UNCLASSIFIED

AD NUMBER

ADB007120

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; JUL 1975. Other requests shall be referred to Air Force Propulsion Lab., Edwards AFB, CA 93523.

AUTHORITY

AFRPL ltr 15 Mar 1986

THIS PAGE IS UNCLASSIFIED

ND BOO 7 120 ITY: 86 it, SENSARA INSMINAVO IA USUDONAN REPRODUCED AT GOVERNMENT EXPENSE

AFRPL-TR-75-49

Rocketdyne No. R-9788

FLUORINE GENERATOR SOLID INGREDIENT DEVELOPMENT FINAL REPORT

ROCKETDYNE DIVISION ROCKWELL INTERNATIONAL CORPORATION 6633 CANOGA AVENUE CANOGA PARK, CALIFORNIA 91304

AUTHOR: ROSS I. WAGNER

September 1975

Distribution limited to U.S. Government agencies only; Test and Evaluation, July 1975. Other requests for this document must be referred to AFRPL(STINFO)/DOZ, Edwards, CA 93523.

COPY

AIR FORCE ROCKET PROPULSION LABORATORY DIRECTOR OF SCIENCE AND TECHNOLOGY AIR FORCE SYSTEMS COMMAND EDWARDS, CALIFORNIA 93523

FOREWORD

BDC NTIS

108 to

MANADUNCET JUSTIFICATION

This final report was propared by the Pocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, Canoga Park, California 91304 for the Air Force Rocket Propulsion Laboratory, Edwards, California 93523 and covers work from 1 July 1974 to 30 June 1975 conducted under Air Force Contract F04611-74-C-0035, Job Order No. 197000HM.

The project monitor was Capt. Ronald E. Channell. This program was conducted by the Exploratory Chemistry Unit of the Energy Systems and Technology Organization, Advanced Programs, with Dr. B. L. Tuffly serving as Program Manager and Dr. Ross I. Wagner as project engineer. Major contributors to the program were Dr. Carl J. Schack (UV process evaluation) and Mr. Richard D. Wilson (metathetical process evaluation and UV process scale-up and synthesis). Dr. Victor H. Dayan was responsible for analyses and Drs. Karl O. Christe, Arthur E. Axworthy, Louis R. Grant and Frederick D. Raniere contributed significantly as consultants.

This effort was sponsored by the Air Force Rocket Propulsion Laboratory, Edwards, CA., the Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, and the Naval Surface Weapons Center, Silver Springs, Maryland.

This technical report is approved for release and distribution in accordance with the distribution statement on the cover and on the DD Form 1473.

ucine Q. He he

FRANCISCO Q. ROBERTO, GS-15, Chief Formulation and Ingredient Section

ROBERT L. GEISLER, GS-14, Chief Propellant Development Branch

FOR THE COMMANDER

CHARLES R. COOKE, Chie Solid Rocket Division

NOTICES

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 1 REPO AFRPLITR-75-49 TPE OF REPORT & PERIOD COVERE Final Report, f TITLE (and Subtille) FLUORINE GENERATOR SOLID INGREDIENT DEVELOPMENT, 74 - Jun Jul ROCKETANING OR ALT NOME - Aller 8. -----7. AUTHDR(.) FØ4611-74-C-0035 / 200 Ross I. /Wagner PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PERFORMING DEGANIZATION NAME AND ADDRESS 10. Rocketdyne Division - Rockwell International Corp 6633 Canoga Avenue JON 197000HH-Canoga Park, California 91304 REPORT DAT 11. CONTROLLING OFFICE NAME AND ADDRESS Sept Air Force Rocket Propulsion Laboratory/MK 48 Edwards, California 93523 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this Ta Unclassified 15. DECLASSIFICATION ODWNGRADING SCHEDULE 16. OISTRIBUTION STATEMENT (of this Report) Distribution limited to U.S. Government agencies only: Test and Evaluation, July 1975. Other requests for this document must be referred to AFRPL(STINFO)/ DOZ, Edwards, CA 93523 17. OISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report) Approved for public release; Distribution Unlimited 18 SUPPLEMENTARY NOTES KEY WDROS (Continue on reverse side if necessary and identify by block number) Process Development Tetrafluoronitrogen (V) Tetrafluoroborate Metathesis Fluorine Generator Oxidizers Ultraviolet ABSTRACT (Continue on reverse side II necessary and identify by block number) An evaluation of two processes for synthesis of NFABFA was conducted to deter-mine achievable product purity and potential scalability of each. The ultraviolet induced reaction of NF3, BF3 and F7 produced 99-100 mole percent pure NFABFA at 1 g/hr in silica equipment. Metathesis of thermally prepared NFASFF x SbF5 with AgF in anhydrous HF followed by treatment with BF3 pro-duced 185 g quantities of NFABFA of 83 mole percent purity which could be MEXT raised to 93 mole percent by fractional crystallization. (Continued) ABSTRACT (ontinue on reverse eide if necessery and identify by block number) UNCLASSIFIED EOITION OF I NOV 65 IS OBSOLETE DD 1 JAN 73 1473 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) 390199

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The UV process was scaled-up to achieve a production rate of 2.90 g/hr of 99 mole percent NF4BF4 with an 84 percent conversion of reactants. Although process optimization was not achieved due to insufficient time, approximately 0.32 Kg NF4BF4 was produced and delivered to the Air Force.

> UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

.

TABLE OF CONTENTS

	Page
Foreword	111
Summary	10
Introduction	3
Discussion of Results	4
UV Process - Phase I, Task 1	4
Metathetical Process - Phase I, Task 1	15
Conclusions - Phase I, Task 1	26
Scale-up of UV Process - Phase I, Task 2 and Large Scale Synthesis of NF ₄ BF ₄ - Phase II	27
Experimental	33
Reagents	33
UV Process	34
Metathetical Process	35
Conclusions and Recommendations	43
References	44
Appendix I	AI-1
Appendix II	AII-

R-9788 iv

LIST OF FIGURES

											Page
1.	Metathesis Apparatus	•	•	•	•	•	•	•	·	•	19
2.	Teflon and Kel-F concentrator- Crystallizer Schematic		·			•	•	•	•	•	24
2	IV Reactor Apparatus Schematic			•	•	•	•	•	•	•	28

LIST OF TABLES

	Effect of Temperature on NE.BE. Formation Rate .				•	7
1.	Effect of Temperature on masta Formation Date			104		9
2.	Effect of UV Intensity on NF4BF4 Formation Rate	•	•	•		
3.	Effect of Mode of Addition of Reagents on NF ₄ BF ₄ Formation Rate	•	•	·	·	11
4.	Effect of Reagent Mole Ratios on				19/14	13
	NF_4BF_4 Formation Rate	•			Reck	16
5.	Analysis of Water in HF	•	•	•	• 185	10
6.	Analysis and Composition of HF Soluble NF_SbF_•xSbF_ Preparations		•	•		20
7.	Metathetical NF_4BF_4 Preparations	•		•	•	22
8.	Calculated Compositions of Isolated Fractions from NFABFA Crystallization			•	•	23
•	WE SHE LYSHE Prenarations			•	•	37
9.	14 4 SUI 6 ASU 5 TOPAL ADDITION OF					42
10.	Analyses of Crystallized Nr4br4					

R-9788 V

SUMMARY

EVALUATION OF ALTERNATE SYNTHESIS TECHNIQUES - PHASE I, TASK 1

Two preparative methods for NF₄BF₄ of substantially different concept were evaluated for achievable product purity and scalability. The two preparative methods evaluated were (1) the UV-induced reaction of NF₃, BF₃ and F₂, and (2) the metathetical conversion of NF₄SbF₆·xSbF₅ to NF₄BF₄.

An evaluation of the UV-induced synthesis of NF_4BF_4 established that high purity (minimum 99 mole percent) material could be prepared on a small scale in a silica reactor at a rate, ~lg/hr during short reaction times, potentially capable of providing the material at a practical production rate. The most important process parameters established during these studies were (1) cryogenic temperatures, (2) high UV intensity, (3) the mode of addition of reactants to maintain exposure to the radiation, and (4) the mole ratios of the reactants.

The metathetical process was evaluated and the maximum purity obtained for the NF₄BF₄ was 93 mole percent. It was established that: (1) TIF was better than AgF as a precipitant for SbF₆; (2) NF₄BF₄ prepared using AgF rather than TIF was of higher purity because of the more complete removal of excess metal fluoride in the second step of the process (i.e., formation of AgBF₄); (3) Cl⁻ ion could not be used to remove additional metal fluoride from the product because of incompatibility with NF₄⁺; and (4) the major impurity NF₄SbF₆·xSbF₅ was, in fact, less soluble than NF₄BF₄ rendering purification by crystallization unfeasible.

On the basis of these experimental evaluations, the UV process was selected for scale-up.

SYNTHESIS SCALE-UP - PHASE I, TASK 2

A large-scale UV reactor was designed and fabricated using 347 stainless steel and Teflon-gasketed sapphire windows as materials of construction. By use of those conditions established under Task 1, the production rate objective of $80g NF_4BF_4$ /week of 99 mole percent purity was achieved. This objective was

fulfilled even though optimization of the process parameters was not realized.

LARGE-SCALE SYNTHESIS OF NF4BF4 - PHASE II

Investigation of the process parameters of the UV process was continued during production of a total of 0.37 kg of NF_4BF_4 . Despite the successful preparation and delivery of 0.24 kg of 99 mole percent NF_4BF_4 to the Air Force during this phase, only qualitative data correlating product formation rate with process variables were obtained. This inability to achieve quantitative data was primarily the result of reactor design deficiencies not readily correctable within the contractual time frame. However, evidence was obtained that, under certain conditions, NF_4BF_4 was synthesized at 2.90g/hour with a conversion of 84 percent.

INTRODUCTION

A solid-propellant fluorine generator would have obvious logistic advantages over conventional gas storage or cryogenic liquid supply systems for the fluorine required to operate a C.W. chemical laser based on a DF lasing species. Ideally, a practical solid-propellant fluorine generator requires a compatible oxidizerfuel-binder combination that provides a completely gaseous exhaust containing only stable, non-reactive, and non-deactivating co-products. A potential system which meets these ideal requirements is that based on the oxidizer NF₄BF₄ in combination with a fluorocarbon fuel binder.

The purpose of the work described herein was to develop a process for the synthesis of high purity (99 mole percent minimum) NF_4BF_4 which would provide sufficient quantity of this oxidizer to permit its evaluation as an ingredient in a solid-propellant fluorine generator. Specific objectives were: (1) to evaluate two synthetic processes for NF_4BF_4 of substantially different concept; (2) to select on the basis of product purity and potential scalability one process and experimentally demonstrate its scalability to the production level of at least 80g/week; and (3) to produce and deliver to the Air Force 0.24 Kg of high purity NF_4BF_4 .

Of the four processes for preparation of NF_4BF_4 known at the inception of this work, the two selected for evaluation were: (1) the UV-induced combination of NF_3 , BF_3 , and F_2 (Ref. 1) and (2) the metathesis of $NF_4SbF_6 \cdot xSbF_5$ (Ref. 2) with AgHF₂ (Ref. 3) and treatment of the resulting NF_4HF_2 with BF_3 . The UV process was selected on the basis of its high potential for producing directly a high purity product and the assumption that the production rate could be raised from the previously observed milligram quantities to a practical level. The metathetical process was chosen because it represented the most advanced (Ref. 3) preparative method in terms of production rate, and conventional purification techniques might raise the purity to the required level. Of the remaining two processes, γ -irradiation (Ref. 4) and glow discharge (Ref. 5 and 6) both were rejected because of the projected difficulty of scale-up.

DISCUSSION OF RESULTS

UV PROCESS - PHASE I, TASK 1

At the inception of this contract, only one reference to a UV-induced synthesis of NF₄BF₄ was known (Ref. 1). This reaction, which involved UV irradiation of an equimolar mixture of NF₃, F₂ and BF₃, offered a potential means for acquiring pure NF₄BF₄ by a single step process. However, in the single reported experiment on which this synthesis was based, only 1 to 2 mg of product was obtained when the reaction was conducted in a sapphire tube reactor at ~90 psig and ambient temperature. Although this amount of NF₄BF₄ was produced rapidly, further increase in the amount of product did not occur on continued exposure to the UV source. The exceedingly low conversion of the gaseous reactants to NF₄BF₄ was attributed to deposition of solid product on the sapphire reactor walls. This deposit if opaque to UV light might preclude sufficient transmission of light energy required for further reaction.

The major scaleup problem associated with the UV-induced synthesis of NF_4BF_4 appeared to be development of a method by which a UV-transparent window could be kept free of product. Several possible solutions to this problem were considered, and the one that appeared to be the simplest was the use of HF as a solvent for the NF_4BF_4 . Since HF is both UV-transparent (Ref. 7) and an excellent solvent for NF_4BF_4 (Ref. 2), it was proposed that its presence in the gaseous reaction mixture would cause the solid coating to deliquesce, drain off, and thereby maintain window UV transparency. With this approach in mind, the first of several reactors was designed, fabricated and used in the small scale UV-induced reactions for the purpose of evaluating this method for the production of pure NF_4BF_4 .

UV Reactor Design (Small Scale)

The initial UV reactor consisted of a 8.5-inch Teflon test tube of 195 ml volume to which was attached a 2-inch diameter sapphire window with appropriate attachments for evacuation and gas filling. Before any experiments were conducted in the presence of HF, the experimental conditions required to synthesize

 NF_4BF_4 in the new reactor had to be defined. Although conditions were found which produced NF_4BF_4 in this Teflon-sapphire reactor, none of the product was ever found to coat the window. A reactor of similar design in which stainless steel was used in lieu of Teflon was found to give similar results. These results differed from those previously reported by Christe et al. (Ref. 1). Although reactions were investigated under conditions of high pressures and ambient temperature (see Appendix I), such reactions produced no NF_4BF_4 . Under the conditions whereby NF_4BF_4 was produced temperatures were lower than ambient and the product was formed away from the window. Hence, experiments using HF were unnecessary and were never attempted.

As the program progressed, it became obvious that the geometry of the reactor was far from optimum, and materials other than Teflon or Kel-F would be needed for construction of the reactor. Under the influence of the UV-derived fluorine atoms, Teflon was severely degraded as evidenced by shrinkage, embrittlement, stress cracking and formation of CF_4 . Kel-F appeared to undergo an even more rapid degradation of physical properties with concomitant formation of perfluoroalkyl chlorides.

