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(V) THIN ■ A  Computer Program for Analyzing the Axisvmmetric 
Bthtmar of Thin Spherical Shells, by Harry E. Williams. China Lake Calif 
NWQOctober 1975, 48 pp. (NWC TP 5785.) 

(UfThe computer program THIN obtains the solution of the equations 
of equilibrium governing the small deflections of thin spherical shells using an 
algorithm called ^'Dynamic  Relaxation.*  It is assumed that the material 
propert.es of the shell are constant and that the shell is closed at the apex 
The conditions at the outer edge can be chosen to be either clamped 
simply-supported or supported on a transverse roller-skate. 

(U) This report describes the input/output requirements of the program 
the behavior of the »Dynamic Relaxation* algorithm and estimates the' 
accuracy of the program by comparing numerical results obtained using THIN 
with either exact analytical solutions or analytical solutions where accuracy 
can be assessed.- 
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INTRODUCTION 

THIN is a special purpose program which can be used to obtain the stresses 
and displacements in a spherical shell acted upon by an axisymmetric distribution of 
normal and/or tangential pressure, and heated arbitrarily through the shell thickness to 
a prescribed axisymmetric temperature distribution. It is assumed that the shell is 
closed at the apex, and supported along the edge (see Figure 1) such that the edge is 

either; 

1. Clamped-displacements (v, w), rotation (X) all vanish, or 

2. Simply-supported-displacements (v, w), meridional bending moment (M0) all 

vanish, or 

3. Roller-skate supported-tangential displacement (v), transverse shear (Q^) and 
meridional bending moment (M^) all vanish. 

Further, it is assumed that the material is linearly elastic, and characterized by material 
parameters (E. u, a) which do not depend on the temperature. (This feature of the 
program could readily be included, but was omitted here to limit the length of the 

program.) 

NBC'O 

■ 

NBC-1 

NBC-2 

FIGURE 1. Notation and Boundary Conditions. 
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THIN obtains solutions of the axisymmetric, thin shell equations appropriate to 
spherical shells (see Appendix A). It is based on an algorithm developed by Otter1 and 
termed by him "Dynamic Relaxation (D.R.)". In essence, the static problem, which is 
governed by a system of ordinary differential equations and associated boundary 
conditions, is replaced by a dynamic problem governed by a system of partial 
differential equations and the same boundary conditions. The success of the method 
depends on the fact that the dynamic problem is relatively easier to solve numerically 
than Is the static problem. 

The associated dynamic problem is governed by the equations of motion 
appropriate to spherical shells in which are included hypothetical viscous damping 
terms. If the damping parameters (Kr, K0) have been chosen properly, the solution of 
the equations of motion should decay to the required solution of the equations of 
equilibrium in about one to two periods of the lowest mode of vibration of the shell 
corresponding to the particular type of support. (Note that rigid body motion must be 
constrained in order to conveniently identify convergence of the dynamic solution to 
the required equilibrium solution.) The use of D.R. generally requires that the program 
be first run in an experimental mode with zero damping in order to identify the 
period of the lowest mode of vibration. This phase could be omitted if this 
information could conveniently be obtained elsewhere, i.e., analytically. However, it is 
often more easily obtained experimentally. The required solution is obtained by 
running the program again in the damped mode, and is the limiting form of the time 
varying solution as time becomes large (about I 1/2 periods of the lowest mode of 
free vibration). In a qualitative way, the shell is first impulsively loaded and allowed to 
vibrate freely (without damping) for a length of time adequate to observe some 
semblance of periodic motion. This experiment is then followed by a trial run in 
which the shell is again impulsively loaded, but now damping is included and the 
motion is observed for a length of time adequate for the kinetic energy to be 
dissipated. For further details of D.R,, the reader is referred to Rushlon.2'in what 
follows, the theory will be implemenled insofar as it applies to the particular problem 
at hand. 

IH1N operates with the thin shell equations made dimension]ess with the 
introduction of a suitable time scale and appropriate dependent variables. These 
equations (Appendix A) are then written in finite difference form using the interlacing 
network in both space (the meridional opening angle-0) and time that was suggested 
by Gilles for improving the accuracy of the finite difference representation of 
derivatives. Thus, it is observed from figures 2 and 3 that all the dependent variables 
are not  defined  at  the same point in either space or time.  In particular, the transverse 

Otter, J, R. H. "Computations for Pre-stressed Concrete Pressure Vessels Using Dynamic 
Relaxation;' Nuclear Structural Engineering. / (1965) Amsterdam, pp. 61-75. 

Rushton, K. R. "Dynamic-Relaxation Solutions of Elastic-Plate Problems," JOURNAL OF 
STRAIN ANALYSIS. Vol.. 3,  I (1968), pp. 23-32. 

DUI    
(,illcs-  D- C-  "Thc  Usc "r Interlacing Nets  for  the  Application  of Relaxation  Methods to 

Problems Involving Two Dependent Vmiables." PROC ROYAL SOC, A (1948),  193, pp. 407-433. 
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e0'ee'K0' Kd 

N^Nd;M0,Me;T 

T w,q 

X,Q 

—► v, P 

FIGURE 2. Spacial Format. 

o 

M. t 

3 2At   ' 

3 
3At 
2 

2 At     • 

2 
At 
2 

1 0    ■ 

1 
At 

" 2   ' 

QUANTITIES EVALUATED 

DISPLACEMENTS, ACCELERATIONS 

VELOCITIES 

DISPLACEMENTS, ACCELERATIONS 

VELOCITIES 

DISPLACEMENTS, ACCELERATIONS 

VELOCITIES 

FIGURE 3. Temporal Format. 
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displacement (w) is defined on 1/2-integral multiple values of the meridional coordinate 
interval (A0) and on integral multiple values of the temporal coordinate interval (At). 
Note that the transverse velocity is defined on 1/2-integral multiple values of the 
temporal coordinate interval. In comparison, the tangential displacement (v) is defined 
on integral multiple values of the meridional coordinate interval, and also on integral 
multiple values of the temporal coordinate spacing. In this way. the representation of 
derivatives or differences always involve central differences. On the other hand, not 
having quantities defined at points where the boundary conditions are imposed can be 
awkward. However, this difficulty is overcome by the use of dummy points which are 
located outside the regular interval. 

A typical solution is generated by first assuming the shell to be quiescent 
(displacement, velocity all zero) and loaded by the given external load and/or heated 
to the prescribed temperature distribution. As this condition can exist only if there is 
a non-zero value for the acceleration, there is motion away from the initial configura- 
tion which can be computed and continued in a step-wise manner until either" the 
period of the fundamental mode of vibration is identified, or satisfactory convergence 
to the equilibrium solution is achieved. 

In the sections which follow, the input requirements and the output are 
described. There then follows a description of the program with details on how the 
parameters of the program are chosen. Examples are presented of typical dynamic 
response and results given for both constant transverse pressure loading and uniform 
temperature rise. Finally, the accuracy of the program is assessed by comparing the 
results of THIN with analytical predictions-again for the case of constant transverse 
pressure. 

INPUT RFQUIREMENTS AND THE OUTPUT OF THIN 

In order to use THIN, the following must be provided. 

