documentation of Italian ammunition to allow U. S. manufacture, (b) an engineering evaluation of U.S. manufactured ammunition to ensure comparibility with Italian ammunition, and (c) a technical evaluation of the U.S.-manufactured ammunition to determine overall performance, safety, reliability and producibility. Several changes to the original Italian ammunition design were made before these evaluations took place. Among them were minor changes to enhance producibility, use of new types (and shapes) of fuzes, the development of smoke-puff round, and the evaluation of a steel cartridge case as a substitute for the brass cartridge case used by the Italians.

Several tests were performed with the steel cartridge case during the 76mm Engineering Evaluation (reference 6), however, a malfunction in the mount/ammunition system in which a steel cartridge case was used forced postponement of the steel case evaluation. Reference 7 suggested that use of the steel cartridge case did not contribute to the malfunction. The remaining steel cartridge case tests were rescheduled. This report documents the subsequent tests.

1

ITEM DESCRIPTION

Figure 1 shows a drawing of the 76mm steel cartridge case (NAVORD Dwg. No. 3028547). It is manufactured from steel conforming to MIL-S-3289. Each cartridge case was loaded with a MARK 161 percussion primer and with a propelling charge of M6/2 propellant from lot RAD-E33. Probing rounds were fired during the tests to determine approximate charge weights necessary to achieve specific test conditions of service and nominal proof pressures at various temperatures. Complete cartridge loading was completed in accordance with procedures established during the brasscased ammunition program, i.e., a 1-inch thick polyethylene wad was glued on top of the propellant bed (3M Company 1099 adhesive used as a weather seal), a triangular cardboard spacer was installed, 30 grams of lead foil was placed in the cavity to act as a decoppering agent upon firing, and an inert 76mm BL&P projectile was loaded and crimped (125 tons crimping force).

_

TEST DESCRIPTION

Tests performed in the evaluation of the steel cartridge case were as follows:

a. Mount Compatibility Test: Ten inert-loaded cartridges with fired primer and inert 5"/38 Caliber propellant were subjected to an ammunition system handling test in the MARK 75 gun mount. This involved cycling the cartridges 5 times through the handling system of the mount, and ramming the cartridges on the fifth cycle. Integrity of the cartridge case and crimp were evaluated after each cycle, and debulleting of the projectiles from the steel cases was verified.

b. Single Fire Proof Test: Fifteen cartridges were fired from a single fire mount as probing rounds to establish charge weights under service and proof conditions. Thirty cartridges were fired from a single fire mount with propelling charges adjusted to give proof pressure (19.5 to 21.0 long tons/in² nominal, in accordance with WS 14795A), ten cartridges at each of three conditioning temperatures (20°F, 90°F, and 120°F). The integrity of the cartridge cases under overtest or proof conditions was determined.

c. Single Fire Service Test: Sixty cartridges loaded to service charge were fired from the MARK 75 mount (single fire), thirty each conditioned to 20° F and 120° F. Compatibility of the cartridge case with the MARK 75 mount at various temperatures was determined.

d. Rapid Fire Service Test: Five 20-round bursts (service charge) were fired from the MARK 75 mount, one burst through a vertical target located 500 yards from the muzzle, and four bursts at a quadrant elevation of 15°. Phototriangulation techniques were used on the last four bursts to obtain range and deflection information as additional data for use in assessing the accuracy potential of the MARK 75 mount (accuracy data are included in this report but are discussed in detail in reference 8). Structural integrity of the cartridge case and compatibility with the MARK 75 mount in the rapid fire mode were determined.

4

The overall objectives of these four tests were to determine the suitability of the steel cartridge case as a replacement for the standard brass cartridge case now in use by assessing its performance in, and compatibility with, the MARK 75 gun mount. Complete descriptions of these tests are given in Appendices (A) through (D).

5

÷

ŧ,

RESULTS

Complete details on test results are given in Appendices (A) through (D). The results are summarized below:

a. The steel cartridge case will withstand handling, ramming, firing, and extractions in the MARK 75 gun mount (160 successes out of 160 attempts).

b. The steel cartridge case retains its structural integrity when subjected to proof pressures.

c. Extraction forces measured for the steel cartridge case are generally lower than those measured for the brass cartridge case.

d. The approximate service charge weight of 5.30 lb. of lot RAD-E33 propellant produced acceptable average chamber pressures (17.7 long tsi).

Based on the above results, it is concluded that the steel cartridge case is a suitable replacement for the 76mm brass cartridge case with respect to structural integrity and compatibility with the MARK 75 gun mount.

It is noted that to fully qualify the steel cartridge case for service use, an assessment of the effects of environmental conditioning during its logistic cycle is needed. It is not anticipated that an extensive evaluation would be required since the construction of the 76mm steel cartridge case is similar to other existing steel cartridge cases. 6

APPENDIX A

No.

1

÷

A-1

STEEL CARTRIDGE CASE EVALUATION

Mount Compatibility Test

Objective: Determine if 76mm steel cartridge cases can withstand cycling and ramming in the MARK 75 gun mount.

