

DOCUMENT PROCESSING SHEET

PREVIOUS EDITION MAY BE USED UNTIL STOCK IS EXHAUSTED.

WT-763

This document consists of 43 pages

No. 18 of 55 copies, Series A

OPERATION UPSHOT-KNOTHOLE

Project 7.3

DETECTION OF AIRBORNE LOW-FREQUENCY SOUND FROM NUCLEAR EXPLOSIONS

REPORT TO THE TEST DIRECTOR

by

G. B. Olmsted Major E. H. Nowak, USAF

15 February 1954

This material contains information affecting the national defense of the United States within the meaning of the espionage laws Title 18, U. S. C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

Headquarters United States Air Force Office for Atomic Energy, DCS/O AFOAT-1

ABSTRACT

State of

ĸ

Measurements of the airborne low-frequency sound from the UPSHOT-KNOTHOLE shots were made at 15 remote locations covering a variety of distances and directions from the Nevada Proving Grounds with the objective of supplementing available information on signal characteristics for shots of various sizes occurring in spring and early summer. Equipment was responsive to pressure variations of the order of a fraction of a dyne per square centimeter chiefly in the frequency range from 1.0 to 0.03 cycles per second. Each shot, except Shot 3 and Shot 6 was detected at distances of 4375 kilometers or more. Maximum distance for positive detection was 530 kilometers for Shot 3 and 1350 kilometers for Shot 6. Results generally verified results obtained during TUMELER-SNAPPER. Similar measurements during future U. S. nuclear tests at the Nevada Proving Grounds during summer and fall conditions are recommended.

PREFACE

Conclusions and recommendations given in this report are those of AFOAT-1, Headquarters U. S. Air Force, and do not necessarily reflect the opinions of agencies participating in the project.

FOREWORD

This report is one of the reports presenting the results of the 78 projects participating in the Military Effects Tests Program of Operation UPSHOT-KNOTHOLE, which included 11 test detonations. For readers interested in other pertinent test information, reference is made to WT-782, <u>Summary Report of the Technical Director</u>, Military Effects Program. This summary report includes the following information of possible general interest.

- a. An over-all description of each detonation, including yield, height of burst, ground zero location, time of detonation, ambient atmospheric conditions at detonation, etc., for the 11 shots.
- b. Compilation and correlation of all project results on the basic measurements of blast and shock, thermal radiation, and nuclear radiation.

- c. Compilation and correlation of the various project results on weapons effects.
- d. A summary of each project, including objectives and results.
- e. A complete listing of all reports covering the Military Effects Tests Program.

ACKNOWLEDGEMENTS

The data presented in this report were the result of measurements and analyses by the Navy Electronics Laboratory, the National Bureau of Standards, and the Signal Corps Engineering Laboratories. Credit for the success of Project 7.3 is due to each of the participants listed below.

Navy Electronics Laboratory

A.	B.	Focke, Project Supervisor	R. A. Waasted	D. D. Crowell
C.	Τ.	Johnson, Project Leader	A. J. Bloom	F. C. Foushee
H.	С.	Silent, Consultant	J. E. Rusconi	A. E. Berndes, Jr.
J.	R.	Chiles, Jr.	Joan F. Bennett	D. E. Folcomb
W.	D.	Campbell	R. C. McLoughlin	W. E. Elms
₩.	Τ.	Hedrick	C. P. Wiedow	Russell Smith
				C. A. Potter

National Bureau of Standards

Peter Chrzanowski, Project Leader	R. E. Sacher
R. C. Colbert	C. C. Walker
Irving Levine	Mrs. E. M. Legate
K. T. Lemmon	

Signal Corps Engineering Laboratories

C. M. Crenshaw, Project Director	Mrs. D. D. Jacoby
E. J. W. Leinonen, Project Supervisor	Capt R. E. Kelly
W. P. Lonnie, Asst. Proj. Supervisor	Capt A. S. Montasser
Walter Pressman, Chief, Data Analysis	S. A. Oliva
Maj C. F. Dietrich, CO, Military Personnel	Capt W. B. Sullivan
S. E. Bania	Capt G. E. Summers
Alphonse Bexmunt	Mrs. M. A. Tate
R. B. Fishman	lst Lt R. P. Ingalls
Capt C. A. Haycock	Capt L. R. Tipton
lst Lt L. M. Hodson	Miss E. D. Ulrich

Office of the Chief Signal Officer

Normand Stulman

T. E. Hedman

Office of Naval Research

7

J. W. Smith

J. J. Kane

Reproducible photographs for Figs. 4.1 and 4.2 were kindly supplied by the National Bureau of Standards.

CONTENTS

ABSTRAC	Л	3
PREFACE	••••••••••••••••••••••••	3
FOREWOR	۶D	5
ACKNOWL	LEDGEMENTS	7
ILLUSTR		11
TABLES	• • • • • • • • • • • • • • • • • • • •	11
CHAPTER	1 INTRODUCTION	13
1.1 1.2	Objective	13 13
CHAPTER	2 INSTRUMENTATION	14
2.1 2.2 2.3 2.4	General Signal Corps Engineering Laboratory (SCEL) Instrumentation Navy Electronics Laboratory (NEL) Instrumentation National Bureau of Standards (NBS) Instrumentation	14 14 16 16
CHAPTER	R 3 OPERATIONS	17
3.1 3.2 3.3 3.4		17 17 17 17 17 18
CHAPTER	A RESULTS AND DISCUSSION	19
4.1 4.2	Results4.1.1Graphic Records4.1.2Magnetic Tape RecordsDiscussion4.2.1Detection Range4.2.2Signal Characteristics	19 19 19 21 21 21
	4.2.2.1 General	22 23 23

ILLUSTRATIONS

Í.

•

••

1

۲

ÿ

•

FIGURE 2.1	Acoustic Stations for UPSHOT-KNOTHOLE 15
FIGURE 4.1	Composite and Individual Vibragrams Obtained from Magnetic Tape Records of the Acoustic Arrival from UPSHOT-KNOTHCLE, Shot 2 and Recorded on NBS Amplitude Response Instrumen- tation at Washington, D. C.
FIGURE 4.2	Graphic Records of the Complete Acoustic Arrival from Shot 2 Recorded on NES Amplitude Response Instrumentation at Washington, D. C

TABLES

TABLE	A.1	UPSHOT-KNOTHOLE Acoustic Station List
TABLE	A.2	UPSHOT-KNOTHOLE Shot Data 27
TABLE	A.3-13	Acoustic Data for UPSHOT-KNOTHOLE Shots 1 - 11, Inclusive
TABLE	A.14	Azimuth Errors, UPSHOT-KNOTHOLE
TABLE	A.15	Travel Speeds for First Acoustic Arrivals, UPSHOT-KNOTHCLE

11

Ő

<u>Ö</u>

· 🖉 🔭

Ť

•

Ø

.....

CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE

The objective of Project 7.3 was to record and analyze the airborne acoustic waves from the nuclear shots at a number of remote locations covering a variety of distances and directions from the explosion site. These data, together with similar data from other nuclear blasts, will be used to evaluate the capabilities of acoustic detection stations under various combinations of source yield, source conditions, and atmospheric conditions. In addition, the data will be used in the interpretation of acoustic signals obtained from unknown sources during routine operation of acoustic detection stations.

1.2 BACKGROUND

Remote acoustic measurements have been made during all previous U. S. nuclear tests except TRINITY (July, 1945). Results during Operation CROSSROADS (July, 1946)1.2/ and Operation SANDSTONE (April and May, 1948) 3/ were discouraging since they indicated a maximum distance for positive detection of 1900 kilometers. Improvements in detection equipment and techniques, however, resulted in increasing this distance to 4500 kilometers for Operation GREENHOUSE (April and May, 1951)4,5,6,7/. Data obtained during Operation BUSTER-JANGLE (October and November, 1951)8/ and Operation TUMBLER-SNAPPER (April-June, 1952)2/ partially delineated the capabilities and limitations of acoustic detection techniques for explosions of small and medium yields detonated in the air, on the ground, and shallow underground. Results indicated limited but usable detection range for shots of small yield even though shallow underground. Seasonal shifts in preferred propagation direction, noted during tests using small INT charges10/, were confirmed. Data obtained during Operation IVY (November, 1952)11/ permitted an extension of previous results to shots of larger yield.

The main interest in UPSHOT-KNOTHOLE was to verify and supplement data from sources of small and medium yield during spring and early summer propagation conditions.

CHAPTER 2

INSTRUMENTATION

2.1 GENERAL

The instrumentation used during UPSHOT-KNOTHOLE was essentially the same as that used for TUMBLER-SNAPPER and IVY. It consisted mainly of standard equipment responsive to minute pressure changes in the frequency range from 1.0 to 0.03 cps, approximately. In a few cases, equipment having extended low-frequency response was used. Most of the signals were recorded graphically on paper tape and in some cases magnetic tape recording was used. Timing with respect to world time was obtained by reference to radio station WWV and interval timing was obtained through use of various uniform rate devices chronometers, constant speed motors, direct recording of WWV signals, etc.

2.2 <u>SIGNAL CORPS ENGINEERING LABORATORY (SCEL) INSTRUMENTATION</u>

Signal Corps Data Recording System M-2,12/ responsive to frequencies from 1.0 to 0.03 cps, was operated at Ft. Lewis, Belmar, Fairbanks, Oahu, Thule, Hachinohe, Hanau, and Kyoto.* Modified M-2 equipment was used at Pyote and Barksdale. Briefly, this equipment consisted of a condenser microphone, an a.c. bridge circuit, a synchronous detector circuit, wire lines, amplifier circuits, and Esterline-Angus O-1 Milliampere Graphic Recorders. Remotely-operated impulse-type calibrators and bridge balancing circuits were also employed. Each microphone was equipped with a linear pressureaveraging pipe array⁴ approximately 1000 ft long in order to reduce unwanted background due to atmospheric turbulance.

At Barksdale, an improved version of the M-2 Recording System was used. The principle of operation was unchanged, but components were redesigned to attain improved sensitivity and stability. Microphones and recorders were unchanged.

* Fig. 2.1 shows the location of all acoustic stations.

Fig. 2.1 Acoustic Stations for UPSHOT-KNOTHOLE

At Pyote, new bridges similar to those used at Barksdale were employed and, at one outpost, a laboratory model of a new microphone, similar in principle to the old one but made mainly of glass (including pressure-sensitive glass diaphragm), was tested.

2.3 NAVY ELECTRONICS LABORATORY (NEL) INSTRUMENTATION

A CONTRACTOR OF

Standard NEL equipment responsive to frequencies from 3.0 to 0.03 cps was employed at all locations in the California-Arizona Desert and at three locations in San Diego. This equipment, sometimes referred to as the "NEL Line-to-Pen Equipment," consisted of a Rieber Vibrotron Microphone, 13 a carrier oscillator and line amplifier, wire lines carrying the FM signal, a discriminator-amplifier, and a Brush six-channel graphic recorder.

The NEL equipment having extended low-frequency response (0.16 to 0.003 cps) was operated at San Diego and at Los Angeles. This equipment consisted of a T-21-B condenser microphone, equipped with acoustic leaks appropriate to the required response, an a.c. bridge circuit, a detector-amplifier circuit, and an Esterline-Angus Graphic Recording Milliammeter.

Each Rieber microphone was equipped with a Y-shaped pressureaveraging hose array consisting of three 25-ft sections of garden hose into which were inserted brass capillary tubes at 5-ft intervals. No arrays were used with the extended low-frequency equipment.

2.4 NATIONAL BUREAU OF STANDARDS (NBS) INSTRUMENTATION

Both standard and extended low-frequency response equipment were operated by NES at Washington, D. C. Standard equipment, NES Infrasonic Single Microphone System, 14/ responsive to frequencies from 3.0 to 0.02 cps, consisted of a condenser microphone, an oscillator, wire lines carrying FM signal, a pulse-count type discriminator, an amplifier, and an Esterline-Angus 0-3 Milliampere Graphic Recorder. This equipment is frequently termed "Amplitude Response" equipment.

Extended low-frequency response equipment, responding to rateof-change of pressure in the range 0.1 to 0.001 cps and lower, consisted of standard microphones and wire lines combined with a multivibrator type discriminator, a low-pass filter-amplifier, and an Esterline-Angus 0-3 Milliampere Graphic Recorder. This equipment operated normally at a sensitivity of 50 millimeters deflection for a rate-of-change of pressure of 1 dyne/cm²/sec.

A number of channels were recorded directly on magnetic tape. These recordings were played back at high speed and analyzed for spectral content using a vibralyzer and a panoramic analyzer.

CHAPTER 3

OPERATIONS

3.1 PARTICIPATING AGENCIES

Project 7.3 was conducted jointly by the Signal Corps Engineering Laboratories, the National Bureau of Standards, and the Navy Electronics Laboratory under the sponsorship of Headquarters U. S. Air Force, AFOAT-1. The Office of the Chief Signal Officer coordinated the Army effort and the Office of Naval Research coordinated the Navy effort.

3.2 STATION LIST

Table A.1 lists the acoustic stations operated for UPSHOT-KNOTHOLE and indicates the location of the station, the azimuth from the station to the Nevada Proving Grounds measured in degrees clockwise from true north, and the great-circle distance from the station to the Nevada Proving Grounds. Figure 2.1 shows the geographical distribution of stations.

