UNCLASSIFIED

AD NUMBER

ADB007816

LIMITATION CHANGES

TO:

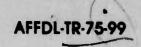
Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; OCT 1975. Other requests shall be referred to Air Force Flight Dynamics Laboratory, Attn: FEE, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFFDL ltr, 2 May 1979


THIS PAGE IS UNCLASSIFIED

Best Available Copy for all Pictures

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DEVELOPMENT OF A TEMPERATURE CONTROLLER FOR A VUILLEUMIER (VM) CYCLE POWER CYLINDER

ARTHUR D. LITTLE, INC. CAMBRIDGE, MASSACHUSETTS

1 OCTOBER 1975

TECHNICAL REPORT AFFDL-TR-75-99 FINAL REPORT FOR PERIOD 11 SEPTEMBER 1974 - 1 OCTOBER 1975

> Distribution limited to U.S. Government agencies only; test and evaluation statement applied to 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FEE), Wright-Patterson AFB, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY.* AIR FORCE WRIGHT AERONAUTICAL LABORATORIES Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433 When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document pertains to the test and evaluation of hardware offering significant military advantages. In addition to Government recipients, the document is intended to preferentially communicate results to those individuals and organizations outside of the U.S. Government that are actively engaged in the national defense effort. A currently valid DOD security clearance for access to material classified Confidential or higher is more than sufficient evidence of required involvement in defense activities, and this document may be released to individuals and organizations possessing such clearance without the previous approval of AFFDL/ FEE. Any others must request release on an individual basis. After a period of four years from the date shown in the distribution statement, it is anticipated that distribution of this document will be unlimited and its public release authorized.

This technical report has been reviewed and is approved for publication.

TT.I.TAM C.

WILLIAM C. SAVAGE Chief, Environmental Control Branch Vehicle Equipment Division Air Force Flight Dynamics Laboratory

DAVID BRUBAKER Project Engineer

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 21+11+75 - 100

filechil SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO RECIPIENT'S CATALOG NUMBER TR-75-99 AFFDI HI. 11201 Report ient Development of a Temperature Controller for a Vuilleumier (VM) Cycle Power Cylinder. 100 7. AUTHORIS Richard H. Spencer F33615-75-C-3002 PROGRAM ELEMENT. PROJECT, AREA & WORK UNIT NUMBERS PERFORMING ORGANIZATION NAME AND ADDRESS Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Flight Dynamics Laboratory Air Force Systems Command Wright-Patterson AFB, Ohio 45433 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) USAF Flight Dynamics Laboratory 15. SECURITY CLASS. (of this report) Air Force Wright Aeronautical Laboratories Unclassified Air Force Systems Command tse. DECLASSIFICATION/DOWNGRADING Wright-Patterson Air Force Base, Ohio ___ 16. DISTRIBUTION STATEMENT (of this Report) Distribution limited to U.S. Government agencies only; test and evaluation applied October 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FEE), Wright-Patterson AFB, Ohio 45433 1 20. If hit flarent from Report) 614603 -614 18 SUPPLEMENTARY NOTES None 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Aircraft Environment Temperature Controller Temperature Controller Vuilleumier Cycle Power Cylinder **Miniature Temperature Controller** Platinum Resistance Temperature Sensor **High-Temperature Control On-off Temperature Controller** ABSTRACT (Continue on teverse side if necessary and identify by block number) X Development of a temperature controller for the hot end of a Vulleumier (VM) cryogenic cooler system is presented. The objectives of a low-cost, moderate reliability, environmentally tested controller are met in the design presented. Fundamental design factors include: use of an on/off controller operating from the 28-volt aircraft bus, use of a platinum resistance temperature sensor, packaging within 25 cubic inches, use of class P components, and an estimated mean-time-between-failure of more than 8000 hours Five controllers, together with their five associated load simulators, have been supplied to Wright-Patterson Air Force Base, together with complete documentation of EMI and environmental testing. Estimated production cost of the controllers is \$314, plus the cost of a sensor which is estimated between \$40 and \$125. DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 10 208850-

FOREWORD

This report, prepared by staff members of Arthur D. Little, Inc., Acorn Park, Cambridge, Massachusetts, is the final technical report on a study involving the development of a temperature controller for a Vuilleumier (VM) cycle power cylinder. The work was carried out under U.S.A.F. Contract F33615-75-C-3002 (Arthur D. Little, Inc., Case No. 77576). The contract was in support of Project No. 6146, Task 6146-03. The work was administered under the direction of the Air Force Flight Dynamics Laboratory, Vehicle Equipment Division with Lt. David C. Brubaker, AFFDL/FEE, as Project Engineer.

This report covers work from 1 September 1974 to 1 October 1975 and was released by the author in August 1975 for publication as a technical report.

*PRECEDING PAGE BLANK-NOT FILME

TABLE OF CONTENTS

		Page
I.	SUMMARY AND CONCLUSIONS	1
	A. INTRODUCTION	1
	B. PROGRAM RESULTS	1
	C. RECOMMENDATIONS	2
11.	APPROACH	5
	A. THE TEMPERATURE CONTROL PROBLEM	5
	B. THE GENERALIZED TEMPERATURE CONTROLLER	5
	CIRCUIT FUNDAMENTALS	7
	A. GENERAL CONSIDERATIONS	7
	B. SELECTION OF POWER SOURCE	7
	C. THE POWER CONTROL ELEMENT	7
	D. SENSOR	8
	E. ERROR SENSING	9
	F. BASIC CONTROL CIRCUIT	9
IV.	DETAILED DESIGN	13
	A. CONTROL CIRCUIT	13
	B. CIRCUIT FEATURES	13
	C. COMPONENT SELECTION	17
	D. ESTIMATED CONTROLLER LIFE	21
	E. ERROR BUDGET	24
	F. DETERMINATION OF TRIM RESISTORS	26

v

and the second statement of the second

1

TABLE OF CONTENTS (Continued)

		Page
v.	LOAD SIMULATION	27
VI.	SYSTEM PERFORMANCE	33
	A. MEASURED EFFICIENCY	33
	B. TYPICAL TIME RESPONSE OF CONTROL UNIT	33
	C. CONTROLLER PERFORMANCE CHARACTERISTICS	33
11.	PRODUCTION COST ESTIMATE	39
	APPENDIX A INSTRUCTIONS	45
	APPENDIX B ENVIRONMENTAL AND EMI TEST PLANS AND RESULTS	49
	APPENDIX C DATA SHEET FOR THE CIRCUIT DISCONNECT DEVICE	181
	APPENDIX D MISCELLANEOUS DATA SHEETS	185

LIST OF ILLUSTRATIONS

Page

.

Figure		
1	Block Diagram of Basic Temperature Controller	6
2	Basic Control Circuit of Controller Bread	10
3	Typical Saturation-Voltage Characteristics for Type 2N3771 Transistor	12
4	Schematic of Control Circuit	15
5	Two Controllers	18
6	Controller Assembly	19
7	Rosemount Model 132JA Platinum Resistance Temperature Sensor	22
8	Sensor Calibration Data	23
9	Load Simulator	29
10	Load Simulator (photograph)	31
11	Load Simulator and Controller	34
12	System Test Set-up	35
12	Typical Temperature Versus Time for Controller	36

APPENDIX A

		46
A-1	System Test Set-up	

APPENDIX B

Test P	Procedure No. TP-1:77576	
13.2	Shock Pulse Waveform and Tolerance Envelope	82

+

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
APPENDIX	<u>B</u> (Continued)	
Test	Plan 2186	
1	Ambient Profile, Conducted Emission - CEO3, CEO4 Broadband	127
2	Ambient Profile, Radiated Emission - REO2 Narrowband	128
3	Ambient Profile, Radiated Emission - REO2 Narrowband	129
4	Ambient Profile, Radiated Emission - REO2 Broadband	130
5	CEO3 Test Setup	131
6	Sample EMC Data Sheet	132
7	Current Probe 91550-1 Serial No. BF496	133
8	CSO1 Test Setup	134
9	CSO1 Test Setup	135
10	CSO6 Test Setup	136
11	REO2 Test Setup	137
12	41" Vertical Rod Antenna	138
13	Biconical Antenna Correction Factors, 20 MHz to 200 MHz	139
14	Log Spiral Antenna Correction Factors, 200 MHz to 1 GHz	140
15	1 to 10 GHz Log Spiral Antenna Correction Factors	141
. 16	Microwave Antenna Correction Factors	142
17	RSO2 Test Setup	143
18	RSO3 Test Setup	144

LIST OF TABLES

Table		Page
1	Estimate for Failure Rates	25
2	Performance of Temperature Controllers	37

*

nin and degree on that a mar I

I. SUMMARY AND CONCLUSIONS

A. INTRODUCTION

The Air Force has sponsored the development of compact Vuilleumier (VM) cycle refrigerator systems for cooling airborne sensor systems. The Vuilleumier system is a heat-operated refrigerator system; an important element in its operation is the source of input heat and its control. The Air Force contemplates the use of a substantial number of VM refrigerators on aircraft to cool a variety of sensitive sensor systems. Experience has shown that previously available temperature controllers for the hot cylinder of the VM refrigerators were not reliable enough for the Air Force missions. These control systems were plagued with electric heater and temperature sensor problems, as well as control circuit deficiencies.

The work conducted by Arthur D. Little, Inc., under the subject contract covers the detailed design of a temperature control system designed to meet certain objectives of the Air Force, and tests have been conducted to prove the design. The Air Force's specific targets for reliability and cost are noted below:

- Reliability: greater than 8,000 hours mean-time-betweenfailure;
- Cost: less than \$500 amortized over 300 units.

Under this contract, we have designed and tested a temperature controller to meet the following general environmental specifications: an operating temperature range (from -54° C to $+55^{\circ}$ C), EMI, acceleration, shock and explosive atmosphere tests.

The test also showed the temperature units' controlled the load temperature within a 1200°F to 1300°F range.

B. PROGRAM RESULTS

We completed the detailed design of a temperature controller for the hot end of a VM refrigeration system, and we verified this design by fabricating five prototype controllers. We subjected one of the units to complete EMI and environmental testing. Features of the design are:

- 1. Operation from the 28-volt bus of the aircraft;
- 2. Power control in a strictly "on/off" mode; and
- 3. Use of a platinum resistance temperature sensor.

The circuit includes both over-temperature protection in the event that the load temperature rises above a safe operating level and shutdown of the system in the event of a shorted sensor; both of these actions turn the power section of the controller "off," and it cannot be repowered until manually reset by an operator.

We selected passive electronic components of the P class of demonstrated reliability; this is nominally a one-failure-per-million-hour classification. We also chose active components of the JAN or JANTX class to assure reliable operation of the components used in the circuitry.

Our program included extensive testing of an elementary breadboard model of the unit, testing of a breadboard model of the assembled unit, longduration testing of Serial No. 001 of the controller which passed laboratory, EMI, and environmental tests, and testing of the four other prototype units. During these tests, we never had to replace even a single active component in any one of these circuits.

We estimate that the mean time between failure (MTBF) for the prototype unit controllers will be greater than 8000 hours. Our calculations for the MTBF show considerable conservatism in the numbers used for individual components, and we fully expect that a reliability level higher than this will be realized by the controllers in actual operation.

Our estimates of the manufacturing costs of the unit show a per unit cost of \$314 for the controller itself. To this cost must be added the cost of a platinum resistance temperature sensor, and we believe its cost will range from a low value of \$40 per unit to a possible high of \$125 for a unit specially designed for this purpose.

External packaging of the unit is such that the entire volume occupied is less than 25 cubic inches.

C. RECOMMENDATIONS

In this program we developed a control system which we feel will meet the requirements specified by the Air Force Flight Dynamics Laboratory. During the course of the study, a number of ideas occurred to us which we believe are worthy of further work. They are:

1. Test of the Controller with a Real VM Refrigeration System

The work we have done demonstrates the capability of the controller to maintain temperature in a load simulator. Nevertheless, the load simulator does not match perfectly the properties of the true hot end of a VM cooler. We believe it would be appropriate to operate the controller with a real cooler to verify that performance expectations are met, and we therefore recommend that this operation be implemented.

2. Alternate Platinum Resistance Temperature Sensors

In the prototype models of the control system, we used a custommade platinum-resistance temperature sensor. We now believe that it is possible to use a commercially available platinum resistance temperature sensor. It is important that some laboratory tests be undertaken to verify the suitability of commercially available sensing elements for this purpose, and we recommend that they be conducted. If a commercially available element can be found, the costs to the Air Force for the sensors could be markedly reduced. A series of stability tests on the units would be necessary to determine whether they would withstand the long time exposure to the elevated temperatures, while still maintaining adequate calibration.

3. AC-Operated Unit

Our choice of operating a controller from the 28-volt DC bus of the aircraft was made on the basis that there would be no apparent advantage or disadvantage in the choice of power sources. It now seems apparent that, everything else being equal, it would be preferable to operate the unit from the AC power supply of the aircraft. We believe such operation is entirely feasible and therefore recommend that a single breadboard unit be designed and fabricated to verify the expectation that such an operation is completely feasible.

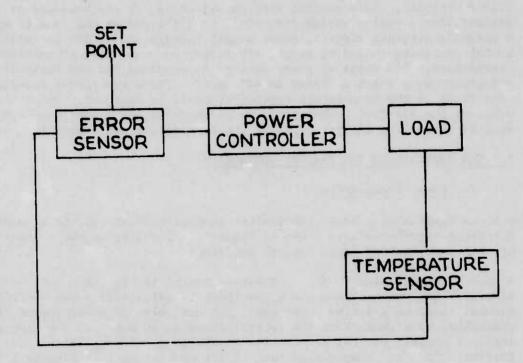
A. THE TEMPERATURE CONTROL PROBLEM

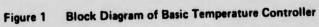
The basic temperature control problem for the VM refrigerators is maintenance of the temperature at the hot cylinder to within $50^{\circ}F$ of a $1250^{\circ}F$ setpoint. This control must be maintained in the presence of an ambient that normally varies from $-54^{\circ}C$ to $+55^{\circ}C$ and in the face of both a variable aircraft electric power supply voltage and of EMI and environmental variables including shock, vibration, and explosive atmosphere. Approximately 200 watts of power have to be supplied and the controller efficiency must reach at least an 80% level. There are almost countless ways in which the temperature controller could be designed to meet the needs of the Air Force. Therefore, as an introduction to our approach, we will first discuss the principle of the temperature controller in general.

B. THE GENERALIZED TEMPERATURE CONTROLLER

1. Power Control Element

A block diagram of a basic temperature control circuit capable of meeting Air Force requirements is shown in Figure 1. The diagram shows sensing, error measuring, and power control functions.


A major consideration in any temperature controller is the power control element. Many controllers use a continuously adjustable power control element, such as a series transistor, for use where DC power source is available, or a phase-back SCR control where an AC power source is available. A chopper control element is sometimes used to regulate direct current. In other temperature control systems the control element might be an electronic switch, a transistor for DC operation, or an SCR for AC operation. Most electronic temperature control systems that control electric heat operate in one of these modes.


2. Sensor

A wide variety of electronic sensors exists for measuring temperatures. The best known and widely used are thermocouples and resistance thermometers. In addition, there are less widely used, but important, methods, including state changes in certain materials, instrumented bi-metals, noise thermometers, optical pyrometers, acoustic methods, and others.

3. Error Measurement

Temperature controllers generally operate on the basis of controlling the power delivered to the heating element in accordance with a measured temperature error. Thus, a common feature of such controllers is a reference for the setpoint temperature. The departure from the setpoint is used to control the power to the load element. The precision of temperature control is in part determined by the "gain" of the system--how much temperature error is required to fully control the powerhandling element. Dynamic considerations also enter as they do for any closed-loop control system.

III. CIRCUIT FUNDAMENTALS

A. GENERAL CONSIDERATIONS

The twin objectives of low-cost, reliable operation for the temperature control system led us to two general conclusions:

- 1. The electronic components used in this unit should be well established, widely used devices so that there is positive evidence of their performance in terms of reliability; and
- 2. Concentration on the design should be directed toward the simplest possible circuit that would achieve all of the requirements that must be met by the controller. Using this approach would assure the least parts count which in turn should contribute to lower unit costs and also to achieving the desired reliability.

B. SELECTION OF POWER SOURCE

At the start of the program we were given the option of selecting either 115-volt, 400-Hz or 28-volt DC power to operate the controller. We chose to use the 28-volt DC source for several reasons.

First, it provides the low-level voltage at DC required for the electronics that perform the error determination for the controller. Such a power source would be needed regardless of the choice of input raw power. By using DC, one avoids the necessary conversion of 115-volt, 400-Hz power to a low-level DC with the attendant necessity of using a 400-Hz power transformer. Thus use of DC will allow a less complicated, smaller part-count circuit to be achievable.

Second, we chose DC because the EMI problems can be more easily handled than when AC is used.

The original Request for Proposal for this task gave no weight to the suitability of the controller that depended upon the choice of power source, i.e., equal utility was evident for either the 400-Hz or the 28-volt source.

C. THE POWER CONTROL ELEMENT

The temperature controller uses a series transistor that is either "on" or "off," depending upon the measured-temperature error. We chose to operate in this mode for two reasons. The implementation of this type of circuit requires a small number of components to provide the control function, and the EMI problem can be handled without resort to highperformance EMI filters that would be required had we chosen a chopper control mode of operation.

The elimination of a high-performance EMI filter is desirable both from the restricted size allowable for the controller and from the point of view of eliminating one more component from the circuit. The EMI filters typically would use a wire-wound inductor, an undesirable component from the point of view of reliability.

D. SENSOR

The subject RFP suggested the consideration of new, novel, or unusual types of temperature sensors, particularly those that might exhibit a state change at the required regulating temperature. Our examination of the technology in this area showed that, while certain devices were available, they were severely limited in terms of expected life. Others are not available at all and therefore no history of reliability performance is available.

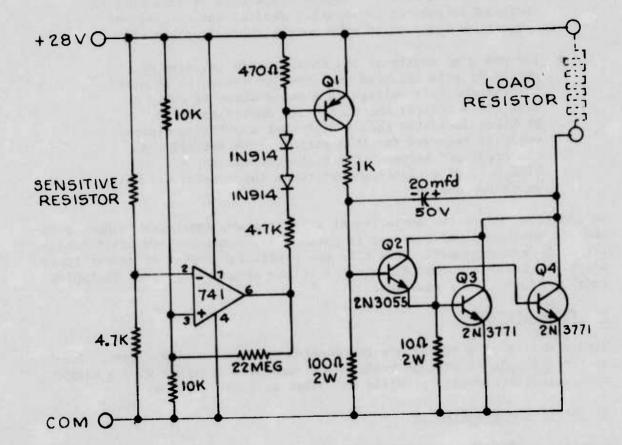
Undertaking this activity would represent a sensor development program rather than the design of a working, reliable temperature controller. For this reason, early in the program, we gave up completely the search for such devices and concentrated on available temperature-measuring devices. The search was rapidly reduced to thermocouples and resistance thermometers. It is perfectly obvious that either thermocoupler or resistance thermometer devices could be used to achieve the objective of the program. We chose to use the resistance thermometer approach rather than thermocouple approach for several reasons:

- The resistance thermometer is a high-sensitivity device which yields a large signal in response to temperature changes, the magnitude of typical signals being millivolts per °F as compared to tens of microvolts per °F for thermocouple materials. This more than two orders of magnitude difference in sensitivity eases the control problem, particularly in view of the fact that the control electronics must perform within specifications, while the package containing them is subject to a more than a 100°C change of ambient temperature.
- The small thermocouple voltages could make it difficult to achieve the required performance level in the presence of the fields and voltages specified in the conducted and radiated susceptibility parts of the MIL-STD-461A to which the finished controller has to perform.

- The use of a thermocouple for a measuring device requires that a compensating thermocouple junction of some sort be included as part of the control device, one more set of components required to make such a controller operate.
- The low sensitivity of the thermocouple requires an extremely well balanced amplifier to raise the level of the thermocouple voltage to a point where it could be used for a control function. The amplifier drift problems indicated that a high-cost amplifying element would be required for this purpose. We decided that the trade-off between this high-cost element and the high cost of a platinum resistance thermometer was well worth the choice.

In addition, since the inception of this program, improvements have been made in semiconductor devices; in particular, sensitive low-drift amplifiers of fairly modest. Thus this one particular aspect of sensor choice might be viewed somewhat differently if the program were just beginning today, rather than a year ago.

E. ERROR SENSING


With a choice of a resistance thermometer for the sensing element, the use of a simple Wheatstone bridge configuration, together with a simple discriminator circuit, provides the basic control function.

F. BASIC CONTROL CIRCUIT

Figure 2 illustrates the basic circuit used in the controller. This circuit is based on the principles of control previously explained, and the principles of operation are clear from a study of this circuit. However, in the completed circuit which includes many other auxillary functions, the basic fundamental operation is not so clearly seen.

The figure shows the load resistor to which power is applied by the controller. The basic switching action which turns power "on" or "off" occurs in the 2N3771 transistors identified as Q3 and Q4. The 2N3771 transistor has a nominal current rating of 30 amperes. The maximum load current for the intended application is 10 amperes total or 5 amperes per transistor, thus achieving a highly derated operation resulting in a high degree of reliability in these components.

It is well known that power transistors are frequently the weakest link in an otherwise reliable circuit. One feature of this use of a parallel pair of transistors is that there are no emitter resistances to force current balance between the two transistors. These particular transistors operate in such a fashion that the variation of collector-to-

\$

Figure 2 Basic Control Circuit of Controller Breadboard

emitter voltage with current causes an inherent balance between the two, thus saving the added component in the extra power dissipation that a pair of emitter resistors would require (see Figure 3). The configuration is a Darlington type with Q2 driving both Q3 and O4, and also supplying its collector current to the load, thereby providing maximum efficiency for the circuit.

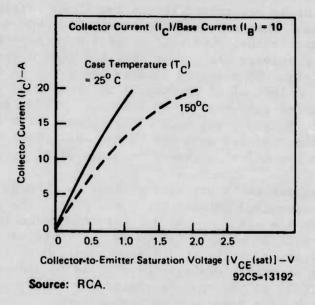


Figure 3 Typical Saturation-Voltage Characteristics for Type 2N3771 Transistor

The last feature of the power end is the use of a $20-\mu F$ feedback capacitor. This assures that, in response to a full "on" or full "off" command from the circuit, response is a ramp function of some 20- to 50-msec duration. Thus, abrupt changes in current are not possible. This eases considerably the EMI problem of conducted emission on the power leads, particularly in the high-frequency region where they are of most concern to the requirements of MIL-STD-461A.

The operation of the power end is thus clear and evident. Ql operates either full "on" or full "off," turning the three power transistors (Q2, Q3 and Q4) full "on" or full "off," but in a ramp "up" and ramp "down" fashion caused by the negative feedback provided by the $20-\mu F$ capacitor.

In the front end of the circuit, there is a Wheatstone bridge configuration for sensing temperature error. The error detector is a 741 operational amplifier with a small amount of positive feedback applied, so that switching action is assured. This operation can be seen by noting that the sensing resistor is located in the upper left-hand part of the Wheatstone bridge. When this resistor has a temperature lower than the setpoint, it also has a resistance lower than the setpoint. With this low resistance, terminal 2 of the operational amplifier is more positive than it would be at balance; hence, a negative output occurs from the operational amplifier driving the output terminal 6 toward the minus bus of the power supply. This, in turn, drives current through the $4.7-k\Omega$ resistor into transistor Ql, thereby assuring that it is in the "on" state and that power is thereby supplied to the load.

When power is supplied to the load, it is expected that the sensing resistor attached to the load will rise in temperature and eventually reach the setpoint as determined by the two $10-k\Omega$ resistors of the Wheatstone bridge. When this balance is reached, the voltage on terminal 2 of the operational amplifier becomes more negative than at the setpoint, thereby driving the output at pin 6 toward the positive bus of the power supply. This action reduces the drive to Ql and indeed turns it "off." Cutoff of Ql is assured by the use of a pair of silicon diodes in series with the $4.7-k\Omega$ resistor. These are used because the output at pin 6 cannot get much closer than 1 volt to the power supply, and if these diodes were not there, sufficient current could not flow through the $4.7-k\Omega$ resistor to cause Ql to turn "on."

The positive feedback and hysteresis control is through use of the 22megohm resistor connected between pin 6 and pin 3, the plus input of the 741. In this way the state of the 741 will either be full "on" or full "off" and there will be no uncertainty in its state, and hence no uncertainty in the state of the transistors controlling the power. For this circuit the positive feedback corresponds to a dead band in the system of about 0.1% of the sensing resistor's value, and this can readily be equated to a dead band in temperature.

IV. DETAILED DESIGN

A. CONTROL CIRCUIT

Figure 4 is a schematic of the complete temperature controller. This circuit has many more components than the elemental circuit. Each one of these has its purpose; the reason for the added components is discussed in the paragraphs below. Use of the additional components is predicated largely on the constraints placed on circuit performance by the need to meet electromagnetic interference specifications, according to MIL-STD-461A, for which the unit must meet the requirements of CE03, CSO1, CSO2, CSO6, REO2, RSO2, and RSO3. Other components in the circuit are included because of the need to meet the environmental requirements of MIL-STD-810B, including temperature, class 1, procedure 1, test method 504; vibration, procedure 1, part 1, curve z, part 2, curve ar, test method 515; acceleration, procedures 1 and 2, test method 513; explosive atmosphere, procedure 1, test method 511; shock, procedure 1, and the requirements for safety shutdown of the system in certain classes of failure of the sensor and, in addition, the requirements to perform over the expected power supply voltage range of 24 to 32 volts DC.

B. CIRCUIT FEATURES

1. Basic Temperature Control

Heater power is basically controlled by a UlB operational amplifier which detects the Wheatstone bridge error, and then either turns power to the heater element "on" or shuts the power from the heater element "off." This control is exercised through the transistor-chain Q3, Q4, Q5, Q6, and Q7. For the most part the circuit performs precisely as described in our discussion of the basic control circuit. The exception is that there is a single added stage of transistor gain prior to the output stages previously discussed. This added stage of gain is used so that transistor Q4 can be operated with a forced beta near 10--the desirable mode of operating a transistor when one wishes both to maintain the highest degree of reliability and to permit the widest degradation of performance before circuit failure occurs. Thus, it can be seen that the right-hand part of the circuit diagram is essentially that discussed before.

2. Over-Temperature Shutdown

According to the contract, the circuit was to include a feature which would shut down the temperature controller if the temperature of the hot cylinder rose above a safe operating limit, and circuit operation could not be restored without the assistance of a technician or operator. We interpreted this to mean that should the shutdown event occur, the circuit would have to "remember" this fact, even though the raw DC power had been removed and reapplied. Thus, we decided that the most straightforward way of implementing this function was to use a snap-action switch. This switch is the Texas Instrument Klixon circuit breaker identified as K1.* The snap-action operation of this switch, once it has occurred, requires that the exposed pushbutton of the switch be manually actuated before power can be applied to the power side of the circuit. The operational amplifier UIA, in conjunction with transistors Q1, Q2, and the circuit breaker K1, provides this function. As noted in the diagram, the UIA amplifier is a detector for a second Wheatstone bridge element, the setpoint resistor set being comprised of R23, R3, and R5. When the temperature has risen to an over-temperature shutdown point, the sensor resistor has increased to the point where the output of the UIA, normally negative, becomes positive, turning on transistors Q1 and Q2, and thereby energizing K1's coil and thereafter the contact of K1. Thus the power from the power-handling portion of the circuit is shut down. Once again, a cascade of two transistors, Q1 and Q2, is used so that the maximum degree of circuit degradation can occur before the circuit ceases to operate.

3. Shorted Sensor Shutdown

If no provision for detection of a shorted sensor is made, the circuit would continue to supply power to the heater and there would no no recognition that the sensor was shorted, the operation of the circuit being such that low values of sensor resistor suggest adding power to the load. The operation of the low-sensor resistance circuit is provided by transistor Q8. In the event of a shorted sensor, or nearly shorted sensor, the potential on pin 8 of the circuit diagram rises almost to that of pin 12, thus turning on transistor Q8 and supplying current to transistor Q1 which, as already discussed, operates the shutdown relay. The particular transistor, the 2N2946, is a chopper transistor particularly designed to withstand large base-to-emitter voltages, such as would occur for an open sensor, or if no sensor is connected to the circuit.

4. Stable Power Supply Voltage

The zener diode, CR2, an 18-volt zener, is used in conjunction with resistor Rl to assure that the low-level circuits operate at a stable DC supply voltage in the presence of variations in the 28-volt bus (24 to 32 volts). In addition, it is subject to high-level AC voltages represented by the requirements of the MIL-STD-861B relating to EMI. The capacitor C3 (22 μ F) also aids in maintaining a stable DC voltage in the

*A data sheet for this device is included as Appendix C.

