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ABSTRACT 

This thesis discusses the major problems associated with 

the development of any reasonably accurate radar bomb scoring 

system and the resulting rationale for sel~cting a computer 

controlled tactical bombing system to perform the bomb scoring 

function. A scoring system is proposed which utilizes ob-

served deviations from desired release conditions as the basis 

for predicting bomb impact. Circular Error Probable is then 

estimated using a noncentral chi-square distribution model. 

A sample table of CEP as a function of estimated point of 

impact is included. 
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I. INTRODUCTION 

The measurement of bombing accuracy based on impact 

analysis has received and, undoubtedly, will continue to 

receive a great deal of attention. Such analysis is indis-

pensable in the development, testing and evaluation of both 

ordnance and delivery systems. For an operational system, 

however, the military emphasis shifts to operator training 

and proficiency and tactical evaluations under varying 

conditions. The requirement to physically drop bombs, 

either training or tactical, in order to evaluate these 

exercises imposes severe limitations in terms of location, 

time and cost. The desirability of a method for predicting 

delivery accuracy from radar observed release conditions 

rather than impact data is then apparent. 

The purpose of this thesis is to present the develop-

ment 'Of a proposed method for radar bomb scoring. Section 

II outlines the radar bomb scoring problem in general terms 

with emphasis on the requirements which must be met in 

order to obtain a reasonably accurate prediction model. 

Section III presents a discussion of a proposed radar bomb 

scoring model. The desire was to develop a system which 

would not require an extensive background in mathematics 

or statistics on the part of the bomb scoring personnel. 

The impetus for this thesis was provided by some related 

CEP and bomb dispersion analysis·for the AN/TPQ-27 radar 
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bombing system which was conducted at the Naval Postgraduate 

School [Ref. 4]. The prop<o15-ed-11io~€1. suggests the use of a 

computer assisted, radar controlled bombing system with 

·the AN/TPQ-27 application serving as a prototype example. 

The proposal envisions a computer software package for 

the AN/TPQ-27, or similar system, which would provide a 

direct readout or release condition errors or deviatiations 

from predetermined release conditions. Through ballistic 

~onsiderations, these deviations are then translated into 

range and deflection aim errors on the ground. Computation 

of the estimated CEP is accomplished by means of a model 

based on the non-central chi-square distribution, where the 

non-centrality parameter is a function of the computed range 

and deflection aim errors. 
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II. GENERAL DISCUSSION OF RADAR BOMB SCORING 

The concept of radar bomb scoring, although not new, is 

not yet fully developed. Reasons for this become more 

apparent upon examination of the many factors, some techni-

cal and some analytical, that must be considered. 

A. THE PROBLEM OF PREDICTING BOMBING ACCURACY FROM RADAR 
DATA 

Estimating bombing accuracy from samples of observed 

bomb impacts has occupied many analysts since the introduc

tion of air-delivered weapons. Results of these efforts 

are reflected in many predictive models of Circular Error 

Probable (CEP) that have been proposed. Radar bomb scoring, 

on the other hand, compounds the analyst's problem by denying 

him the use of observed bomb impacts. The result is that 

the desired estimate of accuracy must be based on a prior 

estimate. of where the bomb would have impacted had it been 

dropped. The many factors which influence this latter esti-

mate are the subject of the remainder of this section. 

1. Release Condition Dependence 

For the purposes of this discussion, the delivery 

of a weapon from an aircraft may be considered to consist 

of two distinct phases. The first of these, which may be 

termed the positioning phase, includes the period of time 

from approach of the aircraft to the desired release point 

10 
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to that instant following release when the weapon is no 

longer influenced by the aircraft. The second, or free fall 

phase; begins upon termination of the positioning phase and 

ends on impact of the weapon in the ground plane. 

The critical point, as far as radar bomb scoring is 

concerned, occurs at the juncture of these phases. It is 

' at this time that the release conditions for the weapon are 

determined. The release conditions, in turn, become the 

initial conditions for the ballistic problem encountered in 

the free fall phase. The situation is analogous to that of 

computing rocket trajectories in which the powered and un-

powered portions of the rocket trajectory correspond to the 

positioning and free fall phases of the bombing problem. 

