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I. INTRODUCTION

The near wake behind a projectile, as shown in Fig, 1, is a tube-
like rcgion of disturbed gas located on the trajectory, and having an
average diameter nearly that of the projectile. Although reascnably
syrmmetric near the projectile, the wake structure further back shows
an irregular edge, with protruding turbulent eddies, The mean wake
diameter grows slowly with distance from the projectile, at about the
one-third powerl; for example, at a distance of 1300 calibers, the
diam *2r cf the waks from a sphere was measured to be only 13 times
that of the sphere.

T R L T

[k

From the geometry of the wake, it is obvious that any method of
optical communication with a sensor on the projectile base requires
that light rays traverce some portion of the wake, If the ground
station light transmitter is close to the trajectoryv, nearly all the
light path of communication could be engulfed by the wake., Figure 1
demonstrates that light can be sent transversely through the wake, where
the in-wake light path is only 3.0 cm, But information is reeded about
the effects of attenuation, scattering, and refraction on light rays
traveling lengthwise up the wake for long distances, to assist in the
design of optical sensing systems. Since such explicit infor-
mation could not readily be found, a simple experiment was designed to
probe these problems., The tests showed conclusively that the wake acts
optically as a diverging lens for light rays traveling nearly length-
wise through it,
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I1I. EXPERIMENTAL PROCEDURE

One part of the experiment consisted of taking nearly end-on
shadowgraphs of the wake and projectile, using a pulsed light source
located behind the projectile, very close to the trajectory. The
configuration is shown schematically in Fig. 2. A caliber .30 pro-
jectile (diameter, 7.82mm) was fired toward a photographic film oriented
normal to the trajectory. A small turning mirror located near the
trajectory reflected a pulsed, diverging beam of laser light {wavelength,
b 6943 A) toward the projectile at a predetermined time. This short-
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i, C. H, Murphy ard E. R. Dickingon, "Growth cf the Turbulent Wake
Behind a Supersoiic Sphere,” AIAA sowenal 1, 339-342, 1963. Also see
BRL Memora:dum Report 1388. AD 280216.

2. W. F. Praun, "Growth of the Turbulent Inner Wake Behind Large
Spheres at Supersonic Velocities," BRL Memorandwn Report 1587,

September 1964. AD 453850,
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: duration pulse (less than 100 nanosecs.) imprinted a shadow image on

- the film before the projectile pierced it, Since the virtual image of
the effective point source was offsct 4.5 cm from the trajectory, the
projectile shadow was also centered off the trajectory; therefore, the
b subsequent piercing hoie in the film did not completely obscure the

: shadow image.

The distance from the point source to the normal film, L, was
505 cm for six tests, and 204 cm for two tests. The stand-off distance,
d, the distance between the normal film and the projectile base when
the light was pulsed, ranged from 10 to S8 cm. In order to measure
the projectile location when the shadowgra h was made, an additional
turning mirror was placed alongside the trujectory to reflect part of
the same light on a film oriented parallel to the flight path. An
example of the end-on shadowgraph for d = 24 cm, L = 505 cm is shown
in Fig. 3. 1In calibers, the wake lengths traversed by the light rays

for these tests ranged from 246 to 632 calibers. Projectile velocity was
2900 feet/second.

I11. RESULTS

The projectile shadowgraphs were measured and compared to the
sizes expected from geometrical projection; the latter are easily
computed form L and d, assuming small angles between the grazing light
rays and the trajectory. But in every test the shadow with the wake
was significantly larger than that computed from geometrical projection.
An example is shown in Fig. 4, where the shadow of a projectile mounted
in still air (geometric projection) is ccmpared to that obtained with

. wake, each having the same distances d = 73 cm, and L = 505 cm; the
shadow diameter with wake is 50% larger than the geometric projection,
A graph of the measured magnifications with wake, Mw’ as a function of

stand-off distance is compared to the expectec geometrical magnifi-
cation, ﬁg’ in Fig. 5.

The enlargement of the shadow caused by the wake gives a measure
of the refractive deviation contributed by the wake to light rays vhich

r graze the outline of the base. The amount of deviation angle, 2, can
be estimated from

by = x (M, - M)/d,

where r is the radius of the projectile; here again small angles are
assumed between the grazing rays and the trajectory. Table I sum-
marizes the results in terms of d and L. Erscluding the last tabulated
value, the average refractive deviation angle of these grazing rays i
3.6 milliradians,

This shadow method yields data about the refractive deviation of
rays grazing the base, but gives none concerning inner rays incident
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on the base, or outer rays missing the projectile., To help in asses--
ing the wake effect on the outer rays, a screen grid of spacing 6.35mm
was placed 40 cm ahead of the normal film, and a hole was cut to per-
mit unhindered passage of the projectile. A pair of shadowgraphs of
the screen was taken, one a control (still air) and one with a pro-
Jectile wake d = 11.5 cm. The apparent displacements of the grid lines
caused by the wake (in directions normal to the grid lines only) were
measured and expressed in terms of refractive deviation angle using
the 40 cm length from screen to film, Results of this test are shown
in Fig. 6, The deviation was always away from the trajectory, which
was located at grid i = 5%, j = 6. The point light source, if pro-
jected parallel to the trajectory, would fall on the grid point

1 =95 j=12.4, By comparing the grid line i = 7 with a straight
edge, the reader can verify the outward bulging between j = 4 and 6;
with no wake, this grid line is straight. The stub ends of the screen
grid where the hole was initially cut also appear bent, but this was
caused by the cutting process, and not by the wake,

This distortion of the screen grid projection by the wake shows
that light rays traveling longitudinaily through the outer wake radius
are also deviated radially outward from the trajectory.