Material Data 

v f=PR) Poisson's ratio (dimensionless) 
a f=ALFA) Coefficient of thermal expansion (1/0F) 

(Young's   Modulus,    E,   is   not   required   as   the   output   stresses   are   presented 
dimensionless form, i.e., &, • = o.JE). 

in 

'00' 

Geometric Data 

0O (=PO) 

h (=HB) 

Meridional  opening angle at which boundary conditions are 
prescribed (dimensionless, radians) 

Thickness ratio (h/R) (dimensionless) 

...........^,^...._...,...-.,,....,,..,......      ..-. 
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(The   thickness,   h,   is   not   required   as   the   output  displacements  are  expressed   in 
dimensionless form, i.e., w = w/h.) 

N A measure of the number of segments (see Figure 2) into 
which the meridional length of the shell is divided (N = 

1 
1' 

to 
A0 ) (integer) 

Control Data 

Kr (=CKR), 
K0 (=CKP) 

NBC 

NV 

MMAX 

ID EC 

'RNT 

Damping factors (dimensionless) (See Appendix B) 

An   index   which   determines   (see   Figure   1)   the boundary 
conditions (integer) 

An index which determines the meridional station at which 
the   tangential  displacement  is  to be studied during the 
experimental phase of operation (integer) 

An    index    which    determines    the    number   of   iterations 
through  which THIN  cycles in ei:her phase of operation 
(integer) 

An  index which determines  the  interval between iterations 
whose   typical  displacements   are   printed  out during the 
experimental phase of operation (integer) 

An index which determines the output required (integer) 
1PRNT=0     Typical   displacements every  IDEC  number 

of iterations only 
IPRNT=1     Typical   displacements every  IDEC  number 

of iterations, plus the solution after MMAX 
iterations     expressed     in     dimensionless 
variables 

IPRNT=2     The solution after MMAX iterations only 

Mechanical Loading and Temperature Distribution Data 

p (=PB) Dimensionless    tangential    pressure    distribution.    Must    be 
prescribed at N-meridional stations (see Figure 2) even 
though the apex value is never used, and. from symmetry, 
must be zero (subscripted variable) 

q (=0P8) Dimensionless    transverse    pressure    distribution.    Must    be 
prescribed (see Figure 2) at N-meridional stations even 
though the edge value is only used for the roller-skate 
support condition (subscripted variable) 

TREF (=TREF) Reference temperature at which the stresses, strains are 
assumed to vanish (0R) 

 — - - j- -'- 
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T (=rMP) Temperature  distribution.  Temperature   must   be  prescribed 
(see Figure 4 and Appendix C) at 5 points through the 
thickness of the shell, at N-meridional stations (sub- 
scripted variable, 0R) 

These data are  read  into the  program  from cards provided by the user  The 
first card contains 

Kr K0 
0O h        u 

and is read in the open format. The second card contains 

TRKF « 

and is read in the open format. The third card contains 

NBC        N        NV MMAX 1DHC        IPRNT 

and is read in the 6110 format. There then follows N-cards with the number pairs: 

q       P 

F = {7h 

0.5 

0.4 

0.2,. 

-0.2. 

-0-4 , 

-0.5 

• OUTER SURFACE 

• INNER SURFACE 

FIGURE 4. Typical Temperature Distribution. 
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for each of N-meridional stations. These cards are read in the open format. Note (see 
lijuire 2) that the values of p, q are not measured at the same point in space due to 
the use of the interlacing network. Finally, there follows N-cards with the temperature 
distribution (see figure 4) 

I T T5 

through   the  thickness  of the shell for each of N-meridional stations. These cards are 
also read in the open format. 

In its present form, the output of THIN always includes a record of the 
temperature and the applied pressure distribution, and also the temperature integrals 
T , 0 computed according to Appendix C. The output can also include (1) the time 
response of both the transverse displacement of the meridional station nearest the apex 
(1=1) and the tangential displacement of the meridional station I=NV, and (2) the 
solution after MMAX iterations expressed in dimensionless variables. The index IPRNT 
is used to identify the option. The displacements at I=l(w), I=NV(v) have been chosen 
as they represent very nearly the maximum displacements expected in the lowest mode 
of vibration. The index NV is taken somewhat greater than N/2 as it has been 
observed that the tangential displacement reaches a peak in this neighborhood. The 
time response is printed out so that the user can either estimate the period of the 
lowest mode of vibration or determine whether satisfactory convergence to the static 
solution has been achieved. The solution includes the meridional distribution of the 
dimensionless displacements and stress resultants, and the complete (meridional plus 
transverse) distribution of the dimensionless meridional normal stress (d^ = a^JE). 
This stress component is computed according to the method outlined in Appendix D, 
and is displayed as it is generally the critical stress from a maximum normal stress 
point of view. 

ANALYSIS OF THIN 

The form of the thin shell equations used in THIN is that given by Parkus and 
Flügge.4 This form was chosen as it was considered more generally accessible than 
other forms. The equations and their dimensionless forms are presented in Appendix 
A. THIN actually operates with the finite difference form of these equations using the 
interlacing network illustrated in Figure 2. 

The D.R. algorithm can be illustrated by studying the equations which govern 
the  transverse  displacement (w). _At the beginning of a typical iteration, the displace- 

merits w(l)  and   the velocities är'(I) are known at all points in space (l < K N). It 

should be noted (see Figure 3) that the velocities are known at a time (corresponding 

Flügge, W., Handbook of Engineering Mechanics. McGraw-Hill, 1962. 
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to the index M) which is less than the time (also corresponding to the index M) at 
which the displacements are known. For the first iteration (M=l), these displacements 
and velocities are all taken equal to zero. Before proceeding to the next iteration, the 
strain components «L, eö are first computed. For example, from Appendix A, we write 

e0([) = w(I)+|v(l+l)- v(I)]/A0 

In an analogous manner, the rotation X is also computed. With the strain, rotation 
components now known at all points in space, the in-plane force and moment stress 
resultants follow directly from the constitutive equations-the temperature integrals 
having been compjiited (see Appendix C) during the data loading phase. The transverse 
stress resultant (Q) is then obtained from the equation of moment equilibrium 
expressed in the form 

Q(l) = |Nyr)- M0(I-1)]/A0+[M0(I)- MÖ(]) + M0(I-1)-MÖ(1-1)] "^ 

Note that the use of this equation is, strictly speaking, not justified in the context of 
a dynamic analysis. However, since the dynamical aspect used here is a computational 
artifice, the neglect of rotary inertia is unimportant and has no effect on the final 
results. With all stress resultants now known, the solution corresponding to the given 
displacements is complete and the stress distribution could be calculated although it is 
generally deferred until the last (M=MMAX) iteration. It should be noted that this 
solution does not in general satisfy the equation of translational equilibrium. It is 
precisely this fact that enables the calculation to proceed. 

The displacement distribution for the next iteration (corresponding to the index 
M+l) is obtained from the accelt ration which is computed from the translational 
equation of motion. This requires the definition of the acceleration expressed in terms 
of the velocities given by 

')•" w 
^M) = f|r(M+l)-|r(M)]/AT 

and the definition of the velocity in terms of the displacement given by 

9^(M+1)= [w(M+l)- W(M)1/AT 

Thus, with the transverse translational equation of motion expressed in the form 

f)vv f)w AT       — 
3f(M+l)(l +Kr/2)»^(M)(1 - Kr/2) + Arq(l)-—?