Since the use of HF was not required to maintain the sapphire window transparency, fused silica was used to construct the second type of reactor. This reactor was a 3-inch diameter bulb fitted with an 0-ring joint and Fischer-Porter needle valve for evacuation and introduction of the gaseous reactants. Although surface attack of the silica did occur (Eq. 1), weight loss of the

$$SiO_{a} + 2F_{a} + SiF_{A} + O_{2}$$

1. 1

reactor (with a 100 watt UV source) was only about 1 mg/hr and no byproducts were found to contaminate the NF_4BF_4 . The lightweight silica bulb allowed gravimetric determination of the extent of reaction to be made conveniently in place of the manometric method which was used with the much heavier Teflon- or stainless-steel sapphire reactors. In addition to the more accurate method of measuring the NF_4BF_4 formation rate, the diameter of the silica bulb allowed the UV source to be placed closer to the temperature-controlled reaction zone. This led to a significant improvement in the formation rate of NF_4BF_4 .

The third reactor design provided a further improvement in geometry by incorporating a 3-inch diameter, flat window in the shallow (1-1/4 inch) silica reactor. This permitted the light source to be even closer to the reaction zone, and reflection losses were decreased as well. Both of these factors contributed to additional increases in the NF₄BF₄ formation rates.

Reaction Parameters

A number of variables, not necessarily independent, were considered for study to determine their effect on the rate of formation of NF_4BF_4 . They were (1) temperature, (2) UV light intensity, (3) mode of addition of reactants, (4) reactant mole ratios, (5) pressure, (6) catalysts, and (7) use of HF to dissolve NF_4BF_4 coated on the reactor window. Of these only the last was not investigated, since NF_4BF_4 was not found to coat the window as reported in the original UV-initiated synthesis. Selected experiments which illustrate the effect of a given parameter on the NF_4BF_4 formation rate are presented in the tables accompanying the discussion of that parameter. Complete data for each of the eighty-four experiments conducted during the evaluation phase of the UV-induced synthesis of NF_4BF_2 are tabulated in Appendix I.

<u>Effect of Temperature</u>. Because of the obvious economic advantages of an ambient temperature process over one requiring refrigeration, a number of unsuccessful attempts were made to synthesize NF_4BF_4 at ambient temperature by the UV-initiated method. Typical experiments which indicate the effect of temperature on the rate of formation of NF_4BF_4 are listed in Table 1. Unless otherwise noted, comparable conditions were used in the tabulated experiments.

It is apparent from experiments 1, 5 and 12 (which used the same reactor) that as temperature is decreased the formation rate of NF_4BF_4 is increased. This effect is most pronounced at cryogenic temperatures and has been rationalized as the result of stabilization of a reaction intermediate. The dramatic rate increase shown in experiments 36 and 55, when compared with 13 and 14, clearly emphasized the need for cryogenic temperatures, if a high production rate of NF_4BF_4 were to be achieved. The somewhat larger and seemingly anomalous rate observed at -115 C compared with that at -140 C is in reality the effect of intermittent addition of larger amounts of BF_3 (vide infra).

TABLE 1. EFFECT OF TEMPERATURE ON NF_4BF_4 FORMATION RATE

			I Mole R	atio	Duceuro Pande	Reactor	Nr 4 pr 4 rolling croin
Experiment No.	Reaction Temp., ° C	Photolysis Time, hrs.	BF ₃ /NF ₃	F2/NF3	(during photolysis), mm	Used(a)	Rate, mg/hr
-	que	18	-	-	~650	TS	ō
- u	-78	01	-	2	700-690	TS	Trace
(q) ²¹	-115	2	3.3	0.9	800-500	SB	3.5
(q)	-140 -140	. ~	1.1	0.25	500-350	SB	. 1.7
<u>+ </u>	-186	. ∞		2	-250	TS	ω
1 Y	-186	2	-	0.83	370-350	SB	34.5
36	-196	2	-	0.5	220-165	SB	33

то R-9788 7

(a)_{TS} = Teflon-sapphire; SB = silica bulb

(b)_{Rea}ctants introduced intermittently during photolysis rather than before photolysis as in other experiments (Refer to Appendix I for details).

Effect of UV Intensity. A series of experiments (64 and 39-42, Table 2) was conducted in which the intensity of the UV source was diminished by insertion of stainless steel screens between the light source and the photolysis zone. The percent transmittance of the screens was measured spectrometrically at both 578 μ m and 400 μ m. The average of the two values (approximately 1 percent difference) was used as the percent transmittance of the screens. The NF₄BF₄ formation rate was not found to be proportional to intensity (percent transmittance) raised to a constant power. The values for n in the equation R = kIⁿ (where R is rate and I is intensity) were 0.426, 0.561, and 0.720 for screens with 49.5, 36.3, and 33.0 percent transmittance, respectively.

The apparent curvature of the plot of log R vs log I may be only an artifact arising from geometric factors. The three screens used had the following characteristics: 49.5% transmittance (T), 64 mesh, wire diameter (w)/hole width (h) = 0.224; 33.0% T, 35 mesh, w/h = 0.735; and 36.3% T, 150 mesh, w/h = 0.556. The percent transmittance of the screens was measured virtually normal to the plane of the screen by the nearly parallel light beam in the spectrophotometer. In contrast, the UV light irradiating the reaction zone in the photolysis experiments approximated a divergent cone with a apical angle of 60°. The amount of light passing a screen will decrease as the angle of incidence decreases, and for a given angle of incidence will decrease most with thick screens, i.e., when w/h is largest. The observed correlation of the rates of formation of NF₄BF₄ with light intensity (assuming normal incidence) is as expected for the geometries involved. From these considerations, the rate of NF₄BF₄ formation would be expected to increase by a factor somewhat greater than the maximum observed, i.e., R > kI^{0.426}.

With all factors other than UV lamp wattage held reasonably constant, the NF_4BF_4 formation rate was almost directly proportional to the power input (Table 2, experiments 67, 69 and 75). The decrease in NF_4BF_4 formation rate with distance between lamp and photolysis zone (Table 2, experiments 61 and 67) more closely approximates that expected from a point source ($\propto 1/d^2$) than from a linear source ($\propto 1/d$).

TABLE 2. EFFECT OF UV INTENSITY ON NF $_4$ BF $_4$ FORMATION RATE^(a)

Experime No.	int Pressure Range (during photolysis), mm	Reactor Used(b)	Lamp to Condensed Reactant Distance, cm	Percent Transmission	Rate, mg/hr
64	130-70	SB	12	100	30
5 8	85-50	SB	12	49.5	21.5
	80-45	SB	12	49.5	23
}	80-55	SB	12	36.3	17
t f	80-50	SB	12	33.0	13.5
2 19	115-70	SF	9(c)	100	۲۲
6 69 R-97	210-100	SF	7.5 ^(c)	100	011
69 788	~200	SF	7.5(c)	100	1004
75	~175	Υς	7.5 ^(c)	100	1172

(a)All experiments were conducted at -196 C for 2 hours in the same reactor using a NF₃/BF₃/F₂ reactant mole ratio of 1/1/0.17. respectively.

(b)SB = silica bulb; SF = silica flat-windowed reactor (see Appendix I).

(c)Experiments 67 and 61, 100 watt Hanovia (lamp B); experiment 69, 1000 watt G.E., lamp BH6; experiment 75, 1000 watt III lamp BH6-1-B; other experiments, 100w Hanovia (lamp A).

Mode of Addition of Reactants. Three modes of reactant addition were evaluated: (1) addition of all reactants before initiation of photolysis, (2) continuous introduction of reactants during photolysis, and (3) intermittent addition of reactants during photolysis. The photolysis is best conducted at cryogenic temperatures and under these conditions the BF_3 and NF_3 are found almost entirely in the condensed phase, while F_2 is distributed between the condensed and gaseous phases. The rate at which the reactants are introduced, as well as the order of introduction (if not premixed), affects the physical state of the condensed phase. While not all of the parameters were held constant in the experiments listed in Table 3, the range over which these vary is not sufficient to invalidate comparison of NF_4BF_4 formation rates.

The rate of NF_4BF_4 formation is greater when condensation is effected rapidly (2-3 minutes in mode B, Table 3) as can be seen by comparing Experiments 32 and 27. In the latter experiment condensation occurred over a 60 minute period prior to photolysis and the rate of NF_4BF_4 formation was decreased from 27 to 14 mg/hr. However, if the slow condensation is carried out continuously during photolysis (Experiment 29), the rate is increased to 19 mg/hr indicating the beneficial effect of the continuous mode of addition.

Intermittent addition of reagents should combine the best features of both the pre-photolysis and continuous modes in that rapid condensation of each increment would occur and fresh reagents would be added during the photolysis period. Comparison of Experiments 58 (addition before photolysis) and 11 (intermittent addition during photolysis) does not appear to support the hypothesis that intermittent addition is the best mode. However, other experiments conducted at a higher UV intensity (vide infra) do verify the hypothesis, and the apparent anomaly observed here presumably arises because the sequence of reactions leading to NF_4BF_4 is inhibited by swamping with fresh reagents. In the series of experiments of varying photolysis time wherein all reagents were added before photolysis (Experiments 69, 71, 72 and 74), the NF_4BF_4 formation rate decreased drastically with time. The average hourly rate during the last two hours of the three hour photolysis decreased from an initial 1 g/hr rate (during the first 0.25 hr) to less than 20 percent of this value. Intermittent addition of reagents under comparable conditions (Experiment 84) maintained the average NF_4BF_4 formation rate in a 4 hour photolysis at nearly

_
RATE ^(a)
FORMATION
4 ^{BF} 4
NF
N
REAGENTS
PF
ADDITION
Ч
MODE
PO
EFFECT
÷
TABLE

	Experiment. No.	Photolysis Time, hrs	Mole BF ₃ NF ₃	Ratio F2 NF3	Mode of Reactant Addition(b)	Pressure Range (during photolysis), mm	Reactor Used	UV Lamp Type	Average NF4 ^{BF4} Formation Rate. mg/hr
	32	2	4.67	0.56	80	200-120	SB	н(А)	27
	27	-	4.67	0.56	B(c)	350-185	SB	H(A)	14
	29	-	4.67	0.56	U	350-190	SB	H(A)	19
	58	2	-	0.30	8	180-120	SB	H(A)	37.5
	11	e	-	0.29	I	150 ± 20	SB	H(A)	20
	69	0.25	-	0.17	8	~200	SF	GE	1004
	11	0.5	-	0.33	8	~225	SF	B	888
	72	-	-	0.33	8	200-175	SF	ß	804
F	74	m	-	0.43	8	500-225	SF	GE	391
-97	84	4	-	0.21	1	~200	SF ^(d)	GE	647
81 1									

 $^{(a)}$ All experiments were run at -196 C.

 $^{(b)}$ B, before photolysis; C, continuous during photolysis; and I, intermittent addition.

(c)All reactants were introduced exactly as in Experiment 29 but before photolysis.

(d)Reactor inlet in center of photolysis zone.

double the value of the 3 hour photolysis where reagent addition preceded photolysis. A conversion of 83 percent was observed in Experiment 84 based on the limiting reactant (F_2) .

These data suggested that maximization of the NF_4BF_4 formation rate over extended times (as would be required in a production process) would best be accomplished by intermittent addition of reagents to the photolysis zone. Sufficient time should be allowed between additions to permit optimum utilization of the reagents in each increment.

Effect of Reactant Mole Ratios. Equimolar amounts of NF₃, BF₃ and F₂ are required to prepare NF₄BF₄ by the UV-initiated synthesis. However, since the reaction mechanism is unknown, the rate-determining step might be favored by a deviation from the stoichiometric ratio.

From a practical experimental standpoint, sequential condensation of the three gaseous reagents into a reactor at -196 C should proceed from the least volatile to the most volatile, i.e., BF_3 , NF_3 and, finally, F_2 . Condensation of BF_3 alone, or even when premixed with NF_3 , tends to form a rather compact solid mass due to prior liquefaction. However, if the condensation occurs in a fluorine atmosphere, the condensation rate is slowed somewhat so that a porous solid structure results. The structure of the condensed phase appears to affect the NF_4BF_4 formation rate, perhaps, as a result of varying ease of mass transport of the liquid $BF_3-NF_3-F_2$ solution through the porous solid BF_3 .

In Table 4 the relative effects of an excess of one of the three starting materials on the rate of formation of NF_4BF_4 is illustrated. The most detrimental ingredient when in excess was NF_3 , which inhibited NF_4BF_4 formation completely. Less drastic in its effect was excess F_2 , but much of this reagent is in the gaseous phase. An excess of BF_3 appears either to be without effect or possibly may even increase the rate of NF_4BF_4 formation based on extrapolation from experiments in a different reactor. No directly comparable experiment in the same reactor using a stoichiometric ratio was conducted.

<u>Effect of Pressure</u>. In all of the experiments which were designed to test the effect of pressure on the NF_4BF_4 formation rate, the temperature of necessity had to be above cryogenic levels where NF_4BF_4 formation is extremely inhibited.

TABLE 4. EFFECT OF REAGENT MOLE RATIOS ON NF $_4$ BF $_4$ FORMATION RATE(a)

.

٠

Experiment Ti No.	Turin I	Mole	Ratio	Mode of	Pressure Range	Average Nr 4 br 4
	ime. hrs	BF3 NF3	F2 NF3	Reactant Addition	(during photolysis). mm	Formation Rate. mg/hr
23		-	7.8	U	~350	14
22	2	-	4.4	U	~350	29.5
20	2.5	0.21	0.21	(q) ^I	200-100	0
	1.75	4.67	0.67	U	300-250	47

R-9788 13

(a)All experiments were conducted at -196 C in a 3-inch stainless steel reactor with a 2-inch diameter sapphire window and the same 100 watt UV source.

(b) One-third of the total F_2 used was added after 1 hour photolysis.

Since low temperatures have proved to be perhaps the most important requirement for successful NF_4BF_4 synthesis, the pressure range which could be studied is quite limited. Pressure becomes a dependent variable determined by both the temperature and the reactant mole ratio. From the available data, no effect on NF_4BF_4 formation rate can be ascribed to pressure alone.

<u>Effect of Catalysts</u>. In some of the first experiments where Kel-F components were used in the reactors, the formation of small amounts of ClF_5 was observed. In some of these experiments NF_4BF_4 was also formed and the possibility that ClF_5 was catalyzing the formation of NF_4BF_4 was considered. Addition of ClF_5 to the reaction mixtures was subsequently observed to be ineffective and was discontinued.

