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FOREWORD 

Research conducted by the Systems Research Group under Contract 
DAAH01-71-C-1258 is described in this report. The report is organized 
so that the Filter simulation experimental concept is introduced in 
Chapter 1, and the Filter experimental models are described in Chapter 2, 
Chapter 3 presents the experimental results and an analysis of these 
results to assess the validity and efficiency of the Filter concept. 
Chapter k presents the conclusions drawn from the research. Detailed 
mathematical derivations and computer program descriptions are presented 
in the Appendixes. 

Although this is a final report for the Filter Model contract, 
comments, suggestions, and criticisms addressed to the authors of the 
report are welcome since our group maintains a continuing interest in 
and participation in military operations research. 

Conclusions drawn in this report represent the current views of 
the Systems Research Group, Department of Industrial and Systems Engi- 
neering, The Ohio State University, and should not be considered as 
having official USAMICOM or Department of Anny approval, either ex- 
pressed or Implied, until reviewed and evaluated by those egencies and 
subsequently endorsed. 

The  cooperation received from MICOM personnel in the conduct of 
this research has been extremely helpful. In particular, we wish to 
acknowledge the advice and assistance provided by Miss Elizabeth 
Watkins and Messrs« James Stage and Ernest Petty, 

In addition, we would like to acknowledge the important contribu- 
tions of Mr, Robert Wilhelm who wrote the Filter Model computer programs 
used in this research. 

11 



I 
I 
! 

.. 

1 

TABLE OF CONTENTS 

CIIAiTER PAGE 

1                  THE FILTER CONCEIT OF SIMULATION EXPERIMENTS .... 1 

Introduction  1 
Use of Filter Model  1 

Review of Relevant Material *......... 2 
Research Required for the Filter Model    .... 3 
Organization of the Report • h 

2 FILTER M0DEI5        5 

Example of Experimenting With Blocks    ..... 5 
Filter Model Versions   9 

HEVIE Model  12 
HEVCE Model  lU 

k 

APPENDIXES 

LJ 

A 

0 

Least-Cost Experimental Design  18 

EXPERIMENTAL RESULTS  21 

Introduction  21 
Validity of the Filter Models  26 
Cost of Estimating Mean Systesm Performance ,  . 29 
Cost Comparisons for Achieving Equivalent 

Variances  31 
Cost Comparisons for Reducing Variance Below 

Specified Upper Limits  3^ 
Sensitivity of Experimental Plans to Input 

Variability  37 
Cost of Comparing Mean System Performance ... 1+1 

Validity of the Expression for 
V(X.j.-X.t.)   hi 

Cost of Estimating Differences in Average 
System Performance  ^3 

Screening Candidate Alternatives  kh 

SUMMARY AND CONCLUSIONS  kj 

DERIVATION OF ESTIMATORS FOR FILTER MODEL PARAMETERS 
(HEVCE MODEL)  k? 

Introduction  ^9 
Filter Model Structure  ^9 

iii 



TABLE OF CONTENTS (continued) 

APPENDIX PAGE 

B 

C 

References 

Variunoe cT Estimator for Mean System 
Performance'  53 

Estimator fo- eon System Performance . 53 
Variance of Keen System Performance 
Estimator  5^ 

Estimation of the Variance of the Estimator 
of System Mean Performance  57 

Variance of Fstünator for Differences in 
Mean Surface Performance ••«•••••• 6l 

Estimation of Replication Variance ... 66 

LEAST-COST EXPERIMENTAL DESIGN ALGORITHM  6$ 

DERIVATION OF ESTIMATORS FOR THE FILTER INDEPENDENT 
EFFECTS AND HETEROGENEOUS VARIANCES MODEL (HEVIE) 77 

Model Description   77 
Estimators  78 

Replication Variances  78 
Block Variance  78 
Block Sum of Squares  79 
Interaction Sum of Squares • • . 80 
Block Variance Estimator  82 

DERIVATION OF ESTIMATORS FOR THE FILTER INDEPENDENT 
EFFECTS AND HCMOGENEOUS VARIANCES MODEL (HOVIE), 85 

Model Description  85 
Parameter Estimators  &6 

FILTER PROGRAM  89 

Purpose  89 
Input Data Format .............. 89 
Definition of Variables  90 
Method  91 

  93 

iv 



I 
I 
I 
j 

LIST OF TABLES 

Table No. Page 

2.1      Red Casualty Data     7 

3.1 Red Casualty Data from Blocked Simulation Repli- 
cations    23 

3.2 Rounds Fired at Blue Weapons Data from Blocked 
Simulation Replications    2k 

3.3 Blue Exposure Time Data from Blocked Simulation 
Replications     2k 

3»k Engagement Range Data from Blocked Replications .   25 

3.5 System 1 Performance Data from Independent Full- 
Length Simulation Replications    25 

3.6 Estimates of the Variance of Total Red Casualties 
for One Simulation Replication    27 

3.7 Estimates of the Variance of Total Pounds Fired 
at Blue for One Simulation Replication ....   27 

. 

3.8 Estimates of the Variance of Blue Exposure Time .   28 

3.9 Estimates of the Variance of Engagement Range . .   28 

U3.10 Cost Comparison to Achieve Equivalent Variance of 
Average Red Casualties, Two Blocks Versus Inde- 
pendent Full-Length Runs    32 

3.11     Cost Comparison to Achieve Equivalent Variance of 
Rounds Fired at Blue, Two Blocks Versus Inde- 
pendent Full-Length Runs .    32 

. 

. 

t 

3.12 Cost Comparison to Achieve Equivalent Variance of 
Blue Exposure Time, Two Blocks Versus Independ- 
ent Full-Length Runs         33 

3.13 Cost Comparison to Achieve Equivalent Variance of 
Engagement Range, Two Blocks Versus Independent 
Full-Length Runs         33 

3»lk             Cost Comparison to Achieve Average Red Casualties 
Variance Lower Than 1.00 - Additional Replica- 
tions After Two Blocks Versus Independent Full- 
Length Runs         35 

# 

v * 



- „ 

LIST OF TABLES (continued) 

Table No, Page 

3.15 Cost ComparlBon to Achieve Average Rounds Fired 
Variance Lower Than 1.20 - Additional Replica- 
tions After Two Blocks Versus Independent Full- 
Length Runs 35 

3.16 Cost Comparison to Achieve Average Blue Exposure 
Time Variance Lower Than 3150 - Additional 
Replications After Two Blocks Versus Independ- 
ent Full-Length Runs 36 

3.17 Cost Comparison to Achieve Average Engagement Range 
Variance Lower Than 350 - Additional Replications 
After Two Blocks Versus Independent Full-Length 
Runs 36 

3.18 Comparison of the Estimates of HEVCE Parameters 
from Two and Four Blocks of Data 38 

3.19 Comparison of Least-Cost Experimental Plans Sub- 
sequent to Two Blocks ..............    39 

3.20 Comparison of Least-Cost Experimental Plans Sub- 
sequent to Two Blocks      kO 

3.21 Variance of the Difference in Average Performances 
'   Validity Check k2 

3.22 Variance of the Difference in Average Performance ,    ^3 

3.23 Efficiency of a Single Block Filter With Five 
Replications         ^5 

LIST OF FIGURES 

Figure No. Page 

B.l Algorithm for Determining Least-Cost Solution ...    73 

vi 



I 
1 

., 

CHAPTER 1 

THE FILTER CONCEPP OF SIMULATION EXPERIMENTS 

Introduction 

Research conducted under contract to the United States Army Missile 
Command (MICOM) by The Ohio State University Systems Research Group has 
led to the development of DYNCOM, a high-resolution model of land combat 
capable of evaluating the performance of tactical units employing ad- 
vanced missile systems.   This report describes the results of research 
to develop methodology for applying DYNCOM in a more rapid manner and 
for reducing computer usage costs.    The objective of this research is to 
develop a dynamic simulation filter which can screen candidates, iden- 
tifying weaker alternatives, with much less cost than operating the full- 
scale DYNCOM simulation. 

•- 

Use of Filter Models 

A study of weapon design characteristics and their relationships 
with tactical-unit combat effectiveness often requlrles the evaluation 
of many weapon system design alternatives and force mixes.   Moreover, 
to adequately determine the relationships between individual weapon 
performance as constrained by the battlefield environment and tactical 
unit performance, a high-resolution simulation such as DYNCOM often is 
needed.    This high resolution model, however, can be costly to apply if 
a large number of alternatives are being considered.   Current simulation 
costs for DYNCOM are running up to $200 for a single full-length battle 
involving armored weapons, artillery, helicopters, and air defense weapons. 
To reduce the cost, lower resolution filter models and subjective analyses 
have been used in the past to filter candidate weapons and force mixes. 
An example is provided by the use in the TATAWS study of a simplified 
deterministic simulation called FILTER (Booz-Allen Applied Research, 
1967) to screen candidate weapons and weapon mixes to reduce the work 
load on the more detailed IUA simulation (USACDC, 1968).    However, the 
lack of homogeneity between filter and simulation results in the TATAWS 
study created severe problems in implementing this concept.    That is, 
candidates that fared poorly in the FILTER model could do well in the 
IUA simulation.   Moreover, this homogenity problem is always a potential 
problem when using a separate low-resolution filter model to screen can- 
didates for a more detailed simulation. 

The research presented in this report proposes that portions of 
DYNCOM Itself serve as a dynamic filter when required in the context 
of the military problem being studied.    These procedures will be similar 
to physical experimental design in that DYNCOM will be used to generate 
an environment for comparison among the alternatives being considered. 
This environment can be used as the starting point for further simula- 
tion experiments on each alternative.    The agricultural experimenter 
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who tests the productivity of different seed types by planting groups 
consisting of each type of seed at different points in a field is using 
a similar concept in physical experimentation.    Each group of seeds has 
a similar environment, and the results from each group are correlated 
so that contrasts between the seed productivities are heightened.    Each 
group is called a block in the language of experimental design. 

Use of DYNCOM both as a fast operating filter model and as a model 
for a full-scale battle assures a greater degree of homogeneity between 
filter and simulation, and the ability to construct this filter model 
from the DYNCOM program takes advantage of the flexibility already 
inherent in the DYNCOM program.    The following example illustrates the 
concepts described above. 

Assume that a study is being conducted to evaluate the combat 
effectiveness of the MAW class of weapons versus the LAW and HAW classes 
of weapons.    Further, assume that the first problem in the study is to 
determine the best MAW weapon, where various MAW systems have differing 
accuracy, lethality, and rate of fire characteristics.    To start, the 
procedure would specify that one complete simulation of DYNCOM be made. 
Simulation check points would be established to determine the portion of 
the battle during which the different MAW candidates would be firing.    A 
dynamic filter would thus be determined for studying the different MAW 
weapons by identifying the first event that a MAW weapon would be firing. 
Inputs to the Filter Model would be dynamic in that they would be deter- 
mined from the complete simulation using DYNCOM's restart capability. 
One set of inputs would establish a block using the physical experimental 
design terminology.    Replicationa by the dynamic filter would be made 
with filter inputs being modified as required, until results with the 
required statistical precision are obtained.    Several replications in a 
single block may be made for each system alternative by changing the 
random number sequence.    Moreover, identical random number sequences 
may be used for each replication in a given block to increase the corre- 
lation among results. 

Review of Relevant Literature 

Application of these concepts to a high resolution combat simulation 
has not been reported in the available literature.    However, Fishman 
(1973) and Emshoff and Sisson (1970) suggest that these concepts may be 
profitably applied to increase the efficiency of simulation experiments. 
Neither authors offer any examples which show that actual simulation 
experiments may benefit from these precedures. 

An experimental model which could be used to analyze results from 
blocked experiments is called the Two-Way Mixed Model (Winer, 1971» 
Graybill, 1961; Hicks, I96U; Scheffe, 1959; and Hocking, 1973).    In 
this model two factors are present and many levels or possible values 
may exist for each factor.    In this application, one factor is the combat 
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system being analyzed and each particular system is a different level 
for the combat system factor. This factor is regarded as being fixed 
or deterministic because the different systems are predetermined and 
not randomly selected. The block environment is the other factor and 
it is regarded as being random because a very large number of possible 
block environments exists and each one is randomly selected from this 
population.    Usually the assumptions are made that 

1. all random effects are independent, 

2. all variances are constant with respect to the system being 
represented, and 

3. all systems have the same number of replications per block, 

Scheffe (1959) and Hocking (1973) present Two-Way Mixed Models with 
correlations among random effects; however, the correlations proposed by 
their models assume homogenous variances for each system and the 
covariances among the replications within a block are assumed to be zero. 
Since data from DYNCOM suggest heterogeneous variances for each system 
and the experimental procedure may introduce correlations among the 
replications, a filter model incorporating correlations will have to be 
a different model than that developed by Scheffe and Hocking. 

Research Required for the Filter Model 

As noted in the literature review,  application of the concepts of 
blocked experiments to simulation experiments has not been performed. 
Moreover, the nature of the combat process simulated by DYNCOM indicates 
that available Two-Factor Mixed Models may be inadequate for representing 
DYNCOM results.    Accordingly research is required to formulate a model 
explicitly designed to represent DYNCOM results, and an algorithm is 
required for determining the least-cost test plan using this model.    Then 
this model and other currently available models need to be tested with 
DYNCOM results to determine their validity.    That is, the estimates of 
the mean and variance of system performance must be homogeneous when 
estimated by independent full-length DYNCOM runs and blocked filter runs. 

In addition, blocked data from DYNCOM need to be analyzed to 
determine whether the Filter Model actually estimates systems performance 
more economically than independent full-length DYNCOM replications.    Two 
types of comparisons need to be made, i,e., the Filter Model needs to 
be compared with independent full-length replications with respect to 
their efficiency in estimating mean system performance and with respect 
to their efficiency in estimating differences in mean performance between 
unlike systems.    The process of filtering requires comparisons to be 
made between different systems so the difference in average performance 
between two systems is important.    Finally, the ability of the Filter 
Model to screen candidates with small samples or modest computer expense 
is required to be tested tj indicate the utility of the filter concept. 

n 
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Organization of the Report 

/Vn overview of the three Filter Models hypothesized for use with 
DYWCOM is presented in Chapter 2.    In addition, estimators for model 
parameters are presented in Chapter 2,   Chapter 3 presents the analysis 
of DYNCOM results; a valid Filter Model is identified in the chapter, 
and the economies accuring from use of the Filter Model are estimated. 
Chapter k presents a summary of the research results and the principal 
conclusions. 

Detailed mathematical derivations are presented In the appendixes. 
Appendix A presents the Filter Model explicitly designed to include 
correlations and heterogeneous variances expected to occur with DYNCOM. 
Estimators for the model parameters are derived in Appendix A.   The 
least-cost experimental design algorithm is developed in Appendix B. 
Appendix C presents a derivation of estimators for a version of the 
Filter Model incorporating independent effects and heterogeneous variances. 
A derivation of estimators for smother Filter Model version having in- 
dependent effects and homogeneous variances is presented in Appendix D. 
Appendix E presents instructions for using the Filter program to estimate 
model parameters and calculate least-cost test plans. 
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CHAPTER 2 

I FILTER MODELS 

_. Introduction 

*- As described in Chapter !> the basic purpose of the Filter Model is 
to screen alternative systems to eliminate less desirable systems using 

ß replications of homogeneous combat environments called block environments. 
In this chapter, several models of test results under conditions of block- 
ing are described for consideration as the Filter Model,    These models 
are used to predict the variance of mean system performance estimates 
when experiments are blocked.   Moreover, an important consideration is 
the variance of the difference between two system performance estimates 
since the basic purpose of the Filter Model is to make comparisons among 
systems.    In addition, the characteristics of estimators for model param- 
eters required to implement the Filter Models are presented.   Given 
parameter estimates, an algorithm specifying the least-cost test plan to 
reduce the variance of the mean system performance estimator below a 
specified upper limit is presented. 

In order to more clearly present the concepts inherent in the dif- 
ferent Filter Models, a numerical example is presented in the following 
section.    After this example, the Filter Models are presented and com- 
pared by reference to the example. 

. 
Example of Experimenting with Blocks 

Consider a combat simulation which is being used to compare the per- 
formance of armored battalions with different anti-tank weapons having 
dissimilar accuracy, lethality, and rate of fire characteristics.    These 
systems are noted as System 1 and System 2,    Of course, the  nti-tank 
weapons in question are only one of several weapons in the armored 
battalions.    The system analyst is interested In estimating performance 
measures in comparing these systems, and one of these performance mea- 
sures is expected enemy casualties during a particular engagement. 

