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CHAPTER 1

THE FILTER CONCEPT OF SIMULATION EXPERIMENTS

Introduction

Research conducted under contract to the United States Army Missile
Command (MICOM) by The Ohio State University Systemes Research Group has
led to the development of DYNCOM, a high-resolution model of land combat
capable of evaluating the performance of tactical units employing ad-
vanced missile systems. This report describes the results of research
to develop methodology for applying DYNCOM in a more rapid manner and
for reducing computer usage costs. The objective of thls research is to
develop & dynamic simulation filter which can screen candidates, iden-
tifying weaker alternatives, with much less cost than operating the full-
scale DYNCOM simulation.

Use of Filter Models

A study of weapon design characteristics and their relationships
with tactical-unit combat effectiveness often requiries the evaluation
of many weapon system design alternatives and force mixes. Moreover,
to adequately determine the relationships between individual weapon
performance as constrained by the battlefield environment and tactical
unit performance, a high-resolution simulation such as DYNCOM often 1is
needed. This high resolution model, however, can be costly to apply if
a large number of alternatives are being considered. Current simulation
costs for DYNCOM are running up to $200 for a single full-length battle
involving armored weapons, artillery, helicopters, and air defense weapons.
To reduce the cost, lower resolution filter models and subjective analyses
have been used in the past to filter candidate weapons and force mixes.
An example is provided by the use in the TATAWS study of a simplified
deterministic simulation called FILTER (Booz-Allen Applied Research,
1967) to screen candidate weapons and weapon mixes to reduce the work
load on the more detailed IUA simulation (USACDC, 1968). However, the
lack of homogeneity between filter and simulation results in the TATAWS
study created severe problems in implementing this concept. That is,
candidates that fared poorly in the FILTER model could do well in the
IUA simulation. Moreover, this homogenity problem is always a potential
problem when using a separate low-resolution filter model to screen can-
didates for a more detailed simulation.

The research presented in this report proposes that portions of

' DYNCOM itself serve as a dynamic filter when required in the context

of the military problem being studied. These procedures will be similar
to physical experimental design in that DYNCOM will be used to generate
an enviromment for comparison among the alternatives belng considered.
This environment can be used as the starting point for further simula-
tion experiments on each alternative. The agricultural experimenter



who tests the productivity of different seed types by planting groups
consisting of each type of seed at different points in a field is using
a similar concept in physical experimentation. Each group of seeds has
& similar environment, and the results from each group are correlated
so that contrasts between the seed productivities are heightened. Each
group is called a block in the language of experimental design.

Use of DYNCOM both as a fast operating filter model and as a model
for a full-scale battle assures a greater degree of homogeneity between
filter and simulation, and the ability to construct this filter model
from the DYNCOM program tekes advantage of the flexibility already
inherent in the DYNCOM program. The following example illustrates the
concepts described above.

Assume that a study is being conducted to evaluate the combat
effectiveness of the MAW class of weapons versus the IAW and HAW classes
of weapons. Further, assume that the first problem 1n the study is to
determine the best MAW weapon, where various MAW systems have differing
accuracy, lethality, and rate of fire characteristics. To start, the
procedure would specify that one complete simulation of DYNCOM be made.
Simulation check points would be established to determine the portion of
the battle during which the different MAW candidates would be firing. A
dynamic filter would thus be determined for studying the different MAW
weapons by identifying the first event that a MAW weapon would be firing.
Inputs to the Filter Model would be dynamic in that they would be deter-
mined from the complete simulation using DYNCOM's restart capability.
One set of inputs would establish a block using the physical experimental
design terminology. Replications by the dynamic filter would be made
with filter inputs being modified as required, until results with the
required statistical precision are obtained. Several replications in a
single block may be made for each system alternative by changing the
random number sequence. Moreover, identical random number sequences
may be used for each replication in a given block to increase the corre-
laticn among results.

Review of Relevant Literature

Application of these concepts to a high resolution combat simulation
has not been reported in the available literature. However, Fishman
(1973) and Emshoff and Sisson (1970) suggest that these concepts may be
profitably applied to increase the efficiency of simulation experiments.
Neither authors offer any examples which show that actual simulation
experiments may benefit from these precedures.

An experimental model which could be used to analyze results from
blocked experiments is called the Two-Way Mixed Model (Winer, 1971;
Graybill, 1961; Hicks, 1964; Scheffe, 1959; and Hocking, 1973). In
this model two factors are present and many levels or possible values
may exist for each factor. In this application, one factor is the combat

L o
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system being analyzed and each particular system is a different level
for the combat system factor. This factor is regarded as being fixed
or deterministic because the different systems are predetermined and
not randomly selected. The block enviromment is the other factor and
it is regarded as being random because a very large number of possible
block environments exists and each one is randomly selected from this
population. Usually the assumptions are made that

1. all random effects are independent,

2. &all variances are constant with respect to the system being
represented, and

3. all systems have the same number of replications per block.

Scheffe (1959) and Hocking (1973) present Two-Way Mixed Models with
correlations among random effects; however, the correlations proposed by
thelr models assume homogenous variances for each system and the
covariances among the replications within a block are assumed to be zero.
Since aate from DYNCOM suggest heterogeneous variances for each system
and the experimental procedure may introduce correlations among the
replications, a filter model incorporating correlations will have to be
a different model than that developed by Scheffe and Hocking.

Research Required for the Filter Model

As noted in the literature review, application of the concepis of
blocked experiments to simulation experiments has not been performed.
Moreover, the nature of the combat process simulated by DYNCOM indicates
that available Two-Factor Mixed Models may be inadequate for representing
DYNCOM results. Accordingly research 1s required to formulate a model
explicitly designed to represent DYNCOM results, and an algorithm is
required for determining the least-cost test plan using this model. Then
this model and other currently available models need to be tested with
DYNCOM results to determine their validity. That is, the estimates of
the mean and variance of system performance must be homogeneous when
estimated by independent full-length DYNCOM runs and blocked filter runs.

In addition, blocked data from DYNCOM need to be analyzed to
determine whether the Filter Model actually estimates systems performance
more economically than independent full-length DYNCOM replications. Two
types of comparisons need to be made, i.e., the Filter Model needs to
be compared with independent full-length replications with respect to
their efficiency in estimating mean system performance and with respect
to their efficiency in estimating differences in mean performance between
unlike systems. The process of filtering requires comparisons to be
made between different systems so the difference in average performance
between two systems 1s important. Finally, the ability of the Filter
Model to screen candidates with small samples or modest computer expense
1s required to be tested to indicate the utility of the filter concept.

3



Organization of the Report

An overview of the three Filter Models hypothesized for use with
DYNCOM 1is presented in Chapter 2, In addition, estimators for model
paramelers are presented in Chapter 2, Chapter 3 presents the analysis
of DYNCOM results; a valid Filter Model is identified in the chapter,
and the economies accuring from use of the Filter Model are estimated.
Chapter 4 presents a summary of the research results and the principal

conclusions,

Detailed mathematical derivations are presented in the appendixes.
Appendix A presents the Filter Model explicitly designed to include
correlations and heterogeneous variances expected to occur with DYNCOM.
Estimators for the model parameters are derived in Appendix A. The
least-cost experimental design algorithm is developed in Appendix B.
Appendix C presents a derivation of estimators for a version of the
Filter Model incorporating independent effects and heterogeneous variances.
A derivation of estimators for another Filter Model version having in-
dependent effects and homogeneous variances is presented in Appendix D.
Appendix E presents instructions for using the Filter program to estimate
model parameters and calculate least-cost test plans.

&
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CHAPTER 2

FILTER MODELS

Introduction

As described in Chapter 1, the basic purpose of the Filter Model is
to screen alternative systems to eliminate less desirable systems using
replications of hamogeneous combat environments called block environments,
In this chapter, several models of test results under conditions of block-
ing are described for consideration as the Filter Model, These models
are used to predict the variance of mean system performance estimates
vhen experiments are blocked, Moreover, an important consideration is
the variance of the difference between two system performance estimates
since the basic purpose of the Filter Model 1s to make comparisons among
systems, In addition, the characteristics of estimators for model param-
eters required to implement the Filter Models are presented, Given
parameter estimates, an algorithm specifying the least-cost test plan to
reduce the varisnce of the mean system performance estimator below a
specifled upper limit is presented,

In order to more clearly present the concepts inherent in the dif-
ferent Filter Models, a numerical example is presented in the following
section, After this example, the Filter Models are presented and com-
pared by reference to the example,

Example of Experimenting with Blocks

Consider a combat simulation which is being used to compare the per-
formance of armored battalions with different antl-tank weapons having
dissimilar accuracy, lethality, and rate of fire characteristics, These
gystems are noted as System 1 and System 2, Of course, the .nti-tank
weapons in question are only one of several weapons in the armored
battallons, The system analyst is interested in estimating performance
measures in comparing these systems, and one of these performance mea-
sures 18 expected enemy casualties during a particular engagement,

In the simulation experimentation procesa, blocks are generated by
simulating the initial part of the engagement until one of the two systems
being compared can be employed and then generating a restart data set.
This data set specifies the complete battle situation as known to the
simulation, and the data set implies a block envirorment, The block
environment consists of the state of each combatant as indicated by the
following status variables:

1. casualty status; i,e,, mobility kill, fire power
kill, complete kill, or no kill;
2, enemy weapons detected;
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3. position;

L, velocity;

5. ammunition supply;

6, fire support missions requested;

T. neutralization or suppression state; and
8. current target, etc,

Blocks uare replicated by simulating the remainder of the battle until
its conclusion for each system alternative and then repeating this pro-
cess with a new string of randam numbers starting with the same block
enviromment,

Two options exist for performing the replications. One option con-
sists of using a unique sequence of random numbers for each system and
each replication, Another option introduces more correlation among
results by using the same sequence for each alternative for a given
replication, This method applies the simulation variance reduction
concept of introducing positive correlation to reduce the variance of
the difference between pairs of mean estimates (Emshoff and Sisson,
1970; Fishman, 1973). The latter method of using the same sequence of
random numbers for each alternative is recommended,

Continuing with our example, assume that two blocks are generated,
and each alternative is replicated five times in each block for a total
of twenty replications or experimental results, Let

xidk = enemy casualties inflicted by the blue battalion
during replication k for system J of block i,

In our exsmple, k= 1,25000,5;
J=1,2; and
i=1,2,

The meeasure of system 1 performance would be the average_of all observa-
tions; i,e,, values of X1 jks obtained on system 1. Let X.,3. be this

average, then

S 1205
Xe16e =52 X X Xk o
10 4.1 k1
Throughout this report, average values will be noted by the symbol X with
dots in place of the subscripts averaged out, In this example, assume
that the enemy force has at most fifty combatant weapon systems so no
velue of Xjix can be greater than fifty, Also using the data displayed
in Teble 2.1,
i.]_. = 15.6

i.z. = 18.2 °
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Table 2,1
Red Casuslty Data
Repl Rep2 Rep 3 Rep 4 Rep5
Block 1
System 1 15 16 17 18 15
System 2 18 20 20 17 18
Block 2
System 1 18 17 16 18 6
System 2 18 23 17 21 10

The above system performance averages are estimates of the true, but un-
known, expected number of red casualties for the two systems, Let

Ry
Re

n

expected number of red casualties for system 1
expected number of red casualties for system 2,

If we let p be the average value of R, and Ro or

IJ-='21'(RI+R2) »

then_ju is the overall average system performance, The average of i.;,.
and X,>, is an estimator of u; i.e.,

% (f.]_. + ‘i.ao) = 16.9 = iooo

is an estimate of pu. Let A; be the main effect due to system 1, and Ao
be the analogue of A; for system 2, These values are determined by

AL =Ry -4 and
Ao =R -pHo,

Note that A; + Ao = O since

Ay +A2=R -p+Re-u=R +Ra-2u=0,



A180 X,1. = Xeeo = -1,3 18 an estimate of A, and X.»e - Xeoo = 1.3 i8
the corresponding estimate of A, The parameters n, Ay, and A> will
be in each Filter Model,

The values mentioned above account for differences among systems,
but overlook the differences from block to block, For example, the
block 1 average performance over all system replications is

fl.. = 17.’"’, a.rld.
iz.. = 16.,+

is the block 2 average performance, The above quantities are used to
estimate the true block main effects, where

By = true block main effect, and

]

1

B> = analogue of B; for block 2,

The block 1 expected average performance is By + n, and, similarly Bs is
the block 2 expected deviation from the overall true mean performance .,
Thus, a very large number of replications of the block 1 environment
over both systems would tend to give values of X;.. close to By + p with

probabilities approaching one., Also, note that B; + B> does not necessar-
11y equal zero, since the block main effects result from random selection
of particular block environments from the set of all possible block en-
vironments, This is true although the estimators of By and B> sum to zero.