METATHETICAL PROCESS - PHASE I, TASK 1

Prior to this contractual effort, NF_4BF_4 had been produced at Rocketdyne in a purity of 86 \pm 3 mole percent and 70 percent yield in runs on a 0.8 mole scale. The metathesis was accomplished by the reactions shown in Eq. 2 through 5. The

$$NF_4SbF_6 \cdot xSbF_5 + AgF \xrightarrow{+HF} NF_4HF_2 + AgSbF_6 +$$
(2)

$$NF_4HF_2 + BF_3 \xrightarrow{-HF} NF_4BF_4$$
(3)

major contaminants in the NF₄BF₄ product were found to be NF₄SbF₆ xSbF₅ and AgBF₄, and the presence of these impurities was attributed to the following reactions:

$$AgSbF_{6} + BF_{3} \xrightarrow{+HF} AgBF_{4} + HSbF_{6}$$
 (4)

$$HSbF_{6} + NF_{4}BF_{4} \xrightarrow{-HF} NF_{4}SbF_{6} \cdot xSbF_{5} + BF_{3}^{+}$$
(5)

For the purpose of improving both the yield and purity of the metatheticallyderived NF₄BF₄, several process improvements were investigated. These were: (1) attempts to insure the use of water-free HF (the salt is known to hydrolyze readily): (2) preparation of NF₄SbF₆ containing a smaller amount of complexed SbF₅; and (3) the use of SbF₆ precipitants other than AgF. In addition to these studies, estimates of the solubility of NF₄SbF₆·0.8SbF₅ and TIF in HF were obtained, as well as the densities of such solutions. These data were required to maximize the batch quantities of NF₄BF₄ prepared in the volume-limited reactor. Finally, investigations were conducted to upgrade the crude NF₄BF₄ by reprocessing, chemical reaction and recrystallization.

Attempted Analysis for Water in HF Solutions

Since NF₄BF₄ is hydrolytically unstable, minimizing the water content of the reagents used in the metathetical synthesis would be expected to give an increased yield of higher purity product. Accordingly, an attempt was made to develop a quantitative analytical method for water in the solvent HF applicable also to reagent solutions in HF. The proposed method was based on the hydrolysis of the thermally produced (and, hence, water-free) sait NF₄SbF₆·xSbF₅. It was expected that NF₃ generated by reaction of a few milligrams of H₂O with this antimony salt could be determined quantitatively using the very strong NF₃ infrared absorbance at 907 cm⁻¹.

R-9788

15

The amount of NF₃ formed on reaction of a known quantity of water in HF with an excess of NF₄SbF₆ *xSbF₅ was but a few percent of theoretical (see Table 5). To explain these low results, it is postulated that the complex salt in HF behaves as a solution of NF₄SbF₆ and HSbF₆, and in the resulting extremely acidic solution the water is protonated almost completely. As a consequence, a reaction between the cations, NF₄⁺ and OH₃⁺, would not be very probable. In line with this hypothesis, water (completely protonated) when introduced as OH₃SbF₆ (Ref. 8) failed to hydrolyze a significant amount of the NF₄⁺ salt (Table 5). In view of these results, no additional work was performed for the analysis of water in

HF or its solutions.

		the second se		
Sample	Wt. of	Wt. of	Vol. of	% of Theoretical
No.	HF, g	H ₂ 0, mg	NF ₃ , cc	NF ₃ Recovered
1	2.3226	2.30	0.129	4.5
2	1.0155	1.00	0.034	2.7
3	1.4591	1.45	0.099	5.5
4	2.3605	2.38	0.020	0.68
5	9.7	10.74 ^(b)	0.191	1.7

TARLE	5		ANALYSIS	0F	WATER	IN	HF ^(a)
TABLE	5	•	ANALISIS	01			

 $(a)_{HF-H_2}$ 0 solution added to known quantities of NF₄SbF₆.0.8 SbF₅ (b)_{Weighed} directly as 0.1520g OH₃SbF₆

<u>Solubility and Density Studies</u>. In order to maximize the amount of NF_4BF_4 per batch in the metathetical synthesis from $NF_4SbF_6 \cdot 0.8SbF_5$, the solubility of this starting material and the density of its HF solution were required. The data obtained must be considered as approximate only since the composition of the salt varies slightly with each batch (vide infra, Table 6). The solubility the salt varies slightly with each batch (vide infra, Table 6). The solubility of $NF_4SbF_6 \cdot 0.8SbF_5$ was found to be 5.1 g/g HF at 0.5 C and 8.5 g/g HF at 28.5 C by visual observation of dissolution of weigh quantities of solute and solvent. The density of the latter solution was determined to be 2.4 g/ml.

Data from a similar study of TIF solutions were invalid because the solution was fluorine-dried and only part of the TIF_3 formed precipitated, while the rest remained in solution as complex anionic species.

NF₄SbF₆·xSbF₅ Preparative Studies

The antimony salt, $NF_4SbF_6 \cdot xSbF_5$, is the most readily prepared source of NF_4^+ cation and, as such, was used as the starting material in the metathetical synthesis of NF_4BF_4 . Of the several known methods for its preparation, the thermal activation process is the best for preparing relatively large amounts in a minimum time (Eq. 6). The product obtained is a solid with variable

$$NF_3 + F_2 + (x + 1) SbF_5 + NF_4 SbF_6 \cdot xSbF_5$$
 (6)

composition (i.e., x = 3 to 4). The amount of SbF₅ complexed by the NF₄SbF₆, when the salt is used as an intermediate for the synthesis of NF₄BF₄, should be as small as possible since the excess SbF₅ increases the amount of metal fluoride required for the precipitation of MSbF₆ (Eq. 2).

Prior to the NF₄SbF₆·xSbF₅ preparative studies conducted under this contract, a number of large-scale runs had been made at 115 C (Runs 1-6, Table10, see Experimental Section). The ratio of Sb/N in the product salt was in the range 3-4 and required vacuum pyrolysis at 200 C for 24 hours or longer to distill off the excess SbF₅. The Sb/N ratio of the final product was approximately 1.8-2.0.

In view of the fact that partial depolymerization of the complex anion could be accomplished at 200 C, attempts were made to produce $NF_4SbF_6\cdot xSbF_5$ with a lower Sb/N ratio directly from the gaseous reactants, without post pyrolysis. This approach was based on the assumption that, at the 115 C reaction temperature, the product with a Sb/N ratio of 3 to 4 may have been stabilized due to crystallization from the fluid mixture. If this assumption were correct, then higher reaction temperatures might yield higher melting salts of lower antimony content.

Several syntheses were conducted at temperatures higher than 115 C. At both 200 and 250 C, the Sb/N ratio of the products remained in the range 3 to 4, and the post preparative pyrolysis step was required to remove excess SbF_5 . A slightly greater attack of the Monel reactor at these temperatures was noted by the increased quantity of nickel and copper salts accompanying the

 $NF_4SbF_6\cdot xSbF_5$. An appreciable amount of these relatively insoluble nickel and copper salts were removed by filtration during extraction of the product from the Monel reactor with HF. Analytical data and calculated composition of the products for the high temperature runs are summarized in Table 6.

Since the higher temperatures were not useful for a direct synthesis of NF_4SbF_6 ·xSbF₅ with a low Sb/N ratio, all other preparative runs were made at 115 C to provide the starting material for the metathetical synthesis of NF_4BF_4 .

$NF_4SbF_6 \cdot xSbF_5$ Metathesis to NF_4BF_4 -

To achieve the specified 99-mole percent pure NF_4BF_4 by the metathetical route, the first approach was to substitute thallous fluoride for AgF as the SbF₅ precipitant (Eq. 2). Although NF_4BF_4 had been previously synthesized at Rocketdyne and elsewhere by the metathetical route, the maximum purity of the salt (without post treatment) never exceeded 86 \pm 3 mole percent. It was believed that an increase in the purity of NF_4BF_4 could be realized if the Ag⁺ ion were replaced in the metathesis by another cation which formed less soluble SbF_6^- and BF_4^- salts. This conclusion was reached on the basis of the knowledge that both $NF_4SbF_6 \cdot xSbF_5$ and $AgBF_4$ are present as contaminants in the NF_4BF_4 , and their presence is most likely due to reactions such as represented by Eq. 4 and 5.

<u>Metathesis Using TIF</u>. Of the metals forming HF-soluble fluorides, only thallium appeared to be a better precipitant candidate for SbF_6^- than silver. The reported solubility data for $TISbF_6^-$ in HF (Ref. 9) indicated a solubility almost an order of magnitude less than that of $AgSbF_6^-$ (0.019M vs. 0.16M; the latter was estimated from antimony analyses of $NF_4BF_4^-$) No information, however, had been previously reported either on the solubility of $TIBF_4^-$ in HF or on the compatibility of NF_4^+ and TI^+ .

A preliminary experiment on a 10 mmole scale demonstrated that little T1⁺ was oxidized to T1⁺³ by NF₄⁺. The evidence for this was that only a small amount of NF₃ was formed during the reaction. Since there appeared to be no T1⁺-NF₄⁺ compatibility problem, a 0.2 mole metathesis experiment was conducted in the large-scale reactor (Fig. 1) using T1F in place of AgF. The NF₄BF₄ isolated from this experiment had an antimony content approximately four times less than that using AgF.

6AD61-1/11/74-C1

TABLE 6 . ANALYSIS AND COMPOSITION OF HF SOLUBLE NF₄SbF₆·xSbF₅ PREPARATIONS

							3	alculated (Composition	tur
							M(SI	oF6) .xSbr	2. Mole rer	- nua
Run	Sample	NF ₃ ,	Sb. ug-at	N1. µg-at	Cu. ug-at	Sb/N	×	$M = NF_4^+$	$M = Ni^{+2}$	$M = Cu^{+2}$
No.	ML, IIIU	60100111								
	с с	0 8 1	33.4	0.30	0.24	1.86	0.75	97.1	1.6	1.3
	7.6	2.2		00 0	3 54	51.3	0.36	5.2	61.0	33.8
(a) 8	6.4	0.54	21.1	60	2			c 00	0	1.5
σ	1.01	18.0	34.2	1.87	0.31	1.90	56.1	07.6		
	0 61	22.0	44.8	11.11	0.24	2.04	0.82	94.2	4.8	0.1
0	2.21									

(a) During the post preparative pyrolysis step, the temperature control failed resulting in a temperature excursion and extensive decomposition of the NF4SbF6.xSbF5.

However, the purity of the NF₄BF₄ was found to be lower than that produced by the use of AgF. This lower purity resulted from the presence of appreciable quantities of thallium in the product. The exact form in which the thallium was present is unknown; however, the most likely forms are TlBF₄ and/or perhaps soluble Tl⁺³ complexes. The high toxicity of thallium coupled with the fact that attempts to decrease the thallium content of the NF₄BF₄ were unsuccessful (vide infra) eliminated this reagent from further consideration.

<u>Metathesis Using AgF</u>. The scale of the metathetical reaction between AgF and $NF_4SbF_6\cdot xSbF_5$ was increased from the normal 0.8 mole runs to 1.5 to 2.0 moles of the NF_4^+ salt for the purpose of producing more of the product per batch. Problems associated with the removal of the coproduct $AgSbF_6$ were encountered during these larger scale runs. The precipitation of the larger quantity of $AgSbF_6$ resulted in a heat release that could not be rapidly dissipated by the Teflon equipment. This resulted in a product which contained a large amount of $AgSbF_6$ due to the increased solubility of this coproduct under the experimental conditions used. Sufficient cooling of the $AgSbF_6-NF_4HF_2$ slurry during the filtration step caused the $AgSbF_6$ to precipitate in the filter and plug it.

Because of the marginal thermal stability of NF_4HF_2 formed along with the AgSbF₆, long periods between mixing the $NF_4SbF_6 \cdot xSbF_5$ and AgF prior to filtration of the AgSbF₆ could not be tolerated. Therefore, the HF solution of AgF was precooled in an ice bath for about 0.5 hour prior to adding it to the HF solution of $NF_4SbF_6 \cdot xSbF_5$, followed by an additional 0.5 hour cooling period before carrying out the filtration step. This procedure worked well when 1.0 mole scale preparations were conducted, and would probably be adaptable to larger scale runs as well.

A second observation that was made during the larger scale runs was that the reaction of the filtrate, from the AgF - NF_4SbF_6 'xSbF₅ reaction, with BF₃ required more agitation than was needed in the smaller runs. The required agitation was provided by manually shaking the reactor.

The synthesis and analytical data obtained for three metathetical runs are summarized in Table 7.

TABLE 7 . METATHETICAL NF4BF4 PREPARATIONS

						T			-	1 mm	(pund)		-
			T		NC . BC .			A	ISA INST		12100	Ì	1
	Reactants, mc	les	1	Crude NFARFA.	Purity	Percent	C. and C	NF	æ	Sb	Ag	c	Ni
Run	The set with	AnF	BF		mole percent	Yield	Sampre	8 11	·	T		T	T
No.	NF450F6 XJUF5	ĥ	2	,				2 101		6 4 2	21.4	0.009	0.006
	0 05	2.14	0.82	123.8	63 ^(a)	39	382.2	0.121	+				
ر	(x = 0.89)							-	v or	27 R	9 11	110.0	0.015
			1 40	164.2	(q) ⁰⁶	65	372.1	111.4	t 0	0.10			
10	1.08	77.7) + -										010 0
	(x = 0.99)				(p)	00	368 9	118.5	1.61	33.2	7.95	600.0	0.012
;	70 0	2.20	1.40	185.0	83, - ,	0							
=	(16 0 = //												

Net the AgF-NF₄SbF₆.0.95 SbF₅ reaction he advise of non-cooling of the AgF-NF₄SbF₆.0.95 SbF₅ reaction mixture.

(b)_{HF} solution of antimony salt was added to the HF solution of AgF precooled in an ice bath. The reaction mixture was retained in the ice bath for 40 minutes prior to filtration and reaction with ^{BF}3.

Purification of Metathetical NF, BF,

Because the purity of the NF₄BF₄ obtained directly from the metathetical reaction could not be increased by any of the approaches attempted, efforts were made to increase the purity of the material by other means. A crystallizer (Fig. 2) was built and used for recrystallizing the NF₄BF₄ from HF. The procedure used for operating the crystallizer is described in the Experimental Section. Attempts were also made to upgrade the purity of the material by reprocessing the NF₄BF₄, and by reaction with HCl in HF. The results of these studies are presented below.

