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FOREWORD

This report describes one phase of a program which began in July 1973 and
continued through June 1975 to develop a combined aero-thermal-stress computer code
capable of effeciently predicting temperature and stress distributions in axisymmetric
secker domes. The goal of the program was the determination of worst case
design/flight conditions for tactical missile seeker domes. The program was accom-
plished through the Structures Branch, Code 4571, Naval Weapons Center, and
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NOMENCLATURE USED IN THIN

The following nomenclature is used in THIN in addition to the input/output
terms which are described in the report.

THIN Appendix A
CHIB X

EPPB

EPTB

FKPB

FKTB

FMPB

FMTB

I'NPB

FNTB

QB
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3 : INTRODUCTION

THIN is a special purpose program which can be used to obtain the stresscs
and displacements in a spherical shell acted upon by an axisymmetric distribution of
normal and/or tangential pressure, and heated arbitrarily through the shell thickness to
a prescribed axisymmetric temperature istribution. It is assumed that the shell is
closed at the apex, and supported along the edge (see Figure 1) such that the edge is
either:

1. Clamped-displacements (v, w), rotation (X) all vanish, or

2. Simply-suoported-displacements (v, w), meridional bending moment (M¢) all
vanish. or

3. Rollerskate supported-tangential displacement (v), transverse shear (Q¢) and
meridional bending moment (M¢) all vanish.

Further, it is assumed that the material is linearly elastic, and characterized by material

' parameters (E. », &) which do not depend on the temperature. (This feature of the
1 program could readily be included, but was omitted here to limit the length of the
5 program.) R

R

3 NBC = 1

b | 1
e |

B

: NBC = 2

| 5 i

““. ::i

. FIGURE 1. Notation and Boundary Conditions. 1

3




NWC TP 5785

THIN obtains solutions of the axisymmctric, thin shell equations appropriate to
spherical shells (see Appendix A). 1t is based on an algorithm developed by Otter! and
termed by him “Dynamic Relaxation (D.R.)”. In essence. the static problem, which is
governed by a system ol ordinary differential equations and associated boundary
conditions, is replaced by a dynamic problem governed by a system of partial
differential equations and the same boundary conditions. The success of the method
depends on the Tact that the dynamie problem is relatively easier to solve numerically
than is the static problem.

The associated dynamic problem is governed by the equations of motion
appropriate to spherical shells in which are included hypothetical viscous damping
terms. 1" the damping parameters (K,, Ky) have been chosen properly, the solution of
the equations of motion should decay to the required solution of the cquations of
cquilibrium in about one to two periods of the lowest mode of vibration of the shell
corresponding to the particular type of support. (Note that rigid body motion must be
constrained in order to conveniently identify convergence of the dynamic solution to
the required equilibrium solution.) The use of D.R. generally requires that the program
be first run in an experimental mode with zero damping in order to identify the
period  of the lowest mode of vibration. This phase could be omitted if this
information could conveniently be obtained elsewhere, i.e., analytically. However, it is
often more cusily obtained experimentally, The required solution is obtained by
running the program again in the damped mode. and is the limiting form of the time
varying solution as time becomes lurge (about 1 1/2 periods of the lowest mode of
free vibration). In a qualitative way, the shell is Tirst impulsively loaded and allowed to
vibrate Ireely (without damping) for u length of time adequate to observe some
semblance of periodic motion. This experiment is then followed by a trial run in
which the shell is again impulsively loaded, but now damping is included and the
motion is observed Tor u length of time adequate for the kinetic energy to he
dissipated. For further details of D.R.. the reader is referred to Rushton.? In what
follows, the theory will be implemented insofur as it applies to the particular problem
at hand,

THIN operates with the thin shell equations made dimensionless with the
introduction ol a4 suitable time scale and appropriate  dependent variables. These
cquations (Appendix A) are then written in finite difference form using the interlacing
network in both space (the meridional opening angle-¢) and time that was suggested
by Gilles® for improving the accuracy of the Hnite difference representation  of
derivatives. Thus, it is observed from Figures 2 and 3 that all the dependent variables
are not defined at the sume point in either space or time. In particular, the transverse

POuer, J. R, N, “Computations for Pre-stressed Concrete Pressure Vessels Using Dynamic
Relaxation,” Nuclear Structural Engineering, /7 (1965) Amsterdam, pp. 61-75.

2 Rushton, K. R. “Dynantie-Relaxation Solutions of Llastic-Plate Problems,” JOURNAL OF
STRAIN ANALYSIS, Vol., 3, I (1968), pp. 23.32.

3 Gilies. D. €., “The Use of Interlacing Nets for the Application of Relaxation Methods 10
Problems tuvolving Two Dependent Variables,”™ PROC ROYAL SOC. A (1948), 193, pp. 407-433.
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SYMBOL QUANTITIES EVALUATED

E e ¢0: g0 g
N¢. Ng: M¢. Mg: T

i
O

FIGURE 2. Spacial Format.

QUANTITIES EVALUATED
DISPLACEMENTS, ACCELERATIONS

VELOCITIES
DISPLACEMENTS, ACCELERATIONS
VELOCITIES

DISPLACEMENTS, ACCELERATIONS

d VELOCITIES

FIGURE 3. Temporal Format.
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displacement (w) 1s defined on 1/2-integral multiple values of the meridional coordinate
terval (A¢) and on integral multiple values of the temporal coordinate interval (At).
Note that the transverse velocity is dcfined on 1/2-integral multiple values of the
temporal coordinate interval. In comparison, the tangential displacement (v) is defined
on integral multiple values of the meridional coordinate interval, and also on Integral

multiple values of the temporal coordinate spacing, In this way, the representation of

derivatives or differences always involve central differences. On the other hand, not
having quantities defined at points where the boundary conditions are imposed can be
awkward. However, this difficulty is overcome by the use of dummy points which are
located outside the regular interval,

A typical solution is generated by first assuming the shell to be quiescent
(displacement, velocity all zero) and loaded by the given extcrnal load and/or heated
to the prescribed temperature distribution. As this condition can exist only if there is
4 non-zero value tor the acceleration, there is motion away from the initial configura-
tion which can be computed and continued in a step-wise manner until either the
pertod of the fundamental mode of vibration is identified, or satistactory convergence
to the equilibrium solution is achieved,

In the sections which follow, the input requirements and thc output are
described. There then follows a description of the prograrn with details on how the
paramcters of the program are chosen. Examples are presented of typical dynamic
response and results given for both constant transverse pressure loading and uniform
temperature rise. Finally, the accuracy of the program is assessed by comparing the
results of THIN with analytical predictions--again for the case of constant transverse
pressure,

INPUT REQUIREMENTS AND THE OUTPUT OF THIN
In order to use THIN, the following must be provided.
Material Data
v (=PR) Poisson’s ratio (dimcnsionlcss)
a (=ALIFA) Coefficient of thermal expansion (1/°F)

(Young’s Modulus, E, is not required as the output stresses are presented in
dimensionless form, i.e., 6¢¢ = o¢¢/E).

Geometric Data

¢, (=PO) Meridional opening angle at which boundary conditions are
prescribed (dimensionless, radians)
h (=HB) Thickness ratio (h/R) (dimensionless)

Preene e A T




e _—

NWC TP 5785

(The thickness, h, is not required as the output displacements are expressed in
dimensionless form, i.e., w = W/h.)

