

POR-2051(EX) (WT-2051)(EX) EXTRACTED VERSION

# **OPERATION DOMINIC, FISH BOWL SERIES**

Project Officer's Report—Project 9.1b

10

**Ionospheric Wind and Diffusion Measurements** 

K. S. W. Champion, Project Officer Air Force Cambridge Research Laboratories Bedford, MA

E. R. Manring Geophysics Corporation of America Bedford, MA



5 April 1965

NOTICE:

This is an extract of POR-2051 (WT-2051), Operation DOMINIC, Fish Bowl Series, Project 9.1b.

Approved for public release; distribution is unlimited.

86

011

6 10

Extracted version prepared for Director DEFENSE NUCLEAR AGENCY Washington, DC 20305-1000

1 September 1985

AD-A995 43

COPY

FIE

E

----

# Best Available Copy

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

AD-A995431

|                                                                                                             | REPORT DOCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MENIATION                                   | PAGE             |                         |                            |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|-------------------------|----------------------------|
| 1a. REPORT SECURITY CLASSIFICATION<br>UNCLASSIFIED                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15. RESTRICTIVE                             | MARKINGS         |                         |                            |
| 28. SECURITY CLASSIFICATION AUTHORITY                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. DISTRIBUTION                             | AVAILABILITY C   | F REPORT                |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approved fo                                 | or public r      | elease;                 |                            |
| 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | distribution is unlimited.                  |                  |                         |                            |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5. MONITORING ORGANIZATION REPORT NUMBER(S) |                  |                         |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POR-2051 (EX) (WT <sub>7</sub> 2051) (EX)   |                  |                         |                            |
| 4. NAME OF PERFORMING ORGANIZATION<br>T-AF Cambridge Research Labs                                          | 6b. OFFICE SYMBOL<br>(If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7a. NAME OF MO                              | DNITORING ORGA   | NIZATION                |                            |
| 2-Geophysics Corp of America                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Defense Atomic Support Agency               |                  |                         |                            |
| 6c. ADDRESS (City, State, and ZIP Code)<br>I-Bedford, MA                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7b. ADDRESS (City, State, and ZIP Code)     |                  |                         |                            |
| 2-Bedford, MA                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Washington, DC                              |                  |                         |                            |
| Ba. NAME OF FUNDING / SPONSORING<br>ORGANIZATION                                                            | 8b. OFFICE SYMBOL<br>(If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. PROCUREMENT                              | INSTRUMENT ID    | DENTIFICATION           | NUMBER                     |
| 8c. ADDRESS (City, State, and ZIP Code)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 SOURCE OF F                              | UNDING NUMBER    | RS                      |                            |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROGRAM<br>ELEMENT NO.                      | PROJECT          | TASK                    | WORK UNIT<br>ACCESSION NO. |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ELEMENT NO.                                 | NO.              | NO.                     | ACCESSION NO.              |
| 11. TITLE (Include Security Classification) OPERA<br>PROJECT 9.1b - Ionospheric Wind                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                  |                         | 'S REPORT,                 |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | neasur dilentes i                           |                  | Tersion                 |                            |
| 12. PERSONAL AUTHOR(S) K. S. W. Champion and E. R. Man                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                  |                         |                            |
| 13a. TYPE OF REPORT 13b. TIME CO                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14. DATE OF REPO                            |                  |                         |                            |
| 16. SUPPLEMENTARY NOTATION This repor<br>provide an unclassified version<br>Defense Nuclear Agency in suppo | for unlimited of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istribution.                                | The work         | was perfo               | rmed by the                |
| 17. COSATI CODES                                                                                            | 18. SUBJECT TERMS (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Continue on reverse                         | if necessary and | d identify by L         | block number)              |
| FIELD GROUP SUB-GROUP                                                                                       | Dominic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                  |                         | tiple Prime                |
| 183                                                                                                         | Fish Bowl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | Star Fish F      | rime Ki                 | ng Fish                    |
| 4 1<br>19. ABSTRACT (Continue on reverse if necessary                                                       | Ionospheric Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | easurements                                 | BILLE GTIL F     | rime 11                 | aht Rope                   |
| The aim of this project was to                                                                              | And the second se |                                             | elocities a      | nd diffus               | ton                        |
| coefficients in the altitude re                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                  |                         |                            |
| of a sodium vapor trail from a                                                                              | Cajun rocket at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dusk or dawn                                | twilight.        | The sodi                | um was sunlit,             |
| and as a result of emission of                                                                              | resonance radiat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion, was vis                               | ible agains      | t a darke               | ned background             |
| for about 20 minutes. The trai                                                                              | l was photograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ned simultane                               | ously from       | four diff               | erent sites,               |
| allowing for subsequent triangu                                                                             | lation to determ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ine the alti                                | tude of var      | ious part               | s of the cloud             |
| A major application of these wi                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                  |                         |                            |
| high-altitude nuclear tests, wa                                                                             | s to aid in dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ermining the                                | disposition      | of the n                | uclear debris.             |
|                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                  |                         |                            |
| 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21. ABSTRACT SEC<br>UNCLASSIF               | URITY CLASSIFIC  | ATION                   |                            |
| 223. NAME OF RESPONSIBLE INDIVIDUAL<br>MARK D. FLOHR                                                        | Conc Oscas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 226 TELEPHONE (1)<br>202-325-755            | nclude Area Code | ) 22c. OFFICE<br>DNA/IS |                            |
|                                                                                                             | Redition may be used un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                  |                         | N OF THIS PAGE             |
|                                                                                                             | All other editions are of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                  | UNCLASSIFICATIO         |                            |

#### FOREWORD

Classified material has been removed in order to make the information available on an unclassified, open publication basis, to any interested parties. The effort to declassify this report has been accomplished specifically to support the Department of Defense Nuclear Test Personnel Review (NTPR) Program. The objective is to facilitate studies of the low levels of radiation received by some individuals during the atmospheric nuclear test program by making as much information as possible available to all interested parties.

The material which has been deleted is either currently classified as Restricted Data or Formerly Restricted Data under the provisions of the Atomic Energy Act of 1954 (as amended), or is National Security Information, or has been determined to be critical military information which could reveal system or equipment vulnerabilities and is, therefore, not appropriate for open publication.

The Defense Nuclear Agency (DNA) believes that though all classified material has been deleted, the report accurately portrays the contents of the original. DNA also believes that the deleted material is of little or no significance to studies into the amounts, or types, of radiation received by any individuals during the atmospheric nuclear test program.

|             |                | CRA&I [<br>TAB [<br>ounced [ |             |     |
|-------------|----------------|------------------------------|-------------|-----|
|             | By<br>Dist: ib | ution /                      |             |     |
|             | A              | vailability Code             | :S          |     |
|             | Dist           | Avail a d/or<br>Special      |             |     |
| MUNIED      | A-1            |                              |             |     |
| UNANNUUNLED |                |                              | <br>(****** | 150 |

OPERATION DOMINIC

FISH BOWL SERIES

**PROJECT OFFICERS REPORT - PROJECT 9.1b** 

IONOSPHERIC WIND AND DIFFUSION MEASUREMENTS

Dr. K.S.W Champion, Project Officer

Air Force Cambridge Research Laboratories L.G. Hanscom Field Bedford, Massachusetts

Dr. E.R. Manring

Geophysics Corporation of America Bedford, Massachusetts

## ABSTRACT

The main objective was to measure wind velocities and diffusion coefficients in the altitude region between 60 and 150 km, before and after high-altitude nuclear detonations. A second objective was to determine whether the detonations had any effect on atmospheric circulations at high artitude that would persist for hours.

The method involved the ejection of a sodium vapor trail from a Cajun rocket at dusk or dawn twilight. The sodium was sunlit and, as a result of emission of resonance radiation, was visible for about 20 minutes. The trail was photographed simultaneously by cameras located on Johnston Island and Ships S-1, S-2, and S-4.

The winds were measured in the normal atmosphere on 8 July 1962 before Star Fish Prime, on 25 July before Blue Gill Prime, and on 3 November before Tight Rope. Data was obtained after Star Fish Prime, Blue Gill Triple Prime and at three different times following King Fish. A major change in the wind pattern in the altitude region 80 to 130 km, was produced by Star Fish Prime. Above 100 km the wind was to the south, evidently affected by the motion of fieldaligned ionized material. No significant change was caused by Blue Gill Triple Prime in the same altitude region. However, some unusual wind directions were observed following King Fish. In addition to identifying perturbations in the upper atmosphere, the measurements provide data which can be applied to studies of debris motion following the high-altitude detonations.

### CONTENTS

| ABSTRACT                                                   | 5   |
|------------------------------------------------------------|-----|
| CHAPTER 1 INTRODUCTION                                     | 11  |
| 1.1 Objectives                                             | 11  |
| 1.2 Background                                             | 12  |
| 1.3 Theory                                                 | 15  |
| CHAPTER 2 PROCEDURE                                        | 31  |
| 2.1 Shot Participation                                     | 31  |
| 2.2 Instrumentation                                        | 34  |
| 2.2.1 Rocket and Payload                                   | 34  |
| 2.2.2 Rocket Performance                                   | 36  |
| 2.2.3 Photographic Equipment                               | 36  |
| 2.3 Data Requirements                                      | 40  |
| 2.4 Radar Trajectory Data                                  | 42  |
| 2.5 Reduction of Wind Data                                 | 45  |
| 2.5.1 Star Fish Prime, Blue Gill Prime                     | 45  |
| 2.5.2 Blue Gill Triple Prime, King Fish, Tight Rope        | 48  |
| 2.6 Reduction of the Diffusion Coefficient Data            | 53  |
| CHAPTER 3 RESULTS                                          | 95  |
| 3.1 Star Fish Prime                                        | 95  |
| 3.2 Blue Gill Prime                                        | 98  |
| 3.3 Blue Gill Triple Prime                                 | 99  |
| 3.4 King Fish                                              | 101 |
| 3.5 Tight Rope                                             | 104 |
| 3.6 Diffusion Coefficient Data                             | 106 |
| CHAPTER 4 DISCUSSION                                       | 157 |
| CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS                  | 163 |
| REFERENCES                                                 | 165 |
| TABLES                                                     |     |
| 2.1 Event Description                                      | 55  |
| 2.2 Camera Operation and Cloud Cover                       | 55  |
| 2.3 Minimum and Maximum Camera Elevation Angles            | 56  |
| 2.4 Radar Trajectory Data, Rocket 1, 8 July, 2024 Honolulu |     |
| Standard Time (9 July, 0624Z)                              | 57  |

| 2.5  | Radar Trajectory Data, Rocket 2, 9 July, 0609:30 Honolulu     |     |
|------|---------------------------------------------------------------|-----|
|      | Standard Time (9 July 1609:30Z)                               | 60  |
| 2.6  | Radar Trajectory Data, Rocket 3, 25 July, 2020 Honolulu       |     |
|      | Standard Time (26 July 0620Z)                                 | 63  |
| 2.7  | Radar Trajectory Data, Rocket 5, 1 November, 0638 Honolulu    |     |
|      | Standard Time (1 November, 1638Z)                             | 69  |
| 2.8  | Radar Trajectory Data, Rocket 6, 2 November, 0638 Honolulu    |     |
|      | Standard Time (2 November, 1638Z)                             | 74  |
| 2.9  | Radar Trajectory Data, Rocket 7, 2 November, 1907 Honolulu    |     |
|      | Standard Time (3 November, 0507Z)                             | 77  |
| 2.10 | Radar Trajectory Data, Rocket 8, 3 November, 1907 Honolulu    |     |
|      | Standard Time (4 November, 0507Z)                             | 82  |
| 2.11 | Positions of Ships                                            | 88  |
| 3.1  | Diffusion Coefficients Measured with the Sodium Trail from    |     |
|      | Rocket Launched at 2020 Local Time 25 July 1962 (26 July GMT) | 109 |
| 3.2  | Diffusion Coefficients Measured with the Sodium Trail from    |     |
|      | Rocket Launched at 0638 Local Time 2 November 1962            | 109 |

# FIGURES

| 1.1 | Vertical variations of u and v components of winds over Johnston       |     |
|-----|------------------------------------------------------------------------|-----|
|     | Island during summer                                                   | 27  |
| 1.2 | Upper atmosphere winds measured by chemical releases,                  |     |
|     | Eglin, Florida, July and August 1960                                   | 28  |
| 1.3 | Observed wind vector magnitude as a function of height                 | 29  |
|     | Observed wind vector direction as a function of height                 |     |
| 2.1 | Nike-Cajun with sodium trail payload on launcher                       | 89  |
| 2.2 | Igniter Circuit 1                                                      | 90  |
| 2.3 | Igniter Circuit 2                                                      | 91  |
| 2.4 | Nike-Cajun trajectories for 70-pound payload with 80°                  |     |
|     | and 85° launch angles                                                  | 92  |
| 2.5 | Six K-24 cameras mounted in operating position                         | 93  |
|     | Densitometer trace, 2 November (AM), altitude 121 km,                  |     |
|     | time after release 84 seconds                                          | 94  |
| 3.1 | Sodium trail at dusk before Star Fish Prime, 1 minute                  |     |
|     | after rocket launch                                                    | 110 |
| 3.2 | Sodium trail at dusk before Star Fish Prime, 3 minutes                 |     |
|     | after rocket launch                                                    | 111 |
| 3.3 | Sodium trail at dusk before Star Fish Prime, 5 minutes                 |     |
|     | after rocket launch                                                    | 112 |
| 3.4 | Sodium trail at dusk before Star Fish Prime, 9 minutes                 |     |
|     | after rocket launch                                                    | 113 |
| 3.5 | Upper atmosphere wind speeds and directions at dusk before             |     |
|     | Star Fish Prime                                                        | 114 |
| 3.6 | Sodium trail at dawn following Star Fish Prime, $2\frac{1}{2}$ minutes |     |
|     | after rocket launch                                                    | 115 |
| 3.7 | Sodium trail at dawn following Star Fish Prime, $4\frac{1}{2}$ minutes |     |
|     | after rocket launch                                                    | 116 |
| 3.8 | Sodium trail at dawn following Star Fish Prime, $6\frac{1}{2}$ minutes |     |
|     | after rocket launch                                                    | 117 |