In the simulation experimentation process, blocks are generated by 
simulating the initial part of the engagement until one of the two systems 
being compared can be employed and then generating a restart data set. 
This data set specifies the complete battle situation as known to the 
simulation, and the data set Implies a block environment.    The block 
environment consists of the state of each combatant as indicated by the 
following status variables: 

1 
I 

1, casualty status; i.e., mobility kill, fire power 
kill, complete kill, or no kill; 

2. enemy weapons detected; 

. 



u 
3, position; 
k, velocity; 
5. ammunition supply; -r 
6. fire support missions requested; 
7. neutralization or suppression state; and 
8. current target, etc. 

Blocks are replicated by simulating the remainder of the battle until * 
its conclusion for each system alternative and then repeating this pro- 
cess with a new string of random numbers starting with the same block 
environment. J 

Two options exist for performing the replications.    One option con- • 
sists of using a unique sequence of random numbers for each system and 
each replication.    Another option introduces more correlation among 
results by using the same sequence for each alternative for a given 
replication.    This method applies the simulation variance reduction 
concept of introducing positive correlation to reduce the variance of 
the difference between pairs of mean estimates (Emshoff and Sisson, 
1970; Fishman, 1973).    The latter method of using the same sequence of 
random numbers for each alternative is recomnended, j 

Continuing with our example, assume that two blocks are generated, -. 
and each alternative is replicated five times in each block for a total 
of twenty replications or experimental results.    Let ■ 

XJJJJ = enemy casualties inflicted by the blue battalion 
during replication k for system J of block i, X 

In our example, k = 1,2,,,.,^; 1 
J - 1,2; and 
i = 1,2. 

The meaaure of system 1 performance would be the average_of all observa- | 
tions; i,e., values of Xij^, obtained on system 1,    Let X,x. be this • 
average, then 

I 
1     2     5 

X,!, = TQ   z     z   xiik • t xyj i=l k=l j 

Throughout this report, average values will be noted by the symbol X with 
dots in place of the subscripts averaged out.    In this example, assume 
that the enemy force has at most fifty combatant weapon systems so no 
value of Xjjjj can be greater than fifty.   Also using the data displayed 
in Table 2,1, 

X,!.  = 15,6 

X.2,  = 18,2    , 

1 
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Table 2.1 

Red Casualty Data 

Rep 1 Rep 2 Rep 3 Rep k Rep 5 

Block 1 

System 1 
System 2 

15 
18 

16 
20 

17 
20 

18 
17 

15 
18 

Block 2 

System 1 
System 2 

18 
18 

17 
23 

16 
17 

18 
21 

6 
TO 

a 

.. 

.. 

i 
I 
i 

The above system performance averages are estimates of the true, but un- 
known, expected number of red casualties for the two systems. Let 

Ri =  expected number of red casualties for system 1 

Re = expected number of red casualties for system 2. 

If we let n be the average value of Ri and Ra or 

U = | (Ri + Ra) , 

thenji Is the overall average system performance. The average of X.i, 
and X,2. Is an estimator of n; i.e., 

| (X.i. + X.a.) = 16.9 = X... 

is an estimate of n. Let Ai be the main effect due to system 1, and Ag 
be the analogue of ki  for system 2, These values are determined by 

Ai » Ri - |i and 

Ag = Ra - |i • 

Note that Aj. + Aa = 0 since 

A!  +Aa = Ri  -n+R2-|i=Ri+Ra-2n = 0. 



.. 

Also X.i. - X... » -1.3 Is an estimate of A|  and X.,>. - X... «= 1.3 Is 
the corresponding estimate of A,.,    The parameters yi, Ai, and Ar», will 
be in each Filter Model, 

The values mentioned above account for differences among systems, 
but overlook the differences from block to block.    For example, the 
block 1 average performance over all system replications is 

Xi.. = 17.^, and 

X;3.. - 16.1+ 

is the block 2 average performance.    The above quantities are used to 
estimate the true block main effects, where 

Bi = true block main effect, and 

Ba = analogue of Bi for block 2. 

The block 1 expected average performance is Bi + n, and, similarly Ba is 
the block 2 expected deviation from the overall true mean performance \i. 
Thus, a very large number of replications of the block 1 environment 
over both systems would tend to give values of Xj... close to Bx + n with 
probabilities approaching one.    Also, note that Bi + Ba does not necessar- 
ily equal zero, since the block main effects result from random selection 
of particular block environments from the set of all possible block en- 
vironments.    This is true although the estimators of Bi and Bs sum to zero. 

In addition to the block and system effects, an interaction is likely 
to exist between them.    Interaction is particularly likely in combat 
systems since casualties tend to lead to more casualties, because the 
force is weakened, until finally no more casualties can occur because 
the enemy force breaks off the engagement or becomes annihilated.    The 
estimators of these interaction effects are 

(x^. - x...) - (x.y - x...) - (v* " ^••)= hy ' *'y ' V* + ^•, 

for 1 « 1,2 and J a 1,2.    That is, the interaction effects estimator be- 
tween block i and system J is the difference between 

1. the deviation of block i and system j average per- 
formance from the overall average performance; and 

2. the sum of 

a. estimated system j main effect, and 
b. estimated block 1 main effect. 

From the data in Table 2.1, the following estimated interaction effects 
are generated. 

8 
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Estimated Interaction Effects 

System 1        System 2 
Block 

1 0.1 -0.1 
2 -0.1 0.1 

In this example, the interaction effects are smaller than the main 
effects; however, this result is not always true.    For example, a 
block environment may produce large average enemy casualties by one 
system but not the other.    These interaction effects are estimators for 
the true interaction effects which are noted by 

ABij a true interaction effect between block i and 
system j. 

Finally, the deviations of the individual experimental results from 
their respective main effects are defined as replication effects.    These 
replication effects are noted by 

eiik ~ rePlica*ion effect for replication k for 
system J of block i. 

Collectively, the variables defined above lead to a model for experimental 
results which is employed by each version of the Filter Model.    That is, 

Xijk = Ji + Ad + Bi + ABy + eldk    . 

The differences between each version of the Filter Model occur due to 
variations in the assumptions concerning the distributions of parameters 
in the above model. 

.. 

Filter Model Versions 

The variables u and Aj in each version of the Filter Model are fixed 
or deterministic; however, Bi, ABij, and eijk are  stochastic or random 
variables since there exists a large number of possible values for Bi, 
ABij, and eijk. Because of the manner in which Bi, ABij, and ei^k are 
defined, their mean values or expected values are zero. Three different 
candidate Filter Models are defined in this section, and each model is 
characterized by its assumption concerning the distribution of B^, ABij, 
and Cijk» These models are listed below along with their identifying 
acronyms. 

1, Homogeneous Variance and Independent Effects (HOVIE), 

2, HEterogeneous Variances and Independent Effects (HEVIE), and 

3, HEterogeneous Variances and Correlated Effects (HEVCE), 

i 9 

I 



■'••-- 

In addition to defining each model in the following sections, the esti- 
mators for model parameters are specified. 

HOVIE Model 

The Homogeneous Variance and Independent Effects Model is identical 
to the version of the two-factor model commonly referred to as the mixed 
model because one factor is fixed and the other random (Hicks, 1964; 
Graybill, 196l; and Winer, 1971). In the HOVIE model, the random vari- 
ables Bi, ABij, eijk, for 

i = 1,2,...,b; 
j = l,2,*«*,a; and 
k = 1,2,«**, n^J 

are all mutually independent, where 

b = total number of blocks, 
a = total number of system alternatives, and 

nij = number of replications for system j in block i. 

The variances for these random variables are 

V(Bi) =  aB
2, 

V(ABij) = (rA|, and 

v(6ijk) * «e2  • 

Note that the variance for each system is identical to other systems. 

The basic purposes of experimentation with simulation is to esti- 
mate the mean performance of individual systems and differences between 
the performance of individual systems. For system J, the average per- 
formance is 

_      1 b   1   n,) 

*->• ' E w ^  w Xlik' 

and X.j.  is an unbiased estimator of p. + Aj or the system J mean perj'jrm- 
ance.    A preferred experimental procedure would generate values of X.J. 
with the least possible cost for nominal variances of X.j.  .    Hie variance 
of X.j.  is shown in Appendix D, equation D.2, to be 

er2     b 

V^J.)=i(-B
2-AB

2)^i=^ (D.2) 

10 



I 

1 

Note that V(X,j,) is inversely proportional to b, and one term contain- 
ing the variance of the replication effects is reduced by increasing 
the number of replications. If the cost of adding replications is not 
excessive and the value of ae

2 is significantly larger than o^2 + erg2, 
then multiple replications should be made with each block. On the other 
hand, large values of aA

2 + o^f would indicate that only one replication 
of each block should be made. 

To apply equation D.2, estimates of the parameters aB
2 + o^l and cTe

2 

must be generated from available data. These estimators are noted as 

**ßa + °AB an<i ^e2» a,nd are 

.   b  a  M 

a^ =  S S S 
i=l J=l k=l 

;
i(
XtJk-XiJ-)2/[1?1J1-iJ-»l'l    P. 6) 

b 
^
2+

^A
2
R '  s (Xi- -X.--) / (b-1) 

B  AB   1=1 ^ 

b  a 
+ s s (X... -xl.. -X.J. +x...)

2/l{a-1)(b-1)l 
1=1 J=l  J 

.JS11I a2  S  S -^-     (D.7) 
a2b   e J-l 1=1 "iJ 

where 
mm 

1  a - 
xf • = a S ^j* • and 

-    1 b  - 
b i=l i 

These estimators are unbiased which me..as that the expected value of the 
estimator is equal to the parameter value estimated; however, a practical 
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2 problem may occur in iinplementing the estimator <*%   + Cfß,    The quantities 

ffg and 0^5 are  variances which implies that they are never negative, but, 
the statistic o-g2 + o^| may assume negative values by chance. When this 
occurs, the estimator is known to be incorrect; thus, the estimate is 
certainly improved by 

if SB8 + S-AB < 0» 

set aB
2 + a^ = 0. 

The assumption is made that the true but unknown value of erg2 + a^g2 is 
probably a small positive number when ffg2 + o^g2 is less than zero, so a 
zero value for og + a^g2 is fairly close to the actual value. However, 
this correction for negative values changes the statistic to a biased 
statistic since the resulting value is either equal to or greater than 
the unbiased statistic. 

Another important estimator is the difference between two system 
performances, particularly when simulation experiments are being con- 
ducted in order to filter out weaker or less desirable candidate systems. 
The estimator for the difference between system j and t's performance is 

The efficiency with which filtering occurs is directly related to the 
magnitude of the variance of this difference. Since all randan variables 
in the HOVIE Model are assumed to be mutually independent, then the var- 
iance of the difference is simply 

V(X.j. - X.t.) = V(X.j.) + V(X.t.) . 

Fran a statistical viewpoint, then the filtering process is more in- 
efficient than estimating the absolute magnitude of individual systems. 
Tlie_analyst should be aware that a ranking procedure based on the values 
of X.j»; J = l,2,***,a; is actually a number of pairwise comparisons or 
differences. 

HEVIE Model 

The Heterogeneous Variances and Independent Effects Model extends 
the HOVIE Model to account for the systems with unequal variances. Other 
analyses of DJfNCCM output data clearly indicate that variances of the 
same performance measure are unequal when the system is changed. In this 
model, the variances of Bi and Aajj are still Og2 and o^g2, respectively, 
but the variance of the replication variation is now 

V(eijk) " ^ej2 »   J = 1»2»,,,»a . 

The variance of the system average performance, X... is derived in 
Appendix C and is 
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V(X.r) h ̂B^AB) K2 1=1 "ij 
(Cl) 

which Is Identical with the corresponding expression for the HOVIE Model 
except ae

2 Is replaced with veAS»   However, In actual use, the allowance 
of different values for ae^ for each system means the least cost test plan 
will specify different numbers of replications for each system» For the 
HOVIE Model, the system test plans will all be identical because the vari- 
ances are identical. 

To use equation C.l estimators for ae4
2 and Og2 + a^ are required, 

and the unbiased estimator derived in Appendix C for crJjis 

2 . 
ej 

b 
S 
1=1 

s 
k=l 

(X, ijk - X1J* > 

b 
S (ni1-b) 
1=1 

(C.5) 

Note that the estimator for crej
2 Is the same as the homogeneous estimator 

except that the data are partitioned and only results for a given value 
of j are used to estimate cre/, Thus, the gain in realism with this 
change is at the expense of efficiency in estimating values« The  esti- 
mator for o%2 + CT^JJ derived in Appendix C is 

^ 2 . Ä 2 
^B + ''AB 

s pq.. - x... )2 / (b - i) 
i-i 

b  a 

■■■- 

r 
«a 

i 
i 
I 
I 
l 

+ s s pL. -xi,. -5c.1. + X...) /Ka-iXb-
1)! 

1=1 j-1 

a     b 

Tb j-1 e*   1=1  "ij 
(C.14) 

If og2 + OA^ < 0, then set o^2 + OA^ to zero for the same reasons as 
used for the HOVIE Model. 

Also, since the random variables in the HEVIE Model are assumed to 
be Independent, the variance of the difference between two system perform- 
ance averages is 
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V(X.j. - X.t.) = V(X.j.) + v(x.t.) . 

HEVCE Model 

The Heterogeneous Variance and Correlated Effects Model includes the 
heterogeneous variances of the HEVIE Model, but also considers potenti- 
ally important correlations in the results. The significance of these 
correlations are explained by referring to the example given earlier in 
this chapter. 

The influence of correlations starts after a block environment (im- 
plying a value of Bj for that block) is obtained. Assume, for example, 
that a particular block environment tends to produce more casualties 
than the overall mean value of n (estimated by X,,. = 16,9). If so, 
then Bi>0 and, for example, could be 2.0. Given this block environment 
would the values of AB^; J = 1,2,...,a; tend to be greater than zero or 
less than zero on the average? When the perfonnance measure is casual- 
ties in many systems the value of the block environment is likely to 
affect the interaction term so that B^ > 0 tends to produce larger values 
of ABy, and Bj. < 0 tends to reduce the value of ABij, For example, the 
block environment increasing block casualties by 2.0 out of a total 
possible of 50 may increase the interaction values by 25^. The  covari- 
ance* between Bi and ABij indicates the degree of this relationship and 
"'BAB " cov;ariance between B^  and ABJJ. Note that this covariance value 
is assumed to be the same for all systems. 

Since B and each one of the interaction terms, AB±y, j=l,2,...,a; 
eure correlated, then the individual ABi-j values within a block are likely 
to be correlated. The  covariance* between two values of ABij for differ- 
ent systems of the same block is 

^ABAB ~ covariance between ABja and ABjt 

where t ^ j, j 

In addition to correlation among the block and interaction effects, f 

these effects may be correlated with the replication effects, 6ijfc , j 
To illustrate this point, assume the following values for the true param- ' 
eters 

n     = 16 As      = -1 

Bl     =    2 ABii  =    0.3 

Ai    =    1 AB13 = -0,3 , 

where the system performance measure is in enemy casualties out of a 
total enemy force of 50 weapons. If the mean enemy casualties produced 

*The covariance between two zero mean random variables is defined as the 
expected value of their product. 

Ik 
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by this block environment for system 1 is 19.5, then correlations are 
present among the positive block effect of Bi = 2, the interaction effect 
of ABit      ,3» and the replication variations e^fc.   Moreover, this corre- 
lation produces a net effect of ,2 casualties since independent zero mean 
values of ej.^ would result in a mean number of casualties for this block 
environment of 19.3.    Note that the overall mean for each value of fi^^ 
continues to be zero, although the expected value of e±w given values of 
AB-M and B^ is probably not zero.    Covariances resulting from these corre- 
lations are defined below for the HEVCE Model. 

"fced = covariance between the block i main effect and a 
replication effect for system J during the ith block, 

0ABe1 = covariance between the interaction main effect for 
system J and a replication effect for the same 
system during the same block, 

crABei = covariance between the interaction main effect for 
system t and a replication jffect for system J during 
the same block, 

for j = l,2,»«»,a; t - l,2,»««,a; and t j^ j. Note that the covariances 
defined above have unique values assigned for the system producing the 
replication effect, and these unique values are assigned because the 

• replication effects have heterogeneous variances. 

