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I.  INTRODUCTION 

The usual effect of a slight asymmetry, caused, say, by an offset 
center of gravity or a bent fin, is to add a constant moment that rolls 
with the missile to the total aerodynamic moment acting on the missile.1 

The response to this asymmetry moment is a trim angle that also rolls 
with the missile. The magnitude of this trim angle is a function of 
the spin rate: this magnitude grows from its value for zero spin, 6_ , 

to a maximum resonance value, ö^-, reached when the spin rate equals 
IK 

the pitch rate, and then decays to zero as the spin increases further. 

We have already studied the effect of a cubic static moment on 
the motion of a slightly asymmetric missile, using a general quasi- 
linear averaging technique.2 Except under certain special spin condi- 
tions, the effect is to change the frequencies of the transitory modes 
of oscillation and the magnitude of the steady-state trim angle. For 
a dynamically stable missile, the transitory modes damp out and only 
the harmonic response to the asymmetry forcing function remains. 

Recently, however, we have shown that under certain conditions a 
nonharmonic steady-state response is possible.3"1* We call this non- 
harmonic response a generalized subharmonic response because for small 
amplitude motion it occurs at one-third the spin rate. Although the 
theory of Reference 3 predicted two possible nonharmonic motions, we 
have been able to generate only one of these by numerical integration. 
We conjectured that the other motion is unstable and it is the purpose 
of this memorandum report to prove this conjecture. 

1. John D.  Niaolaidee,   "On the Free Flight Motion of a Missile with 
Slight Configurational Asyrmetries, " Ballistic Research Labora- 
tories Report No.   8S8S AD 26405, June 1953; also IAS Preprint 395, 
January 1953. 

2. Charles H. Murphy,   "Nonlinear Motion of a Missile with Slight Con- 
figurational Asymmetries," J.  Spacecraft and Rockets,  Vol.  8, 
March 1971, pp.   259-263; also Ballistic Research Laboratories 
Memorandum Report No.   2036, AD 870704, May 1970. 

3. Charles H. Murphy,   "Generalized Subharmonic Response of a Missile 
with Slight Configurational Asyrmetries," Ballistic Research Lab- 
oratories Report No.   1591, AD 749787, June 1972; also AIAA Paper 
72-972,  September 1972. 

4. Charles H. Murphy,   "Subharmonic Behavior of a Slightly Asymmetric 
Missile," AIAA Journal,  Vol.  11, June 1973, pp.  884-885. 
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II.  NONLINEAR ANALYSIS 

If we limit the nonlinearity under consideration to a cubic static 
moment and neglect any linear Magnus moment contribution, the transverse 
moment expansion assumes the form 

C~ + i C~ = 
m    n K * *   (c0 + c26

2H *\*] q 
CD 

For zero spin and linear static moment (c2 = 0), this moment expansion 

induces a trim angle of 6To . The ratio m of the cubic part of the 

static moment to the linear part for this trim angle is a most impor- 
tant parameter.  It is a measure of both the size of the asymmetry and 
the size of the nonlinearity. By use of this parameter, Ihe nonlinear 
differential equation for the angular motion induced by the aerodynamic 
moment of Equation (1) can be written as3 

S" + (H - i?)V   - Mn [1 + ma (S/Ö-J'K = - MS TO' 
M 

0 TO 
(2) 

Equation (2) and various relations involving its solution can be 
considerably simplified, by a change of the independent variable from 
s to T, where T = (-^Q)^  s.  If we use dots to denote derivatives with 

respect to x,  Equation (2) becomes 

I * $ ~ iP)l  + [1 + ma (6/6T )2]c = ö^e1* 
a v ' Tr TO' (3) 

where ( ) = ( ) (-M^-*5 

The linear angular motion of a slightly asymmetric missile (m = 0) 

