
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB006719

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; JUL 1975. Other
requests shall be referred to Air Force
Avionics Laboratory, Wright-Patterson AFB,
Dayton, OH 45433.

AFATL ltr, 12 Sep 1977



'^vm^mm^^m^vmm^^ipW'ifmiWS^W^ S,..v«.Tv»s.y:> —^ 

THIS REPORT HAS BEEN DELIMITED 

AND CLEARED FOR PUBLIC RELEASE 

UNDER DOD DIRECTIVE 5200.20 AND 

NO RESTRICTIONS ARE IMPOSED UPON 

ITS USE AND DISCLOSURE, 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELIASE; 

DISTRIBUTION UNLIMITED. 



ipPf 1j|»ü«Mi|.^.jWijjiVi»WM1]p!iy4i(,tbf.. 

{\FAL TR 75 118 

SYSTEMATIC DESIGN OF 
MODULAR ESTIMATORS FOR 

AIRCRAFT NAVIGATION 

Cft 

O 
o 
PQ 

Julian L. Center 

THE ANALYTIC SCIENCES CORPORATION 

Technical Report AFAL-TR-75-118 

July 1975 

I 
I 
I 
I 

Distribution limited to U.S. Government agen- 
cies only. Test and Evaluation, July 1975. 
Other requests for this document must be' 
referred to AFAL(RWM-666A), Wright- 
Patterson AFB, OH   45433. 

D DC- 
U9 23 

Jlibtotsuins 

Air Force Avionics Laboratory 
Air Force Systems Command 

Wright-Patterson Air Force Base 

Ohio 45433 

i&iMMidmmm^.  ii 



■■-■-■■—-■     -—'•- n.^mmmfmvm>^m^vn^i«mmmm^m!miWmwam'W;V--4miMi' Jiw-u^pjpuipi«! 

(  s 

NOTICE 

When Government drawings, specifications, or other data are used for any purpose other than in connexion 
with a definitely related Government procurement operation, the Urited States Government thereby incurs no 
responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, 
or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or 
otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or 
permission to manufacture, use, or sell any patented invention that may in any way be related thereto. 

D 
"  11 

D 
0 

u 
r 

D 
0 
Ü 

U 

Copies of this report should not be returned unless return is required by security considerations, contractual 
obligations, or notice on a specific document. 

fl 

U™J 

.       . ..        ....     ...■     -■■.,-...        ^ .    .„^n...,^^.^. ;   ..     ,;..^..J.V .  ..     ■ :. — .... 



■ 

I 

T 

umjjmäjjjjsiü 

o 
0 
D 
D 
D 
D 
0 
0 
i 
:; 

[ 
D 

SECURITY CLASSIFICATION OF THIS PAGE (When Dmla Entered) 

REPORT DOCUMENTATION PAGE 
1.   REPORT NUMBER 

AFAL-TR-75-118 
2. GOVT  ACCESSION NO 

4.   TITLE (and Subtllle) 

Systematic Design of Modular Estimators 
For Aircraft Navigation 

7.    AUTHORf») 

Julian  L.   Center 

9.    PERrORMING ORGANIZATION NAME AND ADDRESS 

The Analytic Sciences Corporation 
6 Jacob Way 
Reading, Massachusetts 01867 

II.    CONTROLLING OFFICE NAME AND ADDRESS 
Air Force  Avionics Laboratory 
Wright-Patterson  Air Force Base 
Dayton,   Ohio    45433 

14.   MONITORING AGENCY NAME &   ADDRESSC" cH//eronf Inm Controlling Ollice) 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3.    RECIPIENT'S CATALOG NUMBER 

5.   TYPE OF REPORT & PERIOD COVERED 
Interim Report 

January 1974-April 1975 
6.   PERFORMING ORG. REPORT NUMBER 

8.   CONTRACT OR GRANT NUMBERfjJ 

Contract No. 
F33615-72-C-1787 

10.   PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

Advanced Development 
Program 666A 
 Task No. 02  
12.   REPORT DATE 

July 1975 
13.   NUMBER OF PAGES 

81 
15.   SECURITY CLASS, (ol thlm report) 

UNCLASSIFIED 

IS«.    DECLASSIFIC ATI ON/DOWN GRADING 
SCHEDULE 

16.    DISTRIBUTION STATEMENT fof (Ms ReporfJ 

Distribution limited to U.S. Government agencies only. Test and 
Evaluation, July 1975.  Other requests for this document must 
be referred to AFAL(RWM-666A), Wright-Patterson AFB, OH  45433. 

! '7.   DISTRIBUTION STATEMENT (ol the abstract entered In Block 30, II dlllerenl from Report) 

18.    SUPPLEMENTARY NOTES 

19.   KEY WORDS (Continue on reverse aide II necessary and Identity by block number) 

Modular Estimation Preprocessing 
Decentralized Estimation 
Prefiltering 
Redundancy Reduction 

Rate-Distortion Theory 
Multi-sensor Navigation 
Hybrid Navigation 

20.    ABSTRACT (Continue on reverse side II necessary and Identity by block number) 

Recent hardware advances have made it practical to build 
relatively sophisticated data preprocessors into sensor 
packages.  To take full advantage of these developments, a 
navigation system could use an estimation architecture with 
data preprocessors located in the sensor packages and a data 
coordinator located with the information user.  This type of 
data processor, termed herein a "modular estimator," has a 
structure which makes possible:  

DD    F0RM 
»*¥   1 JAN 73 1473 EDITION OF  1 NOV 65 IS OBSOLETE     ^ UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE flWien Data Entered) 



Illpl,l».p^^ mm 

UNCLASSIFIED 

(20 Continued) 

parallel computation 

modular design 

interface standardization 

system reliability improvement 

channel capacity reduction 

This report presents a systematic procedure for designing 
modular estimators and applies the procedure to a simple 
example.  The mathematical foundations for this procedure, 
including new rate-distortion theory results, are presented 
in Appendix A. 

I 

j 

11 UNCLASSIFIED 

Mütt 



.IVWMWWUWSSWWi^'WWWWW^^ WIMW 

i 

: 

I 

I 
D 
:. 

D 

I 
m-, 

i 
I 
J 
I 

FOREWORD 

This report, AFAL-TR-75-118, was submitted on 30 April 
1975 as TR-316-4-3 by The Analytic Sciences Corporation, 
6 Jacob Way, Reading, Massachusetts  01867, under contract 
F33615-72-C-1787, Advanced Development Program 666A, Task 
Number 02, with the Air Force Avionics Laboratory.  This 
document covers research performed during the period January 
1974 through April 1975.  The author acknowledges the assist- 
ance of the Air Force Project Engineer, Captain Harvey Brock, 

This technical report has been reviewed and is approved 
for publication. 

FOR THE DIRECTOR 

,U^ uy! A 
-JfriV^J ,   (kf*^ 

Harvey T. Brock, Jr, Capt, USAF 
Project Engineer, ADP-666A 

JAMES W. WALTERS, Lt Colonel, USAF 
Chief, Reconnaissance and Weapon 

Delivery Division 

iii 

■^,...^....     ^.,.^.. .^.^■-. .^:^.  



I 

i 
TABLE OF CONTENTS 

0 
0 
Ü 

0 
D 
Q 

0 

:: 

I 
[ 
: 

i 

1. INTRODUCTION 
1.1 Motivation 
1.2 Design Considerations 
1.3 Overview of Design Procedure 

2. DATA PREPROCESSOR DESIGN 
2.1 Preprocessor Structures 
2.2 Optimum Preprocessor Design 
2.3 Suboptimal Preprocessor Design 
2.4 Example of Preprocessor Design 

3. DATA COORDINATOR DESIGN 
3.1 Optimal Data Coordinator Design 
3.2 Suboptimal Data Coordinator Design 
3.3 Data Coordinator Evaluation 

4. SENSITIVITY ANALYSIS OF REDUCED-ORDER ESTIMATORS 
4.1 Analysis Procedure 
4.2 Error Covariance Equations 
4.3 Examples 

5. SUMMARY 

APPENDIX A  RELEVANT INFORMATION THEORY CONCEPTS 

APPENDIX B  DERIVATION OF THE ERROR COVARIANCE EQUATIONS 

REFERENCES 

BIBLIOGRAPHY 

IV 

Page 
No. 

1 
1 
4 
7 

9 
9 
10 
15 
21 

28 
28 
30 
31 

32 
32 
33 
36 

43 

6 

69 

73 

75 

•','. ■ , 

-—"•---- .■..„. ..a^^.u.. ^^■^.■■■..... .^^MMMBfiianimnn ■   , 



I 
I 
1 
1 
0 

Figure 
No. 

1-1 

e 1-2 

1-3 

0 
1.2-1 

2.1-1 

2.2-1 

0 2.2-2 

2.2-3 

0 2.2-4 

1 
2.3-1 

2.3-2 

2.3-3 

D 2.4-1 

2.4-2 

i 2.4-3 

o 
ii 

i 

0 

2.4-4 

2.4-5 

2.4-6 

3.1-1 

3.1-2 

3.1-3 

4.2-1 

4 . 3-1 

4.3-2 

LIST OF FIGURES 

Typical Hybrid Navigation System Structure 

Modular Estimation Architecture 

Typical State-of-the-Art Navigation System 

Typical Rate Distortion Curve 

Typical Data Preprocessor 

Optimum Preprocessor Gaussian Signals 

Typical Rate Distortion Curve 

Optimum Encoder-Channel-Decoder 

Differential Pulse Code Modulation- 
Demodulation System 

MVRO Prefilter 

General Prefilter Structure 

Typical Rate Distortion Functions 

Preprocessor Design Example 

Additional Preprocessor Distortion vs. 
Transmission Rate 

Ratio of rms Quantization Error to 
Quantization Level 

Example Channel-Encoder 

Example Channel-Decoder 

Comparison of Optimal and Suboptimal Prefilters 

Simplified Model of Augmented System with 
Optimum Preprocessor 

Optimum Data Coordinator for Optimum Prefiltering 
and DPCM 

General Optimum Data Coordinator Structure 

Form of Design and Reference Models 

Tracking Problem 

Sensitivity of Estimator to Changes in Acceleration 
Correlation Time 

Page 
No. 

1 

2 

3 

6 

9 

11 

12 

13 

14 

17 

18 

19 

21 

23 

25 

26 

26 

27 

28 

29 

29 

33 

36 

37 

H* -~-- -"--- ■'-   ' -"—''■^ ..„.-^^■■■. 



I 
0 
:; 

D 
o 
ü 
ü 

Ö 

;; 

o 

i 

LIST OF FIGURES (Continued) 

F igure 
No. 