Obviously, there are a multitude of factors which 

determine what release conditions will be met for any given 

bomb drop. Prior to the instant of release, the bomb is 

subjected to the same aerodynamic forces and atmospheric 

perturbations that affect the flight of the delivery air-

craft. As a result, one could expect the bomb to possess 

any one of an infinite set of velocity and acceleration com-

ponents at the time of release. Compounding the problem is 

the air turbulence in the vicinity of the aircraft which 

exerts additional forces on the bomb even after physical 

separation of weapon and aircraft. 

In addition to the dynamic state of the bomb at 

release, equal consideration must be given to the location 

11 
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of the release point relative to the target and the 

atmospheric conditions which prevail at the time. 

All of these factors constitute the release condi-

tions which, to a great extent, determine the eventual point 

of impact of the bomb. Not considered yet are the aero-

dynamic and gravitational forces present during the free 

fall phase which will further determine the point of impact. 

More will be said about these forces in subsequent discussion 

of the ballistic problem. 

2. Measurement of Release Conditions 

The intent of the preceding discussion of release 

condit-ions was to emphasize the magnitude of the aim point 

estimation problem and to hint at the direct relationship 

between the accuracy of the estimation and the accuracy with 

which the release conditions are measured. 

With the possible exception of the transient effects 

of aircraft turbulence alluded to earlier, it is possible 

to measure quite accurately many forces acting on the bomb 

at the time of release. To do so, however, would require 

extensive instrumentation aboard the delivery aircraft and 

the means to transmit these measurements to the ground for 

analysis. The most attractive attributes of radar bomb 

scoring, i.e., low cost and flexibility, may be lost in an 

attempt to obtain the most accuraft measures possible. 

An alternative is to base the trajectory estimation 

on data which can be obtained from a radar, or radars, 

12 
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tracking the delivery aircraft. This greatly simplifies 

the computational complexity of the estimation problem by 

limiting the parameters to be considered in any equations 

of motion. In general, it may be assumed that the radar 

could provide information on the coordinate location of 

the aircraft at time of release, as well as aircraft velocity 

and acceleration .. 

While this may seem like sketchy information on which 

to compute a bomb trajectory, it must be remembered that 

other input variables are available from sources outside 

the radar-aircraft system. Meterological data and the 

effects of earth curvature and rotation may be input as 

standards for the location of the bomb drop. In addition, 

bomb parameters such as drag curves may be available for 

the type bomb being dropped. 

While many of the parameters mentioned have been 

measured precisely, the ultimate accuracy of the predicted 

impact point will depend on the accuracy with which the 

radar can measure the release conditions - location, velocity 

and direction of flight. The degree of accuracy obtainable 

is a function of the radar being used and will vary from 

one type to another . 

An extensive discussion of radar errors and their 

determination is beyond the scope of this thesis. Reference 

5 describes th~ problems associated with radar measurements 

and how these system errors may be quantified. This reference 
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further points out the manher in which error magnitudes 

vary with the dynamics of the·raaari.aircraft system. These 

errors in measurement will, in general, be a function of the 

aircraft movement relative to the radar as well as the 

direction from the radar to the aircraft. 

The effect of this on the development of an accepta-

ble radar bomb scoring system is clear. The error functions 

for the radar employed should be well defined and generally 

applicable to all radars of that type. The use of multiple 

radars complicates the measurement problem due to the diffi

culties in calibration and collimation necessary to obtain 

an estimate of the "true" release conditions. It may be 

inferred that the introduction of a variety of types of 

radars into a bomb scoring system complicates the estimation 

problem for the same reasons. 

3. Implications of the Bombing Mode 

The problem of radar bomb scoring, in particular 

the determination of release conditions and estimation of 

the point of impact, changes considerably with the bombing 

mode employed. The intent here is to distinguish between 

bombing maneuvers which are pilot controlled (with or without 

the aid of on-board fire control equipment) and those which 

are computer controlled from a ground station. 

a. Pilot Controlled 

In this mode, the pilot, using pre-calculated 

release parameters, is free to attack the target from any 

14 
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point where these release parameters can be met. The only 

link between the delivery aircraft and the bomb scoring 

system is the radar tracking system and voice communications. 