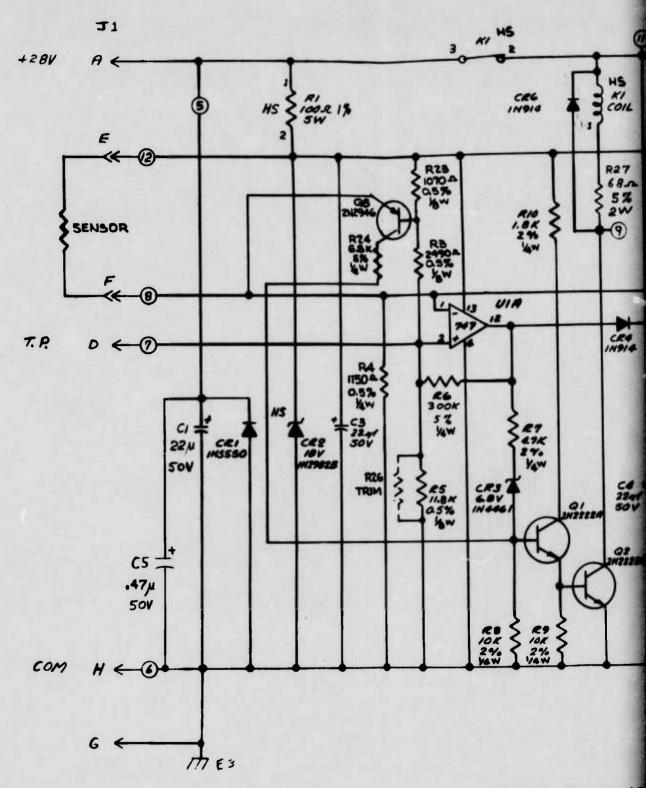
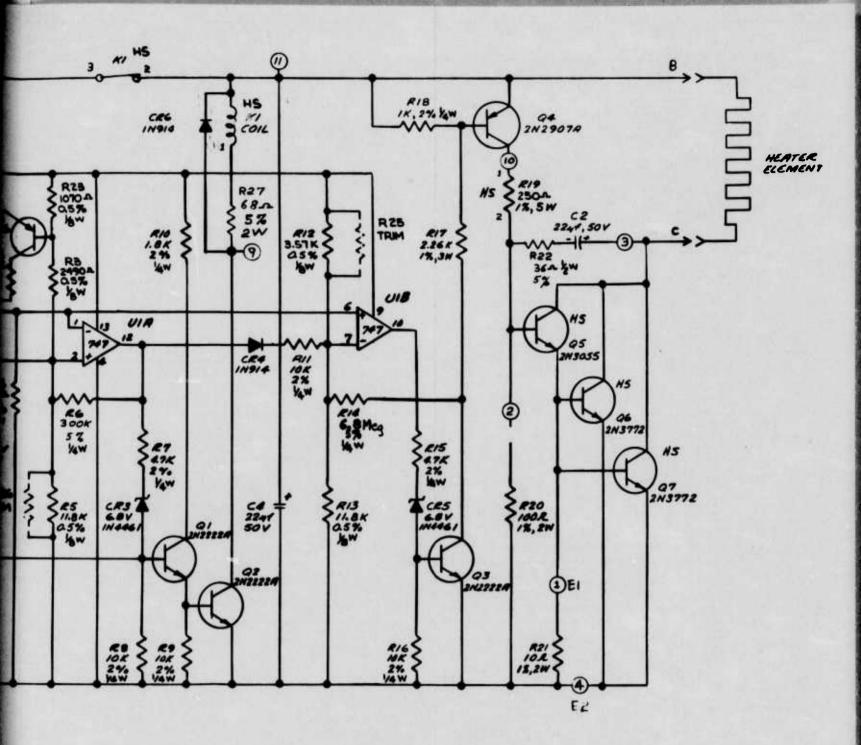



Figure 4 Schematic of C

5.

2

Figure 4

Schematic of Control Circuit

15

aline and a second second

presence of this AC. The rectifier CR1, a 1N5550, serves the function of protecting the circuit against reverse voltage of the EMI test conditions wherein a 100-volt peak pulse is applied to the circuit in the polarity opposite the normal supply voltage. To prevent damage to the semiconductors, this diode is used and it effectively shorts out the pulse generator and prevents over-voltage in the wrong polarity from being applied to the circuit elements. Two $22-\mu F$ electrolytic capacitors, Cl and C4, are also used to assist in stabilizing the 18-volt operating supply against AC components in the 28-volt bus.

5. EMI Conducted Emission and Arc Suppression

Capacitor C5, a 0.47 µF foil capacitor, suppresses transient emission on the power lines that occur during turn "on" and turn "off" of the load current. This current remains despite the slow turn "on" and turn "off" discussed previously. This capacitor acts mainly on the higher frequency components of the transients that are not controlled by the much larger electrolytic capacitor C1, the high-frequency impedance of such electrolytic capacitors being too large to provide the suppression.

The diode, CR6, prevents the coil of K1 from excessive voltage from sudden de-energization of the coil.

6. Envelope

The envelope for the controller is illustrated in Figure 5. The volume represented by this enclosure, which is also shown in the drawing of Figure 6, is somewhat less than 25 in.³

7. Safety Switch

The safety switch is designed to remove power from the heater element in the event that over-temperature is reached and the power cannot be restored until a manual reset of the safety switch is made. The safety switch is shown clearly in Figure 5.

C. COMPONENT SELECTION

The following bases were used for component selection for the controller circuit itself:

- <u>Temperature Range</u> All components were selected to meet the full temperature range of -54°C to +71°C.
- Passive Components Selection of passive components originally was made at the S level of reliability, that is, at a failure rate of 10⁻⁸ per hour, or 0.001% per 1000 hours. The resulting analyses showed that this was not in keeping with the cost

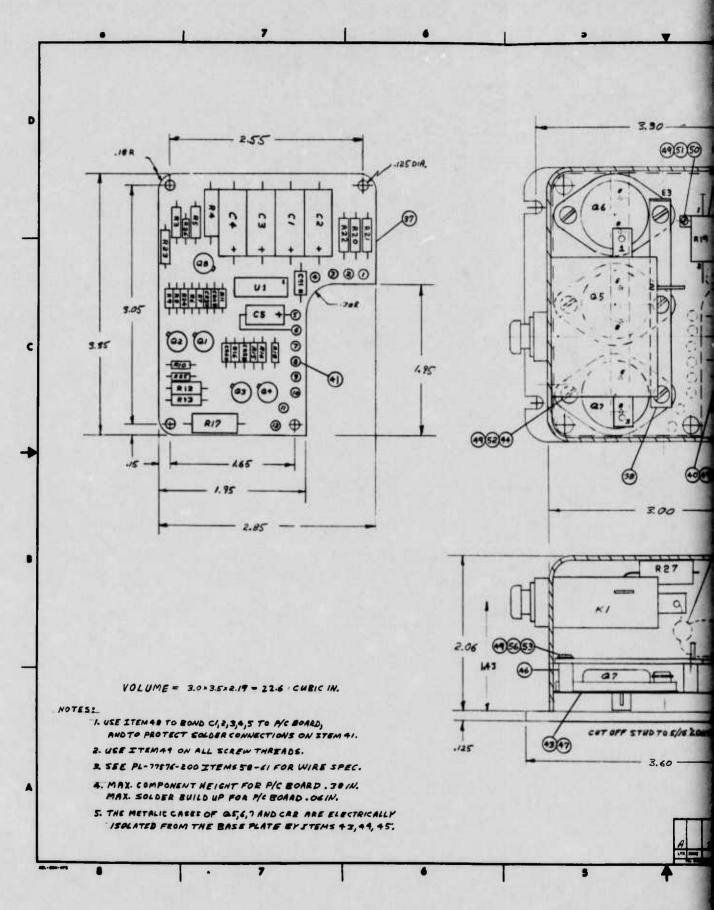
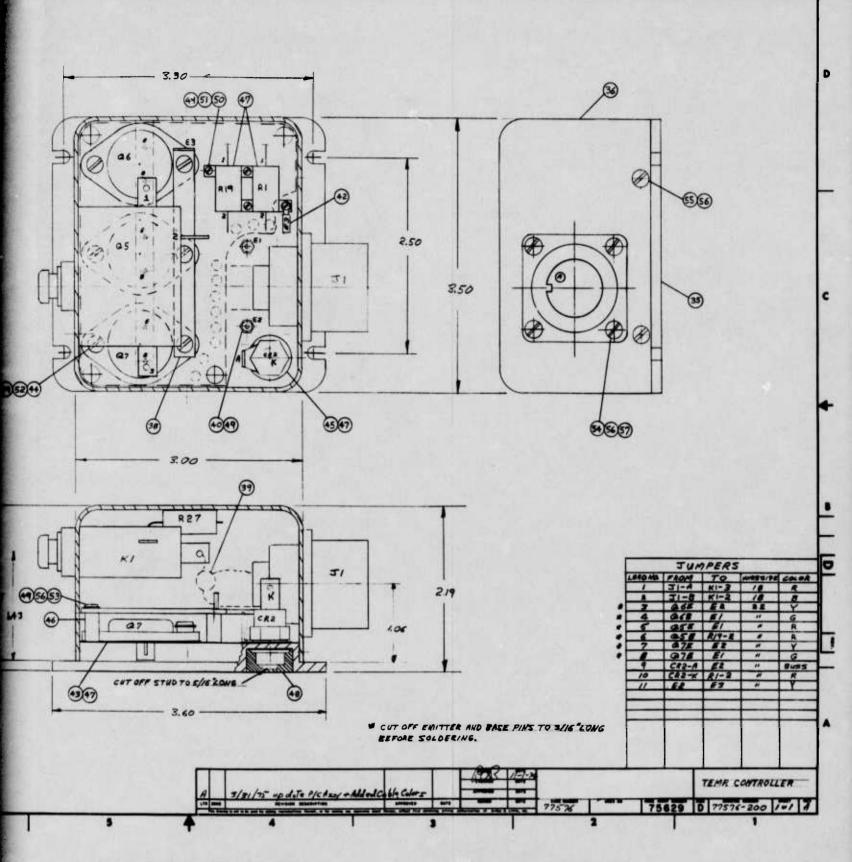
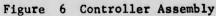
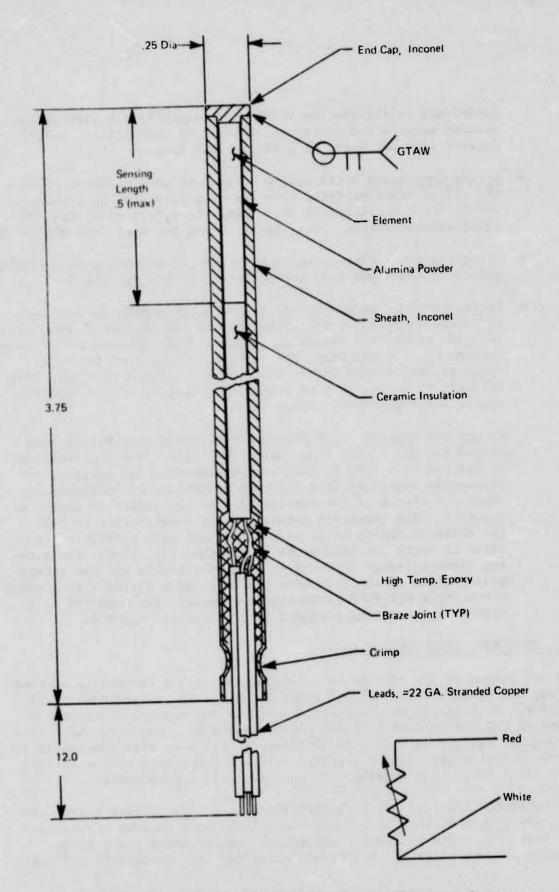




Figure 6 Controlle

my almost a group and an

guidelines established by WPAFB. Subsequently all passive components were backed off to the P level of reliability, a 10^{-6} failure rate per hour, or 0.1% per 1000 hours.

- Active Components All active components were selected to be of the JAN or JANTX variety, thus assuring selection of components for military-qualified lines. These items fall under MIL-STD-19500 classification. The single IC was selected from MIL-38510.
- <u>Circuit Board</u> Circuit board material corresponds to MIL-P13949 and the circuit was laid out according to MIL-STD-275.
- <u>Stress Levels</u> Stress levels on the power semiconductors were purposely kept low by operating them in the switching mode, thus assuring low stress levels in terms of power dissipation in these components. In addition, all power switching transistors are operated with forced beta's of 10 or less, again to assure high reliability in the face of gradual degradation of the semiconductor's characteristics over time.
- <u>Sensor Description</u> The platinum resistance temperature sensor chosen for use in the temperature controller is a modification of designs developed at Rosemount Engineering for military applications requiring long life and resistance to vibration and shock. A sketch of the construction of the sensor is shown in Figure 7. The important details of the construction include the external sheath being made of Inconel with a ceramic insulator to carry the lead wires to the junction point. The sensing element itself is wound on a ceramic bobbin and the intervening voids of the structure are thoroughly filled with alumina powder by a proprietary Rosemount process. The standard calibration curve for this sensor is included as Figure 8.


D. ESTIMATED CONTROLLER LIFE

In our design of the circuit we attempted to reach a reasonable economic trade-off between the component costs and the level of component reliability. In general, we chose to use Class P components, which have a nominal failure rate of 1 in 10^6 hours. Class R components, which have a nominal failure rate of 1 in 10^7 hours, would have cost substantially more if implemented in the circuit. Class M components with a failure rate of 1 in 10^5 hours would have made the design inadequate.

We estimated the life of the controller on a simple cascade basis; that is, any single failure of any component leads to a failure of the controller. In terms of operational effectiveness, there are a large number of components in the circuit which may fail completely and still

21

PRECEDING PAGE BLANK-NOT FILMED.

SPECIFI CATIONS

 DESCRIPTION. The Rosemount Moviel 132JA is designed to measure temperature over the range -100°F to 1300°F. The precision temperature sensitive element consists of a fully annealed, reference grade (verv pure) platinum wire which produces a change in electrical resistance with respect to temperature. The platinum wire is mounted and electrically insulated within the sensor case in such a manner as to ensure stable, strain-free performance.

2. PERFORMANCE.

- 2.1 Temperature Range. -100°F to 1300°F.
- 2.2 Output. Table 1 shows the nominal resistance versus temperature relationship. Each sensor shall lie within the interchangeability band shown in the table.
- 2.3 Calibration. Unless otherwise specified, each sensor shall be calibrated at $32^{\circ}F$, accurate to within $\pm .03^{\circ}F$.
- 2.4 <u>Insulation Resistance</u>. At room temperature and with dry external surfaces, the insulation resistance between any lead and the sensor case shall exceed 100 megohms when measured at 100 VDC.
- 2.5 <u>Pressure</u>. Each sensor shall he capable of withstanding operating pressures to 1000 psig.
- 2.6 Time Constant. The time required for 63.2 percent response to a step change in temperature from room temperature air to water at 170°F flowing at 3 fps, transverse to the sensor shall he less than 5.0 seconds.
- 2.7 Compatibility. The Model 132JA is suitable for use in any fluid or environment that is compatible with Inconel. Other materials exposed in the lead exit area are in epoxy and teflon.
- 2.8 Identification. Each 132JA shall have the following data electroetched in the location shown.

SENSOR CALIBRATION DATA

FIGURE 8.

RMT Model 132JA

N. S

- 3. OUALITY ASSURANCE.
- 3.1 Repair and Maintenance. The sensor is non-repairahle and shall need no maintenance during its useful life.
- 3.2 Acceptance Testing. Prior to shipment, each sensor shall he examined for high quality workmansip, conformance to the dimensional requirements of this drawing, and shall undergo testing to ensure compliance to paragraphs 2.3 and 2.4 described above.

Table 1

RESISTANCE TEMPERATURE (°F) RELATIONSHIP

(°F)	Kesistance (Ohms)	(± Ohms)	<pre>Interchangeability (± Ohms) (± °F)</pre>
-100	70.51		
32	100.00	۰1.	0.5
100	114.93		
200	136.59		
300	157.38		
007	178.81		
500	199.38		
600	219.59		
700	239.44		
800	258.92		
006	278.05		
1000	295.97		
1100	314.13		
1200	331.91		
1300	349.30		

Arthur D Little, Inc

not affect the operational utility of the unit as a temperature controller. In this sense our computation is conservative.

We also adjusted the nominal failure rates upward in some instances on the basis of general reliability testing data supplied us by Philco-Ford. These are judgmental matters and a case could be made that this approach is overly conservative. We did not adjust failure rates downward, however, although the evidence from Philco-Ford and MIL-HDBK-217B would give some basis for adjusting the failure rates of some components substantially downward. We made estimates for the circuit breaker, the connector, the sensor, and the circuit board, all of which can contribute to failure.

The circuit breaker is a device which fails largely because of the number of cycles of use. In the application intended, the number of cycles of use will be extremely small, a few in the life of the controller. We believe that the estimate of 10 failures per 1,000,000 hours is conservative. The connector is again a device for which the basic failure mechanism is a use factor, i.e., how many times was the mating connector applied? Again, in our application, this action will occur relatively infrequently and therefore we believe that the failure rate chosen is conservative. For the circuit board we have made an estimate of 10 x 10^{-6} failures per hour in the computation. For the sensor, we have also chosen to use a 10×10^{-6} failure rate. We believe that our computation of failure rate which leads to a total of 117×10^{-6} failures per hour and a corresponding mean time between failure of 8500 hours is conservative. The proof of the design, of course, will be the reliability testing to be undertaken by Wright Patterson Air Force Base.

It is noteworthy that the failure rates we have used are 5 to 20 times larger than the rates obtained by using procedures and data from MIL-HDBK-217B. Hence, some credence can be given to our conservative estimates on controller life.

Table 1 shows the estimated failure rates for subject components.

E. ERROR BUDGET

The design of the circuit is based on the following errors in controller setpoint accuracy:

• Resistor Temperature Coefficient - The basic resistor elements within the Wheatstone bridge are comprised of 50 ppm/°C resistors. Three such resistors form the arms, together with the sensing resistor. The worst case error due to the resistors is 3 x 65 x (5 x 10^{-5}) or $\pm 0.67\%$ of resistance value. When referred to the 340-ohm sensor resistor, this corresponds to a 2.27-ohm sensor error due to this source.

TABLE 1

ESTIMATE FOR FAILURE RATES

All Passive Components of Class P (1 failure per 10⁶ hours)

Component	No. in <u>Circuit</u>	Adjusted Failure Rate (rate per hour)	Failure Rate
Power Transistors	3	4×10^{-6}	12×10^{-6}
Signal Transistors	5	3×10^{-6}	15×10^{-6}
Power Resistors	3	3 x 10 ⁻⁶	9×10^{-6}
Tantalum Capacitors	4	2×10^{-6}	8×10^{-6}
Zener Diodes	3	2×10^{-6}	6×10^{-6}
Film Resistors	20	1×10^{-6}	20×10^{-6}
Carbon Resistors	2	1×10^{-6}	2×10^{-6}
Plastic Capacitor	1	1×10^{-6}	1×10^{-6}
Switching Diodes	3	1×10^{-6}	3×10^{-6}
Analog IC	1	1×10^{-6}	1×10^{-6}
Circuit Breaker	1	10×10^{-6}	10×10^{-6}
Connector	1	10×10^{-6}	10×10^{-6}
Sensor	1	10×10^{-6}	10×10^{-6}
Circuit Board	1	10×10^{-6}	10×10^{-6}
		Total Failure Rate	$= 117 \times 10^{-6}$

MTBF = 8500 hours

- Operational Amplifier The operational amplifier specifications are such that over the full temperature range the offset voltage will remain constant to within ±3 mV. The sensitivity of the basic bridge operating at 18 volts is 9.6 mV per ohm. Therefore, the operational amplifier uncertainty corresponds to 0.313 ohm of sensor resistance.
- <u>Sensor</u> The basic sensors provided by Rosemount are accurate at the operating temperature to ±1.3 ohms.

These three elements combine to give a total worst case error of 3.88 ohms of uncertainty corresponding to $\pm 22^{\circ}$ F of temperature error. This worst case error leaves $\pm 28^{\circ}$ F for all other sources of error, including longterm drift of the bridge resistors, the natural fluctuation of temperature because of the on-off character of the controller, and long-term changes in sensor resistance.

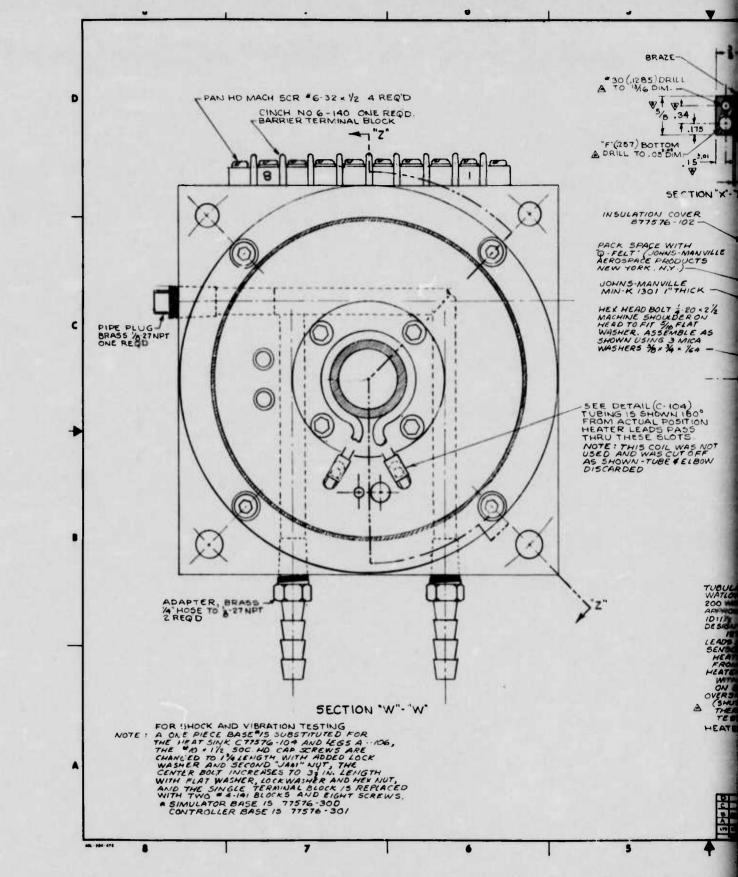
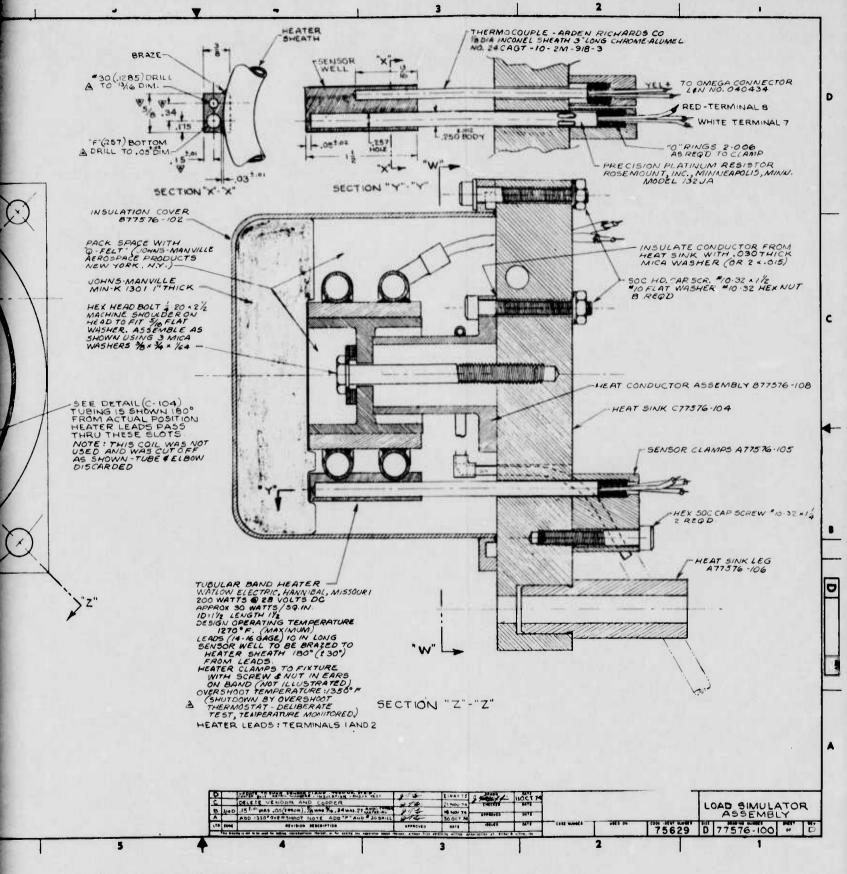
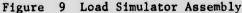

F. DETERMINATION OF TRIM RESISTORS

Figure 4 shows two trim points in the circuit, R25 and R26. These trims were included so that 0.5% tolerance bridge resistors could be used; these bridge resistors could be trimmed by nominal 5% or 10% carbon resistors. The trim resistors are selected by powering the unit with a load element which could either be a load simulator or a fixed resistive load. The sensor is replaced by a precision decade resistor box which is set to 360 ohms; a second decade box is connected across R5 which is the trim resistor position for R26. The decade box representing R26 is adjusted so that the over-temperature action takes place at the 360-ohm sensor. The value of trim resistor necessary for this is noted, and the nearest 5% standard resistor is then selected and placed in the trim position. This sets the over-temperature limit. After completion of the over-temperature setting, the decade box representing the trim resistor is attached across R12, the position for R25 trim; the precision decade resistor representing the sensor is set at 344.2 ohms, and the decade box representing the trim resistor is adjusted so that the temperature controller turns the current off at precisely the 342.2-ohm level, representing the sensor resistor. The value of the trim resistor is then noted and the nearest 5% tolerance resistor is selected and used as trim resistor R25.

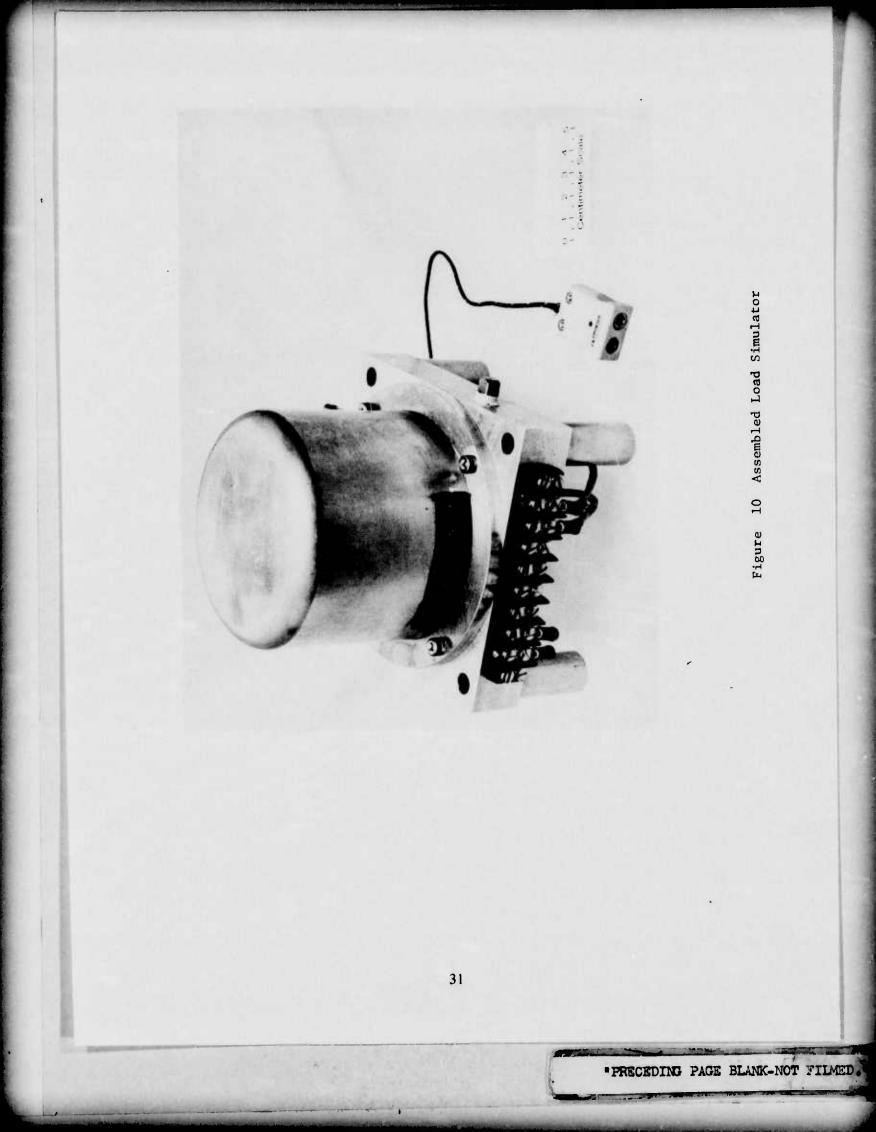
V. LOAD SIMULATION


Figure 9 illustrates the load simulator used to exercise the controller. The extremely simple construction consists of a base plate to which is attached a stainless-steel pedestal around which is wrapped a Watlow heater. The device has an aluminum cover. The region between the heater and the cover is insulated with Q-felt around the base and a min K cap over the top to provide thermal insulation such that for the available heater power the temperature becomes approximately the correct value. In the base plate there are provision for either air or water cooling to keep the exterior of the unit from becoming overly hot during extended periods of tests.