4 3-3 

4 3-4 

4 3-5 

5- -1 

5- -2 

Tracking Problem with Velocity and 
Position Measurements 

Sensitivity of Position Error 

Sensitivity of Velocity Error 

Central Navigation Data Processor 

Modular Navigation Data Processor 

Page 
No. 

39 

40 

40 

43 

43 

vl 

-"""-■——■--- — --*- — ■—-■-- - .-^ i*...^*—-. 



-r „.„r.w^^-,^...,*^^^,. ,   M,.H,I^.   IJW.IIIJI ...w^.i«.*pi<«pi^..M1,*» J..IUPILII.IJIIIPIJIIII.III,I. u m^mmmmmmmmmmmmumm 

I 

! 

Ü 

Ü 

Ü 

0 
:: 

o 
:: 

D 
0 
0 
: 

i 
i 
i 

INTRODUCTION 

1.1 MOTIVATION 

A hybrid aircraft navigation system processes data 

from a variety of sensors to produce estimates of the air- 

craft's attitude, position, and velocity.  These estimates 

of the aircraft's state are displayed to the pilot and used 

by the aircraft's automatic control systems.  A typical hy- 

brid navigation system is illustrated in Fig. 1-1. 

R-135S4 
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SYSTEMS     1 
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Figure 1-1   Typical Hybrid Navigation System Structure 

Theoretically, the most accurate estimates of the 

system states would be produced by a single data processor 

operating on all the raw sensor data simultaneously.  How- 

ever, such a centralized estimation architecture reouires 

communication of large quantities of information to a central 

computer.  Furthermore, an extremely fast central computer is 

needed to process all of the raw data at sensor data rates. 

Since the cost of a communications channel increases with 

bandwidth and the cost of a computer increases with speed, 

a centralized estimation system can become quite costly. 

Also a centralized estimation architecture is not conducive 

m ^^.—^.■■^-.......^ 
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to a modular system design since £. change in one of the sensors 

can impact the mechanical and electical design of the entire 

system. 

Fortunately, an attractive alternative to the cen- 

tralized estimation architecture is now available.  Recent 

advances in large scale integration (LSI) electronics have 

made data processing units available which are physically 

small, lightweight, cheap, and low in power consumption. 

Thus it is feasible to consider modular estimation architec- 

tures which perform relatively sophisticated data preproces- 

sing within each sensor package, as illustrated in Fig. 1-2. 

In this modular estimation architecture, data preprocessors 

are operated at sensor data rates to remove redundancy in 

the sensor data.  The resulting compressed information is 

transmitted to a data coordinator, which supplies estimates 

at a slower rate to the displays and controls.  This redund- 

ancy reduction allows a relaxation of the bandwidth require- 

ments for communication channels which transmit data from 

the sensors.  Furthermore, since computations are being per- 

formed in parallel in this system, the speed and capacity 

of any one computer in the system can be much less than that 

required for the computer in the centralized estimation 

architecture. 
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Figure 1-2   Modular Estimation Architecture 
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A major dividend of the modular architecture results 

because electrical and mechanical interfaces between the data 

coordinator and certain functional types of sensor/preproces- 

sor package can be standardized.  Then any velocity reference 

can be replaced by another velocity reference without affect- 

ing the electrical design of the system.  Also, the data pre- 

processors can be designed so that a failure of any one 

component, even part of the data coordinator, will still 

leave the system operational.  This increases the system re- 

liability . 

Actually, state-of-the-art navigation systems already 

use a form of modular estimation.  A typical state-of-the-art 

navigation system, diagrammed in Fig. 1-3, preprocesses ac- 

celerometer and gyro measurements by implementing a set of 

equations, called mechanization equations, to produce posi- 

tion, velocity, and attitude estimates.  Signals from radio 

navigation aids are also preprocessed by signal detection 

and demodulation techniques, which serve to compress the 

data so that information not required for navigation is re- 

moved and relevant information is retained.  Although these 

preprocessing equations are generally nonlinear, the errors 
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RECEIVER 

SIGNAL 
PROCESSING 
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Figure 1-3   Typical State-of-the-Art Navigation System 
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in the resulting compressed data can usually be modeled as 

the outputs of a linear system driven by Gaussian noise. 

Therefore, a linear filter can be used to coordinate the 

compressed sensor data and determine the minimum-variance 

estimates of the navigation system errors.  These error esti- 

mates are then used to correct the inertial system outputs, 

and the corrected output may be used to reset the mechaniza- 

tion equations. 

This report presents original work relating to the 

design of modular estimators.  The mathematical foundations 

of a systematic procedure for designing modular estimators 

are established and the procedure is applied to a simple 

example. 

1.2 DESIGN CONSIDERATIONS 

[' 

j 

! 

0 
:; 

:: 

: 

In designing a modular estimator, the following fac- 

tors must be balanced: 

• estimation accuracy 

• communication channel bandwidths 

• data preprocessor and data coor- 
dinator complexity 

Estimation accuracy is usually measured in terms of 

the mean-square estimation error for some portion of the sys- 

tem state.  In information theory terminology, this is re- 

ferred to as a quadratic distortion measure.  A quadratic dis- 

tortion measure will be assumed almost exclusively in this 

report. 

4 
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The bandwidth of a communications channel is also 

called its channel capacity or information transfer rate and 

is usually measured in terms of the number of bits per second 

it is capable of handling.  The cost of a communications 

channel increases as its capacity is increased; therefore, it 

is desirable to keep the required channel capacity small. On 

the other hand, transmitting the sensor data over a limited 

capacity channel introduces distortion (e.g., measurement 

quantization increases mean-square estimation-error).  The 

distortion introduced depends on the coding used to convert 

the data to a form which can be transmitted over the channel. 

A particular coding scheme applied to data from a particular 

source will achieve a specific information transfer rate (bits 

transferred per second) and distortion (e.g. mean-square 

estimation-error) corresponding to a point in the rate- 

distortion plane.  As an example, consider the problem of 

sending the values of Gaussian random variables over a digital 

channel.  Suppose one value must be sent every second.  A 

straight-forward way of coding the value is by quantization, 

A wide variety of quantization methods, which differ in both 

the number and location of quantization steps, can be used. 

The number of quantization steps determines the number of 

bits sent every second, and the location of the steps deter- 

mines the mean-square error in the transmitted value. 

For a particular data source, the relationship be- 

tween the channel capacity used and the minimum distortion 

which can be achieved is given by the rate-distortion curve 

(also called the rate-distortion function) as shown in 

Fig. 1.2-1.  The rate-distortion curve is the lower left 

boundary of the region of points corresponding to various 

coding systems.  Both the required channel capacity and the 

distortion can be minimized by chosing a coding scheme which 
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gives performance near this curve.  Analytical methods, dis- 

cussed in Appendix A, can be used to determine the rate-dis- 

tortion curve, but in general the coding scheme that will 

give performance on this curve when combined with a specific 

channel cannot be determined analytically. 

CO 

? 

o 

s 
'Z 
< 

< 

DISTORTION   ~   RMS   ERROR 

Figure 1.2-1   Typical Rate-Distortion Curve 

Performance near the rate-distortion curve can be 

achieved by using a data preprocessor to remove irrelevant 

and redundant information from the sensor data.  The com- 

plexity of the preprocessor must be held to a minimum to 

minimize costs.  Similarly, the data coordinator, which 

combines data transmitted from the data preprocessors, must 

be kept as simple as possible to keep computer costs down. 

Unfortunately, simplifying the data preprocessor increases 

the required channel capacity and simplifying the data 
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coordinator increases the distortion.  So a design compromise 
must be found. 

The methods discussed in this report provide a sys- 

tematic procedure for striking a balance among the conflicting 

goals of minimizing channel capacity requirements, minimizing 

distortion, and minimizing estimator complexity.  The next 

section presents an overview of this procedure. 

1.3 OVERVIEW OF DESIGN PROCEDURE 

The modular estimator design technique presented 

here is composed of two major steps:  preprocessor design and 

data coordinator design.  Preprocessor design studies deter- 

mine a feasible combination of prefilter structure, times of 

transmission, channel capacity and coding scheme.  Data 

coordinator design studies are used to develop a practical 

data coordinator that will efficiently use all available data. 

Data preprocessors are designed using the procedure 

described in Chapter 2.  The minimum-variance reduced-order 

estimator design techniques of Ref. 7 are used to study var- 

ious prefilter structures to determine the distortion limit 

that can be achieved with a very high capacity channel.  Next 

the techniques developed in Appendix A are used to compute the 

rate-distortion curve for a selection of candidate prefliters. 

The times of transmitting data from the data preprocessor to 

the data coordinator also affect the rate-distortion curves; 

so, candidate prefliters are studied with a variety of trans- 

mission times.  As a result of these studies, a feasible com- 

bination of prefilter, transmission times, and channel capacity 

is determined.  A coding scheme that approximates the optimal 
coding scheme is also determined at this time. 

MM ...^■^ -..^.■^..■_,. ■■.^.^■^..^.„ 
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Once feasible preprocessor designs are established, 

the data coordinator is designed as described in Chapter 3. 

Preprocessor dynamics as well as system dynamics are con- 

sidered in this design, but the data coordinator is usually 

designed with fewer than the number of states required to 

achieve optimal performance.  The minimum-variance reduced- 

order estimator design procedures of Ref. 7 are used effec- 

tively in data coordinator design.  The sensitivity of a 

data Coordinator design to uncertainties in system parameters 

is studies by applying the methods discussed in Chapter 4 

and Appendix B. 

: 
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DATA  PREPROCESSOR  DESIGN 

2.1 PREPROCESSOR STRUCTURES 

A data preprocessor is a device or algorithm which 

transforms sensor data into an easily used form, removes ir- 

relevant and redundant information, and encodes the data for 

transmission to the user.  Therefore, preprocessor operatior 

can be divided into three basic functions (See Fig. 2.1-1): 

• Data Transformation - converting raw sen- 
sor data to system state measurements, 
e.g., a doppler receiver converts electro- 
magnetic signals to a velocity measurement. 
Usually this is a nonlinear operation. 

• Prefiltering (Data Compression) - reducing 
the volume of data which must be communi- 
cated to the data coordinator, e.g., dop- 
pler velocity data may be averaged before 
being sent to the data coordinator. Usu- 
ally this is a linear operation, 

• Encoding - coding the prefiltered data in 
a form suitable for transmission over the 
channel.  For example, velocity data may 
be quantized for transmission over a digi- 
tal channel.  Usually this is a nonlinear 
operation. 

For convenience, the data transformation will be ignored here, 

Equivalently, the data transformation can be thought of as 
part of the sensor. 

R-13583o 
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Although nonlinear operations are sometimes required 

to transform raw sensor data to system state measurements, 

linear operations are usually adequate for prefiltering. 

For example, simple averaging of polynomial fits to the data 

are often used for prefiltering (Refs. 1 through 3).  There- 

fore, only linear prefiltering techniques will be considered 

here.  Furthermore only discrete-time prefiltering which 

can be performed with digital hardware will be considered. 