Since the replication effects are correlated with the system-block 
interaction effects and the block effects, the replication effects are 
likely to be autocorrelated. Thus, there will be correlations among 
different replication effects of the same system as well as correlations 
between replication effects of different systems. The covariances for 
these replication effects are defined below, 

ffgj = covariance between two different replication effects 
of system J; 

^e-jt = covariance between the replication effects on the same 
replication of two different systems, i.e,, j and t; 

Og-i-t. = covariance between replication effects on different 
replications of different systems, i,e,, j and t. 

Note that for replication effects of different systems a distinction is 
made as to whether the same replication is used or a different replica- 
tion is involved. This distinction is made because identical random 
number sequences may be used for each system during the same replication. 
By defining the covariances in this way, the positive correlations are 
considered among results for identical replications of different systems, 

A general relationship in the HEVCE Model applies to correlations 
and covariances among variables in different blocks. All random variables 
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in different blocks are considered to be Independent; thus, their co- 
variances are zero. 

Iii'xpresslons for Important variances and estimators of model param- 
eters are derived in Appendix A for the HEVCE Model,    The variance of 
the average performance for system J Is given by equation 

V(X. j.) = ^K + "AD + 2oBAB + ^Bej + ^ABej + %) 

+ JLUJ.V'   \     S      J-, (A.42) 

V0 

where 
bj = number of blocks having replications for system J, 

i.e., number of blocks where n^  > 0, 

Parameter estimation for applying equation k,k2 Is simplified consider- 
ably by estimating the following quantities in aggregate form rather than 
their individual components: 

1,    VLJ = system j block variance "bj 

=  -B  + "AB + ZffBAB + ^Bej + ^ABej + ' ej' and 

2.     V  . = system j replication variance 

2      , 
eJ       ej 

Both parameter values defined above are heterogeneous in the sense that 
each system has unique values. 

An unbiased estimator for Vr4 is identical with the estimator for 
oj   in the HEVIE Model defined earlier.    The estimator for Vr^ is 

vrr 
n. i i^Vj/k^] (A. 47) 
k=l 

nlj>0    Kri J/ Lny 
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However, the estimator for V^j Is not equal to the estimator for 
CTB" +■ Cpj^  in either the HOMIE or HEVIE Models,    If it were, the 
models would be equivalent from an operational viewpoint.   The esti- 
mator for V^j, derived in Appendix A,  is 

A 

V, 
bj (b.-lM   l    nj.)       i, 

nij>o 

S    Hj^X 
ij* 

-x.^,2 

lj>0 

(b. "^7  ^[l j(bJ-2)/(   Znij)+-(   .    -) 

nij>0 V0    • 
(A. 52) 

If Vbj < 0, set ^bj = 0. 

Besides using a different statistic, the estimator for V^ only uses 
data observed for system j. 

The principal application for the Filter Model is to compare system 
performances efficiently; thus, the variance of the difference in two 
system averages performances is important.    The expression for this 
variance Is 

V(X.<.-X...) = —{^ATI +2<r._l , + 2<rA_l 4 + cr'   + trV - Za M    J t '       bjt
v     AD        ABej        ABet      fcj       et 

-?.<r 
ABAB ABej 

-2«r'        -2(r*   ) 
ABet        ejij 

■ 

1 ^ 1 ! l 

+ —T v ,   ?    — + n v ,    s   — b,7   vrj     I,       n..      b z     rt     j      n 

I 

I 
1 
I 

2^Lit-%V 
b  2 I,      maxcny, n^) 

nlJ,nit>0 
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where 

bjt = number of blocks having replicatins for both systems 
.) and t, and the assumption Is made that 

bd 3 bt * bjt • 

Also, estimation Is facilitated by aggregating parameters so that 

Vj    « >«• 2 
'«Jt " ^AB + ^ABeJ + ^ABet * 'L, + 'k " ^ABAB " Kto, I 

-2<rÄBet-2T'ejfl,°d 

V   m v      - <r 
rjt   eJt  ejt 

of 
are 

Least Cost Experimental Design 

1, additional replications that should be observed for 
ettch system in each block previously generated; 

2« additional blocks that should be generated and the 
replication numbers for each new block for each 
system. 

system after the block has been generated, 
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The potential significance of increasing correlation to reduce the vari- I 
ance of differences in average performance by using Identical randan *' 
number sequences is apparent from equation A,63.    The identical random 
number sequences should increase the values of V'...  and positive values | 

** Vyj^. reduce the V(X,-j, - X.-^.).   Unbiased estimators for V^j^ and V' -^ I 
given in Appendix A by equations A. 69 and A,67, respectively. 

An algorithm is presented in Appendix B for calculating the least- 
cost experimental design to reduce the estimated variance of each average 
system performance below a specified upper limit, viz., Vs,    Since the 
estimated replication and block variances may be different for each system, 
then the desired experimental design may specify different replication 
numbers for each system.    The algorithm can be initialized with inputs 
specifying that some experiments may already have been performed; thus, • 
the algorithm must determine: I 

1 
I 
I 

I 
I 
1 Two costs are considered by the algorithm; i.e., 

Oj, = cost to generate a new block, and 

Cj. = cost to perform a single replication for one | 
system after the block has been generated, 1 

i 
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An Interesting aspect of the problem to find the least-cost experimental 
design is that the cost of generating a new block benefits all systems» 
whereas the cost of an individual replication only contributes to reduc- 
ing the variance for one system. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

• 

Introduction 

A set of DYNCOM experiments were generated in order to Indicate the 
potential for the Filter Model and test the concepts presented in Chapter 
2.    The resulting experimental data are analyzed in this chapter in order 
to address the following Issues: 

1.   Which Filter Model is the most valid and useful representation 
of DYNCOM results? 

r 
... 

:" 

-•■ 

2. Does the Filter concept of simulation experimentation permit 
significant reductions in experimental cost to achieve a 
specified variance of system average performance? 

3. Does the Filter concept of simulation experimentation permit 
significant reductions in experimental cost to achieve a 
specified variance of the difference between the average 
performance of two systems? 

k.    Can the Filter Model be applied to screen candidates system 
alternatives using a low cost set of DYNCOM runs? 

A total of forty-six DYNCOM simulated battles were conducted in 
June 1972 to answer the questions posed above. The forces involved 
consisted of four blue Armored Personnel Carrier (APC) Weapons in 
defensive positions, and thirty-one attacking red tanks. The red tanks 
were equipped with conventional main guns, and the defending blue APC' s 
were armed with an anti-tank missile. The red tanks were organized 
into three maneuver units of approximately company size consisting of 
eleven, ten, and ten tanks. 

Two system tactical alternatives were simulated to represent 
differences in system effects. System one restricted the attacking 
reds from opening fire until they closed within 1200 meters of the 
blues, and system two represented a red opening fire range of 800 meters. 
Because of these opening fire ranges, a block environment had to occur 
before a red would open fire when employing the 1200 meter tactic. Since 
the blues could open fire earlier than the reds, firing and casualties 
could and did occur before the block environment. 

I 
I 
I 

Experiments with four blocks were conducted. The block environment 
was generated by simulating a complete battle and recording the complete 
DYNCOM data set and status variables at the time of the block environ- 
ment during the course of the run. Actually, the block environments 
were selected after the fact because the battle generating the block 
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u 
environment would output a data set and status variables periodically 
during the course of the battle.    Because of this preselected period, 
the block environments could have been selected more efficiently by 
dynamically determining the first red firing event under the 1200 meter 
opening fire tactic and then recording the data set and status variables 
just prior to this first red firing event. 

After obtaining a block environment by the procedure described 
above, then the block was replicated for each system.    To increase the 
correlation among systems within each block, a common random number 
sequence was employed for each system on a given replication.    Each 
block consisted of five replications of system one and four of system 
two. 

Thirty-six of the simulated battles were conducted to replicate 
the four blocks described above, and ten additional full-length battles 
were simulated using system one to serve as a basis for comparison. 
That is, the variance of an individual battle could be estimated by the 
Filter Models from blocked data, and this estimate could be compared 
with the corresponding estimated variance using the ten independent battle 
observations. **» 

Four performance measures that have been employed by MICOM in 
actual studies are used in the analyses described in this chapter. 
These system performance measures are: 

1. red casualties 

2. rounds fired by red weapons at blue weapons 

3. blue exposure time, and 

k, first engagement range. 

More explicit definitions employed for these measures as they were 
applied in this study appear below. A casualty must include loss of *• 
firepower capability, so a complete kill, a mobility and firepower kill, 
and a firepower-only kill would be counted as a casualty. On the other 
hand, mobility-only kills would not be included. The rounds-fired 
performance measure was the total rounds fired by the red tank main 
gun. Blue exposure time consists of the cumulative time that an indi- It 
vidual blue weapon had been acquired by red weapons. For example, if 
blue 1 had been acquired by red 1 for 50 seconds and red 2 for 75 
seconds, then the exposure time for blue 1 is 125 seconds. An acquisi- 
tion implies sufficient knowledge to concentrate fire upon the acquired 
weapon, and this acquisition can be accomplished either by direct visual 
contact or by pinpointing. The blue exposure time performance measure 
was computed for an individual battle by averaging the exposure time 
for each blue weapon. The first engagement range is the range at which 
red weapons open fire at the blue weapons. This range was computed for 
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each blue weapon by determining the maximum range that any red weapon 
fired at a particular blue. In the event no reds fired at a particular 
blue, the minimum range that the blue fired at any red was taken as the 
red opening fire range so long as the red was permitted to open fire. 
Once these ranges were determined for each blue weapon, they were aver- 
aged to determine the first engagement range for a red. 

The system performance measures from each replication of the forty- 
six DYNCOM replications are displayed in Tables 3*1 through 3.5. 

i 
1 
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TABLE 3.1 

Red Casualty Data from Blocked Simulation Replications 

Red Casualties 
Replication System Block 1 Block 2 Block 3 Block k 

1 1 12 11 15 18 

1 2 16 21 18 IB 

2 1 12 13 16 17 

2 2 13 10 20 23 

3 1 12 Iß 17 16 

3 2 19 15 20 17 

k 1 17 18 18 IS 

k 2 21 20 17 21 

5 1 15 11 15 6 

23 
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TABLE 3.2 

Rounds Fired at Blue Weapons Data from Blocked Simulation Replications 

Rounds Fired at Blue 
Replication System Block 1 Block 2 Block 3 Block k 

1 1 17 17 8 17 

1 2 9 0 k U 

2 1 15 13 15 1U 

2 2 5 k 6 2 

3 1 15 7 18 21 

3 2 U k 3 6 

k 1 19 11 21 8 

h 2 8 0 10 3 

5 1 8 15 20 6 
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TABLE 3.3 f 

Blue Exposure Time Data from Blocked Simulation Replications 

Blue Exposure Time in Seconds  1 

I 
I 
I 
I 
I 
i 
I 
I 

Replication System Block 1 Block 2 Block 3 Block k 

1 1 201.07 kOk.77 369.73 3h7M 

1 2 277.88 52.50 151.38 152.30 

2 1 325.10 U29.99 705.33 327.7U 

2 2 117.69 111.13 216.19 76.225 

3 1 366.08 186.75 501.91 ^27.9^ 

3 2 72.U98 155.53 167.96 122.37 

k 1 ^.72 35^.03 536.^5 197.05 

k 2 11*8.07 127.50 175.96 110.17 

5 1 610.9U 156.09 637.37 203.77 

2k 
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TABLE 3.U 

Engagement Range Data from Blocked Simulation Replications 

Engagement Range in Meters 
Replication System Block 1 Block 2 Block 3 Block k 

1 1 1135.5 111+8.0 10146.0 1100.8 

1 2 768.25 780.3 739.75 725.5 

2 1 106U.8 111*5.3 1151.8 1121+.8 

2 2 719-75 756.5 71U.50 71+9.25 

3 1 1127.8 1100.0 113U.5 1078.5 

3 2 767.75 712.0 717.25 733.5 

k 1 1076.3 1029.0 1156.0 1016.0 

k 2 752.75 783.8 695.5 791.00 

5 1 899.50 1157.6 1118.5 1068.5 

TABLE 3.5 

System 1 Performance Data from Independent 
Full Length Simulation Replications 

m   — Replication 
Red 

Casualties 
Rounds 
Fired 

Blue Exposure 
Time (s) 

Engagemei 
Range (E 

■■ 1 13 13 397.29 IO89.OO 

2 16 15 509.1!+ 111+1+.25 
u 

3 11 15 156.09 1157.75 

I 1+ 11» 6 159.71 101+5.50 

I 
5 

6 

16 

7 

5 

13 

218.1*6 

11+2.71 

1018.25 

1187.00 

«L 
7 Ik 6 97.01 1078.75 

8 13 12 351.01+ 1123.75 

1 9 15 20 637.1+6 1160.00 

10 10 8 190.1+2 1062.50 
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Validity of the Filter Models 

To test the validity of the Filter Models, estimates of the vari- 
ance of an Individual simulation result were computed from the blocked 
data using each version of the Filter Model, and these estimates are 
compared with an estimate of the corresponding variance from the ten 
Independent full-length simulation replications. 

If 
Yi = performance measure for the 1th simulation 

replication from the full-length Independent 
simulated battles, 

then an estimate of the variance of Y^ is 

A ,10 Z10    \2 

V(Yi) = ±   2   Yi2 -     Z   YJ /90 
9 1=1 \i=l     / 

To estimate the variance of Xy^ from the blocked data, the equations 
for the V(X,j,) are used for the special case of one block having one 
replication. Of course, estimates for each parameter were computed 
using the estimators shown in Chapter 2, That is, the following esti- 
mating equations for VCXj^) were employed, 

HOVIE Model 

HEVIE Model 

A A2  . A2   . ^ 2 v(xiJk) - ^B + S^ + ^ 

HEVCE Model 

A 
V(Xijk) = vbj + vrJ 

Only values for system one could be compared because the independent 
full-length simulation replications were only performed for that system. 

I 

I 
it 

I Tablas 3,6 through 3*9 present comparisons computed for the vari- 
ance estimate of the three candidate Filter Models, Although the vari- 
ance estimates from the independent full-length simulation replications 
are used as the standard for comparison, recall that there are only ten 
of these independent observations for each performance measurg. To * 
simplify the notation in these tables o-2B + a

2^ is noted as Vbi, and 
8-2e as Vn for the HOVIE and HEVIE Models, I 

Inspection of these tables reveals that the variance estimates from 
the HEVCE model are superior to either of the other two models. The 
estimates from the HEVCE model are closer to the estimates from the 
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TABLE 3.6 

EstlmateB of the Variance of Total Red Casualties 
for One Simulation Replication 

(1200 Meter Red Opening Fire Range) 

Independent 
Full-Length 
Replications 

HOVIE 
Model 

HEVIE 
Model 

HEVCE 
Model 

X.x« 12.9 1^.65 1U.65 1U.65 

A 
-1.73 -1.79 -.685 

v« 11.22 10.68 10.68 

V(Xilk) 8.10 11.22 10.68 10.68 

Li TABLE 3.7 

Estimates of the Variance of Total Rounds Fired 
at Blue for One Simulation Replication 

(1200 Meter Red Opening Fire Range) 

Independent 
Full—Length 
Replications 

HOVIE 
Model 

HEVIE 
Model 

HEVCE 
Model 

Xn, 11.3 Ik.23 1^.25 11+.25 
A 

-l.lkk -.9^5 -1.983 
A 

Vri 16.52 2^.5 21+.5 

^(Xiik) 2k.01 16.52 2k.5 24.5 

27 



  

TABLE 3.8 

Estinatee of the variance of Blue Exposure Time (,) 
(1200 Meter Red Opening Fire Range) 

X. i* 
A 

Vbi 

A 

v(xilk) 

Independent 
Full-Length 
Replications 

285.9 

32520. 

HOVIE 
Model 

386.8 

5614. 

10610. 

16224. 

HEVIE 
Model 

386.8 

6196. 

16425. 

22620. 

HEVCE 
Model 

386.8 

10340. 

10425. 

26770. 