Test Description: Ten inert 76mm cartridges were prepared by loading steel cartridge cases with fired MARK 161 primers and 5.35 lbs of 5"38 Caliber inert propellant.* An inert BL&P projectile was installed and crimped with 125 tons crimping pressure. The cartridges were individually loaded into the revolving magazine of the MARK 75 gun mount and cycled through the ammunition handling system with each cartridge being removed just before the ramming process of the gun meunt. Each cartridge was cycled through the handling system a total of 5 times. On the fifth cycle, the gun mount was allowed to complete its loading cycle, i.e., the automatic rammer placed the cartridge in the chamber of the gun barrel liner causing the projectile to debullet as it does under normal conditions in the 76mm gun system. After extraction of the rammed cartridge case, the seated projectile was removed with a rod pushed down the muzzle end of the barrel.

Deviations: No deviations were made from the test plan of reference (9).

<u>Results</u>: All cartridge cases were structurally sound after five cycles and a final ram. All crimps were tight after three cycles through the handling system. After the fourth cycle, six of the ten cartridges had loosened crimps and the projectiles could be rotated in the crimp, however, based on the previous experience on the MARK 75 mount with brass cased ammunition, none were loose enough to cause any problems when going through the ammunition handling system. After the last cycle, in which all cartridges were rammed in the mount, test cartridges 2 through 10 were observed to have debulleted after ramming. It is likely that the first cartridge also debulleted, but the evidence was destroyed when the projectile was inadvertently pushed back into the case before the case was extracted. Debulleting therefore was verified on 9 of 10 units.

*See NAVORD Dwg. 3028548 for loading details.

いいの 一般になる いたい たいの のでの いいのです

A-2

Conclusion: 76mm/62 Caliber steel-cased cartridges can successfully withstand the ammunition handling environment of the MARK 75 gun mount.

A-3

B-1

STEEL CARTRIDGE CASE EVALUATION

Single Fire Proof Test

Objective: Determine the ability of the steel cartridge case to withstand higher than normal chamber pressure (proof pressures) at various temperatures.

Test Description: Since a propelling charge weight determination had not been made to estimate the charge weight necessary for either service or proof pressures, several probing rounds were fired at various charge weights to establish charge weight/chamber pressure relationships. The purpose of the test was to assess the strength of the cartridge case at various temperatures, so charge weights were estimated that would achieve cartridge case proof pressures (nominally 19.5 to 21.0 long tons/in² (copper) in accordance with WS 14795) at 20° F, 90° F, and 120° F. At the same time, the charge weight to achieve service velocity and chamber pressure were estimated (3000 \pm 10 ft/sec, 17 to 19 lon tons/in² at a temperature of 90° F). RAD-E33 M6/2 propellant was used in all instances. Once a charge weight was established, ten cartridges each were loaded with the proper propelling charge weight to achieve nominal proof pressures. The cartridges consisted of a steel cartridge case, a MARK 161 percussion primer, the proper charge weight of RAD-E33 propellant, and an inert BL&P projectile. Preconditioned components (except projectiles which were at ambient temperature) were used in all instances, and upon loading, each cartridge was placed back in the proper temperature conditioning chamber for stabilization. Copper crusher gauges were placed in all cartridges, two 10 and two 15-ton gauges in each probing cartridge, and three 15-ton gauges in each test cartridge. As each test cartridge was fired from a single fire mount, maximum chamber pressure and projectile velocity were measured and recorded. At the completion of the test, certain premeasured cartridge cases were rechambered as a check for fit and then returned to NOS/IH for analysis.

Deviations: There were no deviations from reference 9 on this test.

<u>Results</u>: All data are summarized in Table B-1 and shown in detail in Table B-2. Service and proof charges of RAD-E33 in the 76mm/62 Caliber steel cartridge case with U.S. projectiles were determined to be (velocities and pressures were obtained from data cartridges):

		Charge	Average			
	Temperature (^O F)	Weight (1bs)	Velocity (ft/sec)	Pressure long tsi (Cu)		
Service	90	5.30	3900	17.2		
	20	6.10	3250	20.8		
	90	5.80	3229	21.1		
	120	5.71	3207	20.9		

All steel cartridge cases performed satisfactorily, with no case failures occurring. Most cases were hard to extract from the single fire mount but this is attributed to normal case expansion during proof firings. The range in chamber pressure at a specific charge weight in most instances was less than 2 tsi (Cu) normally experienced with the brass cartridge case. The largest variation was at 120°F, with pressures ranging from a high of 21.4 to a low of 20.3 tsi at a charge weight of 5.71 lbs. (using the 15 tsi gauge readings as the standard). Projectile velocities are nominally 3225 ft/sec., typical of previous results in 76mm tests at a similar pressure level (TECHEVAL test TS-2, fired at proof pressure at ambient temperature had a nominal chamber pressure of 21.2 tsi and an average velocity of 3204 ft/sec. with a standard deviation of 8.4 ft/sec.). It is noted that because of the lower than expected variations in chamber pressure, small adjustments in charge weight were made during the course of firings in attempts to achieve pressures slightly closer to nominal proof (21.0 tsi). Great care was exercised when doing this because the proper combination of charge weight and temperature can sometimes cause large jumps in pressure for small charge weight increases. Indeed, this did occur in one instance, when an increase of 0.3 lbs. in charge weight (at 20^oF) produced a jump in chamber pressure of almost 4 tsi, to 23.7 tsi when only a 1 to 1.5 tsi increase was to be expected. Fortunately the steel cartridge case handled even this extreme overtest with no problems other than indications of a slightly deeper than normal "pressure ring" on the back of the case. This ring is merely an impression of the breechblock on the base of the case due to high pressures and is to be expected on all cartridge cases fired.