<u>Crystallization Studies</u>. Based on the assumption (since no density data or reliable solubility data were available) that NF_4BF_4 is less soluble than NF_4SbF_6 xSbF₅ in HF, it was believed possible to recover pure NF_4BF_4 by crystallization from an HF solution of the mixed salts. The inseparable mixture that would be obtained after crystallization could then be metathetically reprocessed to enrich it in NF_4BF_4 .

Experimentally, NF_4SbF_6 xSbF₅ proved to be less soluble than NF_4BF_4 , and, hence, it concentrated in the solid phase during crystallization. When a composite (470 g, calculated to consist of 84 NF_4BF_4 , 9.3 NF_4SbF_6 ·1.1 SbF₅, and 6.6 mole percent AgBF₄) was taken of the metathetical runs shown in Table 7 and crystallized from HF, the results summarized in Table 8 were obtained. The filter cake

Sample	Weight, g	NF4BF4	NF ₄ SbF	₅ ·xSbF ₅ (x)	AgBF ₄	AgSbF ₆
Composite of Runs 9-11	470	84.1	9.3	(1.1)	6.6	0
Insolubles Runs 9-11	23	5.0	3.6	(1.1)	91.4	0
Crystallized Filter Cake						
Center Periphery	180	74.0 75.4	23.4 20.1	(0.90) (0.90)	0	3.0 4.6
Filtrate Residue	250	93.0	5.9	(0.90)	0	1.1

TABLE 8 . CALCULATED COMPOSITIONS* OF ISOLATED FRACTIONS FROM $\mathsf{NF_4BF_4}$ CRYSTALLIZATION

*Compositions given as mole percent

Figure 2. Teflon and Kel-F Concentrator-Crystallizer Schematic

was sampled for analysis in two places - the center, where more efficient washing by the HF spray occurred, and the periphery. The analytical results indicated that the concentration of antimony salt in the saturated solution was too high to provide high purity NF_4BF_4 by evaporation of the crystallization mother liquor. Furthermore, the higher ratio of antimony to boron NF_4^+ salts in the center of the filter cake served as confirmatory evidence for the selective dissolution of the more soluble NF_4BF_4 by the HF wash. Although the filtrate residue analyzed higher in NF_4BF_4 content than the calculated value for the composite, this improvement in purity appeared to be due primarily to removal of the contaminating $AgBF_4$.

<u>Reprocessing of Metathetical NF₄BF₄</u>. An attempt was made to upgrade a 93 mole percent NF₄BF₄ sample by using it as the starting material for the metathetical process. With the lower initial antimony content, the minimum value for antimony should be readily attained in the final product. Since the fluoro-antimonate salt is the major impurity in metathetical NF₄BF₄, a decrease in its concentration should yield a significantly purer NF₄BF₄.

In the initial step of the metathetical reaction, all NF_4^+ salts (including NF_4BF_4) were converted to the intermediate bifluoride salts (Eq. 7 and 8).

$$NF_{a}BF_{a} + AgF \xrightarrow{HF} NF_{a}HF_{2} + AgBF_{a} + \qquad (7)$$

$$NF_4SbF_6 \cdot xSbF_5 + AgF \xrightarrow{HF} NF_4HF_2 + AgSbF_6^+$$
 (8)

Treatment with BF_3 then produced NF_4BF_4 as in the process starting with the antimony salt alone. Although a 38 percent decrease in the antimony content was achieved, the purity of the NF_4BF_4 recovered was unchanged at 93 mole percent due to an increase in the $AgBF_4$ content.

<u>HCl as a Metal Precipitant</u>. The solubility of AgCl in HF is quite low, and presumably that of TlCl would also be low since much of chemistry and many of the physical properties of Ag^+ and Tl^+ compounds are parallel. The approach used to decrease the Ag^+ or Tl^+ content of metathetical NF₄BF₄ was to saturate the HF solution of the crude NF₄BF₄ with HCl in order to precipitate the metal ion without introducing other contaminants (Equation 9). Partial success was

$$MBF_{a} + HC1 \xrightarrow{HF} MC1+ + HF + BF_{3}^{\dagger}$$

attained in that the silver content of the product was decreased to about onefourth its initial value. However, a pressure rise was noted subsequent to the HCl addition and a net loss in weight of nonvolatile solids was observed suggesting that the NF_4^+ ion and HCl are incompatible. As a result of the partial loss of NF_4BF_4 by the reaction postulated in Eq. 10, overall purity of the recovered

$$NF_4BF_4 + HC1 \xrightarrow{HF} NF_3 + BF_3 + HF + C1F$$
(10)

product dropped from 93 to about 90 mole percent.

Confirmation of the interaction of NF_4BF_4 with HCl was obtained in a similar treatment of the NF_4BF_4 prepared by metathesis using TIF in place of AgF. Although a small proportion of the thallium content of initial product was rendered insoluble, the destruction of NF_4BF_4 was much more extensive suggesting that not only was HCl oxidized, but that Tl⁺ was also oxidized to Tl⁺³ possibly as indicated in Eq. 11. The HCl treatment decreased the purity of the NF_4BF_4

 $T1^{+} + C1F \xrightarrow{HF} T1^{+3} + C1^{-} + F^{-}$ (11)

from 88 to about 65 mole percent.

CONCLUSIONS - PHASE I, TASK 1

During Phase I, Task 1, it was possible to demonstrate that pure NF_4BF_4 could be prepared by the UV-induced reaction of NF_3 , F_2 and BF_3 at an average rate of 1 g/hr (during short reaction times). In contrast, the metathetical reaction provided NF_4BF_4 of a purity not exceeding 93 mole percent despite efforts to increase the purity by physical or chemical means. On the basis of the simplicity of the UV-induced reaction, its potential for providing the material at a lower cost and the demonstrated synthesis of pure NF_4BF_4 , this method was chosen as the one to study during the scale-up task (Phase I, Task 2).

(9)

SCALE-UP OF UV PROCESS - PHASE I, TASK 2 AND LARGE SCALE SYNTHESIS OF ${\sf NF}_4{\sf BF}_4$ - PHASE II

For the purposes of convenience and because of overlap of the experimental data, these two work efforts have been combined. During Phase I, Task 2, the objective of demonstrating a scalability of the UV process to achieve a production rate of 80 g/week of NF_4BF_4 of high purity was achieved. During Phase II, this same process was used to produce 0.24 Kg of NF_4BF_4 of 99 mole percent purity which was delivered on schedule.

A description of the UV apparatus used to accomplish these objectives, and a discussion of the process parameters investigated are given in the following sections.

Equipment Design (Large-Scale)

On the basis of the previously described experiments conducted under Phase I, Task 1, an apparatus was designed and fabricated to produce NF_4BF_4 in larger quantity and at higher rates than had been obtained in the preceding experiments. The reactor was constructed of 347 stainless steel (with the exception of a few 300 series stainless steel fittings) and was fitted with a 4-inch diameter sapphire photolysis window and a 1-inch diameter sapphire view port using Teflon gaskets. The reactor and its ancillary equipment are shown schematically in Fig. 3.

Basically, the reactor consists of a windowed chamber, to contain the reactant gases, with an internal liquid nitrogen-cooled flat photolysis surface parallel to the sapphire window. With the exception of this cooled vertical photolysis zone, all other walls of the liquid nitrogen refrigeration system are vacuum jacketed.

Reactant gases are introduced from a pressure regulated supply tank through a timer-operated, solenoid-actuated, pneumatic valve to an integral manifold supplying six 0.0135-inch diameter holes equally spaced around the perimeter of the window. Unreacted gases are vented from the reactor through a solenoid-actuated, pneumatic valve and collected in a liquid nitrogen-cooled catch tank. By actuation of an externally mounted hydraulic ram, a scraper can be made

FIGURE 3. UV REACTOR APPARATUS SCHEMATIC

to pass over the photolysis zone to remove adhering unreacted starting materials and NF_4BF_4 . The latter is collected in a removable can for transfer to the drybox. Pressures in the reactor, reactant gas feed line, and catch tank are measured with a digital manometer (Validyne, Model 56A).

The UV source is a 1000 watt, high pressure capillary mercury arc lamp (GE BH6) with appropriate air-cooling and power supply. A polished nickel parabolic reflector is positioned around the lamp to maximize the light intensity in the photolysis zone. A relative measure of the UV intensity is determined by an externally mounted photocell.

The refrigeration system consists of a 100-liter liquid nitrogen supply in series with a 14-liter constant level vessel, which permits replenishing the 100-liter supply without interruption of the photolysis process.

Reaction Parameters

From the experiments conducted during Task 1, the relative importance of a number of reaction parameters had been indicated. In the large-scale reactor design, an effort was made to utilize the optimum values for these parameters. However, because of the completely different geometry and partial process automation, some additional parametric factors were introduced. The study of the various process parameters was conducted under Phase I, Task 2 (Synthesis Scale-Up). During the work effort, 80g of NF_4BF_4 of 99 mole percent purity was prepared and delivered to the Air Force and a production rate of 80g/week was demonstrated. These milestones were achieved even though optimization of the process was not complete by the end of this task. Therefore, the optimization studies were continued under Phase II (Large-Scale Synthesis). Even with the additional parametric evaluation, sufficient time was unavailable to obtain data which would accurately define the optimum process conditions for synthesis of NF_4BF_4 in the large-scale reactor.

During the course of this investigation, it became obvious that several important variables could not be controlled and, as a result, the correlations found between reaction parameters and rate of formation of NF_4BF_4 are qualitative. Insofar as it is possible, the influence on the NF_4BF_4 formation rate of each of the parameters studied will be discussed. The data obtained using the

large-scale reactor are tabulated in Appendix II. Runs 1-13 were conducted under Phase I, Task 2 and Runs 14-21 under Phase II.

Effect of Temperature. Small-scale experiments indicated the essentiality of cryogenic temperatures if reasonable NF_4BF_4 formation rates were to be achieved. Accordingly, only liquid nitrogen was used as a coolant in the large-scale reactor, but some temperature variation (ca. 10 C temperature rise) was accomplished by pressurization of the cooling system. A total of six runs were made with pressures of 1-1.5 atmospheres above ambient in the liquid nitrogen cooling system. No significant difference could be found between those runs made using pressurization in the cooling system and those conducted at ambient pressure. Since the latter procedure was simpler from an operational standpoint, it was the method of choice.

Effect of UV Intensity. The intensity of the UV radiation at the photolysis surface is a function of (1) the distance from lamp to the photolysis surface, and (2) the UV output of the lamp. In most experiments the lamp was positioned as close as possible (4.2 cm) to the photolysis zone. In three runs the distance was increased primarily to lower the heat load on the cooling system. Comparing runs 3 and 4 (Appendix II), the NF_4BF_4 formation rate decreased more drastically than would be expected from 1.50 g/hour to 0.36 g/hour on increasing the lamp-photolysis surface distance from 4.2 cm to 6.7 cm. These data are of dubious value because of the subsequent (i.e., Run 8) observation of a significant, yet variable, build-up of NF_4BF_4 in the reactor. This uncontrollable factor will be discussed in more detail (vide infra).

During the course of the series of runs, a number of lamps were used. The lamps, operated at 900 volts, exhibit a wide variation in both initial UV intensity and in aging characteristics. The observed range of initial UV intensities for ten new lamps was $0.023-0.034 \ \mu w/cm^2$ (at a distance of 85 cm from the lamp) with an average value of $0.027 \ \mu w/cm^2$. When the intensity decreased to $0.016 \ \mu w/cm^2$ the lamp was replaced. Lamp life varied in the range 13-45 hours (average 27.6, hours). The practice common in industry (where lower intensities are generally used) of increasing operating voltage to maintain UV intensity was impractical in our use because the accompanying much greater increase in infrared radiation added too much heat to the refrigeration load. The inherent variation of

30-50 percent in UV intensity during the life of a lamp rendered correlation of NF_4BF_4 formation rate with other given reaction parameters qualitative.

Effect of Reactant Mole Ratios. In view of the fact that NF_4BF_4 is formed from an equimolar mixture of NF_3 , BF_3 and F_2 , it was logical to use such a mixture as the starting material in the UV process. No attempt was made to determine the ratio of the starting materials contained in the reactor in "dynamic equilibrium" during the course of a run.

Effect of Mode of Introduction of Reactants. The intermittent mode of addition of the equimolar NF_3 - BF_3 - F_2 reactant mixture was dictated by the results of the small-scale experiments. To optimize the process, it would be necessary to achieve a balance between a high NF_4BF_4 formation rate with low conversion or a low NF_4BF_4 formation rate with high conversion. Theoretically, a high formation rate should be achieved by frequent renewal of the reactants in the photolysis zone and high conversion by infrequent renewal. The quantity of reactants introduced with each increment must not exceed that which can be converted to products in the time between additions, or both NF_4BF_4 formation rate and conversion will be low.

Comparison of Run 19 with combined Runs 9 and 10 (each of which has approximately the same reactant feed rate, see Appendix II) suggests that doubling the quantity of reactants per increment added and halving the frequency of additions resulted in a 20 percent increase in the NF_4BF_4 formation rate. Further decreases in the frequency of addition resulted in very significant lowering of the NF_4BF_4 formation rate (Runs 20 and 21). An insufficient number of runs of long duration (12-35 hours) were made to define either the frequency of incremental additions or the optimum quantity of reagents introduced per addition. Such data as were obtained are qualitative due primarily to two uncontrolled parameters inherent in the reactor design. These parameters are discussed below.

Effects of Reactor Hold-up of NF_4BF_4 and Reactant Gas Orifice Plugging. The nature of the NF_4BF_4 produced by the UV process is such that the dry powder is not free-flowing. Its angle of repose approaches the vertical. Accordingly, an average of about 5 grams of product accumulated on the 40-degree slope of the reactor bottom before additional product falling from the scraper blade would

slide into the collection can. Temperature cycling between runs sometimes dislodged large flakes of product from the photolysis surface which facilitated the accumulation of product (up to 20 grams) in the reactor or complete plugging of the outlet. In any case, the quantity of NF_4BF_4 which accumulated in the reactor was a very substantial, yet variable, percentage of the total produced in all runs. In some runs mechanical removal of product resulted in more reliable formation rate data. The behavior of NF_4BF_4 is postulated to be the result not only of the irregular shape of the solid particles which readily acquire an electrostatic charge, but more importantly, the extremely high HF solubility of the product. A small amount of HF introduced with the F_2 , or from trace hydrolysis of BF_3 by atmospheric moisture leaking into the product.