I, 

To simplify the system design, the following ground- 

rules will be used: 

• Prefilters will be designed to 
operate independently of other 
information sources. 

• The information transfer rate will 
be assumed to be fixed at a speci- 
fied number of bits per transmis- 
sion. 

• A quadratic distortion measure will 
be used to measure the performance 
of the prefilter. 

*■• 

The first groundrule limits the number of interconnections 

between system elements to the form shown in Fig. 1-2.  Fur- 

thermore, it leads to a design which can give acceptable 

performance when some of the sensors fail.  The other ground- 

rules reflect common engineering practice and do not greatly 

restrict the design. 

I 
1 
I 

2.2  OPTIMUM PREPROCESSOR DESIGN 

Suppose that the signal process produced by the 

sensor (possibly after a nonlinear data transformation) can 

10 
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be modeled as the output of a linear system driven by Gaus- 

sian noise and that the distortion measure is quadratic.  Then 

results from Refs. 4 and 5 and from Appendix A shov, that the 

optimum preprocessor takes the form shown in Fig. 2.2-1.  The 

raw sensor data is fed into the Kaiman filter for this signal 

source, and the state of this Kaiman filter is encoded for 

transmission to the data coordinator. 

WhiTE 

UNSAI 
snuw 

iWHITE        p ■ 
GAUSSIAN I 
NOISi | 

I 
I 

'I 

LM*!A« 
SEMSO» 

0YMAVIC5 

OPTIMUM 
GAIN 

MATRIX 

5YSUM 
0»NA.«ICS 

MCIEl r^> 

SEN50B 
DvNAf/;CS 

M03Et 

V 
CHANNEL ->- CHANNEL CHANNEL 

DECODER ENCODER 

D!SCSETc-riME KALMAN PREflLTER J 
PREPROCESSOR 

Figure 2.2-1 Optimum Preprocessor for 
Gaussian Signals 

Since the state of the Kaiman filter is a continuous 

random variable, an infinite number of bits would be required 

to transmit its exact value.  Because the encoder, channel, 

and decoder can handle only a finite number of bits per sec- 

ond, distortion will be introduced in transmitting the state 

of the prefliter to the data coordinator.  The minimum distor- 

tion which can be achieved with a channel of specified capac- 

ity is given by the rate-distortion curve (see Appendix A). 

Also, the rate-distortion curve determines the minimum chan- 

nel capacity needed to achieve a specified distortion.  Thus, 

the rate-distortion curve permits the separation of prefilter 

design and encoder-channel-decoder design.  Figure 2.2-2 

shows a typical rate-distortion curve. 
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Figure 2.2-2   Typical Rate-Distortion Curve 

The rate-distortion curve specifies the channel 

capacity needed to achieve a desired level of distortion 

provided that an optimum prefliter (Kaiman filter) and opti- 

mum encoder-channel-decoder coratination are used.  During 

the calculation of the rate-distnrtion function, the opti- 

mum combined effect of the encoder, channel, and decoder 

is determined.  The optimum combination has the appearance 

of an encoder-compression matrix multiplying the filter 

state, an additive white Gaussian noise, introduced by the 

channel, and another Kaiman filter used as a decoder (see 

Fig. 2.2-3).  The rate-distortion calculations in Appen- 

dix A determine the optimum encoder compression matrix to 

12 
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Figure  2.2-3 Optimum Encoder-Channel- 
Decoder Combination 

use with a given channel noise.  In effect, this det ermines 
the optimum signal-to-noise ratio and the most important part 

of the system state to transmit. 

In most situations, the channel cannot be chosen to 

be simply an additive Gaussian noise with a specified co- 

variance matrix.  For example, digital communications chan- 

nels produce quantization errors which are neither additive 

nor Gaussian.  In theory, an encoder and a corresponding de- 

coder exist, which when combined with the digital channel, 

would be equivalent to the optimum combination shown in 

Fig. 2.2-3.  Unfortunately, the structure of the optimum 

encoder and decoder for a digital channel is not determined 

during the calculation of the rate-distortion curve.  However, 

the differential pulse code modulation (DPCM) system shown in 

Fig. 2.2-4 can achieve performance close to the theoreti- 

cal bound (Ref. 6).  The DPCM encoder removes information 

which can be predicted by the decoder using previously trans- 

mitred information and a system dynamics model.  The same 

dynamics model is also used at the receiver to reconstruct 

13 
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the original signal.  The reconstruction gain used in both 

the encoder and decoder is similar to the optimum gain in a 

Kaiman filter. 

The complexity of the Kaiman filter used for the op- 

timum data prefliter often precludes its implementation. 

Therefore, preprocessor designs which approximate the opti- 

mum but are less complex are discussed in the next section. 

Since the use of suboptimal prefilters introduces additional 

distortion in the data transmission, techniques for quanti- 

fying this performance degradation are al,so discussed. 

2.3  SUBOPTIMAL PREPROCESSOR' DESIGN 

Instead of estimating the entire state, the data 

prefilter can be designed to estimate only a portion of the 

sensor and system state vector.  This allows a reduction in 

the complexity of the preprocessor.  In this case, £(tn) is 

designed to be an estimate of S(tn) x(tn), where x(tn) is the 

system state vector at time tn and S(t ) is a matrix which 

selects linear combinations of the states for estimation. 

For example, it is reasonable to choose the output of the 

prefilter associated with a doppler radar receiver to be 

an estimate of aircraft velocity. 

One of the simplest prefilters merely averages the 

raw data.  This type of prefilter is most useful when the 

signal can be assumed to be essentially constant between 

data transmission times and when measurement errors can be 

assumed to be white noise.  When these assumptions are not 

justified, more sophisticated prefiltering may be required. 

The minimum-variance reduced-order (MVRO) esti- 

mator techniques of Ref. 7 provide tools for designing 
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prefilters which minimize the variance of the estimation error 

subject to constraints on the complexity of the estimator. 

Assume that the state variable representation of the system 

is 

x(t ., )  = Ht   ) x(t ) + w(t ) —v n+1' v n'  —v n   — n^ (2.3-1) 

Li 

u 

and the measurements taken between t  and t .- can .je repre- 

sented by 

z(t )  =  H(t ) x(t ) + v(t ) —v n'       n' —v n/  —v n (2.3-2) 

(1 u 

I U 

Then a MVRO estimator for the system is described by the 

equations 

a<W T(t .i) ^(t ) C(t ) m(t ) v n+l'  v n   v n' — n 
i-i + ^Vi5 $(tn) K(V i^ 

(2.3-3) 

I 
U 

i 
Ü 

0 
0 

I 
I 

where 

y(tn)  = S(tn) C(tn) m(tn) 
a. (2.3-4) 

+ S(tn) K(tn) z(tn) 

S(tn) 
rn(tn) 

y(t ) 

z(t ) — n^ 

= the raw sensor measurement at time t n 
a memory of measurements prior to t n 
the compressed data vector at time t 

n 
(2.3-5) s(V H(tn) C(tn) m(tn) 

the innovations for the reduced- 
order estimator 

and where T(t  ..) is a matrix of design parameters which 

selects which portion of the state the memory vector, ni(t ... ) 

The matrices C(t ) and K(t ) are determined n        n will estimate. 
■ n■      ■ n- 

completely by T(t ) and the system parameters.  The innova- 
n 

tions sequence is the new information supplied to the 
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reduced-order estimator by the measurements.  The innovation 

sequence for a Kaiman filter is white, but the innovation 

sequence for a reduced-order estimator is correlated. 

A diagram of a MVRO estimator for the system is shown 

in Fig. 2.3-1.  Unfortunately, the computations required to 

determine the optimum parameters C(t ) and K(t ) are quite 

complex.  If the application permits these parameters to be 

precomputed and stored, then the MVRO estimator can be used 

as the prefliter.  When this is not possible, heuristic pre- 

filter designs must be used.  However, even in this case, 

the MVRO estimator design procedures can provide guidelines 

for prefliter design and a measure of how well a prefliter 

with a given state selection can be expected to perform. 

T    | 'n) +^-v iitn) 
•KJ— 

SlulKUJ 

R-13575o 

S(tJC(tn) 

* ► 
-(k IIMNOVATIONS   L, 

TUn.OGUJMl-) 

REDUCED-ORDER DYNAMICS MODEL    I 
I 

<>'— DELAY 
mUn) 

T(tB+1)*(t„)C(tn) «-1   ! 

H(tn)C(tn) 

Figure 2.3-1 MVRO Prefliter 
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In general, the data prefliter can be described by 
the equations 

^VP 
y(tn) 

A(tn) rn(tn) + B(tn) z(tn) 

S(tn) C(tn) rn(tn) 

+ S(tn) K(tn) ^(tn) 

£<V " G(tn) m(tn) 

(2.3-6) 

(2,3-7) 

(2.3-8) 

Figure 2.3-2  shows  the block diagram for  this  representation 
of   the  data  prefliter.     Note  that   the  MVRO  prefliter  has  this 
structure with 

A(tn)    =    T<W  $(V C^») 
B(tn>     =     ^Vl)   t^J  *i*n) 
G(tn)     -     H(tn)   C(tn) 

(2.3-9) 

(2.3-10) 

lit«)  ♦-.TU«) —K>- 

S(tn)K(tn) 

R-13S7Sb 

SUJCUJ 

INNOVATIONS 
B(tnl 

REDUCED-ORDER DYNAMICS MODEL 

"(tj 

+ n 
DELAY 

A(tn)   1^- 

OW U- 

Flgure 2.3-2   General Prefliter Structure 
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When a suboptimal prefliter is used, the optimal 

encoder-channel-decoder combination can be determined by 

considering the prefliter as part of the sensor dynamics. 

The optimum decoder is the Kaiman filter which models both 

the system and prefliter dynamics.  The rate-distortion func- 

tions for a selection of candidate prefilters can be deter- 

mined using the methods of Appendix A.  The prefilter whose 

rate-distortion curve lies closest to the "system with sen- 

sor" (optimal prefilter) rate-distortion curve at the de- 

sired transmission rate is judged to be best (see Fig. 2.3-3). 

In some cases, the optimum encoder-channel-decoder is not 

practical to implement because it involves building a Kaiman 

filter which models both the system and prefilter dynamics. 

In these situations either the MVRO estimator design techniques 

of Ref. 7 or the following heuristic procedure can be used 

to determine an encoder-channel-decoder combination which is 

practical to implement: 

SYSTEM WITH SENSOR (OPTIMAL PREf ILTER) 

SUaOPTIMAL PREFILTER 

B-13M0 

DISTORTION 

Figure 2.3-3   Typical Rate-Distortion Functions 
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(lj  The prefilter is put in the form of 
Fig. 2.3-2.  This can be done for most 
linear prefilters (not just MVRO pre- 
filters). 