T(N0(1) + NO(I) + 
l-v' 

h' 

12R 
-.((0(1+1) - O(l))/A0 + ^(Od+D + Qd)))) 

10 
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f)w 
the velocities ^rd.M+l) and the displacements w(I,M+l) follow directly. This 

completes one cycle of the D.R. algorithm save for the establishment of dependent 
variables at dummy points that are necessary for the satisfaction of the boundary 
conditions. 

Following the format given on Figure 2, it is apparent that boundary 
conditions can be directly enforced on w, M^ as they are defined on 0 = 0O. 
Alternatively, the requirement that the tangential displacement vanish at 0 = 0O leads 
to the establishment of v at the dummy point I=N+1 with the value 

v(N+l) = -v(N) 

Thus it is actually the average of two adjacent points which actually is required to 
vanish. A similar expression is used to enforce a zero condition on variables which are 
not defined on 0 = 0 

The clamped boundary condition is enforced by taking 

X(N+1)=-X(N) 

It then follows that 

K0(N) = 2 (X(N+1) + X(N)) cot 0O = 0 

K0(N) = (X(N+1) - X(N))/A0 =-2X(N)/A0 

which is sufficient to determine the edge values of the moment stress resultants. 

The simply-supported boundary condition is enforced by taking 

M^(N) = 0 

This requirement is used to establish X(N+!) from the constitutive equation expressed 
in the form 

M0(N) s (X(N+1) - X(N))/A0 + | (X(N+1) + X(N)) cot 0O +(\+v) aQR/'h = 0 

Thus, it follows that 

X(N+1) = (X(N)(1 ^0 — vAd 
-f- cot 0O) - 0A0)/( 1 + -f cot 0O) 

11 
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The rollcr-skute boundary condition is the only option in THIN in which 
w{N)^0. As the roller-skate is tree to move in the transverse direction, the transverse 
shear mush vanish leading to a dummy value for 0 given by 

0(N+U = -0(N) 

With 0(N+1)  now known,  the transverse displacement at the edge can be computed 
using the transverse translational equation of motion. 

THE USE OF THIN - EXAMPLES 

The primary unknowns in the D.R. agorithm are the damping factors Kr, K.. 
In order to determine these factors (see ^Appendix B), the program must generally first 
be run in the undamped mode to estimate the lowest natural frequency. However, 
before this can be done, the user must choose an appropriate value for N and estimate 
the total number of iterations required (MMAX) to identify the period of the lowest 
mode of vibration. 

The index N is an integer and is a measure of size of the spacial interval A0. It 
is defined by 

N 2" + A0 

The choice of N is an important one, since it not only affects the accuracy of the 
solution, but essentially establishes the running time of the program and hence the 
cost. If N is large, the finite difference representation of the spacial derivatives is 
relatively accurate. However, the allowable time step (AT) is limited by the require- 
ments that the algorithm be numerically stable and the program must be cycled many 
times in order that the overall time interval be approximately 1 1/2 periods of the 
lowest mode. Alternatively, if N is small, the finite difference representation becomes 
increasingly inaccurate, but the running time is substantially reduced. In the final 
analysis, the choice of N can only be made on the basis of several trials with the 
criteria being that N is chosen to be the smallest number such that there is a 
negligible change in the solution corresponding to a finite increase in N. 

As a general rule, the spacing^ along the meridian RA0 should be less than the 
characteristic length of the shell (y/hR). If we chose the spacing A0 such that 

RA0-^hR/3 

30o 
then, N * —=:, and we should obtain about ten data points in a meridional distance 

V h 
corresponding to three characteristic lengths. 
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The choice of MMAX depends on the allowable time increment AT. AS the 
equations of motion governing the spherical shell are probably of the parabolic type, 
we adopt the requirement established by Crandall5 for beams that limits the stable 
time step to 

Ar < -W2 

Further, if we assume that the period of the lowest mode of vibration is approx- 
imately (T0 -Mir, and adopt the equality in the above expression for the stable time 
step, a running time of a period and a half corresponds to 

MMAX = 67rN2/05 

lor example, for a hemispherical shell (0Q = 90 deg) and N=10, a running time of a 
period and a half corresponds to MMAA=764. With N, MMAX estimated approv 
imately. the program may be run and improved values obtained from an examination 
of the solution and the time behavior. 

Examples of undamped response are presented as Figures 5 through 8 for 
constant normal pressure loading. (The response to a constant temperature rise for the 
same boundary conditions and shell geometry is not shown since the curves are similar 
to those for constant pressure loading.) Note that as the curves have been plotted with 
the iteration index (M) as the abscissa (and with an iteration step size 1DEC=40) the 
corresponding dimcnsionless time is different for each shell geometry and must be 
computed according to the relation 

r= MAT = — (A0)2 

Some similarity can be seen by comparing the curves on Figures 5 and 6. It appears 
that the effect of the thickness parameter (h) is greater for the tangential displacement 
response, as the transverse displacement response have roughly the sfime shape. One 
should hasten to add, however, that there is not complete geometric similarity between 
the shells as the tangential displacement was observed at 0 Ä 52 deg for the case N=16 
and at 0 ^ 42 deg for the case N=20. Nevertheless, it appears that the use of r as a 
time scale is justified, and that some semblance of periodic motion may be observed 
corresponding to a dimensionless period of about 6<T<8. Thus, a running time 
(MMAX) corresponding to T ^ 9 seems to be adequate to span about 1 1/2 periods of 
the lowest mode of vibration for clamped boundary conditions at 0O = 90 deg. 

,,':!>    t-V   ■ 

ÜJÖ6^*äfc-f,Äi.   

Crandall,  S, H. Engineering Analysis, A Survey of Numerical Procedures, McGraw-Hill,  1956. 
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N = 20 

|« 0.033 

400 800 1200 1600 
TIME INDEX. M 

2000 3400 2800 3200 

FIGURE 5. Transverse Displacement Versus Time. 
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FIGURE 6. Tangential Displacement Versus Time. 
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FIGURE 7. Transverse Displacement Versus Time. 
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FIGURE 8. Tangential Displacement Versus Time. 

The effects of boundary condition and opening angle can be seen by comparing 
the responses shown on Figures 5 and 7. It is apparent that the stiffening effect of 
the clamped support at 0O = 35 deg substantially lowers the period of the lowest 
mode ol vibration. Further, there are only two local maxirnas in the 3S-deg shell 
response prior to crossing the axis in comparison to three local maxima for the 90-deg 
shell, Thus, a running time corresponding to r * 8 should be adequate to span 1 IP 
periods for a shell clamped at 0n = 35 deg. 