<u>Conclusion</u>: 76mm/62 Caliber steel-cased ammunition can successfully withstand chamber pressures up to proof pressures and beyond, with no ill effects.

51---

TABLE B-1

社会などの主義

76MM STEEL CARTRIDGE CASE EVALUATION

Single Fire Proof Test

Summary of Results

<u>y (ft/sec) Standard</u>		Standard	Deviation	14.4	1 1 1	4.4	5.8	7.5
	Velocit		Mean	3253) t t	3212	3229	3207
(Copper)) Gauge Standard	Standard	Deviation	0.17	0.28	0.32	0.17	0.33	
Tons/in ²	15 TSI		Mean	20.0	20.8	21.2	21.1	20.9
Chamber Pressures (Long 1 10 TSI Gauge Standard								
	SI Gauge	'SI Gauge Standard	Deviation	0.15	0.96	0.12	0.04	0.33
		Mean	20.1	20.2	20.6	20.8	20.8	
	Charge	Weight	(1bs)	6.00	6.10	5.78	5.80	5.71
	Test	Temperature	(⁰ F)	20		06		120
	Chamber Pressures (Long Tons/in ² (Copper))	Chamber Pressures (Long Tons/in2 (Copper))TestChargeIO TSI GaugeIS TSI GaugeVelocity (ft/sec)	TestChamber Pressures (Long Tons/in2 (Copper))TestChargeIo TSI GaugeIS TSI GaugeTemperatureWeightStandardStandard	TestChamber Pressures (Long Tons/in2 (Copper))TestCharge10 TSI Gauge15 TSI GaugeTemperatureWeightStandardStandard(OF)(1bs)MeanDeviationMeanDeviationMeanDeviationMeanDeviation	TestChamber Pressures (Long Tons/in2 (Copper))TestCharge10 TSI Gauge15 TSI GaugeTemperatureWeightStandardVelocity (ft/sec)(OF)(1bs)MeanDeviationMean206.0020.10.1520.00.173253	TestChamber Pressures (Long Tons/in2 (Copper))TestCharge10 TSI Gauge15 TSI GaugeTemperatureWeightStandardStandard(OF)(1bs)MeanDeviationMean206.0020.10.1520.00.1732514.46.1020.20.9620.80.28	$ \begin{array}{c cccc} Test & Charge & Chamber Pressures (Long Tons/in^2 (Copper)) \\ Temperature & Weight & IS TSI Gauge & IS TSI Gauge & Standard \\ \hline (OF) & (1bs) & Mean & Deviation & Mean & Deviation & Mean & Deviation \\ \hline 20 & 6.00 & 20.1 & 0.15 & 20.0 & 0.17 & 3253 & 14.4 \\ 6.10 & 20.2 & 0.96 & 20.8 & 0.28 & & \\ \hline 90 & 5.78 & 20.6 & 0.12 & 21.2 & 0.32 & 3212 & 4.4 \\ \hline \end{array} $	$ \begin{array}{c} \mbox{Test} \\ \mbox{Temperature} \\ \mbox{Weight} \\ \mbox{Weight} \\ \mbox{Weight} \\ \mbox{Weight} \\ \mbox{Weight} \\ \mbox{Weight} \\ \mbox{Mean} \\ \mbox{Deviation} $

TABLE B-2 76MM STEEL C RTRIDGE CASE EVALUATION

1

Single Fire Proof Test

Propellant: Lot RAD-133. Hount: Single fire. Barrel No.: NOSL Liner 1.

	Test	Case	Projectile	Conditioning	Charge	Average	Pressure		
	Unit	Serial	Serial	Temperature	Weight	10 151	15 TSI	Velocity	
Date	No.	No.	No.	(⁰ F)	<u>(lbs)</u>	Gauge	Gauge	(ft/sec)	Remarks
0E/21/75				00	5 77			1160	Italian warming mound
05/21/75				50	5.47	17.4		3109	Probine mound
	*	22	•••	90	5.35	17.4		3023	Probing round.
	*	91		90	5.40	18.0		3049	Probing round.
		179		90	5.50	18.7		3079	Probing round.
	****	34	•••	90	5.50	18.7		3077	Probing round.
		183		90	5.65	20.2	19.5	3155	Probing round.
		6	···	90	5,70	20.5	19.4	3180	Probing round.
		132		90	5.75	20.4	21.2	3202	Probing round.
05/22/75				75	5.27			3149	Italian warming round.
		123		90	5.30	17.2		3000	Probing round.
		113		90	5,50	18.7		3086	Probing round.
		122		90	5,60	19.2		3134	Probing round.
		25		90	5,70	20.0	19.4	3184	Probing round.
		16		90	5.75		20.3	3207	Probing round.
		176		90	5.78		21.2	J214	Probing round.
		11		120	5.70		20.7	3199	Probing round.
		181		20	5.90	20.1	20.5	3209	Probing round.
	CS-56	174		90	5.78	20.6	21.7	3212	trouing tountr
	57	127	••••	90	\$ 7R	20.5	21 3	3209	
	66	46		120	5 71	20.3	21,5	3205	
	47	100	-	120	5.71	20.5	21,0	3203	
	0/	100		120	5.71	20.0	20.5	3200	
	/0	110		20	6.00	20.3	20.6	3263	
		1	***	20	6.00	19.9	20.1	3264	
05/23/75			•••	90	5.27	• • • •		3165	Italian warming round.
		164		90	5,60	18.9	13.6	3218	Near proof round.
	CS-58	63		90	5.78	20.6	20.9	3220	
	59	39		90	5.78	20.5	21.1.	3210	
	60	85	•	90	5.78	20.8	20,8	3208	
	61	180		90	5.80	20.8	21.1	3219 *	
	62	162		90	5.00	20,0	21.1	3229	
	63	157	•••	90	5.80	20.9	20.9	3232	
	64	153		90	5.80	20.8	20.9	3230	
	65	14		90	5.80	20.8	21.3	3234	
	68	114		120	5.71	21.1	20.6	3222	
	69	167		120	5.71	20.9	20.5		Case hard to load.
				90	5 27			3201	Relieving round.
06/04/75				90	5 27			3167	Italian warming round
00/04/15		68		00	5 70		20 4	1179	Near proof round
	CS. 70	21		120	5.70	21.0	21.4	3176	News proof found.
		10	•••	120	5.71	11.0	21.4	7201	
	/1	10	•••	120	5.71		21.2	3201	
	/2	18	•••	140	5.71		21.0	3203	
	73	13	•••	120	5.71		20.8	3203	
	74		•••	120	5.71	****	20.9	3206	
	75	5		120	5.71		21.0	3208	
	78	124	•••	20	6.00	20.1	19.9	3260	
	79	109		20	6.00	20.1	20.0	3248	
	80	33		20	6.00	20.2	19.9	3230	
	81	97		20	6.30		23.7	3406	
06/30/75				90	5.2			3153	Relieving round.
	82	95		20	6.10	20.6	20.8		Fired from Liner FCA-078.
	83	Sf	•••	20	6.10	10.8	20.6		Fired from Liner FCA-078.
	84	59	•••	20	6.10	20.6	21.2	••	Fired from Liner FCA-078.
	85	0د		20	6.10	20.9	20.6		Fired from Liner FCA-078.