(4) 

is described by the usual tricyclic equation1 

TO 

usual tricyclic equation1 

k! e   + k2 e z + k3 e     'M 

Relations for the parameters Cfrj , $2 , kj , k2 , kj, i^)  of Equation 

(4) can be obtained by an averaging process.2 If $  is not near zero 
or unity, these relations take the form:3 

*) l*j p) -1... »,/*„)• 

10 

J ■ 1, 2 (5) 
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*,-l 
ki/ki = ^ = -   [H ^ + '^  -  2 ma k2k3   (sin.)av][2^  -  PI" (6) 

k2/k2 - x2 =      ,-., [Hi    + *2 ♦ m, k^l   (siny)av][2*2 - P]"1       (7) 

¥ ■ 2#1 - #2 - ♦ - ♦ 30 

k3   [1   -   (1   -   Ix/Iy)*2   + BftC2k?   +   2k2   +  k23^ 

cos*      - m k2k (cosl') 
30        a i 2 av 

k3H$ - sin*go + mak2k2(sin*) av 

where 

6    Aro k^ +  2k| * 2k2 + 2k2k3(cos1')av 

=  k*   +   2k2   +   2k|   ♦  k2k3k2l   CcOif)^ 

(8) 

(9) 

(10) 

in Reference 3 we showed that "onharmonic
H

S^^r^f ^ese^solu! 
can exist when « is constant.    The precise conditions for these solu 

tions are: 
(Ha) ^ = 0 

ä A 

Xj = x2 = o (lib) 

The values of (k,, k2. k3. *30. V associated with a steady-state 

solution will be identified by bar superscripts. Conditions CU) 
g?ve a simple relation between kj and k, and a more involved relation 

between f and H : 

11 
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k2 = 2b k2 
1       2 

(12) 

sin* = H^ (2inak2k3) 
-l 

(13) 

where 

b = - t2/k1  = 1 

Equations (9, 10, 11a, 12, 13) constitute five equations for the five 
unknown parameters (i^, k2J kg. *30. f)• For the algebraically simpler 

case where I /I << 1, a concise form of these equations is given in 
Table 1 .  x y 

TABLE 1.  CONDITIONS FOR STEADY-STATE 
NONHARMONIC SOLUTION WHEN 

I /I  «1 
x y 

k2 = 2b k2 
1       2 

sim» = H({»[2(2 + b)m k k ]' 
ft 2> 9 

(Tl:l) 

(Tl:2) 

1 + m [2(b + l)k| + 2k2 + 2k k cos*] = [^/(2 + b)]     (Tl:3) 

3-|l - j-2 + ma[2(2b + l)k
2 + k2]\= cosi30 - 2mabk3 cos^ (Tl:4) 

8inian = - HHH + (b/2+b)k2]k:1 
30 2J"3 

■:-{ I   v mj2(l-+nlcf + 2k2 + 2k/,kQcosmJs 

2   3 

(Tl:5) 

(Tl:6) 

-Tl + m    [(4b +  1)^ + 2k2 + 2bk0k cosV])-^        (Tl:7) 
lä 2 3 2   9 1 

b =  - h 
(Tl:8) 

12 
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The relations in this table can be solved by an iterative process 
for a given m , $ and H, provided that * and fi satisfy certain restric- 

tions. Equation (Tl:3) requires 4) > 3 (that is, the spinmust exceed 
three times the resonance spin) when m is positive and $ < 3 when m 

is negative. Equation (Tl:2) imposes an upper bound on H: this bound 
is shown in Figure 1 for m = ± 0.2 . 

For each H less than this upper bound, the relations in Table 1 
yield two solutions, identified in Figures 2-5 by solid and dashed 
lines. Figures 2 and 3 are plots of C2 and £3, respectively, versus 

spin for zero H and various m values. Figures 4 and 5 are plots of 
_     _ a - 
^30 and 4», respectively, versus H for ma = 0.2 and various spins. 

The solutions identified by dashed lines in Figures 2-5 are the 
ones that have not been obtained by direct numerical integration and 
the ones that we want to show are unstable. 