I 

Table 3.9 

Estimates of the Variance of Engagement Range (m) 
(1200 Meter Red Opening Fire Range) 

X.i, 

vCxuk) 

Independent 
Full-Length 
Replications 

1106.7 

3140.7 

HOVIE 
Model 

1094.0 

4305.2 

3259.2 

7564.9 

HEVIE 
Model 

1094.0 

4369.8 

3900.2 

8270.0 

HEVCE 
Model 

1094.0 

87.722 

3900.2 

3987.9 

I 

I 
I 
I 
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independent full-length replications than the HOVIE Model for each 
performance measure. When comparing the HEVCE and HEVIE models, the 
variance estimates are tied in two cases, viz., red casualties and total 
rounds fired at blue. For the blue exposure time and engagement range 
performance measures, the IIEVCE model is clearly superior. In fact, the 
HEVIE estimates the engagement range variance 16?^ larger than the 
estimate from the independent full-length replications whereas the HEVCE 
model is only 2Tfo larger. Because the HEVCE model appears to generate 
significantly better variance estimates than the other two experimental 
models, the assumptions made in deriving the model must be more valid. 
Thus, the HEVCE model will be the only model analyzed in the remainder 
of the report. 

Although, the HEVCE is preferred to the other two candidates, the 
larger question remains as to whether the HEVCE model is sufficiently 
valid to represent DYWCOM results. Further inspection of tables 3.6 
through 3*9 indicates that the maximum error by the HEVCE model in 
estimating the variance from independent full-length simulation repli- 
cations was 32^. This result corresponds with an F statistic of 1.32; 
however, the performance measures are not normally distributed. 
Nevertheless, an F statistic of 1.32 would support the validity of the 
HEVCE model because the F statistic would have to be greater than 3.18 to 
be significant at the .05 level. Moreover, the result of 1.32 is the 
largest of four admitedly correlated variance ratios. Thus, these re- 
sults certainly support the validity of the HEVCE model as being re- 
presentative of DYNCOM experimental results. 

Cost of Estimating Mean System Performance 

In this section, the costs of estimating mean system performance 
using the Filter Model concept of blocking are compared with the use of 
full-length independent simulation replications. To compare these 
experimentation costs, the number of simulated events is used as a cost 
measure. That is, the cost of generating a block is specified by the 
number of events required to produce a block environment, and the cost 
of a single replication of the block is measured by the number of events 
subsequent to the block environment to complete the simulated battle. 
Thus, the cost components used by the least-cost experimental design 
algorithm are: 

Ob = the expected number of events to generate a new 
block 

0r = the expected number of events subsequent to the 
block environment to simulate a battle for one 
system alternative. 

Using the results from four blocks and a total of thirty-six replica- 
tions, these cost components are estimated to be 
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Cb = 21+9.25 events 

Cr = 558.83 events. 

In addition, the cost of an independent full-length simulation replica- 
tion is 

Cb h Cr = 808.08 events. * 

In addition, another cost measure is the equivalent number of full- 
length simulation replications which is calculated by dividing the total .1 
number of events expected for an experimented plan by 808.08 events.    If 
the reader is interested in a dollar cost measure, the full-length                                    m 
simulation replications of the scenario described in this chapter re- 
quired from thirty to thirty-five computer service minutes on an IBM 
360/65 and the current cost for MICOM of this machine is $100 per computer 
service hour so a full-length simulated battle would cost from $50 to 
$60.    In an actual study the number of alternative systems requiring                                "» 
consideration may be in the hundreds or thousands. 

Using the cost measures given above for C^ and Cr,  several com- ^ 
parisons were made to indicate the potential for the Filter Model con- 
cept in reducing simulation experiments costs when estimating mean system 
performance for individual system alternatives.    These comparisons 
assumed that the experiments would start with two blocks in order to 
estimate model parameters.    The cost of two blocks consisting of five 
replications of system one and four of system two was 10557 events or 
13.06 equivalent full-length simulation replications.   Note that a 
commonly used experimental plan for DYNCOM is to replicate each alterna- 
tive ten times which would cost 6.9k full-length replications more than 
the two blocks. 

The comparisons consisted of co-trasting the costs of estimating 
mean system performance measures with specified variances by blocked 
simulation experiments versus independent full-length experiments.    Two 
methods of determining variances for comparison purposes are used: 

1, Equivalent variances for both methods of experimentation. 

2. Variances less than specified upper limits for both methods 
of experimentation. 

Experimental costs for method 2 as stated above were determined using 
the least-cost experimental design algorithm presented in Appendix B. 
The effectiveness of this algorithm is related to the accuracy of its 
inputs, viz., the block and replication variances for each system 
alternative.    To illustrate the effect of sample size for these inputs, 
experimental designs were compared based upon input variances calculated 
from both two and four blocks of data. 

.. 
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Cost Comparisons for Achieving Equivalent Variances 

Tables 3.10 through 3.13 present cost comparisons for achieving 
equivalent variances of the average system performance measures, viz., 
red casualties, rounds fired at blue, blue exposure time and engagement 
range. Entries In these tables were calculated by: 

A A 
la 1. estimating the block, Vbj, and replication, Vrj variances 

using equations A.52 and A. kj,  respectively, and all four 
[blocks of data. 

• A — 
2. calculating V(X.j,) the estimated variance of the average 

performance for system J, by Inserting the estimates Vbj 
and Vrj Into equation A. 53. 

3. calculating the estimated variance of a full-length simulation 
replication of system by 

V(Xijk) - Vbj + Vrj 

U.    determining the number nf of independent full-length 
simulation replications to realize a variance for the 
average system performance equal to V(X.j.) by 

5.    estimating the cost of Independent full-length runs by 
nf • 808.O8 events. 

Any negative values resulting from the computational equation for V^j 
are shown in the tables although these negative values are set to zero 
in steps 2 and 3 above.    Note that the Filter Model parameters were 
estimated using all available data in step 1.    This was done to provide 

Ian accurate picture of the relationship between the test design and esti- 
mated variances.    However, the comparison is made with estimated 
variances resultinp; from a test plan involving only two blocks. 

Hesults from the cost comparisons to achieve equal variance estl- 
irates are mixed.    The Kilter Model concept of blocking achieved red 
casualty variances in 13.06 equivalent full-length runs that would re- 
quire 20 Independent full-length runs; thus blocking permits a reduction 
of 35% in experimentation costs in this case.    On the other hand, 
variances for rounds fired, blue exposure time, and engagement range 
would require about the same costs for each experimentation method. 
Thus, the Filter Model concept of blocking is likely to reduce experi- 
mentation costs for some performance measures, viz., casualties, but 
not all performance measures. 
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Table 3.10 

Cost Comparison to Achieve Equivalent Variance of Average Red 
Casualties, Two Blocks Versus Independent Full-Length Runs 

(All ftirameters Estimated Using Four Blocks of Data) 

System 1 
(OFR < 1200 m) 

System 2 
(OFR < 800 m) 

vbJ -.685 -.8U1+ 

A 
10.68 ll.^ 

A.—         . 
V(X.j.) 1.068 1.1+92 

V(Xijk) 10.68 II.9I* 

Cost of independent runs 8080.1 events 
10 nans 

or 8O8O.I events or 
10 runs 

Total cost of independent runs 

Cost of blocked runs 

l6l6l events or 20 runs 

10559 events or 13.06 runs 

Table 3.11 

Cost Comparison to Achieve Equivalent Variance of Rounds Fired 
at Blue, Two Blocks Versus Independent Full-Length Runs 

(All Parameters Estimated Using Four Blocks of Data) 

Cost of independent runs 

Total cost of independent runs 

Cost of blocked runs 

System 1 
(OFR < 1200 : m) 

System 2 
(OFR < 800 m) 

A 
Vbd -1.983 2.656 

A 
21+.5 5.875 

V(X.j.) 2.1+5 2.063 

V(Xijk) 21+.5 8.531 

runs 8080.1 events 
10 runs 

or 331+3 events or 
I«.13 runs 

111+23 events or 11+.13 runs 

10557 events or 13.06 runs 
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Table 3.12 

Cost Comparison to Achieve Equivalent Variance of Blue Exposure 
Time, Two Blocks Versus Independent Full-Length Runs 
(All Parameters Estimated Using Four Blocks of Data) 

Cost of independent runs 

Total cost of independent runs 

Cost of blocked runs 

System 1 
(OFR < 1200 i 0) 

System 2 
(OFR < 800 m) 

^ 
103^0. 301.3^ 

A 
16425. 2855.2 

V(X.j.) 6812.5 507.57 

V(Xijk) 26765. 3156. :> 

•uns 317^.9 events 
3.93 runs 

or 5025.4 events or 
6.22 runs 

8200.3 events or 10.15 runs 

10557 events or 13.06 runs 

Table 3.13 

Cost Comparison to Achieve Equivalent Variance of Engagement 
Range, Two Blocks Versus Independent Full-Length Runs 
(All Parameters Estimated Using Four Blocks of Data) 

Cost of independent runs 

Total cost of Independent runs 

Cost of blocked runs 

System 1 
(OFR < 1200 m) 

System 2 
(OFR < 800 m) 

^ 87.72 172.89 

A 
3900.2 697.40 

V(X.j.) 433.88 173.62 

V(Xijk) 3987.9 870.29 

uns 7434.6 events or 
9.20 runs 

4050.6 events or 
5.01 runs 

11485.2 events or 14.21 runs 

10557 events or 13.06 runs 
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Cost Comparisons for Reducing Variances Below Specified Upper Limits 

Tables 3.lU through 3.17 present the comparisons of cost to reduce 
the variances of average system performance helow specified upper limits. 
The situation assumed for these comparisons involved an initial set of 
experiments and then additional replications or blocks as needed for each 
system to realize the targeted upper limit on the variance of average 
system performance.    This initial commitment to experiments on each 
system is assumed to be required in order to estimate variances or verify 
earlier estimates.    For the blocked runs the initial commitment consisted 
of two blocks with five replications of sj?tem one and four of system 
two, and the corresponding initial commitment for the Independent full- 
length replications consisted of seven replications for system one and 
six of system two.    The total cost in each case of the Initial set of 
experiments was approximately 13 equivalent full-length runs. 

To reduce the effect of sampling errors, all variance parameters 
used to construct the comparisons in Tables 3'lh through 3.17 were esti- 
mated using four blocks of simulation replications.    This procedure is 
consistent with the comparisons made in the previous section to compare 
costs with equivalent variances. 

The results displayed in tables 3.1^ through 3.17 were calculated 
by the least-cost experimental design algorithm to reduce average red 
casualty variances below 1.00, average rounds fired variances below 1.20, 
exposure time variances below 3150, and engagement range variances below 
350.   These results permit the following observations.    Experimentation 
costs would be decreased through the use of blocking to estimate red 
casualties by 23%, rounds fired by l6^, and engagement range by 12^. 
However, the costs appear to Increase to estimate average exposure time 
variance.    Note that the least-cost algorithm specifies that no new 
blocks should be generated to estimate average red casualties and 
engagement range; however, four new blocks should be generated to esti- 
mate average rounds fired.    Moreover, the algorithm specifies additional 
blocks with a single replication on each system to estimate average blue 
exposure time.    This test plan is equivalent to Independent full-length 
simulation replications which would be less expensive in this case than 
replicating blocks. 

An overall evaluation of the Filter concept of blocking based upon 
these results is that the concept permits reduction in experimentation 
costs depending on the performance measure considered.    However, the 
reductions are not dramatic.    As far as the exposure time case where 
costs increased due to blocking, this result could be avoided if pre- 
vious experience indicated the inefficiency of blocking and simulation 
experiments were to be set up primarily to estimate exposure time. 
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Table 3.lU 

Cost Comparison to Achieve Average Red Casualties Variance 
Lower Than 1.00 - Additional Replications After Two 

Blocks Versus Independent Full-Length Runs 
(All Bareuneters Estimated Using Four Blocks of Data) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

Total cost of blocked runs 

Cost of independent 
full-length runs 

Total cost at independent 
full-length runs 

System 1 
(OFR < 1200 m) 

1 

0 

System 2 
(OFR < 800 m) 

2 

0 

13912 events or 17.22 runs 

8889 events or 
11 runs 

9697 events or 
12 runs 

18586 events or 23 runs 

- > 

U 

Table 3.15 

Cost Comparison to Achieve Average Rounds Fired Variance 
Lower Than 1.20 - Additional Replications After Two 

Blocks Versus Independent Full-Length Runs 
(All Parameters Ästimated Using Four Blocks of Data) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

Total cost of blocked runs 

Cost of independent 
full-length runs 

Total cost of independent 
full-length runs 

System 1 
(OFR < 1200 m) 

0 

h 

System 2 
(OFR < 800 m) 

0 

k 

20^95 events or 25.36 runs 

16970 events or 
21 runs 

6465 events or 
8 runs 

23l+31+ events or 29 runs 
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Table 3.16 

Cost Comparison to Achieve Average Blue Exposure Time Variance 
Lower Than 3150 - Additional Replications After Two 

Blocks Versus Independent Full-Length Runs 
(All Parameters Estimated Using Four Blocks of Data) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

Total cost of blocked runs 

Cost of independent 
full-length runs 

Total cost of independent 
full-length runs 

System 1 
(OFR < 1200 m) 

0 

6 

System 2 
(OFR < 800 m) 

0 

1 

15^05.5 events or 19.06 runs 

7273 events or 
9 runs 

USkb events or 
6 runs 

12121 events or 15 runs 

Table 3.17 

Cost Comparison to Achieve Average Engagement Range Variance 
Lower Than 350 - Additional Replications After Two Blocks 

Versus Independent Full-Length Runs 
(All Parameters Estimated Using Four Blocks of Data) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

Total cost of blocked runs 

Cost of independent 
full-length runs 

Total cost of independent 
full-length runs 

System 1 
(OFR < 1200 m) 

2 

0 

System 2 
(OFR < 800 m) 

0 

0 

12792 events or 15.83 runs 

9697 events or 
12 runs 

k&& events or 
6 runs 

lU51+5 events or 18 runs 
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Sensitivity of Experimental Plans to Input Variability 

Ideally, the simulation experimenter will have an ample data base 
to estimate parameters and plan blocked simulation experiments.    With 
precise values of the block variances, V^j, and replication variances, 
Vr.j, the DYKCOM experiments can be designed so that least-cost experi- 
ments are always implemented.    If independent full-length experiments 
are the least-cost strategy, then the least-cost algorithm will specify 
blocks with single replications. 

More commonly, the values of Vy and Vr-j will have to be estimated 
as part of the experimental plan.    The sensitivity of these parameter 
est'.raates and the resulting experimental plans to sample size are 
investigated in this section by comparing the results obtained from 
two blocks with results from four blocks (including the former two 
block results). 

Table 3.18 presents the parameter estimates for both two and four 
blocks.    Recall that negative values of Vbj will be regarded as zero 
values in deriving test plans.    Of course, a block variance of zero 
has special significance in that it implies that nothing is to be 
gained by generating new blocks.    The results for two blocks show six 
out of eight cases having negative estimates for the block variances; 
however, three of these results are changed when two more blocks are 
obtained.   One would expect that the true values of the block variances 
to be greater than zero, but they are hopefully small to the point of 

! being negligible when the estimator of V,^ is negative.    This rationale 
is supported by two of the three cases where v^j changes from negative 
to positive.    That is, V^g for system-two exposure time changes from a 
negative value to 30..3^ where the value of the replication variance is 
9.5 times larger or 2855.0, and the system 2 block variance estimate for 
engagement range changed from a negative value to 172.89 where the re- 
plication variance is four times larger or 697.^0.    A small block variance 
relative to the replication variance will result in a least-cost design 
with a large number of replications per block.    A less desirable situa- 
tion occurs in the system-one exposure time case where a negative block 
variance estimate changes to 10339 when four blocks are run, and this 
block variance is 63% as large as the replication variance of 16425. 