(2) The innovations sequence is replaced 
by a white noise sequence with the 
same variance.  (The innovations se- 
quence for a Kaiman filter is already 
white,) 

(3) The methods of Appendix A are used to 
compute the encoder compression matrix 
H* and the reconstruction gain matrix 
K*. 

This encoder-channel-decoder design procedure is 
justified by the following heuristic arguments: 

I IJ 

I 
P 

Ü 

The optimum prefilter produces a white 
innovation sequence; therefore, a pre- 
filter which is "near optimum" should 
have a "nearly white" innovations 
sequence. 

Replacing the correlated innovations 
sequence with a white sequence can 
only increase the required data trans- 
mission rate.  Therefore the heuristic 
design technique described above pro- 
vides an upper bound on the trans- 
mission rate required to achieve a 
specified distortion with a given 
prefilter. 

If DPCM encoding is used, the prefilter 
will be effectively modeled as though 
its innovations sequence were white. 
Therefore, this heuristic design pro- 
cedure is consistent with DPCM. 

When the output of the prefilter is to be trans- 

mitted over a digital channel, the natural choice for an 
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encoder is a differential pulse code modulator (DPCM) which 

uses the reduced-order system dynamics model of the pre- 

filter.  Therefore, the use of a reduced-order prefliter 

results in a simplification of both the prefilter and the 

encoder. 

2.4 EXAMPLE OF PREPROCESSOR DESIGN 

In this section a simple example is used to illus- 

trate the techniques which can be employed in designing a 

preprocessor.  The example problem shown in Fig. 2.4-1 was 

chosen to emphasize the reduction in channel capacity which 

can be achieved by using a data preprocessor.  The rms 

acceleration was taken to be 

--i 
R-16VM0 

VELOCITY 

ACCELERATION 

_SYSTEM_MODEl_ 

Figure  2.4-1 

ENCODER 

MESSAGE 
TO DATA 

COORDINATOR u 
POSITION 

MEASUREMENT 

Preprocessor Design Example 

ö3 - 120 ft/sec (2.4-1) 

with a correlation time of 5 seconds.  The rms initial posi- 

tion and velocity uncertainties were assumed to be 
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u and 

m 

e 

0 
Ö 

o^O)   =   500   ft 

a2(0)  =  50  ft/sec 

(2.4-2) 

(2.4-3) 

The rms position measurement error was 100 ft and the rms vel- 

ocity measurement error was 100 ft/sec with a correlation time, 

T, of 10 seconds.  This example can be considered to be a 

highly simplified model of a dead-reckoning navigation system 

for a highly-maneuverable vehicle.  The resulting preprocessor 

may be similar to the type of preprocessor which would be 

used with a Global Positioning System (GPS) receiver.  Since 

this system is unstable, the number of bits required to trans- 

mit whole values of position and velocity grows with time; 

therefore, some type of preprocessor (e.g. a simple dif- 

ferencing operation) is mandatory.  The preprocessor removes 

redundancy in the data and permits the number of bits re- 

quired at each transmission time to be bounded.  The Kaiman 

filter is the optimum profilier and is studied first.  Sub- 

optimal preprocessors using MVRO prefilters are considered 
next. 

Using a Kaiman prefilter to remove redundancy in the 

measurements and using a scheme such as a Differential Pulse 

Code Modulation (DPCM) to transmit only the changes in the 

Kaiman filter state greatly reduces the required channel 

capacity.  The techniques discussed in Appendix A were used 

to compute the distortion introduced by constraints on the 

channel capacity.  Figure 2.4-2 shows the results. It was 

assumed that the steady-state rms position error was the only 

measure of distortion. The Kaiman prefilter has a steady-state rms 

0 
22 
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Figure 2.4-2 Additional Preprocessor Distortion 
vs Transmission Rate 

position error of 37.6 ft. The additional distortion introduced 

by the finite capacity of the preprocessor-to-data-coordinator 

communications channel is plotted in Fig. 2.4-2.  The total 

rms position error is obtained by root-sum-squaring the num- 

ber obtained from this graph with the prefilter rms error. 

Two types of optimum encoders were studied:  one which trans- 

fers a fixed number of bits every 0.1 second and one which 

transfers a fixed number of bits every second.  The informa- 

tion transmission rate (in bits/second) was varied and the 

resulting distortion plotted. 
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Note that in all cases, the one-transmission-per- 

second encoder introduces less distortion than the ten- 

transmissions-per-second encoder when the same bit rates are 

used.  This verifies that the prefilter is indeed performing 

data compression. 

Figure 2.4-2 shows that a channel capacity of four 

bits per second used in conjunction with the one-transmission- 

per-second encoder adds a negligible distortion to the pre- 

filter distortion.  Therefore, this will be taken as the 

design point.  Now a practical encoder which approaches these 

optimum characteristics will be developed for a digital chan- 

nel . 

In Appendix A, it is shown that the optimum encoder- 

channel-decoder combination can be modeled as a Kaiman filter 

operating on a set of measurements 

z  =  H  x  + v —n     n —n  —n (2.4-4) 

where v    is white  Gaussian noise with variance R    and H    is —n n 
computed by  an  algorithm described  in  Section  A.3.    Atthedesign 

point  chosen  for  this example,   the steady state value of H* is 

H -     VR^   [0.1515 ft-1, 0, 0,       o] (2.4-5) 

A DPCM system is chosen for the encoder.  Since four bits per 

second sent at one-second intervals was chosen as the design 

point, four bits or 16 levels are used for the quantizer.  Re- 

sults from Ref. 14 are summarized in Fig. 2.4-3.  This curve 

gives the ratio of the per-transmission rms quantization er- 

ror VR to the quantization level i  as a function of the 

number of bits used in each transmission.  It is assumed that 

equally spaced quantization steps of optimum length are used 

and that round-off is performed rather than truncation.  For 

four bits of quantization, this curve shows that 
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Figure  2.4-3 Ratio of rms Quantization Error 
to Quantization Level 

V^ - 0. 3201 

Therefore, 

H*     =     £   [0.0485 ft"1, 0,        0, o] 

The  optimum gain   for  signal   reconstruction   is 

t*     -    p•H'T[„VH♦T  +   R♦]-1 

In   this  particular   case 

(2.4-6) 

(2.4-7) 

(2.4-8) 

K 

10.3/£ 
10.9/£ 
5.25/1 

0.00367/i 

(2.4-9) 
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The resulting channel-encoder and channel-decoder 

are shown in Figs. 2.4-4 and 2.4-5.  Note that the dynamics 

models used do not include the dynamics of the correlated 

velocity-measurement noise because this state does not need 

to be estimated by the channel-encoder and channel-decoder. 
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Figure 2.4-4   Example Channel-Encoder 
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Figure 2.4-5   Example Channel-Decoder 
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Suboptimal prefliters were also investigated.  Fig- 

ure 2.4-6 compares the rate-distortion functions for the opti- 

mal prefliter and two suboptimal prefliters using optimal 

decoders.  One prefliter models all states except measurement 

correlation; the other models all states except acceleration 

correlation.  It can be seen that the latter performs very near 

the optimum and so would be the better choice for a suboptimum 

prefliter.  Of course, achieving the performance shown in 

Fig. 2.4-6 requires the use of an optimum decoder which models 

both the system states and the prefliter states.  However, the 

MVRO estimator techniques of Ref. 7 can be used to design simp- 

ler decoders which may achieve performance near that shown in 
Fig. 2.4-6. 
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Figure 2.4-6 Comparison of Optimal and 
Suboptimal Prefilters 
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3. DATA COORDINATOR DESIGN 

3.1  OPTIMAL DATA COORDINATOR DESIGN 

Once the preprocessor structure has been fixed a data 

coordinator must be designed to combine all of the compressed 

data and produce estimates of the system states for control 

and display.  Assuming a linear system driven by Gaussian 

noise adequately models the system, then a Kaiman filter pre- 

serves all relevant information about the state.  Therefore 

the best data coordinator is a Kaiman filter.  But it is the 

Kaiman filter for the augmented system which includes the 
data profilier dvnarmV.« 

If a single sensor with an optimum prefilter has 

been used, then the data coordinator design becomes particu- 

larly simple.  Since the innovations sequence in the optimum 

prefilter (refer to Fig. 2.2-1) is a white Gaussian sequence, 

the model for the augmented system which produces the prepro- 

cessed data sequence can be simplified to the form shown in 

Fig. 3.1-1.  Furthermore, if differential pulse code modula- 

tion (DPCM) is used to encode each data channel, then the 

optimum data coordinator takes the form shown in Fig. 3.1-2 

■Ufa. 
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Figure 3,1-2 Optimum Data Coordinator for 
Optimum Prefiltering and DPCM 

If non-optimal prefiltering is used, or if more than 
one sensor is in operation, then the optimum data coordinator 

takes the form shown in Fig. 3.1-3. Ir. cases such as this, im- 

plementing the optimum data coordinator may require consider- 

able computer resources and would therefore defeat one of the 

purposes of data preprocessing. Thus a suboptimal data co- 

ordinator should be used. In the next section, techniques for 
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Figure 3,1-3 General Optimum Data 
Coordinator Structure 
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u 
designing suboptimal data coordinators which do not exceed 

computational constraints are discussed. 

A heuristic approach to data coordinator design is 

to consider the data coming from a preprocessor as a measure- 

ment of the state 

*     *     * 
z  = H x + v 

where H* is the encoder compression matrix described in Appen- 

dix A and v* is assumed to be a white Gaussian noise composed 

of prefilter estimation errors and data transmission noise. 

The trouble with this approach is that the measurement noises 

are in general not white and may be correlated between channels, 

0 
i 
Ü 

Ü 

0 
0 
0 
[] 

3.2  SUBOPTIMAL DATA COORDINATOR DESIGN 

Usually constraints must be imposed on the complex- 

ity of the data coordinator so that timing and computer 

capacity restrictions can be met.  The optimum data coordin- 

ator requires a dynamics model which includes system, sen- 

sor, and preprocessor models and therefore may be too complex 

to implement.  The MVRO estimator design techniques of Ref. 7 

can be used to develop a data coordinator of constrained com- 

plexity.  A MVRO estimator uses, as a memory, a dynamics 

model for only a portion of the states.  Thus, any constraints 

on complexity can be met by a MVRO estimator with a suitably 

chosen memory.  For a specific selection of memory states, 

the MVRO estimator produces the most accurate estimate of 

the states required for display and control.  In some cases, 

it may be possible to use a MVRO estimator as the data co- 

ordinator; in other cases, it may not be practical to imple- 

ment the MVRO estimator due to the complexity of the compu- 

tations required to compute the optimum estimator parameters. 
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In any case, the MVRO estimator design techniques provide 

guidelines for designing and evaluating data coordinators 
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3.3  DATA COORDINATOR EVALUATION 

Like a data preprocessor, a data coordinator can be 

evaluated by determining how much information about the state 

has been sacrificed to meet complexity constraints.  Thi'i 

sacrificed information is reflected by an increase in the 

mean-square estimation error.  Since it can usually be as- 

sumed that linear dynamics models apply, computer programs 

which have been developed to evaluate reduced-order estima- 

tors can be used to determine the least squares estimation 

error of a particular data coordinator-preprocessor combina- 

tion.  Note that the data coordinator cannot be evaluated 

independently of the data preprocessors.  The performance 

of the data coordinator depends on the particular preproces- 

sors used.  The next section presents techniques which can 

be used to evaluate a suboptimal data coordinator. 