III. SOLUTION FOR k3 = 0 

As we can see from Figure 3, k3 passes through zero for one set of 

solutions. The nature of the solution_is different above and below the 
critical value of ^, say * , at which ic = 0 . Thus it is of some 

c ^ , 
interest to derive a set of equations for determining i for a given 
m . 

From Equations (Tl:2) and (Tl:5), we have 

sm d Mi  ■ 2mok,lb k* + (2+b)k2 J sini 
'30 a 2 

(14) 

When k = 0, Equations (14) and (Tl:4) reduce to 

sin$30 = - (2mabk3)sin* (15) 

Thus we must have 

COS<{l 
30 

(2m bichcos* *•    a    2' 

2m b k3 = ± 1  ,      k    = 0 
a      ^ 3 

13 

(16) 

(17) 
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Next, we note that for lc3 = 0, Equations  (V1:6-T1:8)  reduce to 

^2 = 1 +   (4b + l)m E2 

2 a 2 

1 +   (4b + l)in ic2 

b2 = : —ä^- 
1 + 2(b + l)mQk2 

(18) 

(19) 

(20) 

Solving Equation (20) for ra k2 , we have 

m k2 
a 2 

b2 - 1 

where 

D = D(b) = 1 + 4b - 2b2(l + b) 

Substituting Equation (21) in Equation (17), we obtain 

4b2 (b2 - 1) 
ra =  * — 
a      n3 

(21) 

(22) 

(23) 

For zero k and any m , we can solve Equation (23) for b, then use 
3       a 

Equations (18) and (21) to obtain the critical value of <fi : 

*c - (2 * b)^ 

. (2 + b) Ti + 
2^cb2-i)j^    (24) 

Critical values for a range of m are listed in Table 2 (the approxima- 
3. 

tion column is discussed in the next section).  Note that - 1/27 is the 
minimum m for which t will go to zero.  As m increases, b approaches 

bM = 1.14, the only positive root of the cubic equation 

D = 0 (25) 

It can be shown that whether or not k is zero, k. is an upper bound on 
b . 

14 
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; 

m 

TABLE  2.     CRITICAL  SPIN VALUES   (£    -  0) 

b(Eq.   23) k2 *c(Eq.   24) 

APPROX 
*cCEq.   43) 

1/27 0.5 3. 0. 0.775 

.03 0.65505 2.94120 0.99684 1.082 

.01 0.86737 3.86298 1.90778 1.890 

.001 0.95931 8.04768 2.55635 2.546 

0 1 00 3. 3. 

.001 1.02570 7.87014 3.38411 3.394 

.01 1.04567 3.62960 3.77834 3.799 

.1 1.07143 1.67110 4.51085 4.549 

.2 1.07944 1.32306 4.82601 4.872 

.5 1.08962 0.97180 5.32761 5.385 

1.0 1.09679 0.76963 5.78028 5.848 

2.0 1.10333 0.60965 6.30441 6.383 

• • • • 

1.13973 

Finally, we note that when kg = 0, Equations   CT1:2) and  (Tl:4) 

imply that 
H = 0 

and Equations   (15-17)   imply that 

Ä      +? = ii,m    <0 v30 '    a 

2ir, nia > 0 

(26) 

(27) 

15 
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IV.  APPROXIMATE RELATIONS 

As can be seen from Figures 2 and 3, ¥3 terms can usually be 

neglected in comparison with k2 terms, at least when * is greater than 

and not too close to 3. When k, is neglected, b is given^by Equation 

(20). We see from this equation that for a given m^,  as k2 goes to 

zero, b approaches unity and as k2 increases, b approaches the positive 

root of Equation (25), namely bM = 1.14. Thus a good first approxima- 

tion for b is 1. 