It can be shown that the effect of replacing the clamped support bv a simple 
support at the same value of opening angle and thickness ratio is insignificant and does 
not warrant any special attention. However, as can be seen from Figure 7. a dramatic 
etleet is achieved in the transverse displacement response if one replaces the clamped 
support at 0O - 90 deg with a roller-skate support. As the tangential displacement is 
identically zero, the breathing mode only has been excited, and this corresponds to a 
dimensionless period of approximately 400 (±20) X AT = 3.73±0 19 This result 
compares well with the prediction given by Kraus6 that 

ri =2Try/\'V 3.84(^=1/4) 

IK 

Kraus, H. Thin Mastic Shells, John Wiley Book Co., 1967. 
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FIGURE 9. Transverse Displacement Versus Time. 
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observation that the frequency of the coupled mode was lower than that of the 
breathing mode. Thus, Kr K, are chosen equal and inversely proportional to the lowest 
period of vibration in all calculations. 

At this stage, one can choose the output control parameter IPRNT=1 and 
obtain the complete solution at M=MMAX, and the damped displacement response to 
use as a check for convergence. However, if one has sufficient confidence in the choice 
of dumping coefficient, IPRNT can be set equal to 2 and only the final solution will 
be obtained. 

Examples of displacement and stress distributions are presented in Figures 10 
through 12 for a shell of thickness ratio B = 1/8, clamped at 0O = 90 deg and heated 
uniformly (Tm = 0.060). As expected, the results indicate an edge-effect; the 
significant stress distribution is confined to a region near the restrained edge. 
Quantitatively, the stresses seem to die out in a distance of about three characteristic 
lengths (VhR) from the clamped edge. This confirms the recommendation made earlier 
in choosing a value of N. 

Accuracy of THIN 

The accuracy of THIN can be assessed by comparing its predictions with exact 
solutions of the governing equations. However, since there are very few exact solutions 
available (which are of any real interest), there are a number of solutions whose 
accuracy can be estimated and therefore can qualify as a standard for comparison. 

One exact solution which is meaningful is the membrane state corresponding to 
uniform normal pressure and supported at the edge so as to restrain the tangential 
displacement and not induce any bending. This solution can be expressed in the form 

w = -2-q N0,Nö=-^q v.Q^M^O 

This state can be achieved with THIN by using the roller-skate support, and leads to 

w=   0.1440 X 10"2        N0,NÖ =-0.1800 X 10'2        M0,MÖ=O.OOO 

for all stations. The program parameters used in this solution were 

N=I2        0o=9Odeg        ^=1/4        h=l/8        q =-0.384 X 10'2 

Kr, K0 = 0.0220        MMAX = 1000 

As can be seen, the agreement is perfect. 

19 

■■^"^^—■^ 



--1"I<I in 

NWC TP 5785 

0.636 

CONSTANT TEMPERATURE (Tm » 0.06) 
CLAMPED AT 0O = 90 DEG 

12. h/R= 1/8, MMAX = 1000 
1.2 X AT 

20 40 60 
ANGLE (0), DEG 

80 100 

FIGURE 10. Transverse Displacement Distribution. 
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FIGURE 11. Tangential Displacement Distribution. 
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FIGURE 13. Transverse Displacement Distribution. 
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CONSTANT NORMAL PRESSURE 
CLAMPED AT 0O = 90 DEC 
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ANGLE («), DEG 

FIGURE 14. Tangential Displacement Distribution. 
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that the authors considered this to be adequate, and, therefore, these results should be 
useful as a standard of comparison. Similar results have been obtained using THIN and 
are presented in Figure 16 for the following program parameters: 

N = 8        (/)n=35deg        v=\/6        h=l/30 MMAX=2400 

q = -0.3X 10" Kr,K0=1.77X Ar 

No attempt has been made to reproduce the curves from Timoshenko's work since the 
figures there are small and could only be reproduced with difficulty and with dubious 
accuracy. It is therefore left to the reader to confirm the observation that the 
agreement is satisfactory. It should be noted, however, that the results of THIN for 
the meridional bending moment seem to underestimate the edge value by about 107c. 

The general conclusion from the three examples presented above is that THIN 
offers an accurate means of obtaining the stresses and displacements in spherical shells 
with a variety of boundary conditions enforced on edges ranging from shallow to 
hemispherical. Admittedly, the loading conditions studied here (uniform pressure, 
uniform temperature rise) were simple. However, the restraint applied at the edge in 
each case (see Figure 15, for example) produced a boundary layer (rapidly varying 
stress state) that was accurately predicted by THIN. As this boundary layer can be 
regarded as an example of a singular solution out of which more complex stress states 
can be built up by superposition, one can conclude that THIN has the capacity of 
predicting the stress states due to more complex loading conditions with an accuracy 
at least comparable to that obtained above. 
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Appendix A 
THE GOVERNING EQUATIONS 

The governing equations are taken from sections of the Handbook of Engineer- 
ing Mechanics (footnote 4). The notation used here is that of Chapters 40 and 43, 
although the equations are first made dimensionless before being written into THIN. 

If lime (t) is scaled such that 

r = R Vl 

and the displacements, strains, rotations and stress resultants are made dimensionless by 
the inttoduction of 

where 

fv, w) = h(v, w) 

X = hX/R 

(N0,N0) = hD(N0.N9)/R 

Q. = hKQ/R3 

aTni
ÄhTm/(R(l+i/)) 

D^Eh/d-^2) 

K = Eh3/(12(l-y2)) 

(Kr,K0) = coR2AT(kr,k0)/Eh 

(e0
(O).eö<O)) = hre0)iö)/R 

(/c0,Kö) = h(K(4,/<ö)/R2 

(M0,Mfl) = hK(M01M0)/R; 

(pr,P0) = Eh2(q,p)/R2 

a0 = h0/(R2(l+i')) 

h/2 
T

m
=iT/ (T-TREF)dr 

•h/2 

h/2 

e^/ (T-TR EF Mt 
-h/2 

it follows that the governing equations summarized in footnote 4 become 

_    _   av 
e> = w + ^ 

v-     aw     _ 
x = ä0-v 

eö = w + v cot 0 

-      3X 
K(t>    30 /cö = X cot 0 

(Nw1)Nfl) = (crii)efl) + Kefl)e(Ä)-T >»^0' :0'CÖ 0;        m 
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Q = "l0 +(M0-Mö)cot^ 

äfw    Kr aw    _        I     L       „       j;2 /gfy H 

3!v+^9v__       ]     pN0      _    _ j.2   -1 
aT2 + Ar 9r - P + ~2 ["30-+ (N0-Nö) cot 0 - ^Qj 

.92w    , 3w 
p0 - ^ir - k0at 

Ä^x^^^n^ k^cisrda- ping 
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Appendix B 
CRITICAL DAMPING FACTOR 

has thefornT1"8 ^"^ A' " ^ ^ Seen that the g0Verni^ ^™ ^ ^(0, r) 

+ Ar "37 = A^. T) 
92W     Nr 9w 
3r2     Ar 3r 

If we look for solutions by the separation of variables technique, i.e., assume 

fw)A)a(H'I/l)exp(inr) 

n"rgovCTned!'rby
ri"'C,i0"S 0f * 0n'y• ^ "'"' 0n SUbS,i,U,i0n lha' ^ '^'^y fc«or 

, (iK,      . , 

I 
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Appendix C 
THE TEMPERATURE INTEGRALS 

In this section, formulae will be derived for the numerical evaluation of the 
temperature integrals Tm, 0 which appear in the constitutive equations. It is assumed 
that temperature data are available at each meridional station at five equally spaced 
points through the thickness (see Figure 4) not including the end points of the 
interval. This latter restriction arises from the fact that temperatures are generally 
computed using an algorithm based on energy balances applied to regions of space. If 
these regions are chosen of equal thickness, the temperatures are naturally obtained at 
the points noted in Figure 4. Alternatively, should the temperatures be defined at 
equally spaced points through the thickness including the end points of the interval, 
the equations given below can be replaced by the well-known Newton-Cotes formulae. 