In addition to the block and system effects, an interaction is likely

to exist between them. Interaction is particularly likely in combat
systems since casualties tend to lead to more casualties, because the
force is weakened, until finally no more casualties can occur because
the enemy force breaks off the engagement or becomes annihilated., The
estimators of these interaction effects are

(Ryge - Foor) = (Foge = Terd) = (oo = Burd) = Kypo - Toge - Kow + Ko

'j.

for 1 = 1,2 and J = 1,2, That is, the interaction effects estimator bve-
tween block i and system j is the difference between

1, the deviation of block I and system j average per-
formance from the overall average performance; and

2, the sum of

a, estimated system j main effect, and
b, estimated block i main effect,

From the date in Table 2,1, the following estimated interaction effects
are generated,
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Estimated Interaction Effects

System 1 System 2

Block
1l 0.1 0.1
2 "o.l 0.1

In this example, the interaction effects are smaller than the main
effects; however, this result is not always true, For example, a
block enviromment may produce large average enemy casualties by one
system but not the other, These interaction effects are estimators for
the true interaction effects which are noted by

AByy = true interaction effect between block 1 and
system j,

Finally, the deviations of the individual experimental results from
thelr respective main effects are defined as replication effects., These
replication effects are noted by

= replication effect for replication k for

€
k
1 system J of block i,

Collectively, the variebles defined above lead to a model for experimental
results which is employed by each version of the Filter Model, That is,

X:ij = W + A‘j + Bi + A'Bij + eijk )

The differences between each version of the Filter Model occur due to
variations in the assumptions concerning the distributions of parameters
in the above model,

Filter Model Versions

The variables p and AJ in each version of the Filter Model are fixed
or deterministic; however, Bj, ABij, and cjjk are stochastic or random
variables since there exists a large number of possible values for Bj,
ABji, and €jjk. Because of the manner in which Bj, ABjj, and ej4x are
defined, thelr mean values or expected values are zero, Three different
candidate Filter Models are defined in this section, and each model is
characterized by its assumption concerning the distribution of Bj, ABij,
and €jjk. These models are listed below along with their identifying

acronyms,
1. HOmogeneous Varience and Independent Effects (HOVIE),

2. HEterogeneous Variances and Independent Effects (HEVIE), and

3. HEterogeneous Variances and Correlated Effects (HEVCE).



In addition to defining each model in the following sections, the esti-
mators for model parameters are specified,

HOVIE Model

The Homogeneous Variance and Independent Effects Model ie identical
to the version of the two-factor model commonly referred to as the mixed
model because one factor is fixed and the other random (Hicks & 1961&;
Graybill, 1961; and Winer, 1971). In the HOVIE model, the random vari-
ables By, ABij, €ijk, for

i-= l,2,¢oo’b;
J=1,2,ee0,a; and
k =

1,2,000,.111:]

are all mutually independent, where

b = total number of blocks,
& = total number of system alternatives, and
nyjy = number of replications for system j in block i,

The variances for these random variables are

V(B1) = og°,
V(ABi3) = opf, and
V(eggx) = 9 o

Note that the variance for each system is identical to other systems,

The basic purposes of experimentation with simulation is to esti-
mate the mean performance of individual systems and differences between
the performance of individual systems, For system j, the average per-
formance 1s

n
X. =4 g =1 zi:j X
o e ik’
. o1 My kel S

and X,4. 18 an unbiassed estimator of u + Aj or the system j mean peri rm-
ance, A preferred experimental procedure would generate values of X, .
with the least possible cost for nominal variances of X,j. . The variance
of X.4. is shown in Appendix D, equation D.2, to be

2
1 2 2 O'e b 1
V&) =‘E<"B “’m;)*b_ij En @.2)
10
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Note that V(X. ) is inversely proportional to b, and one term contain-
ing the va.ria.nce of the replication effects is reduced by increasing
the number of replications, If the cost of adding replica.tions is not
excessive and the value of 0e” is significantly larger than 0,® + op?,
then multiple replications ahould be made with each block, On the other
hand, large values of "A + O'AB would indicate that only one replication
of each block should be made,

To apply equation D,2, estimates of the parameters 032 + °A]23 and cre2
muet be enerated from ava.ilable data, These estimators are noted as
ch + 0, a.ndcre s and are

.2 b a nij . b
2= 3z z z <x -, /[z s ab]
° =1 =1 k=1 ijk u) =1 k=1 nij
-
3‘§+&AB = = (Xioc 'xoou) / (b-l)
=1

b a _ _ - - 2
+3 Z(X -xi..-x.j.+X...)/[(a-1)<b-1)l

i.
=1 §=1 )
a b
2 1
£ 52 5 oz = ®.7)
ap =1 =1 i
where
- 1 W
X — X
. jk’
SRR TR

These estimators are unbissed which me:ns that the expected value of the
estimator is equal to the parameter value estimated; however, a practical

11



problem occur in implementing the estimator GB + GAB- The quantities
UB"" end opfi are va.riances which implies that they are never negative, but,

the statistic UB + mey assume negative values by chance, When this
occurs, the estimatorA'Es known to be incorrect; thus, the estimate is
certalnly lmproved by

if 3]32 + GABQ <0,
Bet 8B2 + GABa = oo

The assumption is made that the true but_unimown value of °B + C'AB is
probably a small gositive number when UB‘? + O’AB is less than zero, so a
zero value for og* + opg° 18 fairly close to the actual value, However,
this correction for negative values changes the statistic to a biased
statistic since the resulting value is elther equal to or greater than
the unbiased statistic,

Another important estimator is the difference between two system
performances, particularly when simulation experiments are being con-
ducted in order to filter out weaker or less desirable candidate systems,
The estimator for the difference between system j and t's performance is

xl’j. - xoto []

The efficiency with which filtering occurs is directly related to the
magnitude of the variance of this difference, Since all random varisbles
in the HOVIE Model are assumed to be mutually independent, then the var-
iance of the difference is simply

V(Xogo = Xogo) = V(Koye) + V(Xoye)

From a statistical viewpoint, then the filtering process is more in-
efficient than estimating the absolute magnitude of individual systems.,
The_analyst should be aware that a ranking procedure based on the values
of Xoye3 J = 1,2,000,8; 18 actually a number of pairwise comparisons or
differences,

HEVIE Model

The Heterogeneous Variances and Independent Effects Model extends
the HOVIE Model to account for the systems with unequal variances, Other
analyses of DYNCOM output data clearly indicate that variances of the
seme performance meesure are unequal when the system is cha.nged. In this
model, the variances of Bj and AB;4 are still O’B and "AB , respectively,

but the variance of the replication variation is now

V(eijk) = ges® » J = 1,2,000,a

The variance of the system average performence, X, j° is derived in
Appendix C and is

12

&b

wu

(1.3

L 2]

-

R



-

ey

2

[ b
= o L2 2 ej 1
iy ofeded) b e @

which is ldentical with the corresponding expression for the HOVIE Model
except 0g” is replaced with 0., However, in actual use, the allowance
of different values for Uof{ fof each system means the least cost test plan
will specify different numbers of replications for each system, For the
HOVIE Model, the system test plans will all be identical because the vari-
ances are identical,

To use equation C,1 estimators for cef and op® + gpy are required,
and the unbiased estimator derived in Appendix C for OeJ is

e b My ) b
Goy =| £ = (K- Xy Z (ny-b) (C. 5)
=1 k=1 i=1

Note that the estimator for cgs° is the same as the homogeneous estimator
except that the data are pa.rti%ioned and only results for a given value
of J are used to estimate o, e Thus, the gain in realism with this
change 1s at the e:g)ense of gfficiency in estimating values, The esti-
mator for og® + opg derived in Appendix C is

b
GBZ +3'ABZ = lfl &100 'XQQO)Z/(b'l)
b a _ 5
+Z I X - X -Zj. +X...)/l(a-1)p-1)]
=1 j<1
A b
_ ) o oa2 3 L (C. 14)

I 052 + Gpf <O, then set Op® + GAF® to zero for the seme reasons as
used for the HOVIE Model,

Also, since the randam variables in the HEVIE Model are assumed to
be independent, the variance of the difference between two system perform-
ance averages is

13



V(i.j. - i.t.) = V(i.'j.) + V(ioto) [}
HEVCE Model

The Heterogeneous Variance and Correlated Effects Model includes the
heterogeneous variances of the HEVIE Model, but also considers potenti-
elly important correlations in the results, The significance of these

correlations are explained by referring to the example given earlier in
this chapter,

The influence of correlations starts after a block envirorment (im-
pPlying a value of By for that block) is obtained, Assume, for example,
that a particular block environment tends to produce more casualties
than the overall mean value of u (estimated by X,.. = 16.9), If so,
then By >0 and, for example, could be 2,0, Given this block environment
would the values of ABijy; J = 1,2,e00,a8; tend to be greater then zero or
less than zero on the average? When the performsnce measure is casual-
ties in many systems the value of the block enviromment is likely to
affect the interaction term so that By > O tends to produce larger values
of ABjj, and Bj < O tends to reduce the value of ABjj. For example, the
block environment increasing block casualties by 2,0 out of a total
posaible of 50 may increase the interaction values by 25%, The covari-
ance™ between By and ABij indicates the degree of this relationship and
7 = covariance between By and AB;4. Note that this covariance value
is assumed to be the same for all systems,

Since B and each one of the interaction terms, ABij; J = 1,2,¢e0,a;
are correlated, then the individual ABjs values within a block are likely
to be correlated, The covariance® between two values of ABiy for differ-
ent systems of the same block is

UABAB = covariance between ABiJ and ABit
vhere t # J.

In addition to correlation among the block and interaction effects,
these effects may be correlated with the replication effects, ejjk «

To illustrate this point, assume the following values for the true param-
eters

wo =16 A = -1
B, = 2 ABy;, = 0.3
Ay = 1 AB;> = =0,3 ’

where the system performance measure is in enemy casualties out of a
total enemy force of 50 weespons, If the mean enemy casualties produced

*Me covariance between two zero mean random varisbles is defined as the
expected value of their product,

1k
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by this block environment for system 1 is 19,5, then correlations are
present among the positive block effect of B, = 2, the interaction effect
of ABy1 - .3, ond the replication variations €,,x. Moreover, this corre-
lation produces a net effect of ,2 casualties since independent zero mean
values of €;,) would result in a mean number of casualties for this block
enviromment of 19,3, Note that the overall mean for each value of €44k
continues to be zero, although the expected value of cj4x given va.lueg of
ABy4 and By is probably not zero, Covariances resulting from these corre-
lations are defined below for the HEVCE Model,

covariance between the block 1 main effect and e
replication effect for system J during the ith block,

OBej

GABe,j = covariance between the interaction main effect for
system J and a replication effect for the same
system during the same block,

U.II\Be.j = covariance between the interaction main effect for
system t and a replication a2ffect for system j during
the same block,

for § = 1,2,ee0,8; t = 1,2,00e,a; and t # j. Note that the covariances
defined above heve unique values assigned for the system producing the
replication effect, and these unique values are assigned because the
replication effects have heterogeneous varlances,

Since the replication effects are correlated with the system-block
interaction effects and the block effects, the replication effects are
likely to be autocorrelated, Thus, there will be correlations among
different replication effects of the same system as well as correlations
between replication effects of different systems, The covariances for
these replication effects are defined below,

céj = covariance between two different replication effects
of system J;
O'éjt = covariance between the replication effects on the same

replication of two different systems, i.e., j and t;

Tejt = covarlance between replication effects on different
replications of different systems, i,e,, j and t,

Note that for replication effects of different systems a distinction is
made a8 to whether the same replication is used or a different replica-
tion is involved, This distinction is made because identical random
nunber sequences may be used for each system during the same replication,
By defining the covariances in this way, the positive correlations are
considered among results for identical replications of different systems,

A general relationship in the HEVCE Model applies to correlations
and covariances among veriables in different blocks, All random variables

15



in different blocks are considered to be independent; thus, their co-
variances are zero,

Iixpressions for important variances and estimators of model param-
eters are derived in Appendix A for the HEVCE Model, The variance of
the average performance for system j is given by equation

— 1
Vi) = 5, (5 *oaB * AR * #Bej * Zaney * 74 )

1, 2 1
t (e ty) T A.42)
3 "
n4;>0

where
bj = number of blocks having replications for system j,
i,e,, number of blocks where ngy > 0.

Parameter estimation for applying equation A.,42 is simplified consider-
ably by estimating the following quantities in aggregate form rather than
their individual camponents:

1, Vb,j = gystem j block variance

2. 2 .
%8 *7ap * ¥ paB * ZBej * ZABe

a'e ) and

2, vr 3 = gystem j replication variance
2
= O - g O
ej ¢

Both parameter values defined above are heterogeneous in the sense that
each system haa unique values,

An unbiased estimator for V.i is identical with the estimator for

oe;’ in the HEVIF Model defined earlier, The estimator for V.s is

n

A 1j 2
vy | 5] (xijk-itij.) f njj - by (A. 47)
Lokl ’
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However, the estimator for Vpjy is not equal to the estimator for
og + "ABz in either the HOMIE or HEVIE Models, If it were, the
models would be equivalent from an operational viewpoint, The esti-

mator for Vy 4, derived in Appendix A, is

G = h‘i 2 n‘ (i . -io 0)2
bj (by - 1) ( % ny) 17 j
Byy>0 0
1 ~ | 1 1
- = Vpi|bys(by-2 an L ==1( B =—
(by-1) ry| Pylty - 2/ 1, 1) b.'l( s, nsl)

nu>o ns j>()
(A.52)

If Vg < O, set T3 = O,

Besides using a different statistic, the estimator for Vb:j only uses
dats observed for system J,.

The principal application for the Filter Model is to compare system
performances efficiently; thus, the variance of the difference in two
system everages performances is important, The expression for this
variance is

1

- = e 2 , ' '
V(&.je- Koo bdt(.ZU AB " P aBej * ZaBet *Tej * Tet " PAnaB ~ 7 ABej
' *
" ¥ ppet™ ¥ ejt)

1 s L, .1 5 ==

I TR T
nu>0 nij>0
2 [} -a *
) ejt = “est b 1 (A. 63)
b2 i, max(nu, ny4)
Jt nlj-n“>0
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where

b;]t = number of blocks having replicatins for both systems
J and t, and the assumption is made that

Also, estimation is faciltated by aggregating parsmeters so that

Vi, = 202_ 42 'to! - '
djt AB " “ABej* PaBet *Uej t et - ¥ ABAB ~ %7 Ape

_z' Vg ¥

7 ABet = < ejt’ 402

' - ' _ *
vm Tejt = “ejt

The potential significance of increasing correlation to reduce the vari-
ance of differences in average performance by using identical random
number sequences is apparent from equation A,63., The identical random
number sequences should increase the values of V... and positive values
of Vp4¢ reduce the V(X.j. - X.to). Unbiased estifistors for Vys¢ and Vit
are glven in Appendix A by equations A,69 and A,67, respectivd'e’ly.

Least Cost Experimental Design

An elgorithm is presented in Appendix B for calculating the least-
cost experimental design to reduce the estimated variance of each average
system performance below a specified upper limit, viz,, Vg, Since the
estimated replication and block variances may be different for each system,
then the desired experimental design may specify different replication
numbers for each system, The algorithm can be initialized with inputs
specifying that some experiments may slready have been performed; thus,
the algorithm must determine:

1, additional replications that should be observed for
euch system in each block previously generated;

2, additional blocks that should be generated and the
replication numbers for each new block for each
system,

Two costs are considered by the algorithm; i.e.,

Cp = cost to generate & new block, and

Cp = cost to perform a single replication for one
system after the block has been generated.

18
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An interesting aspect of the problem to find the least-cost experimental
o design is that the cost of generating a new block benefits all systems,
whereas the cost of an individual replication only contributes to reduc-

ing the variance for one system,
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CHAPTER 3

EXPERIMENTAL RESULTS

Introduction

A set of DYNCOM experiments were generated in order to indicate the
potential for the Filter Model and test the concepts presented in Chapter
2., The resulting experimental data are analyzed in this chapter in order
to address the following issues:

1. Which Filter Model is the most valid and useful representation
of DYNCOM results?

2. Does the Filter concept of simulation experimentation permit
significant reductions in experimental cost to achieve a
specified variance of system average performance?