Although the software used in the data coordinator 

depends on the particular sensors and preprocessors used, the 

hardware design of the data coordinator-preprocessor interface 

can be standardized.  This is because the bit-rates and trans- 

mission intervals depend mainly on the general type of sensor 

(e.g. a velocity sensor) and on the system dynamics.  There- 

fore, electrical and mechanical interfaces can be standardized, 

and only software changes need be made when a sensor is changed 
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SENSITIVITY ANALYSIS OF 
REDUCED-ORDER ESTIMATORS 

4.1  ANALYSIS PROCEDURE 

A reduced-order estimator is a data processor which 

uses a memory of lower order than that required for optimal 

estimation.  In a modular estimator design, reduced-order 

estimators may be used for prefilters and will almost cer- 

tainly be used for the data coordinator.   The performance of 

these reduced-order estimators depends on the signals they 

receive as inputs.  In this section, the sensitivity of 

reduced-order estimators to changes in their input signal 

structure is investigated.  The investigation consists of 

the following steps: 

• A reduced-order estimator is designed 
based on a fixed model, called the design 
model. 

• A different model, called the reference 
model, is used to describe a possible 
real world situation. 

• The covariance of the error in the state 
estimate is computed using the equations 
derived in this report. 

• The performance of the reduced-order 
estimator for a class of reference models 
is compared with that of other estimators 
and with performance specifications. 

The techniques presented in this section can be used 

to analyze prefilter designs to determine their sensitivity 

to changes in the system model.  However, the most important 

use of these techniques is in analyzing the performance of 

the data coordinator and thereby the performance of the 
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complete modular estimator.  To analyze the data coordinator, 

the reference system is the augmented system which includes 

the prefliters.  The measurements are the outputs of the 

encoder-channel-decoder combination and so take the form of 

linear combinations of the augmented states corrupted by white 

Gaussian noise.  The prefilter designs are assumed fixed and 

the system model is varied to determine the sensitivity of the 

data coordinator.  If the sensitivity is too great, not only 

the data coordinator but also the prefilters may need to be 

redesigned. 

4.2 ERROR COVARIANCE EQUATIONS 

Both the design model and the reference model take 

the form shown in Fig. 4.2-1.  The system state is assumed 

to satisfy the linear vector difference equation 

t 

0 
i 

o 
o 
D 

In ~PlANT NOISE 
f'C "} *** * OEIAY 

SB»- S1ATE 
«n 

4 

**( ^v J        * ►v 
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Figure 4.2-1 

—n+1 

Form of Design and Reference Models 

$  x  + w n —n  -n (4.2-1) 

where 

x —n 
w 

and  $ n 

is the state at time n 

is a vector of zero mean white noises 

is the state transition matrix. 

The measurements z^  are assumed to be related to the state of 

the system by the linear vector equation 
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z   =  H x  + v —n     n—n  —n 

where v  is a vector of zero mean white noises. 
—n 

and H  is the measurement matrix, 
n 

The state estimate is assumed to take the form 

(4.2-2) 

n n 
Cm + K v n—n   n —n 

(4.2-3) 

where 
m is a memory vector (usually of reduced order) 

v is the new information (innovations) supplied 
_n by the nth measurement ZQ 

Here m is assumed to satisfy the difference equation 
—n 

m  ., = A m + B v -n+1   n -n   n -n 

and vn 
is given by 

v  = z  - G m -n  -n   n -n 

(4.2-4) 

(4.2-5) 

The matrices An, Bn, Ca( Gn, and Kn completely define the 

reduced-order estimator. 

The prime concern of estimator performance analysis 

is to determine P , the covariance matrix for the filtering 

error 

x | -n n 
=  x  - x ^n " ^njn 

(4.2-6) 

However, to save computations, the error covariance matrix for 

the one-step prediction error is computed first and then used 

to compute the filtering error covariance matrix.  The one- 

step prediction error is defined to be 

^n+lln " -n+1 " Cn+1 -n+1 
(4.2-7) 

In Appendix B it is shown that 
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P=¥nvl'+KRK 
n n    n     n n     n     n 

(4.2-8) 

where 

and 

'„  •   [^   -  K„ Hn'   ■       Kn(Gn-H
n 

Cn>] <4-2-9) 

n =      E n 

—nln-l —nln-l 

m    x   |     1 —n —n  n-1 

IV T 
—n  n-1 —n 

T m    m —n —n 

(4.2-10) 

Furthermore, Appendix B shows that nn satisfies the difference 

equation 

n„xi • &„ n
n 

A3 + K  Rn AI + n+l   n n n   n n n 
Qn  0 

0   0 
(4.2-11) 

where the matrices A  and n are defined in Appendix B. 
n     n 

Therefore, the computation of the error covariance in- 

volves two steps. 

(1) The recursion equation for IIn is mechan- 
ized.  A formula for the starting value 
n0 is given in Appendix B. 

(2) The estimation error covariance matrix Pn 
is computed as needed. 

In the next section, some simple examples are used to 

illustrate the types of sensitivity analysis studies which may 

be performed using these error covariance equations. 
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The tracking problem illustrated in Fig. 4.3-1 was 

chosen as the basis for all the examples in this section. 

This tracking problem can be viewed as a highly simplified 

model of a dead-reckoning navigation system for a highly- 

maneuverable vehicle.  The acceleration x3 is assumed to be 

a correlated Gaussian noi, e process.  The velocity x- results 

from integrating the acceleration, and the position x1 is 
simply the integral of velocity. 

to be 
The rms value of the acceleration process was taken 

a„  =  120 ft/sec' (4.3-1) 

■-•094 

^ilJWHZJ^-' 
Figure 4.3-1   Tracking Probl em 

The rms value of the initial position uncertainty was assumed 
to be 

c^CO)  =  500 ft (4.3-2) 

and the rms value of the initial velocity uncertainty was 
chosen to be 

ö2(0)  =  50 ft/sec (4.3-3) 

Different examples were created by assuming different measure- 

ment mechanisms.  In all examples, measurements were assumed 
to be taken at 0.2 second intervals. 
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As a fir« example, It was assumed that a measure- 

ru" H
0fHP0Sltl0n WaS aVailable-  T"s measurement was cor- 

rupted by an additive, white, Gaussian noise v „1th WO ft 
standard deviation.  The sensitive,,  .  -   n 
tn „.,..,. sensitivity of estimator performance 

variations in the acceieration correlation time t' „ere 

investigated.  A two-state estimator „hich used a memory of 
position and velocity only „as designed using the MVRO 

observer-estimator techniques with the design vaiue of T' 

equal to five seconds.  The sensitivity of this estimator 

was compared to that of a three-state estimator designed for 
T  equal to five seconds.  Fieure 4 q 9 ov^ „*   .. figure 4.3-2 shows a comparison 
of the rms position error at 25 seconds. 
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Figure   4.3-2 
Sensitivity of Estimator to Changes 
in Acceleration Correlation Time 

for the de  "    ^"^ ^^r  is the Kaiman filter 

er t n L
1^     ' ^  ^^ ^^ ^^ ^^s  het- 

ver a the       ^ ^^ "  ^ ^ *°^'     «ow- 
ever, as the acceleration correlation time in the reference 
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model is decreased, the two curves cross.  For acceleration 

correlation times between 0.1 and 1.0 seconds, the two-state 

estimator performs better than the three-state estimator. 

Furthermore, the peak of the two-state estimator curve is 

lower than the peak of the three-state estimator curve. There- 

fore, considering worst case performance for the acceleration 

correlation time in the range shown in Fig. 4.3-2, the two- 

state estimator is preferable to the three-state estimator. 

Of course, this does not mean that the two-state estimator 

tested here is preferable to all three-state estimators.  It 

means that, for the design model chosen, the two-state esti- 

mator is less sensitive to errors in modeling the accelera- 

tion correlation time.  When the acceleration correlation 

time is shorter than expected, the performance of the three- 

state estimator degenerates because it relies too heavily on 

its memory of acceleration. 

A second set of examples was studied using the same 

basic system model modified as shown in Fig. 4.3-3.  The 

acceleration correlation was time fixed at 5.0 seconds, and in 

addition to the position measurement, a velocity measurement 

was taken every 0.1 seconds.  This velocity measurement was 

assumed to be corrupted by a zero-mean, Gaussian measurement 

noise with a standard deviation of 100 ft/sec and correlation 

time T. An additional state must be added to the system 

model to account for this correlated measurement noise. There- 

fore, a four-state estimator is required to implement the Kai- 

man filter for a given design model of this system.  Two de- 

sign points were chosen: T = 0.1 seconds and T = 10 seconds. 

The performance of the resulting four-state estimators was 

compared to that of two corresponding three-state estimators 

designed using MVRO techniques. 
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Figure   4,3-3 Tracking Problem with Velocity 
and Position Measurements 

The three-state estimators used a memory of position, 

velocity and acceleration, but did not attempt to "remember" 

the velocity measurement error.  Figure 4.3-4 shows the var- 

iation in steady state rms position error for these estima- 

tors as the correlation time of the velocity measurement 

error is changed in the reference model.  Figure 4.3-5 shows 

the variation of rms velocity error.  If it is believed that 

the velocity-measurement-error correlation time may vary over 

the indicated range of values, then the estimator whose per- 

formance curve has the lowest peak is most desirable.  Adopt- 

ing this criterion, the four-state estimator with design 

T = 10.0 seconds has the best position error performance.  How- 

ever, the three-state estimator with design T = 10.0 performs 

very nearly as well in position error.  Furthermore, the lat- 

ter estimator performs much better in terms of velocity er- 

ror.  Therefore, the three-state estimator with design x = 

10.0 seconds would probably be the most desirable of the 

four estimators tested. 
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Other conclusions can be drawn from these curves. 