N A measure of the number of segments (see Figure 2) into
which the meridional length of the shell is divided (N =

g
i Za) (integer)

Control Data

!ér ((—_(Cl;l;)’ Damping factors (dimensionless) (See Appendix B)
2L IR
NBC An index which determines (see Figure 1) the boundary
conditions (integer)
NV An index which determines the meridional station at which
the tangential displacement is to be studied during the
' experimental phase of operation (integer)
MMAX An index which determines the number of iterations
through which THIN cycles in either phase of operation
’ (integer) ;?
4 R IDEC An index which determines the interval between iterations B
4 whose typical displacements are printed out during the ’7
1 | experimental phase of operation (integer) ¢
IPRNT An index which determines the output required (integer)

1
§

IPRNT=0 Typical displacements every IDEC number
of iterations only

IPRNT=1  Typical displacements every IDEC number
of iterations, plus the solution after MMAX

: iterations expressed in  dimensionless

4 variables

. IPRNT=2  The solution after MMAX iterations only

, Mechanical Loading and Temperature Distribution Data

p (=PB) Dimensionless tangential pressure distribution. Must be
A prescribed at N-meridional stations (see Figure 2) even
3 though the apex value is never used, and. from symmetry,
must be zero (subscripted variable)
1 (FQPB) Dimensionless transverse pressure distribution. Must be
prescribed (see Figure 2) at N-meridional stations even
though the edge value is only used for the roller-skate
| ' support condition (subscripted variable)

(]

Tr gr (FTREF) Reference temperature at which the stresses, strains are
assumed to vanish (°R)
.
7
.-?I‘;

M s [ —

L i L i
LR Resd Al

e ———— |

L e
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T (=IMDP) Temperature distribution. Temperature must be prescribed

(see Figure 4 and Appendix C) at § points through the

| thickness of the shell, at N-meridional stations (sub-
' scripted variable, °R)

These data are read into the

program from cards provided by the user. The
first card contains

¢O h " Kr K

¢

and is read in the open format. The second card contains

,‘

ﬁ Ty o
& and 1s read in the open format. The third card contains
; ’ NBC N NV MMAX IDEC IPRNT
: ' and is read in the 6110 format. There then follows N-cards with the number pairs:
l Qo
|
|

§=tm

, 5 ! 0.5 OUTER SURFACE
-

R | 04

-

% 024
) — 3 (F, ¢)
4 '.,_ “0.2 -y

04 |
4 ~— INNER SURFACE

v"j“‘,

FIGURE 4. Typical Temperature Distribution.
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for cach ol N-meridional stations. These cards are read in the open format. Note (see

Figure 2) that the values of p, q are not measured at the same point in space due to

: the use of the interlucing network. Finally, there follows N-cards with the temperature
distribution (see I'ignre 4)

I, i I3 T, i UIs

d

through the thickness of the shell for each of N-meridional stations. These cards are
also read in the open format.

In its present form, the output of THIN always inciudes a record of the

temperature and the applied pressure distribution, and also the temperature integrals

T,,. © computed according to Appendix C. The output can also include (1) the time

response of both the transverse displacement of the meridional station nearest the apex

(I=1) and the tangential displacement of the meridional station =NV, and (2) the

solution after MMAX iterations expressed in dimensionless varicbles. The index 1PRNT

is used to identify the option. The displacements at I=1(w), I=NV(¥) have been chosen

as they represent very nearly the maximum displacements expected in the lowest mode

of wvibration. The index NV is taken somewhat greater than N/2 as it has been

observed that the tangential displacement reaches 4 peak in this neighborhood. The

E time response is printed out so that the user can either estimate the period of the

lowest mode of vibration or determine whether satisfactory convergence to the static

sohlution has been achieved. The solution includes the meridional distribution of the

dimensionless displacements and stress resultants, and the complete (meridional plus

transverse) distribution of the dimensionless meridional normal stress (o =o¢¢)/[{).

| This stress component is computed according to the method outlined in Appendix D,

and 1s displayed as it is generally the critical stress from a maximum normal stress
point of view.

:_*‘ ANALYSIS OF THIN

b The form of the thin shell equations used in THIN is that given by Parkus and
I"lugge.4 This form was chosen as it was considered more generally accessible than
other Torms. The equations and their dimensionless forms are presented in Appendix
A. THIN actually operates with the finite difference form of these equations using the
interlacing network illustrated in Figure 2.

The D.R. algorithm can be illustrated by studying the equations which govern
the transverse displacement (w). At the beginning of a typical iteration, the displace-

ments w(l) and the velocities a—g—(l) are known at all points in space (I <IT<N) It

| should be noted (see Figure 3) that the velocities are known at a time (corresponding

! —————e.

4 Flugge, W., Handbook of Engineering Mechanics, McGraw-Hill, 1962,

9
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to the index M) which is less than the time (also corresponding to the index M) at
which the displacements are known. For the first iteration (M=1), these displacements
and velocities are all taken equal to zero. Before proceeding to the next iteration. the
strain components E¢, €g are first computed. For example, from Appendix A, we write

es(h) =w(D + [W(I+1) - W(1)) /A

In an analogous manner, the rotation X is also computed. With the strain, rotation
components now known at all points in space, the in-plane force and moment stress
resultants follow directly from the constitutive equations—the temperature integrals
having been computed (see Appendix C) during the data loading phase. The transverse
stress resultant (Q) is then obtained from the equation of moment equilibrium
expressed in the form

Q)= [My(1) - My(1- 1)1 /8 + (1) - ¥y + My(I- 1) - M(1-1)] <52

Note that the use of this equation is, strictly speaking, not justified in the context of
a dynamiv analysis. However, since the dynamical aspect used here is a computational
artifice, the neglect of rotary inertia is unimportant and has no effect on the final
results. With all stress resultants now known, the solution corresponding to the given
displacements is complete and the stress distribution could be calculated although it is
generally deferred until the last (M=MMAX) iteration. It should be noted that this
solution does not in general satisfy the equation of translational equilibrium. It is
precisely this fact that enables the calculation to proceed.

The displacement distribution for the next iteration (corresponding to the index
M+1) is obtained from the acceleration which is computed from the translational
cquation of motion. This requires the definition of the acceleration expressed in tcrms
of the velocities given by

0" w aw aw
2 (M) = [G2O+1) - FEOD) /A7

and the definition of the velocity in terms of the displacement given by
ow = || g
T (MHD) = [W(M+1) - w(M)] /AT

Thus, with the transverse translational equation of motion expressed in the form
ow ow ! ATar = =8
5;(M+l)( 1+ Kr/Z) = -5;:(M)(l - Kr/'l) +Arq(l) - ’1—_:2‘ (N¢(l) + NO(I) +

h2
12R

+ L (@ 1) - QuI/Ag + 2@+ + QD))

10
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ow o= r :
the velocities %\:—(I,MH) and the displacements w(1,M+1) follow directly. This

completes one cycle of the D.R. algorithm save for the establishment of dependent

variables at dummy points that are necessary fur the satisfaction of the boundary
condilions.