3.3 STATION LAYOUT

3.3.1 SCEL Stations

All stations operated by the Signal Corps consisted of four microphone outposts, one at each corner of a quadrilateral, nearly square, 4 to 10 miles on a side. Each outpost was connected by wire lines to a recording center.

3.3.2 <u>NEL Stations</u>

The station at Los Angeles consisted of a single microphone with local recording.

At San Diego, the station consisted of six microphone outposts located at the corners of two roughly equilateral triangles, one 10 miles on a side and the other 3 miles on a side. Local recording

was accomplished in the vicinity of each outpost making up the large triangle, and central recording was employed for the small triangle.

At Dateland, Arizona, five microphone outposts were located at approximately ll-mile intervals on an east-west great-circle path. In addition, six microphone outposts were located at the corners of two roughly equilateral triangles, one approximately 3 miles on a side and the other approximately 1.5 miles on a side. Each outpost was connected by wire lines to a central recording van.

At Gila Bend, Arizona, five microphone outposts were located at approximately ll-mile intervals on the extension of the same eastwest great-circle path noted above. Again each outpost was connected by wire lines to a central recording van.

3.4 STATION PARTICIPATION

All stations were operational for each of the UPSHOT-KNOTHOLE series* except as follows: Gila Bend for Shots 5, 7, 8, 9, 10, and 11; Dateland for Shot 10; and Pyote for Shot 11.

^{*} See Table A.2 for a complete list of shots, shot locations, times, and type of shot.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 <u>RESULTS</u>

4.1.1 Graphic Records

The more important characteristics of the acoustic signals from UPSHOT-kNOTHOLE are summarized in Tables A.3 through A.13. These data resulted from analysis of graphic records. The tabulation includes: the time at which the first correlatable signal was detectable, the time of arrival of the signal having maximum amplitude, the azimuth of the incoming acoustic wave measured in degrees clockwise from true north, the range in horizontal phase velocities computed at various points throughout the signal train, the maximum zero-to-peak pressure-amplitude of the signal, the signal duration, the prominent signal periods noted in the wave train, and the average zero-to-peak noise pressure-amplitude appearing just before and just after the acoustic signal. Noise levels are also included for stations at which no signal was detected.

Table A.14 lists the difference between the true azimuth from the station to the explosion site and the computed azimuth for the recorded acoustic wave.

The average speed of travel of the acoustic wave, computed by dividing the great-circle distance from source to station by the total elapsed time from the time of the explosion to the time of arrival at the station, is presented in Table A.15.

4.1.2 <u>Magnetic Tape Records</u>

Vibragrams showing the power spectrum versus time were made by NBS for individual standard channels for each shot. In addition, composite vibragrams were made by superposing individual vibragrams in the proper phase so that the signal was enhanced and the noise reduced. Figure 4.1 illustrates the results for Shot 2. "CARD," "DALE," "BURO," and "BAFB" refer to individual microphones in Washington, D. C. station. The same scale of signal periods applies to each vibragram. The signal appears as a strong band of blackening, persisting for

Fig. 4.1 Composite and Individual Vibragrams Obtained from Magnetic Tape Records of the Acoustic Arrival from UPSHOT-KNOTHOLE, Shot 2 and Recorded on NBS Amplitude Response Instrumentation at Washington, D. C.

roughly 20 min, standing out on all channels and appearing more markedly in the composite. The sharp onset of the signal is marked on the composite vibragram.

4.2 <u>DISCUSSION</u>

4.2.1 Detection Range

The maximum distance at which positive detection occurred was 9100 km (Kyoto) for Shot 11. Shots 1, 2, 4, 5, 7, and 9 were detected at a maximum range of 5000 km (Thule). The maximum for Shot 8 was 4375 km (Oahu), that for Shot 3 was 1350 km (Pyote), and that for Shot 6 was 530 km (Gila Bend).

Of the stations within 4000 km of the shot for Shot 3, only Ft. Lewis and Fairbanks had favorable noise levels, 1.3 and 0.3 dynes per square centimeter, respectively. Since it is usually possible to detect a signal equal to noise when the approximate time of arrival is known, it appears that signal levels toward the north did not exceed 1.3 dynes at 1230 km and 0.3 dyne at 3710 km. Levels of 12, 7.2, and 12.5 dynes at Barksdale, Washington, and Belmar, respectively; made detection at these stations unlikely.

For Shot 6, background levels were quite favorable for detection. Most significant is the fact that signal level at 1350 km to the east of the source apparently did not exceed 0.4 dyne/cm² and signal at 1230 km to the north did not exceed about 2.2 dynes. To the west, the closest station (4375 km) failed to detect the signal although the noise was only 1.2 dynes/cm².

4.2.2 <u>Signal Characteristics</u>

4.2.2.1 <u>General</u>

In general, signal characteristics observed for UPSHOT-KNOTHOLE were similar to those observed for BUSTER-JANGLE and TUMBLER-SNAPPER. The signal rose rapidly out of the background, reached a maximum usually within 3 or 4 minutes, then gradually diminished. Obvious separate wave arrivals at a single station were observed only in a few instances at stations within a few hundred kilometers of the source. No definite frequency pattern was observable on the graphic records and signals at different locations for the same shot and at the same location for different shots showed large differences in appearance.

Figure 4.2 illustrates a rather unusual arrival at Washington, D. C. for Shot 2. This signal shows a very high amplitude at the end of the arrival, dropping abruptly into the background. Signals of this type, commonly observed for underwater sound, are attributed to channel-type transmission. They are observed rarely in atmospheric propagation.

1997 N. 1997 N. 1997

a and the second second

Provide and the second second second and the second s

4.2.2.2 <u>Horizontal Phase Velocity</u>

The maximum horizontal phase velocity reported at any station for any shot was 460 meters/sec at Dateland for Shot 5 and the minimum was 281 meters/sec at Thule for Shot 9. The velocity spread from each recording, where the signal-to-noise ratio was two or more, covered at least some part of the range 315 to 385 meters/sec.

4.2.2.3 Amplitude

asser, adantaa

Since the determination of amplitude in absolute pressure units depends on the accuracy of field calibrations, the stability of the equipment, the accuracy of frequency response curves and the signal-to-noise ratio, no claim for a high degree of accuracy can be made. No attempt was made to correct for equipment response except in the case of long-period signals observed at Washington, D. C. for Shots 8, 10, and 11. Most of the recorded signals were within the pass-band of the equipment.

Considering all shots except Shots 3 and 6, the maximum reported amplitude at distances greater than 3000 km was 20 dynes/cm² (zero-to-peak) at Oahu for Shot 11. The average amplitude at ranges between 3000 km and 5000 km was 6.9 for Shot 11, 3.3 for Shot 10, 3.1 for Shot 8, 3.4 for Shot 9, 2.6 for Shot 7, 3.8 for Shot 5, 2.1 for Shot 4, 9.7 for Shot 2, and 5.0 for Shot 1.

