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I. INTRODUCTION

Boundary layer development over a yawed, spinning body of revolu-

tion is of particular interest to the Army as applied to the design of
artillery projectiles in general and in gaining further knowledge of

the Magnus effect in particular. Reference 1 presents some experimental
evidence showing the significant effect that the boundary layer config-

aerodynami ¢ stability of a spin stabilized projectile, Boundary layer
development over non-spinning bodies of revolution is also of interest
to the Army in the aerodynamics of missiles.

Recent advances in computational fluid dynamics have resulted in

increased effort toward computation of three dimensional boundary layer
development. The computations published to date that have come to the
author's attention have included only laminar boundary layers in com-

pressible flow and both laminar and turbulent boundary layers in incom-

W. B. Sturek, "Boundary Layer Studies on Spinning Boaies of
Revolution, " BRL Memorandum Report No. 2381, U.S. Army Ballistic

Research Laboratories, Aberdeen Proving Ground, Maryland, May 1974,
AD 920069L.

H. A. Dwyer, "Three Dimensional Flow Studies Over a Spinning Cone
at Argle of Attack," BRL Contract Report No. 137, U.S. A

Ballistic Research Laboratories, Aberdeen Proving Ground, Mary land,
February 1974. AD 774796,

H. A. Dwyen, "Boundary Layer on q Hypersonic Sharp Cone at Small
Angle of Attack,” AIAA Journal, Vol. 9, No. 2, February 1971,
pp. 227-284,

T. C. Lin and S. ¢, Rubin, "Viscous Flow Over Spinning Cones at
Angle of Attack," AIaA Journal, Vol. 12, No. 7, July 1974,
pp. 965-974,

T. K. Fannelop and p. A. Humphreys, "A Simple Finite-Difference
Method for Solving the Three Dimensional Turbu’ent Boundary Layer
Equations,” AIAA Paper No. 74-13, ATAA 12th aerogpace Sciences
Meeting, January 1974,
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computation efforts, and References 6 to 10 are a representative
listing of three-dimensional experimental investigations. For super-
sonic flow, the computations and experimental data are almost exclu-
sively limited to a cone model. Two very recent publications, Dwyer
and Lin and Rubin®, have shown very promising results that include the
effects of surface spin for a yawed cone in supersonic flow. However,
since it is almost impossible to obtain measurements of the laminar
boundary layer on a cone in supersonic flow due to the small thickness
of the viscous layer and the difficulty experienced in maintaining a
laminar boundary layer over the complete model surface, there are no
experimental data available to make a useful comparison to the
computations.

The objective of this experimental effort is to obtain detailed
boundary layer profile data that will be useful for comparisons with
theoretical computations of three dimensional boundary layer develop-
ment. As a first step, this report describes preliminary total head
measurements of the boundary layer on a yawed, tangent-ogive-cylinder
model. Measurements were made with the model spinning at a rate of
10,000 RPM and also while the model was not spinning. These measure-
ments were made at one axial position near the base of the model for
several azimuthal stations around the circumference of the model.

6. J. B. Morton, I. D. Jacobson, and Seldon Sanders, "Experimental
Investigation of the Boundary Layer on a Rotating Cylinder," BRL
Contract Report No. 185, U.S. Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland, October 1974. AD B000138I.

7. H. Carl Thorman, "Boundary Layer Measurements on an Azisymmetric
Body With Spin and Yaw," Master's Thesis, Califormia Institute of
Technology, November 1957.

8. H. R. Vaughn and 0. L. George, "The Characteristics of a Laminar
Boundary Layer on a Spinning Tangent Ogive Cylinder at Angle of
Attack," Sandia Laboratories Report SC-RR-71 0851, Sandia
Laboratories, Albuquerque, New Mexico, March 1972.

9. M. C. Fischer and L. M. Weinstein, "Turbulent Compressible Three-
Dimensional Mean Flow Properties," ATAA Journal, Vol. 12, No. 2,
February 1974, pp. 131-132.

10. W. J. Rainbird, "Turbulent Boundary-Layer Growth and Separation
on a Yawed Cone," AIAA Jourmal, Vol. 6, No. 12, December 1968,
pp. 2410-2416.