Following the format given on Figure 2, it is apparent that boundary
conditions can be directly enforced on W, M, as they are defined on ¢ = @
Alternatively, the requirement that the tangential displacement vanish at ¢ = ¢, leads
to the establishment of v at the dummy point 1=N+1 with the value

V(N+I)=-v(N)

Thus it is actually the average of two adjacent points which actually is required to
vanish. A similar expression is used to enforce a zero condition on variables which are
not defined on ¢ = b -

The clamped boundary condition is enforced by taking
X(N+1) =-X(N)

It then follows that
Kg(N) = % (X(N+1) + X(N)) cot ¢ = 0
Ky(N) = (X(N+1) - X(N)/Ag = - 2X(N)/A¢

which is sufficient to determine the edge values of the moment stress resultants.
The simply-supported boundary condition is enforced by taking

M, (N)=0

This requirement is used to establish X(N+1) from the consti‘utive equation expressed
in the form

I\_4¢(N) = (X(N+1) - X(N))/A¢ +§ (X(N+1) + X(N)) cot ¢y + (141) a®OR/H =0
Thus, it follows that

X(N+1) = (X(N)(1 - ”—Azi’ cot ¢) - BAG)/(1 + 5%—‘73 cot ¢,)

11
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The roller-skate boundary condition is the only option in THIN in which
w(N)#0. As the roller-skate is free to move in t_}le transverse direction, the transverse
shear mush vanish leading to a dummy value for Q given by

Q(N+1) =-Q(N)

With Q(N+1) now known, the transverse displacement at the edge can be computed
using the transverse translational equation of motion.

THE USE OF THIN - EXAMPLES

The primary unknowns in the D.R. agorithm are the damping factors I Lier s
In order to determinc these factors (see ‘Appendix B), the program must generally first
be run in the undamped mode to estimate the lowest natural frequency. However,
before this can be done, the user must choose an appropriate value for N and estimate

the total number of iterations required (MMAX) to identify the period of the lowest
mode of vibration.

The index N is an integer and is a measure of size of the spacial interval Np. 1t
is defined by

1] —
+
gl

N =

The choice of N is an important one, since it not only affects the accuracy of the
solution, but essentially establishes the running time of the program and hence the
cost. If N is large, the finitc difference representation of the spacial derivatives is
refatively accurate. However, the allowable time step (A7) is limited by the require-
ments that the algorithm be numerically stable and the program must be cyeled many
times in order that the overall time interval be approximately 1 1/2 periods of the
lowest mode. Alternatively, if N is small, the finite difference represcntation becomes
mcreasingly inaccurate, but the running time is substantially reduced. In the final
analysis, the choice of N can only be made on the basis of several trials with the
criteria being that N is chosen to be the smallest number such that there is a
negligible change in the solution corresponding to a finite increase in N.

As a general rule, the spacing along the meridian RA¢ should be less than the
characteristic length of the shell G/hR). If we chose the spacing A¢ such that

RA¢ =4/hR/3

3¢

then, N =~ ;7:_(_l and we should obtain about ten data points in a meridional distance
h

corresponding to three characteristic lengths.

12
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The c¢hoice of MMAX depends on the allowable time increment Ar. As the
equations of motion governing the spherical shell are probably of the parabolic type,
. we adopt the requirement established by Crandall® for beams that limits the stable
é time step to

Further, if we assume that the period of the lowest mode of vibration is approx-
imately (7, =)2m, and adopt the equality in the above expression for the stable time
step. @ running time of a period and a half corresponds to

MMAX = 67N?/p3

FFor example, for a hemispherical shell (¢, = 90 deg) and N=10, a running time of a
period and a half corresponds to MMAX=764. With N, MMAX estimated appros-
imately. the program may be run and improved values obtained from an examination
of the solution and the time behavior.

4 Examples of undamped response are presented as Figures 5 through & for
constant normal pressure loading. (The response to a constant temperature rise for the
same boundary conditions and shell geometry is not shown since the curves are similar
to those for constant pressure loading.) Note that as the curves have been plotted with
the iteration index (M) as the abscissa (and with an iteration step size IDEC=40) the
corresponding dimcnsionless time is different for each shell geometry and must be
computed according to the relation

T=MAT = %(A(b)z

Some similarity can be seen by comparing the curves on Figures 5 and 6. It appears
E that the cffect of the thickness parameter (h) is greater for the tangential displacement
o response, as the transverse displacement response have roughly the same shape. One
: ‘ should hasten to add, however, that there is not complete geometric similarity between
! the shells as the tangential displacement was observed at ¢ = 52 deg for the case N=16
FE and uat ¢ =~ 42 deg for the case N=20. Nevertheless, it appears that the use of 7 as a
G time scale is justified, and that some semblance of periodic motion may be observed
corresponding to a dimensionless pcriod of about 6<r<8. Thus, a running time
(MMAX) corresponding to 7= 9 seems to be adequate to span about 1 1/2 periods of
the lowest mode of vibration for clamped boundary conditions at by = 90 deg.

3 Crandall, S. H. Engineering Analysis, A Survey of Numerical Procedures, McGraw-Hill, 1956.
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FIGURE 8. Tangential Displacement Versus Time.

The clfects of boundary condition and opening angle can be secn by comparing
the responses shown on Figures 5 and 7. It is apparent that the stiffening cffect of
the clamped support at ¢, = 35 deg substantially lowers the period of the lowest
mode of vibration. Further, there are only two local maximnas in the 35-deg shell
response prior to crossing the axis in comparison to three local maxima for the 90-deg
shell. Thus, a running time corresponding to 7= 8 should be adequate to span | 1/2
periods for a shell clamped at ¢, = 35 deg.

It can be shown that the effect of replacing the clamped support by a simple
support at the same value of opening angle and thickness ratio is insignificant and does
not warrant any special attention. However, as can be seen from Figure 7. a dramatic
effect 1s achicved in the transverse displacement response if one replaces the clamped
support at ¢, = 90 deg with a roller-skate support. As the tangential displacement is
identically zero, the breathing mode only has been excited, and this corresponds to a
dimensionless  period  of approximately 400 (£20) X Ar =3.7320.19. This result
compares well with tie prediction given by Kraus® that

=2my/T-v =3.84(v=}
e A n\/_l_z_g 3.84(v=1/4)

8 Kraus, H. Thin Elastic Shells, Yohn Wiley Book Co., 1967.
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Thus. a running time corresponding to 7= 600 should be adcquate to span about
I'1/2 periods for g roller-skate boundary condition at ¢y = 90 deg.

With the running time (MMAX) identificd. it is left only to estimate the
damping cocfficients (Kr, K¢) and perform an additional calculation with l\'r. K. #0 to
obtain the required solution. As shown in Appendix B, the critical value “of the
damping fuactor governing a principal mode of vibration is given by

Ar
KeriTicar = flaeat
"PERIOD

where Tper1op 1S the period of the principal mode. In choosing a value for K. Ky, it
has been recommended (footnotes 1 and 2) that one choose a value 70-80% of the
critical value. This choice results in an underdamped motion in the lowest mode that
exhibits oscillations abort the ultimate point of convergence. This behavior is j]-
lustrated in Figure 9 for the transverse displacement. Ag can be seen, the final valye
(M=MMAX) varics slightly with the choice of damping factor, and that a lower value
of damping yields a higher final value. Generally speaking, it is preferable to choose a
lower value of damping factor as one can more readily estimate the valye about which
the solution s oscillating and to which the solution will converge. Finally. it should be
noted that no advantuge could be gained by choosing K,. K¢ different, based on (he

-

e
w

K, Ky =12X or

LACEMENT,

) % 10

e
ha

K Kg = 1.6 X ar

_ g
]

DAMPED MOTION
CONSTANT PRESSURE (q = -0,0851)
CLAMPED AT ¢, - 90 DEG

N =20, 2 = 0.033

DIMENSIONLESS TRA NSVERSE DISP

800 1200 1600 2000
TIME, INDEX, M

FIGURE 9. Transverse Displacement Versus Time.
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obscrvation that the frequency of the coupled mode was lower than that of the
breathing mode. Thus, K, K, are chosen equal and inversely proportional to the lowest
period of vibration in all calculations.