Data for Shots 3 and 6 imply that the distance from the source had to be reduced to less than 2000 km in order to obtain amplitudes equivalent to those obtained from the other shots at ranges between 3000 and 5000 km.

4.2.2.4 Duration

Graphic signals from all stations persisted for a minimum of 2.5 min and a maximum of 60 min. At distances greater than 3000 km, the minimum duration was 5 min, the average was 19.4 min, and the maximum was 60 min.

4.2.2.5 <u>Period</u>

Visually observed prominent signal periods ranged from 0.5 to 90 sec.

Analyses of magnetic tape recordings at Washington, D. C. showed a lack of periodic structure in the vibragrams. For Shots 1, 2, and 5 shorter periods (up to 3 sec) were observed than for Shots 8, 9, 10 and 11. This was consistent with results from the graphic records.

4.2.3 Azimuth Errors

The over-all range of azimuth errors was 0.1 to 10.2° and the average was 3.2° . Over 96 per cent of the reported errors were less than 7.2° .

4.2.4 <u>Travel Speed</u>

Travel speeds for all arrivals ranged from 262 to 343 meters per second. The highest speeds were reported at the stations closest to the source. At stations beyond 3000 kilometers, the speeds ranged from 262 to 325 meters/sec with an average of 301. In general, speeds for stations to the east of the source decreased as the tests progressed and those to the west increased. At stations beyond 2000 km, the speed changed from above 300 meters/sec to below that value or vice versa during the period from 11 to 25 April.

4.2.5 Directional Effects

Evidence of directional effects in propagation provides qualitative information regarding high altitude winds. These effects generally are apparent in the detection range, the amplitude, the azimuth error, the transit speed, and the signal period.

Results indicate a more or less gradual shift in directional character of the propagation throughout the test series. The most marked effects were noted in the travel speeds and signal periods. Note, for example, that at Washington, D. C. three of the four shots in May and June gave velocities lower than 275 meters/sec whereas velocities observed in March and April were 300 meters/sec or more. The 303 meters/sec recorded on 19 May is not consistent with the pattern, but it is noted that the maximum amplitude for this signal occurred much later in the wave train than is usually the case. In this case, very poor signal-to-noise ratio and very poor correlation between channels were noted prior to the main arrival. Of particular interest is the fact that the prominent signal periods observed in the arrivals having velocities in the 270's were considerably longer than for those having velocities in the 300's.

All of the data show a fairly consistent pattern indicating relatively higher speeds, shorter periods, and higher amplitudes to the east of the source for shots in March and early April when compared with results to the northwest and west. This shifts to a reverse pattern showing relatively lower speeds, longer periods, and lower amplitudes to the east in later April, increasing in evidence in May and early June.

The azimuth shift noted for north-south stations in TUMBLER-SNAPPER was not as marked for UPSHOT-KNOTHOLE. Thule and Ft. Lewis, for example, gave east errors in March shifting to west errors in April, but Fairbanks gave west errors for all shots except for the 19 May arrival which yielded an east error. San Diego and Dateland gave east errors for all except the 4 June shot.

CHAPTER 5

CONCLUSIONS AND RECOMME:, ATIONS

5.1 CONCLUSIONS

5.1.1 Detection Range

The extremely limited detection ranges for Shots 3 and 6 confirm results from TUMBLER-SNAPPER and BUSTER-JANGLE indicating that considerable improvement in signal detection capability is required in order to permit reasonable assurance of detection of shots of this size at usable ranges. There is added evidence that detection is more limited in range in spring than in summer or winter.

As expected, standard equipment showed considerably greater detection capability than did extended low-frequency response equipment. This is attributed partly to the larger noise levels observed at very low frequencies and the concentration of signal energy at the higher frequencies.

5.1.2 Azimuth Accuracy

Azimuth errors were roughly the same as noted for previous tests.

5.1.3 <u>Signal Characteristics</u>

No outstanding differences in character were noted between the UPSHOT-KNOTHOLE signals and the TUMBLER-SNAPPER signals.

5.1.4 Seasonal Effects

Directional effects generally support previous observations that a shift in stratosphere winds from winter westerlies to summer easterlies occurs in the spring, usually in April. UPSHOT-KNOTHOLE results were not as consistent in this respect as were the TUMBLER-SNAPPER results.

5.2 <u>RECOMMENDATIONS</u>

Further measurements during atomic tests at the Nevada Proving Grounds are required for shots occurring in summer and fall propagation conditions (July through September). In addition, measurements are recommended during tests conducted at higher altitude than previously or under other unusual circumstances.

APPENDIX A

TABLES

•		Loca	tion	Approx. Azimuth	Approx. Distance
Agency*	Station	Latitude	Longitude	to NPG**	to NPG#
		(deg.min.)	(deg.min.)	(degrees)	(km)
NEL	Los Angeles	34 07 N	118 17 W	034	380
NEL	San Diego	32 49 N	117 15 W	013	475
NEL	Dateland, Ariz	32 53 N	113 37 W	337	505
NEL	Gila Bend, Ariz	32 52 N	112 40 W	328	530
SCEL	Ft. Lewis, Wash	47 05 N	122 35 W	152	1230
SCEL	Pyote AFB, Texas	31 30 N	103 15 W	301	1350
SCEL	Barksdale AFB, La	32 30 N	093 45 W	290	2080
NBS	Washington, D. C.	38 57 N	077 04 W	279	v ,
SCEL	Belmar, N. J.	40 12 N	074 05 W	278	3585
SCEL	Fairbanks, Alaska	64 50 N	147 40 W	131	3710
SCEI.	Oahu, T. H.	21 31 N	158 05 W	057	4375
SCEL	Thule, Greenland	76 32 N	068 40 W	237	5000
SCEL	Hachinohe, Japan	40 35 N	141 25 E	054	8300
SCEL	Hanau, Germany	50 07 N	008 59 E	318	8900
SCEL	Kyoto, Japan	34 55 N	135 41 E	050	9100

TABLE A.1 - UPSHOT-KNOTHOLE Acoustic Station List

- * NEL Navy Electronics Laboratory
 SCEL Signal Corps Engineering Laboratories
 NBS National Bureau of Standards
- ** Azimuth measured in degrees clockwise from true north. NPG - Nevada Proving Grounds
- # Distance measured on a great circle path at the earth's surface.