From Fquations (8) and (11a) we have 

S - 2~TT , ♦. 
b* 

2 + b 
(28) 

Hence for b = 1, our first approximation of the frequencies is 

L = 
. | (29) 

Then from Equations (18-19, 29), we have 

*2 = 1 + 4«ak| = |i 

$2 = i + 5mak2 = |- 

Equations (30) and (31) yield two possible approximations: 

a 2 36 45 

(30) 

(31) 

The average gives an excellent first approximation for k2: 

m ^2 = iljLi (32) 
raaK2 40 

Substituting this result  in Equations   (30-31) we have the improved 
frequency approximations: 

16 
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^2  = ÜAi. 
1 10 

(33) 

♦S ' 8 
(34) 

from which we can obtain an improved approximation for b; 

~  5 

» 1  +      j>2 - 9    =    9^ - 1 
" 8(^ + 1)      WtP + 1) 

(35) 

Simple approximations for 63.  $3,, and * can now be obtained. 

First, we neglect Ic| in Equations  (Tl:4) and (14)  so that they become, 

respectively. 

2m bk| cosV - cos^30 

h ~= p*- 1 -  2(2b+l)mak2 
(36) 

and 

sin<J) 
30 

- 2m bic-* sinV 
a   2 

(37) 

I« \'h fjC^ainlf 

where 

f^*) = 2b(mak2)lmak2 
(38) 

with b and m k| given by Equations (35) and (32). Next, we substitute 

the approximation (36) for £3 in Equation (Tl:2) to obtain, with the 

help of Equation (37): 

17 
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ficj, [*2 - 1 - 2 (2b + l)Ba^] 

2 (2 + b)m k v     a 2 
•( 

2m bk| cos¥ - cos|30 j sin'i' 

I - sinJ„„ cosf - cos$  sin? r30 30 

sin($30 + «0 

or 

where 

HA = 

H = - HA sinC^ + ?) 

2 (2 + b)maR2 

(39) 

4,p - 1 - 2(2b + Dm^J 
(40) 

m f„(*) a 2VT^ 

m 1 a1 

2(2 + b)lm k^l 

2l9J " ^2 - 1 - 2(2b + l)mak2j 

(41) 

and where b and mak
2 are again given by Equations (35) and (32). Thus 

the elaborate damping curves of Figures 4 and 5 would be transformed 
into a family of near sine waves if H were plotted against ^ + ^ • 

Note that ft. has the sign of in . Hence approximation (39) 

predicts that when H is at its maximum value H^ (= |HAl)i then 

,|"1 
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+ | s/ir/2, ma < 0 
,0 hir/2, ma > 0 

(42) 

We will test the adequacy of this prediction in the next section. 

The process of approximation can be summarized as follows.    For a 
given m , ^ and H: 

cL 

1. compute b and m k2  ,  Equations   (35) and (32); 
a 2 

2. compute f ,  f , HA    and ^ + *30   ,  Equations  (38),   (41),  (40) 

and  (39); 

3. from f   and ¥ + $,„  , compute $      and ¥ , Equation  (37); 
^ 30 3U 

4. compute k , Equation  (36). 

An approximation for the critical spin ^c can also be easily 

obtained.    Using Equation  (32)  and setting b = 1, we can write 
Equation (17)  as: 

\3 

m 

or 

a \    40 

^2 = 9 + 40 rc 
(43) 

Critical spin values computed from Equation  (43) are given in the final 
column of Table 2.    Note that although Equation (43)  can be applied to 
m    > . 4(9/40)3 = -  ,046,  the approximation is poor below ma = -  .03. 
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V. EXACT SOLUTION 

In Figure 6, exact solutions of Equations (Tl:l-5) are given in 
the form of S  versus $ plots for m = ± 0.2 and various values of $ 

30       r       a 

Note the two families of curves for m = 0.2 For spins between 

3 and the critical value of 4.826, * grows from 0 to ir while <t>30 grows 

from ir to (> )   < 3IT/2 and then decreases back to ir . The value of 
30- MAX 

(^ )   can be estimated by setting * = Tr/2 in Equation (37), For 
30 MAX 

spins greater than the critical value, $  grows from TT to 2IT while 

? grows from 0 to (ii')MAX < tr/2 and then decreases back to 0 . The 

value of (V)MAY can be estimated by setting |30 = 3Tr/2 in Equation (37) 

For m = - 0.2 , there is only one family since no critical spin 

value exists. The equations of Table 1 lose their validity as we 
approach resonance (^ = 1); hence, curves for spin values less than 2 

are not shown. 