Assuming now that the temperatures are defined as shown in Figure 4, we 
begin by attempting to represent the temperature distribution by the polynomial 

T(r) = a0+air + a2f
2+a3F+a4^ (r = r/h,-2<f<2) 

and evaluate the coefficients a, 0' a4 so that 

T, = T(-0.4) = a0-0.4a, +0.42a2 - 0.43a3 + 0.44a4 

T2 = T(-0.2) = a0 - 0.2a, + 0.22a2 - 0.23a3 + 0.24a4 

T3=T(0) = a0 

T4 = T(0.2) = a0 + 0.2a, + 0.22a2 + 0.23a3 + 0.24a4 

T5 = T(0.4) = a0 + 0.4a, + 0.42a2 + 0.43a3 + 0.44a4 

The coefficients are readily obtained from equations obtained by adding and subtrac- 
ting the first and last pairs of the equations given above so as to separate the 
unknowns a-,, a4 and a,, a3. 

It then follows that 

a, =(T1 - 8T2+8T4-T5)/2.4 

a2 = (-T, + 16T2 - 3OT3 + 16T4 - T5)/0.96 

■d3 = (-T, + 2T2 - 2T4 +T5)/0.096 

a4 = (T, - 4T2 + 6T3 - 4T4 +T5)/0.0384 
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Further, with the result that 

Tm+TR£F=a0+a2/12 + a4/80 

h0 = a! +333/20 

we obtain 

Tm =(]+v^ [(2751, + 100T2 +402T3 + 100T4 + 275T5)/1152- T 

0 = 5(l+^(-llT1 - 2T2 +2T4 + llT5)/48 

REFI 
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Appendix D 
THE STRESS DISTRIBUTION 

In this section, formulae will be derived for the meridional, circumferential 
components of the in-plane, normal stress that are consistent with the definitions of the 
stress resultants and the sign convention shown in Figure 1. 

Let us begin by defining the meridional, circumferential components of strain at an 
arbitrary point (0, f) in the shell as follows 

e-0=e0
(O)(0)-?Ke{0) 

Further, let the stress resultants N., Mi be defined as integrals of the appropriate 
components of normal stress through the thickness of the shell with the convention 
that 

• 

h/2 

(N 0.NÖ)= /     (O00.o0ö)dr 

-h/2 

(M0,Me) = 

h/2 

-h/2 

Finally,  if the state of stress in the shell is nearly that corresponding to plane stress 
(Oj-y = 0), then Hooke's Law takes the form 

e0 = (ö00-I'aÖ0>/H + a(T-TREF) 

Alternatively, 

«00 = E(€0 + ue0)K\-u2) - «E(T-TREF)/(1-.) 

aöö = E(eö + ^)/(l-^) - aE(T-TREF)/(l-^) 

These equations can be rearranged in a number of ways to suit one's convenience. 

If the equations for a.^, OQQ are substituted into the definitions of the stress 
resultants, and we further substitute the expressions for the strain components at a 
general point in terms of the middle-surface strains ieJ0), e0

(O)) and curvatures («,, 
KQ) we obtain the following constitutive equations 
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N0 = Dl6^O)
+.e0

(O)-(l^)aTm] 

N0=D[eö
(O> + .e/O)-(l+^Tm] 

M0 = K[K0 + PKö+(l+^)Q;e] 

M0 -K[K0 +mlt> +il+v)a@] 

which are consistent with those equations noted in Appendix A. These equations can 
be rearranged to yield the following strain-force stress resultant, curvature-moment 
stress resultant equations: 

c0
(O)=(N0-.N0)/Eh + aTm 

e0
(O)=(N0-.N0)/Eh+aTm 

K0=12(M0-I/M9)/Eh3-ae 

K9 = 12(M0-^)/Eh3 -a© 

Finally, if these expressions for the strain, curvature components are substituted 
into Hooke's Law, we obtain the following expressions for the in-plane stresses 

a00/E = N0/Eh- 12rM0/Eh3 - a(T - Tm - TREF - äW/d-") 

a00/E = N0/Eh - 12fM0/Eh3 - a(T - Tm - TREF - ^e)/\-u) 

When expressed in dimensionless variables, these equations become 

^/E = MN0 + Tm - rR(M0- 0)]/(l-.2)- a(T-TREF)/(l-.) 

a00/E = h[N0 +Tm - fh(M0 - ©)]/(l-»'2)-a(T-TREF)/(l-i') 
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Appendix E 
ASYMPTOTIC SOLUTION FOR A THIN SHELL 

In this section, we consider the problem of determining the deflections, stresses 
in u clamped hemispherical shell that is loaded by a uniform distribution of normal 
pressure. In particular, we will seek a solution as a sequence of solutions, each term in 
the sequence multiplied by an ever increasing power of the thickness parameter (h), so 
that (one expects) the accuracy of the solution at any stage should increase as the 
number of terms in the sequence is increased. Although this method of constructing 
solutions is described in a number of texts, we will refer here to the formalism 
described by Cole.8 

The problem we wish to consider is described by the equations presented in 
Appendix A where we take pr = constant and delete all temperature terms. We wish 
to obtain a solution subject to the boundary conditions that 

v, w, X = 0 ^ = fy) 

As a starting point, we observe that the following membrane state 

N^Nö=prR/2 X,M0,MÖ,O0 = O 

v = C(O,sin0 WIS Eh~y "c    cos^ 

& 

v 

is an exact solution of the governing equations, although it does not satisfy the 
boundary conditions. Physically, we expect that the solution we seek should behave 
like this membrane state in regions of the shell that are not near the edge. What is 
required, therefore, is a solution that is valid near the edge, satisfies the boundary 
conditions and converges to the membrane state in some sense for 0 such that 0< 0O. 

In this edge region, we expect a rapid variation with distance for the dependent 
variables. In particular, we assume that the dependent variables may vary significantly 
over a distance comparable with the characteristic length (\/Ph). and define a 
dimensionless length scale (i;), measured from the edge, given by 

= 0o    e* e2=h 

Let us further adopt the following set of dimensionless variables 

v = ep|.R
2v/Eh w = prR

2w/Eh 

(NrNe)Q0) = prR(N01Ne)eQ) 

("die, J. D. Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co., 1968. 
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(M0.Mö) = Prh
2(^,Me)/(12e2(1^2)) 

In these variables, we can develop the governing equations in the following form 

(l^2)(N0,Ne) = (l+I;)w-(l)^+(I;, I)e9cot0 + O(e3) 

>dv (M0,M0) = (l)^-(l;ii)e^|cot0 + (l!l))e2dv + O(e3) 

dM^ 
m % * ""df + e(M0"Me) cot 0 + 0(e3) 

dN. 
"df-- e(N0-Nö) cot 0 + e2Q + 0(e3) = 0 

dQ 
d^ - 6$ cot 0 - (5L+Nfl) + 0(c3) = - 1 

where m4 = 12(l-f2), and 

cot 0 = cot 0O + ej csc'0o + e2f2 cot 0O csc20o + 0(e3) 

as appropriate. 