The problem of bomb scoring in this mode involves 

computing an estimated point of impact based solely on the 

release conditions as measured by the radar. The inaccuracies 

inherent in this system are due, in large part, to factors 

for which data cannot be provided by radar. Examples are 

deviations in dive angle, small variations in release veloc-

ity and direction and any last second violent maneuvers or 

gust perturbations which significantly affect the dynamics 

of the aircraft at release. 

b. Computer Controlled 

In this case, an integrated computer-radar-

autopilot system attempts to control the aircraft to a pre-

determined point in space where release of the weapon occurs 

automatically. Calculation of the release point involves 

parameters which might significantly effect the weapon 

trajectory. 

The advantage of this mode, insofar as radar 

bomb scoring is concerned, is the fact that there exists 

a continuous feedback of data between the aircraft and com-

puter. The trajectory problem may be continuously solved 

to adjust for deviations in the desired release conditions. 

At release, many of the variables not obtainable in the 

pilot controlled mode are automatically input to the final 

computer solution of predicted impact. 

15 
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B. ANALYSIS OF RADAR DATA AND ESTIMATION OF CIRCULAR 
ERROR PROBABLE 

The process of radar bomb scoring has been described 

as an estimation problem involving the point of impact and 

the desired measure of accuracy, CEP. Each of these is 

dependent upon the radar measurement of release conditions 

and their accuracies. In this section, some of the problems 

encountered and methods that might be used in obtaining 

these estimates are discussed under the assumption that the 

release conditions are obtainable and known. 

1 . The Ballistic Problem 

Most discussions of exterior ballistics for projec-

tiles or bombs begin with developments of basic equations 

relating position with velocity components, time and the 

gravitational constant for trajectories that take place in 

a vacuum over a flat, non-rotating earth. 

These equations provide a rough approximation of 

the distance a bomb will travel if .released at a specified 

altitude and velocity in a specified direction. Unfortunately, 

this approximation does not provide the degree of accuracy 

necessary for a meaningful bomb scoring system unless cor-

rected for more realistic conditions. Even more unfortunate 

is the fact that these basic equations exhaust the data 

available from radar measurements alone. It becomes obvious 

then that a radar bomb scoring system must have available 

much more information than is available from radar measurements. 

16 
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The ballistic equations of motion in a useful form 

include a rather complete system of aerodynamic forces, 

variable winds, density and temperature variations, the 

effects of earth curvature and rotation and bomb parameters 

such as weight, diameter and configuration. The parameter 

values necessary to the solution of these more accurate 

equations may be available from sources outside the bomb 

scoring system. However, as is pointed out by Me Shane, 

Kelley and Reno [Ref. 16], computer assistance is required 

for solution of such equations. 

2. Estimating Point of Impact 

The complexity of the equations of motion from bal-

listie considerations may make them too cumbersome for rou~ 

tine use. However, much of the work in computing trajec-

tories from equations of this type has been accomplished 

and documented in the form of trajectory and bombing tables. 

The use of these tables provides a quick and compu-

tationally simple means of computing the expected point of 

impact when the appropriate corrections for existing local 

conditions are applied to the tabled values. Furthermore, 

tables are available for all ordnance of interest to a bomb 

scoring system [Ref. 20]. 

The rationale for suggesting the use of pre-tabled 

data is quite simple. The use of these tables in precalcu-

lating desired bomb release conditions is accepted practice 

in a combat situation where the requirement for accuracy is 

17 
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critical. The requirement for greater accuracy for the 

radar bomb scoring function does not seem to be justified. 

Estimation of the point of impact from existing 

trajectory and bombing tables appears appropriate for both 

the pilot controlled and the computer controlled modes of 

bombing. In the former case, the radar measurements of 

release conditions provide the points of entry into the 

appropriate tables. The tables provide range as a function 

of release altitude above the target and release velocity 

under assumed atmospheric conditions. To these tabled 

values, corrections due to non-standard conditions may be 

applied. With the direction of bomb release known, the 

estimated point of impact may be determined. Comparison of 

this point with the target location yields the desired 

estimates of range and deflection miss distances. 

In the case of computer controlled bombing the pro-

cedure is somewhat different. Local wind conditions and 

atmospheric data, target and radar ·data and weapon ballis-

tics are preset inputs to the computer. The desired release 

conditions calculated from these data provide the best 

available·estimate of the release conditions which will 

place the expected point of impact on the target. 