During 75-100 hours of operation, the quantity of reactant gases introduced per increment was observed to decrease to about one-half its initial value as measured by the maximum pressure rise immediately after the addition. This decrease in addition rate of reactants was found to be due to an uneven accumulation of solids in the inlet orifices. Thus, not only did the amount of reactants introduced decrease (at a given pressure differential between reactant feed supply and reactor and a given open valve time), but the distribution of condensed reactants on the photolysis surface became uneven. The result was that correlations of NF₄BF₄ formation rate with incremental reactant feed rates are qualitative in most instances.

<u>Process Efficiency</u>. During the 34-hour run time of Run 19 (Appendix II), the pressure in the 9.5 liter reactant supply tank decreased by 75 psig which is equivalent to 0.66 mole (117 g) NF_4BF_4 . The 98.9g NF_4BF_4 synthesized indicated an 84 percent conversion of starting materials to product. Assuming the feed rate in Run 21 to be one-half of that of Run 19, the conversion is calculated to be 97 percent.

Overall conversion for all twenty-one runs is calculated to be 31 percent since $369g \ NF_4BF_4$ (323g delivered, 46g analytical samples, mechanical losses, or discarded as partially hydrolyzed) was prepared from the 1197g of an equimolar mixture of NF_3 - BF_3 - F_2 .

EXPERIMENTAL

REAGENTS

HF Drying

A 12-1b quantity of commercial anhydrous HF (Matheson) was transferred into an evacuated 9.5 l stainless steel, high pressure cylinder fitted with a 1000 psi pressure gage. After cooling to -78 C, approximately 500 mm of non-condensable gas was pumped off. A 500 ml cylinder containing approximately 40 l F₂ at -196 C was then connected to the HF cylinder and, after allowing both cylinders to warm to ambient temperature, the HF was pressurized with F₂ to 100 psi. The F₂ pressure over the HF dropped to 85 psi after standing overnight and remained constant during l hour shaking of the HF cylinder. The unused F₂ and O₂ which had been generated were condensed at -196 C in the 500 ml cylinder which was then disconnected. The residual F₂-O₂ mixture was removed from the HF by vacuum pumping for about 3 hrs at -78 C, and then briefly at ambient temperature.

NF2

 NF_3 was obtained from the Rocketdyne plant where it is prepared by electrolysis of NH_4HF_2 . Analysis of this material indicated the following composition.

Component	<u>w/o</u>
NFa	99.5
No	0.3
HF	0.1
CF.	trace < 0.01
N ₂ O	trace < 0.01
trans-NoFo	trace < 0.01
cis-N _o F _o	not detectable
F ₂	not detectable

SbF5

Commercial SbF₅ (Ozark-Mahoning) was distilled at atmospheric pressure under dry nitrogen from glass apparatus into Teflon bottles. Only the center cut (b.p. 148 C) was taken for use, and the liquid was subsequently stored and transferred entirely within a drybox.

All other chemicals were obtained commercially and used as received unless otherwise noted.

UV PROCESS

Small-Scale UV Experiments

The pre-photolysis procedure generally used to prepare NF₄BF₄ on a smallscale by the UV process was as follows. A part (or all when smaller amounts were used) of the F₂ was introduced at -196 C into an evacuated reaction vessel. The UV lamp was then turned on to permit the system to reach thermal equilibrium (5 to 10 minutes). Measured amounts of NF₃ and BF₃ (either premixed or separately) were then quickly introduced by using pressures higher than the internal F₂ pressure. Additional F₂, if necessary, was then added. Deviations from this procedure are noted in Appendix I for individual experiments.

Unless otherwise noted in Appendix I, the procedure for continuous or intermittent addition of reagents differed only in that, after introducing part of the reactants, the flow of the remaining gases into the reactor was either (1) controlled with a needle valve and monitored by pressure measurements, or (2) by rapid addition at varying times during photolysis. Details of individual experiments are given in Appendix I.

Large-Scale UV Preparations

Operation of the large-scale UV-reactor employed the following procedure. An equimolar mixture of $NF_3/BF_3/F_2$ was introduced into the evacuated photolysis cell, which was cooled on the internal working face to -196 C, until the pressure (F_2 partial pressure) rose to the preselected working range (~500 mm). The UV lamp was turned on and the feed cycle timer circuit was activated to admit

additional incremental amounts of the equimolar gas mixture from a pressure regulated supply. The reactant gas feed rate was governed by the time that the solenoid activated pneumatic inlet valve was open, the pressure differential between the reactor and supply, and the time between inlet valve activations. At approximately 15 minute intervals, a hydraulic ram was manually activated to drive a scraper blade across the internal working face of the reactor and thereby dislodge the mixture of NF_4BF_4 and unreacted starting materials. The unreacted starting materials volatilized and the increase in cell pressure was reduced to the preselected value by bleeding the unreacted materials into a catch tank at -196 C. The solid product was deposited in a doubly-valved removable collection vessel under the photolysis cell. At the conclusion of a run, the bulk of the liquid nitrogen refrigerant was pressure-transferred from the apparatus. As soon as the refrigerant was depleted, the cell pressure began to rise and the feed cycle timer circuit was deactivated. The pressure in the photolysis cell was maintained just below atmospheric by controlled release of the volatilized unreacted gases to the catch tank. The lamp was turned off when the pressure stabilized. The product collection vessel was then evacuated and transferred to a drybox to remove the product. Details for individual runs are tabulated in Appendix II.

METATHETICAL PROCESS

Attempted Analysis for Water in HF Solution

A sample of F_2 -dried HF was added to an evacuated, tared Teflon tube containing 5 µl H₂0. The weighed solution was then partitioned in an evacuated system into three analytical samples by pouring part of it into two other tared Teflon tubes. The three samples were in turn allowed to react with an excess of NF₄SbF₆·0.8SbF₅ in HF solution. The NF₃ generated was pumped through a -196 C trap into a -210 C trap and then warmed and expanded into an IR cell of known volume. The amount of NF₃ was calculated from the measured absorbance of the 907 cm⁻¹ band which had been calibrated against known NF₃ pressures. A fourth experiment was conducted and the NF₃ was pumped through a -126 C trap into the -210 C trap without significant change in the amount of NF₃ obtained. A result comparable to those obtained using water was obtained when the salt, OH₃SbF₆, was used as the water source.

Solubility and Density of HF Solutions of NF₄SbF₆.0.8SbF₅

A 0.2345g sample of $NF_4SbF_6 \cdot 0.8SbF_5$ was dissolved in HF at ambient temperature in a Teflon ampoule fitted with a Teflon valve. The solvent was removed under vacuum to leave a solid which weighed 0.2363g after pumping for 1 hr at ambient temperature. In an independent experiment, approximately 3g of NF4SbF6.0.8SbF5 was dissolved in HF at ambient temperature in a Teflon ampoule equipped with a Teflon filter and valve. After filtering out Monel chips and the relatively insoluble $M(SbF_6 \cdot xSbF_5)_{2}$ salts (M = Cu, Ni), the filtrate was observed to be just slightly turbid in a second tared, volume-calibrated Teflon ampoule. HF was gradually pumped away and crystallization of the salt was induced by supercooling the ampoule tip. The slurry was allowed to warm slowly with agitation in a water bath, the temperature of which was measured with an Anshutz thermometer. The temperature at which the last crystal dissolved was noted as was the volume of the solution. The solution weight was subsequently determined at ambient temperature. The weight of dissolved salt was determined by complete removal of solvent under the conditions described above.

NF_SbF_.xSbF_ Preparative Studies

A typical preparation of $NF_4SbF_6 \cdot xSbF_5$ (Run 16, Table 9) was conducted as follows. A 1000 ml Monel high pressure (3500 psi) cylinder was charged with 602g (2.78 moles) SbF_5 in a drybox. After fitting the cylinder with a Monel pressure gage and valve, 167g (2.35 moles) NF_3 and 98.1g (2.58 moles) F_2 were condensed in the cylinder at -196 C. When the mixture had warmed to ambient temperature (pressure 1600 psi), the cylinder was placed in a 115 C oven for 24 hrs. The pressure was observed to be 2550 psi (after 4.5 hrs in oven) and 1900 psi (1125 psi at ambient temperature) as it was removed from the oven. The unreacted NF_3 - F_2 mixture (149 g) was removed from the cylinder at ambient temperature and recovered for reuse. Infra-red analysis of the recovered NF_3 - F_2 mixture indicated that the mole ratio NF_3/F_2 remained in the range 1.0-1.1.

The crude product was pyrolyzed under dynamic vacuum in a 200 C oven for 24 hrs and excess SbF_5 (204 g) was distilled through an electrically heated line to a -78 C trap for recovery and subsequent reuse. A 100 ml quantity of

SN
III
PARI
PRE
bFc
Sx-a
SbF
NF

£
2
2
¥.
100
5
0
×
(1)
10
-
0
2
-
z
1.14
σ.
1.1
-
-
8
-
-

un	NF3.	F2.	SbF ₅ ,	Temp.,	Time.	Sb/N Initial	Final	Time, hrs	Crude	HF Sol.	HF Insol.
	Moles	Moles	Moles	,						(9)	(q)
			2 05	115	29	3.73	1.83	6	280	(9)	(q)
	1.96	7.14	5.3		10	17 5	2.05	40	305		(4)
2	1.94	2.16	2.04	411	2		10.0	(c)	288	(a)	1
	1 07	2 01	2.03	115	25.5	4.17	\$7.2			(9)	(q)
n	16.1		1 00	115	54	3.74	1.80	51 /2/	167	(4)	(9)
4	1.80		76.1			3 37	1.67	48+/01	315		(4)
S	2.01	2.18	2.27	-	53		VO L	72	397	(a)	101
y	2.13	2.40	2.44	115	69	3.14	-0-1		282	260	14
7 C	11 0	14.0	2.16	200	5	3.93	1.87 (d)	ç :		32(e)	153
-			215	200	21.5	3.61	[2.02]	44	601	10	00
œ	2.1/	14.7	2		J	3 35	1.99	48	342	262	00
σ	1.90	2.13	2.12	092	n		30.6	44	398	360	35
6	1 85	2.05	2.10	250	24	18.2	00.2		AEO	430	21
2	3	-	01 0	115	23	3.40	2.06	44	2	2021	
Ξ	2.31	AC. 7	51.2	2		3 10	2.10	44	493	1	1
12	2.29	2.56	2.78	c	77		00 1	24	481	1	1
13	2.32	2.61	2.72	115	22	3.01	26.1	(f)	610	;	14
2 ;	00000	19 0	2.73	115	24 .	2.78	1.89	5			PL
4	00.2	5	00 0	115	23.5	3.00	1.99	28	029	1	
15	2.33	2.60	7.03		VC	2,88	16.1	24	503	1	21
16	2.35	2.58	2.78	c	5 3	F	1 93	25	542	I	1
1	-	01 0	97 6	115	24	11.7	ne.1	1	-		

(a)Before and after recovery of excess SbF₅ by 24-48 hour pyrolysis at 200 C.

(b)These preparations, made prior to this contract, were isolated mechanically rather than by HF extraction.

(c)Exact pyrolysis time unknown due to plugging of SbF5 outlet. (d)During further heating, temperature control failed resulting in a temperature excursion and extensive decomposition of NF4SbF6.xSbF5.

(e)The major portion of this material may have passed through filter as finely divided solid.

(f)_{Exact} pyrolysis time unknown due to power failure while unattended.

 F_2 -dried HF was added to the 503 g of crude product in the cylinder, and the mixture was mechanically shaken for 1 hr. The resulting slurry of copper and nickel salts was pressurized to 50 psi with nitrogen and pneumatically transferred to a 1070 ml Teflon container equipped with a Teflon filter. The slurry was pressure-filtered into a second Teflon container from which the filtrate was used directly in a metathetical reaction with AgF. After vacuum pumping the solvent from the first Teflon container, the weight of the copper and nickel salts was found to be 12 g.

NF4SbF4 XSbF5 Metathesis to NF4BF4

<u>Compatibility of T1⁺ with NF4⁺.</u> A preliminary experiment involving the first reaction step of the metathetical process, and conducted in Teflon tubing reactors, was not completely satisfactory in that mechanical hold-up of the TIF-HF solution prevented using an excess of this reagent compared to the amount of NF_4SbF_6 0.8SbF₅. On adding one-half to three-quarters of the 1.35 ml TIF-HF solution (containing 2.188g or 9.82 mmoles TIF) to 1.76 ml of a HF solution of NF_4SbF_6 · 0.8SbF₅ (containing 2.645g NF_4SbF_6 · 0.8SbF₅ or 9.62 mg-at Sb), a colorless precipitate formed immediately. After 0.5 hour at ambient temperature, NF_3 (0.44 cc) was collected and determined by infrared spectroscopy to be equivalent to 0.36% of the NF_4^+ . After standing at ambient temperature for 6 days, an additional 0.15% of the NF_4^+ was found as NF_3 , suggesting that the observed precipitate was TISbF₆ which is stable toward oxidation by NF_4^+ .

Metathesis Using TIF. Large-scale reactions were conducted in the metathetical reactor shown in Fig. 1. This reactor is entirely constructed of Teflon and Kel-F including reaction vessels, valves, filters, pressure relief valve (set at 60 psi) and diaphragm pressure gage.

An approximately 0.2 mole scale preparation of NF_4BF_4 was made using TIF as the precipitant for SbF_6 . A solution of 100 g (0.45 mole) of T1F in 72 g HF was added to a solution of 103 g (0.208 mole) of 89.2% NF_4SbF_6 0.53 SbF₅ (Run 9, Table 9) in 44 g HF. The resulting slurry was filtered to remove TISbF₆, which was washed with 25 g HF. The combined filtrate and washings were saturated with BF_3 (19 g, 0.28 mole) to 20 psig. The resulting TIBF₄ was filtered, and the filtrate was evaporated to dryness under vacuum. All of the above operations were conducted in the metathetical reactor.