TABLE A.2 - UPSHOT-KNOTHOLE Shot Data

Shot	Shot Code	Time of Occu	Ccurrence (GMT)	Loca	Location	
No.	Name	Date	Hr.Min.Sec.	N. Latitude (deg.min.sec.)	W. Longitude (deg.min.sec.)	Type of Shot
н	ANNIE		1320:00	37 00: 52.3	116 01 15.7	300' tower
2	NANCY		1310:00	37 05 43.9	116 06 09.9	300° tower
ო	RUTH	31 Mar	1300:00	37 04 57.9	116 01 25.7	300° tower
4	DIXIE	06 Apr	1529:38	37 05 04.7	116 01 11.3	Air - 6022' above
						target. 10,216' MSL.
ഹ	BADGER		1235:00	80	116 07 04.0	300 ^t tower
Q	RAY		1245:00	05	116 05 32.9	100° tower
~	NOWIS		1230:00	8	116 06 09.5	300° tower
ω	HARRY	19 May	1205:00	37 02 25.4	116 01 31.4	300° tower
6	ENCORE	08 May	1529+55	47	115 55 44.1*	Air - 2423' above
						target. 5493' MSL.
10	GRABLE	25 May	1530:00	36 47 52.7	115 55 44.1*	Air - shell 525' above
					_	target. 3595' MSL.
11	CLIMAX	04 Jun	1114:57	37 05 04.7	116 01 11.3*	Air - 1334° above
	_					target. 5528' MSL.

* Refers to aiming point.

27

k., z

TABLE A.3 - Acoustic Data for Shot 1

ίų.

(Source Time: 17 March 1953, 1320:00 GMT)

Ynes/cm2) Persontal Persontal Persontal Persontal Personal P	bb) sg coH sg coH ss coH s) co mA co famA famA famA famA famA famA famA famA	81 4 10,35 <5	263-320 43 45 17,05,11 340-380 66 6 0.5,1,3,5	125 9 9 <-2.	311-352 7 12 15-20	324-379 15 16 9-22 1.	355-372 10 12 10-17 1.	340 7.4 16 20 4.	352-361 6 8 723 5.	5.3 360-398 1.6 22 2.4 0.3 2.8 311-365 4.0 38 5-24 1.2	the noise level (dynes/cm ²): Oahu - 7.0, Hachinohe - 0.9,
rity verage tenth	ci	,	1349		1435 150.3				1636 274.7		results and
Time of Arrival (GMT)	Start (hr.min.)	1341	1348	1349	1430	1429	1512	<u> </u>	1630	1758	 Stations reporting negative
Station		Los Angeles	san viego Dateland	Gila Bend	Ft. Lewis	Pyote	Barksdale	Wash., D. C.	Belmar	Fairbanks Thule	Stations rep

TABLE A.4 - Acoustic Data for Shot 2

Service Service

sti Se 3

(Source Time: 24 March 1953, 1310:00 GMT)

Station	Time of (G	Time of Arrival (GMT)	grees) tauth dred erage	nge of Velocities (592/sec)	um Signal peak situde cm2)	lengi noiteu (setuni	tnenimo et Periods (sbnoce)	es/cw5) besk de Noise
	Start (hr.min.)	Max.Ampl. (hr.min.)	zy໌ ວງ	Phase Phase	-0 qmA	nġ	uģiz	-0
Los Angeles	1332	1336	1	8	62	13	60	< 2.5
San Diego	1337	1349	ł	ł	25	12	30, 50, 70, 90	< 2•5
Dateland	1337	1339	t 3	345-370	52	7	4,13,2	0
Gila Bend	1339	1341	ł	1	160	7	15,0.6	0
Ft. Lewis	1422	1425	151.3	330-354	> 15	10	16-28	1•0
Pyote	1417	1423	301.5	342-411	> 62	12	6-20	1.7
Barksdale	1454	1500	297.3	379-409	> 81	8	8-23	2•3
Wash., D. C.	1614	1628	280.0	348	19.1	14	14	4•6
Fairbanks	1648	1653	133.0	293-335	1•0	12	10-18	0•3
Thule	1757	1804	226.7	316-350	6	33	5-15	1.3
Stations reporting negative results Hachinohe - 0.5, Hanau - 1.7, Kyoto	rting nega 5, Hanau	tive results - 1.7, Kyoto	and the - 0.6	noise level (d)	(dynes/cm ²) :	Belmar - 30,	Oahu - 3.3,	

TABLE A.5 - Acoustic Data for Shot 3

(Source Time: 31 March 1953, 1300:00 GMT)

Station	Time of Arrival (GMT)	Arrival AT)	səəat Murty Dreqq Srage	vers/sec) sers/sec) de of of off de of	um Signal Litude Aeak (Sm2)	lengi noite: (sətun:	tnent Periods (sbno:	les/cm ²) peak ge Noise
	Start (hr.min.)	Max.Ampl. (hr.min.)	no ZA	Phase / Port	[qmA 1-0	ING	[engi?	-0
Los Angelés	1322	1325	ł	8	6	R	6,14	< 0.5
San Diego	1327	1330	:	320-380	ß	10	3-5,12	0.5
Dateland	1327	1329	:	350-435	40	10	2,13	\$•0 V
Gila Bend	1329	1330	ł	ł	40	10	1.2,12	0.0 V
Pyote	1411	1413	302.3	346=358	3.4	က	2-4	1.0
Stations reporting negative results Barksdale - 12, Washington - 7.2, Be Hachinohe - 0.9, Hanau - 0.8, Kyoto	rting nega 2, Washing 5, Hanau	tive result ton - 7.2, - 0.8, Kyot	and the lmar - 1 - 0.6	noise level (d 12.5, Fairbanks	ynes/cm ²)1 - 0.3, Oah	Ft. Lewis - 1 u - 2.5, Thul	l.3, le = 0.9,	

TABLE A.6 - Acoustic Data for Shot 4

۸

₹

(Source Time: 6 April 1953, 1529:38 GMT)

Station	Time of (G	Time of Arrival (GMT)	grees) fuuth frage erage	nge of tzontal Velocities ers/sec)	es/cm ²) Peak litude litude	Ignal roiter (sətuni	tnent 2 Periods 5 pictes	nes/cm ²) -peak age Noise
	Start Max.Ampl (hr.min.) (hr.min.	Max.Ampl. (hr.min.)	zA oD	ърязе Тон	qmA ∽0	na	eubts	·0
Los Angeles	1551	1555	ł	ł	85	ų	6,18	< 0.5
San Diego	1555	1559	ł	ł	26	11	9,24,55	< 2.5
Dateland	1555	1555	ł	335-350	64	4.5	2	< 2.5
Gila Bend	1557	1557	ł	ł	120	12	7,20	< 2.5
Ft. Lewis	1638	1644	150.6	325-346	7	14	12-20	0.5
Pyote	1638	1642	300-0	347-372	8° °	ω	7-18	1.5
Fairbanks	1859	1161	132•0	302-320	2.4	90	6-12	1.6
Thule	2011	2015	237.0	315-323	1.9	24	15-19	6•0
Stations reporting negative resu Washington - 3.0 to 13.4, Belmar	rting negat 3.0 to 13.4	tive results 4, Belmar -	and the 9.5, Oahu	ise level 1.4, Hach	s/cm ²): - 1.4,	Barksdale - 3 Hanau - 1.0, 1	2.2, Kyoto - 0.8	