If it can be assumed that deviations from the desired 

conditions at release are relatively small and detectable, 

then only the magnitudes of these deviations need be con

sidered in estimating range and deflection errors. The 

18 



restriction.that these deviations be small is necessary to 

insure that both the desired and achieved trajectories are 

~ubjected to very nearly the same conditions and forces. 

The trajectories will then be theoretically nearly identical 

in shape, so the release deviations may be translated through 

simple relationships to range and deflection aim errors in 

the target plane. It is then feasible to pre-calculate and 

tabularize range and deflection errors as a function of 

deviations in actual release conditions from desired release 

conditions. 

A detailed discussion of how these deviations are 

translated and combined into total range and deflection 

error estimates is presented in Section II. 

3. Estimating CEP 

The most widely used measure of accuracy of air-to-

surface weapons, CEP, is defined as the radius of a circle, 

centered at the target, which on the average contains fifty 

percent of the impact points of independently aimed weapons. 

Usually, the determination of this radius, or CEP, involves 

the assumption of some ~robability distribution of bomb 

impacts. Specifically, if x andy are the range and deflec-

tion components of tne impact point and each is assumed to 

have some underlying probability distribution, then CEP is 

that value of R which satisfies 

(1) 
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Jordan [Ref. 12], in a comprehensive survey of 

existing models for the estimation of CEP, discusses their 

salient features. The factor which distinguishes one from 

the other is, of course, the assumed distribution of impact 

points. 

In developing a predictive model of CEP from a sample 

of observed data, one goal is to find some distribution 

which reasonably ~its the observed data. The distribution 

parameters are often estimated from the sample. The contro-

versy that arises over which distribution is most appropriate 

is a natural consequence of the factors which contribute 

to the distribution. These factors will certainly vary 

from one weapon delivery system to another. The result is 

that a model developed to estimate the accuracy of a given 

aircraft-weapon combination may or may not be acceptable 

for some other combinations, even though the release 

conditions are similar. 

It may be possible, though tedious, to incorporate 

many distributions in an elaborate model, thus providing 

some selectivity according to the aircraft-weapon combina-

tion being scored. Conversely, the model could be designed 

on the basis of some. general distribution type that is at 

least roughly descriptive of nearly all situations·. Logis

tically, the latter approach is the more attractive option 

although obviously less accurate. 
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Having assumed a distribution for the points of 

impact; the determination of R from (1) may require estima-

tion of the distribution parameters. We assume the parameters 

to be ~ and E. The location of the mean of the distribution 

is determined by the estimate of the point .of impact since 

each estimation problem must be based on a sample of size 

one. The remaining parameter of interest is the standard 

deviation,_ cr. 

In the discussion thus far, it has been suggested 

that knowledge of release conditions permits the estimation 

of a mean point of impact through purely deterministic rela-

tionships. Under this assumption, the only allowable dis-

persion about the estimated mean point of impact is that due 

to ballistic dispersion. The standard deviations of ballis-

tic dispersion in range and deflection then become the 

estimated parameter values for the impact distribution. 

Values of ballistic dispersion for individual weapons 

are not available. However, the Joint Munitions Effectiveness 

Manual [Ref. 18] contains general expressions for ballistic 

dispersion as a function of range and bomb configuration. 

These expressions provide values of cr0 and crR which have 

been generally agreed upon by all the military services. 

It should be noted that values of these parameters are 

classified when applied to a specific weapon. For this 

reason, the values chosen for illustrative purposes in 
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Appendices B and C were selected for computational ease 

and are not intended to be representative of any specific 

weapon. 

C. COMMENTS 

From the complexity of the problem it should be apparent 

that successful radar bomb scoring cannot be performed using 

radar measurements alone, together with manual computations. 

The simpli~ication required to make such a system manageable 

would lead to an unacceptable loss of accuracy. One alterna-

tive is an integrated radar-computer-autopilot system which, 

because of its capability to detect and compensate for 

additional delivery variables, could provide a much better 

estimate of bombing accuracy. 

Tactical radar directed bombing systems incorporating 

th~ desired features of a radar bomb scoring system are 

currently in operation or under development. The modifica

tion ·or a tactical system of this type to perform the bomb 

scoring function has several distinct advantages over the 

development of a dedicated system. 