From the form of these equations, it is apparent that expansions of the type 

v(6^) = V(0)a) + 6V(1>a) + e
2v<2)(f) + O(e3) 

w(e,f) = ^0>^) + c^i)a) + e2-(2)a) + O(e3) 

Ve'^= 1/2 + ^(1)^ + e2"0(2)a) + o(63) 

Nö(e^) = nö
(0)a) + enö

(1^) + e2ne
(2>a) + O(e3) 

0(6, ?) = q<0>(5) + eq(l )a) + e2q(2)a) + 0(e3) 

K(€' & = m0(O)^ + ^"i/1 )(^) + 62m0
(2>«) + 0(63) 

Mö(e,O = mö
(0>a) + em/

1)(^) + e2
m/

2)(|) + O(e3) 

should   exist.   The   constant   (1/2)   as   the   leading   term   in   the   expansion   for  N 
anticipates the requirement for zero order matching. * 
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The equations governing the zeroth, first and higher order terms in the above 
expansions are obtained by substituting these expansions into the governing equations 
and taking successive limits of the governing equations as e-> 0 holding ^-fixed. In 
particular, we find that 

dv(0> 
rt}(0) j|     =(\+u)Vv>-{\~^)/2 mV

0) 
(0) 

G(0) 
.:)n,(0)=(l+.)w(0)-J ^ 

,(0) 

d^ df nfl
(0)=-I/2 

m.(ü) ^w(0) 

d?- 
•V0)-<» 

govern the zeroth order solution, and 

,(i) 
(l-v2)fV1>Vl>).= (l+^) - (1,^1     +(., l)v<0) cot0o 

(mJ".«, "'') = (1, v)- 
d^w(1) 

d*r 
(f, l)-g|-     cot0o 

,4„(1) 
dm. (i) 

(0) (OK m C1     =-"df     +(m^^-m^u>)cot0l 

(i ) 

(1/2- nö
,O))cot0n 

|m-q^cot0o-(n/') + n0^) = o 

govern the first order correction, and 

n-v2)%{2\nB
(2))*0*v)$(2) ~ iUp)^     +^l)^o)csc20o+(^l)v'1)cot0() 

/d2^(2)    dv(0)\ /dw(0)      ,        dw(1) \ 
w   +^ j-^^dt  csc^o + dr  cot0oj (.V2\mö-)=(i,^2-(2) ^0) 
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df     +nni/O)-m/o>)csc20o +(m0
(1)-m/

1))cot0o 

dn (2) 
,(0) 

df     =-q(ü)+(l/2-n/o>)^sc20o+(n/1>-n0
(1>)cot0o 

dq 
d^ 

(2) 

-aq{O)csc20o+q<1)cot0n)-(nrA
(2> + nfl

(2)) = O 

govern the second order correction. In the paragraphs to follow, the solution to the 
above system of equations will be described which matches the membrane state in the 
region of the shell that is not near the edge. It will be assumed that the reader is 
familiar with the matching process so that little of the motivation needs to be 
descnbed and only the results of the process will be presented. Furthermore only the 
case 0O = 90 deg will be described. 

Thus,   in   anticipation   of   the   requirement   that   all   solutions   be   bounded 
exponentially as ^-> oo, We take the zeroth order solution in the form 

5(0) 
wv '= (1-^/2+ e"x(A0 sin x + Bn cos x) x = m£//2 

q(0) = -e-x [(A0 + B0) cos x + (A0 - B0) sin x]/n^/2 

v(u)=Co
(i>+(l+,)q(0) nö

(0> = ./2 + ^0) 

The solution of the equations governing the first order correction can be shown 
to vanish identically for the case 0O = 90 deg. This follows from the anticipated 
observation that as the governing equations become homogeneous for 0n = 90 deg the 
only solution which satisfies homogeneous boundary conditions is the trivial solution. 

Thus, as we seek more than the first term in the expansion, we must turn our 
attention to the second order equations. In doing so, we find that 

w(2> = -(l+.)C2
(i) - C0

(^ - 3^q(0)/4 + e x[f2(A0 sin x + B0 cos x)/4 + 

+ A2 sin x + B2 cos x] 
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1 u V2        L      \     m 4m3 + 

BnX      B„-A Box     «o-Ao   2\ / —_ + ———- x- + cos x (■ 
2mJ        2m3       / \ 

A2+B2 .Bo-Ao    Aox    Ao + Bo   , ■ + 

•0       ■■■■'^d      +w-'+5v'-' n0
l2)=C2

,,)- fq ,f2) = „n.(2)+^(2)^^0) 

m 4m3       2ni3 

(2) =r  (i) _ .(0) 

2m3        /J 

The constants A0! B0, C0
(i), A2> B,, C2

(1), D2
(i) of the edge (or inner) solution, and 

(        of the membrane (or outer) solution will now be chosen so as to satisfy either 
the boundary conditions or the matching requirements. 

The boundary conditions at 0 = 90 deg (| = 0) require that 

w(0,(0) = w(,)(0) = w(2)(0) = ...=0 

v(0)(0) = v<1)(0) = v(2)(0) = ... = 0 

dw (0) dw :(i) dw (2) 

^f     (0) = ^    (0) = ^    (0)+?<0)(0) = ... = 0 

On applying these boundary conditions to the zeroth order solution, we find 

A0 = B0=-(!-.)/2 C0
(i)=-(1-K2)V2H 

Now.  before applying the boundary conditions to the second order corrections, it is 
convenient to obtain the requirements of the matching process. 

where 
Following Cole (see footnote 8), we first define an intermediate length scale | 

_<V0 
5

T/ - 77(e) = tW) 

and 77(e) is such that 

/    e 

e-*0 
= 0 
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For example, we could chooser? = e1/2. In what follows, we will require that the 
edge (or inner) solution, expressed in the intermediate variable, converge to the 
membrane solution, also expressed in the intermediate variable, for all values of ^ 
(fixed) as e->0. 

On   applying   this   matching   condition   to   N^,   we   find   that   n^(I)=0   thus 
ifying the fact that the first order equations are homogeneous, and ven 

/ 

so that 

e-K), t 

(i) _ 

FIXED 

On applying the matching condition to v, we find 

C(o)=eprR
2C0

(i)/Eh 

for   zeroth   order   matching.   The   remaining   constants   are   found   on   applying   the 
boundary conditions to the second order correction. 

The boundary conditions on w1 ', jt       are satisfied by taking 

A2 = - (1 - y)( 1 +4v)l4m2 B2 = 0 

The boundary condition on v(2) is satisfied by taking 

D (i) ■m(l+4^/48^2 

This completes the solution as it can be shown that the remaining matching conditions 
are also satisfied. 