| 3.9 Sodium trail at dawn following Star Figh Prime, 10 <sup>1</sup> / <sub>2</sub> minutes<br>after rocket launch                                                                                       | 118        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 3.10 Sodium trail at dawn following Star Fish Prime, 14 <sup>1</sup> / <sub>2</sub> minutes<br>after launch                                                                                             | 119        |
| 3.11 Sodium trail at dawn following Star Fish Prime, 20 ½ minutes<br>after launch                                                                                                                       | 120        |
| 3.12 Upper atmosphere wind speeds and directions at dawn following<br>Star Fish Prime                                                                                                                   | 121        |
| 3.13 Sodium trail at dusk before Blue Gill Prime, 3 minutes<br>after rocket launch                                                                                                                      | 122        |
| 3.14 Sodium trail at dusk before Blue Gill Prime, 5 minutes<br>after rocket launch                                                                                                                      | 123        |
| 3.15 Sodium trail at dusk before Blue Gill Prime, 7 minutes<br>after rocket launch                                                                                                                      | 124        |
| <ul> <li>3.16 Upper atmosphere wind speeds and directions at dusk before<br/>Blue Gill Prime</li> <li>3.17 Sodium trail at dawn following Blue Gill Triple Prime, 5<sup>1</sup>/<sub>2</sub></li> </ul> | 125        |
| minutes after rocket launch                                                                                                                                                                             | 126        |
| after rocket launch                                                                                                                                                                                     | 127        |
| minutes after rocket launch                                                                                                                                                                             | 128        |
| after rocket launch<br>3.21 Upper atmosphere wind speeds and directions at dawn following                                                                                                               | 129        |
| Blue Gill Triple Prime<br>3.22 Sodium trail at dawn ( $4\frac{1}{2}$ hours) after King Fish, $4\frac{1}{2}$ minutes                                                                                     | 130        |
| after rocket launch<br>3.23 Sodium trail at dawn (4 $\frac{1}{2}$ hours) after King Fish, 6 $\frac{1}{2}$ minutes                                                                                       | 131        |
| after rocket launch<br>3.24 Sodium trail at dawn (4 $\frac{1}{2}$ hours) after King Fish, 8 $\frac{1}{2}$ minutes                                                                                       | 132        |
| after rocket launch                                                                                                                                                                                     | 133        |
| after rocket launch<br>3.26 Upper atmosphere wind speeds and directions at dawn<br>$(4\frac{1}{2}$ hours) after King Fish                                                                               | 134<br>135 |
| 3.27 Sodium trail at dawn (28 <sup>1</sup> / <sub>2</sub> hours) after King Fish, 4 <sup>1</sup> / <sub>2</sub> minutes<br>after rocket launch                                                          | 136        |
| 3.28 Sodium trail at dawn (28 <sup>1</sup> / <sub>2</sub> hours) after King Fish, 7 <sup>1</sup> / <sub>2</sub> minutes<br>after rocket launch                                                          | 137        |
| 3.29 Sodium trail at dawn ( $28\frac{1}{2}$ hours) after King Fish, 10 minutes<br>after rocket launch                                                                                                   | 138        |
| 3.30 Sodium trail at dawn (28 $\frac{1}{2}$ hours) after King Fish, 12 $\frac{1}{2}$ minutes<br>after rocket launch                                                                                     | 139        |
| 3.31 Upper atmosphere wind speeds and directions at dawn ( $28\frac{1}{2}$ hours)<br>after King Fish                                                                                                    | 140        |
| 3.32 Sodium trail at dusk (41 hours) after King Fish, 4 minutes<br>after rocket launch                                                                                                                  | 141        |
| 3.33 Sodium trail at dusk (41 hours) after King Fish, 6 minutes<br>after rocket launch                                                                                                                  | 142        |

| 3.34 | Sodium trail at dusk (41 hours) after King Fish, 8 minutes<br>after rocket launch                                                            | 140 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.35 | Sodium trail at dusk (41 hours) after King Fish, $10\frac{1}{2}$ minutes                                                                     | 143 |
|      | after rocket launch                                                                                                                          | 144 |
| 3.36 | Upper atmosphere wind speeds and direction at dusk (41 hours)<br>after King Fish                                                             | 145 |
| 3.37 | Sodium trail at dusk prior to Tight Rope, $3\frac{1}{2}$ minutes                                                                             |     |
|      | after rocket launch                                                                                                                          | 146 |
| 3,38 | Sodium trail at dusk prior to Tight Rope, 5 minutes<br>after rocket launch                                                                   | 147 |
| 3.39 | Sodium trail at dusk prior to Tight Rope, 7 minutes                                                                                          |     |
|      | after rocket launch                                                                                                                          | 148 |
| 3.40 | Sodium trail at dusk prior to Tight Rope, 9 minutes<br>after rocket launch                                                                   | 149 |
| 3.41 | Upper atmosphere wind speeds and direction at dusk prior                                                                                     | 149 |
| •••  | to Tight Rope                                                                                                                                | 150 |
| 3.42 | Sodium trail 26 July 1962 (PM), including altitudes at which                                                                                 |     |
| 2 42 | it was densitometered<br>Comparison of theoretical curves of diffusion coefficients                                                          | 151 |
| 3.45 | with some experimental results                                                                                                               | 152 |
| 3.44 | Plot of $r^2$ versus time for isophotes between 0.2 and 0.7                                                                                  |     |
|      | for trail of 26 July (PM), altitude 107 km                                                                                                   | 153 |
| 3.45 | Plot of r <sup>2</sup> /t <sup>3</sup> versus t <sup>3</sup> for isophotes between 0.2 and 0.8<br>for trail of 26 July (PM), altitude 107 km | 154 |
| 3.46 | Sodium trail 2 November (AM), including altitudes at which                                                                                   | 101 |
|      | it was densitometered                                                                                                                        | 155 |
| 3.47 | Plot of $r^2$ versus time for isphotes between 0.2 and 0.8 for                                                                               | 150 |
| 4.1  | trail 2 November (AM), altitude 125 km                                                                                                       | 156 |
|      | summer and winter                                                                                                                            | 162 |

# CHAPTER 1

## INTRODUCTION

#### 1.1 OBJECTIVES

The aim of this project was to measure high-altitude wind velocities and diffusion coefficients in the altitude region between 60 and 150 km. The method involved the ejection of a sodium vapor trail from a Cajun rocket at dusk or dawn twilight. The sodium was sunlit and, as a result of emission of resonance radiation, was visible against a darkened background for about 20 minutes. The trail was photographed simultaneously from four different sites, allowing for subsequent triangulation to determine the altitude of various parts of the cloud.

A major application of these wind and diffusion data, taken at dusk preceding and dawn following the high-altitude nuclear tests, was to aid in determining the disposition of the nuclear debris. The long-time distribution of this material resulting from high-altitude nuclear detonations can be analyzed more completely with measured wind and diffusion data available. Since the atmospheric physical properties are somewhat variable (for example, the altitudes at which wind shears occur vary by at least 10 km), climatological data based on previous measurements is not adequate for accurate determination of debris motion.

A second objective of the measurements was to determine whether the nuclear detonation had any effect on atmospheric circulations at high altitudes that would persist for hours. These would manifest themselves as unusual wind speed or direction versus altitude profiles or in changes in the altitudes or extent of turbulence.

#### 1.2 BACKGROUND

Direct wind observations in the upper atmosphere over Johnston Island have been made by Smith (Reference 1), who used the rocket-chaff technique in a series of 20 soundings during July and August 1958. Average zonal and meridional components for these soundings are shown in Figure 1.1. Up to the highest point of 275 kilofeet (84 km) the circulation is easterly. Maximum zonal speeds are between 60 and 80 knots (30 to 40 m sec<sup>-1</sup>) in the layer near 240 kilofeet (73 km). These speeds are based on over 20 observations. Sharp wind shears are observed near 230 and 250 kilofeet. In the altitude region between 140 (43 km) and 180 kilofeet (55 km), only four measurements were made, and so the data may not be representative.

In general, the meridional component is much smaller than the zonal component at all altitudes. The data of Smith is of considerable interest but is severely limited in altitude range.

Both Murgatroyd (Reference 2) and Batten (Reference 3) have constructed plots of zonal wind components as a function of latitude. Neither of these plots appears to be in severe disagreement with observations. Champion and Zimmerman (Reference 4) have plotted wind data obtained at Eglin, Florida, during 1959 and 1960. The data obtained during July and August 1960 is contained in Figure 1.2. Note that the wind is easterly below the shear at 80 km and that it is westerly above that altitude. A second sharp shear near 110 km is followed by easterly winds, up to at least 160 km and possibly to the highest altitude at which hydrodynamic winds exist. The latitude of Eglin is  $30.0^{\circ}$  N and of Johnston Island is  $16.5^{\circ}$  N. This would cause each of the wind shears to be about 5 km lower at Johnston than at Eglin during July and August.

Major changes take place in the mean circulation pattern between summer and winter. During winter, the highest shear drops in altitude by about 20 km. The winds above this shear are still easterlies and below it westerlies. However, the

lower shear (~ 80 km in the summer) virtually disappears, and at most latitudes the winds are westerlies, of varying intensity, to ground level. At latitudes between  $15^{\circ}$  and  $20^{\circ}$  and altitudes between 15 and 25 km, there is a residual pocket of easterly wind. Spring and fall are the transitional seasons with average zonal winds at a minimum.

It should be emphasized that our knowledge of global circulation patterns above 50 km and at almost all altitudes in the equatorial zone is relatively scanty at present and that the present models require additional data which will probably result in some revisions.

Manring et al (References 5, 6, 7) have employed the sodium trail technique for the determination of horizontal wind profiles and the calculation of diffusion as a function of altitude. Typical results of these experiments are seen in Figures 1.3 and 1.4 where the wind velocity and direction, respectively, are plotted as a function of altitude for three different experiments. Of specific interest is the extremely high shear region between 100 and 110 km. Although the magnitude and specific heights vary to some degree, this interval is almost always turbulent and is a region of high shear.

Detailed studies of Project Firefly by Champion and Zimmerman (References 4, 8, 9, 10, 11) have shown that

turbulence, either isotropic or shear in origin, exists in most or all of the altitude interval between approximately 50 and 120 km. Isotropic turbulence commonly exists where the vertical temperature gradient is negative or nonexistent, conditions known to be present through most of this altitude region. Shear turbulence, of course, occurs in regions of strong wind shears. In addition to the wind shear observed by Manring between 100 and 110 km, the lower wind shear, near 80 km, was also observed.

Zimmerman and Champion (References 12 and 13) have calculated theoretical values of molecular and turbulent diffusion in the upper atmosphere and compared them with experimental values obtained from Project Firefly. Additionally, Manring and Knaflich (Reference 14) have calculated diffusion coefficients from the basic photographic data obtained during sodium trail experiments.

#### 1.3 THEORY

The upper atmospheric winds and diffusion were measured during the Fish Bowl Series by methods developed by Manring et al (References 5 and 7) over the past several years. During the period when the trail was visible, its shape underwent continuous changes due to the wind velocity at various altitudes. If the trail expansion was radial in

a coordinate system moving with the wind, the magnitude and direction of motion of the trail center was a direct measure of the prevailing winds in that region. The positions of the trail at various altitudes and times were obtained from analysis of photographs taken simultaneously at several separate stations. Vertical velocities were either small or they were variable in time as well as in position, for example, due to turbulence. They were assumed to be negligible in the preliminary data analysis outlined below.

Plots were prepared which depict, at a single time, the filament center in x, y coordinates on a tangent plane to the earth at the launch site, Johnston Island. The coordinate system was oriented with the x axis north and y axis west. These plots were called ground projections. Along the curve representing the trail center in the ground projection, the height or z coordinate was located. The change in x, y coordinates for a particular value of z, as determined from two ground projections (at times  $t_1$  and  $t_2$ ), represented a horizontal displacement D(z) given by

$$D(z) = \left[ (x_1 - x_2)^2 + (y_1 - y_2)^2 \right]^{1/2}$$
(1.1)

The magnitude of the velocity at the altitude z was then given by

$$V(z) = \frac{D(z)}{t_2 - t_1}$$
(1.2)

whereas the direction was obtained from

$$\tan \theta(z) = -\frac{y_2 - y_1}{x_2 - x_1}$$
(1.3)

on a navigator's scale which is zero at north and increases in angle toward the east. Data thus obtained was plotted and resembled Figures 1.3 and 1.4. This then represents the method from which velocity information was obtained from the basic photographs.

The following analysis describes the theory by which diffusion data was obtained. If vapor is ejected at a point in the atmosphere, the resulting cloud will grow radially. The initial expansion is not diffusion controlled if the initial temperature or pressure is higher than that of the ambient existing at the release point. In order for equilibrium to be established and the subsequent expansion controlled by diffusion, several conditions must be met:

1. An initial expansion will occur at about the velocity of sound at the temperature of the expanding gas if the initial pressure is above ambient pressure. A dimension, typical of the equilibrium size, is taken as the diameter of a sphere

which would contain the released material when the number density within the sphere is equal to that of the ambient.

2. If the released material is at a higher temperature than the ambient, a minimum volume such that the enclosed energy density is equal to the ambient energy density is a better criterion for the equilibrium size.

3. Sufficient collisions must occur between the atoms released and the ambient molecules before an equilibrium, diffusion-type expansion can be considered. At very high altitudes and for small amounts of contaminant, this last criterion is the most appropriate.

These conditions are summarized by the following expressions for N atoms released at temperature  $T_R$ , ambient number density  $\rho_a$ , temperature  $T_a$  and mean-free-path L.

$$\frac{\frac{N}{4\pi}}{\frac{3}{3}r_e^3} < \rho_a \tag{1.4}$$

$$\frac{\frac{N}{4\pi}}{\frac{1}{3}} \frac{r_{R}^{3}}{r_{e}} T_{R}^{2} < \rho_{a} T_{a}$$
(1.5)

$$r_{a} > K L$$
 (1.6)

where  $r_e$  is a minimum equilibrium radius and K is a factor equal to perhaps 5.

After the initial expansion has occurred and the released gas is in equilibrium with the ambient, further expansion occurs by diffusion processes. If there is no turbulence (References 11, 15) or if the scale of turbulence is large compared to the cloud dimensions, the standard equation

$$D\nabla^2 \rho = \frac{\partial \rho}{\partial t}$$
(1.7)

holds where D is the coefficient for molecular diffusion, t the time, and  $\rho$  the density of contaminant atoms as a function of position and time. For spherical symmetry a solution of this equation is

$$\rho(\mathbf{r}, t) = \frac{N}{(4\pi Dt)^{3/2}} \exp\left(-\frac{r^2}{4Dt}\right) atoms/unit volume \quad (1.8)$$

where N is the total number of atoms released and r is the radius from the cloud center. This equation results if the atoms are all at the center at zero time  $t_0$ , and negligible initial or forced expansion occurs.

If the initial expansion is forced or if the release does not occur at a point, other boundary conditions must be imposed. However, it is found that all such solutions quickly approach Equation 1.8, if an appropriate value is used for  $t_0$ . For the release pressures and temperatures in the experiments

to be described, Equation 1.8 is applicable over most of the period of observation for non-turbulent regions. For these experiments,  $z_0$  coincides with the release time, to within experimental error, for heights below 140 km, and negligible error is involved in considering it coincident to the maximum heights reported.

The photographic image density of the cloud is a function of its surface brightness. Releases were timed to occur during twilight when the cloud is illuminated by solar radiation, but the sky background is low. From known absorption cross sections for the contaminant atoms released and from the solar spectrum, the scattering efficiency of an atom bathed in sunlight can be determined. For those parts of the cloud which are optically thin, the apparent surface brightness is proportional to the number of atoms in a column of unit area along the direction in which it is viewed. That is, the surface brightness is given by

$$B = \frac{q}{4\pi} \int_{0}^{\infty} \rho(r, t) \, ds \, photons/cm^2 \cdot sec \cdot steradian \qquad (1.9)$$

where q is the number of photons scattered per atom per second uniformly into  $4\pi$  steradians,  $\rho(\mathbf{r}, t)$  the density of scattering atoms, and ds is a differential of path length along the line of sight. The quantity  $\int_{0}^{\infty} \rho(\mathbf{r}, t)$  ds is defined as  $\tau_{i}$ . For a spherical cloud with a Gaussian distribution of contaminant as defined in Equation 1.8, the quantity  $\eta$ , after integrating along a line of sight, is given by

$$\eta = \frac{N}{\sqrt{4\pi} Dt} exp \left(\frac{a^2}{4Dt}\right)$$
(1.10)

where a is the perpendicular distance from the cloud center to the line of sight in question.

If the contaminant is released continuously from a moving rocket, the resulting cloud has a cylindrical cross section. The diffusion equation and subsequent integration along a line of sight yields

$$\eta = \frac{M}{\sqrt{4\pi Dt}} \exp -\left(\frac{a^2}{4Dt}\right)$$
(1.11)

for cylindrical case. Parameters have the same meaning as before except the M is the number of atoms released per unit length along the rocket trajectory. In all cases considered, the line of sight could be regarded as perpendicular to the axis of the cylinder, as only those portions of the cloud were chosen for analysis which satisfied this condition. Otherwise  $\eta$  as given in Equation 1.11 would not be unique.