At this stage, one can choose the output control parameter IPRNT=1 and
obtain the complete solution at M=MMAX, and the damped displacement response to
use as a check for convergence. However, if one has sufficient confidence in the choice
of damping coefficient, IPRNT can be set equal to 2 and only the final solution will
be obtained.

Examples of displacement and stress distributions are presented in Figures 10
through 12 for a shell of thickness ratio h = 1/8, clamped at ¢y = 90 deg and heated
uniformly (Tm = 0.060). As expected, the results indicate an edge-effect; the
significant stress distribution is confined to a region near the restrained edge.
Quantitatively, the stresses seem to die out in a distance of about three characteristic
lengths W/hR) from the clamped edge. This confirms the recommendation made earlier
in choosing a vatlue of N.

Accuracy of THIN

The accuracy of THIN can be assessed by comparing its predictions with exact
solutions of the governing equations. However, since there are very few exact solutions
available (which are of any rcal interest), there are a number of solutions whose
accuracy can be estimated and therefore can qualify as a standard for comparison.

One exact solution which is meaningful is the membrane state corresponding to
uniform normal pressure and supported at the edge so as to restrain the tangential
displacement and not induce any bending. This solution can be expressed in the form

This state can be achieved with THIN by using the roller-skate support, and leads to
w=0.1440 x 1072 ﬁ¢,l—\1_0=—0.1800>< 1072 M_(paﬁe =0.000

for all stations. The program parameters used in this solution were
N=12  ¢,=90deg »=1/4 h=1/8 §=-0.384x 1072
K. K¢ =0.0220 MMAX = 1000

As can be seen, the agreement is perfect.
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FIGURE 10. Transverse Displacement Distribution.
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FIGURE 11. Tangential Displacement Distribution.
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Besides this simple example, there are (to this writer’s knowledge) no other
convenient analytical solutions available. There are, however, some series solutions
whose accuracy should improve with the number of terms considered. These solutions
fall into two categories: (1) asymptotic solutions developed in powers of the thickness
parameter (h) and (2) series solutions developed in powers of the meridional
coordinate (¢).

In the first category, it is a straightforward task to develop the solution for a
clamped hemispherical shell acted upon by uniform normal pressure. The details of the
procedure are presented in Appendix E and only the numerical results will be
discussed here. Although the convergence of the solution to the exact solution has not
(to this writer’s knowledge) been established, one can at least assert that the error in
the solution should decrease as the thickness parameter (h) is decreased. For very small
h, we would expect that the difference between the (unknown) exact solution and the
two-term asymptotic solution presented here should also be small. Thus, if the results
predicted by THIN compare favorably with those of the asymptotic solution, one
could conclude that the error in the numerical process was also small.

Numerical results are presented in Figures 13 through 15 for the displacements
and circumferential normal stress resultant obtained from THIN and from a two-term,
uniformly valid asymptotic solution (UVS) corresponding to thickness parameters (h)
of 1/8, 1/16, 0.033. The meridional normal stress resultant (N¢/Rpr) was not plotted
since both the predictions of THIN and the UVS varied only insignificantly from each
other and from the value 0.5000 over the entire range (0< ¢ < 90 deg). As can be
seen, the agreement between the two methods is generally satisfactory. The disparity
between the two methods for the transverse displacement seems to increase with
decreasing values of h. Alternatively, the disparity in the tangential displacement seems
not to vary with h, and the UVS for the circumferential normal stress resultant is not
shown as it differed imperceptibly from the results of THIN. The behavior of the
displacement results can be understood when considered along with the results
presented in Figure 9. As can be seen in Figure 9, the amplitude of the oscillation still
existing when the iterations were terminated was of order 3%. Further, the final results
secm to depend on the choice of the damping parameters. Thus, although the accuracy
of the UVS should be increasing with decreasing value of F, the accuracy of THIN
would always be expected to be limited to the range 2-3%. It is noteworthy that the
agreement between the results for the stress resultant No does not vary with h.

For a solution in the power series category, one can refer to the example given
by Timoshenko and Woinowsky-Krieger’ for a spherical cap loaded by uniform normal
pressure and clamped at $, = 35 deg. The analytical details are described and curves
presented for the distribution of meridional bending moment and circumferential
normal stress resultant (due to bending). It is noted that the numerical results were
obtained by summing ten terms of the series solution. The implication seems to be

7Timoshenko, S. P. and S. Woinowsky-Krieger. Theory of Plates and Shells, 2nd FEdition,
McGraw-Hill, 1959.
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TWO-TERM ASYMPTOTIC EXPANSION

THIN

N=12 MMAX = 1000
Ky Kg = 12X &7

g= % 1072

TWO-TERM ASYMPTOTIC EXPANSION

THIN !
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KpKy=12X 4r
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FIGURE 13. Transverse Displacement Distribution.
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TWO-TERM ASYMPTOTIC EXPANSION

THIN
N =12, MMAX = 1000
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FIGURE 14. Tangential Displacement Distribution.
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FIGURE 15. Circumferential Stress Resultant.
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that the authors considered this to be adequate, and, therefore, these results should be
useful as a standard of comparison. Similar results have been obtained using THIN and
are presented in Figure 16 for the following program parameters:

N=8§8 ¢ = 35 deg v=1/6 h=1/30 MMAX = 2400

G=-03x10"%* K, K,=177X A7

No attempt has been made to reproduce the curves from Timoshenko’s work since the
figures there are small and could only be reproduced with difficulty and with dubious
accuracy. It is therefore left to the reader to confirm the observation that the
agreement is satisfactory. It should be noted, however, that the results of THIN for
the meridional bending moment seem to underestimate the edge vaiue by about 10%.

The general conclusion from the three examples presented above is that THIN
offers an accurate means of obtaining the stresses and displacements in spherical shells
with a variety of boundary conditions enforced on edges ranging from shallow to
hemispherical. Admittedly, the loading conditions studied here (uniform pressure,
uniform temperature rise) were simple. However, the restraint applied at the edge in
each case (see Figure 15, for example) produced a boundary layer (rapidly varying
stress state) that was accurately predicted by THIN. As this boundary layer can be
regarded as an example of a singular solution out of which more complex stress states
can be built up by superposition, one can conclude that THIN has the capacity of
predicting the stress states due to more complex loading conditions with an accuracy
at least comparable to that obtained above.
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CONSTANT PRESSURE (p, = =1 LB/IN?)
R=90IN., h=3in,v=1/6
CLAMPED AT ¢, = 36 DEG
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FIGURE 16. Meridional Bending Moment and
Circumferential Stress Resultant Due to Bending.
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Appendix‘ A
THE GOVERNING EQUATIONS

The governing equations are taken from sections of the Handbook of Engineer-
ing Mechanics (footnote 4). The notation used here is that of Chapters 40 and 43,

although the equations are first made dimensionless before being written into THIN.