IT. THE EXPERIMENT

A. Test Facility

The tests were run in the BRL Supersonic Wind Tunnel No. 111,
This is a symmetric, continuous flow, closed circuit facility with a
flexible plate nozzle. The test section has a height of 38 cm and a
width of 33 cm. The nominal tunnel operating conditions were M = 3.0,
P, * 0.299 x 10% pa, and To = 308°K. The total pressure was maintained

within *+ 0.4 percent and the total temperature was controlled within
! ' 1°K during each individual test run.

B. Model ¢

The model used was a seven caliber long tangent-ogive-cylinder
with a oue-caliber ogive section. The diameter of the model was 5.08
cm. A v.ew of the model mounted in the test section is shown in Figure
1. The model was suspended on ball bearings and an internal air driven
turbine was used to drive the model in spin. The model was made of
high strength aluminum alloy and was highly polished. The model was
dynamically balanced to a tolerance of 2.1 gram-cm.

C. Survey Mechanism

The survey mechanism, shown installed with the model in Figure 1,
was designed to drive the probe perpendicular to the axis of the model.
The probe is po:itioned by a cam that is rotated using the roll head
mechanism. Since the survey mechanism is attached to the angle of
attack crescent, the probe is driven perpendicular to the axis of the
model for any angle of attack setting. The azimuthal position is deter-
mined by selecting n»redrilled mounting holes placed at 30° increments.
The positions, ¢ = 90° and 270°, could not be surveyed due to a
mechanical limitation of the mount.

The survey mechanism was calibrated by using a dial indicator to
indicate the displacement of the probe support in thousandths of an
inch to establish a table of displacement versus electrical output

! signal from the roll head mechanism. In the data reduction procedure
divided difference interpolation was used to determine the y position

for a given electrical signal. The coordinate system is indicated in
Figure 2,

11. J. C. McMullen, "Wird Tunnel Testing Facilities at the Ballistic
Research Laboratoriee,” BRL Memorandum Report No. 1292, U.S. Army
Ballietie Research Laboratories, Aberdeen Proving Ground,
Maryland, July 1960. AD 244180.
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D. Test Procedure

Total head surveys were made of the boundary layer one-half
caliber from the base of the model for an angle of attack of 4°, M = 3,
and for spin rates of zero and 10,000 RPM, The surveys were made for
azimuthal positions of ¢ = 0°, 30°, 60°, 120°, 150°, 180°, 210°, 240°,
300°, and 330°. A spark shadowgraph showing the model with the total
head probe positioned beyond the boundary layer is shown in Figure 3.
The boundary laver was allowed to develop naturally (no trip was used).
As shown in Figure 3, the boundary layer was turbulent on the lee-side
and relatively thick. On the wind-side, transition to turbulence
occurred close to the measuring station. This resulted in a large

difference in thickness of the boundary layer from the wind to the
lee-side.

The surveys were made by starting the measurements well beyond the
edge of the boundary layer--at Yy ~ 1.25 cm whereas the largest § was
about 0.65 cm. The pressure signal from the total head probe was
measured using a strain gage transducer that was calibrated within
+ 0.25 percent of its full scale range--0-25 psi (0-0.172 x 10° Pa).
Measurements were made while holding the probe in a fixed position
after allowing approximately thirty seconds for the pressure signal to
stabilize. The position of the model surface was detected by
electrical signal when the probe contacted the model surface when the
model was not spinning. Immediately following the survey for the model
not spinning, the model was spun to 10,000 RPM and another survey made
again starting from well beyond the outer edge of the viscous region.
The model spin was held constant within + 200 RPM during the survey,
These surveys were stopped close to, but not touching, the model

surface in order to preclude damage to the model surface or the total
head probe.

The total head probe used had a flattened tip. The probe tip had
an opening of 0.076 mm with a lip thickness of 0.025 mm and was 2.5 mm
in width. The probe was positioned to measure the pressure along
lines parallel to the model axis.