After the rapid initial expansion of the sodium to pressure equilibrium, the trail expands according to the relation (Reference 13, Equation 12)

$$r_{o}^{2} = 4Dt \left[ 1 + ln \left( \frac{r_{o}^{2} max}{2r_{e}^{2}} \right) - ln \left( \frac{2Dt}{r_{e}^{2}} \right) \right]$$
 (1.12)

for molecular diffusion, where  $r_0$  is the observed radius of the trail, which is defined as that radius at which the cloud contains the minimum number of particles per column of unit area which can be detected against its ambient background.

 $r_e$  is the radius when pressure equilbrium is reached. When turbulence is present expansion is more rapid and different expressions are used for  $r_o$  (Reference 13, Equations 10 and 11).

If  $r_0^2$  is plotted as a function of t a straight line is obtained at times when the last term of Equation 1.12 is small. However, at later times the plot of  $r_0^2$  deviates from a straight line, and a maximum  $(r_{0 max}^2)$  is reached. The diffusion coefficient D can be calculated from Equation 1.12 when  $r_{0 max}$  and  $r_{e}$  are known and  $r_{0}$  has been determined as a function of time. An alternative method, which is probably more satisfactory to use with densitometry, is based on the following considerations. As defined,  $\eta$  is proportional to the surface brightness. Hence a line of constant  $\eta$  will be along isophotes on the cloud photograph. From Equation 1.11 at a given time t

$$\ln \eta_1/\eta_2 = \frac{r_2^2 - r_1^2}{4Dt} \qquad (1.13)$$

where  $r_1$  and  $r_2$  are the radial distances from the isophotes in question to the axis of the cloud. Since the values of  $\eta$  enter as a ratio, absolute units are not required. The ratio can be measured with a densitometer; then, knowing the values  $r_1$  and  $r_2$  measured from the plates, and the time after release at which the photograph was taken, D can be computed.

In the cases where the quantity  $\eta$  is of the order of, or larger than, the reciprocal of the atomic scattering cross section  $\sigma$ , the surface brightness is no longer proportional to  $\eta$ . For such regions of the cloud, the surface brightness is proportional to the solar flux times the absorption line widths. For regions in which  $\eta$  represents several optical thickness (one optical thickness =  $1/\sigma$ ), the brightness becomes essentially independent of  $\eta$ .

Since the clouds of released material are usually optically dense near their centers, valid measurements of  $\eta$  can be made only in the region of the cloud edges. In practice a densitometer is utilized to determine photographic density of the image along a cut through the cloud center. If the

film characteristics are known, it is then possible to determine  $\eta$  at the cloud edges for all  $\eta < 1/\sigma$ . Since the background light level is constantly changing throughout the twilight period, conventional film calibration is very difficult. A method exists, however, by which the photographic density of the optically dense cloud center and the photographic density outside the cloud can be employed to calibrate each negative. Briefly, the difference between these two densities represents a constant and known increment of surface brightness. Between these two limits of density, for such increments of light level, it is known photographic theory that the density varies as log of the light intensity within the increment.

The trail material employed in the measurements was sodium, although lithium and potassium have also been employed. These materials scatter sunlight radiation incident upon the trail by a resonance process. The resulting scattered light is nearly monochromatic and is characteristic of the scattering atom (neutral sodium in this case). To maximize photographic contrast, the vapor was released from the carrier rocket during twilight periods at times when the trail was sunlit, but the background was a minimum. The number of photons n emitted per solar illuminated atom by resonance radiation is given by

$$n = \frac{g_1}{\tau g_2} P \exp(-E/kT)$$
 (1.14)

Where:  $\tau$  = radiative lifetime

- $g_1, g_2$  = Statistical weights of upper and lower states
  - E = energy of incident photon
  - k = Boltzmann constant
  - T = temperature of the sun
  - $P = dilution factor (= 5.4 \times 10^{-6})$

Thus, if the sun's temperature is assumed to be  $6000^{\circ}$ K and a Fraunhofer intensity of about 5 x  $10^{-2}$  is used (Reference 16), then the sodium resonance line from solar rays would give  $n = 0.85 \text{ sec}^{-1}$  (Reference 17).

A typical sodium payload is of the order of 2 kg which is equivalent to  $5 \times 10^{25}$  atoms. Typical trail dimensions are 50-km length and 1-km diameter ( $4 \times 10^{16}$  cm<sup>3</sup>). It thus follows that an average trail density is  $1.2 \times 10^9$  atoms cm<sup>-3</sup>. For such densities practically all photons will undergo at least one resonance transition within a path length of about three meters (Reference 18). The trail has maximum brightness when viewed from the same direction as the incident solar photons and minimum brightness from the opposite direction. The maximum from any direction can be no more than one-half of the total emission or about  $5 \times 10^{11}$  photons/cm<sup>2</sup> sec (Reference 17). Photometric measurements have shown that the intensity of the emission decreased slowly as attenuation of the incident solar energy by the earth's atmosphere increased. The intensity fell suddenly to about the night-time value as the earth's shadow reached the region.

To further increase contrast for optimum photographic registration of the characteristics of the emitted trail, filters and film types were used to augment as far as possible the ratio of light scattered by the cloud to background light. Interference filters could not be used effectively owing to the wide angles over which the cloud extended.

Film development techniques were also carefully scrutinized to provide maximum contrast for future data reduction. The film of all four sites was processed at essentially the same time and under the same conditions to assure minimum deviations. Film calibration and processing for subsequent densitometry was also considered. The changing background intensity during twilight was taken into account; lens apertures and exposure times were adjusted accordingly.









Figure 1.3 Observed wind vector magnitude as a function of height.



Figure 1.4 Observed wind vector direction as a function of height.

# CHAPTER 2

#### PROCEDURE

#### 2.1 SHOT PARTICIPATION

Sodium trails were produced during twilights either preceding or following each of the events listed in Table 2.1. A total of eight successful trails were produced. These occurred during the evening twilight before and the morning twilight following Star Fish Prime, the evening before Blue Gill Prime, the morning following Blue Gill Triple Prime, the morning 4-1/2 hours after King Fish, the morning 28-1/2 hours after King Fish, the evening 41 hours after King Fish, and the evening before Tight Rope. In order that the sodium trail may be photographed, it must be sunlit and the sky background low. Thus, the sodium trail rockets must be fired within a 10-minute window during each twilight, and cloud cover is a major problem. Since the aim of the project was to measure winds and other atmospheric properties immediately before and after nuclear detonations, the sodium rocket firings were cancelled only if cloud coverage approached 100% throughout the window.

As a result of this procedure, clouds are conspicuous on many photographs. However, the desired data was obtained from all sodium trails.

The camera operation and cloud cover relative to the sodium experiments are summarized in Table 2.2. The percentage cloud cover over Johnston Island and the Ships S-1, S-2, and S-4 is given in each case as is the number of cameras that were available at each site. Despite a generally high percentage of cloud cover, most sites obtained some data.

The sodium trail Nike-Cajun rockets were launched from 21 (see Figure 2.1) at an effective elevation of  $85^{\circ}$ Pad and azimuth of 155° T. Since only one launcher was available for Project 9.1b, it was necessary to reload for the dawn twilight shot. In the figure the payload is covered by plastic with aluminum sheet inside to protect it from water and heat from sunlight, respectively. Banks of three K-24 cameras were located on Johnston Island, Ships S-1, S-2, and S-4. The Star Fish ship locations were approximately: S-1, 575 km magnetic south of Johnston; S-2, 240 km magnetic north; and S-4, 280 km west. The distances of the ships (particularly S-1) from Johnston were considerably greater than desired by this project and resulted in degradation of data. The roll of the ships resulted in blurring of the photographs. This problem could be minimized by appropriate orientation of the ships. This was requested but not, in general, done.

Using the line-of-sight equation,

$$R = (h^2 + 2\alpha h)^{1/2}$$
 (2.1)

With the radius of the earth  $\alpha \approx 6 \times 10^3$  km, the trail should be within line of sight from S-l above about 40 km. However, in practice it is not as simple as this and due to refraction, strong scattering of light near the horizon, and frequent clouds, the minimum effective height is usually considerably greater than this altitude.

During Blue Gill Prime, Ships S-1, S-2, and S-4 were all within 70 km of Johnston, and this distance was satisfactory. However, the revised bearings from the island resulted in the three ships being relatively close together, and this was not satisfactory for two reasons. One was that the locations were poor for triangulation purposes, and the other was that, being so close together, if clouds obscured the view of one ship, they were almost certain to obscure the view from all three ships.

Table 2.3 contains the minimum-maximum elevation angles (for trail altitudes of 60 and 150 km, respectively) from each of the photographic sites computed from the law of cosines:

$$\theta = \sin^{-1} \left( \frac{h^2 + 2\alpha h - R^2}{2\alpha R} \right)$$
 (2.2)

or more simply by

$$\theta = \tan^{-1} \frac{h}{R^1}$$
 (2.3)

where R =slant range, and  $R^1 =$ ground range in the convenient flat earth approximation in Equation 2.3. The values in the table are typical, but not exact, since it was not worthwhile to recalculate the table every time the ship locations were changed. The quite low elevation angles subtended by the cameras on the ships for Star Fish is apparent.

#### 2.2 INSTRUMENTATION

2.2.1 Rocket and Payload. The sodium was carried in the payload section of a Nike-Cajun rocket. The total payload, attached to the front of the Cajun rocket, consisted of three parts. The first was cylindrical and contained the chemicals; the second was also cylindrical and contained the batteries, electrical and other control equipment. The third was the conical nose cone, which subtended a total angle of  $20^{\circ}$  at its tip. The chemical makeup of the payload was sodium and thermite in proper ratio as described in detail in Reference 19. The control instrumentation included two parallel timing circuits, batteries, and igniters for firing the chemical canister. Each firing circuit was complete, and the duplication was to ensure that, in the event of malfunction of one circuit, firing would still be accomplished. In the circuit shown in

Figure 2.2 a mechanical timer, set at approximately 40 seconds, was initiated by an acceleration switch which was activated at launch. In Figure 2.3 an electronic timer was initiated by a lanyard switch which was released at rocket takeoff. The electronic timer was also set at 40 seconds. By means of an umbilical cable, which was manually pulled away before launch, the payload was monitored at the blockhouse during its final preparation. The safety circuit provided for opening the circuit between the batteries and igniters in the event the payload malfunctioned.

Figure 2.4 shows the typical trajectory of a Nike-Cajun rocket with a 70-pound payload at 80-and 85-degree launch angles. Trail generation starts at 40 to 50 seconds after launch, continues through apogee, and during a relatively short part of the downward section of the flight. Thus, trail generation takes place for about 160 seconds. Although all rockets were fired with nominal effective elevations of 85 degrees, fluctuations in low-altitude winds, for which exact compensation was not always possible, resulted in actual effective elevation of 85±2 degrees.

<u>2.2.2 Rocket Performance</u>. With regard to rocket performance, the following comments cover Project 9.1b through the whole of Fish Bowl. For cases where both Nike and Cajun ignited:

 All flights were successful for which the Nike was spun at 2 rps (ARC SVG<sup>\*</sup> or Aerolab fins) and the Cajun was spun at 8 rps at Cajun burnout (ARC SVG wedged Capache fins --7 flights) or 10 rps (White Sands fins with bevels and spoilers----1 flight).

2. Unsuccessful flights occurred when the Nike was spun at 2 rps (ARC SVG fin) and zero spin was put on the Cajun (ARC SVG fins, no wedges ——1 flight) or the Nike was spun at 8 rps (Aerolab fins) and about 3 rps was put on the Cajun (Aerolab fins with experimental wedges ——1 flight).

For more detailed information on rocket performance, Tables 2.4-2.10 should be consulted. These contain the radar trajectory data for each of the successful flights, except that of 26 October 1962, for which no trajectory data exist.

2.2.3 Photographic Equipment. All the cameras specified in Table 2.2 were of the K-24 type. The K-24 is a military aerial reconnaissance camera employing a fixed-\*Atlantic Research Corporation, Space Vehicles Group
focus, 7-inch, f/2.5 Aero Ektar lens, and a removable magazine. Other lenses are also available including the 20-inch, f/5.6 Aero Ektar. The K-24 accepts 5-1/2-inch film in either 26- or 56-foot lengths and has a 5-in  $2^{2}$  format. The shutter is a curtain type, and a night curtain was installed so that it could be operated on a time setting. The cameras were fitted within a combination adjustable mount and carrying box. Azimuth angles were set in by compass, and zenith angles by protractor level, or by use of the calibrated scale on each mount. The units could be operated electrically using an automatic timing unit. In the case of malfunction of the electrical equipment, the units could be hand operated. A bank of three cameras was located at each of the four principal photographic sites. Having three cameras at each site provided a backup in case one, or even two, failed.

In addition to the K-24 cameras at. the main site on Johnston Island, there was a polaroid camera. This provided the photographs used for the quick-look data reduction. There were also two stereo sites equipped with press cameras, one at the east and the other at the west end of Johnston Island. Exposures were made at 30-or 60-second intervals at both sites. The stereo photographs could be used

both to help determine the altitude of sections of the trail by triangulation and also to develop three-dimensional images or models of the trails.

Two methods were used to obtain as much contrast as possible between the sodium cloud and the background. The first has already been mentioned; namely, the cloud was released during twilight intervals when the background was as low as possible, subject, of course, to the condition that the cloud be sunlit at all heights of interest for a time interval sufficiently long to make good measurements. Secondly, as has already been touched upon, the background was reduced as much as possible by proper selection of film and filter for the material released in the cloud.

For sodium, the wavelengths of interest are 5,890 Å and 5,896 Å (D lines). Accordingly, panchromatic film of the Tri-X or Royal X variety was employed. It is sensitive to these wavelengths but relatively insensitive to radiation of a longer wavelength. A Wratten 23 A filter was employed on two of the cameras because it transmits 5,890 Å with negligible attenuation but absorbs radiation of shorter wavelengths. The passband of the resulting film and filter combination is some 300 Å wide. One camera was set a stop slower than the other. This procedure gives greater

assurance that the rapidly changing background light levels encountered during twilight and the fluctuations due to varying cloud cover will be adequately accounted for. The third camera was used without a filter to obtain star photographs for determining with greater accuracy the site positions.

The cameras had been serviced, with many parts rebuilt, and they had undergone extensive laboratory and field testing. When checked manually, they operated sluggishly but effectively; when operated automatically, using the control box, the camera motor did not operate positively enough to warrant operation in this manner. Camera operation on Johnston Island was satisfactory, but there were some problems on the ships.

A fiducial lamp assembly was added to the K-24 cameras by simply allowing two small collimated light sources to illuminate etched cross-hairs on the diagonal opposite corners of the format. Methods were devised to operate two of these units manually in a staggered sequence.

Figure 2.5 shows six K-24 cameras mounted in operating positions. The adjustable legs on this unit were removable and fitted inside the box. The cameras were mounted on a platform which became a variable zenith control. When

the cameras were recessed down into the box, the front top section hinged over and was securely clamped, resulting in a portable unit which was handy for shipment and field use.

When two photographic sites are separated by a distance, such that the angle subtended by them at the cloud is a few degrees, the photographs are sufficiently similar to be studied using stereo methods. In this project the trail was photographed with press cameras located at opposite ends of Johnston Island, a separation of about one mile, resulting in a subtended angle of about one degree. One advantage of stereo photographs is that they can be used to produce threedimensional representations of the trail. Other advantages in this case were that the two close sites had the same cloud conditions (that is, both were clear at the same time); there was no blurring of the photographs due to rolling (as on the ships); and finally, the film was readily available for development and quick-look data reduction.

### 2.3 DATA REQUIREMENTS

In this section, timing, weather, and communications requirements are enumerated. In the sections that follow, radar data and its interpretation (Section 2.4) and photographic data and its reduction (Sections 2.5 and 2.6) are discussed.