When H = 0 (and k ^0), Equations (Tl:2) and (Tl:5) reduce to 

sinY = sin^  = 0 (44) 

For any value of 4) and ra , the particular values of (f, <|) ) for the 

two possible zero-damping solutions are given in Table 3 . 

m 

neg 

neg 

pos 

pos 

* - 4> 

neg 

pos 

neg 

pos 

RO DAMPING POINTS 

H = 0 
Unstable Stable 

("TT, 2ir) (-ir, ir) 

( o. *) (-ir, ir) 

( o, ir) ( ir, ir) 

( o. T) ( 0, 2ir) 
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The labeling of the points as stable or unstable is at this point in 
the report only a supposition.  In Figure 6, of course, only the last 
three pairs in Table 3 occur. 

As we move from (0, v)  along any curve 4> = constant in Figure 6, 
H increases until it reaches its maximum value approximately at the 
intersection of that curve with the line LA: 

LA : *30 + 

_  fv/2,  ma < 0 

* "^STT/Z, ma > 0 
(45) 

That is (as we noted in the previous section), line LA approximates 
the maximum damping locus 

H = "MAX 
(46) 

which is our conjectured stability/instability boundary. To see just 
how well L. approximates LH, we computed the exact values of 

U H (♦30 + f)fi 
"MA) 

(47) 

for a variety of $ and m   values, 

U - 3ir/2 versus ^ for m   = 0.2 and 0.5 

positive m    , this difference is very nearly proportional to /ma 

Figure 7 plots the difference 

It was found that for 

U - STT/Z S VS" F(*) > 0 (48) 

Note from Figure 7 that the approxiaation LA ■ LH worsens as we 

approach i = 3; this is because our assumptions in deriving approxima- 
tion (39) (in particular, that k3 could be neglected in several equa- 

tions) are inadequate near * = 3 .    However, for « greater than, say, 
five. L   is an excellent approximation to our conjectured boundary. 

A 
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VI. STABILITY ANALYSIS 

In order to determine the stability of a nonharmonic steady-state 
motion identified by the parameters (t^, \,  kg, *30. *J. we must con- 

sider the behavior of motions near such a limit motion. Therefore we 
mist derive thldlfferential equations for small perturbation functions 

n.(T) defined by the equations 

kl = kl + nl 
(49) 

k = k + n^ 
2    2    2 

(50) 

k = k + n 
3   3   3 

(51) 

T30   *30   •♦ 
(52) 

H" = v + n (53) 

If Equations (49-53) are substituted in Equation (5), the 
frequency *. (j = 1, 2) can be expressed as the sum of the frequency 

L for the limit motion (fcj. t,. £3. !„ . ») »nd a linear function 

e. of the perturbation variables 

i. » 4. + e.   j = 1» 2 
J   3   J 

(54) 

where the e. = c.in^  ry n^ n^ are given in Table 4 for Ix/Iy « 1 

Differential equations for n^ n^  and n, can now be obtained by 

substituting Equations (.49-53) in Equations (6-8); these too are given 

in Table 4  . 
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TABLE 4.     PERTURBATION EQUATIONS FOR I /I    « 1 x    y 

c   ■  (ina/<t> + (2k   + k   cos^n^ 
2 3 2 4 )i S 15 

1L 1'      " i 
+ (2k    + k cos^n, -  (£ I tittl)n 

3 2 3 2   3 oj 

e2 =  (ma/*2) [ (20)^  (2k2 ♦ i^cos*)^ 

+  (k    - bk cos*)ri 

(T4:l) 