Analyses of the 38.2 g of crude product were performed by hydrolyzing the product on a vacuum line. The NF₃ evolved was estimated by the IR technique. The hydrolyzate was then analyzed for B, T1, Sb, Ni and Cu by atomic absorption spectrometry. A 0.2660 sample of the product on analysis gave: B, 13.8 mg; T1, 54.4 mg; Sb, 6.4 mg; Ni, 0.006 mg; and Cu, 0.003 mg. Two samples, 0.0027 g and 0.0094 g, gave on an equivalent basis NF₃ values of 93 mg and 47.5 mg, respectively.

<u>Metathesis Using AgF</u>. For a typical reaction, 300 g AgF was dried in a vacuum oven at 60 C for 4 hrs. The resulting 292.6 g AgF, after transfer to a 1070 ml Teflon container in the drybox, was dissolved in 400 ml of F_2 -dried HF and pressure-filtered (20 psi N₂) into a second Teflon container to remove 14 g of insolubles. The resulting HF solution contained approximately 279 g (2.20 moles) AgF.

A HF solution of NF₄SbF₆·xSbF₅ was prepared as indicated (vide supra). Although not analyzed, the solution was estimated to contain approximately 488 ± 3 g of 95-96 mole percent NF₄SbF₆·0.9 SbF₅ (ca. 1.8 g-atom Sb) on the basis of other analyses (cf. Tables 6 and 9).

The 583 g of NF₄SbF₆·0.9 SbF₅ solution was transferred rapidly under 25 psi N₂ pressure into the AgF solution, which had been cooled for 0.5 hr in an ice bath. After standing in the ice bath for an additional 0.5 hr, the slurry was pressure-filtered to remove AgSbF₆ which was then washed quickly with 150 ml HF. The nitrogen in the system was pumped away from the combined filtrate and washings, and gaseous BF₃ (95 g, 1.4 moles) was then added, with moderate shaking during 0.5 hr, until the pressure increased to 20 psi. The resulting slurry was filtered to remove AgBF₄, and the filter cake was washed quickly with 50 ml HF. The solvent HF was vacuum pumped from the NF₄BF₄ solution, as well as from the solid AgSbF₆ and AgBF₄ co-products, during 9 hrs. The weights of the isolated products were NF₄BF₄ 185 g, AgSbF₆ 534 g, and AgBF₄ 88 g.

A 0.3689 g sample of NF_4BF_4 was hydrolyzed in a Teflon ampoule on the vacuum line using approximately 1.5 ml H₂O. The colorless solid turned black as

the ice began to sublime, suggesting the oxidation of Ag(I) to Ag(II). The solid foamed vigorously on contact with liquid water to give a black solution (or colloidal suspension), which changed first to a pink solution and then colorless during 0.5-1.0 hr. The resulting NF₃ (37.40 cc) and 0₂ (18.55 cc) were separated by condensation of the NF₃ at -210 C (N₂ slush), and collected separately by means of a Sprengel pump system. The observed NF₃/0₂ of 2.02 compared very favorably with the theoretical ratio of 2. The hydrolyzate was analyzed by atomic absorption spectroscopy. Found: B, 19.1 mg; Sb, 33.2 mg; Ag, 7.95 mg; Cu, 0.009 mg; Ni, 0.012 mg. On the basis of these analyses, the NF₄BF₄ was approximately 83 mole percent pure, and was obtained in about 89 percent yield based on the NF₄SbF₆·0.9SbF₅ used.

<u>Reprocessing of Metathetical NF₄BF₄.</u> The typical metathesis reaction was run in the usual manner using 93 mole percent NF₄BF₄ as the NF₄⁺ source rather than NF₄SbF₆·xSbF₅. After the metathesis with AgF, the slurry was cooled in a -78 C bath (rather than the usual 0 C bath) for 1.75 hrs before filtration of the AgBF₄-AgSbF₆ mixture from the NF₄HF₂ solution. The filtrate was saturated with BF₃ and the AgBF₄ was filtered. The NF₄BF₄ isolated from the filtrate, by removal of HF under vacuum, was analyzed hydrolytically. A 0.3357 g analytical sample gave 38.2 cc NF₃, 18.0 mg B, 14.8 mg Sb, and 4.91 mg Ag. From these data, the calculated composition of the product (in mole percent) was 93.0 NF₄BF₄, 4.6 NF₄SbF₆[•]0.51SbF₅, and 2.6 AgBF₄.

<u>HCl As a Metal Precipitant</u>. A 29 g sample of NF_4BF_4 (93 mole percent purity), was dissolved in 23 g HF in a Teflon container which was then pressurized to 10 psi with HCl (3 g). The pressure rose to 15 psi on standing at ambient temperature for 5 minutes, after which time the mixture was filtered to remove 0.70 g AgCl. The solvent was removed from the filter cake and filtrate under vacuum, and 28 g of HF-soluble, nonvolatile products was recovered. A 0.3446 g sample of the recovered NF_4BF_4 was analyzed and 38.24 cc NF_3 , 18.9 mg B, 17.1 mg Sb, and 1.61 mg Ag were obtained after hydrolysis. These values indicated a reduction in purity of the NF_4BF_4 to 90 mole percent.

A 36 g NF_4BF_4 sample of 88 mole percent purity and prepared by use of TIF, was dissolved in 19 g HF and treated with 2.5 g HCl in the same manner as described above. A pressure rise to 12 psi was observed, and only 30 g of

HF-soluble, non-volatile products were recovered after filtration and vacuum drying of the filtrate. The precipitate, TICl (or TICl₃), weighed 5 g. A 0.3384 g sample gave on hydrolysis 28.53 cc NF₃, 15.7 mg B, 11.1 mg, and 62.0 mg Tl. The purity of the treated NF₄BF₄ was reduced to about 65 mole percent.

Purification of NF_4BF_4 by Crystallization

Three analyzed batches of crude NF_4BF_4 were combined and the resulting composite (470 g) was dissolved in 490 g HF in a Teflon vessel. The resulting solution was filtered and transferred to the Teflon and Kel-F Crystallizer (Fig. 2) where it was observed through a sapphire window to be a colorless, clear solution. The residual material (23 g) remaining on the filter was primarily the relatively insoluble $AgBF_4$ (see Table 10).

Crystallization of NF_4BF_4 from the filtrate (929 g) was initiated by removal of HF under reduced pressure. After pumping for about 0.3 hr, crystals (presumably $AgBF_4$ or possibly $AgSbF_6$) had formed and continued to form slowly as 303 g HF was removed during 4.8 hours. At this point, the cold solution changed rapidly to a thick slurry of crystals (presumed to be NF_4BF_4 but possibly NF₄SbF₆·xSbF₅) which redissolved during 0.75 hr as the mixture warmed to ambient temperature without further removal of HF. An additional 95 g HF (total 398 g) was removed during 2.2 hours after which the crystallizer was inverted to transfer the slurry onto the filter. The vapor pressure over the slurry was 19.3 ± 1.0 inches vacuum (270 ± 25 mm) at 20 C. After cooling the upper portion of the apparatus for several hours at 2-5 C, the slurry was pressure-filtered under 8 psig GN2. The filter cake was spray-washed with 20 ml HF at ambient temperature under 30 psig GN₂ (flow rate 555 ml/min), and the washings were combined with the mother liquor. Both the filter cake and filtrate were pumped to dryness, weighed and analyzed (see Table 10). A material balance indicated that 17 g of the solids introduced were lost by conversion to volatile products.

	Runs 9-11, HF	Crystallize	ed Filter Cake Periphery	Filtrate Residue
		0.3530	0.4259	0.3654
Found, mg	1.0115		part of the results	
NF ₃ (cc)		31.65	38.31	41.42
В	49.8	9.9	12.8	18.8
Sb	23.3	83.8	92.5	28.4
Ag	471	4.8	7.9	2.23
Cu	0.075	0.009	0.009	0.012
Ni	0.185	0.005	0.003	0.001

TABLE 10. ANALYSES OF CRYSTALLIZED NF4BF4

R-9788 42 .

CONCLUSIONS AND RECOMMENDATIONS

The UV-induced synthesis of NF_4BF_4 from NF_3 , BF_3 and F_2 has been developed from a batch process producing milligram quantities to a continuous process producing 2.90 g/hour of 99 mole percent purity with an 84 percent conversion of reactants to product. The process has not yet been optimized because insufficient time was available to complete the parametric investigation. Despite the lack of process optimization, approximately 0.32 Kg of 99 mole percent pure NF_4BF_4 was prepared and delivered to the Air Force on schedule.

For further development work on a solid propellant fluorine generator requiring completely gaseous non-deactivating exhaust products, it is recommended that NF_4BF_4 produced by the UV process be procured on a supply contract. At the present stage of development 100g NF_4BF_4 per week (40 hours) can be produced and obviously this rate could be increased to 300 g/week with a continuous operation. Extrapolation of data used for the design of the process equipment suggests that the NF_4BF_4 production rate could be doubled without changes in the existing equipment. During the course of a supply contract additional runs would be made with increased reactant feed rates to verify this postulate and subsequently optimize the production rate and conversion.

Alternatively, for development work on a solid propellant fluorine generator where formation of a clinker is permissible, utilization of NF_4BF_4 as the oxidizer would be highly advantageous in that the lower formula weight (relative to other NF_4^+ sources) provides a larger proportion of available F_2 per pound of oxidizer. For this application it is recommended that NF_4BF_4 produced by either the UV process or the metathetical process should be utilized. At the present stage of development metathetical NF_4BF_4 (93 mole percent or 84 weight percent) can be produced at the rate of 150 g/week (40 hours). Experience gained on this contract suggests that 300 g/week can be prepared without changes in the existing equipment.

REFERENCES

- 1. K. O. Christe, R. D. Wilson and A. E. Axworthy. Inorg. Chem., 12, 2478
- 2. W. E. Tolberg et al., AFRPL-TR-68-47, "Synthesis of Energetic Oxidizers," Stanford Research Institute, Menlo Park, California, 28 March 1968 (CONFIDENTIAL - Declassified 31 December 1974).
- Rocketdyne, unpublished.
- 4. C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, C. D. Wagner and J. N. Wilson, Inorg. Chem. 11, 1696 (1972).
- 5. S. M. Sinel'nikov and V. Ya. Rosolovskii, Dokl. Akad. Nauk SSSR, 194,
- 6. V. Ya. Rosolovskii, V. I. Nefedov and S. M. Sinel'nikov, Izv. Akad. Nauk SSSR, Ser. Khim., 7, 1445 (1973).
- 7. E. Safary, J. Romand and B. Vodar, J. Chem. Phys., 19, 379 (1951) 8. K. O. Christe, C. J. Schack and R. D. Wilson, to be published in Inorg.
- Chem., 14 (September 1975). 9. A. F. Clifford and S. Kongpricha, J. Inorg. Nucl. Chem., 20, 147 (1961).