If time (t) is scaled such that

t =
7=RVE
P

and the displacements, strains, rotations and stress resuitants are made dimensionless by
the introduction of

(v, w) = h(V, W) (e, €5'") = h(E, €g)IR
X =hX/R (kg Kg) = hiky, Kg)/R?
(Ny. Ny) = hD(N. Np)/R (Mg, Mg) = hK(My, Mg)/R
Q, = hKQ/R? (b, py) = EN* @, P)/R?
of = NT, /(R(1+v)) a® = hO/(R*(1+v))
where
D = Eh/(1-p%) | b2
K = Eh3/(12(1-1%)) | T ='—‘:{/, (T-Tgpplds

-

(K,. K¢)=wR“AT(kr,k¢)/Eh 12 h/2 :
= N7 (T'TREFKd;’
Shj2

it follows that the governing equations summarized in footnote 4 become

€y =w+vcoto

Kg =

(N, Ng) = (€4, €9) + (€9, €4) - Ty
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My, M) = (i, Rg) + 0, Ky)+©

i he _
> [W’L (N¢—N6) cot ¢ - %Q]

The dynamic terms are obtained by replacing the radial, tangential components of the
distributed surface pressure p Py (see Figure 1) by

3w aw a2y av
by~ S ot Py = Phgt ~ ko5t

respectively, where p is the mass density, and kr, k¢ are the (fictitious) damping
factors (load/area/velocity) in the radial, tangential directions, respectively.
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Appendix B
CRITICAL DAMPING FACTOR

Following Appendix A, it can be seen that the governing equation for w(¢, r)
has the form

g dw
o2 T Arar = A7)

It we look for solutions by the separation of variables technique, i.e., assume

(w, A) = (W, 4) exp (iQ2r)

where W, A are functions of ¢ only, we find on substitution that the frequency factor
2 is governed by

iK
oE ;-;AT £\/492 - (K /Ar) }

where Q* = -A/W. The critical value of K, is such that the term in the square root
bracket Vdmshes i.e.,

(K)eriticar = 2247

If we now identify £, as the frequency of the lowest mode of free (K, =
vibration, then

T =2n
0 "lpprIOD

. Ar
(Kderiticay =41
PERIOD
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Appendix C
THE TEMPERATURE INTEGRALS

In this section, formulae will be derived for the numerical evaluation of the
temperature integrals T, © which appear in the constitutive equations. It is assumed
that tempcrature data are available at each meridional station at five equally spaced
points through the thickness (see Figure 4) not including the end points of the
interval. This latter restriction arises from the fact that temperatures are generally
computed using an algorithm based on energy balances applied to regions of space. If
these regions are chosen of equal thickness, the temperatures are naturally obtained at
the points noted in Figure 4. Alternatively, should the temperatures be defined at
cqually spaced points through the thickness including the end points of the interval,
the cquations given below can be replaced by the well-known Newton-Cotes formulae.

Assuming now that the temperatures are defined as shown in Figure 4, we
begin by attempting to represent the temperature distribution by the polynomial

T(§)=a0+al§’+a2§’2+a3§'3+a4§'4 (§'=§/h,——é—<§’<é—)
and evaluate the coefficients ay, . . . 4 SO that
T, =T(-0.4) = a; - 0.4a, +0.4%a, - 0.432, + 0.44‘a4
T, =T(-0.2) =a, - 0.2a, +0.2%a, - 0.23a, +0.2%,
T3 =T(0) = a,
T, =T(0.2) = ag +0.2a, +0.22a, +0.23a, +0.2%a,
Ts = T(0.4) = ay + 0.4a, +0.4%a, +0.4%2, +0.4%,
The coefficients are readily obtained from equations obtained by adding and subtrac-
ting the first and last pairs of the equations given above so as to separate the
unknowns a,, a, and a, aj.
It then follows that
ay =(T, - 8T, +8T, - T5)/2.4
a, =(-T, + 16T, - 30T, + 16T, - T5)/0.96
ag =(-T, +2T, - 2T, +T;)/0.096

a, = (T, - 4T, + 6T, - 4T, +T,)/0.0384
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Further, with the result that

Ty, +Trer =2y ta,/12+a,/80

g

hO@=a, + 3a;/20

we obtain

T, = () [(275T1 + 100T, +402T, + 100T, + 275T)/1152 - TREF]

0= 5(1+u)%(— 11T, - 2T, + 2T, + 11T)/48




=g =

| NWC TP 5785 E

Appendix D
THE STRESS DISTRIBUTION

In this section, formulae will be derived for the meridional, circumferential
components of the in-planc, normal stress that are consistent with the definitions of the

stress resultants and the sign convention shown in Figure 1.

Let us begin by defining the meridional, circumferential components of strain at an
arbitrary point (¢, §) in the shell as follows

E { B €¢(0)(¢) = §K¢(¢)

| €g =€g(0)(¢)“ Ko ()

]

urther, let the stress resultants N.,, M. be defined as integrals of the appropriate
' components of normal stress through the thickness of the shell with the convention
|
!

that
h/2
| (.N¢, Ng) in f (0¢¢, 000) d¢
j =h/2
" 1
i | : h/2
¢ | Mg, Mg) =~ [ (04, 049 £t
-h/2
i Finally, if the state of stress in the shell is nearly that corresponding to plane stress

(o“ = 0), then Hooke’s Law takes the form
€p = (o¢¢ - vOgp ) E +o(T-Tgpp)

60 = (000 ar V0¢¢)/E+U(T"TREF)

Alternatively,
04 = E(€y +veg)/(1-02) - aE(T-Tg g p)/(1-9)
0gg = Eleg +vey)/(1-v2) - aB(T-Tg g p)/(1-»)

These equations can be rcarranged in a number of ways to suit one’s convenience.

. If the equations for 6,,, 05, are substituted into the definitions of the stress
" resultants, and we further substitute the expressions for the strain components at a
general point in terms of the middle-surface strains (e¢(0), 60(0)) and curvatures (x¢,
"0) we obtain the following constitutive equations
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N¢ = D[e¢(0) + VEG(O) - (1+V)Ole]
Ng =Dleg'® +ve,(”) - (14v)aT, ]
M¢ = K[K¢ +vKg + (1+1)a®]
MG = Klxg +w<¢ + (1+1)a@]

which are consistent with those equations noted in Appendix A. These equations can
be rearranged to yield the following strain-force stress resultant, curvature-moment

stress resultant equations:

e ) = (Ny-¥Ng)/Eh +oT
€,(9) = (N,-»N,)/Eh + aT
0 ] 0 R m

Ky = 12(My-vMg)/ER® - a®©

kg = 12(Mg-vM,)/Eh? -0®©

Finally, if these expressions for the strain, curvature components are substituted
into Hooke’s Law, we obtain the following expressions for the in-plane stresses

o¢¢/E = N¢/Eh - 12§'M¢/Eh3 ~o(T-T, - Trgg- @) /(1-v)

0g9/E = Ng/Eh - 12§Mg/Eh® - T - T - T - $©)/1-v)
When expressed in dimensionless variables, these equations become

04o/E=RINg + T - TRV, - ©)1/(1-v%) - &(T-Tg g p)/(1-)