APPENDIX C

C-1

76MM STEEL CARTRIDGE CASE EVALUATION

Single Fire (Service Pressure) Test

Objective: Determine the compatibility of the steel cartridge case with the MARK 75 gun mount when fired at various temperatures in the single fire mode.

Test Description: Sixty steel cartridge cases were loaded with 5.30 lbs of M6/2 76mm propellant from Lot RAD-E33. BL&P cartridges were assembled in accordance with NWL Dwg. 40997 using inert projectiles. This charge weight was previously estimated (from Appendix B) to provide service velocity and pressure $(3000 + 10 \text{ ft/sec}, \hat{s} = 15 \text{ ft/sec};$ 17 to 19 tsi (Cu), s = .60 tsi) when fired at standard temperature (90°F) and using steel cartridge cases. Copper crusher gauges in gauge holders were placed in each cartridge case to provide an indication of chamber pressures after each shot. Thirty cartridges each were preconditioned to temperatures of 20° and 120°F. As each individual cartridge was removed from conditioning, it was placed in the lower loading drum of a MARK 75 MOD 0 gun mount, cycled through the handling system, rammed, and fired. The gun mount was instrumented to measure left and right cartridge case extraction forces, and projectile ejection time. Coils along the line of fire were used to measure projectile velocity. Chamber pressures were measured using three 15-ton copper crusher gauges in each cartridge case.

<u>Deviations</u>: Two deviations occurred from the test plan of reference 9. First, facilities were not available at the time of the test to precondition the test cartridges to 130° F. After consultation with the Design Agent for the steel cartridge case (NOS/IH), the temperature requirement was lowered to 120° F. Secondly, reference 9 required that ten cartridges loaded to achieve proof pressure be fired from the MARK 75 mount. NAVSEA's policy throughout the 76mm Ammunition Technical Evaluation (TECHEVAL) was that no proof firings were to be conducted from the MARK 75 mount so this requirement was deleted.

<u>Test Results</u>: An initial attempt was made to conduct this test using a worn Italian barrel liner (FCA-064) in order to accumulate enough wear on this liner to perform one of the last brass case TECHEVAL tests. It was found, however, that wear on this liner was sufficient to produce chamber pressures far below service pressure, even when fired at high temperatures. This was verified by firing a brass-cased cartridge, conditioned to 90° F, and observing a chamber pressure of 15.5 tsi vice 17 to 19 (see Table C-1 for tabulation of the data).

Italian liner FCA-100 (four previous cartridges fired) was substituted and most of the remainder of the cartridges fired. Two additional liner changes were made, with the last 23 cartridges being fired from either NOSL Liner 7 (four previous cartridges fired) or 8 (ten previous cartridges fired). Following is a summary of the ballistic data for these three liners:

ź

Conditioning	9	Average	Standard	Average	Standard
Temperature (^o F0	Liner <u>No.</u>	Velocity (ft/sec)	Deviation (ft/sec)	Pressure (Long tsi)	Deviation (Long tsi)
20	FCA-100	2923	9.9	16.1	0.2
	NOSL No.	7 2912	8.1	15.4	0.3
	NOSL No.	8 2953	8.5	16.4	0.4
120	FCA-100	3008	9.6	18.5	0.3

A liner-to-liner comparison of the data at 20°F shows that there is a statistically significant (t test at 0.01 confidence level) difference in ballistic performance either in velocity or pressure, that prevents pooling the data. Several factors can contribute to the observed variations in ballistic performance including performance differences between Italian and American 76mm liners (documented in reference 10), and day-to-day variations in performance that can occur even when all other conditions are identical.