The effects of these variations in estimated values are shown in 
Tables 3,19 and 3,20 where test plans are compared based on estimate 
from two versus four blocks of data.    Each test plan is designed to 
reduce the variance of average system performance below the same upper 
limits specified in Tables 3.1k through 3.17.    These upper limits are 
noted as Vs in Tables 3.19 and 3.20.    Two sources of differences between 
the test plam. are present in these tables: 

a.    change in the overall magnitude of the variance of average 
system performance 

0 
I 
I 

b.    change in relationship between the block und replication 
variance. 
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Table 3.18 

Comparison of the EstljnateB of HEVCE Parameters 
from Two and Four Blocks of Data 

System 1 (OFR < 1200 m) 

A 

n 

System 2 (OFR < 800 m) 

A 

Vba 
A 

Vra 

System 1 (OFR < 1200 m) 

A 

Vbi 
A 

System 2 (OFR < 800 m) 

A 

A 
vra 

Red Casualties 
2 Blocks k Blocks 

Rounds Fired at Blue 
2 Blocks k Blocks 

-l.USO -.685 -.780 -I.983 

7.500 10.675 16.000 24.500 

-k.k3& -,m 8.750 2.656 

18.958 11.938 5.500 5.875 

Exposure Time 
2 Blocks k Blocks 

Engagement Range 
2 Blocks  4 Blocks 

-130.7 10339. 331.73 87.72 

19600. 16U25. 5972.7 3900.2 

-311.56 301.3»! -183.21 172.89 

»♦836. U 2855.0 804.83 697.»40 
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Table 3.19 

Comparison of Least-Cost Experimental Plans Subsequent to Two Blocks 
(Two Block Parameter Estimates Versus Four Block Estimates) 

System 1 (OFR < 1200 m) 

Additional replications 
In previous blocks 

Additional blocks 

Replications In 
additional blocks 

System 2 (OFR < 800 m) 

Additional replications 
In previous blocks 

Additional blocks 

Replications In 
additional blocks 

Red Casualties 
Vs = 1.00 

2 Blocks       k Blocks 
Estimates     Estimates 

0 

0 

6 

0 

1 

0 

2 

0 

Rounds Fired at Blue 
Vs = 1.20 

2 Blocks   k Blocks 
Estimates  Estimates 

0 

10 

0 

k 

0 

10 

0 

k 
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Table 3.20 

Comparison of Least-Cost Experimental Plans Subsequent to Two Blocks 
(Two Block Parameter Estimates Versus Four Block Estimates) 

System 1 (OFR < 1200 m) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

System 2 (OFR < 800 m) 

Additional replications 
in previous blocks 

Additional blocks 

Replications in 
additional blocks 

Blue Exposure Time 
V8 = 3150 

2 Blocks   k Blocks 
Estimates  Estimates 

0 

0 

0 

0 

0 

6 

0 

1 

Engagement Range 
V8 = 350 

2 Blocks       k Blocks 
Estimates     Estimates 

0 

3 

0 

0 

2 

0 

0 

0 
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I Note that the major source of differences between the test plans is the 

magnitude of the test effort rather than the allocation of effort between 
blocks and replications. 

Cost of Comparing Mean System Performances 

Probably the most important application of DYNCOM is to compare 
mean system performance in order to determine which systems are superior 
and by what margins. Thus, the differences between average system per- 
formances may be more important to the analyst than the absolute magnitude 
of average system performances. The Filter concept of blocked experiments 
contributes to improving the efficiency of estimating the differences 
among system performances by increasing the correlation among results for 
different systems. The use of blocks with fixed block environments for 
each replication and the use of identical random number sequences for 
each alternative replicated within a block causes the desired correlation. 
Considering these correlations, equation A.63 gives the variance of the 
difference in average performance between two systems. Thus, A.63 can 
be used to estimate the degree of improvement, if any, in efficiency 
resulting from the Filter concept of blocking. 
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In this section, the experimental results are analyzed to answer 
two questions: 

1. are the assumptions leading to equation A.63 for determining 
the variance of the difference in average performance valid 
for representing DYNCOM results? 

2. does the Filter concept of blocked simulation experiments 
permit savings in estimating the variance of the difference 
in average performances of two systems? 

Validity of the Expression for V(X.j. - X.-fc.) 

To test the validity of equation A.63, the variance of the difference 
between the average performance of systems one and two was computed 
directly using four replications of each block, i.e., the fifth repli- 
cation of system one was ignored. For each replication, the difference 
between system one and system two performance was calculated. That is, 

Yik = difference between system one and two performance for the 
•jgth replication of block i 

Yik = Xiik - Xiak 

Then the values of Y^ were inserted into equations A.U? and A.52 to 
estimate Vr<i and V^» the replication and block variances for differences 
between system performance. The subscript d is used to denote differences, 

A     A , 
Then the quantities Vr(i and Vbd 

are substituted into equation A.42 to 

■ 
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estimate the variance of the difference between system one and system 

two performance. This variance estimate is noted as V(Y). 

A.—. 
Values of V(Y) are shown in table 3.21 and compared with estimates 

of V(X.i. - X.2.) computed from equation A.63 using all four blocks of 

data with the fifth replication of system one deleted. Note that V(Y) 
and V (X... - X. 2.) are identical for each performance measure with the 
exception of engagement range. In the engagement range case, the value 

A . 
of V^    is estimated as -275.14 and then set to zero as specified in 
equation A.52.    If V^j, retained the -275.1^ value and this value was 
used in estimating V(X.i. - X.p.), then vCx.i.  - X.2.) would become 267.1^ 

A,—. 
and be identical to V(Y) for engagement range. 

Thus, the close match among the two alternative methods of calculating 
variances of differences in average performance serves to support the 
validity of equation A.63. Although the engagement range case suggests 
that negative values of v^j should be retained, this modification is not 

recommended because of the possibility that estimates of vCx.j.. - X.a.) 
may also become negative. 

Table 3.21 

Variance of the Difference in Average Performances Validity Check 
(Four Blocks With Four Replications Per System Per Block) 

Red Rounds Fired Exposure Engagement 
Casualties at Blue Time Range 

A ._ VW               .790U I.1745 1371.7 267.1k 
A _      _ 
vcx^. -x.,.)      .7904    1.17^5    1371.7 335.93 
A .-   .   A ._ 
vex.,.) + v(x.,.) 1.58I46 2.3125 2615.2       230.59 

F .^988 .5079 .52U5       1.457 

.. 
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Cost of Estimating Differences in Average System Performance 

Besides showing estimates of the variance of the difference in 
average system performances, Table 3.21 computes estimates of these 
variances under the assumption that observations of system one and 
system two are independent. Under the assumption of independence, the 
variance of the difference in average performance is estimated by: 

V(X.i. - X.r,.) = vCx.!.) + V(X.a.) 

With correlation, the V(X.L. - X.,^.) becomes much smaller as shown in 
Table 3.21. The values of F shown In the table are the ratio between 
the estimates of V(X.i. - X.s.)  and the estimate under the assumption of 
Independence. Most of the F values are approximately .5 implying a 50$ 
reduction in variance by the Filter Model concept of blocking. The only 
exception is engagement range, where F is approximately 1.5 suggesting 
larger variances of differences than independent sampling. 

A better comparison between the variances of differences in per- 
formance under Independent and blocked experiments is shown in Table 3.22. 
All of the blocked data including the fifth observation on system one 
are used in the variance estimates. Again, the effect of blocking permits 
a significant reduction in variance with exception of engagement range. 
For rounds fired, the variance under blocking is less than kOjo of its 
values under Independent sampling. Differences in red casualties and 
exposure time have variances under blocking of 50$ nf corresponding values 
under independent sampling. The engagement range case must have some 
negative correlation, i.e., a high engagement range in a battle where 
the reds can open fire at 1200 metters would tend to produce a low en- 
gagement range when the 800 meter opening fire tactic is played. However, 
if the analyst is primarily interested in casualties, rounds fired, and 
exposure time; the Filter Model concept of blocking will produce an 
estimated reduction in variance of 50^ for a specified experimentation 
cost. 

. 

n 
.. 

1 

Table 3.22 

Variance of the Difference in Average Performance 
(Four Blocks With Five Replications of System One and Four of System Two) 

Red Rounds Fired     Exposure     Engagement 
Casualties at Blue Time Range 

VCX.!.) + V(x.2.) 1.2798 2.2563 3660.0        303.75 

VCX.^-X.a.) .6^03 .8797 187^.7        436.98 

F .5003 .3899 .5122 1.1*39 
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Screening Candidate Alternatives 

A primary objective for the Filter Model is to screen or filter 
candidate systems with low-cost replications of DYNCOM in order to elim- 
inate weaker systems. In this section, a single block with five re- 
plications on each system is evaluated with respect to its efficiency 
in filtering candidate systems. Based on the experiments evaluated in 
this report, the cost for two systems Is 7.22 equivalent full-length 
replications. To evaluate this filter, the variance of the difference 
in average casualties Is computed for each performance measure, and the 
cost in independent full-length replications to achieve the same variance 
is computed. 

To estimate the variance of the difference in average casualties, 

equation A.63 becomes V^ . - ;?.,.) = V^s + (V^ + V^)/^ - "^'rvzh 
for this case of one block with five replications of each system. Also, 

A 
negative values of V,^ are se* to z61"0 in order to avoid the possibility 

of VCX.!. - X.?.) becoming negative. Values of VCX.! . - X.2«) are 
presented in Table 3.23 for each performance measure. The cost in equi- 

valent Independent full-length replications to match vCx«!. - X.g.) is 
determined by 

{ 

I 
I 

1, computing the variance of the difference for one full-length 
replication on each alternative system by 

V(Xllk) + V(X12k) 

2. computing the cost to match the single block filter by 

V(Xllk) + ^(X^k) 
2 ' rz —— 

vCx.!. - x.,.) 

equivalent full-length replications. 

The calculation procedure shown above assumes that each system will have 
the same number of replications in both the Filter and independent full- 
length replications. 

The cost comparisons in Table 3,23 show a very large cost reduction 
for the Filter in comparing red casualties and rounds fired.    These 
performance measures would require 23.08 full-length runs for casualties 
and 20.48 runs for rounds fired to match the Filter variance obtained 
with only 7.22 runs.    In other words, the single block Filter is about 
three times more efficient than Independent full-length replications for 
casualties and rounds fired.   However, the exposure time and engagement 
range performance measures show about the same cost for the Filter and 
Independent full-length replications. 
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Table 3.23 

Efficiency of a Single Block Filter With Five Replications 

Red 
Casualties Rounds Fired 

Exposure 
Time 

Engagement 
Range 

A 

Vdi? 5.1229 -.2938 2306. 3737.2 
A 

Vn 10.675 2U.50 16U26. 3900.2 

A 

Vr? 11.938 5.875 2855. 697.»+ 

v^2 19.203 7.125 -298i+.6 7359.3 
A .— v(xn. - ■ X.2») 1.96^ 3.225 7356.0 1713.05 

vCXijk) 10.675 2U.50 26765. 3987.9 

^(Xi*) 11.938 8.53 3156.5 870.29 

Cost of independent 
replications 23.03 runs 20.1+8 runs 8.1^ runs 5.67 runs 

Cost of filter 
replications 7.22 runs 7.22 runs 7.22 runs 7.22 runs 

.. 

I 
1 
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CHAPTER k 

SUMMARY AND CONCLUSIONS 

I In Chapter 2 several experimental design models were hypothesized 
for the purpose of representing the results of blocked DYNCOM runs. The 
objective for these models Is to Investigate the economics of operating 
DYNCOM to generate a battle situation or block environment, and then 
replicating the remainder of the battle for each alternative. These 
blocked replications would be useful if the variance in average system 
performance or the variance of the difference in average system per- 
formance for two systems were less for a fixed computer expense, A 
primary objective would be to use one or more inexpensive blocks to 
filter candidates to eliminate weaker alternatives. This Filter is re- 
quired to be Inexpensive and have small variances for the difference 
in average performances for two systems. 

Several models were proposed because the assumptions inherent in 
experimental models that are available in the literature appear inappro- 
priate for a combat model like DYNCOM. The primary extensions made to 
derive the Filter Experimental Model Involve correlations among block, 
interaction, and replication effects and heterogeneous variances. 

L 
A set of DYNCOM experiments were conducted at MICOM to evaluate 

these Filter Models and test their efficiency. These experiments in- 
volved two system tactical alternatives where the opening fire range 
for the attacking red force was set at 1200 meters for system one and 
8C0 meters for system two. Four performance measures were analyzed, 
viz., red casualties, rounds fired at blue weapons, blue exposure time, 
and first engagement range. An important characteristic of the experi- 
ment was that a common random number sequence was used for each repli- 
cation in a block on each system in order to increase the correlation 
amona the results for the two systems. By increasing correlation, the 
variance of the difference in average performance is reduced. The re- 
sults of the analysis of the experiment are presented in Chapter 3« Of 
course, these results should be interpreted as illustrating the potential 

*■ for the Filter Model concept of DYNCOM experimentation, and results 
for other systems or battlefield environments maybe different. 

The overall conclusions drawn from these experiments are that the 
Filter Experimental Model is a valid representation of DYNCOM experi- 
mental results, and that öignifleant economies can be realized by 
using DYNCOM as a filter depending upon the analysts choice of perfor- 
mance measures for ranking the system alternatives. Excellent results 
were obtained in reducing simulation costs if the performance measures 
of interest were red casualties or rounds fired. For example, a DYNCOM 
filter using one block and five replications per alternative obtained 
estimated variances for the difference In average red casualties or 
rounds fired in approximately one-third the cost of independent full- 
length runs. Results for blue exposure time and engagement range showed 
no reduction In simulation expense« 
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When using more than one block to compare system performances by 
computing the differences in system performance, the Filter concept of 
blocking continues to offer the simulation experimenter more for a fixed 
level of effort.    Results obtained from four blocks indicate that the 
Filter experimental procedure gives a variance one-half of the variance 
expected on the basis of independence for red casualties, rounds fired, 
and exposure time.    The engagement range variance was larger than ex- 
pected as a result of independent experiments. 

u 

u 
Comparisons were also made when the experimental objective was to 

estimate the mean value of the performance measure.    The best result for 
the Filter Model was a 35^ reduction in cost to estimate expected red 
cap-Hltles with equivalent variances from both blocked filter runs and 
independent full-length simulation runs.    A least-cost experimental 
design algorithm is presented in Appendix B, and this algorithm deter- 
mines the number of replications and blocks for each system in reducing 
the variance of average performance for each system below a specified 
level.   Results from this algorithm showed a 25^ reduction in cost to 
estimate expected red casualties, a 16^ reduction for rounds fired, and 
a 12^ reduction for engagement range.    The costs for exposure time 
estimation appeared to increase.    Thus, the savings to estimate average 
system performance are less dramatic than estimating differences in 
average system performance, but the savings for estimating expected 
casualties are significant.    For the other performance measures, the 
potential for savings in unclear. 

y 

u 

L J    ■ 
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APPENDIX A 

DERIVATION OP ESTIMATORS FOR FILTER MODEL PARAMETERS 
(HEVCE Model) 

Introduction 

In this appendix, the version of the Filter Model that incorporates 
heterogeneous variances and correlated effects is defined and unbiased 
estimators are derived for parameter values that are Important to the 
simulation experimenter.    That is, certain parameter values are required 
to plan further simulation experimentation and to estimate the 

(a) mean performance of each system alternative, 
(b) difference between mean performance of a pair of 

alternatives, 
(c) variance of the mean performance estimators, and 
(d) variance of difference estimators. 

TSie model acronym is HEVCE for HEterogeneous Variances and Correlated 
Effects,    The Filter Model is specifically designed to represent important 
characteristics of DXWCCM, a stochastic combat simulation, likely to be 
encountered when simulation is performed in blocks.    That Is, a given 
battle situation or environment is obtained, and a block of replications 
are observed (or simulated) on each alternative.    This starting situation 
for a block is called a block environment.    Given a particular block 
environment differences among the system designs may be more efficiently 
observed since a source of variation has been removed.    Of course, the 
subsequent results may be related to the particular block environment so 
a number of blocks may be required to reliably estimate system perform- 
ance measures. 

Filter Model Structure 

The structure of the Filter Model is defined by a set of assumptions 
concerning variation among system alternatives, block effects, stochastic 
differences from replication to replication, and interactions among these 
effects.    For a given replication, the following equation is assumed by 
the Filter Model to relate the principal effects.    That is. 

xldk = ^ + Bi + Aj + AB^ + ei;jk    ; (A.1) 

where 

xl:)k = observed system performance for block i, system j, 
and replication k; 

H = mean effect over all systems, blocks, and replica- 
tions; 

^9 



Bj^ = main effect for block i; 

Aj = main effect for syatem J; 

AB^ = Interaction effect between block i and system J; 

€ijk ~ replication effect for replication k of system J 
during block i. 

There are b blocks so i = l,2,«»»,b and a different system alternatives 
so J = l,2,«»»,a.   In addition, nij replications are simulated for block 
i of system j,    Thaa, k = l,2,«»»,nij. 