The system would be available in a much shorter 

period of time. 

Cost would be relatively small for the modifi-

cations required. 

Bomb scoring exercises would provide training 

for the bomb system crews as well as the air crews. 
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The modifications envisioned to perform this function 

should be relatively minor. The primary requirement is 

that the deviations of actual from desired release condi-

tions, at the time of release, be output from the computer 

at the conclusion of each bomb run. Alternatively, the 

computer could be programmed to provide ~ directly. No 

hardware changes should be necessary, and the tactical 

functions of the system should be unaffected. 

Under the assumption that the desired readout of release 

condition deviations can be made available, the following 

section describes a proposal for transforming these deviations 

into an estimate of achieved CEP. 
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III. RADAR BOMB SCORING: A PROPOSAL 

In view of the preceding comments, it is suggested that 

a feasible approach to a radar bomb scoring function lies 

in the modification of a tactical radar bombing system. 

Using this approach, it is possible to arrive at an estimate 

of CEP by observing and recording only deviations from 

desired release conditions. 

The procedures- used in calculating these estimates are 

developed in the following sections. No claim of originality 

is made for this material. Rather, the intent has been to 

put together a number of simple relationships which can be 

easily appli.ed. 

In the comments about the proposed model, some thoughts 

on the accuracy of the model and areas for continued 

investigation are presented. 

A. PREDICTION OF POINT OF IMPACT FROM RADAR OBSERVED 
RELEASE CONDITIONS 

The basic contention that the point of impact may be 

estimated from observed· release conditions requir~s_some 

attention before specific relationships may be considered. 

From the previous discussion of the ballistics problem, 

it was indicated that, in a vacuum over a flat, non-rotating 

earth, the range of a bomb could be calculated from the 

relationship 
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The time of fall, t, is known to be a function of 

altitude, velocity and the acceleration due to gravity 

so that (2) may be rewritten as 

x = f
1

(x,z,z,g) 

In order to use this relationship in a realistic 

situation, it is necessary to apply a correction factor 

so that 

where 

cf = f(x,z,z,T,p,W,B,E,D) 

T = air temperature 
p = air density 
w = wind effects 
B = bomb parameters 
E = earth curvature and rotation effects 
D = drag forces on the bomb. 

The computer solution of (3) in a tactical bombing 

(2) 

(3) 

system results in a desired range, xd, which will place 

the point of impact on the target. Any deviations in the 

release conditions will result in an achieved range, xa' 

so that the expected range error may be found from 

(4) 
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If the differences between the desired and achieved 

relea~e conditions are small, then the third term of (4) 

is very small and may be neglected. The result is a simple 

relationship of the form 

(5) 

which calculates range error as a function of velocity and 

location errors at release. The functional form of Cf 

need not be known or considered in the estimation process. 

An analogous argument may be used in the development of an 

expression for deflection error. 

1. The Coordinate System 

... ~ The coordinate system and notation used in the 

• 

remainder of this paper is shown in Figure 1. The system 

is centered on the target and oriented by the location of 

the desired release point and the target. The release 

angle, e, is measured clockwise from any convenient 

reference. Mean deflection and mean range error are 

denoted by the quantities ~D and ~R respectively. 

2. Translating Release Conditions to Errors 
in the Ground Plane 

The assumptions pertinent to the development of 

the following error estimates have already been discussed 

in some detail but are repeated here for continuity and 

completeness: 
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Launch Direction 

Estimated Mean 
Point of Impact 

I 
I 

Desired Release 
Point 

Fig. 1. Radar Bomb Scoring Coordinate System 

the desired release conditions are known from 

the computer solution o;f the ballistics problem. 

the desired conditions will place the point of 

impact on the target .. 

deviations from the desired release conditions 

are detectable and may be output from the bombing system. 

deviations are small. 
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a. Velocity 

Any deviation in velocity from the desired 

release velocity will be reflected in the range error due 

to velocity which will be denoted as erv· Using (5) the 

specified functions f 1 and f 2 may be replaced by well 

known physical relationships resulting in an expression 

of the form 

where 

and z 

erv = 

X = ft 

t=J¥ 

= x· /2;; -a/g 

is assumed to be zero. 