The method of measuring the shadow diameters deserves some mention.
Readings from the films were made on a calibrated projection screen
using 4 X magnification. In many instances the projectile shadowgraphs
were outlined with diffraction fringes, as in Fig. 4, which made it
difficult to determine the diameter of the effective geometrical shad-
ow. The problem was solved by measuring the diameter of the first
minima in terms of spacing of the first and second fringe minima, and
applying a two-dimensional diffraction correction to the former. This
method was independently checked on the no-flow test and appeared to
work_very well. From the Cornu function for diffraction by a straight
edge°, the ratio of the distance between the ideal geometric pro-
jection of the projectile radius and the first fringe minimum compared
to the spacing between the first two fringe minima was found to be 2.15,

The laser system employed was also used to reconstruct a holo-
graphic interferogram of the wake of this projectile, Fig. 7. Qual-
itatively, the fringe displacements in the wake indicate a smaller
refractive index in the wake. This fact may be verified by comparing
the "forward" fringe shifts inside the outer shock, with those "back-
ward" shifts in the wake; the refractive index is known to be higher
inside the outer shock.

3. P, 7. Jenkins aul H. E. White, Budamentals of Physical Uptics
MeGraw-Hill Book Co., New York, 1937 (pp. 188-195)
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1V CONCLUSIONS

Light traveling nearly longitudinally up 600 calibers of wake
toward the base of a projectile was found to retain enough coherence
to outline clearly the shadow of this projectile (sece Figure 4). This
fact suggests that the expected turbulent fluctuations in the wake are
not dominant in scattering and diffusing the light traveling the above
distances up the wake.

Because the shadow of the projectile formed by this light is
magnified, we conclude that the wake acts as a diverging (negative)
lens on light traveling along the trajectory of the projectile. Since
the divergence of the light was found to be the same for wake lengths
of 250 and 630 calibers, we also conclude that the major cause of the

spreading of the rays mus® be in the near wake, less than 250 calibers
behind the projectile.

The deviation of the light was radially outward away from the
trajectory. It was strongest for the light rays in the cone grazing
the projectile(d¢ ~ 3.6 millirads), and was much smaller for outer
rays as measured by the grid distortion.

Y. APPLICATION TO MISS-DISTANCE SENSOR

Light rays traveling up the wakes of projectiles have been
demonstrated to be deviated radially outward; the wake acts optically
as a variable strength diverging lens, causing some incident intensity
loss, If the light rays are reflected from the projectile base back
to some sensor, they then traverse the wake twice. A plane mirror
on the projectile base to reflect those rays is impractical because
it would be too sensitive to projectile yaw. Use of a single corner-
prism mirror removes the yaw sensitivity, but aggravates the problem
of the radial divergence efrect of the wake.

The reason for this is that although the ideal corner mirror
reflects an incident light ray by exactly 180°, the reflected ray is
displaced symmetrically across the axis of the corner prism, due to
the triple reflections. If the corner is centered on the projectiie
base, the incident deviated light ray would be reflected back, in-
cluding the deviation angle, starting from a radial location symmetri-
cally across the wake from the point of incidence. But because the
wake optical effect is symmetric about the trajectory center line,
an additional outward radial deviation would be given this reflected
ray, Thus, the diverging effect of the wake is enhanced by a single
corner prism reflector centered on the projectile base, One solu~
tion to help cure this might be to use a grid of very small corner
prisms, so that the reflected ray, including deviation_is reflected
back starting from nearly the same radial position with respect to

10
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th2 wake as the incident ray. Then the wake deviation should be ncarly
cancelled, because of the reversibility property cf ray optics.

To illustrate the importance of this problem for a single corner
prism, we note that rays grazing the outside of the projectile base
in these tests are deviated outward by about .003w¢ rudians. Neglecting
any additional deviation of the reflected ray back down the wake, these
rays defining the outline of the projectile base, when projected back
to the plane of the light source, give a greatly enlarged image of the
base outline, due to their deviation. If the proiectile were 1000
meters from the transceiver, the reflected rays defining the pro-
jectile outline in the plane of the transceiver would be circular,
with s radius of 3.6 meters. This fact suggests considerable intensity
loss on any rteasonable size sensor, due to optical wake deviation.