For example, consider the curves for the four-state estimator 

with design T = 10.0 seconds.  Note that a mismodeling of the 

velocity-measurement-error correlation times does not greatly 

affect the position error performance and that in all cases 

the position error performance is superior to the perform- 

ance without the velocity measurement.  However, it can be 

seen that mismodeling does greatly affect the velocity er- 

ror performance.  In fact, for correlation times much shorter 

than the design correlation time, the velocity error perform- 

ance is worse than if no velocity measurement were taken. 

Looking now at the performance of the four-state 

estimator with design T - 0,1 seconds, the affect of mismod- 

eling on velocity error is rather large, but in all cases 

taking the velocity measurement does improve performance. 

However, the position error performance for this estimator 

can be significantly degraded by taking the velocity measure- 

ment if the correlation time is mismodeled. 

For the three-state estimator with design T = 0.1 

seconds, both position and velocity error performance are 

degraded by taking velocity measurements and mismodeling the 

measurement-error-correlation time.  Of the four estimators 

considered here, only the three-state estimator with design 

T = 10.0 seconds uses velocity measurements to improve both 

position and velocity error performance even when the meas- 

urement error correlation time is badly mismodeled. 

It should be noted that the minimax design procedures 

of Refs. 15 and 16 can be used in some cases to determine the 

estimator which has the least sensitivity to modeling errors 

of any estimator using the same order memory as the system. 

Unfortunately, these procedures cannot be feasibly implemented 
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for these examples, and have not yet been extended to reduced- 

order estimators.  The last example seems to indicate that 

some three-state estimator may be less sensitive to modeling 

errors than any four-state estimator.  However, the results 

presented here are certainly not conclusive. 
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APPENDIX A 

RELEVANT INFORMATION THEORY CONCEPTS 

A.l  MODULAR ESTIMATION AND COMMUNICATION SYSTEM DESIGN 

In some respects, modular estimator design ran be 

viewed as a communication system design problem; therefore 

several concepts which are used extensively in communication 

system design can be applied to the analysis and design of 

modular estimation algorithms.  This section explores the 

connections between modular estimation and communication 

system design.  Subsequent sections present important infor- 

mation theory concepts and discuss their application to 
modular estimator design. 

The classical communication system configuration is 

shown in Fig. A.1-1.  Messages are produced by the source 

and are to be transmitted over the channel to the user  An 

encoder is used to translate the messages to a form which 

can be transmitted over the channel; a decoder performs the 

inverse translation back to a form which the user can in- 

terpret.  During message transmission, the channel introduces 

errors; so  the received message x differs from the trans- 

mitted message x.  A distortion measure p(x,x) is used to 

«-13377 

Figure A. .1-1 Classical Communication 
System Configuration 
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measure the significance of this deviation.  By properly de- 

signing the encoder and decoder to match the source and chan- 

lieT, the expected distortion E [p(x,x)] can be minimized. 

Usually the communication system design can be par- 

titioned as illustrated in Fig. A.1-2.  By separating the 

encoder into a source encoder and a channel encoder and the 

decoder into a channel decoder and a source decoder, the 

design procedure can be factored into a phase which depends 

primarily on the channel characteristics and a phase which 

depends primarily on the source characteristics.  The design 

of the source encoder-decoder combination will be emphasized 

here; channel encoder-decoder design will not be discussed 

in detail.  The only relevant characteristic of the channel 

will be its capacity which will be defined later. 

R-1706S 
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Figure A.1-2   Partitioned Communication System Design 

The modular estimation problem can be cast in the 

communication system configuration shown in Fig. A.1-3.  In 

the estimation problem, the encoder is composed of the sen- 

sor and the preprocessor.  Therefore part of the encoder 
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Figure A.1-3   Communications System Interpretation 
of Modular Estimator 

design, the sensor, is usually fixed and not subject to opti- 

mization.  This requires some minor modification of standard 

information theory methods.  The details of this development 

will follow.  First relevant terms from information theory 

will be defined.  More complete discussions of these con- 

cepts are contained in Refs. 8 through 10. 

0 

j 

A.2  DEFINITION OF TERMS 

A.2.1  Entropy 

The entropy of a random variable is a measure of the 

uncertainty in the value which it may assume.  For a discrete 

random variable x which may assume k values a1, a9,..., a 

with the probabilities p(a1), p(a2),..., p(ak) the entropy is 

defined to be 
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H(x)  =  E[-log p(x)] 

(A.2-1) 

- E P(a.) log p(a ) 
1=1 

If y is another variable taking n values b1, bg,,..,^ 

which is jointly distributed with x, then the entropy of the 

joint distribution is 

H(x,y)  =  E[-log p(x,y)] 

k   n 
E  D P(ai,b ) log p(ai)b.) 
i-1 j=i 

(A.2-2) 

whe re p(a.,b.) is the probability that x takes the value a. 

and y takes the value b..  The conditional entropy of x given 
«J 

y is defined to be the expected value of the entropy of the 

conditional distribution for x given y.  That is 

n        k 
H(x|y) = - E p(b.)  E p(a. |b.) log p(a |b.) 

i=l   J   1=1   1  J        i J 

■ E[-log p(xly)] 

(A.2-3) 

where p(a.|b.) is the probability that x takes the value a. 

given that y has the value b. The conditional entropy mea- 

sures the average uncertainty about the value of x which re- 

mains after the value assumed by y is known. 

The entropy function has a number of properties 

which justify its interpretation as a measure of uncertainty 

(1) H(x) is a function of the probabili- 
ties pCa-L), p(a2), ..., p(ak) only and 
not a function of the values which x 
may assume.  The uncertainty depends 
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(2) 

(3) 

only on the probabilities of the alter- 
natives and not on any other character- 
istic of the alternatives. 

H(x) is a continuous function of the 
p<fti)'«.  A small change in the prob- 
abilities produces only a small change 
in the uncertainty. 

For fixed k, H(x) achieves its maximum 
when 

P(ai) = k 
1,2, (A.2-4) 

(4) 

Uncertainty is maximum when all possible 
alternatives are equally likely. 

Adding an additional value ak+1 which x 
could assume with probability zero does 
not change the entropy.  The addition of 
zero probability alternatives does not 
change the uncertainty. 

H(x,y) = H(y) + H(x|y) (A.2-5) 

The uncertainty in x and y considered 
jointly is equal to the uncertainty in y 
alone plus the uncertainty in x given y. 

In Ref. 11, Khinchin shows that these properties can 

be taken as axioms and the form of the entropy function will 

be deduced to be 

(5) 

H(x)  =  -X E pCa^ log pCa^ 
i=l 

(A.2-6) 

where X is an arbitrary multiplying constant.  Therefore these 

properties uniquely specify the form of the entropy function 

to within a constant multiplying factor.  Changing the multi- 

plying factor effectively changes the base of the logarithm 

used.  Therefore, any choice of logarithmic base is valid as 

long as the same base is used consistently. 

The entropy concept can be extended to continuous 

random vectors by the techniques explained in Ref. 12.  The 

50 

mmium tJiftitiiiiTiiira^^ 



-TipW» 

I 
0 

Li 

t 

U 

0 
Q 
0 
i 
0 

entropy of a random vector x with probability density func- 

tion p(x)  is defined to be 

H(x)  = E[-log p(x)] 

00 

= - /pU) log P(x) d2i 

(A.2-7) 

If x and y have the joint density function p(x,y) and 

the conditional density function p(x|5?_), then the joint entropy 

of x and y is 

H(x,x)     =     E[-log  p(x,x)] 

OO 00 

=   - f f p(*.y:) loe P<S»I) 
dzi di 

_00 —00 

(A.2-8) 

and the conditional  entropy of  x given  y_ is 

H(x|ir)    =    E[-log pCxljr)] 

00 

-/ y p(xlz) 1O
B p(ilz) dx p(z) dz 

(A.2-9) 

All of the properties of the entropy function extend to random 

vectors with continuous distributions. 

The entropy of a Gaussian random vector is of parti- 

cular interest.  Since the density function of a Gaussian 

vector of dimension n with mean y and covariance P is 

p(x)    =     -Tj-i jyg    expf- | (X-H)1, p-^x-H)] 
(2Ti)n/z(det P)1'^ L     z J 

(A.2-10) 
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The entropy of x is 

H(x)  • E^-log p(x)j 

= | log 2IT + i log det P 

+ | E [(x-m)T P"1 (x-m)J log 
(A.2-11) 

Noting that 

E[(x-m)T P 1(x-m)J = tr|p 1 E [(x-m) (x-in)T Jf 

(A.2-12) 
= n 

gives 

H(x)  = | log 2Tr e + | log det P (A.2-13) 

A.2.2 Average Mutual Information 

The amount of information conveyed about a random 

variable by observing another random variable is measured by 

the average mutual information.  For random vectors x and |r 

with continuous distributions, the average mutual information 

is defined to be 

P(x,Z) 
i(x;z) 

It  can be  shown  that 

E Jin 
P(x) p(y) (A.2-14) 

I(x;Z)     =     H(x)   -  HCxIx) 

=     H(x)  + H(y)   -  HCx.y) 

=     H(Z)   -  H(Z|x) 

(A.2-15) 

,  _  
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Thus the average mutual information can be interpreted as the 

uncertainty in x minus the average uncertainty in x given 

knowledge of the value assumed by jr. i.e., the uncertainty 

in x resolved by the knowledge of y.  This interpretation 

also applies if the roles of x and y are interchanged; there- 

fore, this function is called the average mutual information. 

The average mutual information of Gaussian vectors 

and random processes are of particular interest for estima- 

tion problems.  Reference 12 proves the following results. 

(1)  Let x and y be jointly Gaussian random 
vectors, with joint covariance matrix 

A   D 

T D B 
(A.2-16) 

Then 

a 

KKIZ) = - | log det (I - DT A"1 DB"1) 

= - i log det (I - D B"1 DT A" ) 

(A.2-17) 

f2)     If  yk =   (y..   0  1  j   ^ k}     is  a Gaussian 
\At      iJ-    J li-.l ' „J   ...:„„   rLonocian   rant random prö^ss  and x  is  a Gaussian random 

vector,   then 

i(x;yk) ■ \ ^ det Et ^T]- I log det Pl 

where 

P, 

^k 

E   (x-xk)(x-xk)   j 

E[x|yk] 

ilnimum 
x given the values  of  y1 

= minimum variance  estimate of 

(A.2-18) 

0 
10 
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Soi.ie of the more important properties of the average 

mutual information are stated below: 

(1) i(x;z) * o 

with equality if and only if x and £ 
are statistically independent.  If x 
and y are independent, the occurrence 
of y_ does not reduce the uncertainty 
in x. 

(A.2-19) 

(2) I(x;Z)   =   I(Z;x) 

The  information  provided about  x by y_ 
is  equal   to the   information provided 
about  X by ■*• 

(3) If  x  =   (X-L,   X2)   and  y  =   (j^,   y2)   are 
statistically  independent,   then 

1 ((x1.Z1);(x2,Z2))   =   H^JXg) 
+  KZiiZz) 

Statistically independent problems can 
be treated separately. 