(6) 

If the only observed deviation is in velocity, 

then (6) simplifies to 

(7) 

b. Altitude 

The form of (6) is a function of both velocity 

and altitude and is applicable to the range error due to 

altitude, era For the case in which only an altitude 

deviation exists; (6) becomes 

( 8) 
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c. Range 

The ·effects of a small translation in range on 

the achieved trajectory is depicted in Figure 2. 

ALT 

I AR I 

RANGE 

Fig. 2. The Effect of Small Range Errors on 
Ground Errors 

Basically, Figure 2 implies that if the only observed 

deviatio~ is either a premature or delayed release along 

the intended flight path resulting in a range error of 

~R, then the ground error is also ~R. Using the notation 

of the previous work, 
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where Ra is the range from the actual release point to 

the target measured along the desired launch direction. 

d. 'Direction 

An error in launch direction will result in 

both range and deflection errors as shown in Figure 3. 

X 

y 

Reference 

Release Point 

Fig. 3. The Effects of Launch Direction on Range 
and Deflection Errors 

The error in launch direction, 68, is shown to displace 

the poin~ of impact along the arc C which passes through 

the target. The length of the chord, L, is 

L = 2R sin 68 (10) 
2 , 

and 

y = A8 
2 
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It follows that 

edd = L cos y 

e = -L sin y rd 

Substituting and simplifying yields, 

= R sin 6.8 

= ..-R(l - cos 6.8) 

Converting to consistent notation results in 

where 

Also, 

t-8 = 8 - e a d 

, 

and edd takes the sign of 6.8. 

e. Deflection 

(11) 

(12) 

As in the case of small deviations in range, 

it may be shown that the translation of the release point 

in deflection, by the amount ya' will result in a deflection 

error in the ground plane of the same magnitude. The same 

argument used in c. above applies. The result is an 

expression for deflection error, edf' of the form, 

(13) 
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f. Total Range and Deflection Errors 

With the expressions.developed thus far, it 

is possible to estimate the impact error due to certain 

individual errors in launch conditions. It is preferable 

however to consider the more general case where these 

release conditions may occur in any combination. To do 

so requires some concept of how these individual errors 

relate to expressions for total range and total deflection 

errors. Figure 4 illustrates a general case in which 

deviations are observed in velocity, altitude, range, 

direction and deflection. From the geometry of Figure 4 

it can be seen that total range error, pR' may be 

expressed as 

l..IR = e + e - (R + e + e ) ( 1 -cos /:',. 8) rr r a rr r 
, 

using the same trigonometric relationships used in the 

development of erd· Simplifying, the final expression 

becomes, 

(14) 

Similarly, total deflection error, lln' is seen 

to be 

Pn = edf + (R + e + e ) sin /:',8 
a rr r 

or .fij fti l1n = y + (xd + x ~ ) sin /:',8 . (15) 
. a a g xd g 
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Fig. 4. 

X 

/Art ------

TGT 

Desired Release 
Point 

Actual Release 
Point 

The Effect of Error Combinations 

y 

Note that the last term of (15) should take the same sign 

as ~e. Expressions (14) and (15) give the total estimates 

of range and deflection errors, respectively. 

B. ESTIMATION OF CIRCULAR ERROR PROBABLE 

It i·s necessary to assume some distribution of bomb 

impacts about the target in order to estimate CEP. It is 

also assumed that the range and deflection components of 

the point of impact are independently distributed with the 

mean of each located at the target and with variances due 
2 2 to ballistic dispersion, crR and cr0 . 
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The joint distribution of range and deflection is then 

assumed to be bivariate normal with density function, 

f(x,y) = 

The use of this function in subsequent estimation of CEP 

is acceptable in only those instances where the aim point 

or mean point of impact is coincident with the target. In 

general this will not be the case. Instead, errors in 

bomb release have the effect of offsetting the aim point 

in deflection and range by the amounts ~D and ~R 

respectively. The problem then is finding the probability 

that an impact will occur within a circle of radius R, 

centered at the target, when the aim point has been offset. 

Grubbs [Ref. 6] approaches this problem ~hrough an 

interesting application of the non-central chi-square 

distribution. This approach has been adopted for use in 

this proposed model for estimating CEP. There are two 

principle reasons for this selection. The first of these 

is computational ease. Secondly, there is intuitive appeal 

and ease of interpretation in the use of a distribution 

whose parameter is directly related to the offset in the 

aim point. 