3. Does the Filter concept of simulation experimentation permit
significant reductions in °xperimental cost to achieve a
specified variance of the difference between the average
performance of two systems?

4. Can the Filter Model be applied to screen candidates system
alternatives using a low cost set of DYNCOM runs?

A total of forty-six DYNCOM simulated battles were conducted in
June 1972 to answer the questions posed above. The forces involved
consisted of four blue Armored Personnel Carrier (APC) Weapons in
defensive positions, and thirty-one attacking red tanks. The red tanks
were equipped with conventional main guns, and the defending blue ARC's
were armed with an anti~tenk missile. The red tanks were orgenized
into three maneuver units of approximately company size consisting of
eleven, ten, and ten tanks.

Two system tactical alternatives were simulated to represent
differences in system effects. System one restricted the attacking
reds from opening fire until they closed within 1200 meters of the
blues, and system two represented a red opening fire range of 800 meters.
Because of these opening fire ranges, a block environment had to occur
before & red would open fire when employing the 1200 meter tactic. Since
the blues could open fire earlier than the reds, firing and casualties
could and did occur before the block environment.

Experiments with four blocks were conducted. The block enviromment
wvas generated by simulating a complete battle and recording the complete
DYNCOM data set and status variables at the time of the block environ-
ment during the course of the run. Actually, the block environments
were selected after the fact because the battle generating the block
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environment would output a data set and status variables periodically e
during the course of the battle. Because of this preselected period,

the block enviromments could have been selected more efficiently by

dynamically determining the first red firing event under the 1200 meter | 44
opening fire tactic and then recording the data set and status variables

Just prior to this first red firing event.

After obtaining a block enviromment by the procedure described
above, then the block was replicated for each system. To increase the
correlation among systems within each block, a common random number
sequence was employed for each system on a given replication. Each
block consisted of five replications of system one and four of system
two.

Thirty-six of the simulated battles were conducted to replicate
the four blocks described above, and ten additional full-length battles
were simulated using system one to serve as a basis for comparison.
That is, the variance of an individual battle could be estimated by the
Filter Models from blocked data, and this estimate could be compared
with the corresponding estimated variance using the ten independent battle
observations. b

Four performance measures that have been employed by MICOM in
actual studies are used in the analyses described in this chapter.
These system performance measures are:

1., red casualties

2. rounds fired by red weapons at blue weapons

3. blue exposure time, and .
4, first engagement range.

More explicit definitions employed for these measures as they were

applied in this study appear below. A casualty must include loss of

firepower capability, so a complete kill, a mobility and firepower kill,

and a firepower-only kill would he counted as a casualty. On the other o
hand, mobility-only kills would not be included. The rounds-fired

performance measure was the total rounds fired by the red tank main

gun. Blue exposure time consists of the cumulative time that an indi- 4
vidual blue weapon had been acquired by red weapons. For example, if

blue 1 had been acquired by red 1 for 50 seconds and red 2 for 75 T
seconds, then the exposure time for blue 1 is 125 seconds. An acgquisi-
tion implies sufficient knowledge to concentrate fire upon the acquired
weapon, and this acquisition can be accomplished either by direct visual
contact or by pinpointing. The blue exposure time performance measure
was computed for an individual battle by averaging the exposure time =t
for each blue weapon. The first engagement range is the range at which

red weapons open fire at the blue weapons. This range was computed for

-
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each blue weapon by determining the maximum range thet any red weapon
fired at a particular blue, In the event no reds fired at a particular
blue, the minimum range that the blue fired at any red was taken as the
red opening fire range g0 long as the red was permitted to open fire,
Once these ranges were determined for each blue weapon, they were aver-
aged to determine the first engagement range for a red.

The system performance measures from each replication of the forty-
8ix DYNCOM replications are displayed in Tables 3,1 through 3.5.

TABLE 3.1
Red Casualty Data from Blocked Simulation Replications

Red Casualties
Replication System Block 1 Block 2 Block 3 Block 4

1 1 12 5L 15 18
1l 2 16 21 18 18
2 1 12 13 16 17
2 2 13 10 20 23
3 1l 12 16 17 16
3 2 19 15 20 17
L] 1 17 18 18 18
L 2 21 20 17 2l
p) 1 15 11 15 6
23



TABLE 3.2

Rounds Fired at Blue Weapons Data from Blocked Simulation Replications

Replication
1

System
1l
2

1

Rounds Fired at Blue

Block 1 Block 2 Block 3 Block [
7 17 8 17
9 0 4 4
15 13 15 14
5 N 6 2
15 il 18 21
4 4 3 6
19 11 21 8
8 0 10 3
8 15 20 6
TABLE 3.3

Blue Exposure Time Data from Blocked Simulation Replications

Replication
1

1l

N P & W w

System
1l
2

1

Blue Exposure Time in Seconds

Block 1 Block 2 Block 3 Block &
201,07 Lok.77 369.73 3474k
277.88 52.50 151.38 152.30
325,10 429,99 705.33 327,74
117.69 111.13 216.19 76.225
366.08 186.75 501.91 427.94
72,498 155.53 167.9 122.37
sk, 72 354.03 536.45 197.05
148.07 127.50 175.9% 110.17
610.94 156.09 637.37 203.77
2k
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TABLE 3.k

Engagement Range Data from Blocked Simulation Replications

Replication
1l

Replication
1l

&= w

O ®© N O W

10

System

1
2

1l

Red

Casualties

13
16
11
1
16

7
14
13
15
10

Engagement Range in Meters

Block 1 Block 2 Block 3 Block 4
1135.5 1148.0 10L6.0 1100.8
768.25 780.3 739.75 725.5
1064.8 1145.3 1151.8 1124.8
T19.75 75645 T14.50 T49.25
1127.8 1100.0 1134.5 1078.5
T67.75 712.0 T17.25 733.5
1076.3 1029.0 1156.0 1016.0
752.75 783.8 695.5 791.00
899.50 1157.6 1118.5 1068.5
TABLE 3.5
System 1 Performance Data from Independent
Full Length Simulatlon Replications
Fired  tme(s)  Rasss (m)
13 397.29 1089.00
15 509. 14 11k4.25
15 156.09 157.75
6 159.71 1045.50
5 218,46 1018.25
13 142,71 1187.00
6 97.01 1078.75
12 351.0k4 1123.75
20 637.46 1160.00
8 190,42 1062.50
25



Validity of the Filter Models

To test the validity of the Filter Models, estimates of the vari-
ance of an individual simulation result were computed from the blocked
data using each version of the Filter Model, and these estimates are
compared with an estimate of the corresponding variance from the ten
independent full-length simulation replications,

If

Y; = performance measure for the ith simulation
replication from the full-length independent
simulated battles,

then an estimate of the variance of Y:I. is

A 1 10 10 2
V(Yy) == £ ¥® - = Yi) /90
9121 i=1

To estimate the variance of Xjsx from the blocked data, the equations
for the V(X,4.) are used for tﬂe special case of one block having one
replication, Of course, estimates for each parameter were computed
using the estimators shown in Chapter 2, That is, the following esti-
mating equations for v(xidk) were employed,

HOVIE Model

A o)

V(xijk) = %"'B + GQAB + 8’2
HEVIE Model

A A A A
V(xi;jk) 2 2 2

1
qQ
v
+
q
&
+
Q
&

HEVCE Model
A A A
V(xijk) = V'bj + Vr;j

Only values for system one could be compared because the independent
full-length simulation replications were only performed for that system,

Tebles 3,6 through 3.9 present comperisons computed for the vari-
ance estimate of the three candidate Filter Models, Although the vari-
ance estimates from the independent full-length simulation replications
are used as the standard for comparison, recall that there are only ten
of these independent observations for each perfomance measurg., To
simplify the notation in these tables 62 Bt o2 A 18 noted as V., and

2. as Vp, for the HOVIE and HEVIE Models,

Inspection of these tables reveals that the variance estimates from
the HEVCE model are superior to either of the other two models, The
estimates from the HEVCE model are closer to the estimates from the
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TABLE 3.6

Estimates of the Variance of Total Red Casualties
for One Simulation Replication
(1200 Meter Red Opening Fire Range)

Independent

Full-Length HOVIE HEVIE

Replications Model Model
Xezo 12.9 14.65 14,65
A
V1 -1.73 -1.79
Vre 11,22 10.68
V(X11k) 8.10 11.22 10,68

TABLE 3.7

HEVCE
Model

14.65
-.685
10.68
10.68

Estimates of the Variance of Total Rounds Fired

at Blue for One Simulation Replication
(1200 Meter Red Opening Fire Range)

Independent

Full-Length HOVIE HEVIE

Replications Model Model
Xore 11.3 14.25 14.25
A
Vb1 ' -1.744 -.945
Vri 16.52 2.5
¥ (X415 24,01 16.52 2k.5

27

HEVCE
Model

14,25
-1.983
2.5
2k.5



TABLE 3.8

Estimates of the Variance of Blue
(1200 Meter Red Opening Fi

Independent

Full-Length HOVIE

Replications Model
Xe1o 285.9 386.8
\A’bl 561k,
Grl 10610.
G(Xn k) 32520, 16224,

Table 3.9

HEVIE
Model

386.8

6196.
16425,
22620,

Exposure Time (s)
re Range)

HEVCE
Model

386.8
10340,
10425,
26770,

Estimates of the Variance of Engagement Range (m)
(1200 Meter Red Opening Fire Range)

Independent

Full-Length HOVIE

Replications Model
Xero 1106.7 1094,0
Vb], 4305,2
V1 3259,2
V(Xi1x) 3140.7 7564.9
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HEVIE
Model

1094.0
4369.8
3900.2
8270.0

HEVCE
Model

1094.0
87.722
3900.2
3987.9
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independent full-length replications than the HOVIE Model for each
performance measure. When comparing the HEVCE and HEVIE models, the
variance estimates are tied in two cases, viz., red casualties and total
rounds fired at blue. For the blue exposure time and engagement range
performance measures, the HEVCE model is clearly superior. In fact, the
HEVIE estimates the engagement range variance 167% larger than the
estimate from the independent full-length replications whereas the HEVCE
model is cnly 27% larger. Because the HEVCE model appears to generate
significantly better varlance estimates than the other two experimental
models, the assumptions made in deriving the model must be more valid.
Thus, the HEVCE model will be the only model analyzed in the remainder
of the report.

Although, the HEVCE is preferred to the other two candidates, the
larger question remains as to whether the HEVCE model is sufficiently
valid to represent DYNCOM results. Further inspection of tables 3.6
through 3.9 indicates that the maximum error by the HEVCE model in
estimating the variance from independent full-length simulation repli-
cations was 32%. This result corresponds with an F statistic of 1.32;
however, the performance measures are not normally distributed.
Nevertheless, an F statistic of 1.32 would support the validity of the
HEVCE model because the F statistic would have to be greater than 3.18 to
be significant at the .05 level. Moreover, the result of 1.32 is the
largest of four admitedly correlated variance ratios. Thus, these re-
sults certainly support the validity of the HEVCE model as being re-
presentative of DYNCOM experimental results.

Cost of Estimating Mean System Performance

In this section, the costs of estimating mean system performance
using the Filter Model concept of blocking are compared with the use of
full-length independent simulation replications. To compare these
experimentation costs, the number of simulated events is used as a cost
measure. That is, the cost of generating a block is specified by the
number of events required to produce a block enviromment, and the cost
of a single replication of the block is measured by the number of events
subsequent to the block enviromment to complete the simulated battle.
Thus, the cost components used by the least-cost experimental design
algorithm are:

Cp = the expected number of events to generate a new
block

Cy = the expected number of events subsequent to the
block enviromment to simulate a battle for one
system alternative,

Using the results from four blocks and a total of thirty-six replica-
tions, these cost components are estimated to be
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249.25 events

Co

c 558.83 events.

r -
In addition, the cost of an independent full-length simulation replica-
tion is

Cp + Cp = 808.08 events.

In addition, another cost measure is the equivalent number of full-
length simulation replications which is calculated by dividing the total
number of events expected for an experimented plan by 808.08 events. If
the reader is interested in a dollar cost measure, the full-length
simulation replications of the scenario described in this chapter re-
quired from thirty to thirty-five computer service minutes on an IBM

360/65 and the current cost for MICOM of this machine is $100 per computer

service hour so & full-length simulated battle would cost from $50 to
$60. In an actual study the number of alternative systems requiring
consideration may be in the hundreds or thousands.

Using the cost measures given above for Cp and Cp, several com-
parisons were made to indicate the potential for the Filter Model con-
cept in reducing simulation experiments costs when estimating mean system
performance for individuel system alternatives. These comparisons
assumed that the experiments would start with two blocks in order to
estimate model parameters. The cost of two blocks consisting of five
replications of system one and four of system two was 10557 events or
13.06 equivalent full-length simulation replications. Note that a
commonly used experimental plan for DYNCOM 1s to replicate each alterna-
tive ten times which would cost 6.9% full-length replications more than
the two blocks.

The comparisons consisted of co-trasting the costs of estimating
mean system performance measures with specified variances by blocked
simulation experiments versus independent full-length experiments. Two
methods of determining variances for comparison purposes are used:

1. Equivalent variances for both methods of experimentation.

2. Variances less than specified upper 1limits for both methods
of experimentation.

Experimental costs for method 2 as stated above were determined using
the least-cost experimental design algorithm presented in Appendix B.
The effectiveness of this algorithm is related to the accuracy of its
inputs, viz., the block and replication variances for each system
alternative. To illustrate the effect of sample size for these inputs,
experimental designs were compared based upon input variances calculated
from both two and four blocks of data.
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Cost Comparisons for Achieving Equivalent Variances

Tables 3.10 through 3.13 present cost comparisons for achieving
equivalent variances of the average system performance measures, viz.,
red casualties, rounds fired at blue, blue exposure time and engagement
range. Entries in these tables were calculated by:

1. estimating the block, Vb;js and replication, Vr variances
using equations A.52 and A. 47, respectively, and all four
blocks of data.

2. calculating \Al()-(. T .) the estimated variance of the average
perfoma.nce for system J, by inserting the estimates Vb,j
and Vrj into equation A.53,

3. calculating the estimated variance of a full-length simulation
replication of system by

A A A
V(xijk) = Vb,j + VrJ

4. determining the number nsy of independent full-length
simulation replications to realize a variance for the
average system performance equal to V(X. ;j') by

V(X
nf = Fyk—)
(X. J-)
5e estimating the cost of independent full-length runs by
» 808.08 events.