As a final remark, it is convenient to obtain the above solution in a form 
which is uniformly valid over the entire range of opening angle rather than have 
solutions whose range of validity was restricted. Again Following Cole (footnote 8), 
such uniformly valid solutions can be constructed by subtracting the common part 
from the sum of the inner and outer solutions. The common part of the solution are 
those terms in both the inner and outer solutions which match identically in the 
matching process. For the example studied here (0O = 90 deg), it can be shown that 
uniformly valid, two-term expansions can be constructed in the following form 
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^ = ^CO) + e2-(2) + €(1_^2)(cos 0-e{)/mv/2 

v = v{0) +e2'vi2)-(\-u2)ism<t>-\+e2fl2)lms/2 

N^l/2 + e
2n0

(2) N    =n   <0> +^2n   (2) 

Numerical results obtained from these expressions are presented in Figures 13 through 
15 For several values of the thickness parameter. 
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Appendix F 
PROGRAM LISTING 

lrTNLlrH^CAL   SHrLL   UTTH  SURF*CE  LOW.TCHPER»TÜRE   EFFECTS 
RoLiSv     TO   ,FOrRnfLorPED  B0{1H0A^   "  PHI=PO.   TO   I   FOR  SIHPLY  SUPPORTED 
POUHDARY,   TO   2   FCR   ROLLER-SKATE   BOUNOARV. 

lib   IrirlJi   V*™   °ISPLACEMENTS  ONLV.TO   1   FOR   BOTH  OISPLACEHENTS 
AND   STRESSrS.    TO   Z   FOR   STRESSES   ONLY, 
HB   EQUALS   H/R. 
CKR   EQUALS   KR 
CKP   EQUALS   KP 
TMC   EQUALS   TEMPERATURE   MEAN   BAR 
THB   EQUALS   TEMPERATURE   FTPST   MOMENT     BAR 
PB   EQUALS   P   RAR    (TANGENTIAL   PRESSUREI 
OPB   EQUALS   0   BAR   (TRANSVERSE   PRESSUREI 
WF   EQUALS   W   RAP 
WBD   EQUALS   U   BAR 
VB   EQUALS   V   ?AR 
VBD EQUALS V BAR 
CHIP EQUALS CHI 
QB EQUALS 0 P,AR 

EPSILON   PHT   BAR 
EPSILON   THETA   BAR 
KAPPA   PHT   BAR 
KAPPA   THETA   BAR 
N   PHI   BAR 
N   TH^TA   BAR 
M   PHI   BAR 
M   THETA   BAR 
BAR   NEXT   TO   APEX 
3AR   AT   A   STATTON   I: 

CHOOSE   N   GREATER   THAN   OR   EQUAL 
CHOOSE   NV   »BOUT   N/2. 

DIMENSION   PD<5C»tOPBI5PI »TMB»5DI. TMBI 501 
DIMENSION   TMP(50t SUSTGBISI 
DIMENSION   CT1(50I.CT2(50> 
DIMENSION   WB(50 11 UBD( 50 11VBI50 ItVBOl50t«CHIBI 50 I 
DIMENSION   G3(E0».FNTBI50liFNPBI50I.FMPBf5ClfFNTB«50» 
DIMENSION   WAt 3500 »tVA» 3500» 

GEOKETRIC.MATERIAL   AND   CONTROL   DAT*  ENTERED   HERE. 
READCj.Zi»»    PO.HBfPP.CKR.CKP 
READ(S.2m   TPEF.ALFA 
RE AO ( 5 t 25 »    NBCt Nt NV^ MMA Xt IDECt IPRM T 

?<»   FORMAT(       ) 
25  F0RM»T(6I10» 

LrN-1 
AN = N 
DPr2.n,pC/,2,0,AN_1<0, 

0T=0.5»DP»nP 
SlR:l.0-0.5»CKR 
S1P=1.0-0.5»CKP 
S2R=1.C*C.5»CKR 
S2P=1.0»0.5»CKP 

PRESSURE,TEMPERATURE   DATA   ENTERED   HERE. 
TEMPERATURE  INTEtjRACS   EVALUATED  ASSUMWO   TEW»E!» ATURES  OEFIICD  AT 

.I^«^1*   SP*CrD   P0INTS   THRU   THICKNESS,   NOT   INCLUOINS   SURFACE   POINTS. 
J-1,5   REFER   TO   POINTS   NEAREST   INNER.OUTER   SURFACE   RESPECTIVELY. 

READ(E,2m    (OPB«TI,PBin,I=l,NI 
DO  20   Irl.N 
REäDI5,2I»>      ITMPIII JI.Jsl.Si 

TMBm=ll.n»PR|.ALFAM-TREFH2rS.0»TMPIIfl»»100.0«THPII.2l»»O?   O 
l.TMP(I,J.»10D.0.TMP(I.*M2T5.0.TMPII,5n/U52.0r/IiB 

m 

EPP" 
EPTP, 
EKPP 
FKTH 
FNPF 
FNTR 
FMPR 
FMTR 
UA 
VA 

EQUALS 
EQUALS 
EQUALS 
EQUALS 
EQUALS 
EQUALS 
EQUALS 
EQUALS 

EQUALS W 
EQUALS   V :NV, 

TO (l*2«P0/SQRr(HBII/2 

i -fl 
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*  

THBd 
l»ll .C 

20 CONTI 
WRITE 
WRITI: 

?\ FORMA 
I'KPr' 

?2 FORMA 
I'HBr« 

WRITE 
23 FORMA 

WRITE 
MO FORM^ 

WRITE 
SO   '«2 
WRITE 

«»2 CONTI 
11 FORMA 

WRITE 
*! FORMA 

WRITE 
•l<t FORMA 

00   ME 
WRITE 

MS FORMA 
4E CONTI 

C      SET   COTA 
CT2 (1 
CO   1 
Flrl 
CTKI 
CT2(I 

1 CONTI 
C      SCT   TI*C 

M=l 
C      SET   INIT 

DO   2 
wnin 
W3D(I 
VP1I) 
vnod 

2 CONTI 
WA(1 ) 
VAdl 

C      SET   APEX 
CHIB( 
0B(1 1 
VPJN* 

C      DISPLACE 
C      COMPUTE 

3 DO   "» 
CHIB( 

4 CONTI 
DC   5 
EPPD = 
EPTBr 
FKP3r 
FKTBr 
FNP3( 
FNTB( 
FMP3( 
FMTBC 

5 CONTI 

NWCTP5785 

)=C1.D»PR»•ALFA»(-11.0»TMPII»ll-2.0»TMPII,2l»2. 0»THPIIt<H 
• TMP !!,';) I/(9.G«HP»HBI 
NUr 

(BiZt)   PCiPR.CKR.CKP 
«E.22I   NBCiNtNViMMAX»HB 
T«1H   . ,P0r,iE11.5.ZXi'PR = 'tE11.5.2Xt,KR = '.E11.5.2Xi 
iril.BI 
TIIH   . 'NBCrSTtiZXt »Nz'iIZt 2Xi «NVr'.IZ.ZXf «MMAXr'iH.ZX. 
trn.5) 
(Bi23»    TRFF.ALFA 
TtlH    .,TR^F='tE11.5.2Xt,ALFÄ=»tE11.5» 
IBi>lCI 
T(//.5Xt'TEMPERATURE   DISTRIBUTIONVI 
(E.35I S 
i=itN y 