(T4:2) 
3        '2 

3 2 
+ (2k    + bic cos^n    -  (bic ic sin*)n 

3 •►   3 

\ - - [s/2*]r ei+ hi 
2m [(k n    + k njsin* + k k 

a^    3   2 2   3 

[' 

n cos*l 

(T4:3) 

V2y H %+ e2 
+ 2ma[(2b)Js k3n1 - bk3n2 ♦ bk^jsin* 

+ 2m bk0k n cos* 

(T4:4) 

n   = 
3 

2,na[(2iS  +  ^g008*^!11!  +   C2fi3   + bS
2

COsip^2n2j 

H n3 + [*2 - 1 - n.a (2^ ♦ 2*5 ♦ 3k2
8)]n8 

E3 \  = 

+ 2k ^   -  Csini n)nu + (2m bk3sini)n 
3     if 30      H »     * » 

A 

2in k^inV (k1T)1 + bk2n2) - *{2n% 
+ ^3) 

- H Kht   - Ccosijnu - (2in bkW)n5 
3 "t 30''  u       l     a    2 

%  S   2£1   -  e2   -  \ 

(T4:5) 

(T4:6) 

(T4:7) 
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m 

The differential equations fpr n3 and n^. however, must be obtained 

from Equation (3).  In our previous use of Equation (3). the phase and 
amplitude of the one- and two-modes were allowed to be functions of the 
independent variable in the assumed quasi-linear solution. Equation 
(4), but k and (J)  were required to be constant. 

In order to derive the proper equation» for n3 and T^ , our assumed 

quasi-linear solution. Equation (4), must be enlarged to includeJ:hese 
variables: 

E = 6 TO ly*1 
i*. 

+ k2e C*3 + n3)e 
K* ♦ +30 + Vl 

(55) 

Equation (55) is now substituted in Equation (3); the result is divided 
by exp i($ + f 0 + n^) and averaged over a distance that is large com- 

pared to the various wavelengths invplved.2 The real and imaginary 
parts of the resulting equations are the differential equations m n3 
and n given in Table 4 . 

The usual procedure for stability analyses is to assume solutions 
to the perturbation equations of the form 

nj = nJ0 * 
XT j » 1. 2...N (56) 

where N, the number of parameters, is in our case five. Equation (56) 
is then substituted in the N perturbation equations; the result is a 
system of N homogeneous linear equations in the rijo's. with coefficients 

involving X . Let DET be the N-th order determinant of this system. 
If M is the sum of the orders of the N perturbation equations (M = 7 
for the equations of Table 4), the equation DET » 0 yields an M-th 
order polynomial equation in X, the characteristic equation of the 
system: 

a„X + a X   * •. 
o    i 

+ a  X ♦ a^ » 0 
M-i    M 

(57) 

be the roots where the a 's are assumed real. Let r^ r2 ... rM 
of this equation. Then the system represented by Equation (57) is 

1. stable if the real parts of the M roots are all negative: 

R{rk} < 0, k « 1, 2, . . . M 

24 
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2. critically stable if (57) has one or more non-repeated pure 
imaginary roots (including the root 0 i), but the remaining roots have 

negative real parts; 

3. unstable if (57) has either 

a. one or more roots with positive real part 

or 

b. repeated pure imaginary roots. 

Note from 2 and 3 above that if the characteristic equation (57) has 
one zero root, the system will be either critically stable or un- 
stable, but if (57) has more than one zero root, the system can only 

be unstable. 

It is not necessary to evaluate the roots to test for stability: 
most stability tests are made directly on the coefficients ai . For 

zero damping (see the next section), fairly elementary tests suffice; 
for nonzero damping (see the final section), we will require the more 
sophisticated Routh-Hurwitz stability criterion. 