Any negative values resulting from the computational equation for Vb

are shown in the tables although these negative values are set to zero

in steps 2 and 3 above, Note that the Filter Model parameters were
estimated using all available data in step 1. This was done to provide
an accurate picture of the relationship between the test design and esti-
mated variances. However, the comparison is made with estimated
variances resulting from a test plan involving only two blocks.

lkesults from the cost comparisons to achieve equal variance esti-
mates are mixed. The Filter Model concept of blocking achieved red
casualty variances in 13,06 equivalent full-length runs that would re-
quire 20 independent full-length runs; thus blocking permits a reduction
of 35% in experimentation costs in this case. On the other hand,
variances for rounds fired, blue exposure time, and engagement range
would require about the same costs for each experimentation method.
Thus, the Filter Model concept of blocking is likely to reduce experi-
mentation costs for some performance measures, viz,, casualties, but
not all performance measures,
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Table 3.10

Cost Comparison to Achieve Equivalent Variance of Average Red
Casualties, Two Blocks Versus Independent Full-lLength Runs
(A1l Parameters Estimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)
Vo3 -.685 - .Blk
V(X.5.) 1.068 1.lg2
V(Xy g5) 10.68 11.94
Cost of independent runs 8080.1 events or 8080.1 events or
10 runs 10 runs

Total cost of independent runs 16161 events or 20 runs

Cost of blocked runs 10559 events or 13.06 runs

Teble 3.11

Cost Comparison to Achieve Equivalent Varlance of Rounds Fired
at Blue, Two Blocks Versus Independent Full-Length Runs
(A1l Parameters Estimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)
¥ ~1.983 2.656
Vos 2k,5 5.875
V(X.j.) 2,15 2,063
G(Xijk) 2L.5 8.531
Cost of independent runs 8080.1 events or 3343 events or
10 runs 14,13 runs

Total cost of independent runs 11423 events or 14.13 runs

Cost of blocked runs 10557 events or 13.06 runs
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Table 3.12
: Cost Comparison to Achieve Equivalent Variance of Blue Exposure
J Time, Two Blocks Versus Independent Full-Length Runs
(A1l Parameters Estimated Using Four Blocks of Data)
System 1 System 2
(OFR < 1200 m) (OFR < 800 m)
A
L] A
Vrj 16425, 2855.2
A —
A
V(Xy 5%) 26765. 3156.7
Cost of independent runs 3174.9 events or 5025.4 events or
' 3.93 runs 6.22 runs

Total cost of independent runs 8200.3 events or 10.15 runs

Cost of blocked runs 10557 events or 13.06 runs

Teble 3.13

Cost Comparison to Achieve Equivalent Variance of Engagement
Range, Two Blocks Versus Independent Full-Length Runs
(A11 Parameters Estimated Using Four Slocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)
A
Vb j 87.72 172,89
Vrg 3900.2 697,10
V(X0 433.88 173.62
G(Xijk) 3987.9 870.29
Cost of indepencevt 1uns 7434.6 events or ° L4050.6 events or
9.20 runs 5.01 runs

Total cost of indenendent runs 11485.2 events or 14.21 runs

Cost of blocked runs 10557 events or 13.06 runs
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Cost Comparisons for Reducing Variances Below Specified Upper Limits

Tables 3.14 through 3.17 present the comparisons of cost to reduce
the variances of average system performance below specified upper limits.
The situation assumed for these comparisons involved an initial set of
experiments and then additional replications or blocks as needed for each
gsystem to realize the targeted upper limit on the variance of average
system performance. This initial commitment to experiments on each
system is assumed to be required in order to estimate variances or verify
earlier estimates. For the blocked runs the initial commitment consisted
of two blocks with five replications of syatem one and four of system
two, and the corvesponding initial commitment for the independent full-
length replications consisted of seven replications for system one and
six of system two. The total cost in each case of the initial set of
experiments was approximately 13 equivalent full-length runs.

To reduce the effect of sampling errors, all variance parameters
used to construct the comparisons in Tebles 3.1l through 3.17 were esti-
mated using four blocks of simulation replications. This procedure is
consistent with the comparisons made in the previous section to compare
costs with equivalent variances.

The results displayed in tables 3,14 through 3.17 were calculated
by the least-cost experimental design algorithm to reduce average red
casualty variances below 1.00, average rounds fired variances below 1.20,
exposure time variances below 3150, and engagement range variances below
350. These results permit the following observations. Experimentation
costs would be decreased through the use of blocking to estimate red
casualties by 25%, rounds fired by 16%, and engagement range by 12%.
However, the costs appear to increase to estimate average exposure time
variance. Note that the least-cost algorithm specifies that no new
blocks should be generated to estimate average red casualties and
engagement range; however, four new blocks should be generated to esti-
mate average rounds fired. Moreover, the algorithm specifies additional
blocks with a single replication on each system to estimate average blue
exposure time. This test plan is equivalent to independent full-length
simulation replications which would be less expensive in this case than
replicating blocks.

An overall evaluation of the Filter concept of blocking based upon
these results is that the concept permits reduction in experimentation
costs depending on the performance measure considered. However, the
reductions are not dramatic. As far as the exposure time case where
costs increased due to blocking, this result could be avoided if pre-
vious experience indicated the inefficiency of blocking and simulation
experiments were to be set up primarily to estimate exposure time,
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Teble 3.1k

Cost Comparison to Achleve Average Red Casualties Variance
Iower Than 1,00 - Additional Replications After Two
Blocks Versus Independent Full-Length Runs
(A1l Parameters Estimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)

Additional replications

in previous blocks 1l 2
Additional blocks 0 0
Replications in

additional blocks 0 0
Total cost of blocked runs 13912 events or 17.22 runs
Cost of independent 8889 events or 9697 events or

full-length runs 11 runs 12 runs
Total cost at independent

full-length runs 18586 events or 23 runs

Table 3.15

Cost Comparison to Achieve Average Rounds Fired Variance
Iower Than 1,20 - Additional Replications After Two
Blocks Versvs Independent Full-Length Runs
(A1l Parameters istimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)
Additional replications
in previous blocks 0 0
Additional blocks L 4
Repllications in
additional blocks 3 1l
Total cost of blocked runs 20495 events or 25,36 runs
Cost of independent 16970 events or 6465 events or
full-length runs 21 runs 8 runs
Total cost of independent :
full-length runs 23434 events or 29 runs
35



Table 3.16

Cost Comparison to Achleve Average Blue Exposure Time Variance
lower Than 3150 - Additional Replications After Two
Blocks Versus Independent Full-Length Runs
(A1l Parameters Estimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)

Additional replications

in previous blocks 0 0
Additional blocks 6 1l
Replications in

additional blocks 1 ik
Total cost of blocked runs 15405.5 events or 19.06 runs
Cost of independent 7273 events or 4848 events or

full-length runs 9 runs 6 runs
Total cost of independent

full-length runs 1212] events or 15 runs

Table 3.17

Cost Comparison to Achieve Average Engagement Range Variance
Lower Than 350 - Additional Replications After Two Blocks
Versus Independent Full-Length Runs
(A1l Parameters Estimated Using Four Blocks of Data)

System 1 System 2
(OFR < 1200 m) (OFR < 800 m)

Additional replications

in previous blocks 2 0
Additional blocks 0 0
Replications in

additional blocks 0 0
Total cost of blocked runs 12792 events or 15.83 runs
Cost of independent 9697 events or 4848 events or

full-length runs 12 runs 6 runs

Total cost of independent
full-length runs 14545 events or 18 rums
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Sensitivity of Experimental Plans to Input Variability

Ideally, the simulation experimenter will have an ample data base
to estimate parameters and plan blocked simulation experiments. With
precise values of the block variances, Vi, and replication variances,
Vpis the DYNCOM experiments can be designed so that least-cost experi-
mehts are always implemented. If independent full-length experiments
are the least-cost strategy, then the least-cost algorithm will specify
blocks with single replications.

More commonly, the values of Vpi and Vn; will have to be estimated
as part of the experimental plan. e sensitivity of these parameter
estinates and the resulting experimental plans to sample size are
investigated in this section by comparing the results obtained from
two blocks with results from four blocks (including the former two
block results).

Table 3.18 presents the parameter estimates for both two and four

blocks. Recall that negative velues of Obj will be regarded as zero
values in deriving test plans. Of course, a block variance of zero

has special significance in that it implies that nothing is to be
gained by generating new blocks. The results for two blocks show six
out of eight cases having negative estimates for the block variances;
however, three of these results are changed when two more blocks are
obtained. One would expect that the true values of the block variances
to be greater than zero, but they are hopefully small to the point of
being negligible when the estimator of Vi . is negative. This rationale
is supported by two of the three cases ngre Obj changes from negative
to positive. That is, Vi, for system-two exposure time changes from a
negative value to 30..34 where the value of the replication variance is
9.5 times larger or 2855.0, and the system 2 block variance estimate for
engagement range changed from a negative value to 172.89 where the re-
plication variance is four times larger or 697.40. A small block variance
relative to the replication variance will result in a least-cost design
with a large number of replications per block. A less desirable situa-
tion occurs in the system-one exposure time case where a negative block
variance estimate changes to 10339 when four blocks are run, and this
block variance is 63% as large as the replication variance of 16425,

The effects of these variations in estimated values are shown in
Tables 3,19 and 3,20 where test plans are compared based on estimate
from two versus four blocks of data. Each test plan is designed to
reduce the variance of average system performance below the same upper
limits specified in Tables 3.1h4 through 3.17. These upper limits are
noted as Vg in Tables 3.19 and 3.20. Two sources of differences between
the test plans are present in these tables:

a. change in the overall magnitude of the variance of average
system performance

b. change in relationship between the block and replication
variance.
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Table 3.18

Comparison of the Estimates of HEVCE Parameters
fram Two and Four Blocks of Data

Red Casualties
2 Blocks L4 Blocks

System 1 (OFR < 1200 m)

‘I}bl -1.480 -.685

I | 7.500  10.675
System 2 (OFR < 800 m)

Vb -4 458 -8l

Vra 18.956  11.938

Exposure Time
2 Blocks &4 Blocks

System 1 (OFR < 1200 m)

ke -130.7  10339.
Grl 19600, 16L25,
System 2 (OFR < 800 m)
Vy ~311.56 301.34
\Afrz 4836.4 2855.0
38

Rounds Fired at Blue

2 Blocks ¥ Blocks

"'.780 -10%3
16,000 2k.500

8.750 2,656
5.500 5.875

Engagement Range
2 Blocks L Blocks

331.73 87.72
5972.7 3900.2

-183.21  172.89
804.83  697.40
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Table 3.19

Comparison of Least-Cost Experimental Plans Subsequent to Two Blocks
(Two Block Parameter Estimates Versus Four Block Estimates)

System 1 (OFR < 1200 m)

Additional replications
in previous blocks

Additional blocks

Replications in
additional blocks

System 2 (OFR < 800 m)

Additional replications
in previous blocks

Additional blocks

Replications in
additional blocks

Red Casualties

Vs = 1.00

2 Blocks 4 Blocks
Estimates Estimates

0 1l

0 0

0 0

6 2

0 0

0 0

39

Rounds Fired at Blue

Vg = 1.20

2 Blocks 4 Blocks
Estimates Estimates

0 0o

10 L

1 3

0 0

10 L

1 1
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Table 3.20

Comparison of Least-Cost Experimental Plans Subsequent to Two Blocks
(Two Block Parameter Estimates Versus Four Block Estimates)

Blue Exposure Time Engagement Range
Vg = 3150 Vg = 350

2 Blocks 4 Blocks 2 Blocks Blocks

Estimates Estimates Estimates Estimates

System 1 (OFR < 1200 m)

Additional replications
in previous blocks

Additional blocks

Replications in
additional blocks

System 2 (OFR < 800 m)

Additional replications
in previous blocks

Additional blocks

Replications in
additional blocks

Lo
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Note that the major source of differences between the test plans is the
magnitude of the test effort rather than the allocation of effort between
blocks and replications.

Cost of Comparing Mean System Performances

Probably the most important application of DYNCOM is to compare
mean system performance in order to determine which systems are superior
and by what margins. Thus, the differences between average system per-
formances may be more important to the analyst than the absolute magnitude
of average system performances. The Filter concept of blocked experiments
contributes to improving the efficiency of estimating the differences
among system performances by increasing the correlation among results for
different systems. The use of blocks with fixed block environments for
each replication and the use of identical random number sequences for
each alternative replicated within a block causes the desired correlation.
Considering these correlations, equation A.63 gives the variance of the
difference in average performance between two systems. Thus, A.63 can
be used to estimate the degree of improvement, if any, in efficiency
resulting from the Filter concept of blocking.

In this section, the experimental results are analyzed to answer
two questions:

1. are the assumptions leading to equation A.63 for determining
the variance of the difference 1n average performance valid
for representing DYNCOM results?

2. does the Filter concept of blocked simulation experiments

permit savings in estimating the variance of the difference
in average performances of two systems?

Validity of the Exbression for V(X.J. - f.t.)

To test the validity of equation A.63, the variance of the difference
between the average performance of systems one and two was computed
directly using four replications of each block, i.e., the fifth repli-
cation of system one was ignored. For each replication, the difference
between system one and system two performance was calculated. That is,

Yix = difference between system one and two performance for the
kth replication of block i
Yix = Xiak - Xi2k

Then the values of Yjx were inserted into equations A.47 and A.52 to
estimate Vpq and Vpq, the replication and block variances for differences
between system performance. The subscript d is used to denote differences.

A A
Then the quantities Vyq and Vpq are substituted into equation A.L2 to
L1



estimate the variance of the difference between systegl one and system
two performance. This variance estimate is noted as V(Y).

A,
Values of V(Y) are shown in table 3.21 and compared with estimates
of V(X.1. - X.2.) computed from equation A.63 using all four blockf of
data with the fifth replication of system one deleted. Note that V(Y)

and V(X... - X.5.) are identical for each performance measure with the
exc?ption of engagement range. In the engagement range case, the value

of Vy, 1s estimatedAa.s -275.14 and then set to zero as specified in
equation A.52. If Vy,; retained the «275.14 value and this value was

used in estimating V(X... - X.2.), then O(i.;. - X.o.) would become 267.1h

A
and be identical to V(Y) for engagement range.

Thus, the close match among the two alternative methods of calculating

variances of differences in average performance serves to support the
validity of equation A.63. Although the engagement range case suggests

that negative values of bj should be retained, this modification is not

A, =
recommended because of the possibility that estimates of V(X.;. - X.2.)
may also become negative.