We used both water and air to control the base temperature. The heater wires are brought out to a terminal strip as are the temperature sensor leads. The configuration of the heater and the temperature sensor are shown in the figure, as well as the configuration of the load temperature sensor, a thermocouple with the thermocouple metallically bonded to the sheath of the sensing element. The heater resistor equals approximately 4 ohms, so that at a 28-volt output from the controller 196 watts are consumed by the heater. The assembled load simulator is shown in Figure 10. The heater wires run to the terminal strip as well as the platinum resistance sensor leads. The thermocouple leads are provided with a thermocouple connector and its mating male piece.

and the same of

Figure 9 Load S1



and the second state of the second of

29

PRECEDING PAGE BLANK-NOT FILME

VI. SYSTEM PERFORMANCE

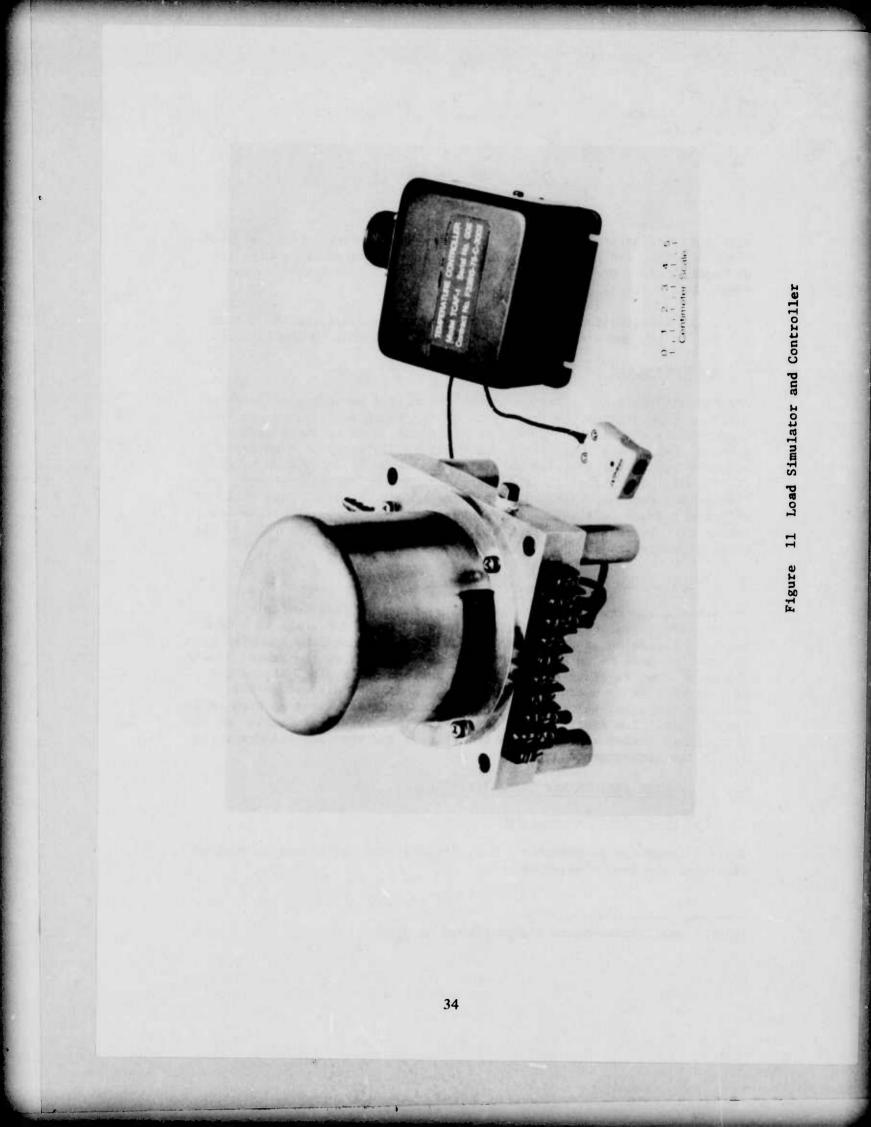
Figure 11 illustrates the two parts of the temperature control system*--the controller and load simulator. We have designated the controller as Model TCAF-1, Serial Nos. 001 to 005, and the load simulator as Model LSAF-1, Serial Nos. 001 to 005.

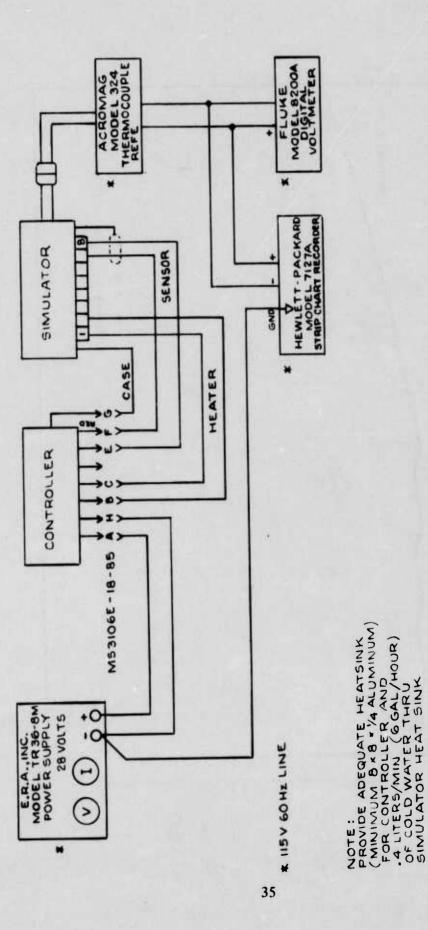
Figure 12 illustrates the interconnections used to operate the system and the instrumentation we used to test the equipment in the laboratory.

A. MEASURED EFFICIENCY

The "on-off" mode of operation of the controller makes the efficiency slightly dependent on the duty cycle of the power supplied to the heater. Measurements show that at 100% duty cycle and 28 volts input with an external resistance load, the input power is 215 watts with an output power of 195 watts, yielding an efficiency of 90.8% at 100% duty cycle. The standby power, that is, the power consumed by the circuit when the load is not being operated, is 2.8 watts. Thus, at a 50% duty cycle the efficiency drops to 89.6%. Both of these figures are well within the target of a temperature controller that dissipates less than 20% of the power it controls.

B. TYPICAL TIME RESPONSE OF CONTROL UNIT

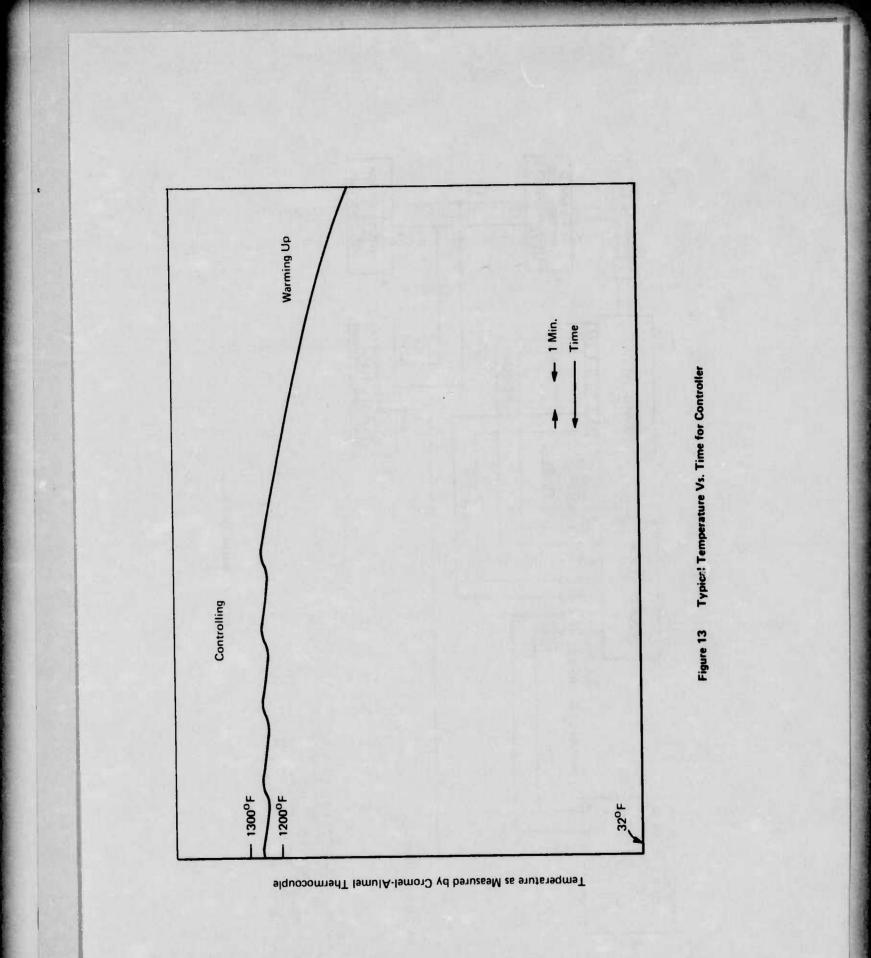

The temperature controller operates in an "on-off" fashion for the reasons discussed previously. This "on-off" operation leads to a temperature excursion at the control point which is caused by the time lags of both the mass being heated and the time constant of the sensor itself. The plot shown in Figure 13 represents performance typical of the controller when it is operated at 28 volts. This plot also shows the start-up transient which occurs as the simulator is heated up from ambient temperature. The specification limits for temperature are marked on the strip chart record reproduced in this figure and show performance to be within the requirements.


C. CONTROLLER PERFORMANCE CHARACTERISTICS

1. Controlled Temperature

Table 2 shows the performance of the temperature controllers in conjunction with the load simulators.

*Operational instructions are presented in Appendix A.



**

.

Figure 12 System Test Set-up

TABLE 2

PERFORMANCE OF TEMPERATURE CONTROLLERS

Load Simulator Serial No. 002 operated with Controllers Serial Nos. 001 through 005:

Range of Load Temperature, °F

Conditions:	Room Temperature: ~70°F	
	Power Supply Voltage: 28 volts	

Controller Serial No.	Low	High	
001	1253	1275	
002	1248	1274	
003	1249	1274	
004	1249	1274	
005	1250	1275	

Controller Serial No. 001 operating with Load Simulators Serial Nos. 001 through 005:

	Range of Load	Temperature, °F
Load Simulator Serial No.	Low	High
001	1243	1268
002	1251	1271
003	1249	1273
004	1251	1273
005	1257	1277

TABLE 2 (Continued)

PERFORMANCE OF TEMPERATURE CONTROLLERS

Load Simulator Serial No. 002 operated with Controller Serial No. 005 at various voltages:

	Range of Load	Temperature,	°F
Voltage	Low	High	
32.0	1250	1280	
28.0	1250	1275	
24.0	1257	1257*	

Cut-off Temperature versus Controller Ambient Temperature; Serial No. 001 Controller at 28 volts, as measured with controller in temperaturecontrolled chamber:

Ambient Temperature, °C	Sensor Resistance for Turn-off of Controller (ohms)	Equivalent Temperature, °F	
-55	346 ± 1	1282 ± 6	
0	344 ± 1	1270 ± 6	
20	344 ± 1	1270 ± 6	
40	344 ± 1	1270 ± 6	
65	344 ± 1	1270 ± 6	

*At 100% duty cycle

2. Environment and EMI

Complete details on the environmental tests are included in Appendix B of this report. They include temperature, vitration, acceleration, explosive atmosphere and shock. Complete details of the EMI tests are also included in the appendix.

These tests results show compliance with the EMI and environmental specifications.

VII. PRODUCTION COST ESTIMATE

A reasonable production cost estimate for this system requires the assumption of typical industry costs and some definitions of the conditions under which these units would be manufactured:

- Parts costs are based on procurement of 300 sets of parts at one time, to take advantage of quantity discount schedules.
- The overage parts buy of 10 percent is to cover losses due to breakage and test failures.
- The handling charge of 10 percent of the total parts buy is to cover receiving, stocking, and kitting costs.
- A typical direct assembly labor cost of \$5.00 per hour is assumed for skilled persons employed in a diverse electronic assembly job shop. Fringe benefit costs of 33% must be added to obtain the total direct hourly labor cost of \$6.65.
- Direct supervision and testing labor costs of \$7.00 per hour with a 28% addition for fringe benefits is also assumed, for a total cost of \$8.96 per hour.
- The factory overhead is defined as 150% of the direct labor costs. This covers the cost of the floor space and production equipment devoted to this project.
- A G&A cost of 20% of the factory labor costs is assumed.
- Profit is defined as 11% of net costs.
- To ensure the reliability level required, a 100% incoming inspection of critical electronic parts is assumed. Also, final testing and a full-power burnin is assumed in the calculation of test labor costs.

Cost Breakdown

Parts Cost (per PL77576-200) Overage Allowance Total Parts Buy Handling Charge Total Parts Cost		\$107.33 <u>10.73</u> \$118.06 <u>11.81</u> \$129.87
Direct Assembly Labor (5 hours) Direct Supervision and Test Labor (2 hours) Total Direct Labor	\$33.25 <u>17.92</u> \$51.17	
Factory Overhead Factory Loaded Labor Cost Total Manufacturing Cost G&A Total Net Cost Profit Sell Price	76.76	$ \begin{array}{r} & 127.93 \\ $

The cost of a sensor element must be added to this estimate for the controller. If Rosemount 132JA sensors are used, an estimated cost per unit in 300 lots is \$125.00. If it is found possible to use a Rosemount Series 78, the cost would drop to \$40.00 per unit in lots of 300. Thus, the total controller cost would be:

\$439.58 with the 132JA

or

\$354.58 with the Series 78

			CODE PARTS LIST REVISION 75629 PL 77576-200 DATE
PO	B	6-9-75	77576 Temperature Controller Cr 1 Page 3
ITEM		PART NUMBER OR IDENTIFTING NUMBER	NOMENCLATURE OR DESCRIPTION
1	4	CSR13 0226KP	Capacitor, 22µf 50V (Kemet) C1, 2, 3, 4
2	1	MIL-C-27287	Capacitor, .47µf 50V (TRW, 463uw) C5
3	1	JAN 1N 5550	Diode, (Unitrode) CR1
4	1	JAN1N2982B	Diode, Zener (Motorola) CR2
5	2	JAN1N4461	Diode, Zener (Unitrode) CR3, 5
6	2	JAN1N914	Diode, (T.I.) CR4, 6
7	1	MIL-C-5809	Breaker, Circuit (T.I., 7MC6-3-0.1) Kl
8	3	JAN2N2222A	Transistor, (Motorola) Q1, 2, 3
9	1	JAN2N2907A	Transistor, (Motorola) Q4
10	1	JAN2N3055	Transistor, (Motorola) Q5
11	2	JAN2N3772	Transistor, (RCA) Q6, 7
12	1	JAN2N2946	Transistor, (Motorola) Q8
13	1	RER60F100RP	Resistor, $100\Omega \pm 1\%$ Rl
14	1	RNC60E2491DP	Resistor, 2490Ω ±0.5% 1/8W R3
15	1	RNC65E1151DP	Resistor, $1150\Omega \pm 0.5\% 1/4W R4$
16	2	RNC60E1182DP	Resistor, 11.8K0 + 0.5% 1/8W R5, 13
17	1	RCR07G3003JP	Resistor, 300KΩ ± 5% 1/4W R6
18	2	RLR07C472GP	Resistor, $4.7K\Omega \pm 2\% 1/4W R7$, 15
19	4	RLR07C103GP	Resistor, 10K + 2% 1/4W R8, 9, 11, 16
20	1	RLR07C182GP	Resistor, $1.8K_{\Omega} \pm 2\% 1/4W R10$
21	1	RNC60E3571DP	Resistor, 3.57KΩ ± 0.5% 1/8W R12

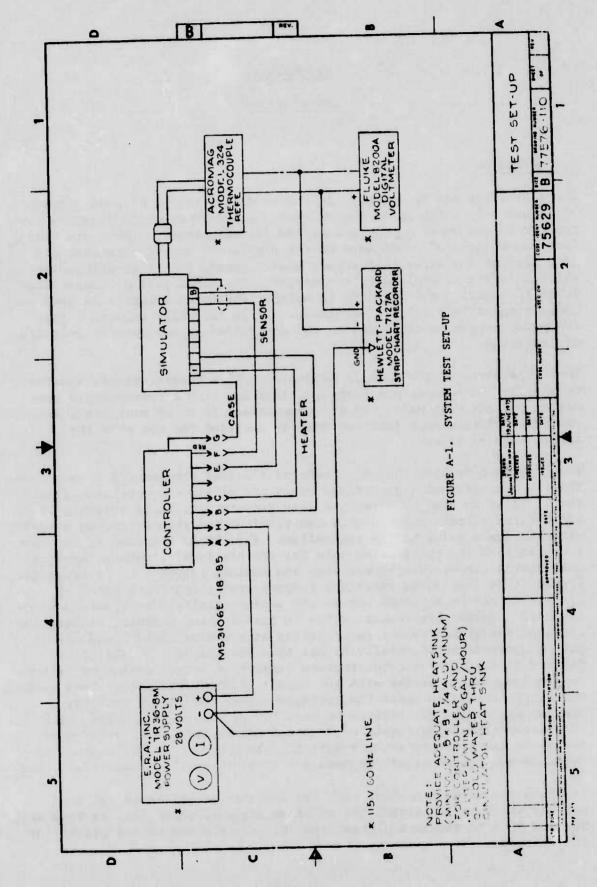
		6-9-75	CODE PARTS LIST 75629 PL 77576-200 IDENT NO NUMBER 77756 Transformed Control Numbers	REVISION DATE
POB	0.01	DATE APPROVED BY	DATE CASE NUMBER Temperature Controller	2 PAGE
NO NO	QTY	PART NUMBER DR IDENTIFYING NUMBER	NOMENCLATURE OR DESCRIPTION	
22	1	RCR07G6804JP	Resistor, 6.8 Meg <u>+</u> 5% 1/4W R14	
23	1	RWR89S2261FP	", 2.26KΩ ± 1% 3W R17	
24	1	RLR07C102GP	", 1KΩ ± 2% 1/4W R18	
25	1	RER60F250RP	", 250Ω <u>+</u> 1% 5W R19	
26	1	RWR80S100RFP	", 100Ω <u>+</u> 1% 2W R20	
27	1	RWR80S10RFP	", 10Ω ± 1% 2W R21	
28	1	RCR 20G 360JP	", 36Ω ± 5% 1/2W R22	
29	1	RNC60E1071DP	", 1070Ω ± 0.5% 1/8W R23	
30	1	RCR07G682JP	", 6.8KΩ <u>+</u> 5% 1/4W R24	
31	AR		", Trim if required R25	
32	AR		", " " R26	
33	1	M38510/101-02	Operational Amplifier Ul	
34	1	MS3102E-18-8P	Connector (Amphenol) J1	
35	1	77576-203	Base Plate	
36	1	77576-204	Cover	
37	1	77576-205	Board, Printed Circuit	
38	1	77576-206	Bus Strip	
39	1	77576-202	Cable Assembly	
40	2	4882-1-0516	Insulated Terminal, (Cambion) El, 2	

				75629	PARTS LIST PL 77756-200	HEVISION
DOR	T	6-9-75		101 NT NO	Temperature Controller	DATE
POB		DATE APPROVED BY	DATE	CASE NUMBER	TITLE	3 PADE
ND	0TV	IDENTIFEING NUMBER		NOMENCLATI	RE OR DESCRIPTION	
42	1	320733-300	Crimp Ter	rminal (AMP)	E3	
43	3	7416	Mica Insu	ulator (Amat	om)	
44	6	4 - 1/32	Nylon Sci	rew Insulato	r (Non-Metallics)	
45	1	MH745	Rectifier	r Mounting K	it (Motorola)	
46	4	9211-A-0115-1A	Standoff	s (Amatom)		
47	AR	120-8	Thermal .	Joint Compou	nd (Wakefield Eng.)	
48	AR	3144RTV	Sealant	(Dow Corning)	
49	AR	Туре С	Sealant	(Loctite)		
50	4		Screw, P	an Head, SS,	2-56 x 3/16	
51	4		#2 Lockw	ashers, SS i	internal teeth, SS	
52	6		Screw, P	an Head, SS,	4-40 x 1/4	
53	4		Screw, P	an Head, SS,	, 4-40 x 9/16	
54	4		11 97		, 4-40 x 3/8	
55	6				, 4-40 x 3/16	
56	14		#4 Lock	washers, SS	internal teeth	
57	4		Nuts, S	s, 4-40		
58	AR	MIL-C-7078	Wire, 24	AWG Strand	ed, insulated	
59	AR	11	", 22	AWG "	9 11	
60	AR	**	", 18	BAWG "	, 11	
61	AR	QQ-W-343	", 2:	2 AWG Solid,	Tinned, Bus	
62	REF	77576-201	SCHEMAT	IC		
63	1	RCR42G RJP	Resistor	Ω'± 5%	2W R27	

APPENDIX A

INSTRUCTIONS

A. OPERATION


The controller may be operated in conjunction with the circuit diagram of Figure A-1, which shows the extremely simple connection from the controller to the power supply and to the load simulator. There are only four connections of importance on the simulator; one of them consists of a pair of the wires that supply heater power, and it is unimportant which polarity is applied to the heater. The other pair of connections is to the sensor, and again it is unimportant which polarity is used in connecting to this pair of terminals. It is extremely important that the power supply be connected to the controller in the correct polarity as indicated.

The temperature of the load is monitored with a chromel-alumel thermocouple for which leads are supplied, together with a thermocouple connector and its male mate. If the temperature is to be monitored, a reference thermocouple junction must be included for use with the chromel-alumel sensor.

There is no provision for adjustment of the load simulator's temperature. This is set internally with fixed resistors within the regulator itself. Should it be desired to alter the load temperature, it is possible to add a fixed series resistance to the platinum resistance sensing element, with the leads going to the controller. This fixed resistance, in conjunction with the calibration data for the platinum resistance sensors, will enable temperatures lower than the nominal setpoint to be achieved. Should it be desired to raise the temperatures slightly, a parallel resistance may be attached across the sensor terminals on the load simulator to achieve this result. This is inadvisable, however, because the platinum resistance sensor is operating at a nominal 1250°F and should not be operated substantially higher than that value. Should it be desired to test the over-temperature feature, a larger series resistance may be inserted in series with the sensor element with a momentary switch, which upon actuation opens the contacts across the series resistor, thereby increasing the resistance seen by the controller. Thus, with the temperature being regulated, one can add resistance to observe the action of the over-temperature switch. The short-circuited sensor performance may be exercised the same way by shorting the sensor resistance.

In operation it is important that the control element be bolted to a surface which can dissipate the 20 or so watts of power lost in this unit. We used 8" x 8" aluminum plates with the unit screwed to the plates for this purpose.

PRECEDING PAGE BLANK-NOT FILMED.

46

•

The controller-simulator dissipates nearly 200 watts, so we used tap water running through the base via the hose fittings of the base. This makes a stable reproducible system and keeps the exterior of the load simulator from getting too hot to touch.

B. TROUBLESHOOTING

The objectives of the program were to develop a reliable controller, and also to provide a test bed for evaluating the sensors associated with the controller. For this reason we anticipate there will be more froblems with the load simulator than with the controller unit itself. Should evidence of improper functioning of the system occur, the first things to check are the characteristics of the load simulator. It is easy to check (1) the resistance of the simulator heater which nominally runs around 4 ohms, (2) the insulation resistance of the heater element to the frame of the simulator, (3) the platinum resistance thermometer's resistance and its leakage resistance, and it is also easy to evaluate whether the thermocouple has its integrity or not.

Internal controller malfunctions are nowhere nearly as obvious. In fact, since assembling the units, we have nover found a malfunctioning part. Access to the internal parts of the controller is easy. By removing the four screws holding the cover, the cover may be lifted off. The unit may be operated in this configuration so that voltage probes can be made at various parts of the circuit. With the aid of the schematic diagram, one should be able to locate quite rapidly what particular part of the circuit is malfunctioning. For this purpose, one would want to use a skilled laboratory-trained technician or engineer.

C. REPAIR

We understand that the present five units are to be used at Wright Patterson AFB strictly for the purpose of assessing the reliability of the controller and its sensor. If a failure of a controller occurs during this series of tests, we do not know what purpose repair would serve. Looking ahead to possible widespread use of a controller of this type, it would seem inadvisable to attempt field repairs of the unit; instead, we feel that the failed unit should be returned to a central depot for repair by skilled technicians there. If an adequate degree of skill is available at such a depot, it is entirely possible that failed semiconductors, IC's, or passive components could then be installed.

We feel that, in view of the relatively modest cost of the controller, it might be better from a reliability point of view to return units to the manufacturer for factory repair or merely to discard failed units and replace them with new units. An intermediate step would be to keep spare sets of the power dissipating section, that is, the components

attached permanently to the baseplate of the controller, together with a set of spares for the assembled printed circuit board. In this way simply resoldering the wire harness would enable one to put together operating units from the two parts.

A STATE OF A

APPENDIX B

ENVIRONMENTAL AND EMI TEST PLANS AND RESULTS

This appendix includes copies of the test plans for the EMI and environmental tests, together with the reports associated with these tests. Two points concerning these tests should be made. The EMI tests were conducted first in the series, and the first attempt showed one frequency for which conducted transient emissions were some 2 dB higher than the requirement. Subsequently, after consultation with EMI control engineers at the testing laboratory, Sanders Associates, Nashua, New Hampshire, a minimal EMI filter comprised of a $0.47-\mu F$ capacitor was used to reduce the conducted emissions to levels below the limits. This feature of the circuit was tested and the results are included in the addendum to the EMI report.

Concerning the environmental tests done at Acton Environmental Laboratories, a change was made to one circuit component and one circuit component only. Early in the tests, we observed the circuit breaker to be marginal in performance. Tests at ADL on the other five circuit breakers showed similar marginal performance. We contacted the manufacturer of the circuit breaker who agreed that the circuit breakers were not within the specifications that he had given us, and he supplied six new units for test. The only change to the unit during the environmental tests was the replacement of the circuit breaker by the new model. TEST PROCEDURE NO. TP-1:77576

ENVIRONMENTAL TESTING

0F

VM HOT CYLINDER TEMPERATURE CONTROLLER DEVELOPMENTAL MODEL

SERIAL NO. 001 UNDER USAF CONTRACT F 33615-75-C-3002

Tobet M. Luca

Arthur D. Little, Inc., Test Engineer

Arthur D. Little, Inc., Program Manager

Revision No. Zero

7 Nov74

Date

NOV 7 1974

Date

Date: 31 October 1974

1.0 PURPOSE

The purpose of this test procedure is to: Define the test requirements, establish the test schedule, and serve as a means of recording the completion and certification of the various tests.

2.0 OBJECTIVE

The objective of the testing is to demonstrate the specified performance of one controller when subjected to the environments herein described or to demonstrate that the limits of the failure criteria described in Section 8.0, Failure Criteria, are not exceeded by the controller.

3.0 SCOPE

This test procedure is applicable to the controller, hard mounted by its normal mounting means, when applicable, to the appropriate test fixture or test equipment. The controller is defined as being the controller electronics module, its input connector and the hot cylinder sensor. This controller is subject to the failure criteria described in Section 8.0. The accompnaying hot cylinder simulator, to which the sensor is mounted and simulated overtemperature means, are not subject to the failure criteria.

4.0 APPLICABLE DOCUMENTS

The documents applicable to this test procedure are: Attachment No. 1, Statement of Work, dated 7 March 1974; Attachment No. 3, Date Item Description No. DI-T-3708/T-108-2/M, dated 1 November 1971, both part of Contract F 33615-75-C-3002, dated 4 September 1974; and MIL-STD-810B including change notices 1 through 4. In the event of conflicts between documents, this test procedure takes precedence.

5.0 TEST SCHEDULE

The test series listed in Table 5.1 is the preferred order. This test order is not essential, however, and may be altered to suit the availability of the test equipment or to allow the designated test equipment to be corrected, or substituted for, if the test equipment demonstrates the inability to achieve the required test conditions.

TABLE 5.1 ENVIRONMENTAL TEST SCHEDULE

Test <u>Order</u>	Section	Test Method Per MIL-STD-810-B	Working Days, Lapsed Time from Start Date
1	10.0	504 - Temperature-Altitude	0 - 8
2	11.0	511 - Explosive Atmosphere	9
3	12.0	513 - Acceleration	10 - 11
4	13.0	516 - Shock	12
5	14.0	514 - Vibration	13 - 15

6.0 TEST ROUTINE

6.1 Installation of Test Item in Test Facility

The controller shall be installed in the test facility under ambient conditions with appropriate test fixtures and in a manner that will simulate the intended service use. Axes orientation shall be noted when appropriate. The test equipment data block will be completed as appropriate.

6.2 Pretest Performance

Prior to conducting the Environmental Tests of Table 5.1, a pretest performance check of the controller, at ambient conditions, shall be made. The performance of the controller shall be compared to the failure criteria and the results noted in the data block.

6.3 Environmental Test Performance

When operation of the controller is required during the test exposure, the performance check shall be of sufficient duration or shall be repeated at appropriate intervals to insure obtaining representative data for comparison with the failure criteria. The results shall be noted in the data block.

6.4 Posttest Performance

Upon completion of the test at the specified environmental levels, the controller performance will be checked at ambient conditions. The results will be compared to the failure criteria and noted in the data block.

6.5 Certification and Test Records

At the conclusion of each test the blocks provided in this procedure shall contain the date and initials of the test engineer or his designated alternate thus certifying the completion of the specified test. Additional records of the applied environment or measured results also shall be dated and signed by the test engineer or his designated alternate. Such records or copies thereof shall be obtained by the test engineer and maintained in an accompanying bound laboratory notebook. Additional notes pertaining to any of the testing also shall be recorded in this notebook.

7.0 TEST CONDITIONS

7.1 Standard Ambient

The standard ambient test conditions are:

Temperature: $23^{\circ} \pm 10^{\circ}$ C (73° ± 18°F) Relative Humidity: $50\% \pm 30\%$ Atmospheric Pressure: 725^{+50}_{-115} MM HG (28.5 $^{+2.0}_{-4.5}$ IN HG) (14.0 $^{+0.97}_{-2.22}$ PSIA)

7.2 Test Environment

The induced test environment will be that specified for each test in Sections 10.0 through 14.0.

7.3 Tolerances

Unless otherwise specified, the following tolerances shall apply.

7.3.1 Induced Environment

- Air Temperature: \pm 1.4°C (\pm 2.5°F) Temperature stabilization will have been obtained when the monitored temperatures do not change more than 2.0°C (3.6°F) per hour.
- Pressure: \pm 5% or \pm 1.5 MM HG (0.059 inches HG), whichever is the greater accuracy.

Acceleration Amplitude: \pm 10% Vibration Frequency: \pm 2% or \pm 1/2 HZ below 20 HZ Time Durations: \pm 10%

7.3.2 Measured Results

See Section 8.0, Failure Criteria.

7.3.3 Instrumentation

The instrumentation for obtaining the measured values or controlling the induced environment shall be appropriate for measuring those parameters and shall conform to laboratory standards whose calibration is traceable to the prime standards at the U. S. Bureau of Standards. Such calibration shall be verified at least every 12 months, preferably every 6 months. The instrumentation shall have an accuracy of at least one-third of the tolerance allotted to the parameter being measured.

7.4 Overtest and Undertest

An overtest, that is, a value of the induced environment, that creates a greater stress on the controller shall not be deemed as a necessary cause for reconducting the test unless the limits of the failure criteria are exceeded. Any undertest shall be cause for reconducting the test.

7.5 Specimen Orientation

The controller and hot cylinder simulator each have three arbitrarily defined axes: x, y, and z orthogonal to each other. These permanently marked axes will serve to identify and record the directions of the induced environment, where appropriate.