These findings indicate that sone additicnal investigations of
wake optical properties, including a theorstical model, would be
highly desirable for design concepts for optically communicating with
projectiles.

11




TABLE 1. SUMMARY O SHABURGPAPH EXPERIMENTS

- Liin) d{in) Mw Mg &&(radss
50 4.15 1.140 1.054 .00319
50 4.67 1.175 1.062 .00393
199 4.52 1.150 1.023 00433
199 8.11 1.230 1.042 .00357
i59 5.3% i.260 1.050 L0034

: ig9 16.27 1.410 1.089 00504

é i89 23.13 1.640 1.132 00338
199 28.00* 1.630 1.163 06257

52 cross picture; estimated from delay set.
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Figure 6. Angular Deviation From Grid Distortion. Grid, Projectile

Base 16" and 4.5" From Film, Respectively. Grid Spacing
Approximately 1/4 Inch; Deviation Always Avay From Tra~-
jectory, Located at Grid § = £, § = g,
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APPENDIX A: IDEAL CORNER REFLECTOR

A short analysis of the ideal corner reflector is given here to
demonstrate that an incoming ray, after the triple reflectioa, is re-
versed exactly in direction and is displaced an equal and opposite
distance across a centerline which is both parallel to the incoming
ray and passes through the corner of the reflector.

Let the mirrors of the corner reflector bv characterized by the

unit, orthogonal, right-hand, vector triaé (i, j, k), so that the unit
vectors are the outward normals to the respective mirror surfaces.

Snell's reflection la~ from a plane mirror with outward unit normal n
is:

r.o=7T; Rn =710 (I - 2mn)

where ;i and ;r are unit vectors representing the incident and re-
flectec light rays, respectively, ﬁn is the plane reflection dyadic

defined above, with 1 the identity dyad, equal to II + jj + kk. Note
also that 51 = ;r' En' Multiple reflections are treated by letting the
subsequent incident ray be the same as the previous reflected ray.
Therefore, in the notation above, the final outcoming ray ff after a

triple reflection of an incident ray Ec from mirrors i, j, k can be
expressed by

However, (ﬁi' ﬁj' ﬁk) = - T using the above orthogonality conditions,
Moreover, the order of the reflections does not alter this result;
therefore, ;f = - ;c’ and the outcoming ray is exactly reversed in
direction from the incoming ray.

The location of the points of contact on the corner reflector of
the incoming and outgoing rays in terms of the cormer must still be

found., Assume that the incident ray, ;c is equal to -c, where ¢ is a
unit vector from the corner, given by

- r -
c=ul + v+ wk,

21
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where
0<u, v, w<l,

and consider the triple reflection that occurs sequentially from the
itoJ tok mirrors. Let the points of contact on the I, J, K mirrors
be defined by ron-unit vectors p, q, s respectively, from the corner
(origin of the I, j, k triad). Each of the p, q, 5 contains only two
of the base vectors (i, j, K). If the vector product p x ¢ is the
negative of s x ¢, then p and s lie in a plane containing ¢, and the
perpendicular distances from the tips of p and S o the line containing
¢ are equal. That this is true is shown below:

Let ;1 be the unit vector representing the ray after the first
reflection, and magnitude a the length of this reflected ray from the
contact points on the first and second mirrors. Let §2 be the unit
vector representing the ray after the second reflection, and b the

length of this reflected ray between the contact points on the second
and third mirrors. Thun we have two vector equations:

and s = q + br,.

P=q-arn 2

Operate on the p equation by ﬁi from the right, giving, since p
has no 1 component,

d - 21D - ary* (1 - 2I1)

it
-
1]
]
a~1]
h
-3}
.

L]

s

or

P=al(

|}

- 2ii) + ac .
Now operate on the above s equation by §k from the right, obtaining,
since s has no k component,

SR =5=3- (I - 2kk) + be

Since q has no j component, it satisfies

1]

g- (1 -2k = -g- (- 215,

so s =-q- (I - 2II) + be
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Using these new representations of p and 5, one can see that
pXc = - Sxc

Again, one can permute the order of reflections to show generally that
the corner of the reflector, and the points of contact of the first and
last reflection of a given ray all lie in a plane which contains the in-
coming and outgoing rays, and that these points of contact are equidis-
tant from a centerline through the cornmer and parallel to the incoming
ray.

Another feature of the corner reflector easily demonstrated from
the reflection operator is that if the mirrors are plane, but their
normals are not quite orthogonal to each other, then one incoming beam
of parallel light will not be uniformly reflected in the reverse di-
rection. Let these non-orthogonal normals be given by ny, n,, ng and

the corresponding reflection operators be ﬁl’ ﬁz, ﬁs. Now the product
ﬁi‘ ﬁz' ﬁs is not equal to this product with subscript indices permuted,

so one could expect an incoming beam of parallel light to be reflected
in six slightly different directions. Hence, six image portions would
be seen when the mirrors deviate significantly from orthogonality.
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