The stochastic properties of the above variables and their mutual 
relationships are Important in being able to represent the results of 
different test plans.    The usual experimental design models assume that 
the stochastic variables are mutually independent and normally distri- 
buted (Hicks, 1964, Graybill, 196l, and Winer, 1971).    Significant ex- 
tensions to these assumptions are made in the HEVCE Model.    To represent 
blocking effects in DYNCOM, the following assumptions are made.   The 
parameters n and A^; J = l,2,***,a; are fixed effects or deterministic. 
That is, the mean performance for system j is n + Aj.    Since \i is the 
mean performance overall alternatives, 

a 
j J/j = 0. (A.2) 

The block main effects, Bj., i = l,2,***,b, are random since the set of b 
blocks are selected from a large number of different possible blocks. Each 
value of Bi is assumed to be independently and identically distributed 
with mean and variance given by 

E(Bi) = 0 (A.3) 

V^j) = a2
B (A.4) 

The block-system interaction effects, ABJJ, are also assumed to be 
identically distributed random variables with mean and variance 

E(ABlj)=0 (A.5) 

ViABy) = aAB (A.6) 

Since the system levels are fixed or deterministic, then 

a 
2 AB., = 0 for all I (A.7) 

but the block levels are stochastic so 

b 
S ABH t 0 for all j. (A.8) 

1=1    lJ 
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In addition, the block and interaction effects for a given block are 
correlated with covarlances I 

I COW{Bit  AB^) - E(Bl • ABy) = aBAB; ^ 

for J = l,2,»«»,a 
1 = l,2,»»»,b 

also 
f CO^ABij, Aqt) = E(A^j • A^t) = aABAB; (Aao) 

for d = l,2,»»»,a 
1 = l,2,»»»,b 

Since the results among different blocks are mutually Independent, the 

COVft^ABij) = E(Bv.ABi;j) = 0, (A.11) 

00V(ABi;j,ABv;j) = ECABij «AB^) = 0, (A.12) 

C0V(ABit,ABvJ) = E(ABit.ABvj) = 0, (A.13) 

for 
1 ^ v; 1 = 1,2,•••b; 

v = l,2,»»»b; 

t / J; d " l»2,,,,a; and 
t = 1,2,•••a. 

The replication effects, e^jj, have unique distributions for each 
system alternative. Their means and variances are 

E(€ljk) = 0' (A.11+) 

V(V = V (A.15) 

for 
j = l,2,«««,a; 
1 = l,2,***,b; and 
k = l,2,**«,n^4* 

These replication effects eure correlated with both the block and inter- 
action effects for the block being replicated.   That is, 

COV(Blt eyk) = ößej (A.l6) 

COV{ABiy ^^0ABej (A.17). 
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COV(ABlt,€1;Jk) = o-^Qej 

COVCB^,«!^) - 0 

COV(ABvj, ^ = 0 

COVfAB^. eljk) = 0 

(A.18) 

(A.19) 

(A. 20) 

(A.21) 

fort^ j,  v/i, k= 1, 2, . •• ^jJ 

J = 1, 2, . .. a; 

t = I, 2, . .. a; 

i = 1, 2, . ., b; and 

v= 1, 2, . ., b. 

Note that each covarlance involving a replication effect either has 
unique values for each system being replicated or is zero. Moreover, 
the replication effects within a block are correlated and the covari- 
ances are related to the system being replicated. That is, 

covv w=V 
for  m /k, k=l,2,"», nij; m = l>2t"«,ni.j 

for 

for 

for 

for 

C0V(€ijk,eitk) = cr;jt ; 

k = l,2,»»»,min(ni;j,nit) 

cov(eiJk»€itm) = aJdt 

m ^ k, k = IfZ,*»»,^^  m = l,2,»»»nit ; 

cov(€ijk,evjm) = 0 

k = l,2,«»sn1;jj m = l^,««»,^ ; 

k = l^,^«,»^; m = 1,2,»..»n^ ; 

(A. 22) 

(A.23) 

{k,2k) 

(A. 25) 

(A.26) 
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where t / d, 
t = 1,2,•••,a; 
i = 1,2,...,a; 
1 ^ v; 
i = l,2,»»«,b; and 
v = l,2,.»»,b. 

represents correlation among different replications The covariance o-' 
of the same syptSA, i.e., t1, and the covariance cr^  represents corre 
lation among different replications of different systems, i.e., j and 

represents correlation among the same replications of 
t. 

Note that a.. 
difierent systems, i.e., J and t. Unique values for the covariances 
among replication effects for the same replication of different systems 
are assigned. This is done to represent the effects of variance reduc- 
tion using identical random number sequences for each system on a given 
replication which tends to produce a positive correlation between system 
performance measures for the same replication, i.e., eijk Sü[ia ^tk* 

Variance of Estimator for Mean System Performance 

The basic purpose of simulation experiments conducted with the 
process defined above is to estimate the mean performance of systems 
with an unbiased statistic having the least possible variance. An un- 
biased estimator for system mean performance is presented in this 
section, and then an expression for the variance of this estimator in 
terms of the parameters defined above is derived. 

Estimator for Mean System Performance 

An unbiased estimator for mean system performance of system j will 
be developed by determining the expected value of X^^ and then computing 
an average value for X^-jk over all blocks and replications for a fixed 
value of J. The expected value of X ijk is 

i 

I 

I 
I 

since 

E(Xijk) = H + Aj 

ECBi + ABij + eijk) = 0 

(A. 27) 

by equations A,3» A.5, and A.lU.    Note that ^ + A^ is the mean perform- 
ance of system J.    Thus, an unbiased estimator for ^i + A-j is obtained 
by averaging the values of X^^ over all blocks and replications for a 
fixed value of J,    The 8ample_average for a fixed block, i.e., i, and 
system, i.e., j, is noted by X^j., where 

X 
ij* n 

niJ 

ij k=l 

53 
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where n. . >0 for i = l,2,»»»,b and J = l,2,»»»,a.   Averaging over all 
blocks, the unbiased estimator for system J performance is X.j. and is 
defined as 

XM. »rr r.^TT I x... , (A.29) 'd ng>0 4 £ Xi^ ' 

where bj = number of blocks having at least one replication of system J; 
and 

E(X.j.) = H + Aj (A.30) 

Going one step further, the mean of X.j, or X... over all alternatives 
is an unbiased estimator of n. That is, 

nid 
x... =i E^- L HTTI: ^ (A.31) 

J=I
D

J  i.n
IliJk:i 

nij>0 

and 
E(X...) = n (A.32) 

because of equation A. 2. 

Variance of Mean System Performance Estimator 

Having obtained an estimator for mean system performance, an ex- 
pression for the variance of this estimator will be derived in this 
section.    First, the variance of an individual observation or V(Xijic) 
Is found.    In deriving both variance expressions, use will be made of 
the fact that 

V(Y) = E(Y2) - E2(Y) (A.33) 

for any random variable Y, 

To use A,33 in finding vCx^j^), the EiX^y?) will be determined. 
By definition 

E(Xidg) * E[(fi + Aj+Bl + ABy +   6ijk)2 ] 

= E[{\i + Aj)2 + ^ ABy2 + 6ijk   + Z}i + AjHBi + ABy + eijk) 

+ 2Bl(ABij + ^k) + 2ABlj€ijk] 

(A.3U) 
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In the above expression, note that 

E[2(,i + Aj)(B1 + AB^ + Gijn)] = 0 

■Ince the expected value of a product Involving a constant and a random 
variable with mean zero Is zero. Substituting the above expression Into 
k,3k and using A,kt  A.6, A.9, A.15, A.l6y and A.17, the following ex- 
pression for E^JJJJ2) Is obtained, 

E(xijk2) = (H + Aj)2 + C^B + o2^ + a2^  + 2amB + 2(TBej + go^j 
(A, 35) 

Using A,35, A,33, and A,27; 

VCXijk) = «^B + ^AB + ^ej + 2aBAB + 2(TBed + 2ffABed       ^'^ 

To derive an expression for V(X,j,), the mean system performance 
estimator, use vd.ll be made of the fact that results for a given block 
are Independent of other block results. Thus, 

Vfcj,) =-% £ V(Xiy) (A.37) 
J n1;Jio 

_ 
Also, equation A.33 will be used in determining V(X.j,); thus, an ex- 
pression for E^X^J,2] must be determined.    By definition. 

E[^-2l = E[(^   ^^ + AJ + Bi+ ABiJ + elJk))2J 

= E[(, + AJ + B1 + ABIJ + ^ ^^J] 

^(ABij + ^ ^^ + 2ABilii)  3^ijk)]   (A^ —ly-U  ny ^l^ lJ\"lj k= 1 U^J   (A.38) 

since all cross products between a constant and random variables with 
mean zero vanish. 

Taking the expectation of the above random variables, 
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EI^.2]^^ Aj,2^^. a^.E^ij  j^)*] 

+ 2oBAB + 2aBeJ + 2aABeJ (A.39) 

To evaluate A.39, the expression En=—   £   «mkrl will b« expanded; 
thus, LV iJ k=l   1J / J 

for ^i^O; i = 1,2,•••,b; J = l,2,»»»,a.   The above result is true 
since the double summation in A.Uo involves n^ terms where 

eidkeidm = eijk2 ^ n±32'nit temfl» where 

eijl^ijm   ^d   m ^ k. 

Using A.22 and A,15, equation A.UO follows.    Substituting A.^0 into A.39, 

ElXy.2] = (»x+Aj)2 + C^B + a2
AB + 2aBAB + 2aBed 

+20. „ . + J^(a2 .  .- (nH - l)a' .) 

for n^X); i = l,2,»»»,b; J = l,2,»»»,a. Using A.33, A.27, 
A.Ul, we obtain 

V<*-J-)=Aj      f    pB + AB + 2nBAB + 2GBeJ 
nlj*0 

■^^ABeJ^ejMnu-Da^)] 

^ (o2B + ^AB + 2aBAB + 2aBej + 2aABej + a'ej) 

3 nij^0 
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Note that from the viewpoint of analyzing an experimental plan, the 

above expreaelon for the variance of the estimator of system J mean per- 
formance can be resarded as the function of Just two parameters.    That 
is, 

1«    system J block variance, VM, where 

Vbj = ^B + ^AB + 2aBAB + 2<TBeJ + 2oABeJ + ^ej (A.lf3) 

2,    system J replication veuriance, Vrj, where 

vrj = ^ej-^'ed (A.MO 

Knowledge of the values of both V^,- and Vrj permits calculation of the 
mean value estimator variance for arbitrary values of the number of 
blocks and replications per block. 

Estimation of the Variance of the Estimator 
of System Mean Performance 

Estimators of the values for VLJ and Vr* are derived in this section. 
The required estimators are obtained by first estimating Vrj and then Vbj, 
Each estimator is unbiased in that they are obtained by finding a statis- 
tic with an expected value equivalent to the parameter values required. 

"nij — 
The statistic S       S   (X^ - Xy.)2     is used to estimate Vrj, 

nij>0 

and the expected value of this statistic is derived below. 

'«•>' = E 
nij  , 

7.   , S    (X 
I,   k=l 

Lnlj>0 

Ijk   "^ 

= E 

n U 

ljkXij' +XIj-  > 

.??    .2 

jiij>0 n^^O njpo ■1 
Z 
I,    k=l 

nU 2 >:    xijk 
nIJ>0 

ff 
nij(Xlj-) 

nij>0 

(A. 45) 
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Substituting A.35, A,klt A,l+3, and A,kk into the above equation, we ob- 
tain 

r      nij 
I,    k= 1 

Lnlj>0 

<XlJk " Xlj') (   E   ny^ + Aj)2 + VbJ + V^) 

nlJ>0 

- % [it+ A
J
)2
 

+ %+ Vnij)] 
nlj >0 

vr|(t»«-bj) 
\nij>0 / (A,l»6) 

Thus, an unbiased estimation of V . is 

A 

-■('/(^■'■)fc"?^'v"; (A.47) 

In order to find an estimator for_the parameter Vu^, the expected 
value of the statistic 2  ni-j(Xij.-X,j.)^ is derived below. 

ni;)>0 

Uij>o J    Lnij>0 -I 

W) 

To 
and 

a  2 
evaluate A.48, the expectations of X^X.J» and X.J. are required, 
, expressions for these quantities are derived below. 

Efxij. • V"*f I E[Xij-V 
n8j>0 
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Since the random components of X^ and Xs1k are independent when s and 
i are different blocks,       J      " 

^id" X8j. = (n + Aj)2 

after substituting A,k3, A.'^, and A.4l into the above expressions, 

E[xij-x.j.] - k + Ad)2 + r- (vbd + V^ij) (A^9) bJ 
7     2 Next, the expectation of X..>.    is found. 

niJ >0 

0 3       n,lj>0 (A.50) 

Substituting A.Ul, A.43, A.W*, A,49, and A.50 into A,48, 

J   m/o 

v2 ^   1 

nij>0 ^ 

1 
I 
I 

+    lHi{(>**/*kV**kV*  l^ 
nij>o n8j>0 

"sj/ 
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I nij<xir -X 

.nlJ>0 

>: niAvbj 

^h^ui 
(A. 51) 

The estimator for V^j is determined from A. 51 by replacing Vrj with its 
estimate, which gives 

W>o V n«>o 

7  vrj bd(b^ 
^ 

If V^j^O as computed above, set V^j = 0, 

(A. 52) 

Vbj Is a variance, a negative value for V^j has no physical 
should be adjusted.    The assumption is maae 

Since Vj, 
meaning and should be adjusted.    The assumption is maüe that the true 
value of VM is a small positive number when the solution for V^j is 
negative us^ng equation A. 51 and vr4 in place of Vrj,    V/hen this case 
occurs, zero is a better estimate or V^-j than a negative number.   Al- 
though the estimates using equation A.5z are improved by this procedure, 
the unbiased property of the estimators lost and a small bias introduced 
because the resulting estimator is either equal to or greater than the 
unbiased estimator. 

Note that the variance of the mean value estimator for system j's 
performance can be estimated by substituting equations A.52 and A.hl 
for their respective parameter values into A,k2,    That is. 

*/-        v 1   A 1    A 

i,   ^ 
nid 0 

(A. 53) 
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Variance of EBtlmator for Dlfferencea 
In Mean System Performance 

Hie correlations cited above among block, Interaction, and replica- 
tion effects will cause the estimators, X.j, ; J = l,2,***,a; to be mutu- 
ally correlated. Thus, the_yariance of a difference between two system 
performances, e.g., X.j, - X.^., is not sinply the sum, V(X,j,) + V(X,t.), 
as one would expect when the two estimators are Independent. This char- 
acteristic is very important when comparing systems because the difference 
between two systems may be much more important to the analyst than their 
absolute magnitude. In general, positive correlation between the mean 
value estimators will decrease the variance of the difference, X(j.-X.^#, 
below the sum, V(X,j,) + V(X,t.)t On the other hand, the variance of the 
difference will be increased by negative correlation* 

_  _ In this section an expression for the variance of the difference, 
X.j.-X.-t», where J ^ t, Is derived. Moreover, an unbiased estimator for 
the variance of the difference is derived In a manner similar to that 
used in the previous section« 

_ Equation A, 33 is used to determine the variance of the difference 
X,j,-X,^,, thus, an expression for E^X.j.-X.t»)2] is required, Ihls 
expectation is derived below. 