To enable quick-look wind data to be available within one to two hours after firing of the sodium trail rocket, the photographs obtained with the polaroid camera were anayzed in the following way: The position of the camera remained fixed during the photographs, and thus its bearing could be used to mark azimuth directions on the photograph. (Two photographs taken 6 to 8 minutes apart were chosen, and corresponding portions of the trail were identified.) The distance and direction that each identified point moved on the photograph was carefully measured. Then, using the focal length of the camera and the altitude of the identified point, its speed could be calculated. The altitude of the peak of the trail was obtained from quick-look radar data. Radar data could also be used to determine, less accurately, the altitude of other points on the trail. Some help in assignment of altitude could be obtained by using the fact that the upper limit of atmospheric turbulence occurs near 110 km.

Timing, weather, and communications requirements of the project were as follows: For dusk firings a countdown was broadcast over a worldwide countdown net. This was heard at Johnston Island and on the three ships on which cameras were located.

A ten-minute window was allowed for launching. This was essential, as cloud cover was often severe, and it was a question of looking for a gap in the clouds. It was necessary to estimate likely visibility from the ships, since the latest weather reports available were one to two hours old, and weather conditions could change appreciably in that time.

About five minutes before the estimated firing time, an accurate stopwatch was set by WWVH or (less accurately) by the worldwide countdown. The cameras were then set at the appropriate azimuths and elevations, and photographs were taken at twenty-second intervals starting after the trail was visually observed. Thus, photographs were obtained simultaneously from all stations, except when a trail was not visible from any given station.

For the firings at dawn, after the nuclear event, radio silence was broken to provide a countdown on the worldwide net to the ships on one frequency only. The rest of the procedure was the same as for the dusk firings.

#### 2.4 RADAR TRAJECTORY DATA

For accurate determination of the initial location of the sodium trail, radar altitude and azimuthdata is extremely valuable. When sodium cloud data from only one site is

available, the radar tracking information must be used to find the heights and horizontal distances to those points in the cloud whose velocities are to be determined, as the usual triangulation method cannot be applied. In Section 2.5 the methods used to apply the radar data to the analysis of the sodium trail films is outlined.

The Range Tracker skin-tracked the Cajun rockets and summarized tracking data on seven of them is included in Tables 2.4-2.10. In the absence of a beacon, radar acquisition was achieved by using an optical viewfinder during the rocket burn phase.

It should be noted that the time given in each table is radar time, which is in general arbitrary and non-zero at launch time. Thus, a zero correction has to be determined for each flight and used to correct each radar time to obtain the flight time. The horizontal range (slant range for 25 July) and azimuth are from the particular radar in use. All data in the tables is from the FPS 16 or the MPS 26. The altitude is measured relative to a plane tangent to the earth at the site of the radar. These values have been corrected for the curvature of the earth to give actual height above the earth before being entered in the tables. Where data is not shown in the tables, there was no radar

track of the rocket. A track at least through the trajectory peak was desired. This was achieved on four rockets (Tables 2.4, 2.6, 2.9, and 2.10) but not on the other three (Tables 2.5, 2.7, and 2.8), although the data obtained on the flight of these three rockets was of considerable value. Edrick, using the Univac in the PMR computer van near the motor pool, reduced the radar data for Rockets 1 and 2. Ysnago reduced the last five trajectories presented in the tables.

Note that the times given in the table captions are local times. In Table 2.8, the radar tracked the Nike-Cajun combination to a radar time of 40 seconds and then tracked the Nike until 75 seconds, at which time it switched back to the Cajun which it tracked from that time onward.

On the rocket flight for which data is given in Table 2.9, for some unknown reason the radar time did not start until the Cajun reached an altitude of approximately 286,900 feet. Thus, data reduction at one-second intervals, starting at the time the rocket was first tracked, ended up with fractional times when it passed radar time zero. The data was recomputed, starting at radar time zero and at even seconds after that time. Thus, two partially overlapping sets of data were provided. These have been combined in Table 2.9.

### 2.5 REDUCTION OF WIND DATA

2.5.1 Star Fish Prime, Blue Gill Prime. Throughout this report the wind data will be designated by the GMT date of the rocket firing, and morning and evening twilights will be distinguished by use of AM and PM after the GMT date. Rocket launching times and tracking data will be left in Honolulu standard time.

Clouds, stack smoke, ship roll, and equipment difficulties combined to render the ship data useless for triangulation purposes. While there was some good data from both S-2 and S-4, there were too few quality simultaneous photographs to warrant use of triangulation methods (see Table 2.2). The results from the ships were very sparse compared to those obtained on Johnston Island. Thus, only the Johnston Island results could be used in the determination of the upper atmospheric wind vectors for Star Fish Prime and Blue Gill Prime.

Since the regular triangulation method could not be used, the following approximations had to be made:

1. It was necessary to make an educated guess as to the height for the different parts of the cloud. This is possible to do within  $\pm 5$  km, from previous experience,

2. Since the radar tracking only gave a time-height variation (Tables 2.4 and 2.5) for Star Fish Prime, the range had to be estimated from knowledge of previous Nike-Cajun shots (Figure 2.4) and the azimuth determined from the cloud photographs which also showed the rocket.

3. The plate constants had to be estimated graphically.

The first thing needed was a scale drawing of the launch site (Johnston Island) and the rocket trajectory. The only way to do this with the information available was to assume the photograph to be the same projection from all parts of the plate. This is of course not true, since the projection is correct only at the optical center and is distorted toward the edges. To find the place on the photograph which represents the zenith of Johnston Island, stars were used. Because of the inaccuracy of this method, it was not necessary to obtain a more accurate position of the plate center. A celestial globe of 8-inch radius was set for the correct sidereal time for the plate on which the star field was identified and the latitude of Johnston Island. The 7-inch focal length plates were placed on the globe with the star field fitting as well as possible. The zenith point over Johnston Island was then marked, accounting for

the slight difference in scale, and the north-south line drawn. Now, on a piece of paper, the fiducial marks of the plate, the zenith mark of Johnston Island, and north-south line could be drawn. Then, each plate on which the rocket appeared could be placed under the paper with the fiducial marks coinciding and the very end of the rocket marked. The time and length of exposure was known for each picture. A straight line could now be passed through all the rocket points and extended back to the point representing Johnston Island. The azimuth of the ground range could now be measured. Since only the height vs. time was known, the range was determined by picking a previous rocket flight which was similar in time vs height and from which the range was known. The distance of Johnston Island to the point under the maximum height of the rocket could now be laid out to scale in kilometers and the intermediate heights marked off.

It was now necessary to know the position of the height throughout the cloud. Normally, this is done with two or more pictures using some triangulation method (Reference 7). However, here an educated guess had to be made, since only one picture was available. Up to July 1962 about seventeen other shots had been reduced using normal triangulation

methods. From the type of configuration the cloud makes it was possible to estimate to within ±5 km where key heights are located within the cloud. These estimates were then marked off on a series of clouds, say every minute for five or six minutes. The outline of the cloud for each minute was drawn on the graphical plot with fiducial marks matching. The expansion of the cloud was easily noted, and knowing the scale, the distance between marked points could be measured and converted into meters/second, since each picture was taken exactly 20 seconds apart. The average of each interval was obtained for better accuracy. The direction of the transport vector could be determined by drawing the best straight line through the above-described points and extending it to meet the rocket trajectory. This should then give a second approximation to the assigned height, since the line should meet the trajectory close to where the ground projection of the rocket was at that height. The north-south line was known, so the azimuth of this line could be measured with a protractor.

2.5.2 Blue Gill Triple Prime, King Fish, Tight Rope. During this series of shots, it was possible to find one set of pictures from a ship which was good enough to use with

Johnston Island in a triangulation method for all except 4 November 1962 (PM) when the amount of sodium emitted from the rocket was much smaller than normal, at the same time the sky was cloudy, and all the ships but S-2 were in the harbor at Johnston Island.

The triangulation method used was as follows: This method involves the solution of the following formulas, in order to obtain an accurate azimuth and zenith angle for the center of each plate.

H = sidereal time - 
$$\alpha$$

 $\cos z = \sin i \sin \delta + \cos \phi \cos \delta \cos H \qquad (2.4)$ 

$$\cos A = \frac{\sin \delta - \sin \phi \cos z}{\cos \phi \sin z}$$
(2.5)

Where H = hour angle

 $\alpha$  = right ascension of star

 $\delta$  = declination of star

A = azimuth of star

z = zenith angle of star

To obtain any angles around the optical center of the plate a protractor was used. To obtain the sides of the triangle from the center of the plate to any two stars near the optical center an inch rule read to the nearest 0.005 inch was used. The measured distance between the plate center and each star is then divided by the focal length of the camera objective. This ratio is the tangent of the angular distance of the star from the plate center.

Two stars were identified in order to form a spherical triangle with the optical center of the plate. Then, a second spherical triangle was formed with the same two stars and the point representing the observer's zenith. Finally, two more triangles were formed using a star, the plate center, and the observer's zenith. Using spherical trigonometry it was now possible to obtain the zenith angle and azimuth of the plate center.

The triangle formed by the two stars and the observer's zenith can obviously be solved uniquely. The second triangle including the same two stars and the plate center can be solved using the plate measurements. The angular distance between the stars thus obtained should, of course, be equal to the unique determination. This will not be so unless the plate center is known to a tenth of an inch.

50

It is possible to experiment with different focal lengths until a match is made. From these experiments it can be seen that the exact position of the optical center is not as important as the focal length.

In order to solve the above equations the positions of the ships and Johnston Island must be known. The position of Johnston Island used was: Lat =  $16^{\circ}$  43.618' N and Long =  $11^{h}$   $18^{m}$   $04^{s}$  W. For the ships the original positions given by the ships' navigators were used (see Table 2.11).

It was now possible to calculate the zenith angle and azimuth for each plate center. It was very difficult to find a time when the ships were not rolling during the exposure, but in each case it was possible to pick a plate where stars were identifiable as dots rather than streaks and the cloud was not blurred.

By examination of the appearance of the cloud from Johnston Island and the ship, places which appeared to be in common were picked as a first trial. By using the spherical triangle formed by the plate center, observer's zenith, and unknown point, the azimuth and zenith angle of this point may be calculated.

On graph paper the positions of Johnston Island and the ship were marked. . From the rocket trajectory information from radar<sup>a</sup> (see Tables 2.7-2.10) the rocket trajectory from Johnston Island could be drawn and the ground position versus height plotted to scale. Since the down trail was also clearly visible on the first three observations, the whole trajectory could be included. Knowing the azimuth and zenith angle of the unknown point, the ground position of the cloud could be found graphically where the two azimuth lines cross. Two determinations of the height were then possible by multiplying the ground distance from the ship to the azimuth cross by cot z ship and multiplying the Johnston Island to azimuth cross ground distance by cot z<sub>II</sub>. These two heights should be the same if the point chosen is indeed common. If the heights do not agree, two things are possible: (1) The points are not common and (2) the position of the ship is not accurate. Through a method of trial and error, and by using the down as well as up trail it was possible to locate the ships in their actual positions very accurately (see Table 2.11).

<sup>&</sup>lt;sup>a</sup>Since there was no radar trajectory information for 26 October 1962 (PM), the approximate trajectory method outlined in Section 2.5.1 was used.

Because of the complications already mentioned, the above triangulation method could not be used for 4 November 1962 (PM) and the one-station method used for the July data had to be utilized.

### 2.6 REDUCTION OF THE DIFFUSION COEFFICIENT DATA

Many of the photographs obtained, although of some value for wind determination, were too obscured by clouds for good densitometry. However, diffusion data has been obtained from the sodium trails at dusk on 25 July (26 July GMT) and dawn on 2 November. The measurements were made by R. Almasian of Air Force Cambridge Research Laboratories (AFCRL), Bedford, Massachusetts, using techniques developed by E. Manring and H. Knaflich (Reference 14). A double beam microdensitometer was used to scan the density across the photographs of the trail. Traces were made in a direction perpendicular both to the axis of the trail and to the line of sight at a number of altitudes. This was repeated with photographs obtained at different times after formation of the trail. Figure 2.6 shows a typical trace of cloud density with respect to r, the radial distance from the cloud axis to various points in the cloud. To obtain the dimensions of the actual cloud from the densitometer trace the following equation was used

$$\mathbf{r} = \frac{\mathbf{S} \mathbf{f}_{\mathbf{s}} \mathbf{d}_{\mathbf{c}}}{\mathbf{f} \mathbf{f}_{\mathbf{m}}}$$
(2.6)

where r is the distance in the cloud,  $d_c$  is the distance measured on the chart, S is the slant range, f is the focal length of the camera,  $f_m$  is the magnification factor of the densitometer, and  $f_s$  is the foreshortening factor.

$$f_{s} = [1 + (d_{p}/f)^{2}]^{-1}$$
 (2.7)

where  $d_p$  is the distance from the center of the plate to the image of the cloud.

The density was normalized to lie between zero and one and was plotted as a function of distance from the axis of the trail at a series of times after release of the sodium from the rocket. This was replotted in the form of radial distance squared  $(r^2)$  as a function of time for different isophotes (usually between 0.2 and 0.8). Figure 3.44 is a typical plot of this kind. Values of r and  $\eta$  so obtained were substituted in Equation 1.13 to obtain the diffusion coefficient.

## TABLE 2.1 EVENT DESCRIPTION

| Event                  | Time (Zulu) | Yield   | Altitude |
|------------------------|-------------|---------|----------|
|                        | 1962        | kt      | km       |
| Star Fish Prime        | 090900 Jul  | 1,400   | 400      |
| Blue Gill Prime        | 26 Jul      | aborted |          |
| Check Mate             | 200830 Oct  |         |          |
| Blue Gill Triple Prime | 261000 Oct  |         |          |
| King Fish              | 011210 Nov  |         |          |
| Tight Rope             | 040730 Nov  |         |          |

•

TABLE 2.2 CAMERA OPERATION AND CLOUD COVER

| Date (Zulu)                               | Twil | Johnston Island                                   | Ship S-1               | Ship S-2               | Ship S-4               |
|-------------------------------------------|------|---------------------------------------------------|------------------------|------------------------|------------------------|
| 9 July<br>(Star Fish - 2-2/3 hr)          | PM   | 25% cloud cover                                   | Overcast               | 50% cover              | Overcast               |
| 9 July<br>(Star Fish + 7 hr)              | AM   | 25% cloud cover                                   | Overcast               | Overcast               | 50% cover              |
| 26 July                                   | PM   | Scattered to<br>heavy cumulus<br>no higher clouds | 75% cover              | Overcast               | Overcast               |
| 20 October<br>(Blue Gill + 6-2/3 hr)      | AM   | 25% cloud cover<br>3 cameras opera-<br>ting       | 50% cover<br>2 cameras | 75% cover<br>3 cameras | 70% cover<br>2 cameras |
| l November<br>(King Fish + 4-1/2 hr)      | AM   | 25% cover<br>3 cameras                            | 50% cover<br>2 cameras | 25% cover<br>2 cameras | 50% cover<br>2 cameras |
| 2 November<br>(King Fish + 28-1/2 hr)     | AM   | Clear<br>2 cameras                                | Clear<br>2 cameras     | 50% cover<br>2 cameras | 50% cover<br>2 cameras |
| 3 Novemb <b>er</b><br>(King Fish + 41 hr) | PM   | 50% cover<br>3 cameras                            | 50% cover<br>2 cameras | 70% cover<br>3 cameras | Local rain             |
| 4 November<br>(Tight Rope - 2-1,3 hr)     | PM   | 25% cover<br>3 cameras                            | 50% cover<br>2 cameras | 50% cover<br>2 cameras | 70% cover<br>3 cameras |

|                 | Star              | Fish              | Blue              | Gill*             |
|-----------------|-------------------|-------------------|-------------------|-------------------|
| Site            | <u>0 min</u>      | 0 max             | <u>0 min</u>      | 0 max             |
| Johnston Island | 50.2 <sup>0</sup> | 71.6 <sup>0</sup> | 50.2 <sup>0</sup> | 71.6 <sup>0</sup> |
| S-1             | 6.1               | 15.0              | 82.4              | 86.9              |
| S-2             | 11.7              | 27.3              | 82.4              | 86.9              |
| S-4             | 11.9              | 27.7              | 71.6              | 82.4              |