099/E=hINg +T_ - Th(My - §)1/(1-v?) - «T-Tggp)/(1-»)
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Appendix E 1
ASYMPTOTIC SOLUTICN FOR A THIN SHELL 5

In this scction, we consider the problem of determining the deflections, stresses
in a clamped hemispherical shell that is loaded by a uniform distribution of normal
pressure. In particular, we will seek a solution as a sequence of solutions, each term in
the sequence multiptied by an ever increasing power of the thickness parameter (h), so
that (one cxpects) the accuracy of the solution at any stage should increase as the
number of terms in the sequence is increased. Although this method of constructing
solutions is described in a number of texts, we will refer here to the formalism
described by Cole.8

! The problem we wish to consider is described by the equations presented in *_:
Appendix A where we take p, = constant and delete all temperature terms. We wish
to obtain a solution subject to the boundary conditions that

v, w,X=0 ¢ =9,

As a starting point, we observe that the following membrane state

3 =)
~y bR
v=C(”)sin¢ w=lm:) ! —C(O)cosd)

| is an exact solution of the governing equations, although it does not satisfy the
| boundary conditions. Physically, we expect that the solution we seek should behave :
i like this membrane statc in regions of the shell that are not near the edge. What is 1
| required, therefore, is a solution that is valid near the edge, satisfies the boundary

conditions and converges to the membrane state in some sense for ¢ such that o< ‘1’0'

In this edge region, we expect a rapid variation with distance for the dependent
variables. [n particular, we assume that the dependent variables may vary significantly
over a distance comparable with the characteristic length </Rh). and define a
dimensionless length scale (¢), measured from the edge, given by
o} =
4 o=@, - €t e =h
Let us further adopt the following set of dimensionless variables -

v=eer2’\7/Eh w=er2'vT//Eh ]

8 Cole, ). D. Perturbation Methods in Applied Mathematics, Blaisdell Publishing Co., 1968.
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(M¢. My) = prhz(ﬁ¢, ﬁo)/(l2ez(l—v2))

In these variables, we can develop the governing equations in the following form

(1-v){Ny, Ny) = (1)@ - (1, u)ad-; + (v, 1)e¥ cot ¢ + O(e3)

A Il dZA -~ da
(M¢, Mg) =1, V)Eg‘zz - (v, l)e(é—‘g cot ¢ + (1, v)ezaé + 0(e3)

+e(My-My) cot ¢ + O(e3)

-~

- €(Ny-Np) cot ¢ + €2Q + O(e3) = 0

- €Q cot ¢ - (N,+8;) + 0(e3) = - |

where m? = l2(l—v2), and

cot ¢ = cot ¢, + €k CSC’2¢O + €2 22 cot ¢, csczci;0 + 0((:‘3)
48 appropriate.

From the form of these equations, it is apparent that expansions of the type

Ve, ) =70 + 7 (e) + 2921 + 0(ed)

We, ) = W) + e D (e) + 20D (k) + 0(e?)

Npte, =172+ en, V(e + 2, (1) + 0(e?)

Ny(e, £ = np () + eng et + e2n, D8 + 0(e3)

Qle, ) =01 + eqV(e) + €228 + 0(e?)

Mt £ =my @) + emy D) + e2m, () + 0(ed)

My (e, £) = my @) + em, D (g) +€2my @ (#) + 0(e3)

should exist. The constant (1/2) as the leading term in the expansion for N

e 3 I )
anticipates the requirement for zero order matching.
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The equations governing the zeroth, first and higher order terms in the above
expansions are obtained by substituting these expansions into the governing equations

and tuking successive limits of the governing equations as € = 0 holding ¢-fixed. In
particular, we find that

, (0)
ay') ~0) _ ; dmy
daE = (1+r)wt0) - (1-v%)/2 m4q(0)=~—(¥
) A v dq'®
(vt = ® - g~ G 0@ =iz
1~ (0
my(0) ik K mo(m = ,,m¢(o)
dg-
govern the zeroth order solution, and
(1)

(l-vz')(n¢(l).ne(“)=(l+v)ﬁ7“)—(l,v)g-‘é + @, VO cot g

. EACAN dw®

(m¢” % mo”))=(l,v):1—£-¥ - (v, l)a—g cot ¢,
dm D

miqt!) =~ —-qub +(m¢(0) - mo(o)) cot ¢, .

dn (1)

=  =(2- ng®") cot ¢,

dq" (o, (1) (1)
i 4 cot¢0~(n¢ tngt’)=0

govern the first order correction, and

~(2)
(1-v2)ny 2, 0y @) = (14)@?) - (l,v)g—;- 0, DEO esc?g + @, DT cot ¢

dZ’\(z) d"(o) d"(o) d"(l)
(m¢(2). mo(z)) =(1, v)(gg;-v— +(T;i )— (v, ])(5% csczcib0 + % cot ¢0)
1
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dm, ®
mig?) = dE¢ +E(m¢(0)‘me(°)) Cscz% +(m¢(1)_me(1)) cot ¢,
dn, (%)
?Eg =-q0 #1215 £ esc2gy + (V=g ) cot g,
dq‘?)

- (£q'® csc’“’qs0 +q cot $o) - (n¢(2) +n0(2))= 0

govern the second order correction. In the paragraphs to follow, the solution to the
above system of equations will be described which matches the membrane state in the
region of the shell that is not near the edge. It will be assumed that the reader is
familiar with the matching process so that little of the motivation needs to be

described and only the results of the process will be presented. Furthermore, only the
case ¢, = 90 deg will be described.

Thus, in anticipation of the requirement that all solutions be bounded
exponentially as £ > oo, we take the zeroth order solution in the form

W) =(1-p)/2+c”x(A0 sinx+BO CoS X) x=m£/\/.§
q(0) d —e_x[(AO +By) cos x +(A, - B;) sin x]/m\/_Q_
9O = D 4 (140)q©) ng(®) =2 + %O

The solution of the equations governing the first order correction can be shown
to vanish identically for the case ¢y = 90 deg. This follows from the anticipated
observation that as the governing equations become homogeneous for ¢, = 90 deg, the
only solution which satisfies homogeneous boundary conditions is the trivial solution.

Thus, as we seek more than the first term in the expansion, we must turn our
attention to the second order equations. In doing so, we find that

W3 =- (1), D - ¢, Dg - 3604 + e *[£2(A sin x + B, cos x)/4 +

+A2 sin x + B2 cos x]
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Bows 1Ay - TALSHB
v ) _ o - i e ikt [0
~(2) =D2(’) - 2(1+,,)(-2(1)E~ Co(')EZ/L’ +\_l/?ve "[sm X( 7m 2, (Ztm30

+

e 3 %

2m m 4m3 2m3 2m3

Byx By-A, Ay*B, By- A, Agx A +B,
et —‘-——-x“)+ cosx(- = o = xz)
2m

(2 2 -~ i
n, ) = un¢( S v CD I {\7(0) n¢(2) = sz - Eq(O)

The constants Ay, BO. CO(i), A,, B,, (‘2”), Dz(i) of the edge (or inner) solution, and

' of the membrane (or outer) solution will now be chosen so as to satisfy either

the boundary conditions or the matching requirements,

The boundary conditions at ¢ = 90 deg (¥ =0) require that
w00y =10 =72 0)=.. . =0
V0 =310 =7 0)=... =0

dw0) dwth) d”*(z) ol e
& O=F ©=F ©0+700)=...=0

On applying these boundary conditions to the zeroth order solution, we find
Ag =By =-(1-p)/2 Co? = -(1-v)A\/Zm

Now, before applying the boundary conditions to the second order corrections, it is
convenient to obtain the requirements of the matching process.