TABLE A.7 - Acoustic Data for Shot 5

(Source Time: 18 April 1953, 1235:00 GMT)

Station	Time of (G	Time of Arrival (GMT)	rerage struth (serage	nge of Velocities Velocities (cers/sec)	um Signal peak sesk (2m2)	lgnal roitsr (setuni	erinent sboire (sbnoce	ynes/cm ²) 0-peak 0-peak
	Start (hr.min.)	Max.Ampl. (hr.min.)	zy´ DO	Phase Phase	qmA -0	ná	uģis	
Los Angeles	1256	1256	e t	8	63	4	11,35	< 1.5
San Diego	1301	1305	1	330-350	75	14	10,20,36	< 1.5
Dateland	1303	1303	3	350-460	75	17	8,4,0.5	ιΩ V
Ft. Lewis	1342	1347	155.5	321-343	6.5	11	16-20	0•3
Pyote	1343	1349	301 •8	335-370	9•5	11	8-14	3•2
Wash, D. C.	1544	1555	281.0	355	1.9	18	10-12	2.4
Fairbanks	1600	1600	135.0	320-357	2•5	15	5-15	1.4
Thule	1709	1716	238.0	338-351	7•0	14	11-14	1.1
Stations reporting negative results Oahu - 3.7. Hachinohe - 0.6. Hanau	orting neg Hachinohe	ative result - 0.6. Hanau	and the 0.5. Kv	se level - 0.4	(dynes/cm ²) B	Barksdale -	12, Belmar -	2.5,
Not operating: Gila Bend	g: Gila B	end	(

TABLE A.8 - Acoustic Data for Shot 6

¢

ر.

5

0

(Source Time: 11 April 1953, 1245:00 GMT)

1313

TABLE A.9 - Acoustic Data for Shot 7

R

ê

51

Х

 (Source Time: 25 April 1953, 1230:00 GMT)

Station	Time of (Gw	Time of Arrival (GMT)	ggrees) signth saputed serage	fo of Izontal Velocities (oes/sec)	uum Signal pittude nes/cm ²)	Isngi noitsi (setuniu	tnanimo: sboirsef (sbnose;	nes/cm2))-peak vnes/cm2)
	Start Max. Amy (hr.min.) (hr.min.	Max. Ampl. (hr.min.)	zy′ ∘ე	əssid Toh	qm.A. ⊷O	na	ubis)
Los Angeles	1251	1254	:	1	100	8	10,60	< 0°2
San Diego	1256	1257	1	335-410	60	15	10,60	< 0.5
Dateland	1257	1259	ł	345-415	22	13	10,60	< 0°2
Ft. Lewis	1338	1346	154.0	314-372	II.	15	9-35	0•6
Pyote	1342	1345	300.2	337-360	12•5	10	20-30	4.7
Barksdale	1419	1433	294.7	368-381	14.5	29	8-20	1.2
Fairbanks	1555	1604	134.8	321-347	2•2	22	16-20	0.5
Oahu	1640	1658	62.2	334-367	2•5	35	15-26	1.4
Thule	1709	1715	241.3	334-366	3•0	41	12-60	0.7
Stations reporting negative results Belmar - 2.5, Hachinohe - 0.4, Hanau Not operating: Gila Bend		ative results a e - 0.4, Hanau end	and the 1 - 1.2,	 noise level ((Kyoto - 1.1	(dynes/cm ²) a	Washington,	D. C 5.5,	

TABLE A.10 - Acoustic Data for Shot 8

4

₹

e

١

(Source Time: 19 May 1953, 1205:00 GMT)

Station	Time of Ariival (GMT)	Arıtval T)	grage byrted (2997)	ange of velocities velocities vers/sec)	aum Signal pittude feak fear fenn2)	lengič noijsta (sejunin	cominent socired seconds)	rage Noise)-peak (Sm2)
	Start (hr.min.)	Max.Ampl. (hr.min.)	ioJ zA	əseyd toh	imA -0	ù	iģis	כ ו
Los Angeles	1225	1226	1	ł	160	ł	;	15
San Diego	1231	1235	ł	325-375	75	14	6,14,40,55	2.55
Dateland	1231	1231	ł	340-370	44	15	6,7,9	< 0.7
Ft. Lewis	1309	1314	154.8	332-380	Q	23	8-18	0•4
Barksdale	1400	1413	285.0	370-411	6.5	12	13-44	1.8
Wash, D. C.	1512	1526	283•0	320	1•2	60	33	0•6
Fairbanks	1531	1533	130.0	322-354	0.5	7	16-17	0•5
Cahu	1611	1614	64.0	343-356	7.5	15	10-28	4.5
Stations reporting negative results Hachinohe - 0.6. Hanau - 2.9. Kvoto	rting nega •6. Hanau	tive result: - 2.9. Kvot(and the - 0.4. I	noise level (d Belmar - 0.9	(dynes/cm ²) 1	Pyote - 2.2,	Thule - 3.8,	
Not operating: Gila Bend	1 Gila Bei	pu						

TABLE A.11 - Acoustic Data for Shot 9

Ň

3

(Source Time: 8 May 1953, 1529:55 GMT)

Station	Time of Arrival (GMT)	Arrival T)	trees) muth puted srage	ige of sertal secities srs/sec)	nes/cm2) pittude fesk mum Signal	Isngi noitsru (sətunin	tnent Periods (sbnos)	sige Noise)-peak /nes/cm ²)
	Start (hr.min.)	Start Max.Ampl. (hr.min.) (hr.min.)	noJ tzA	гтон Гор	-0 Amp	Ď	snęiz)
Los Anyeles	1550	1550	•	ł	150	ł	1	20
San Jiego	1555	1555	1	1	45	10	4,6,10,20	23
Dateland	1557	1557	ł	;	53	4	7,10	ຍ ເ
Ft. Lewis	1640	1642	152.8	327-401	8	11	11-30	ω
Pyote	1642	1648	299•0	341-373	5•5	10	8-30	1.9
Barksdale	1731	1737	288•0	364-393	> 5•5	55	9-20	1•3
Wash, D. C.	1906	1909	273.0	328	3.4	7.5	25	2•2
Oahu	1937	1947	56.3	324-350	3 ° 8	13	15-25	1.7
Thule	2007	2016	239.7	281-361	2•9	28	12-35	1.4
Stations reporting negative results Hachinohe - 1.0, Hanau - 0.3, Kyoto Not operating: Gila Bend	orting nega (.0, Hanau 11 Gila Be	tive results - 0.3, Kyoto nd	and the - 4.3	noise level (dynes/cm ²):	dynes/cm ²) •	Belmar - 4.2,	2, Fairbanks	- 3,3,