TABLE 2.3 MINIMUM AND MAXIMUM CAMERA ELEVATION ANGLES

\* Calculated for the planned positions of the ships.

| Radar<br>Time <sup>b</sup> | Altitude | Radar<br>Time | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 60                         | 155,041  | 90            | 265,431  |
| 61                         | 159,291  | 91            | 268,606  |
| 62                         | 163,430  | 92            | 271,759  |
| 63                         | 167,469  | 93            | 274,910  |
| 64                         | 171,473  | 94            | 277, 980 |
| 65                         | 175,493  | 95            | 281,035  |
| 66                         | 179,476  | 96            | 284,096  |
| 67                         | 183,403  | 97            | 287,107  |
| 68                         | 187,319  | 98            | 290,067  |
| 69                         | 191,200  | 99            | 292,994  |
| 70                         | 195,044  | 100           | 295,894  |
| 71                         | 198,869  | 101           | 298,730  |
| 72                         | 202,641  | 102           | 301,549  |
| 73                         | 206,418  | 103           | 304,424  |
| 74                         | 210, 153 | 104           | 307,223  |
| 75                         | 213,838  | 105           | 309,990  |
| 76                         | 217,491  | 106           | 312,699  |
| 77                         | 221,126  | 107           | 315,343  |
| 78                         | 224,728  | 108           | 317,978  |
| 79                         | 228,299  | 109           | 320,609  |
| 80                         | 231,824  | 110           | 323,215  |
| 81                         | 235, 328 | 111           | 325,802  |
| 82                         | 238,814  | 112           | 328,456  |
| 83                         | 242,220  | 113           | 330,917  |
| 84                         | 245,634  | 114           | 333,331  |
| 85                         | 249,021  | 115           | 335,712  |
| 86                         | 252, 347 | 116           | 338,197  |
| 87                         | 255,682  | 117           | 340, 595 |
| 88                         | 258,940  | 118           | 342,812  |
| 89                         | 262,193  | 119           | 345,179  |

TABLE 2.4RADAR TRAJECTORY DATA, ROCKET 1, 8 JULY, 2024<br/>HONOLULU STANDARD TIME (9 JULY, 06242)<sup>a</sup>

| Radar<br>Time <sup>b</sup> | Altitude | Radar<br>Time | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 120                        | 347,394  | 150           | 401,393  |
| 121                        | 349,710  | 151           | 402,983  |
| 122                        | 352,031  | 152           | 404,476  |
| 123                        | 354,084  | 153           | 405,827  |
| 124                        | 356,287  | 154           | 406,853  |
| 125                        | 358,460  | 155           | 407,756  |
| 126                        | 360,650  | 156           | 408,791  |
| 127                        | 362,686  | 157           | 410,231  |
| 128                        | 364,645  | 158           | 411,544  |
| 129                        | 366,672  | 159           | 412,563  |
| 130                        | 368,643  | 160           | 413,389  |
| 131                        | 370,568  | 161           | 414,296  |
| 132                        | 372,451  | 162           | 415,396  |
| 133                        | 374,427  | 163           | 416,457  |
| 134                        | 376,278  | 164           | 417,571  |
| 135                        | 378,055  | 165           | 419,003  |
| 136                        | 379,895  | 166           | 420,053  |
| 137                        | 381,807  | 167           | 420,162  |
| 138                        | 383,501  | 168           | 420,630  |
| 139                        | 385,127  | 169           | 421,584  |
| 140                        | 386,621  | 170           | 422,354  |
| 141                        | 388,201  | 171           | 423,042  |
| 142                        | 389,935  | 172           | 423,752  |
| 143                        | 391,625  | 173           | 424,414  |
| 144                        | 393,117  | 174           | 425,029  |
| 145                        | 394,638  | 175           | 425,690  |
| 146                        | 396,063  | 176           | 426,412  |
| 147                        | 397.252  | 177           | 426,924  |
| 148                        | 398,402  | 178           | 427,073  |
| 149                        | 399,823  | 179           | 427,292  |

## TABLE 2.4 CONTINUED

| Radar<br>Time <sup>b</sup> | Altitude | Radar<br>Time | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 180                        | 427,803  | 195           | 431,763  |
| 181                        | 428,451  | 196           | 431,348  |
| 182                        | 429,392  | 197           | 430,901  |
| 183                        | 430,044  | 198           | 430,449  |
| 104                        | 430,251  | 199           | 429,812  |
| 185                        | 430,557  | 200           | 429,103  |
| 186                        | 430,821  | 201           | 428,566  |
| 187                        | 431,177  | 202           | 428,247  |
| 188                        | 431,572  | 203           | 427,913  |
| 189                        | 431,872  | 204           | 427,385  |
| 190                        | 432,142  | 205           | 427,004  |
| 191                        | 432,473  | 206           | 426,634  |
| 192                        | 432,648  | 207           | 426,447  |
| 193                        | 432,461  |               |          |
| 194                        | 432,096  |               |          |

### TABLE 2.4 CONTINUED

<sup>a</sup>Complete radar data is filed at Air Force Cambridge Research Laboratories, Bedford, Mass.

<sup>b</sup>Radar time is 16 seconds fast.

| Radar<br>Time <sup>a</sup> | Altitude | Radar<br>Time | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 60                         | 217,168  | 90            | 311,172  |
| 61                         | 220,759  | 91            | 313,798  |
| 62                         | 224,318  | 92            | 316,408  |
| 63                         | 227,853  | 93            | 319,091  |
| 64                         | 231,347  | 94            | 321,586  |
| 65                         | 234,797  | 95            | 324,036  |
| 60                         | 238,221  | 96            | 326,563  |
| 67                         | 241,636  | 97            | 329,118  |
| 68                         | 245,021  | 98            | 331,519  |
| 69                         | 248,353  | 99            | 333,899  |
| 70                         | 251,640  | 100           | 336,291  |
| 71                         | 254,911  | 101           | 338,570  |
| 72                         | 258,166  | 102           | 340,911  |
| 73                         | 261,362  | 103           | 343,145  |
| 74                         | 264,554  | 104           | 345,373  |
| 75                         | 267,677  | 105           | 347,631  |
| 76                         | 270,806  | 106           | 349,833  |
| 77                         | 273,910  | 107           | 351,963  |
| 78                         | 276,939  | 108           | 354,066  |
| 79                         | 279,981  | 109           | 356,136  |
| 80                         | 282,991  | 110           | 358,223  |
| 81                         | 285,895  | 111           | 360,241  |
| 82                         | 288,851  | 112           | 362,227  |
| 83                         | 291,770  | 113           | 364,176  |
| 84                         | 294,646  | 114           | 366,147  |
| 85                         | 297,495  | 115           | 368,033  |
| 86                         | 300,251  | 116           | 369,891  |
| 87                         | 303,061  | 117           | 371,760  |
| 88                         | 305,770  | 118           | 373,612  |
| 89                         | 308,391  | 119           | 375,369  |

.

TABLE 2.5RADAR TRAJECTORY DATA, ROCKET 2, 9 JULY, 0609:30HONOLULU STANDARD TIME (9 JULY 1609:30Z)

| TABLE 2.5 | CONTINUED |
|-----------|-----------|
|-----------|-----------|

| Radar<br>Time <sup>®</sup> | Altitude | Radar<br>Time | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 120                        | 377,103  | 150           | 415,046  |
| 121                        | 378,667  | 151           | 415,835  |
| 122                        | 380,355  | 152           | 416,601  |
| 123                        | 382,127  | 153           | 417,301  |
| 124                        | 383,788  | 154           | 417,976  |
| 125                        | 385,327  | 155           | 418,607  |
| 126                        | 386,881  | 156           | 419,361  |
| 127                        | 388,426  | 157           | 419,974  |
| 128                        | 390,043  | 158           | 420,563  |
| 129                        | 391,573  | 159           | 421,130  |
| 130                        | 392,904  | 160           | 421,562  |
| 131                        | 394,173  | 161           | 421,871  |
| 132                        | 395,519  | 162           | 422,477  |
| 133                        | 396,860  | 163           | 423,053  |
| 134                        | 398,123  | 164           | 423,502  |
| 135                        | 399,359  | 165           | 424,012  |
| 136                        | 400,687  | 166           | 424,346  |
| 137                        | 401,926  | 167           | 424,487  |
| 138                        | 403,296  | 168           | 424,792  |
| 139                        | 404,427  | 169           | 425,186  |
| 140                        | 405,508  | 170           | 425,438  |
| 141 '                      | 406,759  | 171           | 425,805  |
| 142                        | 407,650  | 172           | 426,433  |
| 143                        | 408,613  | 173 😽         | 427,062  |
| 144                        | 409,617  | 174           | 427,366  |
| 145                        | 410,551  | 175           | 427,536  |
| 146                        | 411,519  | 176           | 427,781  |
| 147                        | 412,491  | 177           | 428,164  |
| 148                        | 413,413  | 178           | 428,480  |
| 149                        | 414,261  | 179           | 428,563  |
|                            |          |               |          |

| Radar<br>Time <sup>a</sup> | Altitude | Radar<br>Tíme | Altitude |
|----------------------------|----------|---------------|----------|
| seconds                    | feet     | seconds       | feet     |
| 180                        | 428,750  | 190           | 420,424  |
| 181                        | 429,214  | 191           | 422,941  |
| 182                        | 429,359  | 192           | 425,535  |
| 183                        | 429,359  | 193           | 428,051  |
| 184                        | 429,359  | 194           | 430,449  |
| 185                        | 429.359  |               |          |
| 186                        | 430,258  |               |          |
| 187                        | 422,343  |               |          |
| 188                        | 415,511  |               |          |
| 189                        | 418,005  |               |          |

TABLE 2.5 CONTINUED

<sup>a</sup>Radar time correct  $\pm 2$  seconds.

<sup>b</sup>Probable peak time, radar ceased to track after 182 seconds.

| Radar<br>Time <sup>a</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 25                         | 82,461         | 161.0595 | 81.5576   |
| 26                         | 87,348         | 160.9194 | 81.5837   |
| 27                         | 92,175         | 160.8240 | 81.5992   |
| 28                         | 96,957         | 160.7052 | 81.6205   |
| 29                         | 101,715        | 160.5765 | 81.6291   |
| 30                         | 106,440        | 160.4721 | 81.6390   |
| 31                         | 111,111        | 160.3482 | 81.6356   |
| 32                         | 115,734        | 160.3207 | 81.6407   |
| 33                         | 120,339        | 160.2795 | 81.6407   |
| 34                         | 124,911        | 160.2795 | 81.6486   |
| 35                         | 129,450        | 160.2270 | 81.6418   |
| 36                         | 133,932        | 160.1247 | 81.6284   |
| 37                         | 138,402        | 160.0780 | 81.6352   |
| 38                         | 142,836        | 159.9949 | 81.6315   |
| 39                         | 147,231        | 159.9945 | 81.6133   |
| 40                         | 151,590        | 159.9193 | 81.5985   |
| 41                         | 155,928        | 159.9139 | 81.5752   |
| 42                         | 160,248        | 159.8926 | 81.5700   |
| 43                         | 164,508        | 159.8538 | 81.5700   |
| 44                         | 168,732        | 159.8551 | 81.5422   |
| 45                         | 172,185        | 159.8236 | 81.5422   |
| 46                         | 177,123        | 159.7649 | 81.5158   |
| 47                         | 181,041        | 159.7525 | 81.5072   |
| 48                         | 185,166        | 159.7484 | 81.4855   |
| 49                         | 189,258        | 159.7470 | 81.4564   |
| 50                         | 193,278        | 159.7497 | 81.4306   |
| 51                         | 197,304        | 159.8809 | 81.4018   |
| 52                         | 201,312        | 159.8675 | 81.4083   |
| 53                         | 205,239        | 159.7903 | 81.3987   |
| 54                         | 209,166        | 159.7381 | 81.3983   |

TABLE 2.6RADAR TRAJECTORY DATA. ROCKET 3, 25 JULY, 2020<br/>HONOLULU STANDARD TIME (26 JULY 0620Z)

| Radar<br>Time <sup>®</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 55                         | 213,057        | 159.6897 | 81.3640   |
| 56                         | 216,906        | 159.7655 | 81.3077   |
| 57                         | 220,740        | 159.8133 | 81.2995   |
| 58                         | 224,538        | 159.8891 | 81.2693   |
| 59                         | 228,300        | 159.8373 | 81.2541   |
| 60                         | 232,044        | 159.7995 | 81.2311   |
| 61                         | 235,746        | 159.7844 | 81.1845   |
| 62                         | 239, 397       | 159.7539 | 81.1817   |
| 63                         | 243,051        | 159.7700 | 81.1628   |
| 64                         | 246,654        | 159.7649 | 81.1391   |
| 65                         | 250,251        | 159.8019 | 81.1038   |
| 66                         | 253,776        | 159.8036 | 81.0959   |
| 67                         | 257,301        | 159.7772 | 81.0725   |
| 68                         | 260,778        | 159.7628 | 81.0423   |
| 69                         | 264,231        | 159.7079 | 80.9517   |
| 70                         | 267,678        | 159.7412 | 80.9596   |
| 71                         | 271,050        | 159.8823 | 80.9870   |
| 72                         | 274,416        | 160.0127 | 80.9129   |
| 73                         | 277,743        | 160.0914 | 80.8607   |
| 74                         | 281,061        | 160.0227 | 80.8858   |
| 75                         | 284,331        | 159.8854 | 80.8480   |
| 76                         | 287,535        | 159.8287 | 80.8089   |
| 77                         | 290,778        | 159.8085 | 80.7594   |
| 78                         | 293,946        | 159.8091 | 80.7786   |
| 79                         | 297,087        | 159.7985 | 80.7711   |
| 80                         | 300,174        | 159.8112 | 80.7168   |
| 81                         | 303,300        | 159.9211 | 80.6822   |
| 82·                        | 306,324        | 159.9496 | 80.6111   |
| 83                         | 309,348        | 159.9506 | 80.6039   |
| 84                         | 312,321        | 159.9719 | 80.6087   |

# TABLE 2.6 CONTINUED

| TABLE 2.6 | CONTINUED |
|-----------|-----------|
|-----------|-----------|

| Radar<br>Time <sup>a</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 85                         | 315,324        | 159.9623 | 80.5936   |
| 86                         | 318,252        | 159.9465 | 80.5208   |
| 87                         | 321,165        | 159.9121 | 80.4511   |
| 88                         | 323,961        | 159.9011 | 80.4103   |
| 89                         | 326,892        | 159.9794 | 80.3821   |
| 90                         | 329,646        | 159.9949 | 80.3831   |
| 91                         | 332,463        | 159.9619 | 80.3910   |
| 92                         | 335,193        | 160.0206 | 80.3505   |
| 93                         | 337,899        | 160.1078 | 80.2963   |
| 94                         | 340,578        | 160.1703 | 80.2225   |
| 95                         | 343,239        | 160.2108 | 80.2455   |
| 96                         | 345,900        | 160.1487 | 80.2135   |
| 97                         | 348,474        | 160.1188 | 80.1665   |
| 98                         | 351,054        | 160.1765 | 80.1239   |
| 99                         | 353,565        | 160.2417 | 80.0711   |
| 100                        | 356,046        | 160.3186 | 80.0460   |
| 101                        | 358,536        | 160.2445 | 80.0354   |
| 102                        | 360,996        | 160.1810 | 79.9955   |
| 103                        | 363,411        | 160.0989 | 79.9197   |
| 104                        | 365,754        | 160.0793 | 79.8774   |
| 105                        | 368,115        | 160.2070 | 79.8335   |
| 106                        | 370,455        | 160.3605 | 79.7658   |
| 107                        | 372,732        | 160.4299 | 79.8160   |
| 108                        | 374,988        | 160.5308 | . 79.8060 |
| 109                        | 377,217        | 160.5198 | 79.7693   |
| 110                        | 379,407        | 160.5390 | 79.6924   |
| 111                        | 381,603        | 160.5950 | 79.6464   |
| 112                        | 383,724        | 160.6314 | 79.5623   |
| 113                        | 385,843        | 160.6990 | 79.5451   |
| 114                        | 387,948        | 160.7207 | 79.5032   |