A comparison of the data with velocity/temperature and velocity/ pressure curves generated during the 76mm brass-cased ammunition TECHEVAL shows steel-cased ammunition to be slightly less affected by temperature than the brass-cased ammunition (see Figures C-1 and C-2). From the limited data available, a correction factor of approximately 0.80 ft/sec/^OF for velocity and 0.025 long tsi/^OF for chamber pressure was obtained. Using these values, velocity and pressure corrected to a standard of 90^OF became:

C-3

Conditioning		Corrected	Corrected		
Temperature	Barrel	Velocity to 90 ⁰ F	Pressure to 90 ⁰ F		
(^o F)	Liner	(ft/sec)	(Long tsi)		
20	FCA-100	2979	17.9		
	NOSL No. 7	2968	17.2		
	NOSL No. 8	3009	18.2		
120	FCA-100	2984	17.8		

Average corrected velocity for the three liners with the estimated charge weight of 5.30 lbs. of Lot RAD-E33 is slightly lower than nominal service velocity (3000 ± 10 ft/sec). Each given liner performs consistently with the steel case since standard deviations are all less than 10 ft/sec.. Pressures are all within nominal service limits.

Each cartridge case was examined for damage after firing. No damage to any cartridge case was found. Extraction forces were measured to determine the compatibility of the cartridge case with the gun mount, i.e., is the case harder to extract than a brass case, a condition that can cause fatigue of the extractor mechanism. Average extraction forces were:

	Extraction Forces (1bs)							
Conditioning	Lef	t	Right					
Temperature		Standard		Standard				
(⁰ F)	Average	Deviation	Average	Deviation				
20	1993	741	2012	750				
120	2421	846	2784	952				

Analysis shows that there is no significant difference in left or right extraction forces at either temperature (tests at 0.01 confidence level). There is some dependence on temperature indicated on the right extractor for which no explanation can be given. In general, extraction forces are much lower than those measured during the brass case tests. For example, average extraction forces in the order of 3500 to 5000 lbs. were obtained during accuracy tests of brass-cased U.S.-made ammunition. Equivalent values were measured in other TECHEVAL tests.

C • 4

Conclusions:

a. Steel cased 76mm ammunition experiences no structural problems when fired at nominal service conditions and at temperature extremes.

b. Extraction forces measured with the steel cartridge case are consistent, and are lower than those measured on the brass cartridge case.

C-6

C-7

APPENDIX D

ţ.

76MM STEEL CARTRIDGE CASE EVALJATION

Rapid Fire (Service Pressure) Test

Objective: Determine structural ability of a steel cartridg, case and its compatibility with the MARK 75 mount in the rapid fire mode.

Test Description: One hundred steel cartridge cases were loaded with $\overline{5.30}$ pounds of M6/2 76mm propellant from lot RAD-E33. Complete BL&P cartridges were then assembled in accordance with NWL Dwg. 40997 using inert projectiles from a lot manufactured for IOT&E tests aboard PHM-1. The 5.30 pound charge weight had been previously established (Appendix B) to provide nominal service velocity and pressure. Twenty cartridges, conditioned to 90°F, were fired (at a firing rate of 80 rounds/minute) from the MARK 75 MOD 0 mount at a vertical plywood target located 500 yards from the gun muzzle. The gun mount was instrumented to measure left and right cartridge case extraction forces, and projectile ejection time. Coils along the line of fire were used to obtain the velocity of each projectile. A 16mm photosonic camera recorded the order of impact of each projectile on the target board.

The remaining 80 cartridges were fired as four 20-round bursts from the MARK 75 MOD 0 mount. The barrel/liner was elevated to a quadrant elevation of 15[°] for each burst, and range and drift of each projectile impact on the water was measured using phototriangulation techniques (four 70mm photosonic cameras and two 5-inch format Bowen cameras located at various range stations near the point of impact). As before, the gun mount was instrumented to measure left and right cartridge case extraction forces, and projectile ejection time. Coils along the line of flight were used to measure projectile velocity.

<u>Deviations</u>: Two deviations occurred from the test plan of reference 9. First, instrumentation was added to the test to allow measurement of extraction forces, and projectile range and drift information. Second, to allow comparison of the range information with existing range data, the conditioning temperature was changed from ambient to 90° F. It is noted that the vertical target test and the obtaining of range information were piggybacked tests to obtain accuracy data. These data will be discussed in an upcoming 76mm accuracy report and will not be discussed in this report. Test Results: All cartridges functioned successfully in the rapid fire mode of the MARK 75 mount. One cartridge case was found to have developed a longitudinal split near the base of the case (see Figure D-1). An investigation by NOS/IH disclosed that the split was caused by the presence of a large inclusion near the surface of the steel which the manufacturer had tried to remove by buffing the surface of the case. This apparently weakened the case material sufficiently to allow splitting upon firing. It is noted that all steel cartridge cases were examined after firing, and no other instance of splitting was discovered. Velocity and extraction force information is summarized as follows:

			Extraction Forces (lbs)				
	Average	Standard	L	eft	Right		
Liner No.	Velocity <u>(ft/sec)</u>	Deviation (ft/sec)	Average	Standard Deviation	Average	Standard Deviation	
NOSL No. 8	3001	13.8	2374	358	4538	1310	
FCA-101 (Burst 1)	29 70	13.2	2558	606			
(Burst 2)	2968	12.1	2569	511			
(Burst 3)	2969	10.8	3045	441			
(Burst 4)	2966	7.2					

Velocity is again low in one liner (FCA-101), however, it easily meets requirements of nominal service requirements on the other liner. Both liners were new, FCA-101 having four previous rounds and liner 8 having 16 previous rounds. As noted before (Appendix C), velocity differences as observed here occur in other gun systems and are usually caused by liner-to-liner variations or by day-to-day variations. Since this test was performed on two different days with two different liners, both sources of variation are felt to have caused the observed velocity differences.