EXPERIMENTS
N
SCALE
SMALL
÷
APPENOIX

Average NF4BF4 Formation Rate, mg/hr	000	trace	trace	000	0.5	0 50	trace 0	3.5		1.7	8 34.5	37.5	34.5	35.5 38 36	24.5		o
4 t ethod(e)	>>>	>>	٨	> 2 :	> হ হ	ΣΞΣ	> E 8	: 0		J	ΣŰ	G	IJ	0 0 C	ŋ ŋ	>	>
NF 4 BF Weigh Mg M	000	trace	trace	95	ogc	120	trace	2		3.5	64 69	75	69	71	49	(i) Mol	0
UV Lamp Type(d)	H(A) H(A) H(A)	H(A) H(A)	H(A)	H(A)	H(2)	H(A)	H(A)	H(A)		H(A)	H(A) H(A)	H(A)	H(A)	H(A) H(A)	H(A) H(A)	H(A)	н(А)
Lamp to Condensed Reactant(c) Oistance(c)	27 7 27	27 27	27	27	25	25	25	12		12	27 12	12	12	12	12	2	12
Reactor Used(B)	ts S TS	TS TS	TS	TS	SSS-8	SSS-B	SSS-8	SB		8S	TS SB	SB	SB	S B S	888	8	SSS-3
Pressure Range (during ohotolysis), mm	~650 (105 psig)(f) ~1000	700-690 958-926	978-950	968-948 968-948	978-966 135-115	undetermined (>31 psig)(f) undetermined	undetermined (85 psia)	undetermined B00-500	6.51	500-350	-250 370-350	260-230	225-150	230-125 275-115	150-60 60-40	120-60	200-100
u que (u			-					400	(30		30 ed	+BF3 ed	+BF3 ed	+BF3	100	(); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	(30); (30)
Int Addition Amounts Added(cc) Addition Times (mi		•••	• 1	-	ı	•	•	100 NF3 + 4	(initially 100 BF3 (19 6 x 30 BF3 intervals) 50 NF3 (30 2 x 25 NF3 intervals) 50 F2 (30) 50 F2 (30) 50 F2 (30)	20 F2 (90) 20 F2 (90) 8F3 + 50 F (initially 5 x 40 NF3 intervals)	3 x 33 F2(intervals)	before NF3	before NF3 25% F2 add	before NF ₃	1000 NF3 +	(intial) 2 x 200 MI 2 x 100 BI 2 x 100 BI 2 x 100 BI 4 x 33 F2 1000 prem 1000 prem 1000 prem 1000 prem 1000 for 3 x 100 N 3 x 100 N 3 x 100 N 5 x 5 NF3/BF3	intervals 2 × 100 F intervals 1700 prem NF3/BF3 = + 200 F2
Reactant Additic Amounts Added(cc) Addet(cc) Addition Times (mi	 ∞ ∞ ∞	۰ ، ه ه	ч I В	1	۱ ۳	•	+	I 100 NF3 + 4	(initially 100 BF3 (11 6 x 30 BF3 intervals) intervals 2 x 25 NF3 intervals) 2 x 25 NF3 intervals 2 x 25 NF3 intervals	ZO F2 (90) 20 F2 (90) 400 NF3 + 1 8F3 + 50 F (initially 5 x 40 NF3 intervals)	3 x 33 F2(intervals) B 10% F5 add	B 17% F2 add	B 25% F2 add	before NF3 8	I 1000 NF3 +	I 100 B (1,1,1,1,1,1) (1,1,1,1	intervals, 2 x 100 F intervals, 1700 prem NF3/BF3 = + 200 F2
Total Reactant Additic Total Amounts Used, Addition Cc Mode (a) Times (mi	54 8 54 8 128 8 8 8 140 8	131 B 250 B -	161 B -	140 B -	140 B -	372 B -	300 B +	1B0 I 100 NF3 + 4	(initially (initially 6 x 30 BF3 intervals3 50 NF3 (30 2 x 25 NF3 intervals3 intervals3 50 F2 (30) 50 F2 (30)	150 I 20 72 (90) 20 72 (90) 8F3 + 50 F (initially 5 x 40 MF3 intervals)	3 x 33 F2(intervals) 140 B 10% F5 add	600 B 17% F2 add	400 B 25% F2 add	200 8 before NF ₃	200 I 1000 NF3 + 200 I BEC + 66 F	400 I 1000 Picture 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FeaterReactant AdditicAdditicAmountsF2F2UsedAdditionNF3ccMode(a)Times (mi	1 54 8 1 128 8 1(9) 140 8 -	2(9) 131 B - 9 250 B -	2.2 161 B -	2 ⁽⁹⁾ 140 B -	2 ⁽⁹⁾ 140 B -	2 372 B -	0.5 300 B -	0.5 180 I 100 NF3 + 0	(initially 100 BF3 (1 6 x 30 BF3 intervals5 50 NF3 (30 50 NF3 (30 1 ntervals5 1 ntervals5 1 ntervals5 1 ntervals5 50 F2 (30) 50 F2 (50)	0.25 150 1 400 NF3 + 50 F 0.25 150 1 400 NF3 + 50 F (initially 5 x 40 NF3 intervals)	3 x 33 F2(intervals) 2 140 B 10% F2 add	n 50, 600 B 17% F2 add	0.33 400 B 25% F2 add	0.17 200 8 before NF ₃	0.08 100 B 1000 NF3 + 0.14 200 I 1000 NF3 +	0.29 400 I [1000 Premission of the construction of the constructio	0.21 300 I intervals intervals intervals NF3/B7 = + 200 F3
Mole RatioTotalReactant AdditicBF3F2Used.NF3NF3used.NF3ccMode(a)Times (mi	1 1 54 8 1 128 8 1(9) 140 8	1 2 ⁽⁹⁾ 131 8 -	1 2.2 161 B -	1 2 ⁽⁹⁾ 140 B -	1 2 ⁽⁹⁾ 140 B -	1 2 372 B -	1 0.5 300 B -	3.3 0.5 180 I 100 NF3 + 4	(initially 100 B53 (11 6 x 30 B5 101 B53 (30 50 N53 (30 50 N53 (30 101 B72 N53 101 B73 101 B73 100 B73	1.1 0.25 150 I 600 NF3 + 1 BF3 + 50 F (initially 5 x 40 NF3 intervals)	3 x 33 F2(intervals) 2 140 B intervals) 2 2 140 B intervals)	1 0.60 B 17% F2 add	1 0.33 400 B 25% F2 add	1 0.17 200 8 before NF ₃	0.21 0.14 200 I 1000 NF3 4	0.21 0.29 400 I 1000 Premission 1000 Premission 100	0.21 0.21 300 I 1700 Prem 0.21 0.21 300 I 1700 Prem NF3/B7 = + 200 F2 (44144-01)
Photolysis BF3 F2 Used, Mode Ratio Total Reactant Addition Amounts Anounts Photolysis BF3 F2 Used, Mode (a) Addition Addition hrs.	18 1 54 8 0.08 1 1 54 8 0.08 1 1 (9) 128 8 1 (9) 140 8	42 10 1 2(9) 131 B -	7.5 16.5 1 2.2 161 B -	64 1 2(9) 140 B -	16 1 2 ⁽⁹⁾ 140 B -	7 16 1 2 372 B -	16 1 0.5 300 B -	2 3.3 0.5 1B0 I 100 NF3 + 40 F	(initially 100 BF3 (11 6 x 30 BF3 intervals 50 NF3 (30 50 NF3 (30 11 ntervals) intervals 50 F2 (30)	20 12 10.25 150 1 20 12 (90) 20 13 + 10 0.25 150 1 400 NF3 + 50 F (initially 5 x 40 NF3 intervals	8 1 2 140 B intervals	2 1 0.55 1000 5 15 15 15 15 add	2 1 0.33 400 B 25% F2 add	2 1 0.17 200 8 before WF3	2 1 0.08 100 B 100 B 1000 NE3 4	2 x 200 M 2 x 200 M 2 x 200 B 1 ntervals 1 ntervals 1 ntervals 1 ntervals 1 ntervals 1 ntervals 1 ntervals 1 ntervals 1 ntervals 2 x 100 N 1 ntervals 1 ntervals 2 x 100 N 1 ntervals 2 x 100 N 1 ntervals 2 x 100 N 1 ntervals 2 x 100 N 1 ntervals 2 x 100 N 2 x 10	2.5 0.21 300 I 1700 Prem Prevals 1700 Prem Prevals 1700 Prem 1700
Reaction Photolysis BF3 F2 Used. Mode Ratio Total Reactant Addition Amounts Temp., Trime, NF3 NF3 cc Mode(ac) Trimes (mi	amb. 18 1 1 54 8 amb. 0.08 1 1 19 128 8 amb. 7 19 140 8	-78 10 1 2(9) 131 B - -78 10 1 2(9) 131 B -	-196 7.5 1 2.2 161 B -	-196 14 1 2(9) 140 B -	-196 16 1 2(9) 140 B -	amb. 7 amb. 16 1 2 372 B - -196 8	amb. 16 1 0.5 300 B -	-(h) 3 3.3 0.5 180 I 100 NF3 + 40 F	(initially 100 B53 (11 6 5 3 0 B5 101 B5 100	-140 ± 7 2 1.1 0.25 150 I 20 2 50 400 NF3 + 140 ± 7 2 1.1 0.25 150 I 8F3 + 50 F (initially finitially 5 x 40 NF3 5 x 40 NF3 5 x 40 NF3	-186 8 1 2 140 B intervals	-186 2 1 0.50 000 before Nr3	-100 2 hefore NF3 400 B 25% F2 add	-100 2 1 0.17 200 8	-186 2 1 0.08 100 B 100 B 100 NE3 + -186 2 0.21 0.14 200 I 1000 NE3 +	-196 2 0.21 0.29 400 I 1000 prem intervals int	-196 2.5 0.21 300 I 1700 prem NF3/687 = + 200 F3

					4						Sec. 2 Carlos	1. 25 mm			-
37.5	34.5	35.5 38 35.5 24.5		o	490	47		4	18	16	19	=	22.5	56	27
5	5	0000	>	>	U	r		U	IJ	U	U	U	U	U	9
75	69	71 76 71 49	low(i)	o	690	142		28	18	16	91	4	45	52	54
H(A)	H(A)	нн (А) нн (А) нн н	н(я)	H(A)	Э	H(A)		H(A)	H(A)	H(A)	H(A)	H(A)	H(A)	H(A)	H(A)
12	12	22222	12	12	7.5	12		12	12	12	22	12	12	12	12
8	SB	ននេះ	88	SSS-3	SF	SSS-3		89	83	ß	ß	8	S8	83	SB
260-230	225-150	230-125 275-115 150-60 60-40	120-60	200-100	~ 300	300-250		350-230	350-220	350-215	350-190	350-185	350-145	300-115	200-120
7% F2 added	efore NF3+BF3 5% F2 added	ETORE N13+513 	x 100 N13/45 x 100 N5/45 x 100 N5/63 ntervals); ntervals); rervals); rervals); rervals); reva	r3/073 (10-12) ntervals) ntervals) 700 premixed F3/BF3 = 14/3	00 F2 (60) 00 F2 (fni- 1ally): 3600 F3 = 2/1 +	00 F2 (ini- 1730 fally): 1730 remixed NF3/ F3 = 1/4.67	100/ 00 F2 (ini- ially): 1700 remixed NF3/ F3 = 1/4.67	75) 00 F2 (ini- ially); 2040 remixed NF3/ F3 = 1/4.67	120) 00 F2 (ini- ially): 2000 remixed NF3/ F3 = 1/4.67	60) 00 F2 (1ni- 1ally); 2000 remixed NF3/ F3 = 1/4.67	60) 00 F2 (ini- itally); 2000 sremixed NF3/ SF3 = 1/4.67	60) 200 F2 (ini- cially); 2000 bremixed NF3/ 3F3 = 1/4.67	(60) 200 F2 (ini- tially); 2000 premixed NF3/ 3F3 = 1/4.67	(55) 200 F2 (ini- tially); 2000 premixed NF3/ 3F3 = 1/4.67	(15)
8	8		-0-0+4+-2+0m	H	0	U U	о С	ں د	U	0	0	B(3)	U	U	8
600	400	20002	60	300	300	200	100	200	200	200	200	200	200	200	200
0.50	0.33	0.17 0.17 0.08 0.14	0.29	0.21	0.13	0.67	0.33	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
-	-	0.21	0.21	0.21	0.5	4.67	4.67	4.67	G	4.67	4.67	4.67	4.67	4.67	4.67
2	5	~ ~ ~~	N	2.5	-	1.75	1.25	2	-	-	-	-	~	2	8
-186	-186	+186 -186 -196	- 196	-196	-196	961-		961-	96 L-	-196	961-	-196	-196	961-	961-
P3	53	52 50 18	ő	50	83	21		25	56	58	53	27	90	3	32

R-9788

AI-1

Average NF ₄ BF ₄ Formation Rate, mg/hr	29 24 495	655	21.S	23	17	13.5	14	10 29.5	trace 35	31.5	40	884 883 883 883 883 893 893 893 893 893 893	35.5	37.5	36.2	8 .	20
F ₄ ht Method ^(e)	000	U	IJ	IJ	9	c	Σ	× F	> U	Ľ	9	00000 0000000000	Ľ	9	Ľ	c	IJ
NF4 Weid	5B 495 495	655	43	46	34	27	14	20 20 0	trace 70	63	80	806 87 55 50 50	12	75	145	88	60
UV Lamp Type(d)	H (A) H (A) GE	GE	H(A) 49 521	H(A)	H(A) H(A)	H(A)	H(A)	H(A) H(A)	H(A) H(A)	н(А)	H(A)		H(A)	H(A)	H(A)	н(А)	Н(А)
Lamp to Condensed Reactant Distance(c) CT	12 12 7.5	7.S	12	12	12	12	12	12	7	12	12	222222222222222	12	12	12	12	12
Reactor Used(b)	8383	SF	SB	SB	SB	SB	SSS-3	\$\$\$-3 \$\$\$-3	S8	SB	88	*****	SB	85	85	80	ß
Pressure Range (during photolysis),	70-60 30-25 375-300	undetermined	85-50	80-45	80-55	80-50	~350	~350	undetermined 260-240	250-175	275-215	220-165 190-140 190-140 145-95 125-70 125-70 100-60 100-65 130-70 155-30 155-30	150-100	180-120	200-125	undetermined	150 ± 20
ant Addition Anounts Added(cc) and Addition Fimes (min)	(k) (k) 100 F2 ini- tially); 3600	BF3 = 1/2 3/ F 20 F2 (60) 200 F2 + 2600 premixed NF3/ BF3 = 1/1	(initially); 1000 BF3 (60)	ı			1165 F2 (ini- tially); 300 premixed NF3/	<pre>BF3 = {{ (50) 660 F2 (ini- tially); 300 premixed NF3/ BF3 = 1/1</pre>	(5U) 8% F2_added before NF3	+ BF3 25% F2 added before NF3	25% F2 added before NF3	, , , , , , , , , , , , , , , , , , ,	33% F2 added before NF3 + BF3	33% F2 added before NF3	t Br3 33% F2 added before NF3	+ 0.7 premixed NF3/ BF3 = 1/1 (initially); 2 x 100 pre- mixed NF3/ BF3 = 1/1 2 x 100 pre- = 1/1 (210	and 240) 2 × 50 F2 + 50 premixed
React Mode ^(a)	മമധ	U	ß	B	8	8	U	നവ	കര	ß	ß		ß	8	ß	,	I
Total F2 Used.	65 65 300	300	200	200	200	200	1165	1165 660	145 1200	>800(1)	B00	600 2000 2000 2000 2000 2000 2000 2000	600	600	600	100	200
Ratio F2 NF3	0.2 0.2 0.23	0.15	0.17	0.17	0.17	0.17	7.8	7.8	2.3	0.67	0.67	0.5 0.33 0.33 0.17 0.17 0.17 0.17 0.17 0.33	0.30	0.30	0.30	0.67	0.29
Mole BF3 NF3	4.67 4.67 2.2	1.77	-	1	-	-	-			1	-		-	_	-		-
Photolysis Time, hrs.	~~-	-	8	2	2	2	-	~~	1.5	2	8	~~~~~	2	2	4	4 N	m
Reaction Temp	-196 -196 -196	961-	-196	-196	-196	-196	-196	-196 -196	-196 -196	-196	-196	58888888888888888888888888888888888888	-196	-196	-196	-196	-196
Expt. No.	33 34 8]	80	39	40	41	42	23	24	56	48	49	644 664 766 764 766 764 766 766 766 766	22	58	59	2	=

APPENOIX I (CONT'0)