1. The Non-Central Chi-Square Distribution 

For the specific problem of estimating CEP, using 

the assumptions of the previous section, 
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since the effect of ~D and ~R is to center the impact 

distributions about the estimated point of impact rather 

than the target. Letting 

and 

then uR - N(O,l) and 2 CuR+ aR) is distributed as a 

non-central chi-square random variable with probability 

density function 

exp{- }Cx+A)} 
v - + i- 1 

Ai 00 cx).2 
fx'2(x) = r: 

2v/2 r(~ + i) 22i ' i=O i! 

where A = aR2 is the non-centrality parameter. and 

v = 1 represents the degrees of freedom. 

From the above, 

' 
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and, similarly, 

The expression 

' 
(16) 

is therefore distributed as the sum of two non-central 

chi-square random variables. From the reproductive property 

of this distribution, the sum of non-central chi-squares is 

also non~central chi-square with A = ~ Ai and v = E vi 
l i 

Therefore, 

2. Solutions 

In this form, it is not obvious how one would 

proceed to determine the desired probability that 

x2 + y2 < R2 . However, by letting 

0"2 2 + 2 
= O"R aD , 

aR 
2 

vl = 7 ' 
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and 

(J 2 

v2 
D = 7 , 

• 

then, from (16) 

(17) 

The bracketed term of (17) is seen to be the weighted 

sum of two non-central chi-square random variables. 

Setting 

t.P2 = [v (~)2 + v2Cf-)2] 1 oR ' - D 

the expression 
"i: -

x2 + y2 = 0 2 t.P2 (18) 

" is obtained. Finally, from (18) 

' 

where 

' 
so that the desired probability may now be written as, 

(18a) 
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Solutions are possible through the application of 

one of several available approximating methods to the 

non-central chi-square. Johnson and Kotz [Ref. 11] discuss 

in some detail many of the approximations which have been 

suggested. One of the most tractable and easily computed 

of these involves the transformation to an approximate 

chi-square and then using a normal approximation to this 

function. The details of this procedure are reported in 

reference 6 and, for continuity, are described here. 

If 

' 

it is possible to determine some function of ¢
2 

that is 

approximately distributed as a central chi-square. 

Observing that 

' 

and 
2(0" 4+0" 4) + 4(0" 2ll 2 + 0" 2ll 2) 

v = Var(¢2 ) = 
R . D R R D D 

' 0" 

then, 
2 2m2 

E[2mljl ] = --v v ' 

and 
. 2 

4m2 
Var[ 2mljl ] = -- ' v v 
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which implies that 

2m1/? 
v 

The Wilson~Hilferty normal approximation to the 

central chi-square, reported by Grubbs, states 

P[xr2 < x] • c~J({(x)l/3- 1 + 2.} /9f) 
- f 9f /2 

(21) 

Substituting into the right hand side of (21), the result 

is 

N(O,l) (22) 

The solution for the desired estimate of CEP is found by 

equating (22) to zero and solving for W· The result is, 

/'.. 
CEP = (23) 

The simple form of (23) lends itself to the develop-

ment of tables of estimated CEP as a function of the 

estimated aiming errors, ~D and ~R. Appendix C provides 

an example of how such tables might be organized~ 
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C. COMMENTS ON THE PROPOSED MODEL 

The estimation of CEP through the use of the proposed 

model is unique in that the estimation is based upon a single 

observation of release conditions. Further, it should be 

noted that the approximations used to arri.ve at an estimate 

of CEP are included primarily as an aid to computation. If 

exact values of the non-central chi-square distribution are 

available, then equation (18a) may be used directly to 

compute the estimated CEP. 

The limitations of the model are not known since it has 

not been tested. It is possible, however, to say something 

about the expected accuracies of the aiming errors and CEP 

estimations. A check of random entries of trajectory tables 

in Reference 20 showed that equations (14) and (15) provided 

results that agreed quite closely with values obtained by 

direct interpolation in the tables. The maximum difference 

found in this random check was approximately six percent. 

This was considered to be acceptable in view of the fact 

that many of the interpolations were made over 5000 feet 

intervals in altitude and 100 knots in velocity. The use 

of more refined tables should show better agreement between 

the two methods. 