Following Cole (see footnote 8), we first define an intermediate length scale En
where

¢0"
§n = (ey = keln(e)

and n(e) is such that

e —
[ﬁ(‘éi‘o

e—~0
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For example, we could choosen = €!/2. In what follows, we will require that the
edge (or inner) solution, expressed in the intermediate variable, converge tc the
membrane solution, also expressed in the intermediate variable, for all values of En
(fixed) as e—0.

On applying this matching condition to N¢, we find that n¢“)=0 thus
verifying the fact that the first order equations are homogeneous, and

n, =0
€0, §, - FIXED

so that

(i) -
c,™=0

On applying the matching condition to v, we find

c® =ep R2C, " /Eh

for zeroth order matching. The remaining constants are found on applying the
boundary conditions to the second order correction.

«(2)
The boundary conditions on W2, da% are satisfied by taking

A, = - (1-p)(1+4v)/4m’ B, =0
The boundary condition on 2 is satisfied by taking

D,® = -m(1+4p)/48,/2

This completes the solution as it can be shown that the remaining matching conditions
are also satisfied.

As a final remark, it is convenient to obtain the above solution in a form
which is uniformly valid over the entire range of opening angle rather than have
solutions whose range of validity was restricted. Again Following Cole (footnote 8),
such uniformly valid solutions can be constructed by subtracting the common part
from the sum of the inner and outer solutions. The common part of the solution are
those terms in both the inner and outer solutions which match identically in the
matching process. For the example studied here (¢, = 90 deg), it can be shown that
uniformly valid, two-term expansions can be constructed in the following form
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—~~

w=w+ 2% + e(1-p2)(cos ¢-€eb)/my/2

V=90 4292 _(1-p2)(sin ¢- 14€2£2 [2)/m\/2

-~

N¢= 1/2+e:n¢(2) N9=n9(0)+e2n0(2)

Numerical results obtained from these expressions are presented in Figures 13 through
15 for several values of the thickness parameter.
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Appendix F
PROGRAM LISTING

THINSsSPHCRICAL SHFLL WYTH SURFACE LOAD+TEMPERATURE EFFECTS
SCT NBC YO O FOR CLAMPED BOUNDARY AT PHI=POs TO 1 FOR SIMPLY SUPPORTED
ROUNDARYy YO 2 FCR ROLLER-SKATE BOUNDARY,
SET IPRNT Y0 O TOR DISPLACEMENYS ONLYeTO 1 FOR BOTH DISPLACEMENTS
AND STRESSESs TO Z FOR STRESSES ONLY.
HB EQUALS H/R,
CKR EQUALS KR
CKP EQUALS KP
TME EQUALS TEMPFRATURE MEAN BAR
THB EQUALS TEMPFRATURE FTYRST MOMENT BAR
PE EQUALS P PAR (TANGENTIAL PRESSURE)
GPB EQUALS @ BAR ( TRANSVERSE PRESSURE )
WP EQUALS W par
WBD EQUALS W BAR DOT (VELOCITY)
VB EQUALS V 7AR
VBD EQUALS V BAR DOT (VELOCITY)
CHIR EGQUALS CHI BAR
38 EQUALS @ BAR
EPP® EQUALS FPSILON PHT BAR
EPTR EQUALS CPSILON THETA BAR
FKPP EQUALS XAPPA PHT BAR
FKTR EQUALS KAPPA THETA BAR
FNPP EQUALS N PHI BAR
FNTR EQUALS N THTTA BAR
FMPR EQUALS M PHI BAR
FMYR EQUALS M THETA BAR
WA EQUALS W BAR NEXT YO APEX
VA EQUALS V BDAR AT A STATTON I=NV.
CHOOSE N CRCATER THAN OR EGUAL YO (102ePO/SARY (HBY) 72
CHOOSE NV ABOUT N/ 2,
DIMENSION PB(SG)+QPBISD) »TMB(50) »THBIS50)
CIMENSION TMP(S5345)eSTGB(S)
DIMENSION CTY1(50)+CT2(50)
DIMINSTON WB(5C )+ WBDIS50)yVBI50)¢eVBOI50)+CHIBISOY
DIMINSION @3 (50)+FNTBISC) +FNPBISO)+ FMPBISC) sFNTB(50)
DIMENSION WA(3500).VA(3SOD)
GEOMEYRIC+MATERIAL AND CONTROL DATA ENTERED HERE.
READ (S+24) PO+H4Bs PR'CKRoCKP
READ(E.Z4) TREr,ALFA
READ (5925) NBCos No NVoMMAXoIDEC: IPRNT
FORMAY( )
FORMAT(61I10)
L=N-1
AN=N
DP=2,C+PC/(2,0¢AN-1,0)
DY=0.5¢DPeDP
S1RZ1.0-0.,5¢CKR
S1PZ1.0-0.5¢CKP
S2RZ1.0¢G.59CKR
S2P=1.0¢0.5+CKP
PRESSURE y TFMPERATURE. DATA ENTERED HERE .
TEMPERATURE INTFGRALS EVALUATED ASSUMING TEMPERATURES DEFINED AT
FIVE EQUALLY SPACFD POINTS THRU THICKNESS NOT INCLUDING SURFACE POINTS.
J=1+5 REFFR TO POYNTS NEAREST INNEReOUTER SURFACE RESPECTIVELY.
READC(E424) (QPB(I)sPBIT)+T=1sN)
DO 20 I=1,N
READ(5+24) (TMP (I sJ)sJd=1,5)
YHB(I)=(1.00PR)OALFAO(-TREF0|275-OOTPP|101)OIOO.OOTHP|IUZ"I02.0
IOYHP(I-S)OIOB.O'YHP(I-H)027S.OOTHPII.S))IllSZ.Ol/HB
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THBII)=(1.0¢PR)sALFAS(-11a00TMP (T91)=2.00TMPIL¢2)¢2. 0¢TMP{ Lo %)
1411 .0+TMPIT+511/(9.60HESHB)
20 CONTINUT
WRITE(6121) PCePRyCKRCKP
WRITE(Es22) NBCoNoeNVeMMAXsHB
21 FORMAT(IH »'POC"sE124502Xe PR="4E224502X0 "KRZ"oE11.502Xs
1°KP=',F11.5)
22 FORMATIIH s °NBCZ*yT2e2%e "N=*9I202Xe NV 0T202Xs "MMAXS 9T 4e2Xs
1'HBZ*¢F11.5)
WRITC(Ge22) TREFALFA :
23 FORMATUIH +°TRTF="4E11.502Xe ALFAS*4E11.5)
WRITE (644C)
40 FORMAT(//+5Xe *TEMPERATURE DISTRIBUTION®/) ;
WRITE (6435) 4
DO 42 T=1sN s
WRITE(Ea42) Io(TMP(TsJleJ=145)
42 CONTINUT
41 FORMAT(IH +I242X+5¢EL11.542X))
WRITE(Bs43)
%3 FORMAT(//¢5X+*SURFACE LOADING ANO TEMPERATURE INTEGRALS'/)
WRITE (6444)
8% FORMAT(2Xe"I*e9Xe"QPB*9OXs"PB?9X,* TMB® 48Xy "THB®7/)
DO 46 I=1.N
WRITE(C 45) ToGPB(I)+sPB(TI o TMB(I)sTHB(I)
45 FORMATIIH +I2¢2Xs 4(EL1L.542X))
96 CONTINUE
SET COTANGENT FUNCTTONS
CT2111=r0SINP/2.C)/SINIOP/2.0)
20 1 IZ24N
FI=1
CTL(INIZFOS(IFI~1.01eDP) /SINIIFI-1,0)eDP)
CT2(I1=COSU(FI-0.5)eDPI/SINLIFI-0.5)s0P)
1 CONTINUE
SEY TIMC YO ZERO
M=1
SET INITIAL RISPLACEMENTVELOCITIES TO ZERO
DO 2 I=1eN
WAII1=0.0
W2D(I)=0.C
Ve (I12D.0
VoD I(IN=0.0
CONTINUF
WA(1)=C,0
VA(1)=0.0
SET APEX SYMMETRY: TANCENTIAL ODISPLACEMENT BOUNDARY CONDITIONS.
CHIR(1)=0.0
AB(1)=0.0
VE(N+11Z0.0
DISPLACEMFNTS COMPLETE FOR FIRSYT TIME STEP
COMPUTE STRAINS'ROTATIONSSTRESS RESULTANTS FOR TIME STEP
3 D0 & IZ2,N
CHIBII)=(WB(I}-¥B(I~-1))/DP-VBI(I)
4 CONTINUF
DO 5 I=tel
EPPBZH™(T) +(VB(I+1}~VB(I))/DP
EPTBZNA(T)+0.5¢(VBI{T+11¢VA(TIIIeCT2(T)
FKPA={CHIB(I +1)~-CHIB(Y) I/DP
FKTB=D.58(CHICIT+1)+CHTBIT) ) oCT2( 1)
FNP3(T)I=EPPRePReEPTB-TMBIT )
FNTB(I)ZEPTD+PReEPPB-TMB(T)
FMPSIII=FKPB+PROFKTBe THBIT)
FMTB(I)SFKYE *PReTKPB¢THB(T)
5 CONTINUE