8.0 FAILURE CRITERIA

Two classes of failure are identified for these tests:

- 1. Failure to hold hot cylinder simulator temperature at 1250°F ± 50°F;
- 2. Failure to shut down for over-temperature.

Failure of the first type will be monitored for by providing a continuous record of simulator temperature on a strip chart recorder. Prior to the tests the acceptable region of response will be marked off on the recorder and will be $1250^{\circ}F \pm 45^{\circ}F$ leaving a 5°F guard band. Performance will be judged satisfactory if the simulator temperature remains within these bounds during the tests (with the exception of start-up when the temperature will be less than the operating value and for purposely imposed over-temperature).

Failure of the second type will be monitored for by using the same temperature recorder. For this test the simulator load temperature will be allowed to rise above the desired range by an externally applied temperature error signal that demands more heat from the controller. The temperature set point for this shut down is 1350°F. Shut down at any indicated temperature between 1300°F and 1400°F will be judged as a satisfactory over-temperature shutdown.

Should a failure as identified above be found to be attributable to the load simulator (other than failure of the sensing resistor) the failure is not considered a failure of the system. Another load simulator may replace the failed unit and tests will continue.

9.0 CONTROLLER EQUIPMENT REQUIRED

Hot Cylinder Temperature Recorder _	HP	MODEL	7127A	SWUP CHACT
Range 5-500 MV , 1-100 V	_			
Inventory Number 123-012 ADL				
Serial Number 801-01168				
Calibration Date 7/22/74		Calibra	tion Due	7/21/15

10.0 TEMPERATURE-ALTITUDE

Method 504, Class 1, Procedure I.

10.1 Equipment Required

Chamber Tenney, 12ST 2'x2'x3'

Range -100 to 300°F (-73 to 149°C) 100K ft. max

Inventory Number <u>CH304</u> (H3C1 Serial Number <u>2762</u>

Calibration Date MITH ILDREIVENTS

Calibration Due _____

Pressure Gage	MELIMAN HODEL C	-1142 WM
Range	0-30 INCINES MERILLY	
Inventory Numb	er piver of CH 301	
Serial Number	29	
Calibration Da	te with (114m35:2	Calibratio

Voltmeter	F.	LUKE	8200	4
Range	1-1001	40 1	- 1000	6
Inventory	Number _	155	-098	(ADL)
Serial Nu	mber	754	41	
Calibrati	on Date	6/2	5/74	

TEMP COUT: RUNTUL TEMP COUT: RUNTUL TE-17500F>> 3B RMUE 100 R + 3604F INVENTY NO: FMTUCCH301 SERIM NO: 657243 CM DME 5121/75 CM DUE: 3/21/75 CM DUE: 3/21/75 CM DUE: 3/21/75

TELLEY COMBER

CULTURE LER & SIMULATE C. BASE TEMP, ALW WORS AL STEPS I THRU T: BRISTELS DYNAFASTER RECOVER

MODEL: 644-12 P6: 540-21

SERIM NO 66A-21,671 INISATULY NO RE322 CM. DATE: 4/4/15 DUE 1/4/15

Calibration Due 6/24/75

Controller Temperature Recorder HP MOD 7127A Range 5-500 MV, 1- 100 V Inventory Number 123-C12 (ADL) Serial Number 801 - 01168 Calibration Date 7/22/74 Calibration Due 7/21/75

10.2 Procedure

FX UMULARCE Install controller in accordance with Section 6.1. Axis Orientation

Pretest Performance	
Ambient Temperature	Relative Humidity <u>54</u> 10
Ambient Pressure 14.55 [3]	Controller Supply Voltage 28 07
Controller Temperature <u>~ rc°F</u>	Simulator Temperature 17 52'F
Over-Temperature Activated - Simulator T	emperature <u>ik 12:52°F (care-re-</u>
	OK ELSENTEL, SMITH IN
By All. Lucas	Date 28 Ming 75

Test Performance

Dustast Dauformanco

Step 1: Adjust chamber temperature to -6.	2°C at ambient pressure and hold for STALT IT IS \$5 TO IEIXE TENT
2 hours, controller non-operating Chamber Temperature -62^{2} -62 ²	AT 11/1 - 11/2
Controller Temperature $-48\%6\%$	Simulator Temperature -16°C Book54°C +5 8°C 14510= 44°C
Visual Inspection OK	757.200.00000000000000000000000000000000
By D. M. Lucy	Date 26 Min 75

Step 2: Adjust chamber temperature to -54°C at ambient pressure and hold for SMERED AT 16'SELL 24 May 75 TO SMORTHE OVER LIN test duration. Controller non-operating, temperature stabilized to -54°C: Chamber Temperature -54°C. Time 08.40 on 241447 15 Controller Temperature _ 525°C # Simulator Temperature _ 51°C.

(1) Controller operating at 24 VDC:

Chamber Temperature <u>-54°c</u>	Time (45 1	1:10	
Controller Temperature	€Simulator	Temperature	1203'F	
Over-Temperature Activated - Simulator Tem	mperature _	DALI-ED R	1197 F	(Lice 7 6.55
Mechanical Reset - Simulator Temperature	LURAN U	C TE 1198	SUITER I	1. OK

Controller non-operating, Atemperature stabilized to -54° C: Chamber Temperature <u>-54^{\circ}</u>C Time <u>1200 MCON</u> Controller Temperature <u>-52^{\circ}C # SMAGE</u> Simulator Temperature <u>(LSIDE 245 F(95))</u> <u>5455</u> -23⁵C

(2) Controller operating at 24 VDC:

1

Chamber Temperature -54° C Time $\binom{Pouche ou}{12.40400}$ 13:18 Controller Temperature -47° C #STAGE Simulator Temperature 1202° F Over-Temperature Activated - Simulator Temperature D_{ACOSED} TO 1197° F CURCENTURF Mechanical Reset - Simulator Temperature CURCENT GREE OF Summer IN OKTEMP UP TO 11994F - Pouce OFF 13:25

Controller non-operating	g, A temperature stal	bilized to	-54°C:		
Chamber Temperature	-54°C	Time	14:10		
Controller Temperature	-52"C ASTAGLE	Simulator	Temperature	145105	145F
				GISE .	-23%

1	n Controller operating at 24 VDC:	
	Chamber Temperature <u>-54°C</u> Time	(12 10 15 19
	Controller Temperature Simul	ator Temperature <u>1203°F</u>
	Over-Temperature Activated - Simulator Temperat	
	Mechanical Reset - Simulator Temperature <u>color</u> 764	ENT BALL OU, SWIRH IN, OK
	Te i	MD OF TO 11985 POWER OF 15 20

Controller non-operating, temperature stabilized to -54°C: Chamber Temperature $-54^{\circ}C$ Time 16:07Controller Temperature $-52^{\circ}C$ Simulator Temperature $174^{\circ}F$ inside By R.M. Among Date 29 My 1975

STASILIZATION A -54°C WILL CUNALUE QUELLIAMT

5 MAT 30 MAY 1975

<u>Step 3</u>: Adjust chamber temperature to -54°C (and hold for duration of test) with controller non-operating and temperature stabilized.

Chamber Temperature	-54°C	Time <u>(8:25</u>
Controller Temperature		Simulator Temperature $-52^{\circ}C_{CLBK}$ $(-61^{\circ}F) -51.7^{\circ}C_{LCDE}$

Controller operating at 32 VDC, adjust chamber pressure to 3.44 inches HG: Chamber Temperature <u>-54°C</u> Time <u>'0.26</u> Chamber Pressure <u>3.44 in HC</u> Chamber Pressure <u>3.44 in HC</u> Controller Temperature <u>-35°C</u> Simulator Temperature <u>41N > 102</u> 1261°F Over-Temperature Activated - Simulator Temperature <u>0K</u> 1261°F Mechanical Reset - Simulator Temperature <u>0K</u> control surrey m Mechanical Reset - Simulator Temperature <u>0K</u> control surrey m By <u>R M. June</u> Date <u>30 May 75</u>

(イノイジテ) <u>Step 4</u>: Adjust chamber temperature to -10°C and pressure to ambient with controller non-operating. Stabilize controller temperature.

Chamber Temperature	-10°C	Time	12.30		
Chamber Temperature				3ME	
Controller Temperature	-8.5°C	Simulator	Temperature	1431012	

Open chamber door and allow frost to form on controller surfaces. After the frost has just melted, close chamber door and operate controller at 32 VDC: (1) Chamber Temperature $(45^{\circ}F) 7^{\circ}C) - 6^{\circ}C$ Time $(12 49) 13.0^{\circ}S$ Controller Temperature $(0^{\circ}C) + 0.5^{\circ}C$ Simulator Temperature $(25^{\circ}F) 15^{\circ}C$ Over-Temperature Activated - Simulator Temperature $0K 1256^{\circ}F = 0K^{\circ}F = 0K^{\circ}F$ Mechanical Reset - Simulator Temperature $0K - 0K = 0K^{\circ}F = 0K^{\circ}F$

-7%

Controller non-operating: Purel CFF	13:06		
Chamber Temperature <u>-6.6c</u>	Time	13:09	
			1144°F
Controller Temperature <u>-0.5°c</u>	Simulator	Tempera var e	BASE 20°C

59

Controller operating at 32 VDC: Power on 13:10

12	Chamber Temperature $(15^{\circ}F) - 9^{\circ}C$	Time	13:20	
/	Controller Temperature -1°	Simulator	Temperature	BASE + 28°C 145:00 1299°C
	Over-Temperature Activated - Simulator	Temperature	OK	12996F PURCASE
	Mechanical Reset - Simulator Temperatur	е	ok	CLAREFFLY, GUIRMIN

Controller non-operating: Power off	13:20	
Chamber Temperature $(17^{\prime}F) - 8.3^{\circ}C$	Time /3:23	
Controller Temperature	Simulator Temperature 605E +33%	'F

Controller operating at 32 VDC: Power 0.13:23(3) Chamber Temperature $(10^{\circ}F) - 9^{\circ}C$ Time 13:30Controller Temperature $-1.5^{\circ}C$ Simulator Temperature $\frac{645.0E}{1251^{\circ}F}$ Over-Temperature Activated - Simulator Temperature 0K $1251^{\circ}F$ concerner Mechanical Reset - Simulator Temperature 0K concerner WBy PW. PW. Date 30My 1975 Mr FoWRER 055 13:31

Step 4a: Ambient performance at 32 VDC (mid-test):			
Ambient Temperature78°=	Relative H	umidity	52%	
Ambient Pressure 14.60 rsl				
Controller Temperature $(332) 91.4^{\circ}F$ Over-Temperature Activated - Simulator Te	Simulator	Temperature	124	S'F
Over-Temperature Activated - Simulator Te	emperature _	OK	12 48 F	CURTENT OFF
Mechanical Reset - Simulator Temperature				
By R. M. Luca	Date	30 MM	175	

AUGIENT REST AUN' UN 2 JUNE TO CHECK UT EQUIP AFTEL CHAMBER OF THE. RUN MADE WITH WHEL FLOW R MSC CHECK AGILITY TO KEEP SINULARE AT 200°F IN INTER RUNS RUN OK IN MC MESSAGETS Step 5: Adjust chamber temperature to 85°C at ambient pressure, stablize and maintain for 16 hours with controller non-operating.

Chamber Temperature $B5^{\circ}C$ Time2Joue 15:303Joue08:30Controller Temperature $B4.5^{\circ}C$ Simulator Temperature $21\frac{11}{2}^{\circ}C$ 0CE:30Visual InspectionOK $20^{\circ}C(GB^{\circ}F)AE:2E$ ByD:M:JoureDate3:Joure > 5

Step 6: Adjust chamber temperature to 55°C at ambient pressure with controller non-operating and stablized at 55°C.

Chamber Temperature $53^{\circ}C$ Time $\begin{pmatrix} 57477\\ c532 \end{pmatrix}$

Controller Temperature 54° Simulator Temperature 17° Outside 33°

Controller operating at 32 VDC:

Clock Time	Lapsed Time, Min.	Chamber Temperature	Controller Temperature	Simulator Temperature
7:55	Start	55°C	54°C	17°C 61°E
10.25	S + 30	53°C	519,5°C	23" 1272"F
10:55	S + 60	55%	61.5°C	23/2 1263 F
11:25	S + 90	55°C	62°C	24% 1244 F
11:55	S + 120	55°C	62°C	24°C 1248°F
12:25	S + 150	55°C	621/2°C	24% 21243 F
12.55	S + 180	55° C	6242°C	24% 1264 F
13:25	S + 210	55°C	62%°C	29% C1256F
13:55	S + 240	55°C	62%2	29/20 1244%
4 HOL	JRS	TOTAL LAPSED TIM	1E	

Over Temperature Activated - Simulator Temperature OK 1250°F CHEADER OF Mechanical Reset - Simulator Temperature OK CLARENT ON, SWIRTIN By R.M. June Date 3 JUNE TS

61

<u>Step 7</u>: Adjust chamber temperature to 71°C at ambient pressure with controller non-operating and stabilized at 71°C.

Chamber Temperature	71°C	Time	14:15		
Controller Temperature	70°C	Simulator	Temperature	AJIOE	567°F
				BASE	22%

Controller operating at 32 VDC according to the schedule on page 13 following.

Upon completion of the schedule:

Over-Temperature Activated - Simulator 1	[emperature	OK	12	46°F (04 50
Mechanical Reset - Simulator Temperature	OK	, Cillert	en,	SWITCH IN
Mechanical Reset - Simulator Temperature By <u>R. M. Jures</u>	Date 3	June	197	5

STEP 7 SCHEDULE

Clock Time	Lapsed Time, Min	Controller Power	Chamber Temperature	Controller Temperature	Simulator Temperature BARE (Maide	
14:15	Start	ON	71°C	70°C	22% 539"F	STU
14:25	S + 10	ON	71°C.	73°C	24°C 1170°F	
14:35	S + 20	ON	71°C	741/2°C	25/ic RDEF	
14:45	S + 30	ON	7106	75%.	26°C 1260°F	
11	S + 30	OFF	NA	NA	NA NA	
14:55	s + 40	OFF	71%	74°C	27°C 822°F	
15:00	S + 45	ON	NA	NA	NA	
15:05	S + 50	ON	71°C	74°C	23°2 1166°F	ing Litte
15:15	S + 60	ON	71°C	75%°C	25/2°C 1256°F	
15:25	S + 70	ON	71°C	76°C	26 20 1262°F	
15:30	S + 75	OFF	NA	NA	NA	
15:35	S + 80	OFF	71°C	75%°C		
15:45		OFF	71°C	73%20	23/2 645 F	=
11	S + 90	ON	NA	NA	🗰 NA	
15:55	S + 100	ON	71°C	75%°C	24°C 1169°F	" " " " "
16:05		ON	71"	76°C.	26°C 1295 F	
16:15		ON	71%	71°C.	2.6% 1205	1
11	S + 120	OFF	NA	NA	NA	1
16:25	S + 130	OFF	71%	75%	25% 808	=
16:30		ON	NA	NA	NA	-
16:35		ON	71°C	75°C	23%2 96	UP
16:45		ON	71°C	76'2"	25/2 1245	F
10:55		ON	71%	77°C	26/2 1258	
16:00		ON	71'0	77"C	26% 12%	9
	s. 45 Min.	TOTAL LAPS				

Step 8: Omit for Class 1 equipment.

<u>Step 9</u>: Adjust chamber temperature to 30° C at ambient pressure with controller non-operating and stablized at 30° C: 4 June 75

Chamber Temperature	30°C	Time
Controller Temperature	30°C	Simulator Temperature <u>1412</u> Holacin spic on

Operate controller at 32 VDC and adjust chamber pressure to 5.56 IN HG:

Clock Time	Lapsed Time, Min.	Chamber Temperature	Controller Temperature	Simulator Temperature
09:18	Start	30℃	36°C	18 12 1271 F
0448	S + 30	30°C	39°C	18 12 1276F
10:18	S + 60	30°C.	41°C	18 1/2 1244 F
10:48	S + 90	30°C	42°C	18/2 12464
11:18	S + 120	30%	42%°C	18/1212427
11:48	S + 150	30°C	<i>43°€</i>	18/2012 201
12:18	S + 180	30%	43°C	18/2°C 1247%
12:48	S + 210	30°C	43°C	18/2° 1263°
13:18	S + 240	30°C	43°C	18/2 12651
4 HOURS	S	TOTAL LAPSED TIM	E	

Over Temperature Activated - Simulator Temperature OK. (265°F culture Mechanical Reset - Simulator Temperature OK CUMMA- CW - SWITH IN punos Date 4 SUNE 75 1. M. By ____

CONNELLER & SIMULATUR BASE TEAMP. RECORDERS FO: STEPS & THEN 14 BRISTOL'S DYNAMMERE RECORDER HOPEL: 64A 24 PG 590-21 SELIM NO: 66A - 21,581 INVENTORY DO: RE 523 CM DATE: \$11/75 DUE DATE 7/11/75 <u>Step 10</u>: Adjust chamber temperature to 47°C at a pressure of 5.56 IN HG with controller non-operating and stabilized at 47°C:

Chamber Temperature 47° C Chamber Pressure 5.56 in Ht. Time 13.45Controller Temperature 46° C Simulator Temperature 424° F Controller Temperature 46° C Simulator Temperature 424° F 424° F Controller Temperature 46° C Simulator Temperature 60° C 60° C 424° F 124° F 124°

STEP 10 SCHEDULE

Clock Time	Lapsed Time, Min	Controller Power	Chamber Temperature	Controller Temperature	Simulator Temperature	
13:45	Start	ON	47%	46°C	16°C 424°F	
13:55	S + 10	ON	47°C	48°C	16/2°C 1094"F	STILL UNACH
14:05	S + 20	ON	47°C	50%°C	19°C 1261°F	
14:15	S + 30	ON	47°C	51/2°C	19°C 1262'F	1
	S + 30	OFF	NA	NA	NA	1
14:25	S + 40	OFF	47°C	SUC	171/2' 810"F	1
14:30	S + 45	ON	NA	NA	NA	
14:35	S + 50	ON	47°C.	sull'e	16420 981°F	STILL
14:45	S + 60	ON	47%	52°C	181/2°C 1274°F	
14:55	S + 70	ON	47°C	53°C	19°C 1265"F	4
15:00	S + 75	OFF	NA	NA	NA	1
15:05	S + 80	OFF	47°C	52°C	18% " 1016"	† .
15:15	S + 90	OFF	47°C	50%2°C	17°C 671°F	1
п	S + 90	ON	NA	NA	NA	
15 25	S + 100	ON	47"c	52 %°C	18°C 1214°F	SALL
15:35	S + 110	ON	47°C	5312°C	14°C 1273°F	
15:45	S + 120	ON	470	54°C	19°C 1272°F	1
u	S + 120	OFF	NA	NA	NA	
15:55	S + 130	OFF	47°C	52°C	17°C 744°F	
16:00	S + 135	ON	NA	NA	NA	
16:05	S + 140	ON	47°C	52°C	17° 1010°F	SALL
1615	S + 150	ON	47°C	53°C	1842 1273 F	
16:25	S + 160	ON	47%	54%2	19°C 1268°F	
16:30	S + 165	ON	47°C	54 4/2°C	19°C 1258°F	
2 Hrs.	45 Min.	TOTAL LAPSED	TIME			

<u>Step 11</u>: Adjust chamber temperature to 20°C with controller non-operating. $5 \sqrt{VVE} \sqrt{5}$

Operate controller at 32 VDC and then adjust chamber pressure to 3.44 IN HG. Chamber Temperature 20° C Time 0820(67:=) 13°C in:

$\begin{array}{c} \text{Temperature} \underline{20C} \\ \text{Imme} \underline{0320} \\ (6577) 13°C \\ (6577) 13°C \\ \text{Imme} \underline{13°C} \\ \text{Imme}$
(65:=) /3°C IN: OF Simulator Temperature <u>13°C BASE</u> H ₁ U FLOW SRLL ON

Controller operating at 32 VDC:

Clock Time	Lapsed Time Min.	Chamber Temperature	Controller Temperature	Simulator Temperature
0900	Start	20°C	24%	1642°C 1218°F
0430	S + 30	20°C	29%. 2	176 12924
1000	S + 60	Zic	32%°C	17° 1266°F
1030	S + 90	20°C	34°C	170 1264%
1100	S + 120	20°C	35%	17%2 1241°F
1130	S + 150	20%	35/22	18°C 1267"
1200	S + 180	2000	36%	188 1266
1230	S + 210	20°C	36°C	18° 12580
1300	s + 240	20°C	36%2	18°C 1265°
4 Hou	rs	TOTAL LAPSED. TI	ME	

Over-Temperature Activated - Simulator Temperature 1239 F CURENT UFF Mechanical Reset - Simulator Temperature OK COMMENT ON -SMRHIN By _____ Date _ 5 June 75

<u>Step 12</u>: Adjust chamber temperature to 35°C at a pressure of 3.44 IN HG with controller non-operating and stablized at 35°C:

Chamber Temperature <u>35°C</u>	
Chamber Pressure 3.42 INIty	Time 13:15
Controller Temperature 35°C	Simulator Temperature More file Stree 16°C More file Stree on
Operate controller at 32 VDC according to	
Upon completion of the schedule:	
Over-Temperature Activated - Simulator Te	mperature OK 1264°F CUNENTURF
Mechanical Reset - Simulator Temperature	
By R. M. Jours	Date 5 June 1975

STEP 12 SCHEDULE

Clock Time	Lapsed Time, Min	Controller Power	Chamber Temperature	Controller Temperature	Simulator Temperature BASE (MSIDE	
13:15	Start	ON	354	35%	16°C 683"F	
13:25	S + 10	ON	35°C	37%	1622 1157"F	SALL
13 35	S + 20	ON	35°C	39°C	18°C 1246F	
13:45	S + 30	ON	35°C	401/2	18°C 12640F	
13+6	S + 30	OFF	NA	NA	NA	
1355	S + 40	OFF	3.5°C	392	17°C 854°F	
14:00	S + 45	ON	NA	NA	NA	
14:05	S + 50	ON	35℃	39°C	15 1/2 988 F	STIL
14.15	S + 60	ON	352	41 1/2°C	18°C 1267"F	
14:25	S + 70	ON	35℃	42% c	18 1/2 1259%	
14.30	S + 75	OFF	NA	NA	NA 10224	
14:35	S + 80	OFF	35°C	42°C	18°C 1022"F	
1445	S + 90	OFF	35°C	40°C	16°C 627F	
11	S + 90	ON	NA	NA	NA	
14:55	S + 100	ON	35°C	42°C	16% & 1170F	SALL UNER
15:05	S + 110	ON	35%	43°C	18°C 1235°F	
15:15	S + 120	ON	3500	44°C	18/2°C 1242"F	
11	S + 120	OFF	NA	NA	NA	
15:25	S + 130	OFF	35°C	42°C	17°C 812°F	
15:30	S + 135	ON	NA	NA	NA	1
15:35	S + 140	ON	35°C	41/22	15%2 958"F	SAL
15:45	S + 150	ON	35°C	43 1/2"2	18°C 1236°F	ŧ
5:55	S + 160	ON	35°C	44°C	18°C 1236°F 18% 1249°F	ł
16:00	S + 165	ON	35°C	44%°C	18°C 1238°F	ł
2 Hrs	. 45 Min.	TOTAL LAPSED				1

Step 13: Omit for Class 1 equipment.

Step 14:

Postcest Performance: Return chamber to operating.	ambient conditions with controller F, CINES CRENED
Ambient Temperature 79°F	Relative Humidity <u>57%</u>
Ambient Pressure 14.53 PS1	Controller Supply Voltage 28.02 V
	Simulator Temperature 6m= 75%
Over-Temperature Activated - Simulator Te	mperature OK. 1752°F CU.NELARCH
Mechanical Reset - Simulator Temperature	
By - Rohr M. pure	Date 5 JINE 1975

11.0 EXPLOSIVE ATMOSPHERE

Method 511, Procedure 1

11.1 Equipment Required

Chamber Tenne	ey, , 3 ft diameter	x	10	ft	long
Range 85	,000 ft	_			
Inventory Num	ber <u>CH 302</u>				
Serial Number	N.A.	_			
Calibration D	11 1	_		Ca	librat

ibration Due <u>N.A.</u>

Pressure	e Gage <u>Wal</u>	lace 11	ernan
Range	0-15	OFS	IA
Invento	ry Number _	PI	323
Serial	Number <u>FA</u>	129-	- 1101304
			110/75

Calibration Due 4/10/76

Voltmeter	IKE 8200A
Range	1-1001V
	158-098 (ADL)
Serial Number	
Calibration Date	

Calibration Due <u>6/24/75</u>

Controller Temperature Recorder	MOD TIZTA
Range 5-500HV, 1-100V	
Inventory Number 123-012 (ADL)	
Serial Number <u>801-01168</u>	
Calibration Date7/22/74	Calibratio

alibration Due <u>7/21/25</u>

11.2 Procedure

Install controller in accordance with Section 6.1. Use a 100/130 grade gasoline and mixture determinations as provided for chamber.

Axis Orientation Commune Base 21 Cover = Y 1

Pretest Performance Winnw CMML	
Ambient Temperature 76 F and B	Relative Humidity 67% outside
Ambient Pressure 14.58/51	Controller Supply Voltage 31.00 V
Controller Temperature 47 cos 116.6°F	Simulator Temperature =1248°F
By R. M. Lun	Date 20 Mry 1975

Test Performance

Seal chamber and adjust temperature to $71 \pm 3^{\circ}C$ and maintain throughout test. Stabilization of chamber walls and controller is considered attained at a temperature of 60°C or higher.

Reduce chamber pressure to 1.05 psia. During the following schedule of pressure increases, a 13 to 1 air/fuel ratio shall be maintained within the chamber volume and the potential explosiveness of the sample mixture shall be verified by the ignition means provided. Introduction of the mixture shall be accomplished with 3 ± 1 minutes. Pressure increases shall be steady. The over-temperature activation and mechanical reset shall be accomplished at least once during the pressure increases.

(INANDER NE. UP MEASURED

Pressure or Pressure Increase PSIA	Chamber Temperature	Controller Temperature	Simulator Temperature	Over-Temp Activate Ignition?	Mechan. Reset Ignition?	Sample Ignition Verified?
1.05	68.9°C	71.5°C	28.70 MV 1274 F	NA	NA	NA
1.05 to 1.33	2168.9	71.8	25.43 1262°F	NA	NA	NA
1.33	operate	controller a	t 28 ± 4 VDC			
1.33 to 2.15	68.3	72°	28.53 1279°F	No	No	NA
2.15	68	71.6	28.37 1259°F	NA	NA	OK BLIN
2.15 to 3.47	68'	72	28,26 1255'F	No	No	NA
3.47	68.1	72	28.41 1261°F	NA	NA	YES
3.47 to 5.46	68	71.6	28.37 1259'F	No	No	NA
5.46	68	12	1896 1285'F	NA	NA	TES
5.46 to 7.65	68	72	2536. 1259'F	No	No	NA
7.65	68.2	71.7	28.81 1278°F	NA	NA	SKYES
7.65 to 11.34	68.2	72	28.57 1268°F	No	No	NA
11.34	68.3	71.5	28.84 12804	NA	NA	YES
11.34 to 13.67	68.3	71.5	25.60 1269°F	No	No	NA
13.67	68.2	71.5	28.44 1284"F	NA	NA	YES
13.67 to Amb.	68.2	71.5	1265°F	No	Ho	NA
Ambient	1A	KA	NA	NA	NA	NA

EXPLOSIVE ATMOSPHERE TEST SCHEDULE

By Tothe frame Date 20 Mby 75

m3. 10° = 21 An

73

and many desires in Hora and I

Posttest Performance

Return controller to ambient conditions	
Ambient TemperatureF	Relative Humidity
Ambient Pressure 27.77 IN 14	Controller Supply Voltage 30.98
Controller Temperature ~ 90°F	Simulator Temperature 12,78
Over-Temperature Activated - Simulator T	emperature <u>OK</u>
Mechanical Reset - Simulator Temperature	OK
By R. M. form	Date 20 May 75

1330 2

12.0 ACCELERATION

Method 513.1, Procedures I and II

12.1 Equipment

CentrifugeAMF	, LG-34
Range 300 g, 10,000	pounds, 0-500 RPM
Inventory Number	PE 301
Serial Number	20
Calibration Date	4/7/75

Calibration Due 7/7/75

Voltmeter	FLUKE	<u> </u>	R100A
Range	1-100 mV		1-10001
Inventory	y Number _	158	8-098 (ADL)
Serial N	umber	759	141
Calibrat	ion Date _	6	135/74

Calibration Due <u>6/24/75</u>

Controller Temperature Recorder HP MOD 7127A Range 5-500 NV \$ 1-100V Inventory Number 123-012 (Mac) Serial Number 801-01168 Calibration Date 7/22/74 Calibration Due 7/21/75

12.2 Procedure

Install controller in accordance with Section 6.1. Order of test axis is not specified. Axis orientation is in line with the G vector.

$$G = 0.00002841 (Arm Length)(RPM)^{2}$$

$$RPM = \sqrt{\frac{G}{0.00002841}} (Arm Length)(RPM)^{2}$$

Pretest Performance	
Ambient Temperature 76°F	Relative Humidity 60%
Ambient Pressure 29.45 INH	Controller Supply Voltage
Controller Temperature <u>48</u> °C, 118.4	Simulator Temperature <i>Base Buc 150'F</i> <i>Chu Temperature</i> <i>1247'F</i> <i>Chu Temperature</i> <i>1247'F</i> <i>Chu Temperature</i> <i>1247'F</i> <i>Chu Temperature</i>
Over-Temperature Activated - Simula	tor Temperature <u>1247°F OK</u> LUNGATUSE
Mechanical Reset - Simulator Tempera	ature OK CULARATUR, SWITCHIN'
By Rell. Lucos	Date 6 June 1975

Test Performance Procedure I

Controller is non-operating and 13.5 g is to be induced for one minute in each of 6 directions.