E[(X,j,-X,t.)
2] = E[x,j,2 - 2X,.j,X,t, + X.t,

2] (A.5^) 

To evaluate the above equation, an expression for E(X,4,  • X.t,) is 
necessary, and this expression will be developed as a result of a 
sequence of steps involving the computation of the following expectations: 

!•    E(xljk * xltk) » 
2, ECXijk . Xitni) where m / k, 
3, E(X1j]£ • Xit,) , 
k.    ECX-y,  • Xit.) , 
5. E(X,j, • Xit,) , and 

6, E(X,j,  ' X,t,) , 

The first expression is 

EfXljk * xitkl = E^ + Aj + Bi + ABij + V ^ + At + Bi + ABlt+ €itk) 1 

= *i + Aj) ft. + At) + 'B + ^BAB + ^ABAB + ^BeJ + * kßej 

^Bet^kBet^elf ^'^ 
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after deleting all terms involving the product of a constant and a zero 
mean random variable and applying A,kf A,9, A.10, A,l6, A,l8, and A*23<> 

Similarly, for the second expression, 

ElXlJk- Xltm)     Ef (^ Aj + Bt ^ ABtj + €lJk) (M + At + Bj + ABit + 6^) ] 

=   ^ + AtM K + Aj) + o-B
2 + 2<rBAB + aABAB + aBej + «r ^ 

^Bet^'ABet^ejt' (A#56) 

where use is made of A,2h, 

Both A, 55 and A. 56 will be used in determining the third expres- 
sion 

nit 

It   m=l 
1   r 
-it  ,   +<rB2 + 2,rBAB+<rABAB 

+ ^Bej^ ABej +'Bet+,rABet + <rejt ) 

if k < nit.    Otherwise  if k > nit  > 0, then 

E(Xljk • S,,.!  =   Ox + A,, «. t At, + ^ t 2IBAB + ,ABAB 

Bej       ABej      Bet      ABet       ejt (A. 57) 
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For the fourth expression. 

i*. 1] iFl 

" «'+A
J)«'+Al)^l^BAB-ABAB^Be... BAB    "ABAB^'Bej^A^j 

+ <r        +0-' +,••    +     K.it -  ^t) ,       „, 

where n^, nit  > 0, 

Hie above equation will he used in constructing the fifth expression. 
That is, 

"r* *if] ~ b,     ?,   tf^sf' xitJ £[X. 

n8j>0 

Recalling that all random variables in different blocks are Independent, 

_     1      -    mln(bj,bt) - 1 
EfX.j. • Xit.l - —EfXjj. ' Xlt. ] +   (ji + Aj) Ox + At) 

=   ^ + Aj> ^ + At) +  ^('l + 2<rBAB + 'ABAB + ^Bej + ^Bej 
m 

i Be'   AB,!t   e)t    -«(-vv/ 
If ni^n^ >0. (A.59) 

In the event either n^ or nit are zero, 

E[X.j • * Xit. ] = (H + A.) (^ + At) if bj and bt > 0. 

For the last expression, 
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nlt>o 

0ltAJ,«1+At'+-rr-''B+2'BAB+'ABAB 
J   t 

Bej       ABej      Bet      ABet      ejt ) 

1 (T - O" 

+ s ejt      ejt 
b. b. 1. 

S (rejt-(rejt 2      i 

^ bt V  B        BAB      ABAB      Bej      ABej      Bet     ' ABet 
+ ^ ejt./ 

» * 
0"      - «r 

ejt       ejt 

I 
i 

Vt     ^^o  max^. V j 

where bJt = number of blocks with n^ > o and nit > 0. (A.6b) 

Substituting A.60 and A, 50 into A, 54, j 

E[pc.r-x.t.)
2l ^ (^y + J- vbj + -^-vrj   s   -L .z^ + A^ + At) 

2b.     , "ij^0 I 
^  ("B + 2<rBAB + "ABAB + ^Bej + ^Bej  + ^Bet + ^Bet + ' ejt) [ 

bibt      n,!^^^/^^   +^Vbt I 
+ -i- vrt      s ^L 

bt nit>'o   'HJ | 

^ArAt)2 + f/bj^tvbt+;Lvrj   .   ^ | 

+ "7 Vrt      S ~ f bf ?   nIt t n  >0    " 
it 

2b., ( 

1 
b b i   (A.6l) 
^j ^t l»     n max (ny. nlt) 

nij.nit>0 
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Using A, 33» the variance of the difference becomes 

V 

bJ>t \ B        BAB      ABAB      Bej       ABej      Bet      ABet       ejt/ 

2 _      ^ejt-^jt 
irx   r  —:  (A*

62
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nit>o 

The above expression can be simplified considerably If the assumption Is 
made that each block having observations for system j also contains ob- 
servations for system t and vice versa.   Under this assumption bj = bt = 
bjt, and after substituting A.U3 and A.M+ 

V(X.J.- X.t.) = ~£&iB + ^ABej + ^ABet + %j + ^ef 2<rABAB " ^ABej 

, ♦ 1 1 

- 2<r - 2<r   .4 ) + ——5 V .      Z      — ABet        ejt'    b   ?  'rj     i,       n.. 

■u .   c     rt      .        n bJt      rt    I.     nit b,+2 I.       max^, V 
n   >0 3* nfj*nit>0 

when bj = bt = b^. (A.63) 

Both the estimation and analysis of experimental plans are simplified 
If vCx.j.-X.t.) Is regarded as a function of two parameters requiring 
estimation In addition to Vrj and Vrt, That Is, let 

Vddt ' 2oAB + 20ABeJ + 2(TABet + *et + ^'ef 2^ABAB " 2CTABeJ 

" 2^et - Kjt' ^ (AÄ 

rjt   ejt   ejt 
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V^-jt is referred to as the block variance for the difference between 
system j and t, and V^j^ is the replication variance for the difference 
between j and t. 

Estimation of Replication Variance 

The expected values appearing in equations A, 55 and A, 56 Immediately 
suggest an unbiased estimator for the replication variance. Note that 
the difference 

ECXijk • Xitk] - ECXijk • Xitnij = a;jt - cr*^ = V;jt 

Thus, an unbiased estimate of V* .. can be constructed by taking the dif- 
ference between two sample averages where one average consists of terms 
having the expectation equal to E^J^ • Xitjc] and the other average con- 
sists of terms with an expectation or EpCj^jj • Xj^^-l, Hie desired 
statistic is 

*,     =  j_        s i min^.njt) 
rJt       ^t        i. minCHj, nlt)     k^l Xiik * Xitk 

niJ» nit>0 

" b' f        Vit-min^. nit)      
S       S     Xijk Xitm 

Ij   it k ^ m 

where bj-t in the number of blocks with njinj^1» and E[vrJt] = V ..   • 

(A.67) 

Finding an estimator for Vfät is a more difficult task.    The 
statistic 

b 
S     Hj. n^  ( Xj.. - X,.. ) ( XJJ. - X. ^.) 

is useful in finding an unbiased estimator for V^,    The expected value 
of this statistic is derived below« 

E[  ^    nijnit <% -x.j-XX^. -X.f)J 

S   njj njj (XJJ. Xit. - XJJ. Xt. - X.^. Xit. + X.^. X.t.)J 
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After subatituting A.^3, A. 58, A. 59, A.60, A.6^, and A.65, 

b ■ D -1 

2      S     "ij 'Ht ^ ^j*   " ^« j» ) ( Xlf   " ^•t*-' 

=   S   HJJ nit^ + AjXJx + At) + i (Vbj + Vbt - Vdjt) + 
Vrjt 

2 

max(nij, nit) 

£ ^ ^ ^ + Aj) (, ^t) + ^ (Vbj + Vbt - Vdjt) ^  h^^ —) 

b / 1 + ^2 n^ ^ + A,)^ + At) + —   (Vbj + Vbt - V, djt) 

+ _i.     s      üiL 

\ ^ 81      Bt 

for bj - bt = bjt 

(A.68) 
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The desired estimator for V^ is found by solving A,68 for V^ and re- X 
placing Vj.jt» V^j and \^ with their respective estimators. Thus, 

I 2bif b 
A        A       A It 

V " VbJ ^ Vbt "   fa    ,a ^J ^   (Xy" ^j^^f ' ^f > r 
(bjrl)( ^S nijnit) | 

11 b""2 

+ 2V'  !I- ~r)(iii min<nij'
nit))/(if1

nij'nit) 

+   ! 

\n8j'nst>0 

for bj ^ bt -  bjt. (A#69) 

ft. i Using_the above equation for V^jt and Vrjt given by A,67, estimates 
of V(X,j,-X,t,) can be obtained by substituting Va-jt and V'1t into A,63, 
That is 

" b)t        n^O     "ij        b)t        nu>0 

A l 
2 V , 

■^       2       1  , forb =b = b14. 
b^ i( max(nijfnit) j      t       jt' 

nlJ,nlt>0 (A.70) 
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LEAST-COST EXPERIMENTAL DESIGN ALGORITHM 

This appendix presents the algorithm used to solve for the least-cost 
experimental design to achieve a set of estimated variances less than a 
specified upper limit, i.e., Vs, for each system mean estimate. The algo- 
rithm is provided a set of estimates for the system block variances, Vbj» 
and system replication variances, Vr.j. In addition, a set of blocks may 
already have been observed, and, if so, the algorithm must determine the 
additional experimentation in the form of additional replications for the 
old blocks and/or new blocks with replications. The algorithm considers 
the expected cost to generate a block and to perform replications within 
a block in order to reduce the estimated variances for each system mean 
estimate blow the limit Vs. The costs provided as input data to the 
algorithm are: 

Cb = cost to generate a new block, and 
Cr « cost to perform a single replication for one system, 

in addition to Cb, 

The solution provided by the algorithm is expressed by the follow- 
ing variables: 

u* b. = total blocks to be observed for system j 

b  a maximum number of blocks to be observed over all 
* systems, i.e., b    = max by tfj* 

* 
nj    = minimum number of replications in each block 

b'    = number of blocks already initiated. 

Th&t is, the additional replications for system i to be observed in blocks 
already initiated is 

m    - njj if n?   - n^j >0, and 

0   if nj* - n^s 0; where 1 = l,2,•••,b,, and 

u* njj is defined on page 50.     In addition, bj    - b1 new blocks must be 
Initiated for system J with n?   replications in each block. 

Of course the algorithm can operate in the absence of blocks that 
have already been initiated. In this case, b* is zero and n^j = 0 for 
all i. 

The algorithm finds a least-cost solution iteratively by determining 
the conditional least-cost solution given b blocks for all possible values 
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of b. For each conditional least-cost solution, the following values are 
generated: 

u 
bj = total blocks to be observed for system j given a 

maximum of b blocks (bV £ b), 
r 

UJ = minimum number of replications in each block given 
a zuaxlmum of b blocks. 

The lowest possible value of b is b' where all additional replications 
are performed on existing blocks and the largest possible value of b 
occurs when nj = 1 for all j. 

The solution for the conditional least-cost test plan given b blocks 
makes use of the decomposition permitted into individual system test 
plans when the number of blocks generated Is known. That is, the least- 
cost test plan from a overall viewpoint consists of the least-cost test 
plan for each system considered individually to achieve a variance of 
the system mean estimate no greater than Vs. This decomposition is only 
permitted when the total number of blocks is known so that tradeoffs be- 
tween the total number of blocks and replications for each system are not 
required. 

The least cost solution for n. is the lowest value of n? satisfying 
the constraint giving the upper lidit on the estimated variance after 
the experimental plan is executed. That is, application of A.42 speci- 
fies the choice of the smallest value of n? satisfying 

b  b2i=lmax(nj,nij)   b
2.nj     S {B'1} 

A solution to equation B.l giving a value of nj is complicated by the 
summation 

E  P  , 
1=1 maxCn^nij) 

but the solution is simplified by ranking the values of n^; i = 1,2,««», 
b'; such that n^.. > nj+1 -)> t = l^,»»»^'; where nfo  is a ranked value of 
njj.    Substituting these ranked values, B.l can be rewritten giving 

VhJ|      1    m   VrH      (b-m)VT.1 
-^ + -?   2   -? +     5 '*   s  V8 , (B.2) 
b       b2 t=l n*j       b2.nj 

where m satisfies ryi > n? > n^+1  . and nj is the smallest integer 
satisfying B.2.    Assumimg that m is known, then 
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i. 

D 

4 
(li-ni)Vrj 

b^Va - bV! bd 

m   Vrj 
•• 1 (B.3) 

if 
b2V. tVbJ /, ^ >0» t-lntj 

where m satifies n . > n? > n*+1 ., and the function [x] is the greatest 

integer less than X. In the event 

A. bV, bj 
m Vri Z ^L <0, 
t=l »td 

then n? does not exist and more blocks must be generated. The value of 
n.t is ae »d letermined iteratively using the procedure flowcharted in Figure B.l, 

A special case occurs when the solution for n? by B,3 is one. In 
this case, the least cost solution may not require a replication in each 

■u block, i.e., b? may be less than b.    Applying equation B.2, the smallest 
value of b^ satisfying 

L.  E   !aU(b!hb.l)vr.l<Vl 

3       (^fniJ^O^        ^)2 ' 
b^ s » (B.10 

bjsb-, and 

bj = number of blocks already generated 

with n^j > 0, 

gives the required conditional least-cost solution when n. determined 
by B.3 is one. 

A flowchart of the algorithm for determining the least cost experi- 
mental design appears in Figure B.l. The algorithm generates each 
possible conditional least cost solution for all permissible values of b. 
The conditional least cost given b total blocks is computed by the follow- 
ing equation 

i 
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a 
u Ctb = Ob't + £ »5 .cr(bj-b') 

ab» 
+ * ^^ U(n;-ni;J) • (nj-nij) . C, 

J x x X 

where 
Ctb = conditional least cost of achieving the variance 

constraint given b blocks, and 

U/..N = the stop function where U^^ = I1 if X>0 

^x^ W  |o if otherwise. 

The least cost test plan is determined by finding the value of b* satis- 
fying Ctt)# = MinCtb; and values of bj and n£, J = l,2,»»«,a; for this 

test plan are designated as the least-cost values bj and n? . Each 
possible value of b is calculated in order to deteimine b* since C^ is 
not a unimodal function of b. 
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0 
G> 

b^' 
initialize experimental cost 

Ct* - 1030 

3 
CON=.FALSE. 

3 
I   m = 0 

Does a solution exist for 
this value of b, 1. e., Is 

2 m  Vrj b vs-bvbj -   z rir>o ? 
t=intj 

^yes 

compui 

nf = 
J 

e 

(b-m)Vrj 
+  1 

2                         m    Vrj 

u        
s       bj     Kinfj 

Sot CON   .TRUE, 
to note that another 
value of b must be 
analyzed 

•-M Clan*' -\A     y^H^J} 

i ■(la m = O?) 

0 g >• -J ^n., y**Q (^jj—^s 

no» JI55" 

m + l"»m 

no 
-(is m s b' ?} yes 

Figure B. 1. —Algorithm for Determining Least Cost Solution 

73 

-6 
..■.: .       .-.'      ..■■■     ;■■ ■.,..,.     ■ 



Check to see if all b 
blocks are required 
Set   bj    = b' 

C 
I 

Is b = b1 ? 0- yes 

no 

Is 
M+_l 
b?       (bj)2     i,     niJ 

Vri + (b^Qv^ s 

u.2 
-J        ^^    n^^O   iJ ^) 

no 

by + i~q 

yes -Q^bT) 
NoL  

u b.   is the required number 

of blocks 

Figure B. 1, continued—Algorithm for Determining Least Cost Solution 
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© 
I j +1 -*J 

yes 
(is j  ^ a ? ) 

no 

Compute the cost for this 
value of b 

ctb-cb-b+  ß^]  'Cr<$   -b,) 

a    b' 
+ Ai5iU(nj "V^J "V^ 

(Is this s 
i.e., is 

I 
solution lower cost than others 

I 
> 

No 

yes 

Record the new lower 
cost solution 

Ct   = Ctb 
11* 

r*        r 

b + l-»b yes 
Should another block be 
analyzed, i.e., 
is CON = .TRUE.  ? 

No 

Figure B. 1, continued—Algorithm for Determining Least Cost Solution 
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APPENDIX C 

DERIVATION OF ESTIMATORS FOR THE FILTER 
INDEPENDENT EFFECTS AND HETEROGENEOUS 

VARIANCES MODEL (HEVIE) 

T Model Description 

A special case In which the component effects of the Filter model 
derived In Appendix A are Independent with heterogeneous variances Is 
presented In this appendix, and estimators for the model's parameters 
are derived. The model acronym Is HEVIE for Heterogeneous Variances and 
Independent Effects, In this model, the replication effects, ei-jv» have 
unique variances for each system, o|., as defined in Appendix A, but 
these replication effects are independent of the block main effects, Bj., 
and the interaction effects, ABJJ. In addition, the block main effects 
are independent of the interaction effects. Thus, the HEVIE model is a 
special case of the HEVCE model derived in Appendix A, where 

(rBAB = 0 

0ABAB a   0 

^Bej =   0 

^ABeJ = 0 

^ABej 
= 0 

^ 
= 0 

^t = 0 

Oejt = 0 

for i  « l,2,«»»,a: and t = l,2.'«»,a. The parameters remaining in the 
HEVIE model are og, OJQJ, and o|., J = 1,2,»•• »a. M' 

The basic purpose of simulation experiments is to estimate the mean 
system performances, X.J., the variance of the estimators, V(X,j,), and 
the variances of the differences between two system performances, 
V(X.;j.-X.t).    The expression for V(X.j.) given by equation k,k2 of the 
HEVCE Model becomes* 

a?-   b 

^■m**)*?^       (-) 
*In the HEVIE model, the assumption is made that nij > 0 for 1 and j; 
thus, bj = b, j = l,2,»#»,a. 