(4) If ^ is a vector and f(-) is a compat- 
ible function, then 

I(x;z) 2 KxifCy)) 

A transformation  of  an observation  can- 
not   increase the  information. 

(A.2-20) 

(A.2-21) 

(A.2-22) 

The most important applications of the average mutual 

information are in determining channel capacity and the rate 

distortion function of a source.  These concepts are defined 

in the next sections. 

A.2.3 Channel Capacity 

In designing a communication system, it is useful to 

know the ultimate information carrying capacity of a channel 
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with the optimum encoder-decoder combination.  The average 

mutual information can be used to define such an informa- 

tion capacity measure.  Let c be the input to the channel and 

let c be the output.  The source-encoder combination which 

produces c determines the probability density function p(c), 

but the channel determines the conditional density p(c|c). 

The average amount of information carried by the 

channel is measured by the mutual information between c and 
c which is 

oo oo r •v " 
p(c|c) 

I(c;c) =   J J   P(c|c) p(c) log 
— 00  _oo P(c) 

where 
00 

PCe) = J   p(c|c) p(c) dc 

dc dc 

(A.2-23) 

(A.2-24) 

The channel capacity is determined by varying p(c) to maxi- 
mize I(c;c).  That is, 

C = max  I(c;c) 
P(c) 

(A.2-25) 

Thus the channel capacity determines the maximum amount of 

mutual information which can be achieved if the encoder is 

designed to present the optimum message structure to the chan- 
nel . 

A.2.4 The Rate-Distortion Curve 

For a given source, each encoder-channel-decoder com- 

bination will have an information transfer rate which is less 

than or equal to the channel capacity.  Another measure of 
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the performance of the encoder-channel-decoder combination 

is distortion^[pCx.x)] where x is the message which was 

transmitted, x is the estimate received by the user, and 

p(x,x) is a metric such as 

p(x,x)  = x - x II (A.2-26) 

For a specified source, the distribution of messages 

specified by p(x) is fixed.  By adjusting the encoder-channel- 

decoder combination, the conditional probability density func- 

tion p(x|x) can be manipulated.  Each choice of p(x|x) deter- 

mines an information transfer rate, measured by I(x;x), and 

a distortion measured by E[p(x,x)] .   This corresponds to a 

point in the rate-distortion plane.  See Fig. A.2-1.  The 

lower right boundary of the region of possible performance 

combinations is called the rate-distortion curve (or rate 

distortion function).  The rate-distortion curve for the 

source is determined by varying p(x|x) to minimize I(x,x) 

subject to a distortion constraint 

WD' 

i 

I 

»I 

Z 
< 

(X 
o 

R-170M 

POSSIBLE ENCODER- 

CHANNEL-DECODER 
PERFORMANCE 

RATE 
DISTORTION 
CURVE 

DISTORTION E^lx.J)] 

Figure A.2-1 Rate-Distortion Performance 
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E[p(x)x)] =  d (A.2-27) 

Thus the rate-distortion curve specifies the minimum channel 

capacity required to maintain a specified distortion.  Con- 

versely, the rate-distortion curve also specifies the mini- 

mum distortion which can be achieved with a fixed channel 

capacity. 

The rate-distortion function is defined by a con- 

strained minimization problem which can be solved using 

Lagrange multiplier and calculus of variations methods.  In 

Refs. 8 through 10, it is shown that the minimization pro- 

duces 

/•!%    O/N  /\  sp(x,x) p(x|x) =  ß(x) p(x) e HV-'-/ 

where ß(x) and s act as Lagrange multipliers, 
chosen to make 

(A.2-28) 

Here ß(x) is 

p(x|x) dx  = 1 

for every x, and s is chosen to produce a distortion of 

l[p(X.x)] =  d 

The minimum rate corresponding to this distortion is the result- 

ing average mutual information, which is 

R (d) = I(x;x) = sd + / p(x) Jin 3(x) dx 

(A.2-29) 

An additional constraint is imposed implicitly because the 

average mutual information can never be negative.  Therefore, 

for any compatible matrix A, the mutual information between 

Ax and Ax must be non-negative. 
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E[p(x,x)] =  d (A.2-27) 

Thus the rate-distortion curve specifies the minimum channel 

capacity required to maintain a specified distortion.  Con- 

versely, the rate-distortion curve also specifies the mini- 

mum distortion which can be achieved with a fixed channel 

capacity. 

The rate-distortion function is defined by a con- 

strained minimization problem which can be solved using 

Lagrange multiplier and calculus of variations methods.  In 

Refs. 8 through 10, it is shown that the minimization pro- 

duces 

p(x|x)  =  ß(x) p(x) esp(-'-) 

where 3(x) and s act as Lagrange multipliers 

chosen to make 

(A.2-28) 

Here ß(x) is 

p(x|x) dx =  1 

for every x, and s is chosen to produce a distortion of 

E[p(x,x)] = d 

i 
0 
I. 

i 
I 

The minimum rate corresponding to this distortion is the result- 

ing average mutual information, which is 

R (d) = I(x;x) = sd + y p(x) in  ß(x) dx 

(A.2-29) 

An additional constraint is imposed implicitly because the 

average mutual information can never be negative.  Therefore, 

for any compatible matrix A, the mutual information between 

Ax and Ax must be non-negative. 
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If the distortion measure depends only on the differ- 

ence between x and x, then it can be written as p(x - x) and 

sp(x - x) p(x|x) = B(x) p(x) e^ (A.2-30) 

Now for every x, this must be a probability density function 

So 

/ p(x|x) dx = 1 (A.3-31) 

for all x.  If p(x - x) is nonzero for all nonzero values of 

(x - x), this implies that 

p(x) ß(x)  = a (A. 3- \2) 

must be a constant 

A.3  RATE-DISTORTION CURVE FOR A GAUSSIAN 
VECTOR WITH QUADRATIC LOSS 

An important special case results when the source 

distribution is Gaussian with mean zero and covariance matrix 

P and the distortion measure is the quadratic form 

i2 p(x - x) = || W(x - x) 
(A.3-1) 

= (x - x)  W W(x - x) 

where W is a weighting matrix.  It will be shown here, that the 

encoder-channel-decoder combination which minimizes the required 

channel capacity with a specified distortion can be acheived by 

first taking a measurement 

* *   * 
z = H x + v (A.3-2) 

and then setting 
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x     =    K     z (A.3-3) 

where 

v  is a zero mean Gaussian noise with covar- 
iance matrix R* 

♦ 
H  is the measurement matrix (which will be 

specified later in this section) 

and 

K*   =     PV
T
[HVH*

T
  +   R*' 

-1 

To see this, first define 

y = D W x 

(A.3-4) 

(A.3-5) 

,TT where D is an orthogonal matrix which diagonalizes W P* WJ to 
produce the matrix of eigenvalues 

A = 

L 
0 

(A.3-6) 

Now x can be expressed as 

x = a + M y (A.3-7) 

where a and Z are independent.  (This is a result of the pro- 

jection theorem.)  The estimate can also be written as 

(A.3-8) x = a + M ^ 

where a and y are independent. 

The average mutual information between x and x  is 

I(x;x) = I(a;a) + I(Z;£) (A.3-9) 

The distortion measure depends only on (y - y), i.e., 
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P(x - x) = (x - x)T WT DTD W(x - x) 

D 
0 
i 
I 
Q 

0 
D 
0 
0 
0 
i 
0 
0 

= (z - z) (z - z) 
(A.3-10) 

Therefore, the average mutual information can be minimized by 
setting a = 0 so that 

I(a;a) = 0 (A.3-11) 

and by then minimizing I(r,p.     Since p(y - £) is nonzero for 

all nonzero values of (y -j),   minimizing the average mutual 
information between y and y produces 

P(y|y) = a exps(y - y)T (y _ £)       (A.3-12) 

where a is a normalizing constant chosen to make 

oo 

f  P(zlz) dy = 1 (A.3-13) 

Thus  y given  y  has  a normal  distribution with covariance matrix 
~  2s  I'     Requiring  a distortion equal  to  d gives 

E[p(x.x)]   =- tr E[(Z - J)(Z - £)T] 

/ /(Z-Z)(l-i)T«exp[- |(Z-£)T(-2sI )ii-h]  dZp(y) d^i 
—00    -oo I 

{00 

-Ä I / v<b a£| 

2i 

where n is the dimension of x-  Therefore, 

s = - n 
2d 

(A.3-14) 

(A.3-15) 

and y given y_  has the covariance matrix - I 
n 
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The rate-distortion curve is given by the relation- 
ship 

o r = KZ.Z) = H(i) - H(y|y) 

1 1        d0 
2 log det A - «j log ^et — I (A.3-16) 

1 
2 

n   r oi 
£   log A. - log ^- 
1-1  L ■J 

This rate applies if a negative mutual information does not 

occur in any direction A ^.  Since the components of y are 

independent Gaussian variables, the requirement is 

jO 

log ^ - log ^r ^ 0  for every i 

or 

iO <: nX for every i 

(A.3-17) 

(A.3-18) 

When nA^<d for some i, then no new information is required 

to estimate that component; the corresponding component of the 

unconditional mean is used.  Suppose that the eigenvalues of 
rn 

W P* W are arranged in descending order of magnitude.  As 

long as d0 ^ nX , then 

i=l L J 

(A.3-19) 

iO 
For d > nXn, the problem becomes an n-1 dimensional problem 

with distortion constrained to be d0 - X .  Thus 

o 

i=l L -I 
(A.3-20) 

provided 
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d0-X 
log  Xi   -   log —jl 

or 

i  0       for  1  i  i  i  n-1 

(A.3-21) 

(A.3-22) (n-1)   X     .   +  X     >   d0 

n-1 n 

n n 

In  general   for   (n-k)An_k  +   £   A.   <   d0  i   (n-k+1 )An_k+1+ J^       ^j. 

i=k+l 

n-k 

'0 =  2   S    Ll0g  Xi  '   l0g eJ 

i=k+2 

(A.3-23) 

where 

e     = 

1=1 

d0 - Lj h 
n-k (A.3-24) 

In each case, the estimate ^ can be viewed as the result of tak- 

ing the (n-k)-dimensional measurement 

z = Ay_ + v (A.3-25) 

where v is a zero mean Gaussian noise with identity covariance 
matrix, 

A  = 
0 

0 

n-k 

(A.3-26) 

and each 6i is chosen to make the ith component of the covar- 
ience of jr given ^ equal to e. 

62 

--— aa^^iU^^^ 

mmmmmmmum- 



.JI.L..JW.I...,»J»WW.WU«»I..I.,      i     iJippippüMii I "Jll '   I        .l■IIIUJIIP!^llMJ|lliPMI«W|■l■■l"l*•,ul,■       ILII.*^««! HUB 

I 
I 
"T 

. 