The accuracies of the approximating methods used to 

estimate CEP are better known. Reference 11 reports a 

difference of approximately 0.33 between the exact value of 

the non-central chi-square and the approximate value, at the 
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upper five percent point of the distribution. The difference 

was obtained for v = 2 and ~ = 25. In terms of CEP, this 

difference translates into an error of less than one-half 

of one percent .· 

Further work on the model, in addition to testing, could 

profitably include the analysis of radar system errors and 

how these errors should be integrated into the model. In 

its present form, only aiming errors and ballistic dispersion 

are considered. 

In addition, the model could be strengthened by providing 

for situations other than level bombing (~ ~ 0) and zero 

accelerations at release. The former could be easily accomo

dated by resolving the aircraft velocity into horizontal and 

vertical components and revising the ballistic equations 

accordingly. The latter is less easily incorporated due 

to the increased complexities of the ballistic equations 

and the technical difficulties associated with obtaining 

acceleration data. 

The final comment to be made involves the application 

of the model to other than the computer controlled mode of 

bombing. Although the bomb scoring function envisions the 

use of a tactical radar bombing system, the system could be 

employed to score the results of a pilot controlled bombing 

mission. In this case, the pilot would be instructed to 

achieve a set of pre-calculated release conditions and the 
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radar would observe the deviations from these conditions • 

• Th~ estimation of achieved CEP is then identical to the 

computer controlled mode . 

.. 

.. 
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APPENDIX A 

SAMPLE CALCULATIONS OF RANGE 
AND DEFLECTION ERRORS 

For the purpose of illustrating the calculation of 

range and deflection errors, the following conditions are 

assumed: 

Desired launch conditions: 

:kd = velocity = 300 kts = 506.7 ft/sec 

zd = altitude = 5200 ft 

xd = range = 8850 ft 

ad = launch direction = 337° 

Conditions at release: 

:ka = 308 kts = 520.2 ft/sec 

za = 5270 ft 

Ra = 8730 ft 

a a = 340° 

Ya = deflection offset = 0 ft 

From (15) 

l-In = y a Pi + (xd + xa - ·fi X -) d g sin 66 

where 

66 = aa - ad = 340 - 337 = +30 
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Direction substitution yields, 

Pn =· o + C885o + 520.2 

Pn = 4 79 • 2 feet 

Similarly, from (14), 

10540 
32.2 

pR = (8850 + 9412- 9106)(0.9986) - 8730 

pR = 413.2 feet 

10400-) sin 3o 
32.2 

The estimated point of impact is then located 

approximately 413 feet over and 479 feet to the right 

of the intended target. 
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APPENDIX B 

SAMPLE CALCULATIONS OF CEP 

Deflection and range components of ballistic dispersion 

are assumed to possess the following values of standard 

deviation: 

O'D = 60 feet 

O'R = 80 feet 

cr 2 = 3600 feet 2 
D 

cr 2 = 6400 feet 2 
R 

Using the Normal approximation to the assumed distribution, 

recall that 

3/f_ L - (1 - _y_) 
m 9m2 ,....., N(O,l) 

where 

0'2 = 0' 2 + 0' 2 
D R 
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Assuming 

l-In = 300 feet 

lJR = 420 feet 

the estimated value of CEP may be found by setting (22) 

equal to zero and rearranging terms. The result is 

and 

/"'--. 
CEP = 

Substituting the assumed values, 

m = 27.6 

v = 59.2 

~ 59.2 3 CEP = 10000(27.6)(1 9(761.8)) 

~ 

/268940 CEP = ft "· 

,..,........ 
CEP = 519 ft 
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APPENDIX C 

TABLES OF ESTIMATED CEP 

The sample tables of estimated CEP included in this 

appendix were computed using the normal approximation to 

the noncentral chi-square distribution. The standard 

deviations for deflection and range dispersion were arbi-

trarily selected to be 80 and 90 feet respectively and are 

not intended to represent the actual dispersion parameters 

for a particular weapon. The accepted parameters for a 

specified weapon may be found in Reference 20. 

Entry to the tables is made using llD' the deflection 

error~ and ~R' the range error computed from the release 

conditions. The tabled values were computed from equation 

(23). 
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