Extraction forces are in general comparable with those reported in Appendix C. No explanation can be given for the atypical high right extraction force reading observed on liner 8. New strain gauges had been installed prior to this test, the gauges from previous tests having been damaged during a barrel change. The observed extraction force is still lower than the minimum extraction force observed on brasscased ammunition.

Strain gauge failure during the firing on liner FCA-101 caused the right extraction data to be either suspect or non-existent. New gauges were installed prior to this test when previously installed gauges were found to be nonfunctional. Initial firings on the new gauges showed the right extractor traces to be extremely erratic, and were not reported. Gauge failure also occurred on the left extractor at the start of the fourth burst fired from liner FCA-101.

Range and dispersion data gathered are shown in Table D-1. Figure D-2 shows a schematic of the target board with impact locations plotted. Analysis of these data will be given in separate reports.

Conclusions:

a. The steel cartridge case is structurally able to withstand firing at service conditions from the MARK 75 gun mount.

b. The steel cartridge case is compatible with the MARK 75 gun mount in that forces induced in the mount by firing are equivalent to or lower than those induced by brass-cased ammunition.

TABLE D-1

.

.

1. 1.2

-

BURNING BURNING

544 C

14. E.

Ŕ

ないの意味的な

ないのないないない

11

76MM STEEL CARTRIDGE CASE EVALUATION

Rapid Fire-Service

	Conditio	Conditioning Temperature 90°F Mount: MARK 75 MC		K 75 MOD 0.	5 MOD 0. Q.E. 15°.			
	Test	Case		Extract	ion Forces		Uncorrected	
Barrel	Unit	Serial	Velocity	(1b	s)	CFK to Ejection	Range	Deflection
Number	No.	Number	(ft/sec)	Left	Right	(sec)	(yds)	(yds)
Liner 8	CS-156	139	2962	2310	2590	.082		
Liner 8	CS-157	309	2982	2440	2750	.087		
Liner 8	CS-158	303	2988	2370	2430	.092	*****	
Liner 8	CS-159	306	2981	2690	3680	.083		
Liner 8	CS-160	301	3004	2620	6490	.088		
Liner 8	CS-161	308	3008	2240	4010	.088		
Liner 8	CS-162	304	2999	2280	4160	.086		
Liner 8	CS-163	305	2999	2140	4930	. 109		
Liner 8	CS-164	302	2998	2650	6440	.094	*****	•••
Liner 8	CS-165	229	2998	2300	4160	.093		
Liner 8	CS-166	232	3007	1710	4790	.098		
Liner 8	CS-16/	207	3004	3020	5100	.096		
Liner 8	CC 160	237	3010	2950	6410	.097		
Liner a	CS-109	231	2010	2490	5410	.100		
Liner o	CS-170	230	3010	2730	6020	106	*****	
Liner 8	CS-171	230	3022	2310	5260	100		
Liner 8	CS-172	234	3014	2300	4870	105		
Liner 8	CS-174	211	3015	1710	4870	090		
Liner 8	CS-175	288	3006	1900	5030	.087		
FCA-101	(1)	200	3152	3660	(2)	.081		
FCA-101	ä		2983	2020		.090		
FCA-101	CS-176	291	2964	3360	$(\tilde{2})$.088	12277	0
FCA-101	CS-177	285	2945	2520	(2)	.088	12265	-24
FCA-101	CS-178	290	2948	1630	(\tilde{z})	. 101	(2)	(2)
FCA-101	CS-179	284	2953	1760	(2)	.091	12243	-17
FCA-101	CS-180	289	2968	1830	(2)	.097	12125	- 8
FCA-101	CS-181	287	2955	1870	(2)	.094	12352	-21
FCA-101	CS-182	283	2968	2250	(2)	. 101	12387	-7
FCA-101	CS-183	339	2971	1910	(2)	.096	12128	- 20
FCA-101	CS-184	337	2980	2240	(2)	.089	(2)	(2)
FCA-101	CS-185	338	2972	2520	(2)	.097	12090	-18
FCA-101	CS-186	342	2979	2470	(2)	.103	(2)	3
FCA-101	CS-187	341	2967	3520	(2)	.094	11964	- 30
FCA-101	CS-188	204	2967	1630	(2)	.109	12345	-19
FCA-101	CS-189	345	2966	3170	(2)	.092	12021	-10
FCA-101	CS~190	34.5	2987	2740	(2)	.095	12355	-11
FCA-101	CS-191	344	2993	2240	(2)	.101	12090	-10
PCA-101	CS-192	262	2500	2240	(2)	101	11938	-15
FCA-101	CS-193	263	2902	3140	(2)	096	12025	-17
FCA-101	CS-194	261	2981	3360	(2)	. 102	11909	-23
FCA-101	CS-196	314	2975	2300	(2)	.093	12220	4
FCA-101	CS-197	315	2944	3070		.090	12027	-26
FCA-101	CS-198	258	2965	2040	(2)	.096	12131	-11
FCA-101	CS-199	311	2950	2750	(2)	.094	12057	-8
FCA-101	CS-200	313	2964	2020	(2)	.089	12272	-14
FCA-101	CS-201	318	2950	2410	(2)	.101	11972	-15
FCA-101	CS-202	335	2971	2520	(2)	.092	12106	-23
FCA-101	CS-203	336	2981	3410	(2)	.098	12051	- 2
FCA-101	CS-204	312	2962	3030	(2)	.098	12064	-19
FCA-101	CS-205	223	2975	29 20	(2)	.097	12452	-5
FCA-101	CS-206	331	2968	2920	(2)	.091	11787	-43
FCA-101	CS-207	279	2975	2800	(2)	.098	11999	-8
FCA-101	CS-208	227	2985	2070	(2)	.101	11988	7
FCA-101	CS-209	254	2963	2240	(2)	.093	(2)	(2)
FCA-101	CS-210	186	2978	3510	(2)	.092	12129	-21
FCA-101	CS-211	194	2969	1740	(2)	.030	11892	-48
FCA - 101	CS-212	226	2993	2750	(2)	.088	12147	- 3