Table 3.21

Variance of the Difference in Average Performances Validity Check
(Four Blocks With Four Replications Per System Per Block)

Casmltiss et mle o espmat
\'}(?) .90k 1.1745 1371.7 267.14
V(Eey. = Foml) 7904 1.1745 1371.7  335.93
VK., ) + V(Rens) 1.5846 2.3125 2615.2  230.59
.4988 .5079 .52U5 1.457
L2




Cost of Estimating Differences in Average System Performance

Besides showing estimates of the variance of the difference in
average system performances, Table 3.21 computes estimates of these
variances under the assumption that observations of system one and
system two are independent. Under the assumption of independence, the
variance of the difference in average performance is estimated by:

V(Eo1. - Xune) = UFay o) + V(Rezl)

A T = .
With correlation, the V(X.,. - X.».) becomes much smaller as shown in
Table 3.21. The values of F shown in the table are the ratio between

the estimates of \'}(fq . - X.».) and the estimate under the assumption of

independence. Most of the F values are approximately .5 implying a 50%
reduction in variance by the Filter Model concept of blocking. The only
exception is engagement range, where F is approximately 1.5 suggesting
larger variances of differences than independent sampling.

A better comparison between the variances of differences in per-
formance under independent and blocked experiments is shown in Table 3.22.
All of the blocked data including the fifth observation on system one
are used in the variance estimates. Again, the effect of blocking permits
e significant reduction in variance with exception of engagement range.
For rounds fired, the variance under blocking is less than 40% of its
values under independent sampling. Differences in red casualties and
exposure time have variances under blocking of 50% of corresponding values
under independent sampling. The engagement range case must have some
negative correlation, i.e., a high engagement range in a battle where
the reds can open fire at 1200 metters would tend to produce a low en-
gagement range when the 800 meter opening fire tactic is played. However,
if the analyst is primarily interested in casualties, rounds fired, and
exposure time; the Filter Model concept of blocking will produce an
estimated reduction in variance of 50% for a specified experimentation
cost. '

Table 3.22

Variance of the Difference in Average Performance
(Four Blocks With Five Replications of System One and Four of System Two)

Red Rounds Fired [Exposure Engagement
Casualties at Blue Time Range
V(X.,.) + V(X.5.) 1.2798 2.2563 3660.0  303.75
V(.p . = Kune) 6403 .8797 18747  436.98
F .5003 .3899 .5122 1.439
43
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Screening Candidate Alternatives

A primary objective for the Filter Model is to screen or filter
candidate systems with low-cost replications of DYNCOM in order to elim-
inate weaker systems. In this section, a single block with five re-
plications on each system is evaluated with respect to its efficiency
in filtering candidate systems. Based on the experiments evaluated in
this report, the cost for two systems is 7.22 equivalent full-length
replications. To evaluate this filter, the variance of the difference
in average casualties is computed for each performance measure, and the

cost in independent full-length replications to achieve the same variance
is computed.

To estimate the va.riance of the difference in average ca.sua.l‘t:ies B

equation A.63 becomes V(X.l. - Tiae) = le, + (Vn + Vrg)/s - 2Vn2/5
for this case of one block with five replications of each system. Also,

nega.tive values of le, are set to zero in order to avoid the possibility

of V(X.1 . = X.».) becoming negative. Values of V(X.1 . = X.5.) are
presented in Table 3.23 for each performance mea.sure. The cost in equi-

valent independent full-length replications to match V(X.1 . = X.,.) is
determined by

l. computing the variance of the difference for one full-length
replication on each alternative system by

A A
V(X1 x) + V(X 2k)
2. computing the cost to match the single block filter by

V() + )
(sl = Fae)

equivalent full-length replications.

The calculation procedure shown above assumes that each system will have
the same number of replications in both the Filter and independent full-
“length replications.

The cost comparisons in Table 3.23 show a very large cost reduction
for the Filter in comparing red casualties and rounds fired. These
performance measures would require 23,08 full-length runs for casualties
and 20.48 runs for rounds fired to match the Filter variance obtained
with only 7.22 runs. In other words, the single block Filter is about
three times more efficient than independent full-length replications for
casualties and rounds fired. However, the exposure time and engagement
range performance measures show about the same cost for the Filter and
independent full-length replications.
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Table 3.23

Efficiency of a Single Block Filter With Five Replications

Red Exposure Engagement
Casualties Rounds Fired Time Range

Vg o 5.1229 -.2938 2306. 3737.2
Ve 10.675 24.50 16426. 3900.2
Vpo 11.938 5.875 2855. 6974
A
Vs 19.203 7.125 -298k4.6 7359.3
Vet 1 Rzl 1,96k 3,225 7356.0 1713.05
V(X1 %) 10.675 2L,50 26765. 3987.9
H(X4 210) 11.938 8.53 3156.5 870.29
Cost of independent

replications 23,03 runs 20.48 runs 8.1% runs 5.67 runs
Cost of filter

replications T.22 runs T.22 runs 7.22 runs  7.22 runs
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CHAPTER L

SUMMARY AND CONCLUSIONS

In Chapter 2 several experimental design models were hypothesized
for the purpose of representing the results of blocked DYNCOM runs. The
objective for these models is to investigate the economics of operating
DYNCOM to generate a battle situation or block environment, and then
replicating the remainder of the battle for each altermative. These
blocked replications would be useful if the variance in average system
performance or the variance of the difference in average system per=
formance for two systems were less for a fixed computer expense, A
primary objective would be to use one or more inexpensive blocks to
filter candidates to eliminate weaker alternatives. This Filter is re-
quired to be inexpensive and have small variances for the difference
in average performances for two systems.

Several models were proposed because the assumptions inherent in
experimental models that are avallable in the literature appear inappro-
priate for a combat model like DYNCOM. The primary extens’ons made to
derive the Filter Experimental Model involve correlations among block,
interaction, and replication effects and heterogeneous variances.

A set of DYNCOM experiments were conducted at MICOM to evaluate
these Filter Models and test their efficiency. These experiments in-
volved two system tactical alternatives where the opening fire range
for the attacking red force was set at 1200 meters for system one and
800 meters for system two. Four performance measures were analyzed,
viz., red casualties, rounds fired at blue weapons, blue exposure time,
and first engagement range. An important characteristic of the experi-
ment was that a common random number sequence was used for each repli-
cation in a block on each system in order to increase the correlation
among the results for the two systems. By increasing correlation, the
variance of the difference in average performance is reduced. The re-
sults of the analysis of the experiment are presented in Chapter 3. Of
course, these results should be interpreted as illustrating the potential
for the Filter Model concept of DYNCOM experimentation, and results
for other systems or battlefie)d environments maybe different.

The overall conclusions drawn from these experiments are that the
Filter Experimental Model is a valid representation of DYNCOM experie-
mental results, and that significant economies can be realized by
using DYNCOM as a filter depending upon the analysts choice of perfor=-
mance measures for ranking the system alternatives. Excellent results
vere obtalned in reducing simulation costs if the performance measures
of interest were red casualties or rounds fired. For example, a DYNCOM
filter using one block and five replications per alternative obtained
estimated varlences for the difference in average red casualties or
rounds fired in approximately one-third the cost of independent full=-
length runs. Results for blue exposure time and engagement range showed
no reduction in simulation expense,
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When using more than one block to compare system performances by
camputing the differences in system performarce, the Filter concept of
blocking continues to offer the simulation experimenter more for a fixed
level of effort. Results obtained from four blocks lndicate that the
Filter experimental procedure gives a variance one-half of the variance
expected on the basis of independence for red casualties, rounds fired,
and exposure time. The engagement range variance was larger than ex-
pected as a result of independent experiments.

Comparisons were also made when the experimental objective was to
estimate the mean value of the performance measure. The best result for
the Filter Model was a 35% reduction in cost to estimate expected red
cas'.alties with equivalent variances from both blocked filter runs and
independent full-length simulation runs. A least-cost experimental
design algorithm is presented in Appendix B, and this algorithm deter-
mines the number of replications and blocks for each system in reducing
the variance of average performance for each system below a specified
level. Results from this algorithm showed a 25% reduction in cost to
estimate expected red casualties, a 16% reduction for rounds fired, and
a 129 reduction for engagement range. The costs for exposure time
estimation appeared to increase. Thus, the savings to estimate average
system performance are less dramatic than estimating differences in
average system performance, but the savings for estimating expected
casualties are significant. For the other performance measures, the
potential for savings in unclear.
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APPENDIX A

DERIVATION OF ESTIMATORS FOR FILTER MODEL PARAMETERS
(HEVCE Model)

Introduction

In this appendix, the version of the Filter Model that incorporates
heterogeneous variances and correlated effects is defined and unbiased
estimators are derived for parameter velues that are importent to the
simulation experimenter, That is, certain parameter values are required
to plan further simulation experimentation and to estimate the

(a) mean performance of each system alternative,

(b) difference between mean performance of & pair of
alternatives,

(c) variance of the mean performance estimators, and

(d) variance of difference estimators.

The model acronym is HEVCE for HEterogeneous Variances and Correlated
Effects, The Filter Model 1s specifically designed to represent important
characteristics of DYNCOM, a stochastic combat simulation, likely to be
encountered when simulation is performed in blocks, That is, a given
battle situation or environment is obtained, and a block of replications
are observed (or simulated) on each alternative, This starting situation
for a block is called a block environment, Given a particular block
enviromment differences among the system designs may be more efficiently
observed since a source of variation has been removed, Of course, the
subsequent results may be related to the particular block enviromment so
& number of blocks mey be required to relisbly estimate system perform-
ance measures,

Filter Model Structure

The structure of the Filter Model is defined by a set of assumptions
concerning variation among system alternatives, block effects, stochastic
differences from replication to replication, and interactions emong these
effects, For a glven replication, the following equation is assumed by
the Filter Model to relate the prineipal effects, That is,

Xijk =u + Bi + A,j + ABiJ + Gijk H (A.l)

where

xijk observed system performance for block i, system j,
and replication kj

mean effect over all systems, blocks, and replica-
tions;

=
1]
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B; = main effect for block i; 4
AJ = main effect for system J; I
ABiJ = interaction effect between block 1 and system j; :

€13k = replication effect for replication k of system j
during block 1, &

There are b blocks 8o 1 = 1,2,¢¢¢,b and a different system alternatives T
80 j = 1,2,%¢¢,a, In addition, njj replications are simulated for block
1 of system j. Thus, k = 1,2,¢e¢,n44,

The stochastlic properties of the above variables and their mutual
relationships are important in being able to represent the results of
different test plans., The usual experimental design models assume that
the stochastic variables are mutually independent and normally distri-
buted (Hicks, 1964, Graybill, 1961, and Winer, 1971), Significant ex- " 8
tensions to these assumptions are made in the HEVCE Model, To represent
blocking effects in DYNCOM, the following assumptions are made, The
paremeters p and AJ; J = 1,2,000,a; are fixed effects or deterministic,
That is, the mean performance for system j is p + Aj. Since p is the
mean performance overall alternatives,

a

The block main effects, Bj, i = 1,2,°°¢,b, are random since the set of b
blocks are selected from a large number of different possible blocks, Each
velue of By is assumed to be independently and identically distributed
with mean and variance given by

E(By)=0 (A.3)

V(By) = oi (Allt)

The block-system interaction effects, AB;4, are also assumed to be

identically distributed random variables with mean and variance

E(AByy) = 0 (A.5)

2

V(ABy) = 0pp (A.6)
Since the system levels are fixed or deterministic, then

a

5 ABy; = 0 for all i (A.7)

j =1 ij

but the block levels are stochastic so
b

5 AB,,# 0 for all j. (A.8) i
i:l ‘j 11
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In addition, the block and interaction effects for a given block are
correlated with covariances

COV(By, AByy) = E(By* ABy) = Oppp}

(8.9)
for J = 1,2,00.,&
1=1,2,000,b
elso
COV(ABy;, AB¢)= E(AR;* ABy)= OpApaApS (A.10)
= 3= 1,2,00058
i= l,2,ooo’b

Since the results among different blocks are mutually independent, the

COV(BV,ABij) = E(BvoABij) = 0, (A.11)
COV(ABij,ABvJ) = E(ABiJ ‘Aij) = 0, (A.12)
OOV(A.'Bit,ABVJ) = E(ABit-ABvJ) = 0, (A.13)
for
1 #v; 1 =1,2,000D;
v = 1,2,000b;

t#3; J=1,2,°0%a; and
t = 1,2,000a,

The replication effects, €jjx, have unique distributions for each
system alternstive, Their means and variances are

E(g5) = 0 (A,1l)
2
Vi) = ey (a.15)
for
J = 1,2,00°,8;
1 =1,2,000,b; and
k = 1,2,000,n45.