36

x *

	nes/cm ²))-peak 33ge Noise	zəvA D	24 < 3	21 < 2.5	1.5	1.4	0.6	0.7	2.9	 Belmar = 2.4,
	tnent theriods sboits)	euģis	2.5,5,7,24	8,16,21	9-45	30-45	Ô	15-24	10-19	 - 7.5, Bel
	lsngi noifstu (sejunin	na l	ۍ 	ۍ 	ଞ	\$	14	11	21	Barksdale
1530:00 GMT	num Signal -peak ies/cm ²)	100 Am	120	102	15	3.6	2•0	1.•9	\$	 (dynes/cm ²) :
25 May 1953,	to spin tizontal Velocities Velocistes	esedq toH	•	305-345	293-352	283-360	360	329-365	332-366	e noise level (Kvoto - 2.0
ource Time: 2	verage batudic verage (seage)	A.	!	ł	158.0	292.5	282.0	135.0	57.8	 and the
(Sourc	Time of Arrival (GMT)	Start Max. Ampl. (hr.min.)(hr. min.)	1552	1557	1637	1654	1900	1854	1939	 tive res
	Time c	Start (hr.min.	1550	1555	1634	1651	1854	1850	1933	 orting neg Hachinohe
	Station		Los Angeles	San Diego	Ft. Lewis	Pyote	Wash, D. C.	Fairbanks	Oahu	Stations reporting negative Thule - 1.3. Hachinohe - 2.5

TABLE A.12 - Acoustic Data for Shot 10

たいの

ŝ

Sec. Salar Sec.

١

۷

्र

.

TABLE A.13 - Acoustic Data for Shot 11

ې مړي چې (Source Time: 4 June 1953, 1114:57 GMT)

Los Angeles Start Max. Ampl. Avoid Action Los Angeles I135 I135 I136 Los Angeles I135 I135 I136 San Piego I141 I143 330-415 Dateland I141 I143 330-415 Et. Lewis I1218 I223 I55.3 321-330 Barksdale I321 I330 294.4 344-373 Barksdale I321 I330 294.4 344-373 Barksdale I55.3 I55.3 321-330 Barksdale I321 I330 294.4 344-373 Barksdale I321 I330 294.4 347-338 Barksdale I55.2 I445 555.3 347-338 Cahu I552 I553 244.0 297-333 Cahu I555 I553 244.0 297-333 Kyoto 1950 45.5 307-333 327-333 Sort-333 307-333 327-333 327-333	sts/s itud itud seak seak	Ienę. sejun.	tnent Peric (sbno:	ide Not
Angeles 1135 1136 Diego 1141 1143 lead 1141 1143 lead 1141 1148 lead 1218 1223 155.3 idale 1218 1223 155.3 anks 1321 1330 294.4 inohe 1432 1445 282.0 anks 1514 1518 55.3 inohe 1552 1857 45.5 inohe 1946 1950 45.5	etem) JanixeM IqmA i-0 envb)	twŪ tm)	tengiz	-0
Jiego 1141 1143 land 1144 1148 Lewis 1218 1223 155.3 iand 1218 1223 155.3 sdale 1321 1330 294.4 D. C. 1438 1445 282.0 banks 1432 1445 282.0 banks 1432 1436 133.2 banks 1514 1518 55.3 inohe 1855 1857 45.5 inohe 1946 1950 45.5	185		2,5,25	ч V
Land 1144 1148 Lewis 1218 1223 155.3 dale 1321 1330 294.4 b C. 1438 1445 282.0 banks 1432 1436 133.2 1514 1518 55.3 1514 1518 55.3 1552 1553 244.0 inohe 1855 1857 45.5 nohe 1946 1950 45.5	415 > 125	20	15-25	- v
Lewis 1218 1223 155.3 sdale 1321 1330 294.4 b D. C. 1438 1445 282.0 banks 1432 1445 282.0 133.2 banks 1432 1445 282.0 133.2 banks 1432 1445 282.0 133.2 banks 1514 1518 55.3 133.2 c 1552 1553 244.0 45.5 inohe 1855 1857 45.5 5.5 o 1946 1950 45.5 5.5			7,25	-
adale 1321 1330 294.4 b D. C. 1438 1445 282.0 banks 1432 1436 133.2 1514 1518 55.3 1552 1553 244.0 Inohe 1855 1857 45.5 0 1946 1950 45.5	^		3-20	1.3
b. C. 1438 1445 282.0 banks 1432 1436 133.2 1514 1518 55.3 1552 1553 244.0 1946 1950 45.5			30-48	1•5
aanks 1432 1436 133.2 1514 1518 55.3 1552 1553 244.0 100he 1855 45.5 1946 1950 45.5	0		%	
1514 1518 55.3 1552 1553 244.0 100he 1855 1857 45.5 1 1946 1950 45.5	357 1.8	22	12-20	0•3
1552 1553 244.0 nohe 1855 1857 45.5 1946 1950 45.5			15-25	
nohe 1855 1857 45.5 1946 1950 45.5			19-25	
1946 1950 45.5	ŏ		7-20	
	~		13-20	

TABLE A.14 - Azimuth Errors

4

г

)

					ELL	Error (degrees)	ees)				
notation	17 Mar	24 Mar	31 Mar	6 Apr	11 Apr	18 Apr	25 Apr	8 May	19 May	25 May	4 Jun
San Diego	1.4E*	•	4 . 8E	1	I	1.5 E	2.1E	8	0.1E	4•2E	2.0W
Dateland	5 • 0E	7.7E	5.4E	4.7E	5 . 0E	4 .3E	5 . 0E	3	4 . 2E	ł	0.7W
Ft. Lewis	1.7E	0 • 9E	0	1.4E	ı	3° 3M	2.7%	0 • 8W	2 . 8W	MO•9	3°3W
Pyote	1 •0N*	N6°0	1.6N	0.75	1	1.0N	0.25	1.0S	ł	7.15	1
Barksdale	1.55	V1.7	1	١	1	•	4•6N	1.35	5 . 1S	6	4.2N
Wash, D. C.	1.0N	I.ON	1	I	I	2.0N	1	5.4S	4.1N	3.6N	3•0N
Belmar	3.55	1	•	1	t	•	•	ŧ	t	ł	1
Fairbanks	4 . 8W	2. 3W	•	1.5W	I	4 • 4W	4.2W	1	0.5E	4 • 4W	2.7W
Oahu	ł	•	1	3	•		4.95	1.4N	6.75	0.15	2.0N
Thule	4 . 0E	10.2E	I	0.2W	ŧ	I.IW	4.4W	3.1W	1	•	7.2W
Hachinohe	F	1	I	1	I	8	•	1	ę	•	NE.8
Kyoto	I	1	I	1	I	ł	1	\$	I	1	4.4N

TABLE A.15 - Travel Speeds for First Acoustic Arrivals, UPSHOT-KNOTHOLE

* Not in operation.