TABLE D-1 (Cont'd)

76MM STEEL CARTRIDGE CASE EVALUATION

Rapid Fire-Service

Conditioning Temperature 90°F

aller webster ?

11

.

1

ŝ

Mount: MARK 75 MOD 0. Q.E. 15°

	Test	Case		Extract	ion Forces		Uncorrected	
Barrel	Unit	Serial	Velocity	(15	5)	CFK to Ejection	Range	Deflection
Number	No.	Number	(ft/sec)	Left	Right	(sec)	(yds)	(yds)
FCA-101	CS-213	247	2965	2970	(2)	.100	(2)	(2)
FCA-101	CS-214	251	2970	2300	(2)	.096	11929	-49
FCA-101	CS-215	206	2958	1790	$\tilde{(2)}$.096	11829	-56
FCA-101	CS-216	250	2975	2300	$(\tilde{2})$.089	11942	-11
FCA-101	CS-217	310	2947	2970	$\tilde{(2)}$.089	12256	-6
FCA-101	CS+218	316	2964	2400		.099	12239	-6
FCA-101	CS-219	269	2952	2240	(2)	.093	12215	-15
FCA-101	CS-220	271	2963	3310	(2)	.091	11987	-28
FCA-101	CS-221	259	2972	3250	$\tilde{(2)}$.100	12322	1
FCA-101	CS-222	267	2980	3030	(2)	.103	12327	4
FCA-101	CS-223	265	2964	3330	$\tilde{(2)}$.092	12084	4
FCA-101	CS-224	266	2960	3200	(2)	.092	11976	-16
FCA-101	CS-225	187	2970	3480	$\tilde{(2)}$.098	12282	17
FCA-101	CS-226	329	2986	3290	à	.099	12014	- 34
FCA-101	CS-227	330	2980	3360	(2)	. 096	12386	-11
FCA-101	CS-228	332	2978	3430	$(\tilde{2})$. 102	12092	-28
FCA-101	CS-229	282	2970	(2)	(2)	.099	(2)	(2)
FCA-101	CS-230	268	2969	$\tilde{(2)}$	$(\overline{2})$. 102	11855	- 26
FCA-101	CS-231	281	2980	$(\tilde{2})$	$\tilde{(2)}$.099	12169	-20
FCA-101	CS-232	200	2951	(2)	$(\overline{2})$.088	12000	_ 25
FCA-101	CS-233	280	2975	$\tilde{(2)}$	$(\overline{2})$.094	11818	- 37
FCA-101	CS-234	220	2981	$(\tilde{2})$	$(\overline{2})$.099	17016	7
FCA-101	CS-235	277	2969	(2)	(2)	. 101	(2)	(2)
FCA-101	CS-236	188	2964	$\tilde{(2)}$	$(\overline{2})$	090	(2)	(2)
FCA-101	CS-237	249	2958	(2)		090	12060	(4)
FCA-101	CS-238	253	2953	$\tilde{(2)}$	$(\overline{2})$.089	11975	2
FCA-101	CS-239	274	2965		(2)	.096	12142	_3
FCA-101	CS-240	252	2967		(2)	101	11053	_15
FCA-101	CS-241	272	2961	$(\overline{2})$	(2)	.089	(2)	(2)
FCA-101	CS-242	273	2960	(2)	(2)	.097	12190	-1
FCA-101	CS-243	328	2972	(2)	(2)	100	11972	-13
FCA-101	CS-244	334	2965	$(\overline{2})$	(2)	.093	11860	-13
FCA-101	CS-245	257	2978	$(\tilde{2})$	$(\overline{2})$.095	11879	-30
FCA-101	CS-246	225	2970	$(\tilde{2})$	(2)	.098	11934	8
FCA-101	CS-247	260	2977	$(\tilde{2})$	$(\tilde{2})$.090	11989	8
FCA-101	CS-248	221	2973		$\tilde{(2)}$.098	12005	14
FCA-101	CS-249	228	2967	$\tilde{(2)}$	(2)	.102	11880	-32
FCA-101	CS-250	224	2967	(2)	$(\overline{2})$.093	12075	- 19
FCA-101	CS-251	270	2963	$\tilde{(2)}$	$\tilde{(2)}$.096	11819	- 19
FCA-101	CS-252	222	2981	$\overline{(2)}$	$(\tilde{2})$.107	12002	-9
FCA-101	CS-253	275	2965	$\tilde{(2)}$	(2)	.095	11891	-57
FCA-101	CS-254	278	2957	$\overline{(2)}$	(2)	.096	12007	18
FCA-101	CS-255	253	2963	(2)	(2)	.097	11961	4 5
					N . A	• · · · ·	140.00	••

Spotting cartridges (round 1 Italian depot round, round 2 steel-cased cartridge (5.30 1b charge weight)).
Data suspect; not recorded.