# TABLE 2.6 CONTINUED

| Radar<br>Time <sup>a</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 115                        | 389,946        | 160.5809 | 79.4775   |
| 116                        | 391,980        | 160.4512 | 79.4225   |
| 117                        | 393,996        | 160.2259 | 79.3868   |
| 118                        | 395,937        | 160.0804 | 79.3703   |
| 119                        | 397,833        | 160.0701 | 79.3576   |
| 120                        | 399,747        | 160.0347 | 79.2855   |
| 121                        | 401,610        | 160.0392 | 79.2320   |
| 122                        | 403,461        | 160.2119 | 79.2303   |
| 123                        | 405,303        | 160.5061 | 79.2093   |
| 124                        | 407,022        | 160.8116 | 79.1049   |
| 125                        | 408,750        | 160.9346 | 79.0497   |
| 126                        | 410,538        | 160.9775 | 78.9402   |
| 127                        | 412,206        | 160.8096 | 78.8959   |
| 128                        | 413,838        | 160.7066 | 78.9278   |
| 129                        | 415,464        | 160.6005 | 78.3794   |
| 130                        | 417,066        | 160.4453 | 78.7695   |
| 131                        | 418,611        | 160.3320 | 78.6789   |
| 132                        | 420,144        | 160.2228 | 78.6607   |
| 133                        | 421,686        | 160.2627 | 78.6779   |
| 134                        | 423,141        | 160.3945 | 78.6480   |
| 135                        | 424,596        | 160.6177 | 78.5556   |
| 136                        | 426,030        | 160.7612 | 78.4646   |
| 137                        | 427,392        | 160.8463 | 78.4430   |
| 138                        | 428,790        | 160.9740 | 78.4070   |
| 139                        | 430,095        | 160.9830 | 78.4159   |
| 140                        | 431,403        | 161.0434 | 78.3651   |
| 141                        | 432,642        | 161.0863 | 78.2854   |
| 142                        | 433,884        | 161.0832 | 78.1938   |
| 143                        | 435,054        | 160.9469 | 78.0911   |
| 144                        | 436,344        | 160.8024 | 77.9933   |

| Radar<br>Time <sup>a</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 145                        | 437,370        | 160.6479 | 77.9531   |
| 146                        | 438,510        | 160.5284 | 78.0245   |
| 147                        | 439,674        | 160.4371 | 77.9878   |
| 148                        | 440,631        | 160.4772 | 77.9679   |
| 149                        | 441,666        | 160.5202 | 77.8882   |
| 150                        | 442,707        | 160.5229 | 77.7976   |
| 151                        | 443,613        | 160.5837 | 77.6870   |
| 152                        | 444,612        | 160.6554 | 77.6403   |
| 153                        | 445,581        | 160.8717 | 77.5868   |
| 154                        | 446,322        | 161.0805 | 77.5428   |
| 155                        | 447,285        | 161.2923 | 77.5239   |
| 156                        | 448,044        | 161.4787 | 77.4532   |
| 157                        | 448,917        | 161.4938 | 77.3475   |
| 158                        | 449,613        | 161.3658 | 77.2362   |
| 159                        | 450,330        | 161.2054 | 77.1525   |
| 160                        | 451,038        | 160.9030 | 77.1799   |
| 161                        | 451,725        | 160.7220 | 77.1013   |
| 162                        | 452,358        | 160.6702 | 77.0567   |
| 163                        | 453,012        | 160.6613 | 77.0141   |
| 164                        | 453,486        | 160.6805 | 76.9056   |
| 165                        | 454,161        | 160.7914 | 76.7662   |
| 166                        | 454,668        | 160.8885 | 76.6588   |
| 167                        | 455,115        | 161.0104 | 76,6179   |
| 168                        | 455,640        | 161.2096 | 76.6828   |
| 169                        | 456,081        | 161.3198 | 76.6351   |
| 170                        | 456,465        | 161.4516 | 76.6492   |
| 171                        | 456,822        | 161.4554 | 76.5513   |
| 172                        | 457,239        | 161.3853 | 76.4287   |
| 173                        | 457,506        | 161.3620 | 76.2804   |
| 174                        | 457,767        | 161.2748 | 76.1349   |

### TABLE 2.6 CONTINUED

| Radar<br>Time <sup>®</sup> | Slant<br>Range | Azimuth  | Elevation |
|----------------------------|----------------|----------|-----------|
| seconds                    | feet           | degrees  | degrees   |
| 175                        | 458,061        | 161.1690 | 76.0662   |
| 176                        | 458,358        | 161.0932 | 76.0236   |
| 177                        | 458,469        | 160.9510 | 76.0109   |
| 178                        | 458,727        | 160.8099 | 75.9285   |
| 179                        | 458,760        | 160.7213 | 75.8650   |
| 180                        | 458,949        | 160.6252 | 75.7606   |
| 181                        | 459,057        | 160.6644 | 75.6051   |
| 182                        | 459,105        | 160.6884 | 75.5117   |
| 183                        | 459,144        | 160.9325 | 75.4510   |
| 184                        | 459,165        | 161.1824 | 75.4386   |

<sup>a</sup>Radar time 10 seconds fast.

••

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 7             | 20,289   | 4,167               | 170.4247 |
| 8             | 21,170   | 4,587               | 167.1724 |
| 9             | 21,995   | 5,024               | 165.3308 |
| 10            | 23,021   | 5,361               | 165.0510 |
| 21            | 23,962   | 5,547               | 165.9539 |
| 12            | 24,829   | 5,668               | 167.7351 |
| 13            | 25,663   | 5,761               | 169.7607 |
| 14            | 26,383   | 5,774               | 171.6665 |
| 15            | 27,113   | 5,735               | 173.6179 |
| 16            | 28,506   | 5,854               | 175.4128 |
| 17            | 31,661   | 6,370               | 177.1105 |
| 21            | 49,771   | 7,489               | 159.2262 |
| 22            | 61,722   | 8,161               | 158.7146 |
| 23            | 68,764   | 8,940               | 158.3167 |
| 24            | 72,853   | 9,477               | 157.9473 |
| 25            | 77,860   | 10,033              | 157.5580 |
| 26            | 82,651   | 10,593              | 157.2661 |
| 27            | 87,396   | 11,173              | 157.0083 |
| 28            | 92,098   | 11,741              | 156.8799 |
| 29            | 96,757   | 12,291              | 156.7034 |
| 30            | 101,372  | 12,840              | 156.5294 |
| 31            | 105,944  | 13,400              | 156.3553 |
| 32            | 110,475  | 13,958              | 156.2262 |
| 33            | 114,972  | 14,515              | 156.1534 |
| 34            | 119,432  | 15,066              | 155.9904 |
| 35            | 123,859  | 15,630              | 155.8637 |
| 36            | 128,247  | 16,201              | 155.7971 |
| 37            | 132,602  | 16,763              | 155.7387 |
| 38            | 136,927  | 17,315              | 155.6536 |
| 39            | 141,217  | 17,869              | 155.5162 |

TABLE 2.7RADAR TRAJECTORY DATA, ROCKET 5, 1 NOVEMBER,<br/>0638 HONOLULU STANDARD TIME, (1 NOVEMBER, 1638Z)

| Radar<br>Time | Altitude | 'Horizontal<br>Range | Azimuth  |
|---------------|----------|----------------------|----------|
| seconds       | feet     | feet                 | degrees  |
| 40            | 145,472  | 18,423               | 155.4108 |
| 41            | 149,694  | 18,997               | 155.3796 |
| 42            | 153,885  | 19,573               | 155.4225 |
| 43            | 158,046  | 20,112               | 155.2443 |
| 44            | 162,173  | 20,650               | 154.9813 |
| 45            | 166,265  | 21,229               | 155.0431 |
| 46            | 170,325  | 21,821               | 155.1262 |
| 47            | 174,351  | 22,378               | 155.1444 |
| 48            | 178,351  | 22,920               | 154.9463 |
| 49            | 182,314  | 23,458               | 154.7712 |
| 50            | 186,244  | 24,024               | 154.7959 |
| 51            | 190,143  | 24,618               | 154.7966 |
| 52            | 194,017  | 25,210               | 154.7510 |
| 53            | 197,850  | 25,770               | 154.8234 |
| 54            | 201,643  | 26,358               | 154.8612 |
| 55            | 205,404  | 26,955               | 154.9566 |
| 56            | 209,153  | 27,480               | 155.0064 |
| 57            | 212,879  | 27,991               | 154.7698 |
| 58            | 216,567  | 28,503               | 154.5573 |
| 59            | 220,212  | 29,076               | 154.4664 |
| 60            | 223,828  | 29,648               | 154.6215 |
| 61            | 227,412  | 30,226               | 154.7012 |
| 62            | 230,960  | 30,768               | 154.5779 |
| 63            | 234,482  | 31,329               | 154.4688 |
| 64            | 237,971  | 31,913               | 154.4650 |
| 65            | 241,427  | 32,477               | 154.4392 |
| 66            | 244,861  | 33,074               | 154.5704 |
| 67            | 248,261  | 33,663               | 154.6861 |
| 68            | 251,629  | 34,160               | 154.7286 |
| 69            | 254,946  | 34,712               | 154.6500 |

# TABLE 2.7 CONTINUED

# TABLE 2.7 CONTINUED

| Radar<br>Time  | Altitude | Horizontal<br>Range | Azimuth  |
|----------------|----------|---------------------|----------|
| seconds        | feet     | feet                | degrees  |
| 70             | 258,250  | 35,245              | 154.4317 |
| 71             | 261,525  | 35,772              | 154.293  |
| 72             | 264,757  | 36,343              | 154.2864 |
| 73             | 267,956  | 36,952              | 154.6112 |
| 74             | 271,129  | 37,468              | 154.7870 |
| 75             | 274,277  | 37,993              | 154.6641 |
| 76             | 277,380  | 38,548              | 154.5450 |
| 77             | 280,460  | 39,193              | 154.5731 |
| 78             | 283,504  | 39,780              | 154.5930 |
| 7 <del>9</del> | 286,535  | 40,292              | 154.6435 |
| 80             | 289,527  | 40,808              | 154.6081 |
| 81             | 292,497  | 41,325              | 154.5632 |
| 82             | 295,425  | 41,856              | 154.5553 |
| 83             | 298,343  | 42,332              | 154.6792 |
| 84             | 301,224  | 42,757              | 154.7637 |
| 85             | 304,008  | 43,546              | 154.6373 |
| 86             | 306,746  | 44,413              | 154.5347 |
| 87             | 309,560  | 44,827              | 154.4409 |
| 88             | 312,375  | 44,863              | 154.3688 |
| 89             | 315,103  | 45,232              | 154.3098 |
| 90             | 317,718  | 46,156              | 154.4063 |
| 91             | 370,281  | 47,313              | 154.5975 |
| 92             | 322,867  | 48,070              | 155.0576 |
| 93             | 325,513  | 48,194              | 155.2508 |
| 94             | 328,108  | 48,361              | 155.2409 |
| 95             | 330,637  | 48,846              | 155.1231 |
| 96             | 331,130  | 49,441              | 154.8684 |
| 97             | 335,578  | 50,060              | 154.7939 |
| 98             | 337,994  | 50,715              | 154.7022 |
| 99             | 340,400  | 51,236              | 154.5906 |

# TABLE 2.7 CONTINUED

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 100           | 342,739  | 51,764              | 154.6459 |
| 101           | 345,092  | 52,378              | 154.4708 |
| 102           | 347,389  | 53,003              | 154.4887 |
| 103           | 349,616  | 53,555              | 154.5388 |
| 104           | 351,862  | 53,886              | 154.4742 |
| 105           | 354,083  | 54,346              | 154.3695 |
| 106           | 356,212  | 55,128              | 154.4554 |
| 107           | 358,307  | 55,949              | 154.7283 |
| 108           | 360,437  | 56,545              | 154.9958 |
| 109           | 362,518  | 57,033              | 155.2203 |
| 110           | 364,635  | 57,293              | 155.2944 |
| 111           | 366,686  | 57,617              | 155.2635 |
| 112           | 368,669  | 58,210              | 155.1705 |
| 113           | 370,603  | 58,970              | 154.9305 |
| 114           | 372,539  | 59,561              | 154.8897 |
| 115           | 374,465  | 59,993              | 154.8145 |
| 116           | 376,364  | 60,455              | 154.8691 |
| 117           | 378,197  | 61,013              | 154.9576 |
| 118           | 379,988  | 61,636              | 155.0078 |
| 119           | 381,771  | 62,221              | 155.0380 |
| 120           | 383,530  | 62,692              | 155.0833 |
| 121           | 385,287  | 62,995              | 155.0521 |
| 122           | 387,042  | 63,414              | 154.9995 |
| 123           | 388,729  | 64,017              | 154.7994 |
| 124           | 390,344  | 64,808              | 154.5542 |
| 125           | 391,862  | 65,592              | 154.4718 |
| 126           | 393,373  | 66,327              | 154.5158 |
| 127           | 394,879  | 66,747              | 154.7438 |
| 128           | 396,421  | 66,889              | 155.0648 |
| 129           | 397,917  | 67,185              | 155.2989 |
| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 130           | 399,376  | 67,904              | 155.6608 |
| 131           | 400,752  | 68,671              | 155.9159 |
| 132           | 402,125  | 69,221              | 155.8469 |
| 133           | 403,492  | 69,596              | 155.5025 |
| 134           | 404,788  | 70,242              | 155.1588 |
| 135           | 406,042  | 71,220              | 154.8763 |
| 136           | 407,206  | 72,132              | 154.4863 |
| 137           | 408,109  | 72,419              | 154.3561 |
| 138           | 408,976  | 72,133              | 154.3864 |
| 139           | 410,681  | 72,005              | 154.4300 |
| 140           | 472,838  | 71,735              | 154.6514 |
| 141           | 414,780  | 70,332              | 154.8114 |
| 142           | 416,781  | 68,100              | 154.9645 |
| 143           | 419,352  | 66,163              | 155.1200 |

| Radar<br>Time | Altitude        | Horizontal<br>Range | Azimuth  |
|---------------|-----------------|---------------------|----------|
| seconds       | feet            | feet                | degrees  |
| 16            | 23,311          | 4,190               | 176.8046 |
| 17            | 24,226          | 4,065               | 175.2676 |
| 18            | 25,096          | 4,027               | 174.6932 |
| 19            | 25,924          | 4,119               | 174.6681 |
| 20            | 26,702          | 4,209               | 174.5408 |
| 21            | 27,428          | 4,257               | 174.3468 |
| 22            | 28,106          | 4,298               | 174.1490 |
| 23            | 28,746          | 4,347               | 173.9980 |
| 24            | 29,341          | 4,398               | 173.8366 |
| 25            | 29,902          | 4,448               | 173.6900 |
| 26            | 30,431          | 4,498               | 173.5771 |
| 27            | 30,929          | 4,550               | 173.4023 |
| 28            | 31,394          | 4,600               | 173.2489 |
| 29            | 31,828          | 4,648               | 173.0631 |
| 30            | 32,236          | 4,700               | 172.9488 |
| 31            | 32,600          | 4,751               | 172.8317 |
| 32            | 32,928          | 4,801               | 172.6930 |
| 33            | 33,219          | 4,852               | 172.5605 |
| 34            | 33,479          | 4,905               | 172.5049 |
| 35            | 33,704          | 4,960               | 172.3851 |
| .36           | 33,901          | 5,014               | 172.2882 |
| 37            | 34,063          | 5,067               | 172.1931 |
| 38            | 34,189          | 5,118               | 172.1228 |
| 39            | 34,290          | 5,167               | 171.9449 |
| 40            | 34,358          | 5,219               | 171.8199 |
| tracking      | booster 41 - 75 | sec.                |          |
| 76            | 259,524         | 29,414              | 164.8313 |
| 77            | 264,074         | 29,968              | 164.2219 |
| 78            | 268,890         | 30,265              | 164.1302 |
| 79            | 271,894         | 30,534              | 164.5257 |