I 
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after setting all covarlances In A. 1+2 to zero.    Thus, the system j block 
variance for the HEVIE model becomes 

VbJ   - ^ + ^B. (0.2) 

and the system J replication variance Is 

V, = «r2 

rJ   ej (C.3) 

for i = l,2,»««,a.    Note that the block variances are Identical for each 
system In this case.    The variance of the difference between system 
average performances, V(X.j.-X.t.) Is simply the sum 

V{X.r -X.t.) =  VfX.jO + VfX^.) (c.4) 

since the covarlances all vanish. Thus, the HEVIE model can be Imple- 
mented If estimators of V^j and Vrj, j = l,2,»»»,a, are obtained. More- 
over, these estimators can be used in the procedure described In Appendix 
B to find the least cost test plan. 

Estimators 

Replication Varlancee 

Equation A,l+7 can be used to obtain an estimator for Vrj which Is 
Identical to the estimator employed by the HEVCE model. Thus, 

for j = l,2,...,a. (C.5) 

Note that the estimator for V. Is unbiased. 

Block Variance 

"Hie estimator for Vbj takes a different form for the HEVIE model 
than the HEVCE model primarily because the value of V^j Is Identical for 

each system. To estimate \$  = a| + ^jm» 'the expectations for two 

statistics not employed In the HEVCE model are required. These statis- 
tics are commonly known as the block sum of squares, i.e., 

b  -  -  2 
Z \X^..-X...) , and the 
1=1 
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interaction Bum of squares, i.e., 

b       a 
S       S    (X... - XJ. . -X.i. +X..») • 

i=l j=l   iJ 

Block Sum of Squares 

The expected value of the block sum of squares can be expressed as 

if S (Xj.. -X...)2]= E[S (Xj.on-b Ehx,..)2 

^^[(X^^j-bE^X...)2]   (c< 
6) 

The expectation of X^..2 is evaluated below. 

E [(XI..)
2
]-E[[ I ^ £ ^ + Aj + Bi + ABiJ + v]2J 

■7'[{ 
hi 

a JA + a Bi +   S 
=1 »ij   k=i  J / J 

a a 
since    2   At = 0  and  2   AB.. = 0  as expressed by equations A. 2 and A. 7. 

i=l    J j=l       J 

Continuing, 

Ijk 

after deleting all products of a constant and a zero mean random variable, 
and products of two zero mean independent random variables.    Thus, 

E [ (Xt..)2]  =  V- 

since the values of eij^ are mutually independent. 

i  a ^ i 

a  j=1 Hj (C.7) 
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Using the above result for E^Xi,,)2], the expectation of X,,, 
can be determined. 

E[X.,Z.  ] =    E iH'-yi 
[bb iif13-? —     1 

S    S   X... X ..   =^E   S X,.. +2S     25q..x.. 
l-l  8=1    i       S   J     b2   Li=l    * 1=1   s=i+l      

S   . 

iu2+a2   i ^ i ^-V^S, 
hV        B      baz j=1  i:=1    ntj   /        b     ' 

where the relationships 

2   _      Si = ^^ 
1=1 

were used in evaluating the last term in C.8. 

EIXj.. Xs.. ]  = n2, and      S ,        ? 

(C.8) 

Substituting C.7 and C.8 into C.6, the expected value of the block 
sum of squares becomes 

E S  (XJ..-X... )2Uu(fi2+<r2)+^   S     S    --^ 
1=1 J       V B/    a2   3=1  i=i    "ij 

-l|i2+(r2+    ! 
a     b 

aÄb    J=l 1=1      "lj B     .2f      • -   • -      n 
^l-(b.l),2 

-  (b-1) ^| + -| 
a      b 
S      S ej 

a'b    j=l   1=1     "lj 
(C.9) 

Interaction Sum of Squaras 

The expected value of the interaction sum of squares is derived 
below. 
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u 

rb a  -   -   -   -   21 
S     S    (Xy. -Xj.. -X.J. +X...) 

= E 
b     a 

-2   . -   2 . =T   2  . - 2 
•*     ^   ( XJJ» T Xi« •  T X. i, + X.,, - ^Xii»    XJ, .  —   ^4{* X» ■j« 

+tXiä. X..« ■'■ bXi«. X« i, - ZXi» • X« ,,  — 2X. j, X.,.) I 

after expanding the expression squared, 

b     a .n        r b =Eb1A
5«-2)tEl1fl

a5E'"2l+E[PV^2] + ab E Ä^ • • 

+ E 

+ E 

If" Li=l 
2a Xj. .2 + 2a Xj.. X... + 2a Xj.. X... - 2a X... ) I 

[S    (-2bX.r
2-2b5C...2)] 

= E    S    S   Xy.2]   -aE    S   Xj..     -bE    S   JC...2    +abE X..2 
b     a 

j 

Using equation A.^l and noting that 

t 

^BAB = ^ej = aABeJ ' aeJ 

for the HEVIE model, then 

(CIO) 

I 
I 
I 

E (Xy2 1  -   (^+Aj)
2
+«r2+«rA

2  +  n 
2L 
ij 

Similarly from equation A,50, we obtain 

(C.ll) 

E [ X. j.2 1  M^ A/ + i  (CT2  +<rA
2 , +  -L **   ^ ^ (c.12) 



In using the above equations to evaluate 
ra,! r a 0i a 

S 
a _ zi       r a - zi a 
S   X...      and E    S   X...       , the constraint   S AB,, = 0  should 
j=l     J  J Lj=l      J   J j=l     1J 

b^ reccgnized. 

In evaluating E| E   ABjila degree of freedom is lost to the con- 

straint so that 

"a       2* 
3   2   ABii , 

ra    2i 
S   AB       =   (a- 

Lj=l       1J J 

a 
E I  S   AB.f I =   (a - 1) <rA2 

Substituting these relations into C.IO, we have 

r b  a  _    -    >     -    zl 
S     S    (X,,, - Xi. • - X. •• + X».. ) 

1.1=1 j=l    J * J 
E ■ 

a ab 
= S  b(ji +Aj)

2 + abo-2 + (a-l)b(r I + 23   ir ?   S     J^ 
j=l J B A1J    j=l     J  i=l      ij 

-ab 
1    a      2   b    1 a ? 

B      j=i  j 1=1 y   j=i 

2 2   1 a   2 b   1 -a(rB -(a-l) «rAB  -- S    T      S    — 
j=l      J  1=1    ^J 

--(a-l)^!)^^^^^^^ 
(C.13) 

Block Variance Estimator 

The expected value expressions for the block and interaction sum of 
squares derived above provide the basis for an unbiased estimator of the 
block variance V^ = or2 + cr2       using C,13 and C,9, we can solve for the 

"        B        AB 
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expected value of Vbj,   After replacing parameter values with unbiased 
estimators and removing expectation symbols, then 

b 
Vbj = ?B+&AB^   S    (Xj.. -X...)Z/(b-l) 

b     a 
s    s 
i-1 J=l 

+ s    s   (XJJ.-5q..-Zj.+3l..)2/l(a-i)(b-i)i 

a b 

azb    4=1     ej   1=1     "Ij (C.11+) 
u J 

Note that C.lU is an unbiased estimator for V^j however, negative esti- 
L mates may occur in practice for Vjjj when the estimates for Vrj are 

sufficiently large and the interaction and block sum of squares are 
sufficiently small.    Of course, a negative value of v-^-j has no practical 
meaning, so a procedure similar to that employed by the HEVCE model is 
used.    Thus, V^j will be used from C.lU if it is positive; otherwise, 
Vbj is set to zero.    The assumption is made that the true value of V^j 
is likely to be negligible when negative values from Clk occur.   Al-A 
though this procedure will yield better estimates, the estimator for V^4 
that deletes negative values is biased. 

,„ 
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APPENDIX D 

DERIVATION OF ESTIMATORS FOR THE FILTER INDEPENDENT 
EFFECTS AND HCMOGENECUS VARIANCES MODEL (HOVIE) 

Model Deecrlptlon 

This appendix presents the Filter Independent Effects and Homogene- 
ous Variances Model (HOVIE), and estimators for model parameters are 
derived« The HOVIE model amounts to a further simplification of the 
HEVIE model presented In Appendix C, and the HOVIE model Is equivalent 
to mixed two-factor model commonly found In experimental design litera- 
ture (Hicks, 196J*; Grayblll, 196IJ and Winer, 1971). The HOVIE model 
Is obtained from the HEVIE model by setting 

<^j = ^| for all J. (D.l) 

Thus, the HOVIE model specifies that all systems have the same variance, 
and It follows that they would have the same test plan. 

The variance of the estimator for system J mean performance is 

**      b 

vi*.y) = i<ri+*Al)+-j- £ iqj 
(D.2) 

which Is obtained directly from C.l.   As specified for the HEVIE model 
by 0.2, the system J block variance for the HOVIE model Is 

VbJ  - .| + ^ (D.3) 

In addition, the replication variance is 

Vrd = ^| , for J = l,2,».»,a.        (D,^) 

As done by the other models, the least-cost experimental design can be 
prepared given estimates of V-^j and Vr4, and these estimates can be 
used in the procedure describea in Appendix B to prepare the experi- 
mental plan. 
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Pareuneter EBtlmatore 

Estimators for Vrj and \A are specified in this section using 
results developed for the HEVIE and HEVCE models. 

Both the HEVIE and HEVCE models use the result specified by equa- 
tion A.^ in deriving an unbiased estimator for Vrj,    TCiat is, 

« -      2 2    (X... -X^. ) 
I,     k-1 

nlj>0 

wijk ' Ä1J- -   Vrjr  S    ny-bj 

Lv0 

Since the replication variances for each system are identical for this 
model, then the statistic cited above can be summed over each system to 
provide an estimator for VrJ = a2; J = l,2,..»,a.    The expectation of 
this statistic is* e 

r b  a nij 2!  fb  a 

s   s   s  (x.-Xij.)     =   s   *  Vab 

Li=i j=i ic=i j   L1-1 j~1 
^rj        (D.5) 

i 
I 
I 
I 
1 

Thus, an unbiased estimator for Vrj is 

'rj 

b 

1=1 j=l lc=l 

a  ij     - 2/rb 
S        2        (Xi^.Xy.)2/^^ 

a 
S 

=1  k=l 
«Hj -ab   = (D.6) 

^       The same estimator as employed by the HEVIE model can be used for 
Vbj after accounting for the fact that Vr1 is a constant function of J. 
Thus, d 

i 

: 

i 

* 2 «      v2 
Vu4       <r^+<rAB "     S    <Xi" -x'«-)   /(b-1) 

i-1 'bj B 

b     a    -        - - -      2 + S    S  (X... -X... -X... +X...)/[(a-l)(b-l)l 
1=1 j=l      3 

a2b        e    j=l   1=1   nij 
(D.7) 

All values of nij are assumed to be greater than zero in the HOVIE 
model. 
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D,7 is an unbiased esjlmator for Vuj, but again, adjustments may have to 
be made In the event Vb;j is less than zero. As specified for the HEVIE 
and HEVCE models, negative values of Vbj are set to zero giving more 
realistic estimates but removing the unbiased property for Vjjj. 

1 

I 
I 
I 
I 
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I 
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APPENDIX E 

FILTER PROGRAM 

DeBcrlptlon 

Purpose 

The Filter program accepts data generated by blocked Simulation 
replications and estimates Filter Model parameters.    These parameters 
are used to estimate the variance of average system performance for 
each system alternative and the variance of the difference in average 
performance between each possible pair of system alternatives.    Finally, 
a set of least-cost test plans are determined so that the variance of 
each system's average performance is less than a specified upper limit 
Vs.    A sequence of values for V8 are considered, an a test plan is de- 
termined for value of VB. 

■ 

i 
1 
I 
I 
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I 
I 

Input Data Format 

Card Number Variable Columns Fonnat 
1 Title 1 to 60 Literal 

characters 
2 Title, continued 1 to 60 Literal 

characters 
3 NS 1 to 5 integer 
3 BP 6 to 10 integer 
3 NVARS 11 to 15 integer 
3 VARI 16 to 25 real 
3 DVARS 26 to 35 real 
3 CR 36 to ^5 real 
3 CB 1*6 to 55 real 
k N(l,l) 1 to 5 integer 
k N(l,2) 

• 

6 to 10 
• 

integer 

• 
• 
1+ 

• 

N(1,NS) 

• 

itfJS + 1 to 5NS 

• 
• 

integer 
4 N(2,l) 5NS + 1 to 5 (NS+1) integer 
• . • • 
• . • • 

3 + NN        N(BP,NS) integer 

(Continue entering the N array by rows starting with the first row, then 
the second row. Each value is entered in a field of length five columns, 
and NN cards are used with eighty columns available on each card.) 
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Card Number Variable Columns Fonnat 

I++NN 
k+m 

» 

X(l,l,l) 
X(l,l,2) 
X(l,l,3) 

• 

I to 10 
II to 20 
21 to 30 

• 

real 
real 
real 

• 

• 

^+NN 

5+M 
5+M 

• 

X(1,1,N(1,1)) 

X(l,2,l) 
X(l,2,2) 

• 

10 N(l,l)-9 to 
10 N(l,l) 
1 to 10 
11 to 20 

• 
» 

real 
real 
real 

(Continue entering observation values for the first block and second 
system. Up to eight entries can be made on a single card. If more 
than eight observations have been recorded for a system, use more than 
one card. Always start a system on a new card. After recording the 
first block, enter the observations for the second block using the same 
format.) 

Definition of Variables 

BJ(J) 
BP 
BU(J) 
CB 
CR 
DVAHS 
N(I,J) 

NR(J) 

m 
NVARS 

VARI 

VARS 
VBE(J) 
VDBE(J,K) 

VDPS(J,K) 

VR(J) 
VXBAR(J) 

VXBDIF 

XBJJ 

Number of blocks having replications of system J 
Number of blocks already run 
Total blocks to be run for system J 
Cost to run a block 
Cost to perform one replication of one system 
Decrease in value of Vs for each case considered 
Number of replications already run for system J 
in block I 
Number of replications for system J to be run in 
each block 
Number of systems 
Number of different values of Vs considered (number 
of different test plans computed) 
Initial value of Vs considered (each successive 
value is decreased by DVARS) 
Upper limit on variance of system 
System J block variance (Vbj) 
Block effect variance for estimated difference 
between performance of systems J an K (v^^) 
Replication effecj variance for the difference 
between J and K (V^j^) 
System J replication effect variance 
Estimated variance of the mean performance of 
system J (V(X.j.)) 
Variance of the estlmatedjdifference between the 
perfonnance of J and K^X.-j.-X.^.)) 
Estimated difference between the mean performance 
of system J and JJ 

: 

90 



I 
I 

■I 

L 
m    , 

Ä   M 

I 
I 
I 

Method 

II.   Read     NS, BP, NVARS, VARI, DVARS, CR, CB 
N(If J) for J « 1, NS and I = 1, BP 
X(I, J, K) for k = 1, N(I, J), J = 1, NS, and I = 1, BP 

2. Compute   XJ(J) « X.j. for J= 1, NS 

3. Compute 

VR(J)by equation A. 47 
VBE(J) by equation A. 52 
VXBAR(J) by equation A. 53 

for J » 1, NS 

4. Compute 

VDPS(J, JJ) by equation A. 67 
VDBE(J, JJ) by equation A. 69 
VXBDIF by equation A. 70 

for  J» X, NS, 
JJ « 1, NS, and 
J?^ JJ 

5. Set VARS = VARI 
IV = 1 

6. Determine the least cost test plan to reduce the estimated variances for 
each system performance measure below VARS.   Use the procedure 
specified in Appendix B. 

7. If       IV a NVARS, go to step 9 

8. IV=IV+1 
VARS - VARS - DVARS 

Go to step 6 

9. Stop. 
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