APPENDIX E

٢.

E-1

:

REFERENCES

- 1. Technical Evaluation of 76mm/62 (OTO Melara) MARK 75 MOD 0 Mount; NWL Technical Report TR-2996 of August 1973 (Unclassified).
- Limited Technical Evaluation of 76mm/62 Gun Mount MARK 75 MOD 1; NSWC/DL Technical Report TR-3281 of April 1975 (Unclassified).
- Technical Evaluation of 76mm/62 Caliber Ammunition for the MARK 75 <u>Gun Mount; NSWC/DL</u> Technical Report TR-3355, Publication Pending (Confidential).
- 4. <u>76mm/62</u> Caliber Ammunition Safety Evaluation Report; NSWC/DL Technical Report TR-3256 of April 1975 (Unclassified).
- 5. 76mm/62 Caliber Ammunition Reliability Assessment Report; NSWC/DL Technical Report, Publication Pending (Unclassified).
- 6. 76mm/62 Caliber Ammunition Engineering Evaluation Report; NSWC/DL Technical Report, Publication Pending (Confidential).
- 7. MARK 75 MOD 0 Gun Malfunction Report; NSWC/DL Technical Report, Publication Pending (Confidential)
- 8. 76mm/62 Caliber Accuracy Assessment; NSWC/DL Technical Report TR-3278, Publication Pending (Unclassified).
- 9. NOS/IH Memo 5032T:JOR 8032/1 of 21 Jan 1975.

10. NAVSURFWPNCEN/DL Memo DT-41:RCR:ges 8010/1-21 of 10 Sep 1975.

E-2

APPENDIX F

•

~

1

1222

KERSPACES/

È

È.

に合いたのない。

é

というと見ていた。

ないがく、シ

1

ļ4

1

ŝ

Ļ

F-1

DISTRIBUTION

1

Commander Naval Sea Systems Command Attn: SEA-653G (6) Washington, D. C. 20360

Defense Documentation Center (2) Cameron Station Alexandria, VA. 21314

Commanding Officer Naval Ammunition Depot Attn: Code 0521 Code 2032 Crane, IN. 47522

Commander Naval Ordnance Station Attn: Code 5032 (2) Indian Head, MD. 20640

and the state of the second

F-1

Local: DC DD DF DG DT DT-20 DT-22 DT-22 (Duch) DT-40 DT-41 (Rosebro) DT-50 DT-51 DT-51 (Hammer) DG-20 (Tschirn) (2) DG-30 (McCallum) DG-50 DG-50 (Francis) DG-50 (Hartley) (5) DX-21 DX-222 (3) DX-40 DX-42 (2)

F-2

UNLLASSIFIED WC/DL-TR-3416 SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3 BECIPIENT'S CATALOG NUMBER TR-3416 TITLE (and Subtitle) YPE OF REPORT & PERIOD COVERED Final repty EVALUATION OF A STEEL CARTRIDGE CASE FOR USE WITH 76MM/62 CALIBER AMMUNITION. PERFORMING ORG. REPORT NUMBER "UTHOR(s) 8. CONTRACT OR GRANT NUMBER(S) William R. Hammer PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Surface Weapons Center (DT-20) Dahlgren Laboratory VORD ORDITAS Dahlgren, Virginia 22448 **)_**55//065/ø90/4 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DAT Oct 25 75 Naval Sea Systems Command Washington, D.C. 20362 NUMBER 46 14. MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of the Distribution limited to U. S. Government agencies only; Test_and Evaluation (10-75). Other requests for this document must be referred to the OIC, Dahlgren Laboratory, Dahlgren, Virginia 22448. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 76mm/62 Caliber Ammunition Mount Compatibility Test Steel Cartridge Case Single Fire Proof Test 76mm MARK 75 Gun Mount Single Fire Service Test Structural Overtests Rapid Fire Service Test Structural Integrity and Compatibility Smcke-Puff Round 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A series of tests were performed to evaluate the suitability of a steel cartridge case as a replacement to the brass cartridge case used in the 76mm/ 62 caliber family of ammunition. The scope of the test program conducted was limited to cartridge case integrity at service and proof conditions, and compatibility with the 76mm MAPK 75 gun mount. Tests performed included cartridge case integrity and compatibility tests in the MARK 75 gun mount, and structural overtests (proof firings) in a single fire mount. One FORM DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entered)

k F

Manual States

UNCLASS1F1ED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. ABSTRACT (Continued)

:

cartridge case out of 205 cases tested was found to have failed structurally upon firing. After examination of the cartridge case by the Naval Ordnance Station/Indian Head, Maryland, it was determined that the cause of the failure was the presence of a manufacturing defect in the case wall. As a result of the test program and analysis conducted, it is concluded that the steel cartridge case is a suitable replacement for the 76mm brass cartridge with respect to structural integrity and compatibility with the MARK 75 gun mount. こう さ シー・シー・シー・シー・シー・シー