Axis Orientation	Arm Length	RPM	G	
+X	33.75	120	13.8	
+γ	33.75	120	(3.8	
+2	27.50	135	14.1	
- X	33.75	120	13.8	
-Y	3375	12.0	13.8	
-Z	39.50	110	13.6	

Posttest Performance Procedure I Ambient Temperature 77°F Relative Humidity 6140 Ambient Pressure 29.39 wHc Controller Supply Voltage 28.00 Controller Temperature 80°F Simulator Temperature 1248°F Over-Temperature Activated - Simulator Temperature OK 12 48°F Mechanical Reset - Simulator Temperature Oll CULLENT ON, SUIRHIN Date 6 JUNE 1975 By R. M. Lum

Test Performance Procedure II

The induced test level is 9.0 G for at least one minute in each of 6 directions. Controller is to be operating at 28 ± 4 VDC throughout the following schedule.

Pretest Performance

The first line of entries satisfies this requirement.

PROCEDURE II OPERATING ACCELERATION

	Arm			Controller	Simulator	Simulator	Temp.
Axis	Length Inches	RPM	G	Temperature	Temperature	Over-Temp. Activated	Mechan. Reset
+ X	NA	0	0	90°F	1245°F	1395 FOK	CULLENTEN SWITHIN
+X	33.75	00	9.54	90"=	1247"F	1297 EOK	CUREATON SWIRH IN
+X	NA	0	0	90'F	1234°F	1234"FUE CULLENT OF	CUMENTON SUMPHIN
+Y	NA	0	0	102°F	1295 F	12 45°F OK CLURENT UFF	CULTERTON SUMBH IN
+Y	33.75	100	9.54	10205	1297°F	1247°F CK CURLENT OFF	CULEATEN SWIET IN
+Y	NA	0	0	102°F	12394	12394FCL (ULLENT UF	CULLENTEN 3-1 RH IN
+Z	NA	0	0	102°F	1239F	12394 OC CULLENT USE	CLEVENT CN
+Z	27.50	110	9.45	102%=	12 94 97	12 49 4 WE CUREENT OFF	CURPERTON SWIRITIN
+Z	NA	0	0	1020,=	1248°F	12 48 OF CH CUMBATUR	CLARGATOL' SW. TEN AN
- X	NA	0	0	95°F	1245°F	12 45 FOK	CLULES T ON SHIRE A
- X	33.75	100	9.59	Ý5 [°] F	1254 F	1254 °F OK CURRENT OFF	CUREEAT UN SWIRH IN
- X	NA	0	0	95°F	1238°F	1238"F OK CUMEAT OFF	CULESAFOU SWIRM IN
-Y	NA -	0	0	104°F=	1240°F	12 40 " F UL CL'INSAT OFF	CULLONF LA SHIRH IA
-Y	33.75	100	254	104°F	1229°F	1224"F OK CUNEAT OFF	CULLENT QU SHIRH IN
-Y	NA	0	0	104"F	1230'F	12 JU"F CK CUMENT OFF	CULLETT ON Smith IN
-Z	NA	0	0	98.6°F	1239"F	12 34"F UK CUNLENT OFF	CHELENT ON
- Z	39.50	90	9.09	98.6°F	1250°F	12 50 " OK CUNTENT OME	CUMENTON SWITCH IN
- Z	NA	0	0	98.64F	1241°F	1241"FOR CURIERTOFF	CK CULLENTLL SWIRITIN

Posttest Performance

The last line of entries satisfies this requirement.

Ambient Temperature $71^{\circ}F$ Relative Humidity $61^{\circ}fc$ Ambient Pressure29.95 IN HyBy12.44By12.44Date99

78

13.0 SHOCK

Method 516.1, Procedure I, terminal sawtooth pulse

13.1 Equipment Required

Shock Machine _	AVCO, SM-1	10M2
Range 10-5-0	00 g	
Inventory Number	PE372	NOT USED
Serial Number	1929	USED
Calibration	in use	1
/		~

Accelerometer	BAK	TYPE	8302
Range			
Inventory Number	A	C 310	
Serial Number	34	4 778	?
Calibration Date			

Calibration Due 7/15/75

Oscilliscope	EXTROLIX
Range	
Inventory Number	05311
Serial Number	009027
Calibration Date	5/7/75

Amplifier	The y	MONIX	MPE	3A1
Range				
Inventory	Number	OP3	14	
Serial Nur	mber	01375	9	
Calibratio	on Date	5/7/	75	

Calibration Due $\frac{8}{7}/75$

Calibration Due $\frac{8}{7}/75$

Filter _	SKL	MUDEL 302
Range	0-2000) H 2
Inventor	y Number	AM328
Serial N	umber	498
Calibrat	ion Date	2/21/75

Calibration Due 8/21/75

Voltmeter	FL	UKE	8200A	
Range	1-100	nv,	1-1000	r
Inventory	Number	15	B-098	(AQ)
Serial Num	ber	759	141	
Calibratio	n Date	6/0	25/74	

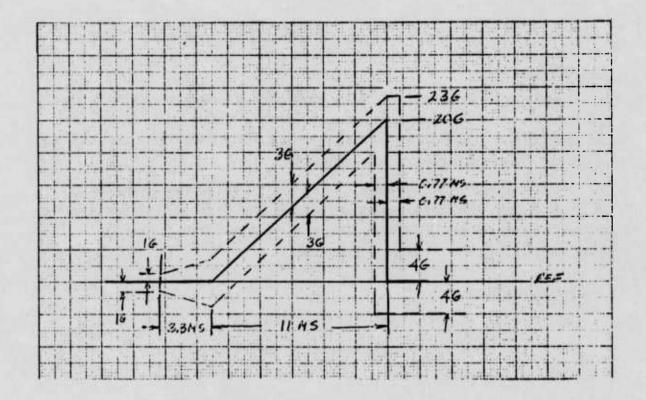
Calibration Due _ 6/24/75

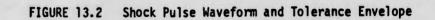
Controller Dummy Mass Nor NEEDED

Controller Temperature Recorder _ HP MUD 7121A Range 5-500 MV, 1-1004 Inventory Number 123-012 (MOL) Serial Number 801-01168 Calibration Date 7/22/74

NOTE: This test environment may be induced using the vibration shaker and related equipment in appropriate sequence during the conduct of <u>Test</u> <u>Procedure 14.0</u>, <u>Vibration</u>. In this instance, the shock machine equipment will not be used and the following equipment will be substituded.

Wave Form Synthesi:	zer <u>Exac</u> T
Range Jusec - 1	Domese
Inventory Number	56 336
Serial Number	8357


13.2 Procedure


Install controller dummy mass to the shock machine in accordance with Section 6.1. Calibrate the shock machine to the waveform specified in Figure 13.2 so that two consecutive applications of the load will produce waveforms within the specified tolerance. The shock machine is now calibrated.

Install controller in accordance with Section 6.1 and operate controller at 28 \pm 4 VDC. Apply the load so determined above in each of the 6 directions according to the following schedule. The order of axes given is not fixed nor required. Photographs of each applied pulse will be taken.

Pretest Performance

The first line of entries satisfies this requirement.

				Simulator	Simulator Temp.		
Axis	Event	Controller Temperature	Simulator Temperature	Over-Temp. Activated	Mechan. Reset		
+X	Pretest	113 F	12.74	OF	OK		
+X	Pulse	NA	NA	NA	NA		
+X	Posttest	113 °F	1260	OK	ok		
+Y	Pretest	110 °F	1269	σK	oh		
+Y	Pulse	NA	NA	NA	NA		
+Y	Posttest	110°F	1269	UK	ac		
+Z	Pretest	113 °F	1253	ok	CK		
+2	Pulse	NA	NA	NA	NA		
+Z	Posttest	113"F	1254	OL	OL		
-X	Pretest	110°F	12.76	a	ck		
-X	Pulse	NA	NA	NA	NA		
-X	Posttest	110°F	1270	ac	ok		
-Y	Pretest	110°F	1276	OK	ck		
-Y	Pulse	NA	NA	NA	NA		
-Y	Posttest	110°F	1276	or	OK		
-2	Pretest	113%	1253	OL	ar		
-2	Pulse	NA	NA	NA	NA		
-2	Posttest	113'F	1254	UE	OK		

TEST PERFORMANCE

Posttest Performance

The last line of entries satisfies this requirement.

Ambient Temperature $75^{\circ}F$ Relative Humidity $63^{\circ}/_{0}$ Ambient Pressure 29.71° with
 10° Controller Supply Voltage 30° (nore)By $\overline{P.U.}$ \mathcal{L}_{urac} Date 16° May 25

14.0 VIBRATION

Method 514.1, Procedure I, Part 1, Curve 2, Figure 514.1-1.

14.1 Equipment Required

Shaker Ling	A 300
Range 6000	lbs force
Inventory Number	PE 314
Serial Number	59
Calibration	in use

Amplifier _	CP10/	16VC		
Range	5 Hz	to 5	KHz	
Inventory I	Number _	PE	314	
Serial Num	per	59		
Calibration	n Date _	5	12/75	Ca

alibration Due 6/2/75

Accelerometer BAK TYPE 8302 Range _____ Inventory Number _____ AC 310 Serial Number 344 778 Calibration Date 4/15/75 Calibration Due 7/15/75

Voltmeter	FLUKE		8200 A
Range	1-100 MV	4	1-1000V
Inventory	Number _	15	58-098 (ADL)
Serial Nur	nber	75	5941
Calibratio	on Date _	6	25174

Calibration Due <u>6/24/75</u>

Controller Temperature Recorder _	HP MOD 7127A
Range 5-500 nv 4 1-100 V	
Inventory Number 123-012	(ADL)
Serial Number	
Calibration Date7/22/74	Calibration Due7/21/75

14.2 Procedure

Install recorder in accordance with Section 6.1. Operate controller at 28 ± 4 VDC throughout the testing. Activate the over-temperature and reset function once, and toward the end of, each 30 minute time period per axis. The order of axis testing is not fixed and not required.

The induced environment along each axis is as follows:

Cycling

Frequency, Hz	Level
5 - 20	0.10 in. D.A.
20 - 33	2 g Peak-to Peak
33 - 74	0.036 in. D.A.
74 - 500	10 g Peak-to-Peak

Sweep Time: 15 minutes per 5 to 500 to 5 Hz , 6.66 octaves/16 min.

A 2.26 MIN /oct., of 0.443 oct/min.

Resonance Search

Search from 5 to 500 Hz at a minimum level to obtain a usable control signal (approximately 1.0 g), but not to exceed levels above.

Resonance Dwell

Dwell at a maximum for four frequencies per axis as obtained during Resonance Search, 30 minutes for each frequency, at the level determined from above.

Cycling Time

Cycle at the rate given above for 3 hours minus dwell time per axis.

Pretest Performance For Z AFIS		
Ambient Temperature		Humidity 65%
Ambient Pressure 29.76 IN He		er Supply Voltage 28.44
Controller Temperature <u>N.A.</u>		Temperature <u>1248=127</u> 27=
Over-Temperature Activated - Simulator	Temperature	OK And
Mechanical Reset - Simulator Temperatu	re	ok And
By R.M. Luns	Date	16 May 75

PRETEST PERFERINGE FOR X MAP Y MES ON 19 HAY 75 Ansieur TEMPENTURE <u>71°F</u> RELATIVE HUMIDITY <u>61%</u> HUBIENT PAESSONE <u>29.80 milte</u> CULARCIE: SIPAN VOLTARE <u>24.45</u>" (1251 R 1275") CONTROLIER TEMPENTURE <u>72</u> SIAVIANCE TEMPENTURE <u>1259</u>" USER - TEMPERAVIE ARTUMED - SIAUME TEMPERAVE OK Manmin Reser - Sinume TErremus _____OK_ 31 R.M. June ... some 19 May 1975

VIBRATION SCHEDULE

X-AXIS DWELL

Cleak Time		Controllo		Simulator	Simulator Temperature		
<u>Clock Time</u> Start Stop	Event	Freq	Controller Temperature	Temperature	Over-Temp. Activated	Mechan. Reset	
And	Dwell 1	쌭					
	Dwell 2		No	LESULANCE	s		
	Dwell 3						
	Dwell 4						
0.0 HRS	TOTAL DW	ELL TIM					

X-AXIS CYCLING 14 HA7 1475

	Mechan. Reset	Simulator Tem Over Temp. Activated	Simulator Temperature	Controller Temperature	START 9:15AM	Time from Start, Min.
1.	æ	OK	1263%	~80 F	4:45	+30
	ak	ok	1257%	~80'F	10:15	+60
	OL	GK	1251'F	~ 90%=	10 45	+90
	OK	OK	12 57°F	~100 F	11:16	+120
E	OKARE	OC	1252°F	~110°F	11:46	+150
	OK 3 2 Mas	OK	1268°F	~115F	12:14	+180
	200			IME	TOTAL CYCLING T	3 mes

X-AXIS	POST	TTEST	PERF	ORM	ANCE

Ambient Temperature	77%	Relative Humidity <u>6240</u> Controller Supply Voltage <u>29.0</u> 2				
Ambient Pressure	29.76					
Controller Temperature	~115%	Simula	tor Tem	perature	1278%	
Over-Temperature Activat	ted - Simulator Temp	erature	00	-		
Mechanical Reset - Simul	lator Temperature		OK			
By R.M. y	Lum	Date _	19	My	1975	

NY MAS

and a setting manage

VIBRATION SCHEDULE

Y-AXIS DWELL

		r	1		Simulator Temperature	
Clock Time Start Stop	Event Free	Freq	eq Controller Temperature	Simulator Temperature	Over-Temp. Activated	Mechan. Reset
	Dwell 1					
	Dwell 2		M	At surmuces		
	Dwell 3					
	Dwell 4					1
0.0	TOTAL DW	ELL TIM	E			

Y-AXIS CYCLING

				Simulator Ter		
Time from tart, Min.	STACT 13:12	Controller Temperature	Simulator Temperature	Over Temp. Activated	Mechan. Reset	
+30	13 12	~/25 F	1262	6K.	OK ONT	
+60	14 12	~125°F	1257	OK	OK	
+90	14:42	~120°F	1259	ak	OKCU	
+120	15:30	NIZOF	1252	UC	OK	
+150	16:00	#116.6	1248	THOR 3 MUSS	OK	
+180	16:30	117.5	1254	OK	OK	
3.0	TOTAL CYCLING TIME SIMULATOR "CHI MT 160.8"F TOTAL Y AXIS TIME AT +90 TEMP = 80"F MU.MMIM = 54 %					

Y-AXIS POSTTEST PERFORMANCE

Ambient Temperature	80°F	Relative Humidity <u>52%</u> Controller Supply Voltage <u>31.02</u>		
Ambient Pressure	29.71 IN HG			
Controller Temperature	117.5	Simulator Temperature		
Over-Temperature Activ	ated - Simulator Temp	erature <u>OK</u>		
Mechanical Reset - Sim	ulator Temperature	CK		
ву <u>Л. М.</u>	fues	Date 19 14 1975		

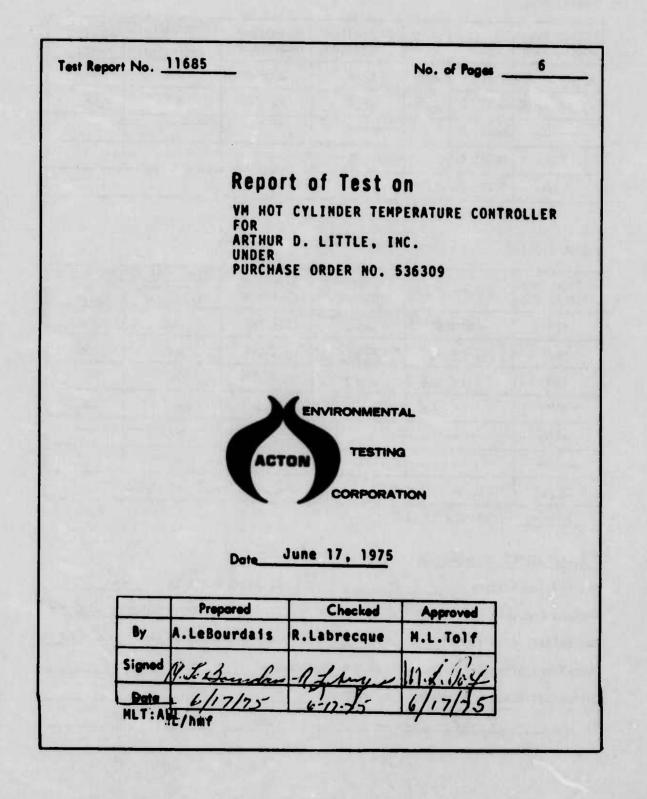
VIBRATION SCHEDULE

Z-AXIS DWELL

Cleck Time			Controller	Simulator	Simulator Temperature	
Clock Time Start Stop	Event	Freq	Temperature	Temperature	Over-Temp. Activated	Mechan. Reset
10:55 11:25	Dwell 1	245	NA.	1275-1253	OK	OK
11.26 11:56	Dwell 2	350	NA.	1253	ok	dk
-	Dwell 3	-				
	Dwell 4					
IHR	TOTAL DW	ELL TIM	E			

Z-AXIS CYCLING

(VECNIRE SURCEP AME = 2.44)


		Controller	Ci-ulaten	Simulator Temperature	
Time from Start, Min.	STACT 12:38	Temperature	Simulator Temperature	Over Temp. Activated	Mechan. Reset
+30	12:08	FINNLE MUST 130°E	1274	CKL	UK
+60	13:38	Fix 127 A F	1263	UK	ot
+90	14:08	129.2°F	1253	OK	æ
+120	14:38	124.2°F	1253	OK	a
-+150					
-+180					
2HK	TOTAL CYCLING TIME SIMUMOR "CAN" AT 165.2"F				°F

3 Hours TOTAL Z AXIS TIME

Z-AXIS POSTTEST PERFORMANCE

Ambient Temperature	76	Relative Humidity 66		
Ambient Pressure		Control	ler Supply Voltage 28.49	
Controller Temperature	129.2°F		or Temperature 1270	
Over-Temperature Activa	ted - Simulator Temp	erature	OK	
Mechanical Reset - Simu	lator_Jemperature		OK	
ву Л.Ш.	form	Date	16 Hry 75	

1.5

.

90

	Administr	ative Data
1.0 Purpose of Test;	temperature.	Temperature Controller to /altitude, explosive atmosphere, n, shock and vibration exposures
2.0 Manufacturer:	Arthur D. L	ittle, Inc.
3.0 Manufacturer's Ty	pe or Model No:	Item identified as VM Hot Cylinder Temperature Controller
4_0 Drawing, Specific	ation or Exhibit:	Arthur D. Little, Inc. Test Procedure TP-1: 77576 dated 31 October 1974
5.0 Quantity of Items	Tested:	One (1), S/N 1
6.0 Security Classifica	ution of Items:	Unclassified
Z.0 Date Test Complet	ed:	June 5, 1975
8.0 Test Conducted By	;	R.Labrecque P.Lizotte J.Martens
9.0 Disposition of Space	Retur	rned to Arthur D. Little, Inc. by Ir D. Little representative.
eng	uation of the after testing esentative.	e Temperature Controller during was made by Arthur D. Little
Report No. 11585	-	Page

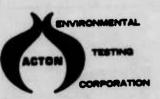
91

ACTON TESTING

ENVIRONMENTAL

1.0 VIBRATION

<u>Requirements</u>. The temperature controller shall be subjected to vibration testing in accordance with para. 14.0 of Arthur D. Little, Inc. Test Procedure TP-1:77576.


<u>Procedures</u>. The temperature controller, mounted by its normal means to a non-resilient test fixture, was secured to the exciter of the vibration system. The temperature controller was then subjected to the required vibration test per requirements which consisted of resonance search, resonance dwell and vibration cycling.

Resonances were detected in the "Z" axis at 270 Hz (switch) and at 350 Hz (circuit board). The temperature controller was vibrated for a 30-minute period at each of the resonances detected and then vibration cycled for a 2-hour period. There were no resonances detected in the "X" and "Y" axes.

The temperature controller was vibration cycled for a 3-hour period in the "X" and "Y" axes per requirements.

<u>Results</u>. There was no visible or apparent evidence of damage or deterioration to the temperature controller. Evaluation of the controller during and after vibration testing was performed by Arthur D. Little, Inc. representative who witnessed testing.

Report No. 11685

92

2.0 SHOCK

<u>Requirements</u>. The temperature controller shall be subjected to shock testing in accordance with para. 13.0 of Arthur D. Little, Inc. Test Procedure TP-1:77576.

<u>Procedures</u>. The temperature controller mounted to the test fixture used for vibration testing was secured to the exciter of the vibration system. The temperature controller was then subjected to one shock in each direction in each of three mutually perpendicular axes. Each shock was of 20g's magnitude, 11 milliseconds duration, sawtooth waveshape. The shock test was performed using a vibration system and utilizing a waveform synthesizer to shape the shock pulse.

<u>Results</u>. Evaluation of the temperature controller during and after shock testing was performed by Arthur D. Little, Inc. representative who witnessed testing.

Report No. _11685

3

Page

3.0 ACCELERATION

<u>Requirements</u>. The temperature controller shall be subjected to acceleration testing in accordance with para. 12.0 of Arthur D. Little, Inc. Test Procedure TP-1:77576.

<u>Procedures</u>. The temperature controller, mounted by its normal means to a non-resilient test fixture, was secured to the platform of the centrifuge. The temperature controller was then subjected to the required operating and non-operating acceleration test per requirements. Operation and monitoring of the temperature controller during the operating acceleration test was performed by Arthur D.Little representative.

<u>Results</u>. There was no visible or apparent evidence of damage or deterioration to the temperature controller as a result of acceleration testing. Evaluation of the temperature controller during and after acceleration testing was made by Arthur D. Little, Inc. representative.

4

11685

Report No. _

94

4.0 EXPLOSIVE ATMOSPHERE

<u>Requirements</u>. The temperature controller shall be subjected to an explosive atmosphere test in accordance with para. 11.0 of Arthur D. Little, Inc. Test Procedure TP-1:77576.

<u>Procedures</u>. The temperature controller was placed within the explosion chamber. Required electrical connections for operating and monitoring the temperature controller during testing were made through the chamber feedthroughs. The temperature controller was then subjected to the explosive atmosphere test per requirements. Operation and monitoring of the temperature controller during the explosive atmosphere test was made by Arthur D. Little, Inc. representative.

<u>Results</u>. Operation of the temperature controller during explosive atmosphere testing did not cause an explosion or burning of the surrounding explosive atmosphere. The temperature controller conformed to requirements.

Report No. 11685

95

Page 5

5.0 TEMPERATURE/ALTITUDE

<u>Requirements</u>. The temperature controller shall be subjected to temperature/altitude testing in accordance with para. 10.0 of Arthur D. Little, Inc. Test Procedure TP-1:77576.

<u>Procedures</u>. The temperature controller was placed within the Temperature/Altitude Chamber. Required electrical connections for operating the temperature controller during testing were made through the chamber access port. The temperature controller was then subjected to the 14-step temperature/altitude test per requirements. Required operation and monitoring of the temperature controller during the 14-step temperature/altitude test was performed by Arthur D. Little, Inc. representative.

<u>Results</u>. There was no visible or apparent evidence of damage or deterioration to the temperature controller as a result of testing. Evaluation of the temperature controller during and after temperature/altitude testing was made by Arthur D. Little, Inc. representative.

Report No. 11685

Page ____

96

ELECTROMAGNETIC INTERFERENCE TEST PROCEDURE

FOR

ARTHUR D. LITTLE, INC.

ON A

TEMPERATURE CONTROLLER SYSTEM

Test Plan 2186

Sanders Associates, Inc. 95 Canal Street Nashua, New Hampshire

1.0 SCOPE

This document specifies the test procedures, instrumentation and methods of measurement to be used during the electromagnetic emission and susceptibility evaluation of Arthur D. Little, Inc., Temperature Controller System.

2.0 PURPOSE

The purpose of the testing described herein is to determine the level of interference emanating from the Temperature Controller System, and to determine its susceptibility to external electromagnetic stimuli. The limits defined in the applicable portions of MIL-STD-461A, Notice 3 for class 1A equipment will be used to determine compliance or noncompliance.

2.1 EMI Test Requirements

The MIL-STD-462 test methods to be used in EMI qualification of the Temperature Controller System is listed bleow.

Test Plan Paragraph	Test <u>Method</u>	Test Title		
7.0	CE03	20 kHz to 50 MHz, Power Leads		
8.0	CS01	30 Hz to 50 kHz, Power Leads		
9.0	CS02	50 kHz to 400 MHz, Power Leads		
10.0	CS06	Spike Susceptibility		
11.0	RE02	14 kHz to 10 GHz, Electric Field		
12.0	RSO2	Magnetic Field Induction		
13.0	RS03	14 kHz to 10 GHz, Electric Field		
2.2 Applicab	le Documents			
MIL-STD-	461A, Notice 3	Electromagnetic Interference Characteristics Requirements for Equipment		
MIL-STD-	462, Notice 2	Electromagnetic Interference		

Characteristics, Measurements of

MIL-STD-463

Definitions and Systems of Unit Electromagnetic Interference Technology

3.0 TEST FACILITY DESCRIPTION

3.1 Shielded Enclosure

The RF shielded enclosure used for EMI testing conforms with the design criteria of MIL-E-8881, Table II, Cell Type, Solid Metal, Class C. The room size is $6.1M \times 3.0M \times 2.4M$. Door size clearance is 2.0M x 1.8M.

3.2 Power Availability

Power available inside the room is 115 VAC, 400 Hz, 3 phase; 115 VAC, 60 Hz, 1 phase; and 28 VDC. Power is routed through RayProof Power Line Filter 1B41-60, 60 ampere, providing 100 dB attenuation from 14 kHz to 10 GHz.

3.3 Enclosure Attenuation Characteristics

The attenuation characteristics of the enclosure when tested in accordance with MIL-STD-285 is 70 dB for magnetic field and 100 dB for electric field and plane wave.

3.4 Ground Plane

The Temperature Controller System equipment will be installed over a copper ground plane (solid plate) measurieg 4.9M x 0.92M. The grounding provisions included in the equipment design will be bonded to the ground plane. The ground plane is bonded to the shielded enclosure wall at intervals of less than 0.90M. The DC bonding resistance of the ground plane to the enclosure wall is 0.2 milliohms.

3.5 Ambient Profile

The shielded enclosure maintains an ambient electromagnetic environment at least 6 dB below the specification limits for radiated and conducted ambients. Ambient profile levels are shown in Figures 1 through 4.

4.0 TEST EQUIPMENT CALIBRATION

4.1 Field Intensity Meters

The principle means of determining frequency and amplitude during the test is one or more of the following field intensity meters:

Model No.	Mfr.	Frequency Range	Frequency Accuracy	Amplitude Accuracy
EMC-10 Calibrated every	Fairchild 6 months	20 Hz - 50 kHz	±(½% + 5 Hz)	±½ dB
EMC-25 Calibrated every	Fairchild 6 months	14 kHz - 1 GHz	±2%	±1.5 dB
EMA-910 Calibrated every	Singer/Empire 6 months	1 GHz - 26.5 GHz	±12%	±2 dB
NF-105 Basic Unit	Singer/Empire	14 kHz - 1 GHz	±2%	±1 dB
Calibrated every	12 months			
TX - 12 Mo	onths TA -	9 Months T	1 - 12	Months
T2 - 9 Mo	onths T3 -	9 Months		

These instruments are calibrated by the Sanders Associates Instrumentation Calibration/Standards Laboratory, which operates a government approved calibration program in accordance with MIL-C-45662A, "Calibration System Requirements". The calibrating equipment accuracy required by MIL-C-45662A is several orders of magnitude greater than that of the EMC instrumentation listed above. This ensures the greatest possible frequency and amplitude data accuracy.

4.2 Transducers

All antennas--(with one exception)--and current probes use the correction factors supplied by their respective manufacturers. The single exception is the Empire VA-105 41-inch vertical rod antenna (150 kHz to 30 MHz) which is calibrated every six months by the Sanders' Calibration Laboratory.

4.3 Signal Sources

A variety of signal sources is used to develop the RF environment for system susceptibility tests. The field intensity is monitored by the field intensity meters described above, and so the signal source was not a primary consideration in determining the accuracy of measurement. The signal sources are calibrated by the S/A Instrument Calibration/Standards Laboratory on a 12 month cycle.

5.0 INTERFERENCE TYPE

Broadband interference is defined as a continuous spectrum of energy covering frequency range wider than the bandwidth of the measuring instrument.

Narrowband interference is energy with a bandwidth less than the bandwidth of the measuring instrument, and is sharply tunable.

Pulsed CW interference is narrowband energy modulated by a pulse train.

5.1 Measurement Techniques

Broadband and narrowband interference will be measured using the PEAK detector function. The aural slideback signal substitution method will be used for impulsive signals. A minimum of three frequencies per octave will not be preselected, but will be chosen to indicate maximum interference levels. A complete frequency scan will be made and broadband and narrowband determination will be made in accordance with Paragraph 4.2.6 of MIL-STD-462, Notice 2.

6.0 DESCRIPTION OF TEST ITEM

The test specimen will be the Arthur D. Little, Inc., Temperature Controller System consisting of the following components and associated equipment.

- (a) Controller Unit
- (b) Load Simulator
- (c) Temperature Recorder

The Temperature Controller components will be installed as follows.

Control Unit - on copper ground plane inside the enclosure. Load Simulator - on copper ground plane along side the control unit. Temperature recorder - outside the enclosure.

6.1 Test Sample Operation

During the EMI testing the Temperature Controller System will be activated to normal operation as follows.

- (a) Energize the Controller Unit with 28 volts DC.
- (b) The Load Simulator shall be held to 1250 degrees fahrenheit.

6.2 Susceptibility Monitoring and Criteria

During susceptibility testing the temperature will be monitored on the temperature strip chart recorder. If the indicated load temperature falls outside the range of $1250^{\circ}F \pm 50^{\circ}F$ a failure is indicated. TEST PARAGRAPH 7.0 TEST METHOD CEO3 CONDUCTED EMISSION POWER LEADS 20 kHz to 50 MHz 7.0 CE03, Conducted Emissions, 20 kHz to 50 MHz, Power Leads

(a) Purpose

Broadband and narrowband conducted emissions on the plus 28 volt DC and return power leads shall not exceed the limits shown in Figure 14 and 15 of MIL-STD-461A, Notice 3.