TABLE 2.8RADAR TRAJECTORY DATA, ROCKET 6, 2 NOVEMBER,0638<br/>HONOLULU STANDARD TIME (2 NOVEMBER 1638Z)

| TABLE | 2.8 | CONTINUED |
|-------|-----|-----------|
|-------|-----|-----------|

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 80            | 274,379  | 31,098              | 164.8834 |
| 81            | 277,473  | 31,731              | 165.1399 |
| 82            | 280,719  | 32,190              | 165.1214 |
| 83            | 283,875  | 32,722              | 165.0582 |
| 84            | 287,035  | 33,010              | 165.0132 |
| 85            | 290,138  | 33,225              | 164.6170 |
| 86            | 293,190  | 33,814              | 164.1920 |
| 87            | 296,204  | 34,503              | 164.1546 |
| 88.           | 299,233  | 34,891              | 164.5549 |
| 89            | 302,202  | 35,280              | 165.1128 |
| 90            | 305,133  | 35,828              | 165.5007 |
| 91            | 308,027  | 36,314              | 165.3119 |
| 92            | 310,915  | 36,696              | 164.9480 |
| 93            | 313,756  | 37,149              | 164.7334 |
| 94            | 316,579  | 37,670              | 164.8951 |
| 95            | 319,355  | 38,193              | 165.0345 |
| 96            | 322,120  | 38,637              | 165.0064 |
| 97            | 324,847  | 39,041              | 165.0942 |
| 98            | 327,519  | 39,713              | 165.2422 |
| 99            | 330,179  | 40,197              | 165.2656 |
| 100           | 332,851  | 40,114              | 164.8869 |
| 101           | 335,531  | 40,070              | 164.6850 |
| 102           | 338,054  | 40,999              | 164.4921 |
| 103           | 340,488  | 42,227              | 164.1327 |
| 104           | 342,924  | 43,266              | 163.8085 |
| 105           | 345,412  | 43,642              | 163.6760 |
| 106           | 347,944  | 43,401              | 163.7151 |
| 107           | 350,412  | 43,476              | 164.1240 |
| 108           | 352,789  | 44,186              | 164.6109 |
| 109           | 355,085  | 44,938              | 165.0839 |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 110           | 357,423  | 45,204              | 165.5797 |
| 111           | 359,730  | 45,410              | 166.0113 |
| 112           | 361,978  | 45,996              | 166.1496 |
| 113           | 364,158  | 46,727              | 166.2516 |
| 114           | 366,357  | 47,122              | 166.2100 |
| 115           | 368,563  | 47,244              | 166.0099 |
| 116           | 370,695  | 47,543              | 165.8327 |
| 117           | 372,829  | 47,996              | 165.7260 |
| 118           | 374,934  | 48,615              | 165.5708 |
| 119           | 376,944  | 49,241              | 165.4019 |
| 120           | 378,956  | 49,483              | 165.1320 |
| 121           | 380,974  | 49,708              | 164.9799 |
| 122           | 382,885  | 50,516              | 164.8604 |
| 123           | 384,691  | 51,745              | 164.9051 |
| 124           | 386,539  | 52,438              | 165.0856 |
| 125           | 388,438  | 52,529              | 165.4156 |
| 126           | 390,327  | 52,607              | 166.0037 |
| 127           | 392,112  | 53,171              | 166.4071 |
| 128           | 393,852  | 53,760              | 166.6698 |
| 129           | 395,563  | 54,333              | 166.9152 |
| 130           | 397,217  | 55,010              | 166.9516 |
| 131           | 398,873  | 55,657              | 166.7425 |
| 132           | 400,587  | 55,857              | 166.5180 |
| 133           | 402,255  | 55,906              | 166.1022 |
| 134           | 403,847  | 56,208              | 165.7857 |
| 135           | 405,290  | 57,066              | 165.3033 |
| 136           | 406,707  | 58,069              | 164.9926 |
| 137           | 408,270  | 58,704              | 164.7262 |
| 1 38          | 410,100  | 58,876              | 164.5202 |
| 139           | 412,246  | 58,323              | 164.1491 |
| 140           | 414,764  | 57,004              | 163.9283 |
| 141           | 417,526  | 55,337              | 163.6056 |
| 142           | 420,452  | 53,873              | 163.2506 |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| -53.7         | 76,922   | 11,343              | 155.8417 |
| -52.7         | 81,418   | 11,989              | 155.6161 |
| -51.7         | 86,563   | 12,685              | 155.5279 |
| -50.7         | 91,298   | 13,351              | 155.4064 |
| -49.7         | 95,995   | 14,007              | 155.2450 |
| -48.7         | 100,646  | 14,671              | 155.0867 |
| -47.7         | 105,258  | 15,334              | 155.1334 |
| -46.7         | 109,834  | 15,989              | 154.9923 |
| -45.7         | 114,369  | 16,644              | 154.8279 |
| -44.7         | 118,870  | 17,297              | 154.6967 |
| -43.7         | 123,339  | 17,956              | 154.7554 |
| -42.7         | 127,771  | 18,609              | 154.6432 |
| -41.7         | 132,166  | 19,270              | 154.5635 |
| -40.7         | 136,529  | 19,924              | 154.4945 |
| -39.7         | 140,859  | 20,583              | 154.4152 |
| -38.7         | 145,160  | 21,227              | 154.4207 |
| - 37.7        | 149,422  | 21,887              | 154.3434 |
| -36.7         | 153,655  | 22,552              | 154.2834 |
| -35.7         | 157,854  | 23,204              | 154.2247 |
| -34.7         | 162,020  | 23,853              | 154.1962 |
| -33.7         | 166,155  | 24,529              | 154.1742 |
| -32.7         | 170,254  | 25,215              | 154.1972 |
| -31.7         | 174,322  | 25,865              | 154.0156 |
| -30.7         | 178,359  | 26,521              | 153.9486 |
| -29.7         | 182,371  | 27,144              | 153.8951 |
| -28.7         | 186,350  | 27,793              | 153.9884 |
| -27.7         | 190,282  | 28,474              | 154.1464 |
| -26.7         | 194,185  | 29,154              | 154.0447 |
| -25.7         | 198,066  | 29,792              | 153.9273 |
| -24.7         | 201,919  | 30,426              | 153.9462 |

TABLE 2.9RADAR TRAJECTORY DATA, ROCKET 7, 2 NOVEMBER, 1907<br/>HONOLULU STANDARD TIME (3 NOVEMBER, 0507Z)

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| econds        | feet     | feet                | degrees  |
| -23.7         | 205,734  | 31,078              | 154.0001 |
| -22.7         | 209,524  | 31,703              | 154.0602 |
| -21.7         | 213,270  | 32,380              | 154.1350 |
| -20.7         | 216,985  | 33,020              | 154.2906 |
| -19.7         | 220,677  | 33,681              | 154.3204 |
| -18.7         | 224,330  | 34,382              | 154.1302 |
| -17.7         | 227,949  | 35,120              | 153.8357 |
| -16.7         | 231,536  | 35,794              | 153.7340 |
| -15.7         | 235,096  | 36,466              | 153.8233 |
| -14.7         | 238,635  | 37,074              | 154.0125 |
| -13.7         | 242,146  | 37,628              | 154.1062 |
| -12.7         | 245,616  | 38,236              | 154.1405 |
| -11.7         | 249,031  | 39,013              | 154.1179 |
| -10.7         | 252,404  | 39,800              | 153.9761 |
| -9.7          | 255,792  | 40,363              | 153.8346 |
| -8.7          | 259,161  | 40,850              | 153.7258 |
| -7.7          | 262,485  | 41,510              | 153.7224 |
| -6.7          | 265,747  | 42,232              | 153.7107 |
| -5.7          | 269,016  | 42,836              | 153.6324 |
| -4.7          | 272,203  | 43,530              | 153.7248 |
| -3.7          | 275,379  | 44,279              | 153.8824 |
| -2.7          | 278,527  | 45,000              | 154.0798 |
| -1.7          | 281,681  | 45,489              | 154.0973 |
| -0.7          | 284,783  | 46,049              | 154.0619 |
| 0.3           | 287,842  | 46,734              | 154.1553 |
| 1             | 289,954  | 47,275              | 154.1079 |
| 2             | 292,935  | 48,064              | 154.1817 |
| 3             | 295,895  | 48,825              | 154.3270 |
| 4             | 298,832  | 49,525              | 154.2796 |
| 5             | 301,774  | 50,023              | 154.0568 |

| TABLE 2.9 | CONTINUED |
|-----------|-----------|
|-----------|-----------|

| Radar<br>Time | Altitude | horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 6             | 304,673  | 50,535              | 153.9280 |
| 7             | 307,524  | 51,199              | 153.9033 |
| 8             | 310,322  | 51,998              | 153.9390 |
| 9             | 313,094  | 52,732              | 154.0873 |
| 10            | 315,869  | 53,275              | 154.2247 |
| 11            | 318,615  | 53,824              | 154.4128 |
| 12            | 321,309  | 54,535              | 154.5433 |
| 13            | 323,944  | 55,338              | 154.4052 |
| 14            | 326,579  | 55,975              | 154.3273 |
| 15            | 329,195  | 56,523              | 154.1762 |
| 16            | 331,759  | 57,184              | 153.9867 |
| 17            | 334,291  | 57,879              | 153.8405 |
| 18            | 336,806  | 58,546              | 153.8109 |
| 19            | 339,269  | 59,356              | 153.9057 |
| 20            | 341,696  | 60,087              | 154.2181 |
| 21            | 344,140  | 60,579              | 154.6026 |
| 22            | 346,552  | 60,967              | 154.6864 |
| 23            | 348,942  | 61,400              | 154.7705 |
| 24            | 351,286  | 62,041              | 154.8825 |
| 25            | 353, 539 | 62,903              | 154.8660 |
| 26            | 355,760  | 63,699              | 154.6555 |
| 27            | 357,991  | 64, 383             | 154.4842 |
| 28            | 360,220  | 64,867              | 154.2902 |
| 29            | 362,436  | 65,191              | 154.1244 |
| 30            | 364,630  | 65,690              | 154.0262 |
| 31            | 366,709  | 66,533              | 153.9115 |
| 32            | 368,709  | 67,508              | 154.0702 |
| 33            | 370,698  | 68,480              | 154.2768 |
| 34            | 372,726  | 69,144              | 154.5151 |
| 35            | 374,803  | 69,499              | 154.6373 |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 36            | 376,849  | 69,771              | 154.6164 |
| 37            | 378,764  | 70,190              | 154.6655 |
| 38            | 380,569  | 70,897              | 154.5209 |
| 39            | 382,422  | 71,588              | 154.3507 |
| 40            | 388,303  | 72,254              | 154.3984 |
| 41            | 386,094  | 72,944              | 154.2820 |
| 42            | 387,795  | 73,845              | 154.2315 |
| 43            | 389,432  | 74,875              | 154.2549 |
| 44            | 391,093  | 75,824              | 154.2628 |
| 45            | 392,822  | 76,141              | 154.3287 |
| 46            | 394,543  | 76,237              | 154.3346 |
| 47            | 396,181  | 76,649              | 154.4828 |
| 48            | 397,754  | 77,601              | 154.5580 |
| 49            | 399,266  | 78,447              | 154.6195 |
| 50            | 400,765  | 79,034              | 154.7108 |
| 51            | 402,256  | 79,602              | 154.7214 |
| 52            | 403,678  | 80,483              | 154.7180 |
| 53            | 405,079  | 81,225              | 154.7383 |
| 54            | 406,503  | 81,713              | 154.8358 |
| 55            | 407,901  | 82,236              | 154.8104 |
| 56            | 409,212  | 83,029              | 154.7922 |
| 57            | 410,478  | 83,797              | 154.7389 |
| 58            | 411,763  | 84,349              | 154.7173 |
| 59            | 413,020  | 84,854              | 154.6246 |
| 60            | 414,249  | 85,420              | 154.4519 |
| 61            | 415,443  | 85,987              | 154.3846 |
| 62            | 416,536  | 86,681              | 154.3338 |
| 63            | 417,564  | 87,651              | 154.3215 |
| 64            | 418,679  | 88,496              | 154.3074 |
| 65            | 419,797  | 89,072              | 154.2325 |

ſ

.

.