VII.  STABILITY FOR ZERO DAMPING 

Numerical integrations of Equation (3) led us to suspect that 
the zero-damping point (0. TT) in Figure 6 and Table 3 represents un- 
stable solutions. To prove this, we set H = 0 (and hence sin*30 = 
sin^P = 0) in the perturbation equations of Table 4 and make 
the simplifying assumptions listed in Table 5. The resulting approx- 
imate perturbation equations (T5:l-7) are also listed m Table 5. 

Substituting the assumed solution (56) in Equations (15:1-7), we 
obtain the characteristic equation: 

X7 + a2X
5 + a^X3 + a6X = 0 

(59) 

When a*. a4 and a6 have been simplified (by the same assumptions made 
in Table 5 and by the use of Equation  (Tl:4)  with b » 1. K* ■ 0), w« 
obtain: 

a2  = 2(1 + $2 + 6mak2) 

ait =  (1 - *2 + 6mak2)2  + 72(mak2)2 

- 117ma
2k3 j^(1 + 34,2;)^ + cos$30Jcos*/$2 

a6 = 9ma
2^Tl3Ü2 - 1)   - 60mak2] cos^cos?/*2 
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where 

TABLE  5      APPROXIMATE PERTURBATION EQUATIONS 
FOR I /I    «  1 AND fi =  0 

x   y 

ASSUMPTIONS: 

b      =    1 

k, << max (1, k ) 
3 2 

k.e. « n.       j » 1. 2 

♦   - - i2 • */3 

+ 2 n2 +  (cos^rig 

EQUATIONS; 

e1  =   (3mak2/*)[/2 n, 

(3ma^2/*) [2/2 Hj + T,2 +   (cosrjngj 

] 
e2   = 

n    = /2 (Smt^k cosV/*)n a 2 3 

n    = (3m k2k cos'i'/4.)nc 2 a  2   3 5 

n    = - 2m k^cosYC^ n. + n ) 3 a 2 *        ^ 

+ (i* - 1 - 6mak2)Ti3 t 2^^^ 

£3\ = - 2^3 "  twt*tK?\ ' ^a^005^^ 

(T5:l) 

(TS:2) 

(T5:3) 

(T5:4) 

fl    =  (3m k /♦) 
5 d  2 

14^" Ti    + 5 n    +   (3cos;F)ri3    - \ 

(T5:5) 

(T5:6) 

(T5:7) 

cos^      = ± 1 
30 

COSH»        -   ±  I 
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or, using Approximation  (32) and assuming * > 2.5, 

(60a) 
a2 3   (23/10)^ 

a^ S   (17/20)%lt 
(60b) 

=   (207/80) a2  - 9)mak2cos*3ocos^ (60c) 

we obtain the sixth order equation 

(X2)    ♦ a2(X2)    ♦ a^X2) ♦ a6 
(61) 

The three roots («j, s2, s3) 

six roots of Equation (59): 

X = 0, ± v^7 , ± »^ , 

of this cubic in X2 yield the remaining 

± vs 

For critical stability,  s,, ., and s, m.t be real, negative and 

unequal: 

imaginaries; otherwise +v,si or -/s.  wouia 
component; 

2.    unequal because repeated pure imaginary roots indicate 

instability. 
• ' *v,oi- »      sn and s, be real and unequal  is satis- The requirement that sl, s2 ana ^3 "       noaatAve. 

fied if the discriminant of Equation (61)  is negative. 

(62) 
Q3 + R2 < 0 

where 3% " a
2 

Q = —r~ 
9a a    - 27a    - 2a3 

2   U 5 £- 
54 
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Substituting our approximations for a , a and a , we have 

Q = - 

R = 

1249 
3600 

^ = - 0.3474.1+ 

37513 
216000 

(J6 = - 0.174*6 

Hence Inequality (62) is always satisfied: 

Q3 + R2 S - 0.0116(t12 < 0 

and the three roots are rea3 and unequal. 