(b) Test Equipment

Description	Model/Mfg.	Serial No.
EMI Meter	EMC-25 Fairchild	214
Current Probe	91550-1 Stoddart	BF496
Capacitors	10 ufd Feedthrough Sanders Associates	N/A

(c) Test Conditions

(1) Setup the equipment as shown in Figure 5.

(2) Activate the Temperature Controller to normal operation.

(3) Clamp the current probe around the plus 28 volt DC power lead.

(d) Measurements

(1) Measure broadband and narrowband emissions using the EMC-25 EMI meter. (NF-105 EMI meter may be substituted).

(2) Calibrate the EMI meter according to the manufacturers instruction manual.

(3) Slolwy tune through the frequency range of 20 kHz to 50 MHz.

(4) Measure broadband emissions at the frequencies of the three highest peaks per octave. Record level in dBuV/MHz on data sheet shown in Figure 6. Convert to dBuA/MHz using the Stoddart current probe transfer impedance graph shown in Figure 7.

(5) Measure all narrowband signals, record level in dBuV, convert to dBuA using the Stoddart current probe transfer impedance graph.

(6) Move the current probe to the return power leads and repeat measurement steps above.

TEST PARAGRAPH 8.0 TEST METHOD CS01 CONDUCTED SUSCEPTIBILITY POWER LEADS 30 Hz to 50 kHz

8.0 CSO1, Conducted Susceptibility, 30 Hz to 50 kHz, Power Leads

(a) Purpose

The Temperature Controller System shall not malfunction when the electromagnetic energies shown in Figure 17 of MIL-STD-461A, Notice 3 are injected on 28 volt DC positive and return leads.

(b) Test Equipment

Description	Model/Mfg.	Serial No.
Oscillator	HP200S Hewlett Packard	7153
Power Amplifier	M0100 Bogen Presto	J52
Transformer	6220-1 Solar	N/A
Voltmeter	630PC Triplett	3905

(c) Test Conditions

(1) Setup the equipment as shown in Figure 8.

(2) Conducted susceptibility measurements will be performed separately on each power lead.

(3) Install the 6220-1 isolation transformer in series with the positive 28 volt DC power lead.

(4) Activate the Temperature Controller System to normal operation at 1250 degrees fahrenheit.

(d) Measurements

(1) Tune the oscillator slowly through the frequency range 30 Hz to 50 kHz.

(2) Maintain the test signal level shown in Figure 17 of MIL-STD-461A, Notice 3.

(3) Monitor the temperature recorder for change of more than ± 50 degrees.

(4) Should the temperature change by 50 degrees or more, stop at that frequency. Reduce the injected signal level until normal operation is restored.

(5) Record the frequency and threshold level on the data sheet shown in Figure 6.

(6) Move the isolation transformer to the return power lead and repeat measurement steps 1 through 5.

TEST PARAGRAPH 9.0 TEST METHOD CSO2 CONDUCTED SUSCEPTIBILITY POWER LEADS 50 kHz to 400 MHz

and the main and

9.0 CS02, Conducted Susceptibility, 50 kHz to 400 MHz, Power Leads

(a) Purpose

The Temperature Controller System shall not malfunction when 1 volt RMS test signal is injected on the plus 28 volt DC and return power leads. The 1 volt RMS requirement is per paragraph 6.5 of MIL-STD-461A, Notice 3.

(b) Test Equipment

Description	Model/Mfg.	<u>Serial No.</u>
Signal Generator	606A Hewlett Packard	3786
Signal Generator	608 Hewlett Packard	4499
Capacitor	CSO2 Sanders Associates	N/A
RF Voltmeter	94D Boonton	7373

(c) Test Conditions

(1) Tune the signal generator slowly through the frequency range 50 kHz to 400 MHz.

(2) Maintain an input signal level of 1 volt RMS, modulated 50% with 400 Hz.

(3) Connect the line injection capacitor box to the plus28 volt DC power lead.

(4) Activate the Temperature Controller System to normal operation.

(d) Measurements

(1) Tune the signal generator slowly through the frequency range 50 kHz to 400 MHz.

(2) Maintain an input signal level of 1 volt RMS modulated 50% with 400 Hz.

(3) Monitor the temperature recorder for changes of ± 50 degrees or more.

(4) Should a temperature change of more than ±50 degrees occur, reduce the injected signal level until required temperature is obtained.

(5) Record the frequency and threshold level on data sheet shown in Figure 6.

(6) Move the injection capacitor box to the return power lead and repeat measurement steps 1 through 5.

TEST PARAGRAPH 10.0 TEST METHOD CSO6 SPIKE POWER LEADS

10. CS06, Spike Susceptibility, Power Leads

(a) Purpose

The Temperature Controller System shall not malfunction when 56 volt 10 microsecond spike interference of the waveshape shown in Figure 19 of MIL-STD-461A, Notice 3 is injected on the positive 28 volt DC power lead.

(b) Test Equipment

Description	Model/Mfg.	Serial No.
Spike Generator	6471-5 Solar	17536
Oscilloscope	565 Tektronix	1086
Capacitor	10 ufd Feedthrough Sanders Associates	N/A

(c) Test Conditions

(1) Setup the equipment as shown in Figure 10.

(2) Spike susceptibility testing will be performed on the positive power lead only.

(3) Connect the spike generator in series with the positive28 volt DC power lead.

(4) Activate the Temperature Controller System to normal operation.

(d) <u>Measurements</u>

(1) Adjust the spike generator output control for a 56 volt waveform on the oscilloscope.

(2) Apply positive spikes, single and repetitive (6 to 10 PPS) for 5 minutes.

(3) Apply negative spikes, single and repetitive (6 to 10 PPS) for 5 minutes.

(4) Should temperature changes exceeding ± 50 degrees occur, reduce the spike amplitude until normal operation is restored.

(5) Record the threshold level on the data sheet. (Figure 6).

TEST PARAGRAPH 11.0 TEST METHOD REO2 RADIATED EMISSIONS 14 kHz to 10 GHz ELECTRIC FIELD

11. REO2, Radiated Emission, Electric Field, 14 kHz to 10 GHz

(a) Purpose

Radiated electric field emissions from the case, power leads, and interconnecting wiring of the Temperature Controller System shall not exceed the limits of Figures 21 and 22 of MIL-STD-461A, Notice 3.

(b) Test Equipment

Description	Model/Mfg.	<u>Serial No.</u>
EMI Meter	EMA-910 Singer	121
EMI Meter	EMC-25 Fairchild	217
Vertical Antenaa	RVR-25 Fairchild	217
Biconcial Antenna	7825 Honeywell	N/A
Cone Antenna	93490-1 Stoddart	N/A
Cone Antenna	93491-1 Stoddart	N/A
MP-105	Hand Probe	N/A
ALTERNATE EQUIPMENT		
EMI Meter	NF-105	2160
Vertical Antenna	VR-1-105	181
Vertical Antenna	VA-105	796

(c) <u>Test Conditions</u>

(1) Setup the equipment as shown in Figure 11.

(2) Activate the Temperature Controller System to normal operation.

(3) Determine placement of measurement antenna by probing the test sample for points of maximum emission using hand probe MP-105.

(4) Position the measurement antenna 1 meter from the test sample at point of maximum emission.

(5) Replace measurement antenna according to the following frequency schedule.

14 kHz to 25 MHz	41 Rod/Counterpoise
25 MHz to 200 MHz	Horizontal Biconical
25 MHz to 200 MHz	Vertical Bicon-cal
200 MHz to 1000 MHz	Conical Log Spiral
1 GHz to 10 GHz	Conical Log Spiral

(d) Measurements

(1) Calibrate the EMI meter according to the manufacturers instruction manual.

(2) Measure broadband emissions from 14 kHz to 1000 MHz at three frequencies of maximum radiation per octave.

(3) Measure narrowband emissions from 14 kHz to 10 GHz.

(4) Slowly scan the test frequency range changing antennas as required.

(5) Record the frequency and level of detected signals on data sheet. (Figure 6).

(6) Add antenna factors shown in Figures 12 through 16.

(7) Final results will be recorded in terms of dBuV/M for narrowband emissions and dBuV/m/MHz for broadband emissions.

ge o impart o a bia selection & accord all'

TEST PARAGRAPH 12.0 TEST METHOD RSO2 RADIATED SUSCEPTIBILITY MAGNETIC INDUCTION FIELD

.

in the second

12. RSO2, Radiated Susceptibility, Magnetic Induction Field

(a) Purpose

The Temperature Controller System shall not malfunction when the equipment case, calbes and DC power leads are exposed to a power frequency test and spike test using the limits given in paragraph 6.18 of MIL-STD-461A, Notice 3.

(b) <u>Test Equipment</u>

Description	Model/Mfg.	Serial No.
Spike Generator	6471-5 Solar	17536
Variac	116 Superior	N/A
Transformer	N/A	N/A
Meter	25A Weston	CC673

(c) <u>Test Conditions</u>

(1) Setup the equipment as shown in Figure 17.

(2) Wrap the test wire around the control units equipment case.

(d) <u>Measurements</u>

(1) Connect the test wire to the power frequency test equipment.

(2) Apply 20 ampere of 400 Hz current to the test wire for one minute.

(3) Monitor the temperature recorder for a change ± 50 degrees fahrenheit or more.

(4) Should performance degradation occur, reduce the current level until normal operation is restored.

(5) Record the threshold level on data sheets shown in Figure 6.

(6) Connect the test wires to the spike generator. Apply 100 volt spikes to the test wire at 6 to 10 PRR for one minute while monitoring the temperature recorder.

(7) If performance degradation occurs, reduce the spike voltage level until normal operation is resotred. Record spike voltage threshold level on data sheet (Figure 6).

(8) Wrap the test wire around the DC power leads and interconnecting cable at the spiral rate of two turns per meter for
1.5 meters, or less if the cable lenght is shorter. Maintain
15 cm separation from cable connectors.

(9) Repeat measurement steps 1 through 7.

TEST PARAGRAPH 13.0 TEST METHOD RSO3 RADIATED SUSCEPTIBILITY ELECTRIC FIELD 14 kHz to 10 GHz

13. RSO3, Radiated Susceptibility, Electric Field, 14 kHz to 10 GHz

(a) Purpose

The Temperature Controller System shall not malfunction when immersed in an electric field intensity as follows:

14 kHz to 35 MHz - 10 V/m 35 MHz to 10 GHz - 5 V/m

(b) Test Equipment

Description	Model/Mfg.	Serial No.
EMI Meter	EMA-910 Singer	121
EMI Meter	NF-105 Empire	2160
Oscillator	HP200S Hewlett Packard	212-00620
Signal Generator	HP606 Hewlett Packard	038-03786
Power Amplifier	M0100 Bogen	J52
Power Oscillator	404A Microdot	32
Power Oscillator	406A Microdot	87
Power Oscillator	125 Airborne Instrü. Lab	12510
Signal Generator	616B Hewlett Packard	259-00099
Signal Generator	C772A Microlab	519
Signal Generator	X772A Microlab	324
Vertical Antenna	VR1-105 Empire	181
Vertical Antenna	VA-105	372
Biconical Antenna	7825 Honeywell	N/A
Cone Antenna	93490-1 Stoddart	N/A
Horn Antenna	CA-L, S, M, X Polarad	N/A

(c) Test Conditions

(1) Setup the equipment as shown in Figure 18.

(2) The radiating antenna shall be placed in front of the test sample at a distance of 1 meter.

(3) From .014 to 25 MHz the vertical rod antenna will be used. The counterpoise shall be at the same height as the ground plane.

(4) From 25 MHz to 200 MHz the biconical antenna shall be centered on the test sample. Position the antenna alternately to generate vertical and horizontal fields.

(5) From 200 to 1000 MHz the conical log spiral antenna shall be centered on the test sample, from 1 GHz to 10 GHz horn antenna shall be used.

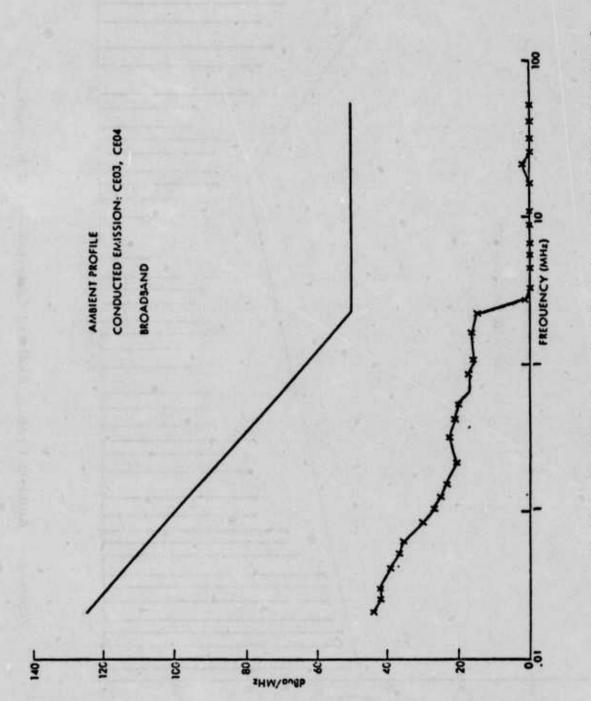
(6) The field calibrating antenna shall be one meter to the side of the radiating antenna. The radiating antenna shall be rotated to face the calibrating antenna during measurements.

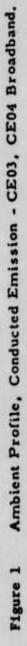
(7) The field intensity level of 1 volt per meter shall be verified at:

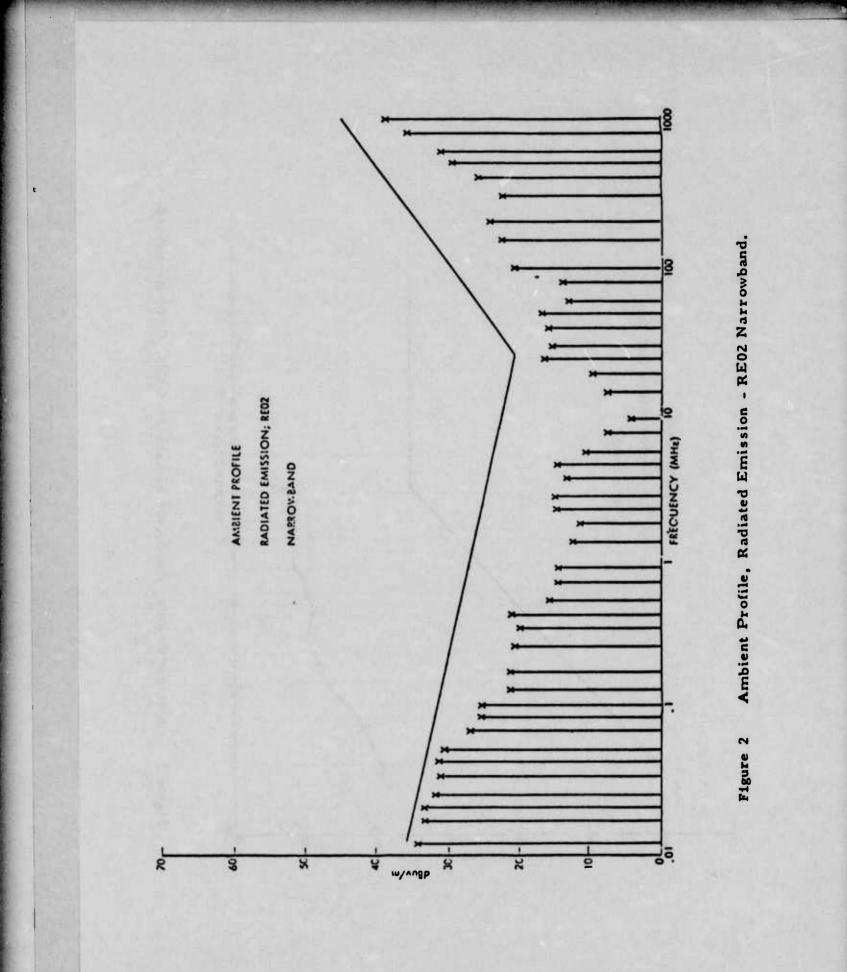
(8) Activate the Temperature Controller System to normal operation.

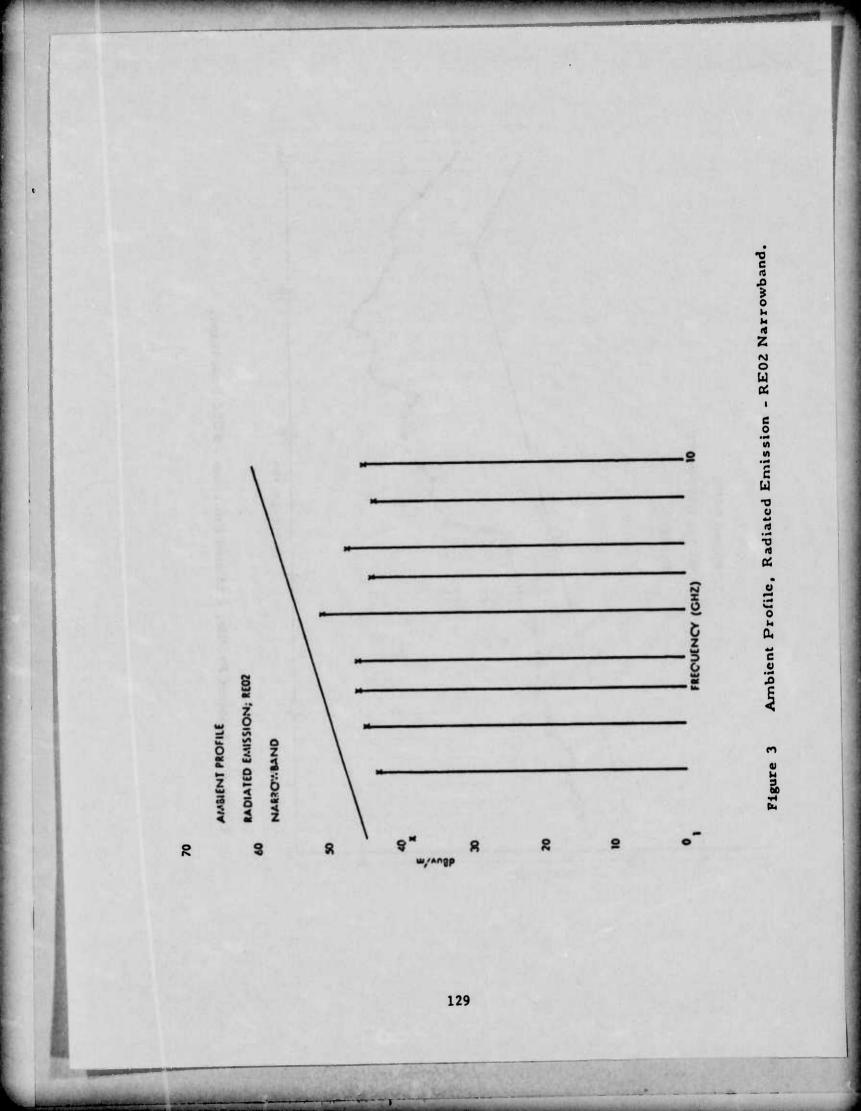
(d) Measurements

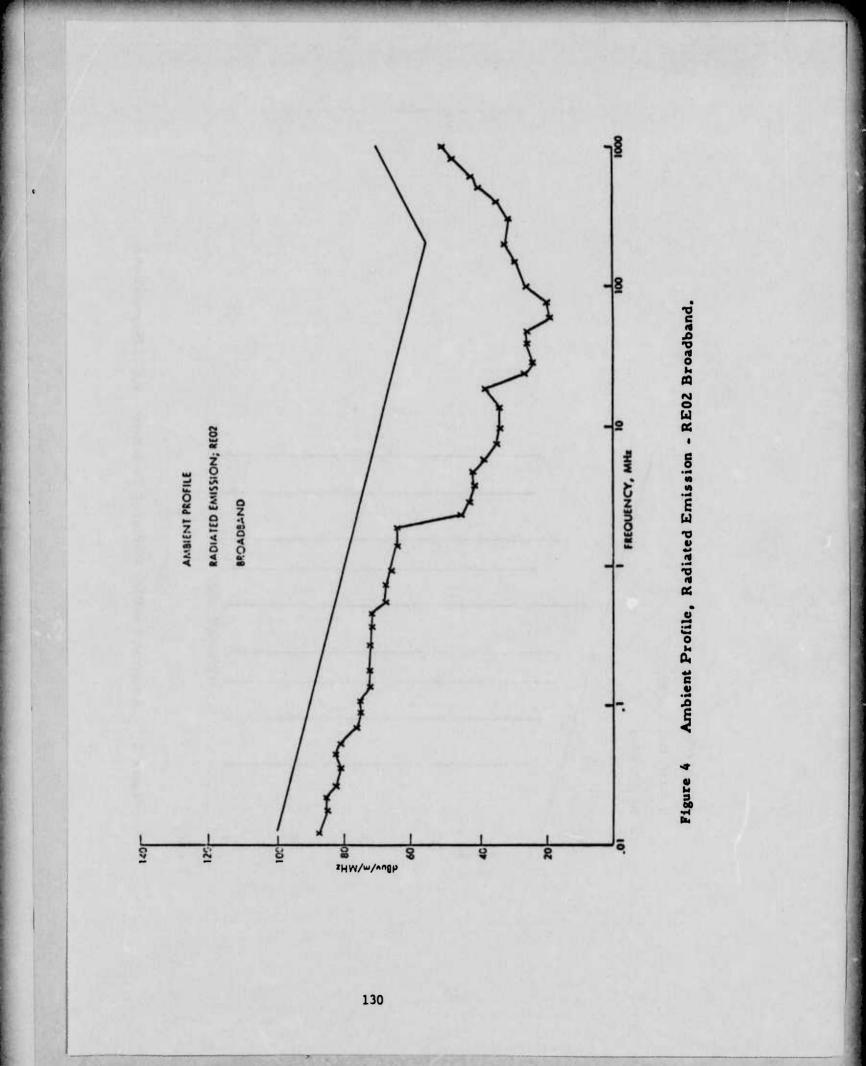
(1) Starting at 14 kHz, scan through the frequency range with the power oscillator adjusted to produce 10 volts per meter radiated field intensity.

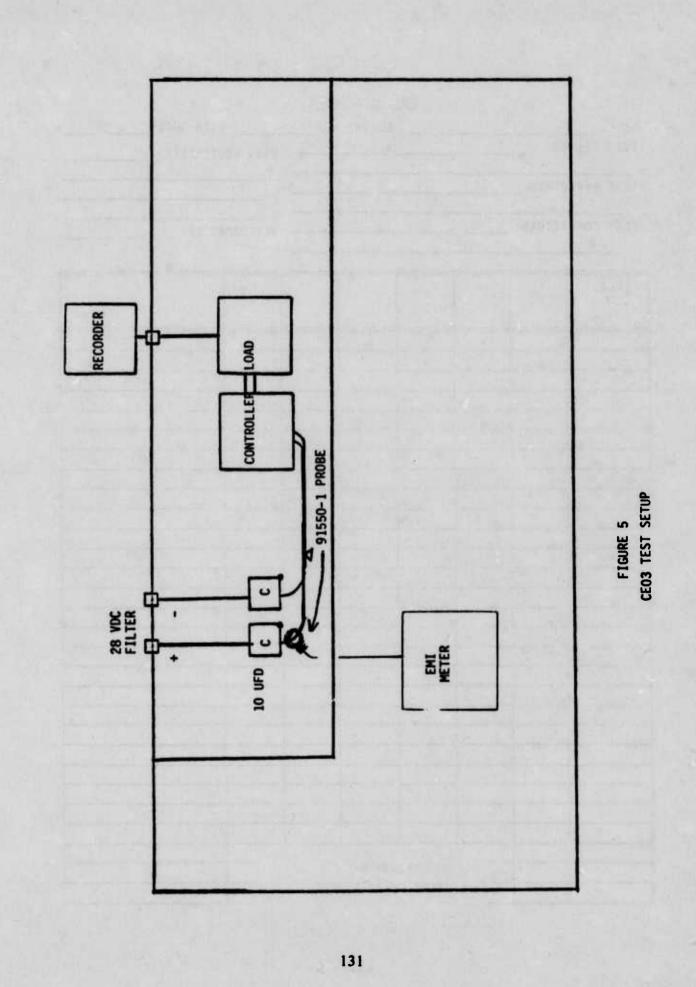

(2) Change antennas and signal sources as required.

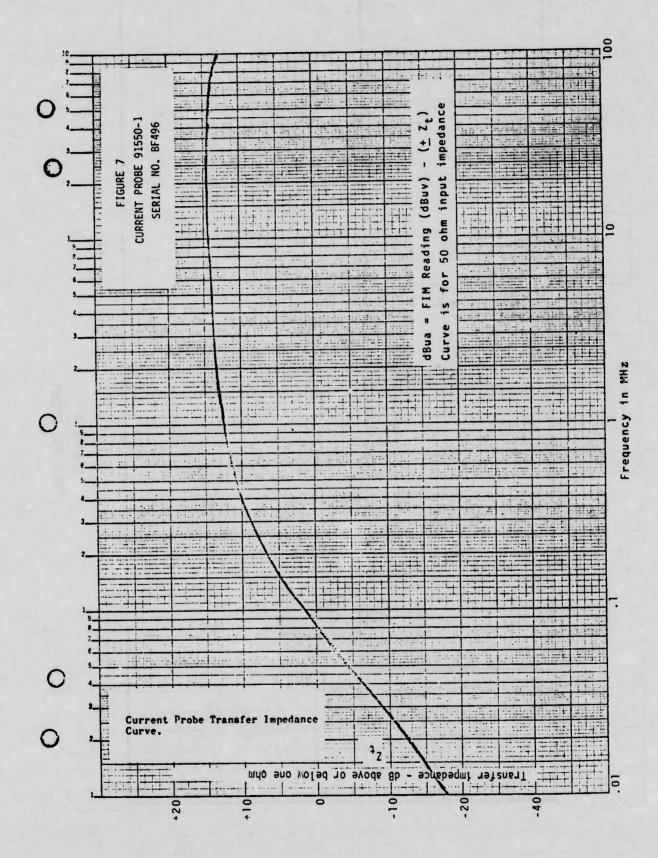

(3) Monitor the temperature recorder for changes of ± 50 degrees fahrenheit.


(4) Should performance degradation occur, reduce the power oscillator output until normal operation is restored.


(5) Rotate the transmit antenna to face the receive antenna and measure the threshold field intensity level.


(6) Record the frequency, field intensity level, and nature of malfunction on data sheet Figure 6.