~N
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C SET CONDITIONS AT I=N.
FPPB:H“(N)OIVBINtl)*VB(N))/DP
EPYH:H?lN)*O.E‘(VB(N'l)'VBCN))‘CTZCN)
FNP3(N):FPPBOPQOEPYB-THBIN)
FNYB(Nl:FPYG*PQOFPPB—YHB(N)

Ifnge-1) 10Cs2C0,20D
FKP“:—?.C'CHIB(N)/OP
FMP3INIZFKPBe THB( N)
FNYC(N):PR:FKPB*YHB(N)
G0 To 300
2NC FMPBINIZC.D }
CHIV(NOIDleNIBlN)'(I-O*O.SOPRODPOCTZON))-THBCN"DP’/
III.DOO.S'PRODPOCYZIN))
FKPB:(CHIBCNOI)—CHIBIN))/OP
FKTR:C.SO(CHIB(NOI)OCHTBIN))OCYZIN)
FHYB(N)=FKY80PR-FKPBOYHB'N)
3P0 00 & I=2,N
QB(I):(’HPB(I)-FHPB'I*l))/DPOD.SOCFHPBCI)-FHTBCI"FMPBCI—X)
I-FHTB(I—!))'CTICI)
6 CONTINUT

C SYRAINSvROTAYIONSoSTRESS RESULTANTS COMPLETED FOR THIS TIME sTEP
C CoMPUTZ vrrLocITrFES FOR NEXT HALF TIME STEP
0C 7 I=2.N
van(Iiz ?7!I)OSIP/S2P0lDT/SZP)OCPBCIDOCCFNPBCI)—FNPBII-I))/DP
IOOnS'lFNPBlI)-FNTBITIOFNPBCI-I)-FNTBCZ-X))‘CTICI)
Z—HBOHQOQS(I)IIZ.G)/II.D-PRQPR))
7 CONTINUF
DO 8 I=z1,L :
HBD(I):NBD'I)0§1RISZR0(DTISZR)‘!OPB(I)-CFNPBCI)0FNTB(I)0

1HB'HB'((08(I01)-OBCI))/DP'O-S'CGBCIOXD‘OBCIDDOCTZCII)/lZoD
21/(1.C-PR*PR) )

8 CONTINUF

IF(nNErR-1) 32Ce 3204310
310 QR (N+1)=-QB(N)
NED(N):NBD(NloSXR/SZRo!DY/SZR)'(GPBCN)—CFNPBCN)OFNYBCNIO
XHB'HHO(IGB(NOID-OBCN))/DPOO.SOCGBCNOI)*OBCN))-Clle))/12.0
2)/(X.D—PROPR))
320 M=Me1
C coMrurE "ISPLACFMFNTS roOR NEXT WHOLE TIrE STEP

WHII):HP11)00Y0NBD(1)
WAL )ZWR (1)
S0 9 Iz2,L
HR(I):NPIIDODT'NBDII)
VR(I):VR(I)'DTOVBDCI)
CONTINUF
VB(N):VB(N)oDYOVBD!N)
VB(N+#1)=-yR(N)
VAIM)zVo(NY)
IF(NPE-1) 340 340,330
HECN):NPIN)oOTOHBDCN)
IF(v-MMAX) 3v3010
IF(IPRNT-1) 1101101y
WRITE(6416G)
FORMAT(//-zxo'OISPL\CEMENTS VSe ITERATION INDEX*/)
0c 13 JZ10vMMAX, IDEC
WRITE(6412) JeWAL J)edaVALY)
FORMAT(1H -'HA('-IM-'):'oEll.S-ZX-'VAC'-I!-'l:'-Ell.Sl
CONTINUr
IF (IPRNT-1) 15¢14%014
WRITE(6430)
FORMAI(//-ZX-'SGLUYIDN IN DYMENSIONLESS VARIABLES'/)
WRITE(6e31)
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31 FORMAT(ZXI'I'IBX"UB'lBX.'VB'lBXl'NPHI-BAR'IMXO'NTHETA'BAR'UQXO
1'MPHI-RAR"HX"HTHETA-BAR'/)
DO 32 I=1.N
WRITE(E.33) IIUBIIIIVBIIlvFNPBlIlcFNTBlIlvFHPBII)oFHTBlIl
32 FORMAT(1H 2I2¢2X96(E11,5,2X))
32 CONTINUT
WRITE (6134}

3y FORMAT(//9¢2X¢ *"MERTIDIONAL DIMENSIONLESS STRESS THRU THICKNESS */}
WRITE (64 35)

35 FORMAT(ZX-'ZFTG'.ZX.'-O.M'vlox-'-D.Z'cluxv'D.D'IOXo'O.Z'vIDXv
1°'0.,4%7)
.DO0 37 I=1eN
D0 26 J=145
AJdzJ
ZETB=-0,6+0,29AY
SIGBIJ):HBOIFNPBII)-ZEYB&HBOIFHPBIII-THBIIIIrTHBIIII/ll.D—PROPRl
1—ALFA-(TMPII-Jl-TREF)/Ii.O-PR)
36 CONTINUE
WRITE(E 41) I (SIGB(JIJI=1,5)
37 CONTINUF
15 STOP
END
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