30 28.5 35.5	37.5	36.2	8.4		20		23		82.5	78.5	67.5 71	44.5 110 109	391	614	7.08	804	888	170	705	614
	ß	Ľ	c		c		IJ		Ľ	Ŀ	ۍ ن	იიი	U	U	IJ	G	G	IJ	9	G
52 58 71	75	145	38		60		70		165	157	135	220 764	1174	614	708	804	444	170	705	614
A C C C C C C C C C C C C C C C C C C C	H(A)	H(A)	H(A)		H(A)		H(A)		H(B)	Н(В)	H(B) H(B)	H(B) H(B) H(B)	ßE	GE	GE	GE	GE	GE	Æ	З
12200	12	12	12		12		12		6	\$	ი ი	7.5	7.5	7.5	7.5 ^(m)	7.5	7.5	10.5	7.5	7.5
និនេន នេន	SB	SB	88 8		8S		SB		SF	SF	£ £	አዳዳ	SF	SF	SF	۶Ł	SF	SSS-3	SF	SF
130-70 55-30 180-90 150-100	180-120	200-125	undetermined		150 ± 20		75-50		340-250	220-150	110-70	150-90 210-100 260-190	500-225	-240	-175	200-175	-225	-200	~ 350	~125
- - 33% F2 added before NF3	+ BF3 33% F2 added before NF3	+ BF3 33% F2 added before NF3	+ BF3 100 F2 + 100 premixed NF3/ BF3 = 1/1	2 × 100 pre- mixed NF3/BF3 = 1/1 (210	and 240) 2 x 50 F2 + 50 premixed NF2/BF3 = 1/1	(initially and 15); 16 x 33 NF3/BF3 = 1/1 (10 inter- vals) 2 x 50 F7 (60 inter-	vals 50 F2 + 200 premixed NF3/	BF3 = 1/1 (inítially); 36 x 15.5 pre- mixed NF3/BF3 = 1/1 (5 inter- vals); 10 x	6.2 F2 (15 intervals) 25% added before NF3	+ BF3 40% F2 added before NF3	+ BF3	33% F2 added	before NF3 + BF3 17% F2 added before NF3 +	BF3 25% F2 added before NF3 +	BF3 13% F2 added before NF3 +	BF3 33% F2 added before NF3 +	BF3 50% F2 added before NF3 + BF3			
	æ	æ	j		p -4		I		8	æ	a دع		60	80	80	80	80	80	æ	æ
200 2000 2000 2000 2000	600	600	100		200		112		800	500	200	200 200 200 200 200	600	400	400	400	400	400	300	200
0.17	0.30	0.30	0.67		0.29		0.29		0.67	0.42	0.17	0.17 0.17 0.5	0.43	0.33	0.33	0.33	0.33	0.33	0.23	0.15
	-	~			-				_	P -1			_	-	_	_	_	_	-	_
NN NNN	2	4	4.5		٣		m		N	N	2	NNNF	m	-	-	-	0.5	-	-	-
961 1961	-196	-196	-196		-196		-196		-196	-196	-196	- 196 1961 - 196	-196	961-	961-	-196	-196	-196	-196	-196
56 57 57	58	59	10		Ę		15		65	63	99	86269	74	78	70	72	7	73	76	79
20244																				

R-9788 A1-2

APPENDIX I (CONT'D)

(s), Reacter Used(B) SF SF SF SF SF SF	-175 -175 -175 -175 -175 -175 0-175	Added(cc) and (during Addition photolysi Times (min) mm c200 200 175 1	Mode(a) Times (min) Addition (during Addition photolysi B - 200 B - 200 C NF3/BF3/F2 -250 c 100 F2 + 50 premixed 500-175 premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3 = 1/1 (initially);	TotalAdded(cc) and dditionduring during bucctUsed.Mode(a)Times (min)photol ysi photol ysiUsed.Mode(a)Times (min)mm200B200200B250200B175200B250200C100F2 + 50300C100F2 + 50NF3/F5= 1/1(fitially);5000premixed101NF3/BF3/F2= 1/1	RatioTotalAdded(cc)and (during F_2 F_2 Additionphotolysi NF_3 Used.Mode(a)Times (min)photolysi 0.17 200B200 0.17 200B200 0.17 200B200 0.17 200B200 0.17 200B200 0.17 200B250 0.12 300C100 F_2 + 50500-175 0.12 300C100 F_2 + 50500-175 0.12 300CNF3/BF3 = 1/1NF3/BF3 = 1/1 $NF3/BF3 = 1/1$ NF3/BF3 = 1/1NF3/BF3 = 1/1 $NF3/BF3 = 1/1$ NF3/BF3 = 1/1NF3/BF3 = 1/1 $NF3/BF3 = 1/1$ NF3/BF3 = 1/1NF3/BF3 = 1/1 $NF3/BF3 = 1/5$ 0.175 0.175
se (n) SF (n)	-175 0-175	F3/61(10) photolysis), Re Times (min) mm F3/8F3/F2 -200 - -175 - -175 00 F2 + 50 500-175 00 F2 + 50 500-175 00 F2 + 50 500-175 remixed -250 175 -250 175 -175 175 -250 175 -250 175 -250 175 -250 170 083 -175 170.083 -175	Mode(a) Times (min) photolysis), Re Addition photolysis), Re B - 200 B - 200 C NF3/BF3/F2 -250 C 100 F2 + 50 Premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3/F2 = 1/1	T2 Addition photolysis), Re Used. Mode(a) Times (min) photolysis), Re 200 B - -200 200 B - -200 200 B - -200 200 B - -200 200 C NF3/BF3/F2 -250 300 C 100 F2 + 50 500-175 0 Premixed - 11 (initially); 5000 premixed 500-175 5	T2 T2 T2 T2 T2 T2 Re Re Re Mode(la) Times (min) Photolysis), Re Re Mode(la) Times (min) Photolysis), Re Re L2 C00 S2 S2 C2 C2 <thc2< th=""> C2 <thc2< th=""> <thc2< th=""> <thc2< th=""></thc2<></thc2<></thc2<></thc2<>
SF SF SF SF	-200 -175 -175 0-175	F3/F2/F2 -200 -175 -175 -175 -175 -175 -250 -250 -250 -175 -250 -175 -250 -175 -250 -175 -250 -175 -250 -175 -250 -175 -200 -175 -200 -175 -200 -175 -175 -175 -175 -175 -175 -175 -175	B	200 B - 200 200 B - 200 200 B NF3/F2 -250 400 C NF3/F2 -250 premixed - 250 100 F2 + 50 premixed - 1/1 (initially); 5000 premixed NF3/F7 = 1/1	0.17 200 B - 200 0.17 200 B - 200 0.33 400 C NF3/BF3/F2 -250 0.33 400 C 100 F2 + 50 0.12 300 C 100 F2 + 50 0.12 300 C 100 F2 + 50 0.175 0.
SF SF SF SF SF (1)	-250 -175 0-175	F3/F2 ~ 250 F3/F2 ~ 250 00 F2 + 50 500-175 remixed 50 500-175 initially); 000 premixed [F3/F2 = 7/1 initially); 17/0.083 (13%)	B	200 B -200 200 B -175 400 C $NF_3/F_2/F_2$ -250 Premixed $-175200 C 100 F_2 + 50Premixed NF_3/F_3 = 1/1(initially);5000 premixedNF_3/F_3 = 1/1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
SF SF SF	~250 0-175	F3/BF3/F2 ~250 remixed 00 F2 + 50 500-175 remixed F3/BF3 = 1/1 initially); initially); f7/0.083 (13% r 30; 39% in	C NF3/BF3/F2 ~250 premixed C 100 F2 + 50 500-175 premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3/F2 = NF3/BF3/F2 =	400 C NF3/BF3/F2 ~250 300 C 100 F2 + 50 500-175 premixed nremixed 500-175 NF3/BF3 = 1/1 (initally); 5000 premixed NF3/BF3/F2 = NF3/BF3/F2 = NF3/BF3/F2 = 1/1	0.33 400 C NF3/BF3/F2 ~250 premixed 500-175 0.12 300 C 100 F2 + 50 500-175 premixed 1/1 NF3/BF3 = 1/1 (initially); 5000 premixed 5000 premixed 5000 premixed
SF SF(n)	J-175	00 F2 + 50 175 remixed F3/BF3 = 1/1 initially): 000 premixed [F3/BF3/F2 = /1/0.083 (13%)	C 100 F2 + 50 500-175 premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3/F2 = NF3/BF3/F2 =	300 C $100 F_2 + 50$ 500-175 premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/F2 =	0.12 300 C 100 $F_2 + 50$ 500-175 premixed $NF_3/BF_3 = 1/1$ (initially); 5000 premixed NF-7/BF3/F9 =
SF ⁽ⁿ⁾		remixed F3/BF3 = 1/1 initially); 12/B3/F2 = /1/0.083 (13% n 30; 39% in	Premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/F2 = 1/7/0 AR3/F2 =	premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/F2 =	premixed NF3/BF3 = 1/1 (initially); 5000 premixed NF3/BF3/F9
	- 200	00: /9% IN 00: 00% in 120) c0 F2 + 300 c0 F2 + 300 F3/F2 = 1/1/ J. 18 (ini - ially); 11 × 180 premixed F3/F2 = F3/F2 =	I 50; 79% in 60; 50; 79% in 60; 50; 79% in 60; 100% in 120) 50 F2 + 300 50 F2 + 300 50 F2 + 300 50 F2 + 300 51 F2 = 1/1/ 0.18 (ini- 1/1/0.19); 11 x 380 premixed NF3/BF3/F2 = 1/1/ 0.19 (15)	1/1/0.083 (13% in 30; 39% in 60; 50; 79% in 60; 100% in 120) 50 F2 + 300 Premixed NF3/ BF3/F2 = 1/1/ 0.18 (ini- tially); 11 x 380 premixed NF3/BF3/F2 = NF3/BF3/F2 = 1/1/0.19 (15)	0.21 390 I 70. 083 (13% in 30; 39% in 60; 50; 79% in 60; 50; 79% in 60; 50; 79% in 60; 50; 79% in 60; 500 500 F2 + 300 500 500 500 500 500 500 500 500 500

(a)B C

Before photolysis
 Continuous during photolysis (or for time specified)
 Intermittant addition of specified reactants at time specified

= 2" sapphire window on 9" Teflon test tube = 2" sapphire window on 8" 347 stainless steel tube = 2" sapphire window on 3" 347 stainless steel tube = 0.5" o.d. x 3" silica tube = 3" diameter silica bulb = 3" diameter flat-windowed x 1.25" silica vessel

(b)_{TS} SSS-8 SSS-3 ST SB SF SF

= 1/2" diameter sapphire tube

 $^{(c)}$ Or distance to reactor bottom if no condensed phase was present.

 = 100w Hanovia Utility Lamp (letter designation for individual bulbs)
 = 1000w BH6 High Pressure Mercury Arc Lamp, General Electric
 = 1000w BH6-1-B High Pressure Mercury Arc Lamp, Illumination Industries, Inc. (q)_{GE}(x)

III

 Weight determined gravimetrically (but not corrected for changing tare of silica reactors)
 Weight calculated from pressure decrease after photolysis (manometric method)
 Visual estimate (e)_G

(f) pressure before photolysis.

^(g)CIF5 also added; Mole ratio CIF5/NF3 = 0.15 (Experiment 6); CIF5/NF3 = 2.3 (Experiment 5); CIF5/NF3 = 0.1 (Experiments 7 and 8).

 $^{(h)}Temperature cycled between ambient and -196 C twelve times.$

 $(i)_{\sf Reactor}$ leaked after photolysis and solid product was partially hydrolyzed.

(j)All reactants introduced exactly as in experiment 29 but before photolysis. an ou Toflan toet tube - - - - - - -(4) 1.1

AII reactants inti

- (b) T5^(k) 555-3 57 58 58 58 58 58

(c)Or distance to reactor bottom if no condensed phase was present.

- = 100w Hanovia Utility Lamp (letter designation for individual bulbs)
 = 1000w BH5 High Pressure Mercury Arc Lamp, General Electric
 = 1000w BH6-1-B High Pressure Mercury Arc Lamp, Illumination Industries, Inc. (X)H(A) (X)H(b)
- = Weight determined gravimetrically (but not corrected for changing tare of silica reactors)
 = Weight calculated from pressure decrease after photolysis (manometric method)
 = Visual estimate
 - (e)

(f)pressure before photolysis.

^(g)ClF₅ also added; Mole ratio ClF₅/NF₃ = 0.15 (Experiment 6); ClF₅/NF₃ = 2.3 (Experiment 5); ClF₅/NF₃ = 0.1 (Experiments 7 and 8).

 $(h)_{Temperature cycled between ambient and -196 C twelve times.$

(i) Reactor leaked after photolysis and solid product was partially hydrolyzed.

 $(j)_{A11}$ reactants introduced exactly as in experiment 29 but before photolysis.

(k) premixed NF3/BF3 added to reactor before F2.

 $(1)_{Some uncertainty in amount of F_2 but over 800 cc.$

(m) Lamp inadvertently placed off center of reactor.

(n)_{Reactor} inlet in center of photolysis zone.

1. K.

APPENDIX II. LARGE SCALE UV-SYNTHESIS OF NF₄BF₄^(a)

L	Run	Pressure	Range, mm Fred Line	Feed Cycle ON(sec)-OFF(min)	Lamp-Cold Face Distance, cm	Estimated Average UV Intensity (cm from lamp) w/cm ² x 100	Photolysis Time, hours	Average Rate, g/hour
<u></u>	110(dd) 110(dd)	615-692 267+590(b) 494-538 538-569 473-590 473-590 473-590 472-583 333-357 500-827(b) 505-554 503-554	~ 985 985 985 985 985 985 985 985 964 964 966	0.15-0.50 0.15-0.50 0.30-0.50 0.30-1.00 0.30-1.50 0.30-0.50 0.30-0.50 0.40-0.50 0.40-0.50	40400444444 00000000000000000000000000	2.4 (85) 2.5 (80) 2.4 (85) 2.8 (825) 2.0 (82.5) 2.0 (85) 1.8 (85) 1.8 (85) 1.8 (85) 1.8 (85) 1.8 (85) 1.8 (85) 1.8 (85) 1.8 (85)	40704887791 122771988	0.50 0.90 1.50 0.36 0.36 1.15 0.97 1.62(c) 1.86(c) 1.86(c)
R-9788	13(e) 13(e) 15 15(d) 17(d) 19(d,e) 20(e)	534-500 534-600 580-650 600-625 515-545 520-550 506-540 506-540 506-540		0.30-0.50 0.30-0.50 0.30-0.50 0.30-0.50 0.60-1.00 0.60-1.00 0.60-1.00 0.60-2.00	444444444 0000000000000000000000000000	3.2 (85) 2.3 (85) 2.0 (85) 2.4 (85) 1.9 (85) 2.1 (85) 2.3 (85) 2.3 (85) 85)	5 35(12+15+8) 13 13 13 13 22(8+14) 34(11+14.5+8.5) 23(15+8) 15(9+6)	1.43 1.68 ^(c) 0.83 ^(c) 2.90 1.72 ^(c)
						4	cold f.	aro at

rrouuc c (a)Equimolar NF3-BF3-F2 used as reactant feed mixture for all runs. 30 min. intervals (Runs 1-8) or 15 min. intervals (Runs 9-18).

(b) pressure in reactor not relieved after each scraping of reactor cold face.

(c) Includes normal product hold-up of reactor which had been mechanically transferred to NF4BF4 receiver.

(d)
Reactor cold face normally refrigerated with LN2 at about atmospheric pressure except for Runs 9, i0 and 11
(20 psig); Run 16 and 18 (22 psig); and Run 17 (14 psig).

(e)Reactor disassembled and washed at conclusion of run.

THIS REPORT HAS DEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200,20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.