These replication effects are correlated with both the block and inter-
action effects for the block being replicated. That is,

COV(Bj, €j4k) = OBej (A.16)
COV(ABy;, €)= Oppej (A.17).
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COV(AByt,€14k) = OABey (A.18)

COV(Bwei;jk) =0 (A.19)
COV(AByj, €)= 0 (A.20)

fort#j, véL k=1,2 ...,
=1, 2, ooy 8
t=1, 2 ..., 8
i=1, 2, ..., b; and

V= 1, 2’ °es 0y bo

Note that each covarilance involving a replication effect either has
unique values for each system being replicated or is zero, Moreover,
the replication effects within a block are correlated and the covari-
ances are related to the system being replicated, That is,

t

COV(eijk, eijm) = oej’ (A.22)
for m #k, k=1,2,°*°, njj; m = 1,2,°°,ny3

COV(eijks€itk) = Teyt 5 (A.23)
for k= 1,2,¢¢+,min(ny4,ns¢)

COV(eygks€1tm) = %ejt (A.2k)
for m#k, k= 1,2,0005ny 45 m = 1,2,%004 5

COV(egks€yypn) = O (A.25)
for k = 1,2,"‘,!113; m-= 1’2’...’%3 ;

COV(€iJk,€v.tm) =0 (Ao26)
for k = 1’2’.""113; m= 1,2,0.-’% ]
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1,2,¢%¢,b; and
l,2,-co’b.

where t # 3,
t=1,2,0008;
J= l’z’ooo,a;
14w
i L~
v =

The covariance o', represents correlation among different replications
of the same s:,"stgtl, i.,e., J, and the covariance or: represents corre-
lation among different repiications of different s:}gtems s 1e€0, J and t,
Note +that Oe represents correlation among the same replications of
difrerent syg%.ems, i.e., J and t, Unique values for the covariances
emong replication effects for the same replication of different systems
are assigned, This is done to represent the effects of variance reduc-
tion using identical random number sequences for each system on a given
replication which tends to produce a positive correlation between system

performance measures for the same replication, i.e., €jjx and €itke

Varience of Estimator for Mean System Performance

The basic purpose of simulation experiments conducted with the
process defined above is to estimate the mean performance of systems
with an unblased statistic having the least possible variance, An un-
blased estimator for system mean performance is presented in this
section, and then an expression for the variance of this estimator in
terms of the parameters defined sbove is derilved,

Estimator for Mean System Performance

An unbiased estimator for mean system performasnce of system j will
be developed by determining the expected value of X,., and then computing
an average value for Xj4x over all blocks and replicgtions for a fixed
value of j, The expected value of xijk is

E(X14x) = 1 + Ay (A.27)

since
E(Bi + ABi;j + eidk) =0

by equations A.3, A.5, and A,14, Note that p + A; is the mean perform-
ance of system j. Thus, an unbiased estimator for p + Ay is obtained
by averaging the values of X 3 over all blocks and replications for a
fixed value of J, The sample’average for a fixed block, i.e., i, and
gystem, i,e., J, is noted by xiju where

n
- 1 iJ
e~ Tl ¢ (A.28)
ij Dyy el ik o
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where n,. >0 for 1 = 1,2,ee¢,b and j = 1,2,¢¢¢,8, Averaging over all

i S,
blocks, ghe unbiased estimator for system J performance is X, j° and is
defined as

Xogo = Ly L Xygg » (A.29)

where bj = number of blocks having at least one replication of system j;
and

E(fodc) = U + A.j . (A030)

Going one step further, the mean of X je Or X... over all alternatives
is an unbiased estimator of u, That is,

~ | p &
Xeoo = E Z -b_' Z E xidk (A03l)
J=1 d 1, 1y
nidio
and -
E(x...) il V) (A-32)

because of equation A.2,

Variance of Mean System Performance Estimator

Having obtained an estimator for mean system performance, an ex-
pression for the variance of this estimator will be derived in this
section, First, the variance of an individual observation or V(Xjjx)
is found, In deriving both variance expressions, use will be made of
the fact that

v(Y) = E(Y2) - E2(Y) (A.33)
for any random varieble Y,

To use A.33 in finding V(Xyy), the E(X1jx®) will be determined,
By definition

E(Xyyf) = Bl + Ay + By + ABy; + eijk)zl
2 .
= E[(p. + Aj)2 + qz'l- ABijz + eijk + ap. + Aj)(Bi + ABij + eijk)
+ 2By(ABy; + €yc) + 2AByy6p5,]

(A.34)

S5k
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In the above expression, note that

Ef2(u + Ay)(By + AByy + Gi;jk)] =

since the expected value of a product involving a constant and a random
variable with mean zero 1s zero, Substituting the sbove expression into
A.34 and using AL, A.6 A.9, A.15, A,16, and A,17, the following ex-
pression for E(xi;)l: ) is obtained,

E(xijk) = (u +AJ)2+O2 \J'2A_B+0'2ed +20'BAB+20'BeJ +2UABQJ
(A.35)
Using Ao35’ Ao33’ and A027;

To derive an expression for V(X,:.), the mean system performance

estimator, use will be made of the faét that results for a given block
are independent of other block results, Thus,

= 1 =
V&) = 5 f V(%) (8.37)
3 n, 30
iJ
Also, equation A.33 will be used in determining V(X .); thus, an ex-
pression for E[xij. ] must be determined, By defini'zion,
v 2 1 3 2
X =E[-— S (u+ A + B+ ABy + € ]
E[Xy." (nij = 1(I~l i i i ljk)>

nij
- E[<H+Aj + By + AByy + lj k T ijk)z]

. ij
= E[(p.+ Aj)2 + B12 + ABU2 + <'}-j B ‘njk)z
nij
1
amomy sy Y g o ok 2, ‘1“)] (.38)

since all cross products between a constant and random variables with
mean zero vanish,

Taking the expectation of the above random variables,
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nij
T & _ 2 2 2 1 2
E[XU, ]=(++ Aj) +0 B + 0 gt E[(n—ﬁ kzzlqjk) ]
+ 20gpp + 20Bgy * 20ABef (A.39)
nij

To evaluate A,39, the expression E[(n:L z ei;jk ] will be expanded;
i
thus, k=1

ij ™

i By ]
[ lj k= 1€ljkﬂ nlj k=1 m-l ljk ljm

1 2
= n + (g - D)o
“1—2-1 ij° ej ! ! ej]
1 v
= n_ij Ozej + (nlj . l)oej ’ (Aol"O)
for nj4>0; 1 = 1,2,000,b; J = 1,2,00¢,a, The above result is true

since the double summation in A.U4O involves nyy terms where
€13k€ijm = ei,jk and ny 4 "ni.j terms, where

€1jxciym ond m# ko
Using A.22 and A,15, equation A,40 follows, Substituting A.40 into A.39,

E[-iij-zl = (& +Aj)2 + 02 + GZAB + 20BAB + 20’Bej '

*2% Bej nTj(” e " Py D% ey (A.b2)
for ni.j>°5 1=1,2,000,b; j = 1,2,0¢¢,a, Using A,33, A.27,
A.41, we obtain
| 2
VR.3.) = 1%2 i, [ozB + 0"Ap * 20pgap *+ 20pg;
nu>0
+ Z”ABej nlij(ozej + (nlj -1)o ej)]
' 1
+ Bl.j.z (ozej -0 e E i‘—j (A42)
B30
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Note that from the viewpoint of analyzing an experimental plan, the
above expression for the variance of the estimator of system j mean per-~
formance can be regarded es the function of just two parameters, That
is,

l, system J block variance, Vb,j: where

Vpg = 023 + °2AB + 20ppp + 20Bej t 20ppey * e (A.43)

2, system j replication variance, Vr:j’ where
Vpy = 0Pe3=0'ey (A.Lk)

Knowledge of the values of both V4 and V4 Permits calculation of the
mean value estimator variance for arbitrary values of the number of
blocks and replications per block,

Estimation of the Variance of the Estimator
of System Mean Performance

Estimators of the values for V and V,; are derived in this section,
The required estimators are obtaine by firs’z estimating V.4 and then Vi, ;.
Each estimator is unbiased in that they are obtained by finding a statis-
tic with an expected value eqt_;.livalent to the parameter values required,

1j

.. 12
The statistic lZ’ kg ) (Xgg - Xj3.)” 18 used to estimate Vrys

Nij>0

and the expected value of this statistic is derived below,

M o :
n[]?ﬂ hnlj"’
y 2 % 02+ 5 np &y
- B s g my ®tt 7w
>0 nyy°0 nj>0
W2 z .2
BRI Yue g ry@y)
nu>0 nlj>0
(A.L45)
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Substituting A.35, A.k1, A.43, and A.44 into the above equation, we ob-
tain

n{j = 2
E[ T2 BT x“‘)z] =7 myplle ¢ A7+ Vi * ), >
Di§>0 nlj>0

L3

2
- y;’ [nu((p. +AYT Y Vrj/nu)]

ny;>0

= Vrj( %’ nij = bj)
n§;>0 (A.46)

Thus, an unbiased estimation of Vr,j is

A ' ) X )
vrj=<1 ( ; nid"’j))( i k21 Sk ™y )
nyy>0 nyy>0 (A7)

In order to find an estimator for_ the ameter Vy.:, the expected
velue of the statistic Z  nyq (xid.-x. 4o )¢ 18 derived below,
i

we

’
nid>0

e = |2 2. - o .o 2
EL;: ny3(%pg0-%ege) ] EL)iz ngy(%yye -2Xygekege + Ky )] (A.48)
’ ’
1

To evaluate A,48, the expectations of ii:j *X.40 and X, 3.2 are required,
and expressions for these quantities are derived below,

EIXy,. - i.j,1=}j 2 EIRy. X, N

nsj>0

-

1 = 2 1 —
= b—j E[XU. ] + -b—j §’ E[x”. ij,]
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Since the random components of xi:jk and xa:jk are independent when s and
i are different blocks,

i-ijo' iﬂ:j' & (u, + AJ)2
after substituting A.43, A, 44, and A.41 into the ebove expressions,
o = 2,1
E[xid°x°:l':| = (b +4y)° + by (Vg + Vpy/n13) (A.49)
Next, the expectation of X, 3.2 is found,

E[i-;-2]= -&- 2 EXy, "X 3]
nyy>0

1 2 1
= i; ((p. +Aj) 7 by (Vb3+ Vrj/n'ij))

=(}.:.+A)2+-]-‘-Vb + L v S

Substituting A.4k1, A.43, A.44, A,49, and A,50 into A48,
= 2
E[ f: nij(Xij. - X'j')1= i_i nlj(("""' Aj) + Vbj + Vrj/nij)
nj

>0 1"

' 2.1
-2 f“lj((" +A) E,'(vb’ * Viy/n4))
n,lj>o

2, 1 1 1
* 7 ny (6 + A% + Vi + b2V 2 n_sj)
Bi1>0 ngp?0
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(A.51)

The estimator for Vb;j is determined from A.51 by replacing VrJ with its
estimate, which gives

2

A
b - —
Voy = ! SNy (X e - Ko )

(By-1f = ng) 4, ij J
ngy30 R45>0 ~

- 1 o - % L 1
(b{] 1) Vrj bd(bJ 2)/ 't:, nlj + hj : 'E}
“Ij"ﬂ ﬂﬂj}'[l (Ac52)

A
If vb.j< O as computed above, set de = 0,

A
Since V;,5 is a variance, a negative value for V;,4 has no physical
meaning and s}jxould be adjusted, The assumption is made that the true
value of V4 1s & small positive gumber when the solution for V3 is
negative using equation A,51 and in place of V.4, When this case
occurs, zero is a better estimate o than a negative number, Al-
though the estimates using equation A.Sg are improved by this procedure,
the unbiased property of the estimators lost and a small bias introduced
because the resulting estimator is either equal to or greater than the
unblased estimator,

Note that the variunce of the mean value estimator for system j's
performance can be estimated by substituting equations A.52 and A.47
for their respective parameter values into A,42, That is,

A . 1 A ol 1
V(Xede) = 7 Wy + v L (A.53) .
J by 'bJ - —5 ‘v’ 1, ny4

nij 0

60



Variance of Estimator for Differences
in Mean System Performance

The correlations cited above among block, interaction, and replica-
tion effects will cause the estimators, X.4.; J = 1,2,°°¢,8; to be mtu-
ally correlated, Thus, the_variance of a g.ifference between two system
performances, €.g., Xejeo = Xege, 18 not sinply the sum, V(X.J.) + V(Xege)s
a8 one would expect when the two estimators are independent, This char-
acteristic is very important when comparing systems because the difference
between two systems may be much more important to the analyst than their
absolute magnitude, In general, positive correlation between the mean
value estimators will decrease the variance of the difference, XesoXopos
below the sum, V(X,4.) + V(X.t.)s On the other hand, the variancé of the
difference will be increased by negative correlation,

In this section an expression for the variance of the difference,
X, J.-X.t., wvhere j # t, is derived, Moreover, an unbiased estimator for
the variance of the difference is derived in a manner similar to that
used in the previous section,

Equation A,33 is used to determine the variance of the difference
Xojo-Xoo, thus, an expression for E[(X.j.-X.t.)?] is required, This
expectation is derived below,

E[(f.do'ioto )2] = E[fodoa - ﬁodoioto + .x-ot¢2] (AOS,"')

To evaluate the above equation, an expression for E(X,s. ¢ X.i.) i8
necessary, and this expression will be developed as a result of s
sequence of steps involving the computation of the following expectations;

1, E(xi;jk . xitk) ’

2, E(Xyyx o Xygp) where m # k,
3. E(Xyyx * Xite) »

, E(}-ci,j' 0 fito) ’

S5 E(i.do o iit.) , and

6- E(iodo * -x-oto) .

The first expression is
E[xijk . xitk] = Ef(p + Aj +B; + ABij + eijk) (+ +A +By+AB + €4 ]

) 2 :
YA @AYo+ 20,0 Y IARAR T TBe) ¥ 7 ABej

'

1]
*%Bet * 7 ABet ' 7 ejt’ (A.55)
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after deleting all terms involving the product of e constant and a zero
mean random varisble and applying A.4, A.9, A.10, A.16, A,18, and A.23.

Similarly, for the second expression,

EXyyg Xygm] = EL 0+ Ay + By + AByy +€,) (0 + Ag + By + AByp + €44) |

z ?
=AY (B ATt 20,3 Y TARBAB T “Bej T 7 ABe

+ to' +o*
"Bet "7 ABet T 7 ejt’ (A.56)

where use is made of A.24,

Both A.55 and A.56 will be used in determining the third expres-

sion
- d 1 nit
E[xijk' xit'] IR Z_? E[Xijk' xitm]
it m=1

A s 2
= = [(nit'l) ((p +At)(|,|,+Aj)+O'B+2

a “BAB F ABAB

1] L *
+ +
“Bej " "ABej T "Bet * " ABe: "ejt)

y+al+ 20

thTAY +AJ B BAB+0ABA.B

+ +o' + !
“Bej " "ABej T “Bet T 7 ABet * " ejt ]

A FA)tol + 20 +0 + +o'
B A B ATt s T aBAB ¥ " Bej 7 ABe

' * ! *
+ =
Bet " “ABet " Tejt * Tyt~ Tegt) / Mt

if k = nyy. Otherwise ifk > ny¢ >0, then

+0

EIX Kyl = (e +A) @ +A)+oleos

ijk BAB ' ARAB

*

! '
*Tpej T T ABej * TBet T ABet ' ” ejt (£.57)
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For the fourth expression,

- 1 N
ElRyp * Xpel = “—u 131 ElXjy * Xg0)

£ (P'+A)(P-+A)+0'Z+ZU' +o +o.  +g'
J " "B T BAB  ABAB " "Bej " " ppg

4 *
+0 +o' +o* + ke.it - cre:H',)
Bet ABet t ’ A.58
e e max (nij’ ng,) Skl

vwhere nj4, nit >0,

The above equation will be used in constructing the fifth expression,
That is,

- = 1 =
BRye Kyl =5 % X, %)
nsj>0

Recalling that all random variables in different blocks are independent,

mln(bj, bt) -1

[}

E[)_(.j. - X,,.]