1 

i* 

t        7- 

* s 

n 
i. 

" - 

•• 

D 
I 
D 
D 
0 
D 
e 
0 

1 1 
1 

BBätoft^ia 

1 

Using one form of the Kaiman filter covariance equa- 
tion (See Rel. 17, p.Ill) gives 

Cov [zlz] 1 = Cov[x] 1 + AT A 

which implies that 

e  = A.  + 6. 
i    i 

(A.3-27) 

(A.3-28) 

or 

VX.-e 

■hr. (A.3-29) 

The measurement vector can also be written as 

*   *     * 
z = H x + v 

where v has covariance matrix R and 

H = R s A D W 

(A.3-20) 

(A.3-31) 

(R  represents the symmetric square root of R .)  For the pur- 

pose of determining the rate-distortion function, this meas- 

urement completely describes the optimum encoder-channel-decoder 

combination and the estimate x is formed by using the Kaiman 
filter equations. 

A.4  RATE-DISTORTION CURVE FOR A GAUSS-MARKOV 
PROCESS WITH QUADRATIC LOSS 

Suppose the source is described by a linear differen- 
tial equation 

x(t) = fit}  x(t) + G(t) w(t) (A.4-1) 

where w is a white Gaussian noise with spectral matrix Q(t). 
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Assume that sufficient information has been gathered prior to 

time t, to give a Gaussian conditiona aistribution for x(t. ) 

ith covariance P(tk) and mean xC^)-  Then x(tk+1) can be w 

predicted by 

s ^k+i)  =  ^Vi5 s<V 

The error in this prediction 

x*(tk+1)  = x(tk+1) - 2i*(tk+1 ) 

(A.4-2) 

(A.4-3) 

has a Gaussian distribution with covariance matrix 

p CVl) = ^^k+i'^) v^  $ (tk+i'
tk) 

(A.4-4) 

where 

'k+1 

9 ^k+l'^) / *^tk+l't) G(t) Q(t) GT(B) *TCtk+1,t)dt 

(A.4-5) 

Assume that the distortion measure is the same as in 

the previous section.  Note that 

a«* 
Ctw+1)  -  X (+) + X (tk+1) 

SO 

'k+1 

s<.W 

'k+1 
(A.4-6) 

"h* 
x(tk+1) = x (tk+1) 

^^k+l) x (tk+1) 

(A.4-7) 

Therefore the problem is one of estimating the Gaussian vec- 

tor x (tk+1) with the vector [xUk+i) - x (tk+1)J.  That is, 
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the problem is the same as in the previous section with 

- (tk+l) takinS  the role of x and x(tK+1) - x*(tk+1) taking 
the role of x. 

Let A1, A2, ..., ^JJ be the eigenvalues of P+ft. ..) 

arranged in descending order.  Then the rate-distortion curve 

is given by 

o  1 
n-k 

i=l 

d°- E A. 

log Ai - log i=k+l 

n 
for (n-k)A  . + '  n-k E 

i=k+l 

n-k 

n 
(A.4-8) 

A  < du < (n-k+l)A  .^   + 
n ' n-k+1 E  h 

i=k+2 

A.5  RATE-DISTORTION CURVE FOR A LINEAR QUADRATIC 
GAUSSIAN PROBLEM WITH SENSOR CONSTRAINTS 

In the previous section, no constraints were placed 

on the structure of the estimating system which forms x(t, , 1 ) 

However, in most practical problems, the estimating system is 

constrained to observe only measurements of the form 

;(t) = H(t) x(t) + v(t) (A.5-1) 

either continuously or discretely in time.  Here v(t) is a 

white measurement noise.  Results of Wolf and Ziv (Ref. 4) 

and Dobrushin and Tsybakov (Ref. 5) can be extended to show 

that the optimal encoder can be partitioned into a Kaiman 

filter which preprocesses the measurements followed by an 

encoder which treats the Kaiman filter as its source as shown 

in Fig. A.5-1 (see Ref. 13). 
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\ 

Figure A.5-1   Optimal Encoder for System 
with Sensor Constraints 

If the measurements are available continuously, the 

Kaiman filter is a continuous time linear system driven by 

the innovations process v(t), 

x^t)  =  F(t) x^t) + K(t) v(t)     (A.5-2) 

The innovations process is a Gaussian white noise process 

with covariance matrix R(t), the same covariance as the mea- 

surement noise. 

If the measurements are available only at discrete 

instants of time, the Kaiman filter is a discrete time lin- 

ear system driven by an innovations sequence. 

(A.5-3) 

The  covariance  of  the  innovations  is 

N(tk+1)   =  H(tk+1)  P*   (tk+1)  HT(tk+1) 

+ a«W 
(A.5-4) 
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where P1(tk+1) is the covariance matrix for the Kaiman prefli- 

ter's error in predicting x(tk+1). 

In either of these cases, the techniques developed 

in the previous section can be used to compute the rate dis- 

tortion function.  The decoder now constructs an estimate 

x(tk+1) for the state of the Kaiman prefilter x-jC^k+i)" 

Assume that sufficient data has been gathered prior to t, to 

produce a Gaussian distribution for x^t, ) with covariance 

matrix Pft. ).  The covariance matrix for the error the re- 

ceiver makes in predicting x1(tk+1) based on this data is 

.T, * 
P (t k+i) = ^W 'V P(V ^W'V 

+ ^k+l'V 
(A.5-5) 

where 

'k+1 

N*(t kil,tk) 
/•ak+1.t) K(t>R(t) K

T(t) ♦T(tk+1»t) dt 

k 

(A.5-6) 

for continuous measurements and 

N*(tk+l'tk) =    S    *(tk+l't) K(t) N(t) KT(t) ^^k+i-*) dt 

(A.5-7) 

h<% - \+i 

for discrete measurements.     The eigenvalues of  P*(t,   .,)  are 
used to determine the rate distortion  function. 

There  is one  additional  alteration  to  the previous 
techniques.     The distortion consists of 
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IDXX.X)]- tr Ejw[x(tk+1)  - ^(t^)]   [x(tk+1)  - k^t^y WT 

♦ Wpi(tk+1)- ^tk+1)][x(tk+1)- x(tk+1)]wTj 

" W MH-M)  W1   + W P(t.x1) w l^k+l k+1' 

Therefore  the distortion  cannot  be made smaller than 

d     =WPrt       "iW^" 

and  the  rate-distortion  function  is 

n-k 

(A.5-8) 

(A.5-9) 

r0 = i 
i=l 

n 

log  Xi  -  log 
0     i=k+l     1 

n-k 

(A.5-10) 

for 

(n-k)Xn-k +    E    xi + ^ d0 *  <n-k+1) Vk+1 + E   Xi + dc 
i=k+l l-k+2 

where  X^   \^t   ...,   X^  are the eigenvalues  of  W P <tk+1)  WT 

arranged  in descending order of magnitude. 
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APPENDIX B 

DERIVATION OF THE ERROR COVARIANCE EQUATIONS 

The equations in Chapter 4 can be used to produce a 

recursion relation for the one-step prediction error. First 
note that 

a, 
—n+l|n  -n+1   n+1 -n+1 

n -n  —n   n+1  n -n 

- C ... B(H x +v -G m) n+1 nv n -n  —n   n —n' 

($  - C J.i B H ) x n   n+1 n n7 —n 

- w - C ^- B v —n   n+1 n -n 

n+1  n n n —n 

(B-l) 

Recognizing that 

—n    —n n-1   n —n (B-2) 

gives 

-n+1 In ($n -Cn+1 Bn **>  ^|n-l 

+ [($n - Cn+1 Bn Hn)Cn " Cn+l(An-Bn Gn)] % 

—n   n+1 n —n 

and (B-3) 
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m_=A    m     +B(H    x    +v     -G    m) —n+1 n —n nv   n —n      —n n —n' 

=   (A     -B    G)m     +B     H    x    +Bv>v n n    n'  —n n     n -n n —n 

m _,,   =  [A    +  B   (H C     -  G   )1   m    + B^H    Vi      , + B^v^ -n+1       [n nnn n'J—n nn —n|n-l        n-n 

(B-4) 

a. Therefore, x .^i  and m .„ satisfy the coupled set of linear ' —n+l|n    —n+1      '       r 

vector equations 

-n+l|n A11(n) Ä12(n) ^n|n-l 
+ 

2n+l &21(n) A22(u) *n 

A1(n) 

A2(n) 
^n + ^n 

where 

A11(n) 

A12(n)  = 

A2i(n) - 

A22(n) 

AjCn) 

«  - CnJ_.   B H n   n+1 n n 

(^ - C ^   B    H ) C v n   n+1 n n'  n 

- C ^-(A - B G ) n+lv n   n n' 

B H n  n 

A  + B (H C  - G ) n   nv n n   a' 

n+1 n 

and 

A2(n)  = Bn 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

(B-ll) 

Define 
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n  = E n 

—nln-1 —nln-1 

m x i  - —n —n n-1 

a.      T 
x |  i m -n n-1 -n 

T m m —n —n 

(B-12) 

and the previous equation gives 

L .-  =  A  H  AT + A  R  AT + 
n+1     n n n   n n n 

Q n 

0 

0 

0 

(B-13) 

This recursion relation is started with 

pl + (t-0Ä T ) x ri-c   T )T 
o o    o7    ov      o    o 

o    o        o    o 

(I-Cn T   )  Xo T* o    o      o    o 

T T« x
rt 

T« o    o    o 

where 

»[Sol E^T 

B[<S " ECxjKx  - E^] )T] 

(B-14) 

(B-15) 

(B-16) 

and 

is  chosen to be T    Efx  1 o o     l—o-l 

T- 
o =     E &K] 

r Tn-1 Em    m L-o -oj 

T   fm      ^     mT"--1 
(B-17) 

o    o   L o    o    oj 

The state estimation error is defined to be 

'XJ * 
X |    =  X  - X | 
-n n    -n  —n n (B-18) 

which can be expanded to 
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X -n n I n —n n —n n    n —n       —n n —n 

=     (I  - K     H   )  x^   -(C     -  K     G   )  m     -  K    v n     n    -n     v   n n     n' -n n -n 

(B-19) 

Recalling  that  xn  = x  i   ^  +  Cn m    gives 

i|n=   ^"«nV  *n|n-l  + 

[<l-h*n)   Cn  "   (Cn  -Kn  ^^n  "  Kn Xn 

nHn)  *n\n-l-  VGn   "  HnCn>  %  " Kn % 
(I-K    H   )   x 

=    [^(n)      fa(a)] n n-l 

m —n 

- K    v n —n 

Then  the  estimation  error  covariance  is 

(B-20) 

(B-21) 
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