IIT. DISCUSSION OF THE RESULTS

An attempt was made to measure the static pressure through the
boundary layer; however, the results were considered unsatisfactory
due to angle of attack sensitivity of the probe. Since no satisfactory
Measurement of the static pressure was available, the data could not be
reduced to obtain the velocity in the boundary layer. For this reason,
the data are presented as profiles of total pressure normalized by the
total pressure external to the boundary layer. Examples of the ‘ |
measured profiles are shown in Figures 4 to 12. The consistency of |
the profile measurements is indicated in Figure 5 where individual |
data points are plotted for one of the profiles.

10




Figure 4 shows a comparison of the profiles obtained on the wind
and the lece-sides. These profiles clearly show the large difference in
thickness of the boundary layer from the wind to the lee-side. 1t is
also scen that there is a substantial difference in the profiles at
¢ = 180° for w = 0 compared to w = 10,000 RPM. 1In this case, the
profile for w > 0 is less thick and more full than that for w = 0, In
examining the profiles at other azimuthal stations, it is seen that the
profiles for w = 0 are more full for ¢ = 0°, 30°, 60°, 120°, and 150°.
At all other azimuthal stations, the profiles for w > 0 are more full.
The trends indicated herec are: (1) the boundary layer is more thick
and less full where surface spin opposes the crossflow velocity; and
(2) the boundary layer is less thick and more full where surface spin
is in the same direction as the crossflow velocity.

For the profiles at ¢ = 0°, 30°, and 330°, therc is an overshoot
in the total pressure near the cdge of the viscous layer. This over-
shoot could be an indication of the formation of lec-side vortices
which are fed from the wind-side inviscid flow. Another possibility
is that the presence of the probe causes the very thin boundary layer
to separate. Oil flow visualization was used in an effort to gain
insight as to the cause of this overshoot. Pictures of the oil flow
obtained are shown in Figures 13 through 15.

The oil flow pattern was obtained by painting the entire model
with a thin coating of a mixture of TiO2 and Dow Corning 200 Fluid.

i The model was held non-spinning at 4° angle of attack for about fifteen
minutes after flow was started in order for the oil pattern to become
fully established. The picturcs were made after the tunnel was shut
down and with the model at o = 0°. The model was positioned at 90°
increments in azimuth in order to obtain views over the complete
surface of the model. The pictures reveal the presence of high surface
shear along the windward ray, wrapping up around the sides of the

model as the flow develops toward the base. The unexpected appearance
of a slender vortical strewmer Jeveloping near the tip of the model and

wrapping around to the lec-side at about the midlength of the model is
also indicated.

These oil flow patterns strongly suggest the presence of vortex
filaments submerged within the boundary layer on the lec-side near the
base; however, the rcason for the presence of the overshoot detected in
the boundary layer surveys on the wind-side is not explained. Local
boundary layer separation due to the presence of the probe is, however,
considered to be less likely u cause for the shape of the total head
profile than the presence oi vortex filaments.

11
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IV. CONCLUDING REMARKS

An experimenta] investigation to measure the boundary layer on a
yawed, spinning ogive cylinder model in supersonic flow has been
reported. Measurements were made using a flattened total head probe

. Compari-
son of the profiles for w = 10,000 RPM to those for w = 0 revealed

substantial differences. The trends indicated were: (1) the boundary
layer is more thick and less full where surface spin opposes the cross-
flow velocity; and (2) the boundary layer is less thick and more full
where surface spin is in the same direction as the crossflow velocity.

These data were obtained for the purpose of comparison with
analytical or numerical computations of three-dimensional boundary-
layer development. The data reported here are of a preliminary nature
and are insufficient for a meaningful comparison with a theoretical
analysis. In future experiments profile data will be obtained at
several streamwise stations for a tripped turbulent boundary layer.

pressure using
4 non-spinning model instrumented with wall pressure taps.

12
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Figure 2. Coordinate System
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LIST OF SYMBOLS y 3

1 l

1

local total pressure behind a normal shock--sensed by total
pressure probe

pressure sensed by total head probe at a position beyond the
edge of the viscous boundary layer

azimuthal position, see Figure 3

coordinate perpendicular to model axis

reference length, 2.54 cm
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