) R =
it qE[xij' Xielt ® + Aj) - *+ A

]

[}

1
— 2 '
(m +Aj)  +tAY+ bj(cB +ZGBAB+UABAB+GBGJ HrABej

0" 0'*
. ejt ejt>,

+0 +a0' +0 +
Bet ABet " ejt

if nij,nit >0, (A059)

In the event either njy Or N4 are zero,

E[)‘E.j. c Xl = @ +Aj) @+ + A if by and by > 0,

For the last expression,
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-— -— l . 3 -_——
A oge * o 0 S e z Ex- .« * 0
EXep s Xl =% ¥ (Xeye s X ]
T
b
it 2
B A B TAY Y e T 2 n * T ABAR

j bt

' *

a -
, 1 = ejt = 7 et
b i, '
jt nij.n“>o maxmlj' nlt)
where byt = number of blocks with iy > O and n,, > 0, (A.60)
Substituting A.60 and A.50 into A.54,
= T & - 2, 1 P YT A +A
E[ (x.j. -X't.) ] = (p, +Aj) + —b-:-] Vb] + bf Vrj ?, nij (T8 j) ([ t)
ijt nij >0
- — 2 + + o ! ' ot
by by ("B %’BAB * “ABAB * "Be) * 7 ABej +"Bet’”’ABet“’ejt)
) *
2 > Tejt = 7 ejt 1
2
Sersr g PR EAYT A Vy
Jt TR max(nyy, ny) 1 t
e Y § -k
b n >’0 4
t it
2l 1 1 1
(Aj'At) + bJVbj+ by Vbt+p vrj i n,
J n.>0 ]
1 !
2V 2 =
{ n
bt n >b it
it
ijt’ 2 42 +o +to_  +o' +0 +a' +o* )
"5, (“B " *BaB * “aBAB * “Bej *“aBej * “Bet "7 ypey " uyt
! *
et 7 ejt
) bz_b z ejt (A.61)
i Pt ’ max (njj, njt)

Dyje Dy 0
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Using A.33, the variance of the difference becomes

e 1 1 1 = 1
V& =X )=V, + 5V T
By ) Yoy bf b Ty 3 it
b
(2 :
aP ' *
bb (GB + ZUBAB + " ABAB + “Bej +0ABej + U.Bet + UABet +0"ejt
3t
2 ";jt - “éjt
"6 T (A.62)
j nij;o, (Ryj nyy)
n,,>0

The above expression can be simplified considerably if the assumption is
made that each block having observations for system j also contains ob-
servations for system t and vice versa, Under this assumption bJ = by =
byt, and after substituting A.43 and A.44

1 ' 1 !
V(x.j.- X.,) = b,jt (Zo'AB + ZO-ABej + &TABet Hrej HORS = ZUABAB - zo-ABej
2 = + =
2 ppet ™ “et) Ty 2 Ve i n
Jt n,.>0 J
i
' *
N R O e 1
n,,>0 J nyye ;>0

when bd = bt = b'jt. (A063)

Both the estimation and analysis of experimental plans are simplified
1f V(X,4.-Xeto) 18 regarded as & function of two parameters requiring
estimation in addition to Vr.j and Vpi. That is, let

t v - '
Vagt = 2"'19113 + 20ppes * 20ppet * Tog * T et™ 29ABAB ~ 2TABej

- 20ppat - 20‘:Jt, and (A.64)

[] t *
Vet = %egt T Tegt (2.65)
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Vajt is referred to as the block variance for the difference between
system J and t, and Vpj4 is the replication varience for the difference
between j and t,

Estimation of Replication Variance

The expected values appearing in equations A,55 and A,.56 immediately
suggest an unbissed estimator for the replication variance, Note that
the difference

B{Xigk * Xuex] - E(Xagk ¢ Xitm] = Oege - Togy = Vrst

Thus, an unbiased estimate of v ¢ can be constructed by taking the dif-
ference between two sample averages where one average consists of terms
having the expectation equal to E[Xi k ° xitk] and the other average con-
sists of terms with an expectation o E[xidk * Xitm]o The desired
statistic is

& 4 o 1 min(myj, nyy)
rit b i, min(n,;, 2 Xk * Xk
Nyjp i) k=1
Djj» nj¢>0
Sleee b3
b 5t i, nyny¢-min(ny,, ny) k1 m=1 xijk Xitm

n..n >l

ij it k#m

t *
(A.67)

where bj ir the number of blocks with nyynig>1; and E[Vyye] = Vi,

Finding an estimator for Vyy¢ 1s a more difficult task. The
statistic o

z

i=1
is useful in finding an unblased estimator for Vgji. The expected value
of this statistic i1s derived below,

nij nit (iij. -i'jo ) (iitc = -x-:t.)

b - -

" F [1:—81 B Ret ()—(ij. iit‘ - -iij' }-{'t' - X.j. —it' +§.j' )—("t')]
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After substituting A.43, A.58, A.59, A.60, A.64, and A,65,

b
L[lzl ny g (X - Xopo) (K - Xy )]

=; n(*t\ rAg+L v eV o v+ ot
o M e\ B T APE T A) 5 Vg ¥ Vi - Vaid) * e, g

b
R T ((** *AD B+ A+ g (Vg + Vi - V) *
i=1 it

Vit \

by max(nyj, nyg) /

b

* f Dy e * A + Ay + 5= ij (Vij * Vbt = Vast)

v'
il = __1:;1_>

by ngy.n>0 Mex(nag,nst)

by -1\ (2 (Vs * Vg = V.ie)
= -Z_bj:— =1 nij nit bj bt djt

PR 2 L (g ) z ;

1 + 1

"V _th_ z min(nij. n;,) "j?t' ) TR j 50 max(ngj, Nat )
B B

for by = b, = lojt
(A.68)
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The desired estimator for V % is found by solving A.68 for V ¢ and re-
placing Vyjt, Vpj and Vpg wid’lh their respective estimators, us,

2b, b o
1%1 nij n“ (Xij.- x.j. )(Xit.- X. to)

Vas ™ Vi " Vbt b
(bjt‘l)( 15'1 ny5ny¢)

bj-2 \ [ b b
+ZV'rjt th-_l §1 min(nij, n,,) / i2231nij. n,,

+ 1 = S S ’
bjt(bjt-l) 8, max(ngj, Ng)

Ngj" Nt>0

for'bj = bt = bjt. (Ao69)

Using the above equation for C'd,jt and Qz'-jt iven by 1“1..67, estimates
of V(X, J.-X.t.) can be obtained by substituting q;t end V;-,jt into A,63.
That is

A - _ _1_ A 1 a _1_ A b 1l
A"/ (X.j.- Xct-) = b Vdjt + ;Tvrj iZ) + 2 Vrt i, ﬁE
jt it a0 Mi Py nl
ij J it>
Ay
2V
-b—’-'i s ______.max: — . forby=b = by.
ié i, (M Bye)
5o nyy>0 (A.70)
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APPENDIX B

LEAST-COST EXPERIMENTAL DESIGN ALGORITHM

This appendix presents the algorithm used to solve for the least-cost
experimental design to achieve a set of estimated variances less than a
specified upper limit, i.e,, Vg, for each system mean estimate, The algo-
rithm is provided a set of estimates for the system block variances, Vpj,
and system replication variances, Vpy. In addition, a set of blocks may
already have been observed, and, if so, the algorithm must determine the
additional experimentation in the form of additional replicetions for the
old blocks a.nd/or new blocks with replications, The algorithm considers
the expected cost to generate a block and to perform replications within
8 block in order to reduce the estimated variasnces for each system mean
estimate blow the limit Vg, The costs provided as input data to the
algorithm are:

Co
Cr

cost to generate a new block, and

cost to perform a single replication for one system,
in addition to Cy.

The solution provided by the algorithm is expressed by the follow-
ing variables:

o'
|

y = total blocks to be observed for system J

o
1

= maximum number of blocks to be observed over all
systems, i,e., b* = max bh‘*

-0
i

minimum number of replications in each block
number of blocks already initiated.

s
it

That is, the additional replications for system J to be observed in blocks
already initiated is

r* ¥

ny - nyy if ng - ngy >0, and

0 if n§* - nyys 0; where 1 = 1,2,°**,b', and

*
nyj is defined on page 50, In addition, bg - b' new blocks must be
initiated for system j with nd replications in each block,
Of course the algorithm can operate in the absence of blocks that

have already been initiated, In this case, b' is zero and nyy = 0 for
all i,

The algorithm finds a least-cost solution iteratively by determining
the conditional least-cost solution given b blocks for all possible values
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of b, For each conditional least-cost solution, the following values are
generated:

bg = total blocks to be observed for system j given a -
maximum of b blocks (bhl <b),
ng = minimum number of replications in each block given

e maximum of b blocks,

The lowest possible value of b is b' where all additional replications
are performed on existing blocks and the largest possible value of b
occurs when n§ = 1 for all J,

The solution for the conditional least-cost test plan given b blocks
makes use of the decomposition permitted into individual system test
plans when the number of blocks generated is known, That is, the least-
cost test plan from a overall viewpoint consists of the least-cost test
plen for each system considered individuelly to achieve & variance of
the system mean estimate no greater than Vg, This decomposition is only
permitted when the total number of blocks is known so that tradeoffs be-
tween the total number of blocks and replications for each system are not
required,

The least cost solution for nr is the lowest value of nl satisfying
the constraint giving the upper 11!111: on the estimated variafice after
the experimental plan is executed, That is, application of A 42 speci-
fies the choice of the smallest value of ng satisfying

L - e Vg (B.1)
b b2 i=1 max(ng,nij) baong *

A solution to equation B,1 giving a value of ng is complicated by the
sumation

b! \'j

z x 5

1=1 max(ny,n43)

but the solution is simplified by ranking the values of njj; 1=1,2,¢°°,
b'; such that nf, 2 n§+1’j; t = 1,2,000,b"; where nfj is o ranked value of
njqe Substituting these ranked values, B,l can be rewritten giving

Yoy oL % Yma, Comiy o (B.2)
b b° t=l 3 b2.n§

¥* r %* r
vhere m satisfies Npy > Ny 2 rﬁn+1,;] and ny is the smsllest integer
satisfying B.2, Assumimg that m is known, then
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P Beed

r -

nf ) (5-m)Vpj b1, (B.3)
: m VrJ
b2Vg - by - I =
t=1 nt,j

b2V, - bWy - Z Sl > 0
8 t=1 ngy

*
vhere m satifies n ng > nd > n¥ n+l, 3 and the function [X] is the greatest
’
integer less than X, In the event

m oy
b%Vg - DYy - = n—ﬁ <o,

t en nf does not exist and more blocks must be generasted, The value of
nd is aetermined iteratively using the procedure flowcharted in Figure B.1.

A special case occurs when the solution for n} by B,3 is one, In
this case, the 1ea.st cost solution may not require a replication in each
block, i,.e,, by may be less than b, Applying equation B.2, the smallest
value of bb‘ sa‘liafying

Vb, 1 : (bj b )Vr.j (B.4)
U 2 ni u,\2 Vs » *
J (b}jl) nij’>0 J (b )

b} <b', and

bd = number of blocks already generated
with nyy > 0,

gives the required conditional least-cost solution when ng determined
by B.3 1is one,

A flowchart of the algorithm for determining the least cost experi-
mental design appears in Figure B,l. The algorithm generates each
possible conditional least cost solution for all permissible values of b,
The conditional least cost given b total blocks is computed by the follow-

ing equation
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e RN o IR Vi e o i e B A e o

)
Cgp = Cped + I ny +Cp(by-b')

J=1
e b r £
; + Z I UWng-n34) ¢ (n4-n4q) « C
go1 401 9 J J7d r
where
Cyp = conditional least cost of achieving the variance
constraint given b blocks, and
= _ J1 if X>0

U(x) = the stop function where U(x) Vo if othérviss,

The least cost test plan is determined by finding the value of b* satis-
fying Cypy = M_g.nctb; and values of bj and ng, J = 1,2,0¢0,a; for this

* *
test plan are designated as the least-cost values ‘|;>u and nr « Each

possible value of b is calculated in order to determine b* since Ctb is
not a unimodal function of b,
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b=Db'
initialize experimental cost

ct - 1030

.l

=i

CON =,FALSE,

Does a solution exist for
this value of b, i.e., is

b2

m V
r
V_-bVy; - 5 71>o?

gres

Set CON ~.TRUE.
to note that another
value of b must be
analyzed

compute
njr - (b - m)Vry
m Vv
2 rj
b*V_=-bV,,- 3 —
s bj t=1 ntj
Isn? =1?
J
= Ism = 07? yes

* LI o > * es
Cﬂ By > 5 "Ry, g 7

no

m+ l=em

= {Ism = b'?,\

Figure B. 1. --Algorithm for Determining Least Cost Solution

yes
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Check to see if all b
blocks %re required

l

Figure B.1, continued--Algorithm for Determining Least Cost Solution

yes
{ Is b Sb?)