•

EMC DATA SHEET	DATA SHEETOF
	- TEST EQUIPMENT:
TEST PERFORMED:	
	- PERFORMED BY:
FIGURE 6 SAMPLE EMC DATA SHEET	
	REPORT NO:

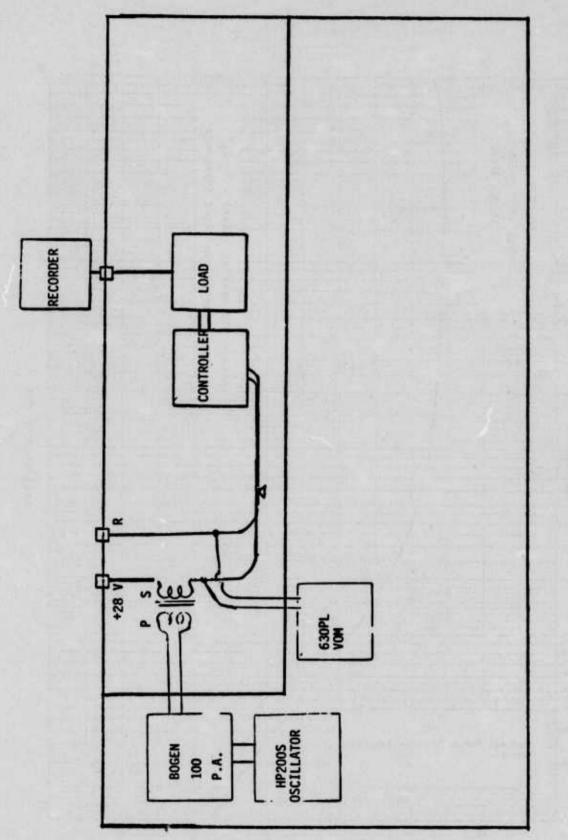
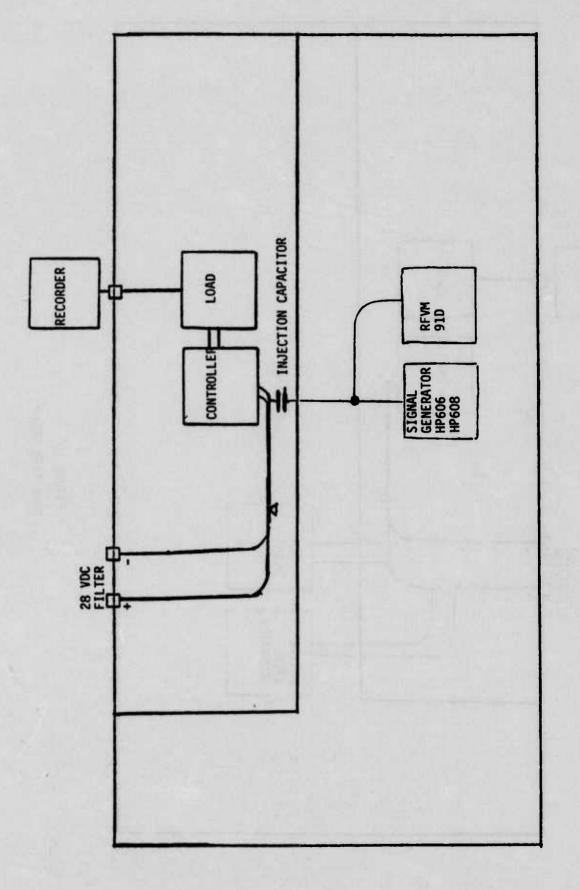
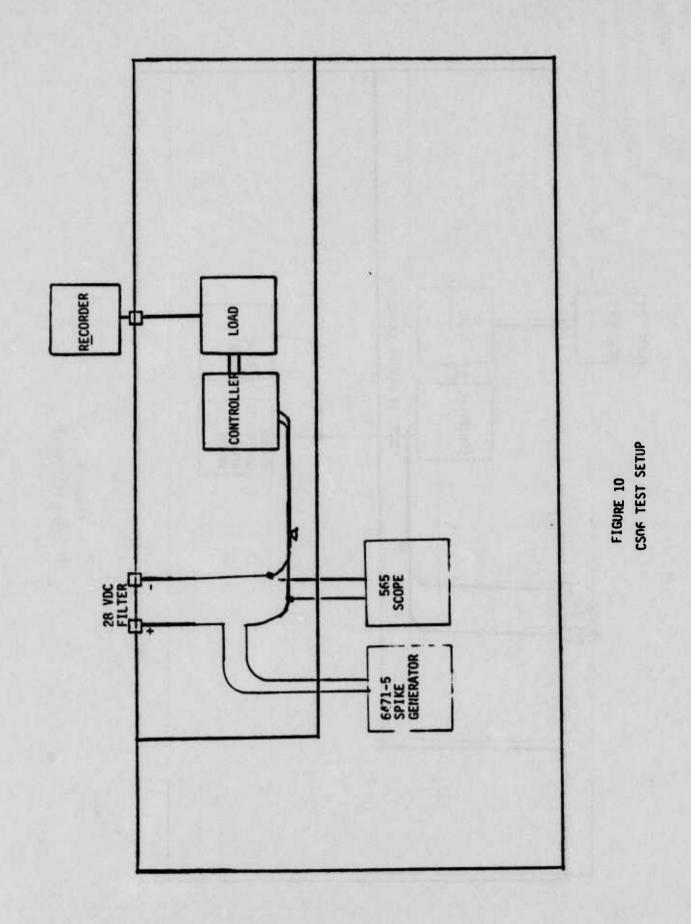
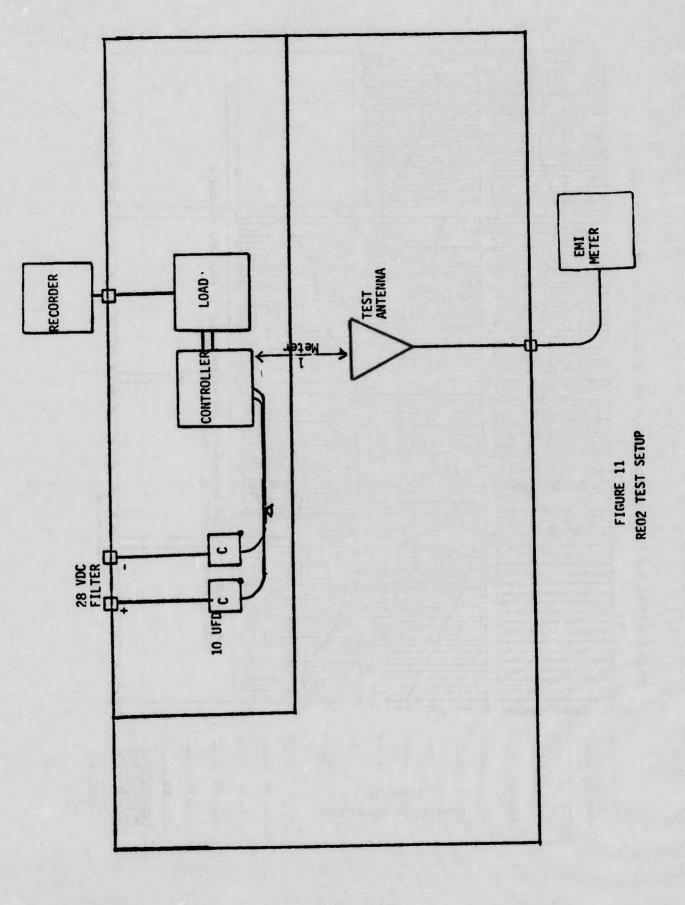


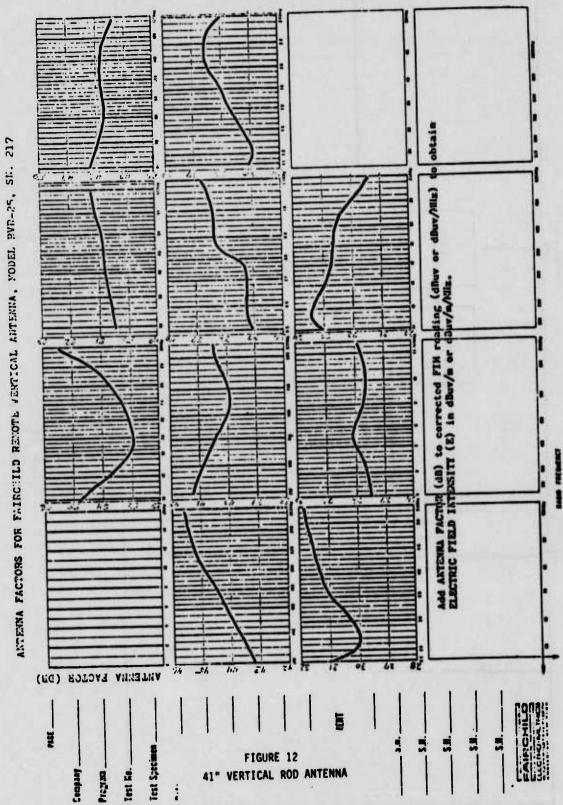
FIGURE 8 CSO1 TEST SETUP

134

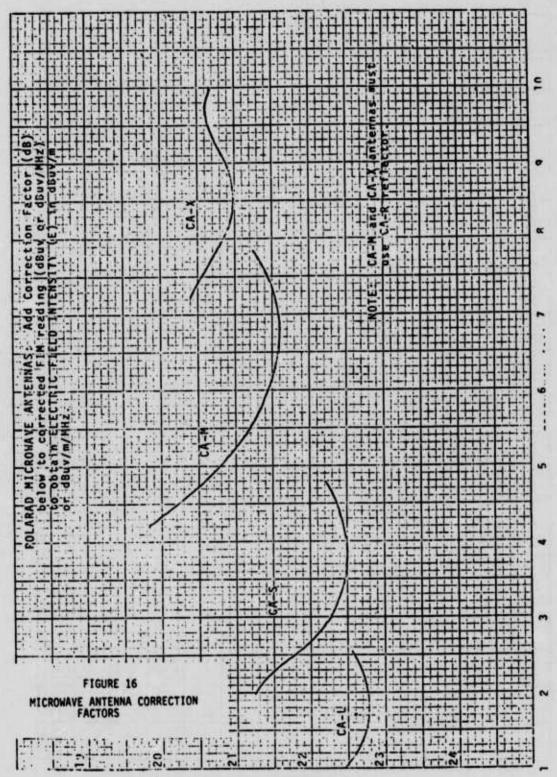




FIGURE 9 CSO1 TEST SETUP

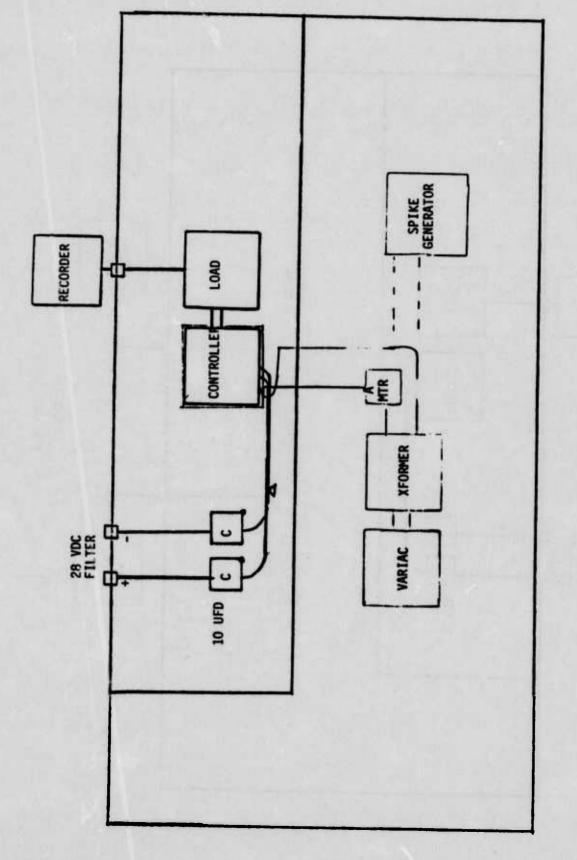
T ----



T ----

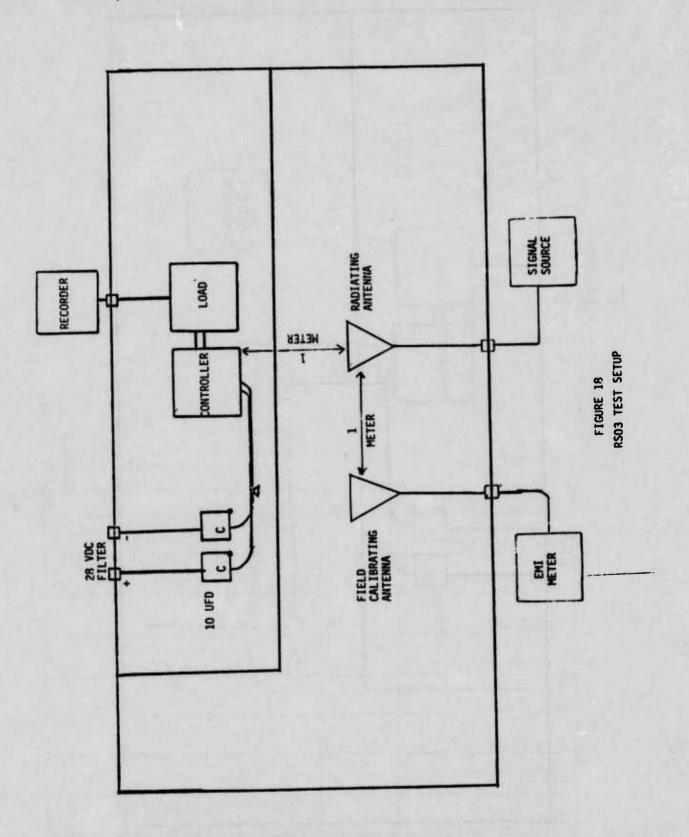

	·												
(IIZ)													400
Buv/			<u> </u>		12	· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	÷÷;			
N 05													110
				······································				• • • • • •			1		15
cadir.									· · · · · · · · · · · · · · · · · · ·				2
ALL UT	· · · · · · · ·	· · · · · · ·											3
1.00				(4		· · · · · ·					3
11.								<u>.</u>				┝╌┍╌┝┿ ┝╶┍╼┲╼	9 ¹ /
(4P)													S.
IC FI	 								· · · · · · · · · · · · · · · · · · ·				MH =
TION F													FREGUENCY, MH
OchEC.			· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		······				<u> </u>	· · · · · · ·		NEN.
Add of								· · · · · · · · · · · · · · · · · · ·					FREG
	· · · · · · · · · · · · · · · · · · ·	+									<u> </u>		3
											\- 		R
		· · · · · · ·		<u> </u>			1	-					
										-/			9
									· · · · · · · · · · · · · · · · · · ·				2
	-						-1-1-1		·····				
			FACTO	RS, 20	MHZ to	CORRE	CTION MHz				-		
	CONNECTIÓN FACTOR (ah) to portected	Add ComfCTON FACTOR (afb) to corrected TIN reading (Jaw of Gbuv/SI to obthin FL:CTUIC FIELD INTEXETTY (2) in abuv/s or dBuv/s/ or dBuv/s/	Add Connections First (alb) Lo corrected FIN reading (daw or dbuy/allow of	BICON	FIGURI FIGURI	FIGURE 13 BICONICAL ANTENNA FACTORS, 20 MHz to	So Ango So Ang	Ango Kindel Ango K	Angels Signal Line Line Line Line Line Line Line Line	FIGURE 13 BICONICAL ANTENNA CORRECTION FACTORS, 20 MHz to 200 MHz	Ango So Ango S		

CORRECTION FACTER, dB


FIGURE 14				LOG SI FACTO	PIRAL AN RS, 200		RRECTION GHz			1		
And Constrained with control 1 Control				1:		1-1-1-1-1 RF 14	****				#	
Standare Modal Ostod-1 Cool (a toop xii:) Cool (a toop xii:) (a) (a toop xi:) Cool (a toop xi:) (a) (a) (a toop xi:) Cool (a toop xi:) (a) (a) (a toop xi:) Cool (a toop xi:) (a) (a) (a) (a) (a) (a) Cool (a toop xi:) (a) (a) (a) (a) (a) (a) Cool (a toop xi:) (a) (a) (a) (a) (a) (a) (a) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td></t<>								11				
Secondare Model 0.04104-1 CONTCAL Uncurrund CC Secondare Model CFUEND NETEXSITY (EX) In Carry/s or Alla/ACTACH CFUEND NETEXSITY (EX) IN CARCH CFUEND NETEX CFUEND NETEX <		ANA C ELECT										
to be accorded by the feature (coord as a local data) in		1 44 67 1	H Log							1		111
to be a contracted by a canary a caraover (s) with ANTEXNA (contract (contract)) (contract) (contra		DX PACK							4			
ari 00450-1 (200 to toop NE3) (11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ţ	the second second second second										1111
1 Observed with the second statistic second		0 E										111
Obstructul, Linerautining (Gabury of Editory/Eas) to alterain recalinate (Gabury of Editory/Eas) to alterain w/m/mis. In Polarity and State (Structured by Wile-Structured account of the constructured by Wile-Structured by Wile-Structured account of the constructured by Wile-Structured	1-0212	rected					+++++					
1) Dischartmustrate (sy train) 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	8		i zed wa				1	++++ +++++				
In the construction of the	1.0		wes all				11			ij		111
	CANTTING	o Angp				甲						
	IC-IK	5	A Company of Company									
	M. MT		CONTRACT		118			- 			H	
		ohtain										
						井市						
								++++	+++			

		-	14 La	諱	44	##	井	##		#	#			
-1	HE.	曲	112.1	1.1.1.			++++	-l-1-+	1.1.1					
				+			封守	西		H	2742	<u>ш</u>		2
		FACTOR		曲	H	2471	HI.			27		H		
	-5-			+	201			1-1-1			Tit			0
	o obt	CTYON		H					- UTi			#		-
		CONGR		44-	1		111							
1	(a)												111	
E.	dfuv.											1-1-		
CIP.).		1-12		122		-		1		臣	1-H			
	į	1 4 -	Contraction of the						-					-
TIPITC to 10	- Here	lariz		++++	and the second second second	11				-				-
1)		ILLY ID	1	H.					NH					
	Z	E		-			+	_	-				tit	
CLAICAL	Ftert F	chrout	114						-	*****		-		L
-3-	carres	for	1		1.1.4			304 1022-0.084	-1	1		1		ŧ
7				2 1.1.	-									
61-51		ar s.r			-		1.2.7		T III	444 igns -		. 111		- 6
Vale											and second		17	Ŧ
-		1						1 1 1			· · ···			Ē
-line	8-1	9 5.	1		1	COLD DOM: NO. 1		- i-].	1					
v.	the SC T	CONC				+++	Ť	Tir					1 F	Ŧ
		10				+ +				_			nd stad	Ŧ
		NOT		1	TI							:===	± ±±	ŧ,
			:	101			1.4	1			1-			Ŧ
		-				· · · ·		+] =}			= 1-		-	1
	1	TT		THE			日日	111		-	1=1	111	===	H,
•			FIGURE					1				1=		F
	- 1	to 10 0	GHZ LOG	S SPIR	AL ANTI	ENNA							17. 77	11
	•										12 11	-i `	- 11	1

אתראקורריורי י ירירירי יזי


CORRECTION FACTOR (4B)

e

FIGURE 17 RSO2 TEST SETUP

any any age and a second se

e

14

144

Series and y

Report No. 2268

Revision____

REPORT OF

ELECTROMAGNETIC INTERFERENCE

TEST ON

ARTHUR D. LITTLE, INC. TEMPERATURE CONTROLLER SYSTEM

TEST PERFORMED BY

SANDERS ASSOCIATES, INC. 95 CANAL STREET NASHUA, NEW HAMPSHIRE

CONTRACT NO.

	DATE	SIGNATURE
TEST INITIATED	3/28/75	
TEST COMPLETED	3/31/75	
REPORT WRITTEN BY		R. Lamer
TEST TECHNICIAN		R. lomeon
TEST ENGINEER		
SUPERVISOR		5
GOVERNMENT REP. (If Applicable)		
FINAL RELEASE		

	SUMM/	NRY OF TEST	RESULTS			
TEST	TITLE		SPEC. PARA.	REMARKS	PASS	FAIL
CE03 CS01	20 kHz to 50 MHz, Po 30 Hz to 50 kHz, Pow		6.2 6.4	Broadband Narrowband Transient	X X X	x
CS02	50 kHz to 400 MHz, F		6.5		x	
CS02	Spike, Power Leads	CHEI LEQUJ	6.9		x	
REO2	14 kHz to 10 GHz. E	lectric Field	6.12		x	
RSO2	Magnetic Field Indu		6.18		X	
RSO3	14 kHz to 10 GHz, E	lectric Field	6.19		x	
SUMMARY	OF REPORT: CEO3:	Turn on tran	sient exc	ceeds limits by a	4 dB at 80)0 kHz.

ELECTROMAGNETIC INTERFERENCE REPORT TEST SUMMARY SHEET

1.0 ADMINISTRATIVE DATA

1.1 Purpose/Reason for Test

To determine if Arthur D. Little, Inc., Temperature Controller System, SN 1 complies with the applicable limits of MIL-STD-461A, Notice 3 for Class 1A equipment..

1.2 Description of Test Sample

The Temperature Controller System powered with 28 volts DC consisted of the following components and associated equipment.

- a) Controller Unit
- b) Load Simulator
- c) Temperature recording equipment. (Strip chart recorder and digital voltmeter)

1.3 Disposition of Test Sample

Returned to Arthur D. Little, Inc. by their personnel.

1.4 References

Test Plan 2186

MIL-STD-461A, Notice 3

MIL-STD-462, Notice 2

MIL-STD-463

Electromagnetic Interference Test Procedure for Temperature Controller System

Electromagnetic Interference Characteristics Requirements for Equipment

Electromagnetic Rnterference Characteristics, Measurements of

Definitions and Systems of Unit Electromagnetic Interference Technology

2.0 GENERAL

2.1 Accuracy of Measurements

2.1.1 Field Intensity Meters

The principle means of determining frequency and amplitude during the test was one or more of the following field intensity meters:

Model No. Mfr.	Frequency Range	Frequency <u>Accuracy</u>	Amplitude <u>Accurac</u> y
EMC-10 Fairchild Calibrated every 12 months	20 Hz - 50 kHz	±(½% + 5 Hz)	±¹₂ dB
EMC-25 Fairchild Calibrated every 12 months	14 kHz - 1 GHz	±2%	±1.5 dB
EMA-910 Singer/Empire Calibrated every 12 months	1 GHz - 26.5 GHz	±½%	±2 dB
NF-105 Singer/Empire Calibrated every 12 months Basic Unit	14 kHz – 1 GHz	±2%	±1 dB
TX - 12 Months	TA - 9 Mor	nths T1	- 12 Months
T2 - 9 Months	T3 - 9 Mor	ths	

These instruments were calibrated by the Sanders Associates Instrumentation Calibration/Standards Laboratory, which operates a governmen approved calibration program in accordance with MIL-C-45662A, "Calibration System Requirements". The calibrating equipment accuracy required by MIL-C-45662A is several orders of magnitude greater than that of the EMC instrumentation listed above. This ensures the greatest possible frequency and amplitude data accuracy.

2.2 Transducers

All antennas--(with one exception)--and current probes use the correction factors supplied by their respective manufacturers. The single exception is the Empire VA-105 41-inch vertical rod antenna (150 kHz to 30 MHz) which is calibrated every six months by the Sanders' Calibration Laboratory.

2.3 Signal Sources

A variety of signal sources were used to develop the r.f. environment for system susceptibility tests. The field intensity was monitored by the field intensity meters described above, and so the signal source was not a primary consideration in determining the accuracy of measurement.

The signal sources are calibrated by the S/A Instrument Calibration/Standards Laboratory on a 12 month cycle.

2.4 Description of Shielded Enclosure

- a) Type Construction:
- b) Manufacturer:
- c) Model No:
- d) Size:
- e) Door Clearance:
- f) Filters, Current & Voltage Rating:
- g) Ground Plane Size and Material:
- h) DC Bonding Resistance of Ground Plane:

Per MIL-E-8881, Type IB per Table I, Single Shield, Solid Metal, Class C per Table II

Ace Shielded Enclosure

MR10H20-G-2

6M x 3M x 2.4M

Double Door 2.3M x 1.7M

Filtron - FSR - 1202 50 amp, 250 VAC 600 VDC, 400 Hz Copper .92M x 4.9M x .79MM thick

.2 milliohms

2.5 Test Sample Operation

During EMI testing the Temperature Controller System was placed into normal operation as follows:

a) The Controller Unit was energized with 28 volts DC.

b) The Load Simulator was held to 1250 degrees fahrenheit

2.6 Susceptibility Monitoring and Criteria

During susceptibility testing the Temperature Controller System was monitored with a Temperature Strip Chart Recorder and Digital Voltmeter. The indicated load temperature of $1250^{\circ}F$ shall not change by $\pm 50^{\circ}F$.

2.7 Test Procedures

The test procedures used are those outlined in EMI Test Plan 2186, included as a separate appendix in this report.

APPENDIX A TEST METHOD CEO3 CONDUCTED EMISSION POWER LEADS 20 kHz to 50 MHz

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	Cal Date
EMI Meter	EMC-25 Fairchild	214	12/74
Current Probe	91550-1 Stoddart	BF496	N/A
Capacitor	10 ufd Feedthrough Sanders Associates		N/A

TEST PROCEDURES

Broadband and narrowband conducted measurements were performed from 20 kHz to 50 MHz on the +28 volt DC and return power leads. Conducted transient measurements were made when going from "no current" to a 7 ampere current conditions at 0.020, 0.800, 8.0 and 25.0 MHz as specified in Paragraph 4.2.7 of MIL-STD-462, Notice 2. Conducted measurements were made using a current probe clamped around the lead under test and slowly tuning the EMI meter through the test frequency range. The test was performed as described in Paragraph 7 of EMI Test Plan 2186. The test setup was as shown in Figure 5 of the plan.

TEST RESULTS

Broadband conducted emissions comply with MIL-STD-461A, Notice 3, CEO3 limits. No narrowband conducted emissions were detected. Conducted transients at 800 kHz on the +28 volt DC and return lead exceed CEO3 limits by 4 dB and 2 dB respectively. Detailed test data is shown on data sheets 1 through 3. APPENDIX B TEST METHOD CSO1 CONDUCTED SUSCEPTIBILITY POWER LEADS 30 Hz to 50 kHz

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	<u>Cal Date</u>
Oscillator	HP200 Hewlett Packard	7152	N/A
Power Amplifier	M0100 Bogen Presto	J52	5/74
Transformer	6220-1 Solar	N/A	N/A
Voltmeter	630PL Triplett	3905	1/75

TEST PROCEDURES

The required CSO1 test voltage of 2.8 volts RMS declining to 1 volt RMS was injected on the +28 volt DC and return power leads from 30 Hz to 50 kHz. While testing the temperature recorder was nonitored for changes not to exceed $\pm 50^{\circ}$ F. The test was performed as detailed in Paragraph 8.0 of EMI Test Plan 2186. The test setup was as shown in Figure 8 of the plan.

TEST RESULTS

No observable temperature changes occurred during the test. The Temperature Controller System complies with MIL-STD-461A, Notice 3, CSO1 requirements. See data sheet 4.

APPENDIX C TEST METHOD CSO2 CONDUCTED SUSCEPTIBILITY POWER LEADS 50 kHz to 400 MHz

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	<u>Cal Date</u>
Signal Generator	606A Hewlett Packar	3786 rd	2/75
Signal Generator	608 Hewlett Packar	4499 rd	1/75
Capacitor	CSO2 Sanders Assoc	N/A iates	N/A
RF Voltmeter	94D Boonton	7373	2/75

TEST PROCEDURES

A 1 volt RMS signal was injected on the +28 VDC and return power leads from 50 kHz to 400 MHz. During testing the temperature recorder was visually monitored for changes of $\pm 50^{\circ}$ F. The test was performed as detailed in Paragraph 9.0 of EMI Test Plan 2186. The test setup was as shown in Figure 9 of the plan.

TEST RESULTS

No observable temperature changes occurred during the test. The Temperature Controller System complies with MIL-STD-461A, Notice 3, CSO2 requirements. See data sheet 5.

APPENDIX D TEST METHOD CSO6 SPIKE POWER LEADS

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	Cal Date
Spike Generator	6471-5 Solar	17536	7/74
Oscilloscope	565 Tektronix	1086	9/74
Capacitor	10 ufd Feedthrough Sanders Associates	N/A	N/A

TEST PROCEDURE

A 6471-5 transient generator was used to inject positive and negative 56 Volt 10 usec spikes on the +28 volt DC power lead. During testing the strip chart recorder was visually monitored for temperature changes of $\pm 50^{\circ}$ F. The test was performed as detailed in Paragraph 10.0 of EMI Test Plan 2186. The test setup was as shown in Figure 10 of the plan.

TEST RESULTS

No observable change in temperature occured during the test. See data sheet 6.

APPENDIX E TEST METHOD REO2 RADIATED EMISSION 14 kHz to 10 GHz ELECTRIC FIELD

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	<u>Cal Date</u>
EMI Meter	EMA-910 Singer	121	3/75
EMI Meter	EMC-25 Fairchild	217	12/74
Vertical Antenna	VR-1-105 Empire	181	8/74
Biconical Antenna	7825 Honeywell	N/A	N/A
Cone Antenna	93490-1 Stoddart	N/A	N/A
Cone Antenna	93491-1 Stoddart	N/A	N/A
MP-105	Hand Probe	N/A	N/A
Vertical Antenna	VA-105 Empire	10853	2/75

TEST PROCEDURES

Broadband and narrowband radiated emission measurements were performed from 14 kHz to 10 GHz. Radiated transients were measured during cycling from the no current to a 7 ampere current condition at 0.014, 0.200, 1.2, 14.8 and 400 MHz as specified in Paragraph 4.2.7 of MIL-STD-462, Notice 2. All measurements were made with the test antenna positioned 1 meter from the test sample at the point of maximum emission. The test was performed as described in Paragraph 11 of EMI Test Plan 2186. The test setup was as shown in Figure 11 of the plan.

TEST RESULTS

Broadband and transient radiated emissions comply with MIL-STD-461A, Notice 3, REO2 limits. No narrowband signals were detected. Detailed test data is shown on data sheets 7, 8 and 9.

APPENDIX G TEST METHOD RSO2 RADIATED SUSCEPTIBILITY MAGNETIC INDUCTION FIELD

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	<u>Cal Date</u>
Spike Generator	6471-5 Solar	17536	7/74
Variac	116 Superior	N/A	N/A
Transformer	N/A	N/A	N/A
Meter	25A Weston	CC673	10/74

TEST PROCEDURES

A test wire carrying 20 amperes of 400 Hz current was wrapped around the cases of the controller unit and load unit for 5 minutes. A transient generator was then connected to the test wires and 100 volt 10 usec spikes at 6 to 10 pulses per second were applied for 5 minutes. The test wire was then wrapped around the DC power leads and interconnecting cable between the controller unit and load unit. The 20 ampere 400 Hz test and 100 volt 10 usec spike test was repeated. During the test the strip chart recorder was monitored for changes of $\pm 50^{\circ}$ F. The test was performed as detailed in Paragraph 12.0 of EMI Test Plan 2186. The test setup was as shown in Figure 17 of the plan.

TEST RESULTS

No observable change in temperature occurred during the test. See data sheet 10.

APPENDIX H TEST METHOD RSO3 RADIATED SUSCEPTIBILITY ELECTRIC FIELD 14 kHz to 10 GHz

TEST EQUIPMENT

Description	Model/Mfg.	Serial No.	Cal Date
EMI Meter	EMA-910 Singer	121	2/75
EMI Meter	NF-105 Empire	2160	12/74
Oscillator	HP200S Hewlett Packard	3786	N/A
Signal Generator	HP606 Hewlett Packard	4499	1/75
Power Amplifier	M0100 Bogen	J52	5/74
Power Oscillator	404A Microdot	32	N/A
Power Oscillator	406A Microdot	87	N/A
Power Oscillator	125 Airborne Instru. Lab	12510	N/A
Signal Generator	616B Hewlett Packard	259-00099	2/75
Signal Generator	C772A Microlab	319	1/75
Signal Generator	X772A Microlab	324	2/75
Vertical Antenna	VR1-105 Empire	181	4/74
Vertical Antenna	VA- 105	372	9/74
Biconical Antenna	7825 Honeywell	N/A	N/A
Cone Antenna	93490-1 Stoddart	N/A	N/A
Horn Antenna	CA-L, S, M, X Polarad	N/A	N/A

164

T. Harrison and

TEST PROCEDURES

The Temperature Controller System was immersed in an electric field intensity of 10 V/M from 14 kHz to 35 MHz and 5 V/M from 35 MHz to 10 GHz. During the test strip chart recorder was monitored for temperature changes of $\pm 50^{\circ}$ F. The test was performed as detailed in Paragraph 13 of Test Plan 2186. The test setup was as shown in Figure 18 of the plan.

TEST RESULTS

No observable change in temperature occurred during the test. See data sheet 11.