(tfUl)   It(TMPITfJliJrliBI 
NUr 

T(1H   iI2i2X.5iE11.5.ZXM 
(B»»3» 
TI//i5Xi«SURFACE   LOADING   AND   TEMPERATURE   INTEGRALS'/» 

T(2Xi,I'i9Xi'0PB'i9Xi'PB't9Xi«TMB,i9X.'THB'//! 
I = liN 

{£,%t,t   IiQPBIIIiPBf TliTNBdliTHBIII 
T(1H    tI2.2Xt'»<Ell.5t2XM 
MUE 
NGFNT   FUNCTIONS 
l=r0StnP/2.D»/SINfOP/2.OI 
I = 2iN 

)=n0S(«FI-1.0)*DPJ/SINMFI-l.0l»DPI 
»:COS« IPI-O.BI'DPI/SINHFI-D.SI'OPJ 
NUE 

TO   ZERO 

IfL   niSPLACEMENTiVELOCITIES   TO   ZERO 
T = ltN 
=0.0 
1=0.C 
=0.0 
1=0.0 
NUE 
=0.0 
=0.0 

SYMMETRr.   TANCENTTAL   DISPLACEMENT  BOUNOARr   CONDITIONS. 
11=0.0 
= 0.0 
1 )=0.D 
MFNTS   COMPLETE   FOR   FIRST   TIME   STEP 
STRAINS.ROTATIONStSTRESS   RESULTANTS   FOR   TIME  STEP 
1 = 2.N 
II=IWB(II-WB«I-1)l/DP-VBJII 
NUF 
1 = 1.L 
wscimvBt T«-ii-VBf n )/DP 
W0III»0.5»(VB«T*1>*VBCI»>»CTZ«II 
«rHIBII*l)-CHIBrT)l/DP 
C.5»(CHIC(I»1)*CHTB(II»»CT2III 
I»:rPP3*PR»EPTB-TMB«I» 
II=EPT3»PR»EPPB-TMBIT» 
II=FKPB*PR*FKTB*THBIII 
I»rrKTE»PR»rKPB»THBfU 
NUF 

46 

mmmm ■■■■■-    > — ..*■■ ■ .   ■    ^■..^, ,■-,„.  „,    .„r.-.,-   VlMnyn 



• WJWJ li-t !..'<• u »pwrswwwww^Tswwnwn^^www!^^ '■--::'_..,■.,;    .-.-.^ ■ -  ,   -    ■- 

■MM t- 

P 

? 

:> 

100 

IM»DPI / 

-FHTBII) »FMP3I I- 1 | 

NWC TP 5785 

SET   CONniTIONS   AT   I=N. 
PPPB=WntN>*CVB(N*U-V8»N>'»/0P 
EPTR.WD(N,,0.E.(V3)NM„V 

FMP3(NI=rpPB»P9.ppTB-TI-BtN» 
f"NTn(rj»:FPTGtPR.rPPp-TKB(NI 
rr(NBC-l|    IOC,200,200 
fKPn=-2,C»CHI8(N»/DP 
'■KPn(N)rFKPQ»TMB( Nl 
rf,TC(rj):PR,FKPB»THB(NI 
GO   TO   300 

?^C   FKPBmrC.O 
CHiP(r,ti,:(CHT3(iN,M 1>D_0>5 H 

lU.C*0,5»PR»0P»CT2»«n vifiNii    IHB( 

rKPB:(rHI3CNtl)-CHIB(N)»/DP 
rKTnrr.5.(CHIB(N«lMCHTBJKn.CT2rNI 

c   cHffpp--^^E---rSMCo^nEo roR T„rs TIHC STEP 

7 CrNTlNUF 

z./.i.r-rR.PRn' QB'rn/0p'0-5"QB'I*i» ^B'iM.cT2iin/12.o 
8 CONTINUr 

310 ^'^"i.' 320,320.310 

2>/(U0-PR.PR,r 
OB,Nn/DP*O-5M0B,N^'^B'NM.CT2.N.,/12.o 

320 f. = Htl 

COMPUTE ^ISPLACrMFNTS FOR 
wpm=w"(i)»DT.wBotn 
WAHIIzWEd» 
=0   9   1=2.L 
WBII)rHP(l)*DT«WBOII| 
VP(II = VnrilfOT»V3DITI 

9   CONTINL'F 
VP<N) = vn(N|»r)T»vaD( Nl 
VB(Ntl|r-V3(NI 
Vfl «M) = V?(NVI 
IF(NPc-l) 3i»0,rI,0,33C 

330 W?(NI=WP(NI»DT»WDD(N| 
3«IP   IF(f-KMAXI   3,3.10 

10 IFtIPRNT-1,   ll.u.m 
11 WRXTEfE.lGI 

NEXT   «HOLE   TIF-E   STEP 

16 "T^ÄSr""" "• ""»"•» """•', 
WRITE(e,12l 
E0RMATI1H 
CONTINUF 
IF1IPRNT-1I   15,IK.ID 
VIRITE($,30I 

wRm;s:3nx,,rcLüTToNrNoiMEM"oN^" 

12 
13 

14 
3D 

J»WA( JI.J.VACJ I 

•'"A" •".'»=•.Ell.5.2X,.VM'.H..,=..CIX.5I 

VARIABLESVI 
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,s"M;s"S::i,;:f;;^;:r.;;,/v
,"',B'"i-"",,''x,,"T"E"-'«--"- 

DO   32   1=1,N 

32  CONTINU?: 
WRITE(E.3t|| 

"   WR0IR;^E^fX,,M"m0NAL   DIMENS"^"   STRESS   THRU   THICKNESS VI 
35J0

o:jf/
TJ2x"^T3,'"'-^-.iox..-o.2..iox..o.o.iox..o.2..1ox. 

00   37   1=1,N 
DO   36   J=l,5 
AJ = J 

36 CONTINUt 
WRiTtrE.m» I. ISIGBJ JI ,j=i,5i 

37 CONTINUE 
15   STOP 

END 

■ 

48 

  .w^K^aaaaa. :.-::.■^.:.,,.:~>:.;:':1._.!.:;r^'.ri''-:..     ,■„■ : 



i^■»'"il,, nmi\m*mi*lllS(&~»>-- 

t*«.., .-,^. .--...*, v —-.-. ^^-.  , .  ..^n-, ......    .-, .JIW„ ,...■. ^ Piling j.    u.,,™«-.™—.■ —^-■7'*^-^*..i. .j«- 

%, 

;   - 

INITIAL DISTRIBUTION 

5 Naval Air Systems Command 
AIR-320(1) 
AIR-320B(2) 
AIR-50174(2) 

3 Naval Sea Systems Command 
St;A-035(l) 
Si;A-09G32 (2) 

1 Naval Postgraduate School, Monterey 
1 Naval Research Laboratory 
1 Naval Surface Weapons Center. White Oak 

12 Defense Documentation Center 

M: 

NWC  589 805   (tO/7S)   65 

J_ 