To determine when the three roots are negative, we use the Descartes 
Rule of Signs: the number of positive real roots of the cubic (61) is 
equal to (or two less than) the number of sign changes in the sequence 
1, a , a , a . Since a2 and a^ are positive, there will be no sign 

changes and hence no positive real roots if and only if 

a > 0 
6 

(63) 

Since we have already shown that all three roots are real. Inequality 
(63) is the condition for three negative roots. 

To summarize: for zero damping, critical stability requires that 
Sp s2 and s3 be real, negative and unequal; the three roots are always 

real and unequal; they are negative if and only if condition (63) holds. 

Now consider our expression for a , Equation (60c). Since ((|>2 - 9)ma 

is always positive and since cosi  = ±1, cos1? ■ ±1 for zero damping, 

condition (63) reduces to 

COS^QCOSH' (64) 

That is, for zero damping, our system is critically stable when (64) 
holds and is unstable when the product of the cosines is -1. 

This proves our conjecture on the instability of the point (0, f) 
and justifies the labeling of the other points in Table 3 as stable or 
unstable. We can now turn to the stability analysis for nonzero 
damping with some confidence in our approach. 

28 
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VIII.  STABILITY FOR NONZERO DAMPING 

For nonzero damping, the assumed solutions (56) were substituted 
in the perturbation equations of Table 4. None of the assumptions 
and approximations that simplified our zero-damping analysis were 
applied to the nonzero-damping equations. As a result, the coeffi- 
cients of the seventh-order characteristic equation: 

X7 + ^6 + a^S + a^  + a^3 + a5X2 + a6X + a7 = 0  (65) 

were truly horrendous functions of mft. I  and H (none of them vanishing 

everywhere as did a^ a3 and a5 for zero damping). The opportunities 

for elementary algebraic blunders were many and we seemed to miss few 
of these opportunities. However, by a series of independent checks 
and double-checks we obtained what we managed to convince ourselves 
was an error-free set of expressions for the a^s. To test these co- 

efficients for stability, we used the Routh-Hurwitz criterion given in 

Table 6. 

TABLE 6.  ROUTH-HURWITZ STABILITY CRITERION 

The real parts of the M roots of the equation 

a/* a/'1*  ..• - VlX + aM=0 

will all be negative if and only if 

T. > 0 i = 0, 1, 2,. • M 

where 

(T6:l) 

(T6:2) 

(T6:3) 

(T6:4) 

and T  n * 2, is the n-th order determinant of the upper left 
n 

nxn elements of the array 

0 0 
1 

a. 

a. 

0 

0 

(T6:5) 
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V     - Our complete procedure was as follows. For a given m and ^ 
cl 

1. We assigned a value to any one of the trio H, Jj)^, * and 

solved (by an iterative process) the equations of Table 1 for the re- 
maining parameters. That is, we obtained a solution point 

for a specified m and $ and a specified or determined H.  (The option 

to evaluate results at a specified ^ or f, rather than at a specified 

H, proved useful: in certain regions of the ?, ^30 plane, the con- 

vergence of the iterative process was improved by fixing one or the 
other of the two angles.) 

2. At point Ä we evaluated the coefficients a^^ of the character- 

istic equation (65) formed from the perturbation equations of Table 4. 

3. Finally, we evaluated the Routh-Hurwitz determinants of 
Table 6 to test point Ä for stability. 

The above process was incorporated into a single computer program 
and applied to hundreds of input values so that we could map out the 
stability regions in the solution plane and define the stability/in- 
stability boundary numerically. 

For a given m and $ and for any H less than H^, two solutions 

were obtained: one stable and one unstable.  In every case, the 
boundary occurred (within the accuracy of the computations) at a point 
where H = HMAX . This was precisely our conjecture. 
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Figure 7.    (U - 270°) versus * (ma = 0.2, 0.5) 
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