Set bj =Db'
= h! yes
Isb=b"'? ) §s
no
>
Is a
\L.bl + 1 z &1 + MI:J_ < Vs ? es
bt (b§)2 i, My b%)2
J n, ,>0 J
1,3
no
b} + 1--b'}1

No l,

bju is the required number
of blocks

Th



Compute the cost for this

value of b
a
Cip™ Cpr 0+ ;2
a b
+ 2 % Umn, -n
j=1i=1 J if

b+ 1=D)b

Figure B.1, continued--Algorithm for Determining Least Cost Solution

i.c., 1sC, < CY

C Is this solution lower cost than other
tb t

8, ) No

l yes

Record the new lower
cost solution

*
Ct = Cip
u* = u
by b
r* - r
TR

Should another block be

yes analyzed, i.e.,
is CON = ,TRUE, ?
No

@
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APPENDIX C
DERIVATION OF ESTIMATORS FOR THE FILTER
INDEPENDENT EFFECTS AND HETEROGENEOUS
VARTANCES MODEL (HEVIE)

Model Description

A special case in which the component effects of the Filter model
derived in Appendix A are independent with heterogeneous variances is
presented in this appendix, and estimators for the model's parameters
are derived, The model acronym is HEVIE for Heterogeneous Variances and
Independent Effects. In this model, the replication effects, €44ks have
unique variances for each system, oé as defined in Appendix A, but
these replication effects are indepeﬁdent of the block main effects, Bj,
and the interaction effects, In addition, the block main effects
are independent of the 1nteractign effects, Thus, the HEVIE model is a
special case of the HEVCE model derived in Appendix A, where

Q g g
[} ] I
o o o (o] o (o) o o

qQ
n

%3t
Oeit

for § = 1,2,%¢¢,a; and t = 1,2,°¢+,2, The parameters remaining in the
HEVIE model are oﬁ, ofp, and ogd, 3= 1,2,00058,

The basic purpose of simulation experiments is to estimate the mean
system performances, X, «s the variance of the estimators, V(X. o), and
the variances of the di%ferences between two system perfoma.nces
v(X. 3.-x.t). The expreseion for V(X, 3 .) given by equation A.42 of the

HEVCE Model becomes™®

2
%) =2 2 ), Tl 1
V(XQJQ) b (02 + O'AB) + b2 = ri-d—) (C.l)

*In the HEVIE model, the assumption is made that nij>0 for i and j;
thuﬂ, bJ = b, J = 1,2,000,8..
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after setting all covariances in A,42 to zero, Thus, the system j block
variance for the HEVIE model becomes

2 2
vbj oy * O B (c.2)
and the system ] replication variance is
- 2
V.. = @
rj ej (c.3)
for J = 1,2,¢¢¢,a, Note that the block variances are identical for each

system in this case, The variance of the difference between system
average performances, V(X. J.-X.t.) is simply the sum

V()—(.j. -X.) = V(J'c.j.)+vu?.t.) (C.4)

since the covariances all vanish, Thus, the HEVIE model can be imple-
mented if estimators of Vpj and Vpj, Jj = 1,2,¢¢0,8, are obtained, More-

over, these estimators can be used in the procedure described in Appendix

B to find the least cost test plan,

Estimators

Replication Variances

Equation A,47 can be used to obtain an estimator for V.. which is
identical to the estimator employed by the HEVCE model, Thus,

b ' b ) 2
A -—
V. =11 Z n, - )] = Z X, . - .)
Tj [ / (1=1 ij 21 jer O
for J = 1,2,"',&. (C'S)
Note that the estimator for Vrj is unbiased,

Block Variance

The estimator for V,j takes a different form for the HEVIE model
than the HEVCE model prima.rily because t.he value of Vpj is identical for

each system, To estimate Vb,j = oﬁ + AB’ the expectations for two

statistics not employed in the HEVCE model are required, These statis-
tics are commonly known as the block sum of squares, i.e.,

D ema 2
z (xioo'xooo) s and the
i=1
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interaction sum of squares, i.e.,

b a _ - 2
2 z (xij. - . "X.j. +XQ00) .
=1 §=1

Block Sum of Squares

The expected value of the block sum of squares can be expressed as

[E (xl..)] [(:‘c...)zl

b
z E[(xwz] -b E[(x..)z]
i=1 (c.6)

The expectation of Xj..Z is evaluated below,

b -—
E[z (iloo -XOoo)z]
i=1

2 s luz:lj A+ B, +AB, +§ )]Z]
E| (Xg.)“|= E z (b + A+ i k

Dy

& 2

-F el sy “*j)]
a =1 j k=1

a a

since Z Aj 0 and Z ABij =0 as expressed by equations A.2 and A, 7.
i=1 =1

Continuing,

1 a2 u2 + g2 B2 s 1 > z]
. = =4 E + B+ T — Z ¢
[(X, ) ] 2z [ p-ta” by <j=1 D el ijk

after deleting all products of a constant and a zero mean random varieble,
and products of two zero mean independent random variables, Thus,

2 2 1 % o
E[uq..) J =pleed + 5 X .
LA S (c.7)
since the values of ej 4y are mutually independent,
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Using the above result for E[(X;..)?], the expectation of Xoeol
can be determined,

b b ) b _, b b_ _
=1 E[z z X..X.. =—2E[2 X.. +2Z le..x..]
b b® Li=1 =1 s=i+1 °

a b
=1 2.2 1 ej b-1) >
= = \pé+0f + =3 = = ’ (c.8)
2 B ba® 4o 4=y My b
where the relationships
& = e n(n+l
E(X..X..]=u’ and 21=—(;—l
i=1

were used in evaluating the last term in C.8,

Substituting C.7 and C.8 into C.6, the expected value of the block

sum of squares becomes

b - L &8 b @
E|l Z (xioo -Xees )z] :b(l"'z"'cz)"'_ = =z _el
=1 B/ a2 =1 {=1 nij

J
2 2 a b ol

- +u-B+L z Z nej = (b-1)p2
a’b 1 1=1 MY

5 1 a b Uzej
= b-1) | o¢ + > h)) (C.9)
B a2y =1 =1 My

Interaction Sum of Squares

The expected value of the interaction sum of squares is derived
below,

[ 2]

ok

LX)

-l

(R

)
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L

L2

b a _ 2
E[E T (X -Xp. -Xg tXoL) ]
=1 =1

=E[§ z(RE K2R ARE 2Ry Ry 2%y R,
=1 j=1

285 R+ 2K Ry - 2Kl KL - 2K }'c...)]

after expanding the expression squared,
[z z % ]+E[ ]+E[E bx.j ]+abE[)-('..?‘]
i=1 1 g

b
+E[z 2a%.2+2a%.. K., +2%p.. K. -Za)'f...z)]
i=1

a
+E[E (-sz.j -sz..)J
=1

b a 2 b _ 2 a 2 _—
E[Z z xij'] -aE[i?ii1 Xi..]-bE[Z X.j.]+abE[X...]

i=1 j=1 =1
(c.10)
Using equation A.41 and noting that
T
BAB = “Bej = “ABej = %ej = ©
for the HEVIE model, then
2
o
¥ 2 0 I 2 4ual 2 ej
E[X.c]= (p+A) +0& +0,5 + .
ij ( ) *°B *7aB m (c.11)
Similarly from equation A,50, we obtain
b
s 277 L el 2 1 .2 1
E[R 5] = (h+A)°+ T Op +0,0 )+ = 00 = e .12
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In using the above equations to evaluate
a 5, a a
E|Z X.. | and E| Z X... , the constraint £ AB,. =0 should
1j i ij
1 1 Fl
be recignized,
In evaluating E Z ABEJ 8 degree of freedom is lost to the con-

J=1
straint so that

8 2
E[Z AB”]= @-1) o 2.
i1

Substituting these relations into C,10, we have

b a _ 2
E[ z Z (xij -Xi.. -X.j +X, . ) ]

=1 j=1
b
a a
2 2 2 . » 2 » 1
= b(p +A)“ +abo S +@-1)bo, o + Ce
o AB o m Ty
a b 4 a
2,.2,_ 1 2 5= _ 3T b(p+A)
-ab(pétol) Zo n (»
B’ a 1 € =1 M =1 )
b
2 12 1
-acp -(@a-1) @ =2 oo, Z
B AB b =1 ej =1 nlj
> > 1 a 2 b
+a(pt+ton )t 0 z o +ab - I)P' ’
B)" ab ) e 1_1"1
2 @ney b o2 2 o1
@-1)b-1) opg +* T fl Tej )—31 ny

Block Variasnce Estimator

The expected value expressions for the block and interaction sum of
squares derived above rovide the basis for an unbiased estimator of the
block variance vb,j cr o Using C,13 and C,9, we can solve for the

fr— - | SN

F 2

wa
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2

e

expected value of V,,y. After replacing parameter values with unbiesed
estimators and removing expectation symbols, then

b

A Ao 2 _ — % 2 )
vbj = U‘B +9AB ifl (xi.. X.et) / ®b-1)

X+ R 2/l (a-1)b-1)]

+

Mo

M
2

]
24

a’b =1 =1 M (C.1h4)

Note that C.14 is an unbiased estimator for Vp4s however, negative esti-
mates may occur in practice for Vi, 4 when the estimates for Vr;] are
sufficiently large and the interac’zion and block sum of squares are
sufficiently small, Of course, a negative value of ij has no practical
meaning, so & procedure similar to that employed by the HEVCE model is

sed, Thus, Vpy will be used from C,14 if it is positive; otherwise,

bj 18 set to zero, The assumption is made that the true value of Vi
is likely to be negligible when negative values from C,14 occur, Al-,
though this procedure will yield better estimates, the estimator for Vb,j
that deletes negative values is bilased.
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APPENDIX D

DERIVATION OF ESTIMATORS FOR THE FILTER INDEPENDENT
EFFECTS AND HOMOGENEOUS VARIANCES MODEL (HOVIE)

Model Description

This appendix presents the Filter Independent Effects and Homogene-
ous Variances Model (HOVIE), and estimators for model parameters are
derived. The HOVIE model amounts to a further simplification of the
HEVIE model presented in Appendix C, and the HOVIE model is equivalent
to mixed two-factor model commonly found in experimental design litera-
ture (Hicks, 1964; Graybill, 1961; and Winer, 1971), The HOVIE model
is obtained from the HEVIE model by setting

UEJ = 0'e2 for all j,. (p.1)

Thus, the HOVIE model specifies that all systems have the same variance,
and it follows that they would have the same test plan,

The variance of the estimator for system J mean performance is

b
— 1.9 2 e 1
V(chc) = b (U-B +0-AB ) 4 e JT e

(D.2)

which is obtained directly fram C,1, As specified for the HEVIE model
by C.2, the system jJ block variance for the HOVIE model is

vbd = O'Be + O'AeB (Do3)

In addition, the replication variance is

Vry = 0'e2 s for J = 1,2,¢00,8, (D.4)

As done by the other models, the least-cost experimental design can be
prepared given estimates of Vi 4 and Vrj , and these estimates can be
used in the procedure describea in Append:l.x B to prepare the experi-
mental plan,
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Parameter Estimators

Estimators for V, and Vy4 are specified in this section using
regults developed for ’Ehe HEVIE and HEVCE models,

Both the HEVIE and HEVCE models use the result specified by equa-
tion A6 in deriving an unbiased estimator for vr:J‘ That is,

r nij . 2-1
nij;o nij>o

Since the replication variances for each system are identical for this
model, then the statistic cited above can be summed over each system to
provide an estimator for Vr,j = crg; J = 1,2,00e,8, The expectation of
this statistic is*

b a i ” b a .
E 2 2 Xy -Xp)|=| Z Z m,-ab}Vv o
=1 j=1 k=1 ikt =0 i=1 j1 = g

b a M - 2 b a 5
Vrj = X = = (Xijk - Xij.) / [ = = nij - ab] =0 2 . (D.6)
‘ =1 k=1 <

o The same estimator as employed by the HEVIE model can be used for
\I/’BJ after accounting for the fact that T is a constant function of j.
us,

b
A A 2 A 2 pl v brd 2
vbj = Q'B +0'AB = 1?1 (Xioo "x.n.) /(b'l)

X.. - X + X 12/l (a-1)(b-1)]

11 BT
_fath) .2 g )l; = (D.7)
a2p =1 =1 My oI

;ﬁllvalues of nyj are assumed to be greater than zero in the HOVIE
el,
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D,7 is an unblased es imator for V.

be made in the event V is less tgg.n
and HEVCE models, nega.tive values of 0
realistic estimates but removing the
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APPENDIX E

FILTER PROGRAM

Description

Purpose

The Filter program accepts data generated by blocked simulation
replications and estimates Filter Model parameters, These parameters
are used to estimate the variance of average system performance for
each system alternative and the variance of the difference in average
rerformance between each possible pair of system slternatives., Finally,
a set of least-cost test plans are determined so that the variance of
each system's average performance is less than a specified upper limit
Vg. A sequence of values for Vg are considered, an a test plan is de-
termined for value of Vg,

Input Date Format

Card Number Variable Columns Format
1 Title 1 to 60 Literal
characters
2 Title, continued 1 to 60 Literal
characters
3 NS 1to$ integer
3 BP 6 to 10 integer
3 NVARS 11 to 15 integer
3 VARI 16 to 25 real
3 DVARS 26 to 35 real
3 CR 36 to 45 real
3 CB 46 to 55 real
L N(1,1) 1 to5 integer
4 N(1,2) 6 to 10 integer
L N(1,NS) 4NS + 1 to 5SNS integer
4 (2, ) 5NS + 1 to 5 (NS+1) integer
3 + NN N(BP,NS) . integer

(Continue entering the N array by rows starting with the first row, then
the second row, Each value is entered in a field of length five columns,
and NN cards are used with eighty columns available on each card.)
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Card Number Varieble Columns Format

+NN X(1,1,1 1l to 10 real

L4 +NN Xx(1,1,2) 11 to 20 real

L+NN x(1,1,3) 21 to 30 real
L+NN x(1,1,N(1,1)) 10 N(1,1)-9 to

10 N(1,1) real

5+NN X(1,2,1) 1 to 10 real

5+NN X(1,2,2) 11 to 20 real

ne

(Continue entering observation values for the first block and second
system, Up to eight entries can be made on a single card, If more
than eight observations have been recorded for a system, use more than
one card, Always start a system on a new card, After recording the
first b]).ock, enter the observations for the second block using the same
format.

Definition of Variables

BJ(J) =  Number of blocks having replications of system J

BP =  Number of blocks already run

BU(J) = Total blocks to be run for system J

CB = Cost to run a block

CR = Cost to perform one replication of one system

DVARS =  Decrease in value of Vg for each case considered

N(1,J) =  Number of replications already run for system
in block I '

NR(J) =  Number of replications for system J to be run in
each block

NS =  Number of systems

NVARS = Number of different values of Vg considered (number
of different test plans computed)

VARL = Initial value of Vg considered (each successive
value is decreased by DVARS)

VARS = Upper limit on variance of system

VBE(J) = System J block variance (Vpy4)

VDBE(J ,K) = Block effect varlance for estimated difference
between performence of systems J an K (Vgi4)

VDPS(J,K) = Replication effecf variance for the difference
between J and K (Vp.4p)

VR(J) = System J replicatioh effect variance

VXBAR(J) = Estimated 6agia.nce of the mean performance of
system J (¥(X.3.))

VXBDIF = Variance of the estimated difference between the
performance of J and K(M(X. goXege))

XBJJ = Estimanted difference between the mean performance

of system J and JJ
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Method
1. Read NS, BP, NVARS, VARL DVARS, CR, CB
N(I, J)forJ=1, NSand I= 1, BP
X(, J, K)Yfork=1, N(I, J), J=1, NS, andI= 1, BP
2. Compute XJ(J)=X.j. for J=1, NS
3. Compute
VR(J) by equation A, 47
VBE(J) by equation A, 52
VXBAR(J) by equation A, 53
for J= 1, NS
4. Compute
VDPS(J, JJ) by equation A.67
VDBE(J, JJ) by equation A, 69
VXBDIF by equation A.70
for J=1, NS,
JJ=1, NS, and
J# JJ
5. Set VARS = VARI

6.

7.

8.

9.

IV=1
Determine the least cost test plan to reduce the estimated variances for
each system performance measure below VARS. Use the procedure
specified in Appendix B.
If IV = NVARS, go to step 9
IV=1V+1

VARS = VARS - DVARS

Go to step 6

Stop.
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