ŧ

1

REFERENCES

1/ Tab D to Volume VI, Report of Operation FITZWILLIAM, Evans Signal Laboratory, 1949. (SECRET)

3

- 2/ CROSSROADS Technical Instrumentation Report, <u>Remote Microbaromet-ric Measurements (Inductiphone, Kwajalein; Washington, D. C.)</u>, Project No. II-28, Naval Ordnance Laboratory. (SECRET, RESTRICTED DATA)
- 3/ Volume VI, Report of Operation FITZWILLIAM, <u>Acoustic and Seismic</u> <u>Detection</u>, U. S. Air Force. (SECRET)
- 4/ Final Report, <u>Signal Corps Portion, 7.2 Program, Operation GREEN-HOUSE</u>, 15 February 1952, Signal Corps Engineering Laboratories. (SECRET)
- 5/ Final Report, <u>Airborne Low-Frequency Sound at Bikini, Kwajalein</u> and <u>Guam from Atomic Explosions of Operation GREENHOUSE</u>, 30 September 1951, Navy Electronics Laboratory. (SECRET)
- 6/ NAVORD Report No. 2153, <u>Report on Microbarometric Data Taken</u> <u>During Project GREENHOUSE</u>, 17 August 1951, Naval Ordnance Laboratory. (SECRET)
- 7/ NBS Report No. 1C104, <u>Detection of Airborne Low-Frequency Sound</u> from Atomic Explosions of Operation GREENHOUSE, 15 September 1952, National Bureau of Standards. (SECRET)
- AFSWP Report No. WT-322, <u>Detection of Airborne Low-Frequency</u> <u>Sound from the Atomic Explosions of BUSTER and JANGLE</u>, U. S. Air Force (AFOAT-1), 15 March 1952. (SECRET)
- AFSWP Report No. WT-539, <u>Detection of Airborne Low-Frequency</u> Sound from the Atomic Explosions of Operation TUMBLER-SNAPPER, U. S. Air Force (AFOAT-1), 15 September 1952. (SECRET)
- 10/ NEL Report No. 290, <u>Experimental Study of Explosion-Generated</u> <u>Acoustic Waves Propagated in the Atmosphere</u>, Navy Electronics Laboratory, 1 May 1952. (RESTRICTED)
- 11/ IVY report by U. S. Air Force (AFOAT-1), dated 15 September 1953, is in process of publication. (SECRET)

REFERENCES (Continued)

12/ SCEL Report, <u>Technical Instructions for Operation. Installation</u> and <u>Maintenance of Equipment for Data Recording System M-2</u>, 23 February 1953. (CONFIDENTIAL)

- 13/ Report on Task Order 1, Contract N7-ONR-498, <u>Recording and Analyzing System for Microbarographic Transients</u>, Rieber Research Laboratory, undated. (CONFIDENTIAL)
- 14/ NBS Report No. 1C106, <u>Instructions for Installation</u>. Operation and <u>Maintenance of NBS Infrasonic Instrumentation</u>, National Bureau of Standards, 19 January 1953. (RESTRICTED)

42

DISTRIBUTION

4

З

a:

J

Program 7 Distribution Category

	Сору
ARMY ACTIVITIES	
Chief Signal Officer, D/A, P&O Division, Washington 25, D. C., ATTN: SIGGG-S	1-2
NAVY ACTIVITIES	
Chief of Naval Research, Department of the Navy, Washington 25, D. C., ATTN: Code 418 Commanding Officer and Director, U. S. Navy Electronics Laboratory, San Diego 52, Calif., ATTN: Dr. A. B. Focke	3 4
AIR FORCE ACTIVITIES	
Asst. for Atomic Energy, Headquarters, USAF, Washington 25, D. C., ATTN: DCS/O (For AFOAT-1)	5-14
Commander, Air Force Cambridge Research Center, 230 Albany St., Cambridge 39, Mass., ATTN: Commander, AFCRC	15
Commander, Air Force Cambridge Research Center, 230 Albany St., Cambridge 39, Mass., ATTN: Dr. James A. Peoples	16
OTHER DEPARTMENT OF DEFENSE ACTIVITIES	
Commanding General, Field Command, Armed Forces Special Weapons Project, PO Box 5100, Albuquerque, N. Mex.	17
Chief, Armed Forces Special Weapons Project, Washington 25, D. C.	18-19
ATOMIC ENERGY COMMISSION ACTIVITIES	
U. S. Atomic Energy Commission, Classified Technical Library, 1901 Constitution Ave., Washington 25, D. C., ATTN: Mrs. J. M. O'Leary (For DMA)	20-22
U. S. Atomic Energy Commission, Classified Technical Library, 1901 Constitution Ave., Washington 25, D. C., ATTN: Mrs. J. M. O'Leary (For Dr. Spofford G. English, Research Division)	23
U. S. Atornic Energy Commission, Classified Technical Library, 1901 Constitution Ave., Washington 25, D. C., ATTN: Mrs. J. M. O'Leary (For Dr. Charles H. Reichardt, Intelligence Division)	24
Los Alamos Scientific Laboratory, Report Library, PO Box 1663, Los Alamos, N. Mex., ATTN: Helen Redman	25-27
Sandia Corporation, Classified Document Division, Sandia Base, Albuquerque, N. Mex., ATTN: Maitin Lucero	28-29
University of California Radiation Laboratory, PO Box 808, Livermore, Calif., ATTV: Margaret Edlund	30-31
Wear on Data S ction, Technical Information Service, Oak Ridge, Tenn.	32 33-49
Technical Information Service, Oak Ridge, Tenn. (Surplus)	33-45
ADDITIONAL DISTRIBUTION	
Director, National Bureau of Standards, Connecticut Ave. & Van Ness St., N. W., Washington 25, D. C., ATTN: Dr. R. K. Cook	50
Chief, U. S. Weather Bureau, 24th & M Sts., N. W., Washington 25, D. C., ATTN: Dr. Harry Wexler	51
Beer and Heroy, 3712 Haggar Drive, Dallas 9, Tex., ATTN: Mr. Carl F. Romey	52
Director, Central Intelligence Agency, 2430 E Street, N. W., Washington 25, D. C., ATTN: Mr. Herbert I. Miller	53

Secretary, Department of State, Washington 25, D. C., ATTN: Mr. Gordon Arneson54U. S. Coast and Geodetic Survey, 14th between E and Constitution Ave., N. W.,55Washington 25, D. G., ATTN: D. S. Conder55

Washington 23, D. C., ATTN: Dr. D. S Carder