	EMC DATA SHEET		
DATE: 3/38/95		2268	DATA SHEETOF
ITEN TESTED: TEMPERAT CONTROLLER SYSTEM	SN 1		QUIPMENT: EMC-35
TEST PERFORMED: CEOS 20	VH2 TO		550-1 PROBR
SOMME POWER L	OPERAT	PERFOR	RMED BY: RL
1250			

FREQ.	JERV	IBW JB	PROBE	LEVEL IBAO	CE03 4100 17 8846	
.020	20	41	12	73	134	TEST + 25 YOC
.030	20	HI	2	69	126	LRAD
0::0	10	42	6	58	121	In the state of the state
.060	10	41	2	53	113	
030.	H	41	0	45	108	
.100	0	41	-2	39	104	
.150	12	110	-5	37	97	
.200	4	40	-7	37	52	
.300	13	42	-9	36	85	
. 1100	4	111	-10	35	79	
. 600	ف	42	-11	33	72	
. 800	0	42	-12	30	66	
1.0	0	42	-/2	30	62	
1.0	-4	42	-/3	25	55	
20	-4	141	-14	27	50	
3.0	-2	22	-14	6	50	
1/ 0	-6	22	-14	2	50	
6.0	-5	20	-14	1	s	
8.0	-6	20	-14	0	50	
7.8	6	20	-14_	12	_ 50_	
15.0	10	20	1-15	15	50	
20.0	8	20	-15	13	50	
30.0	10	1	-15	-4	50	
40.0	10	1	-15	-4	51	L'OTE NO
50.0	10	0	-14	-4	50	N'ARRIN BANO
						SIGNALS WERE
						DETRETRA
	-		L			

	EMC DATA SHEET	
DATE: 3/28/75	REPORT NO: 6	268 DATA SHEET 2 OF
ITEM TESTED: TEMPERATU	AE	TEST EQUIPMENT: KAL-26
CONTROLLER SYSTEM TEST PERFORMED: CEOS 2	A SNI	91550-1 PROAR
50 AINZ POWER LA	E 405	·
TEST CONDITIONS: Normac	OPERATIN	PERFORMED BY:

FREQ.	METER	IBW db	PROBE	CONPOST LEVIL BELO FINE	CROS LAMA BUQ GINZ	
.020	20	41	12	7.3	134	TRIT 25 YOC
.030	21	41	8	70	126	RETURN LEAD
. 01:0	22	42	6	70	121	
.060	8	41	2	51	113	
.080	10	41	0	51	108	
.100	10	41	-2	49	104	
.150	10	110	-5	45	97	
. 2.00	10	40	-7	43	52	
.300	8	42	-9	41	85	
.1100	8	41	-10	39	79	
.600	8	42	-11	39	72	
. 800	6	42	-12	36	66	
1.0	6	42	-12	36	62	
1.5	0	42	-13	29	55	
.2.0	07	41	-14	27	50	
3.0	2	22	-14	10	50	
14.0	-2	22	-14	6	50	
6.0	-4	20	-14	2 2 2	51	
5-0	-4	80	-14	2	50	
10.0	-11	3)	-14	2	50	
15.0	8	20	-15	13	51	
20.0	8	21	-15	13	50	
30.0	10	_1	-15	-4	50	
.:0.0	10	1	-15	-4	50	NOTE: 110
50.0	10	0	-14	-4	50	NARROVIBANO
	İ					STONALS WRRR
						DRTECTED.

FREQ.	Fiter	ZBW	PAIRE	Corion LEVES		CE03	
	12		13	SENS -		6349	Longenthe sur-
5H:	74	41	12	127		1.94	TRST + 2 F VO
500	40	42	-12	70	V	66	LEAD
8.0	12	20	-14	18		50	TRANSIENT-
5.0	18	20	-15	23		50	
020	74	41	12	127		134	TEST 22YOS
800	38	42	-/2	68	V	66	RETURN
5,0	12	20	-14	18		50	TRANSIENTS
25.0	18	20	-15	23		50	
		-					MRASUREME
							MADE WARA
							GOING FROM
	_						"NO CURARN
			_				TO 7 AMPEA CURRENT
							CONDITION
	-						
						_	
			1				

	100100		DATA SHEET	10	DATA CUE	ET 46 OF
	ED: TEALPE					
			11			HPHIS
TEST PERF	ORMED: C.S.	1 30/12	70		RN 10	0
CAPH	2. PAWE	1 LEADS				FOLDER
TEST COND	ITIONS: No.	MAL OF	LRATIN	DEDEODM		11
1250	2			FERIORI		
FREQ.	INJELT	REG	<u> </u>			
TALY.	LRVEL	LRYEL		Server 1.		and a shirt
	VIRAS	VIRAS		_	TEST	+ 281000
30 42	2.8	2.8	NOOR	RRYA	BLE	TEMPER-
To	To	TO	TURE			
SORHZ	1.0	1.0				
30 HZ		- 28				25 Voc
TO	10	TO	40 -		RET	URN
5HXOZ	1.0	1.0			TEM	PRATURE
			CHANGE	•		
-						
	+					
	+					
				+		
				+		

128/75	R	EPORT N			
ED: TEMP	ERATUR C	CALL			IPMENT: MP606
ODAED CE	12 SOLH	2. 70			MUTOR BIX
No Pow	ER LEAD	L.		CAL	HOIT OR NON
ITIONS: NO	RMAL O	PERA	TION	PERFORME	D BY: PU
-0					
INJECT	REQ				
					TESTOSVOCLE
1.0	1.0	No	TASE	AVARC	E TEMPERATURA
1.8	1.0	CA	ANG	E	
					- ALVAL PETRA
					TELECATURE
+					
+					
-					
<u> </u>			<u> </u>		
1-1-					
+					
		+			
	ED: TEMP OCCERSY ORMED: CS NZ POW ITIONS: NO ITIONS: NO NSECT LEVIC V/RMS 1.0	128/75 R ED: TEMPERATUR R POCLER SYSTEM SORMED: ORMED: CS02 SORMED: CS02 N2 POWRR CEAR ITIONS: NORMAC V/RMS V/RMS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ED: TEMPERATUR R COLLER SYSTEM SN/ ORMED: <u>CSO2</u> SOKH2 TO N2 POWRR CEADS ITIONS: <u>NORMAL OPERA</u> TO INSECT <u>REQ</u> LEVEC <u>LE:EC</u> V/RMS <u>V/RMS</u> 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	128/75 REPORT NO: 200 ED: TEMPERATUR R POLLER SYSTEM SNI ORMED: CS02 SORN2 TO N2 POWRR LEADS ITIONS: NORMAL OPERATION TO NSECT LEVEL V/RMS V/RMS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	128/75 REPORT NO: 2268 D ED: TEMPERATUR R TEST EQU POCLER SYSTEM SNI MP C ORMED: CS02 SORN2 TO MP C N2 POWER CEADS CAR N10NS: NORMAC OPERATION PERFORME 1110NS: NORMAC OPERATION PERFORME 10 1.0 NO 1.0 1.0 NO 1.0 1.0 TEST 1.0 1.0 TEST

			EMO	: DATA S	HEET		
DATE: 3/	28/7	15-		REPORT	NO: 0	268	DATA SHEET 6 OF
ITEM TEST	ED: TR	MPRA	ATUR	R			UIPMENT: 6471-5
CONTA							INS GRN
TEST PERF	ORMED:	506	SPIKA	2			15 SEOPR
Susc	EPTIO	14179				10	up cap.
TEST COND		Noim	AL O	PLAN	TIM	PERFORM	ED BY: RL
125	Q						
					P	1	
FREQ.							
Pos	TIV	C.NI	DNE	GATI	18 5	G VOL	T 10 U.M.C
							- NOLT
						MINU	
	ACH F	CARIT	ry.	SPEK	E RI	TR	
	SINC	CLR !!	ENOT	AND	10 1	PS.	
		OBSE			INGE	14	
	TRI	1 CERA	TURE	•			
						<u> </u>	
				1			

	EMC DATA SHEET	
DATE: 3/28/75	REPORT NO:	BALS DATA SHEET 7 OF
ITEM TESTED: TEMPERATO	IRR	- TEST EQUIPMENT: EMC-25
CONTROLLER SYST.	en snl	- Vel-105
TEST PERFORMED: REO2	14KHZ TO	
10GHZ ELECTRIC	FIRLD	
TEST CONDITIONS: Normal	OPRRATION	PERFORMED BY: RH
1250		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			REAL	FIELD BALV AUTANZ	ANT. db	ISW dr.	MIRTER d:MY	FREQ.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r•	VA-1-103	110			4.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			102					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 4 4 4 4				41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				86	27		-8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			103	83	52			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					52			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			101					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			97	82	52	40	-10	.150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 1075	VA-105	97	74	44	40	-/0	.200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-10	.300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			94	69				.400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			92	73	-			,600
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			91	74		42		. 800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			90				-10	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			88			1/2	-10	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			86	66	35	41	-10	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				42		22	-10	3.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			83	47		22		11.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			81	14		21	-6	6.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80	39		21	-6	8.0
20.0 6 26 27 57 7720.0 6 26 25 51 76			77	38	24		-6	10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			77	57				
25.0 8 20 23 51 75				51		24	the second s	
				51	23	20	8	2.5.0

CONTR	OLLER	Sys	TEM	SNI		UIPMENT: EM C- 25
TEST PERF	ORMED:	<u>PE02</u>	- CON	TINURD		51
TEST COND	DITIONS:_ 0	Norn	nal	PERAT	PERFORM	ED BY:
FREQ.	ACAY	ISW do	ANT. JB	FIRCO BAY AVANE	REGI	
30.0	10	2	12	24	74	VERTICAL
40.0	10	1	13	24	73	BICONICAL
60.0	10	1	9	20	70	
80.0	10	0	9	19	69	
100.0	12	0	14	26	68	
150.0	12	2	16	30	66	
200.0	12	2	18	32	65	
30.0	10	2	12	24	74	HORIZONTAL
40.0	10	1	13	24		BICONICAL
60.0	10	1	9	20	70	
80.0	10_	0	9	19	69	
100.0	12	0	14	26	68	
150.0	12	2	16	30	66	
210,0	12	2	18	32	65	
300.0	12	3	17	32	69	CONICAL LOG
400.0	12	4	18	34	74	SPIRAL.
600.0	12	1	21	34	77	
500.0	12	0	24	36	78	
1000.0	12	-2.	26	36	80	
,2000	8	_	32	40	59	NOTE: NO
3040	8	-	36	44	60	NARRIWBAND
4000	8-	-	39	47	67	SIGNALS WERE
6000	8	-	44	52	61	DETROTED
8010	8	-	48	56	65	
10,000	X	-	50	58	170	

ANT. 13 46 44 33 27 18	1Bar EVENZ	RE01 4/7/17 17:17 11:0 11:0 97 89	
46	101 84 81 57	110 97 89	
111	84 81 57	97 89	
33 27 18	57	89	
27	57		
	6	78	

EMC DATA SHEET

т	ONDI	TIONS: _	Norm	AL O	erkat	711	PERFORME	ED BY: RU
EQ								
	A	TEST	win	R CA	ray	ING	20 11	PRAES
	OF	HOON	2 20	RARI	IT W	MS W	RAPPI	<i>CO</i>
	RK	NO	ORSE	AVAR	R C	ANG	EIN	TEMPERAT
•	A	TEST	WMR	CAR	VIN	E 100	7967	10 user
							NO T	N.K.
	<u>C4</u>	LAU	-	CAR	and the second			TEMPERATURE
				BJRAI	70-2			
					<u> </u>			
				-				
-			1			T		

	EMC DATA SHEET		
DATE: 3/36/75	REPORT NO:	DATA SHEET //	_0F
ITEN TESTED: TEMPERAT	URR	TEST EQUIPMENT:	
CONTROLLER SPETE	m SAI		
TEST PERFORMED: 202	IYKHE TO		
10 GHZ RADIATED	SUSCEPTION		
TEST CONDITIONS: Norma	C OPERATION	PERFORMED BY: RU	
1230			

FREQ.	FIRLD	REG RIELO V/M				
0/4	10	10				VA1-115
TO	10	10	No	CHANC	RM	TRMPERATURE
.150	10	10				
.150	10	10				YA-105
TO	11	10	Noc	HANG	R	NORIZ F
550	10	10	IN 7	EMP		VRAT. BICON
35	5	5				VEAT. BIGON
To	5	5				
200	5	5				
35	5	5	Noc	HANG	R	HORIZ. BILON
TU	5	5		Enp.		
200	5	5				
200	5.0	5	No	CHANG	E	
TO	5.0	5	IN -	Keml,		
1000	5.0	5				
1000	5.0	5	No	NANG	¢	
To	5.9	5	IN	TEM		
10,000	5.0	5				

ADDENDUM

то

TEST REPORT 2268

INTRODUCTION

On May 6, 1975, CEO3 conducted transient measurements per MIL-STD-462, Notice 2 were repeated on A. D. Little, Inc., Temperature Controller System SN 1. The purpose of the test was to determine if a .5 ufd metallized foil capacitor installed across the 28 Volt DC power leads would provide specification compliance.

TEST RESULTS

With the .5 ufd capacitor installed across the 28 VDC power leads the Temperature Controller System complies with the conducted transient requirements of MIL-STD-461A, Notice 3. See data sheet A1.

				C DATA SHEET		
DATE: 5	16/7	5		REPORT NO:_		DATA SHEET ALOF
ITEM TEST	TED: TE	MPER	ATUR	E	- TEST EQ	UIPMENT: EMC-25
CONTI	COLLEA	L SK	TRM	SNI	- 9/3	50-1 PROSE
			2 60	NOVETR	e	
TRAN	SIRNT	5				
TEST CON	DITIONS	YOR	MAC D	METALL	PERFORM	ED BY: RJ
	CAP			MR. ALL	1 eco	
5950	MRTER	TEW	PROBE	CONDUCT	CEOT	
MAZ			dB	LEVEL BUO MAZ	LIMIT	
.020	80	41	12	13.3	1.94	TEST +28YOC
,800	32	42	-12	64	66	LEAD
8.0	18	20	-14	24	50	
25.0	10	20	-15	15	50	
.020	80	41	12	13.3	134	TEST DEVOC
. 800	31	42	- 12	60	66	RETURN LEAD
8:0	14	20	-14	20	50	
25.0	10	20	-15	15	50	
			-			NOTE SUFO
X						CAPACITOR
						ACROSSTATION
	+	<u> </u>				AND ARTURN
	-		-			
						· · · · · · · · · · · · · · · · · · ·
			-			
			_			

in the second se

APPENDIX C

DATA SHEET FOR THE CIRCUIT DISCONNECT DEVICE

S. S. Bas

PRECEDING PAGE BLANK-NOT FI

MAGNETIC KLIXON CIRCUIT BREAKERS

6MC & 7MC SERIES SUB-MINIATURE PUSH-PULL OR TOGGLE

auxiliary switches plus a wide choice of terminal configurations for remote indication and ease of assembly. The 7MC is available with a silicone-rubber boot for a panel seal. Both the 6MC and 7MC

are available with high temperature

components for operation in demand-ing environments up to 125°C.

 Meets MIL-C-5809 requirements High performance at minimum cost

• Sub-miniature size(1%"x %"x212")

- Lightweight (2 oz max) .
- Push-pull or toggle actuation
- From .050 to 25 amperes
- 32 v-dc, 240 v-ac, 60 & 400 cycle

The KLIXON 6MC and 7MC series magnetic circuit breakers are miniature, lightweight, and fast acting -and are the only circuit breakers of their type available with either toggle or push-pull actuation. The 6MC and 7MC series is designed for critical applications in airborne control systems, ground support control systems, ground support equipment, launch systems, ord-nance vehicles, radar, communi-

cations, weapons systems and other high-performance military and space applications.

Trip-free, the 6MC and 7MC will not sustain a fault even with the push button or the toggle held in the ON position.

Both the 6MC and 7MC can be furnished with one or two internal

PERFORMANCE CHARACTERISTICS

Ruptura		Sea Lavai	60,000 Peet	-					
	32 v-dc 120 v-ac. 60 Hz 120 v-ac. 400 Hz 240 v-ac. 60 Hz 240 v-ac. 400 Hz	2500 amps 1000 amps 800 amps 500 amps 500 amps	t 000 amps 1 000 amps 800 amps 400 amps 400 amps						
Voltaga	32 v-dc, 120 v-ac.	60 and 400 H	Iz						
Vibration	Instantanaous trip type: 5-55 at .080 DA 55-2000 at 5 G								
	Time dalley type:		t.08010A at 10 G						
Mechanical shock	, instantaneous trip Time delay type:	type: 25 G p 50 G p	per MIL-C-5809 er MIL-C-5809						
Accaleration	. 25 G per MIL-C-58	809							
Waight									
Operating forca									
6MC (Topgia type) 7MC (Button type)	Onen: 5 lb max	Close: 101	DIMBR						
Fodurance cycling	. t0,000 operations	s at 100% rate	ng (resistive to	ad)					
Insulation rasistanca	. 100 megohms min	at 500 v-dc	per MIL-C-5809						
Dialectric strength									
'emperatura range	54 °C to +71 °C								
Operating altituda.	60,000 feet								
Auxiliary	. 7 amps rasistiva 7 amps rasistive	4 amps indu & inductiva,	ctiva, 28 v-dc 115/130 v-ac.	60 cycle					
Corrosion resistance	Per MIL-C-5809								
Humidity	. Per MIL-C-5809								
Sand and dust	. Per MIL-C-5809								
Fungus	. Per MIL-E-5272.	Procedure 1							

TEXAS INSTRUMENTS INCORPORATED

APPENDIX D

MISCELLANEOUS DATA SHEETS

1

....

-CONTINUED

NICKEL-CHROMIUM vs. NICKEL-ALUMINUM

DEB F 0 1 2 3 4 5 8 7

(Chromel-Alumel)

TYPE K

Temperature in Degrees F

•	•	10	DEG P	
1.893	11.000	11.031	334	

Reference Junction at 32°F

			THE	IDELECTO:	C VOL TO	68 IN A9		ILL IVOL I				
330 590 570 388 388	11.702 11.051 12.101 12.302 12.023	11.723 11.094 17.194 17.194 17.194	11.718 11.677 12.207 12.418 12.618	12.230 12.000 12.230 12.661 12.661	11.743 17.023 12.234 12.444 12.444	11.810 12.277 12.307 12.307	11.0 30 13.000 12.705 12.3 30 17.701	LL.002 L2.002 12.323 L2.333 L2.333	11.000 17.113 17.346 17.376 17.376	11.000	11.031 12.161 12.762 12.623 12.623	330 540 370 390
806 939 929 939 939	12.034 13.003 13.317 13.540 12.701	12.077 13.100 13.240 13.372 13.972	12.000 17.131 13.303 13.309 13.309 13.027	12.025 15.134 15.356 15.010 15.010	12.644 13.170 13.496 13.031 13.073	13.300 13.201 13.433 15.063 13.037	17.693 13.224 13.459 13.498 13.498 13.498	13.010 13.247 13.470 13.711 15.943	13.834 13.270 13.502 13.734 13.754	13.002 13.293 13.325 13.707 12.666	13.005 13.317 13.946 13.701 14.012	010 020 030 340
834 666 876 876	14,813 14,340 14,470 14,715 14,465	L4.034 L4.200 L4.502 L4.735 L4.735	L+.000 1+.357 L+.325 1+.738 L+.738	14.093 14.518 14.785 14.785 15.015	13.100 14.336 14.377 14.803 14.803 13.038	14.124 14.302 13.303 14.020 15.002	14,153 14,305 14,010 14,052 15,003	14.173	L4.199 14.492 14.093 14.046 13.122	L+.222 1+.435 L+.488 1+.922 1+.922 L3.135	Le.346 14.476 14.712 14.943 13.170	****
788 718 739 788 766	13.178 13.415 13.408 13.400 13.400 10.134	13.202 13.439 13.440 33.493 14.130	13.323 13.410 13.005 13.027 13.027	13,548 13,482 13,118 13,430 13,134	13.272	13.743 15.520 13.705 15.007 16.751	13.318 13.332 13.130 14.020 14.233	13.342 13.370 13.010 10.046 10.270	13,343 13,399 13,633 14,647 10,303	13.300 13.423 13.094 14.001 14.223	13.417 13.040 13.090 14.114 10.349	788 718 728 738 748
788 748 778 780 780	10.340 10.303 10.010 17.013 17.700	10.372 10.007 10.041 17.070 17.311	L0.309 L0.030 L0.443 L7.100 L7.100 L7.333	L0.410 L0.094 L0.000 17,173 L7,330	14,442 14,477 14,417 17,147 17,382	14.466 14.706 14.833 17.170 17.106	14,300 10,724 14,090 17,194 17,499	10.312 16.747 10.492 17.217 17.433	14.334 14.771 17.000 17.241 17.476	L4.500 10.756 L7.029 L7.266 L7.500	10.303 14.010 17.053 17.300 17.323	798 798 778 798 798
810 820 830 840	17,333 17,750 17,994 18,230 18,440	17,347 37,782 18,018 10,233 10,496	17,370 17,806 18,841 18,841 18,277 18,313	17.334 17.878 18.043 18.301 18.334	L7.017 17.033 10.060 10.325 10.300	17.641 17.870 18.117 18.960 18.304	17.666 17.600 16.176 18.971 18.607	17.000 17.025 10.150 10.305 10.031	17.711 17.847 18.983 18.418 18.418	17.735 17.671 18.286 18.662 18.976	17.738 17.994 10.730 10.444 10.702	846 818 878 478 478
65 0 640 670 840 640	18,707 18,707 19,176 19,176 19,416 18,966	10,723 10,461 10,107 10,030 10,070	18.748 14.485 19.221 19.437 18.446	L0,772 15,000 L0,243 L0,401 L0,717	10,704 10,200 10,200 10,303 10,741	10.030 10.030 10.202 10.370 10.703	18,545 15,076 16,510 16,537 15,700	10.047 10.103 10.230 10.576 10.576	10.107	10.014 10.130 10.344 10.023 10.025	10.090 10.174 10.310 10.040 10.040	*** *** *** ***
*00 *1.6 *2.0 *3*	10.003 20.120 20.300 30.300 20.303 20.030	10.007 20,143 20,350 20,616 20,615	10.030 20.107 30.603 20.640 20.640	10,054 20,190 20,427 20,465 20,401	18.679 20.316 29.631 29.555 20.526	20.001 20.230 20.376 20.711 20.560	38.073 20.781 20.468 20.733 70.972	20.049 20.205 20.522 20.736 20.993	20.072 20.300 20.963 20.762 21.019	10.944 28.135 20.549 10.949 21.043	20.170 20.394 20.393 20.030 71.044	618 618 670 630 640
*** *** ***	21.040 21.303 21.340 21.777 21.777 32.014	21.0%0 21.327 21.366 21.801 21.801 22.036	21.114 21.331 31.307 31.023 22.001	31.137 21.374 21.411 21.411 21.040 27.003	21.101 21.300 21.033 21.072 22.072 22.100	21.185 21.422 21.898 31.898 31.898 22.192	71.708 21.443 21.462 71.610 22.130	21.000	21.236 71.463 21.730 21.666 22.203	21.280 21.314 21.735 21.840 22.227	21.103 71.340 21.777 22.014 23.731	850 666 670 880 380
L.000 L.010 L.020 L.030 L.030	22.001 22.001 22.100	32.374 22.311 22.746 22.905 23.225	32.246 22.573 22.772 23.085 23.246	28.528 22.530 22.766 25.052 23.306	32.346 22.202 22.013 23.030 23.243	27.543 22.006 77.341 23.000 23.317	77,303 22,430 72,507 73,104 23,340	22.417 22.884 27.896 23.127 23.127 22.394	22.400 72.477 22.014 23.131 23.300	22.701 22.701 22.430 23.173 23.411	22.723 22.723 27.661 23.190 23.433	1.000 1.010 1.020 1.030 1.030
1.099 1.000 1.970 1.000 1.090	35,633 23,073 25,000 34,100 24,002	23.425 23.000 23.010 24.100 24.003	23.402 23.730 23.094 24.102 24.470	23,344 23,743 23,974 24,210 24,452	23.330 23.790 34.403 24.240 24.240 24.470	23.353 23.766 24.027 24.203 24.300	73.377 73.014 24.030 24.20 34.373	28.001 23.007 24.074 24.311 24.307	25.024 35.001 24.000 24.334 24.571	23.003 34.131 24.330 24.395	23.072 23.000 24.145 24.202 24.010	1.050 1.000 1.000 1.070 1.070 1.070
1.100 1.110 3.920 1.136 1.166	24.010 24.010 23.001 25.327 23.103	24.642 24.879 23.114 23.310 23.510	34.443 24.002 25.130 23.374 23.974 23.010	20.409 24.020 23.101 23.347 23.033	24.713 24.304 23.109 23.421 23.421 23.057	94.798 24.872 23.200 23.443 22.901	23.760 24.996 33.332 23.669 23.765	24.703 23.820 23.230 23.603 23.720	34.807 23.943 23.270 23.513 23.513 23.751	24.821 23.007 55.303 23.339 23.775	24.010 23.001 23.117 23.163 23.799	
L.100 L.300 L.170 L.300 L.300	23.700 54.034 20.270 20.005 20.740	23.822 29.968 28.393 28.379 39.764	23.846 20.901 20.317 20.552 20,757	23,348 20,103 20,348 20,376 20,376 30,011	23.003 20.128 20.364 20.500 20.500	25.015 20.152 20.307 20.025 20.025	23,040 54,178 29,431 29,449 24,001	23.064 29.146 29.433 29.978 29.978 24.983	23,967 29,233 29,438 20,983 29,828	30.013 20.346 20.462 20.717 20.757	60.034 60.370 30.503 60.740 60.733	1.130 1.190 1.170 1.150 1.390
1,200 1,219 1,520 1,200 1,200	30.073 37,210 37,663 37,670 37,070	20.000 27.254 27.468 27.468 27.497	27.022 27.237 27.442 27.442 27.442 27.441	27.004 27.201 27.313 27.730 27.730 27.790	27.000 27.330 27.330 27.330 27.773 28.007	27.805 27.525 57.902 27.767 20.931	27,110 27,391 27,396 27,896 27,896 28,894	27,140 27,575 27,000 27,003 30,070	17.143 23.594 17.433 27.967 29.101	27.007 27.000 27.000 27.000	27.234 57.445 27.839 27.839 27.834 27.834	
L.290 L.270 L.270 L.290 L.290	30,140 20,903 20,913 20,900 20,902	30.173 30.409 30.090 30.070 30.072 20.190	20,100 20,470 20,470 20,075 20,075 20,120	20.213 20.432 20.003 20.010 20.010 20.137	34,241 28,473 28,783 28,447 39,173	28.203 28.737 28.737 28.305 29.188	28,298 28,522 28,755 28,755 38,995 28,221	28.311 28.343 28.778 39.012 29.245	24.333 24.442 24.442 27.435 27.435 27.435	10.100 24.023 24.023 27.000 20.201	28,542 28,413 39,407 28,962 49,313	1.254 1.244 1.276 1.276 1.256 1.256
1.300 3.519 3.529 1.390 1.390	29, 313 29, 167 29, 766 30, 612 39, 766	24, 334 24, 576 24, 693 34, 287 34, 287	28,341 29,398 24,928 88,938 18,298	20,017 20,017 20,017 20,001 20,001 20,013	20, 448 20, 548 20, 672 16, 186 20, 324	20.421 20.443 20.696 20.126 20.126	28,334 29,487 28,918 36,131 39,343	20.477 20.718 20.162 20.162 20.176 34.488	29.501 29.733 29.803 59.103 59.103	20.524 30.716 20.000 00.220 00.432	19.167 19.756 99.812 99.255 99.473	1.300 1.310 1.320 1.330 1.330
1.500 1.500 1.570 1.500	30.473 00.700 30.037 33.140 31.399	00,400 30,730 30,001 31,103 31,477	34,521 34,733 99,994 51,214 31,943	30,345 00,776 51,007 31,237 31,640	34,440 38,799 31,010 31,200 31,200	34,901 34,022 31,033 31,203 31,203	34,814 10,343 31,878 31,398 31,398	50.037 30.360 31.050 31.339 31.400	34.668 56.561 31.137 31.393 31.893	00.409 00.031 31.340 31.376 31.400	34.764 38.037 33.756 33.200 31.427	1,334 1,360 1,370 1,360 1,370
	31,620 31,690 32,600 35,517 32,300		31.073 31.003 37.134 37.343 32.347	31.090 31.927 37.137 32.330 37.913	31.721 31.900 32.100 32.405 32.935	31.794 31.973 37.793 37.793 32.432 57.991	31,707 31,000 32,220 32,433 32,003	33,700 32,010 32,240 32,240 32,470 32,790	53.013 52.043 53.775 53.901 54.720	31,694 32,000 33,796 31,963 37,752	31.000 32.000 32.317 52.360 32.775	1,000 1,010 1,020 1,020 1,020
1,490 1,400 1,400 1,400 1,400	13,773 11,665 16,511 15,450 13,450	32,700 33,020 33,256 33,402 33,700	52.521 53.649 53.277 53.364 53.757	22,343 33,877 23,389 33,327 33,327 33,734	\$2,800 33,096 33,332 33,330 33,777	32,400 33,117 33,345 33,345 33,345	22,140 22,140 33,300 33,300 33,623	32,035 33,103 33,301 30,010 33,643	33.000 33.100 33.433 33.641 33.640	11.000 11.000 11.000 11.000 11.000 11.000	33,003 33,231 33,669 33,666 33,666	1,490 1,460 3,475 1,480 1,479
1,390 1,510 1,520 1,390 3,340	33, 413 34,144 34,346 34,345 34,345	33,050 54,103 54,385 54,013 54,013	33,000 54,105 54,417 54,430 54,103	33, 981 34, 298 34, 4 34 34, 6 54 34, 6 66	34,984 34,331 34,437 34,567	34,827 34,233 34,480 34,705 34,951	24.160 24.276 34.307 34.307 24.720 24.720	34.673 34,300 34.323 34.751 34.076	34.880 34.521 34.547 34.775 34.775	14.117 14.144 14.676 14.776 15.775	34,100 34,300 34,303 36,010 30,010	1,300 1,310 1,370 1,370 1,394
		-			,			1		•	10	-

A - 22

187 \$ U.S. GOVERNMENT PRINTING OFFICE: 1975 - 657-630/250