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| seconds       | feet     | feet                | degrees  |
| 66            | 420,880  | 89,307              | 154.3362 |
| 67            | 421,944  | 89,512              | 154.6075 |
| 68            | 422,915  | 90,093              | 154.9903 |
| 69            | 423,760  | 91,147              | 155.2539 |
| 70            | 424, 594 | 92,133              | 155.6103 |
| 71            | 425,489  | 92,901              | 155.9674 |
| 72            | 426,405  | 93,696              | 156.1977 |
| 73            | 427,279  | 94,830              | 156.3402 |
| 74            | 428, 330 | 95,928              | 156.4219 |

| Radar<br>Time | Altitude . | Horizontal<br>Range | Azimuth  |  |
|---------------|------------|---------------------|----------|--|
| seconds       | feet       | feet                | degrees  |  |
| 27            | 57,891     | 7,124               | 164.2277 |  |
| 28            | 64,175     | 7,968               | 163.7333 |  |
| 29            | 68,903     | 8,619               | 163.7038 |  |
| 30            | 73,732     | 9,123               | 163.4851 |  |
| 31            | 78,574     | 9,644               | 153.2880 |  |
| 32            | 83,336     | 10,164              | 163.1555 |  |
| 33            | 88,052     | 10,693              | 163.1480 |  |
| 34            | 92,719     | 11,219              | 163.0182 |  |
| 35            | 97,342     | 11,747              | 162.8984 |  |
| 36            | 101,923    | 12,278              | 162.7538 |  |
| 37            | 106,468    | 12,802              | 162.7377 |  |
| 38            | 110,974    | 13,335              | 162.7806 |  |
| 39            | 115,439    | 13,865              | 162.6580 |  |
| 40            | 119,870    | 14,395              | 162.4699 |  |
| 41            | 124,264    | 14,923              | 162.4386 |  |
| 42            | 129,628    | 15,459              | 162.5468 |  |
| 43            | 132,955    | 15,995              | 162.4881 |  |
| 44            | 137,253    | 16,526              | 162.3140 |  |
| 45            | 141,515    | 17,049              | 162.2931 |  |
| 46            | 145,742    | 17,593              | 162.3490 |  |
| 47            | 149,939    | 18,128              | 162.3889 |  |
| 48            | 154,106    | 18,650              | 162.2423 |  |
| 49            | 158,229    | 19,175              | 162.2460 |  |
| 50            | 162,328    | 19,717              | 162.2107 |  |
| 51            | 166,399    | 20,250              | 162.2316 |  |
| 52            | 170,433    | 20,779              | 162.1812 |  |
| 53            | 174,431    | 21,309              | 162.0778 |  |
| 54            | 178,397    | 21,853              | 162.1121 |  |
| 55            | 182,325    | 22,403              | 162.1781 |  |
| 56            | 186,233    | 22,926              | 162.2615 |  |

TABLE 2.10RADAR TRAJECTORY DATA, ROCKET 8, 3 NOVEMBER,1907HONOLULU STANDARD TIME, (4 NOVEMBER, 0507Z)

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth<br>degrees |  |
|---------------|----------|---------------------|--------------------|--|
| seconds       | feet     | feet                |                    |  |
| 57            | 190,115  | 23,444              | 162.2663           |  |
| 58            | 193,947  | 23,976              | 162.1630           |  |
| 59            | 197,748  | 24,517              | 162.1647           |  |
| 60            | 201,527  | 25,052              | 162.2677           |  |
| 61            | 205,278  | 25,576              | 162.2014           |  |
| 62            | 208,988  | 26,105              | 162.0644           |  |
| 63            | 212,665  | 26,646              | 162.0521           |  |
| 64            | 216,309  | 27,208              | 162.1444           |  |
| 65            | 219,926  | 27,745              | 162.2533           |  |
| 66            | 223,520  | 28,246              | 162.2474           |  |
| 67            | 227,083  | 28,754              | 162.2433           |  |
| 68            | 230,606  | 29,293              | 162.2138           |  |
| 69            | 234,089  | 29,808              | 162.2591           |  |
| 70            | 237,544  | 30,335              | 162.2069           |  |
| 71            | 240,974  | 30,899              | 162.1657           |  |
| 72            | 244,380  | 31,464              | 162.0929           |  |
| 73            | 247,743  | 31,954              | 162.0946           |  |
| 74            | 251,077  | 32,490              | 162.2443           |  |
| 75            | 254,371  | 33,047              | 162.2900           |  |
| 76            | 257,633  | 33,660              | 162.2587           |  |
| 77 260,863    |          | 34,234 162.         |                    |  |
| 78            | 264,076  | 34,749              | 162.5743           |  |
| 79            | 267,259  | 35,261              | 162.6416           |  |
| 80            | 270,403  | 35,766              | 162.4489           |  |
| 81            | 273,532  | 36,206              | 162.4342           |  |
| 82            | 276,633  | 36,599 162.4        |                    |  |
| 83            | 279,684  | - 37,122            | 162.4651           |  |
| 84            | 282,677  | 37,830              | 162.3188           |  |
| 85            | 285,652  | 38,515              | 162.2045           |  |
| 86            | 288,606  | 38,996              | 162.0943           |  |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth<br>degrees |  |
|---------------|----------|---------------------|--------------------|--|
| seconds       | feet     | feet                |                    |  |
| 87            | 291,539  | 39,504              | 162.2179           |  |
| 88            | 294,441  | 40,023              | 162.2529           |  |
| 89            | 297,319  | 40,509              | 162.3144           |  |
| 90            | 300,139  | 41,083              | 162.3233           |  |
| 91            | 302,930  | 41,715              | 162.4888           |  |
| 92            | 305,693  | . 42,274            | 162.6337           |  |
| 93            | 308,411  | 42,918              | 162.7435           |  |
| 94            | 311,115  | 43,474              | 162.8139           |  |
| 95            | 312,809  | 43,817              | 162.8644           |  |
| 96            | 316,471  | 44,231              | 162.8743           |  |
| 97            | 319,068  | 44,860              | 162.4102           |  |
| 98            | 321,663  | 45,407              | 162.6103           |  |
| 99            | 324,218  | 45,875              | 162.4235           |  |
| 100           | 326,742  | 46,356              | 162.4369           |  |
| 101           | 329,233  | 46,850              | 162.3751           |  |
| 102           | 331,703  | 47,378              | 162.3075           |  |
| 103           | 334,105  | 48,009              | 162.3686           |  |
| 104           | 336,506  | 48,525              | 162.4893           |  |
| 105           | 338,905  | 48,953              | 162.6649           |  |
| 106           | 341,251  | 49,470              | 162.7562           |  |
| 107 343,520   |          | 49,983              | 162.7919           |  |
| 108           | 345,794  | 50,429              | 162.8475           |  |
| 109           | 348,055  | 50,891              | 162.9145           |  |
| 110           | 350,263  | 51,487              | 162.8754           |  |
| 111           | 352,412  | 52,255              | 162.8424           |  |
| 112           | 354,531  | 52,992              | 162.7573           |  |
| 113           | 356,648  | 53,402              | 162.7923           |  |
| 114           | 358,761  | 53,812              | 162.9004           |  |
| 115           | 360,841  | 54,286              | 162.9746           |  |
| 116           | 362,879  | 54,702              | 163.0796           |  |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth           |
|---------------|----------|---------------------|-------------------|
| seconds       | feet     | feet                | degrees           |
| 117           | 364,904  | 55,220              | 163.0961          |
| 118           | 366,855  | 56,194              | 163.1689          |
| 119           | 368,699  | 57,014              | 163.1775          |
| 120           | 370,606  | 57,366              | 163.0717          |
| 121           | 372,517  | 57,521              | 163.0446          |
| 122           | 374,387  | 57,744              | 162.5712          |
| 123           | 376,217  | 58,109              | 162.7936          |
| 124           | 378,002  | 58,746              | 162.6505          |
| 125           | 379,665  | 59,652              | 162.4695          |
| 126           | 381,350  | 60,325              | 162.5880          |
| 127           | 383,107  | 60,576              | 162.8685          |
| 128           | 384,812  | 60,769              | 163.0676          |
| 129           | 386,403  | 61,445              | 163.2125          |
| 130           | 387,941  | 62,344              | 163.3378          |
| 131           | 389,459  | 63,056              | 163.5706          |
| 132           | 390,981  | . 63,388            | 163.7543          |
| 133           | 392,549  | 63,554              | 163.7961          |
| 134           | 394,087  | 63,835              | 163.9180          |
| 135           | 395,491  | 64,410              | 163.9709          |
| 136           | 396,849  | 65,289              | 1 <b>63.9</b> 929 |
| 137           | 398,201  | 66,272              | 164.1093          |
| 138           | 399,528  | 66,886              | 164.0293          |
| 139           | 400,831  | 67,125              | 163.8140          |
| 140           | 402,134  | 67,408              | 163.6217          |
| 141           | 403,380  | 67,986              | 163.3824          |
| 142           | 404,639  | 68,376              | 163.1867          |
| 143           | 405,865  | 68,802              | 162.9320          |
| 144           | 406,980  | 69,653              | 162.6865          |
| 145           | 408,049  | 70,578              | 162.6766          |
| 146           | 409,179  | 70,889              | 162.7960          |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
|               |          |                     |          |
| seconds       | feet     | feet                | degrees  |
| 147           | 410,267  | 71,126              | 162.9626 |
| 148           | 411,294  | 71,607              | 163.2472 |
| 149           | 412,279  | 72,255              | 163.6176 |
| 150           | 413,254  | 72,835              | 163.8892 |
| 151           | 414,169  | 73,466              | 164.0495 |
| 152           | 415,038  | 74,237              | 164.0499 |
| 153           | 415,922  | 74,775              | 163.8967 |
| 154           | 416,801  | 75,117              | 163.8102 |
| 155           | 417,580  | 75,780              | 163.7244 |
| 156           | 418,408  | 76,376              | 163.4381 |
| 157           | 419,239  | 76,479              | 163.2602 |
| 158           | 419,988  | 76,735              | 163.1291 |
| 159           | 420,706  | 77,299              | 163.0597 |
| 160           | 421,423  | 77,587              | 163.0704 |
| 161           | 422,072  | 77,923              | 163.0824 |
| 162           | 422,616  | 78,966              | 163.0910 |
| 163           | 423,065  | 80,099              | 163.4168 |
| 164           | 423,567  | 80,590              | 163.5847 |
| 165           | 424,178  | 80,589              | 163.8198 |
| 166           | 424,749  | 80,703              | 163.9754 |
| 167           | 425,198  | 81,111              | 164.0560 |
| 168           | 425,552  | 81,968              | 164.0591 |
| 169           | 425,825  | 83,071              | 164.0087 |
| 170           | 426,108  | 84,038              | 163.9232 |
| 171           | 426,491  | 84, 393             | 163.7587 |
| 172           | 426,887  | 84,352              | 163.6763 |
| 173           | 427,230  | 84,536              | 163.5963 |
| 174           | 427,496  | 84,959              | 163.5630 |
| 175           | 427,701  | 85,369              | 163.5847 |
| 176           | 427,804  | 86,075              | 163.6276 |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth  |
|---------------|----------|---------------------|----------|
| second        | feet     | feet                | degrees  |
| 177           | 427,912  | 87,055              | 163.8686 |
| 178           | 428,000  | 87,857              | 164.0766 |
| 179           | 427,985  | 88,419              | 164.1875 |
| 180           | 428,056  | 88,761              | 164.1893 |
| 181           | 428,121  | 89,150              | 164.3650 |
| 182           | 428,179  | 89,263              | 164.4309 |
| 183           | 428,235  | 89,310              | 164.2126 |
| 184           | 428,194  | 89,834              | 164.0684 |
| 185           | 427,956  | 90,926              | 164.0035 |
| 186           | 427,800  | 91,547              | 163.9730 |
| 187           | 427,757  | 91,649              | 163.9874 |
| 188           | 427,595  | 92,066              | 163.9963 |
| 189           | 427,241  | 93,126              | 163.9664 |
| 190           | 426,879  | 94,095              | 163.9386 |
| 191           | 426,600  | 94,461              | 164.0251 |
| 192           | 426,355  | 94,665              | 164.1285 |
| 193           | 426,032  | 94,996              | 164.2631 |
| 194           | 425,601  | 95,725              | 164.2778 |
| 195           | 425,110  | 96,611              | 164.2699 |
| 196           | 424,634  | 97,397              | 164.3424 |
| 197           | 424,220  | 97,728              | 164.3784 |
| 198           | 423,798  | 97,992              | 164.2795 |
| 199           | 423,282  | 98,338              | 164.0265 |
| 200           | 422,679  | 98,755              | 163.6990 |
| 201           | 422,097  | 99,209              | 163.5126 |
| 202           | 421,519  | 99,648              | 163.3749 |
| 203           | 420,860  | 100,191             | 163.5623 |
| 204           | 420,202  | 100,676             | 163.8785 |
| 205           | 419,531  | 101,080             | 164.2260 |
| 206           | 418,776  | 101,491             | 164.4231 |

| Radar<br>Time | Altitude | Horizontal<br>Range | Azimuth<br>degrees |  |
|---------------|----------|---------------------|--------------------|--|
| second        | feet     | feet                |                    |  |
| 207           | 417,909  | 102.273 164.520     |                    |  |
| 208 417.070   |          | 417,070 103,003     | 164.5552           |  |
| 209           | 416,197  | 103,601             | 164.4347           |  |
| 210           | 415, 316 | 104,051             | 164.3757           |  |
| 211 414,456   |          | 104,535             | 164.2191           |  |
| 212 413,530   |          | 105,193             | 164.1151           |  |
| 213 412,501   |          | 106,158 164.        |                    |  |
| 215 410,696   |          | 107,254 163         |                    |  |
| 218           | 407,234  | 108,380             | 164.1123           |  |

TABLE 2.11 POSITIONS OF SHIPS

\_\_\_\_\_

|                     |             |      | Given Position          |                                                  | Actual Position        |                                                 |
|---------------------|-------------|------|-------------------------|--------------------------------------------------|------------------------|-------------------------------------------------|
| Type of<br>Twilight | Date<br>GMT | Ship | Latitude                | Longitude                                        | Latitude               | Longitude                                       |
| AM                  | 26 Oct 62   | S-2  | 16 <sup>°</sup> 11.360' | 11 <sup>h</sup> 18 <sup>m</sup> 16 <sup>s</sup>  | 16° 13.295'            | 11 <sup>h</sup> 18 <sup>m</sup> 39 <sup>s</sup> |
| AM                  | 1 Nov 62    | S-2  | 16 <sup>0</sup> 52.5'   | 11 <sup>h</sup> 20 <sup>ia</sup> 32 <sup>s</sup> | 16 <sup>0</sup> 53.648 | 11 <sup>h</sup> 20 <sup>m</sup> 32 <sup>s</sup> |
| AM                  | 2 Nov 62    | S-4  | 16° 32.775              | 11 <sup>h</sup> 17 <sup>m</sup> 20 <sup>s</sup>  | 16 <sup>0</sup> 36.787 | 11 <sup>h</sup> 17 <sup>m</sup> 10 <sup>s</sup> |
| PM                  | 3 Nov 62    | S-1  | 14 <sup>0</sup> 59'     | 11 <sup>h</sup> 17 <sup>m</sup> 46 <sup>s</sup>  | 14 <sup>°</sup> 59'    | 11 <sup>h</sup> 17 <sup>m</sup> 46 <sup>s</sup> |



Figure 2.1 Nike-Cajun with sodium payload on launcher. (AFCRL photo)



Figure 2.2. Igniter Circuit 1.



.

Figure 2.3. Igniter Circuit 2.









Figure 2.6 Densitometer trace, 2 November (AM), altitude 121 km, time after release 84 seconds.

#### CHAPTER 3

#### RESULTS

### 3.1 STAR FISH PRIME

Nike-Cajun rockets containing sodium trail packages were launched at dusk (2024 hours local time), 8 July, and dawn (0609:30 hours), 9 July, that is, at the twilight preceding and succeeding the successful nuclear detonation, Star Fish Prime. Continuous trails of sodium were released, starting at 36 km (40 seconds after launch), continuing through apogee, until exhaustion of the chemical supply at approximately 100 km (260 seconds after launch). Both rockets were skin-tracked by the Range Tracker. The peak altitude on the first rocket was 132 km and on the second rocket 131 km.

Figures 3.1, 3.2, 3.3, and 3.4 show a series of photographs of the trail the evening before Star Fish Prime.<sup>a</sup> The approximate times of the photographs, after launch of the rocket, are 1, 3, 5, and 9 minutes, respectively. In Figure 3.1 the rocket is emitting sodium and is at the upper tip of the visible trail. The rocket is in the same relative position in the next figure. The lowest part of the trail is at

<sup>&</sup>lt;sup>a</sup>All photographs appearing at the end of this chapter were taken with the stereo cameras on Johnston Island with the exception of Figure 3.42 which came from a K-24 camera also located on Johnston Island.

the opposite end, coinciding with the end of the nearly complete circular portion. Starting with the lowest part of the trail, which clearly exhibits turbulence, and moving in a counterclockwise direction, followed by a sharp turn in the opposite direction and then continuing to the right, the trail can be followed to its end, a short distance past the rocket apogee. Figure 3.3 shows further development of the same pattern, with the addition of the relatively short downward portion of the trail. The trail is partially obscured by cloud in Figure 3.4. The results of this firing are depicted in Figure 3.5.

Figures 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 show a series of photographs of the trail at dawn following Star Fish Prime. The approximate times of the photographs, after launch of the rocket, are 2-1/2, 4-1/2, 6-1/2, 10-1/2, 14-1/2 and 20-1/2 minutes, respectively. Although the trail was partially obscured by cloud for much of the time, the photographs (particularly the negatives) are adequate for reduction of the data of the very important phenomena that were observed at this time. In Figure 3.6 the rocket is at the right and to its left is a U-shaped trail. In the next figure the rocket has traveled farther and created a longer trail. The U-shaped portion of the trail is covered by cloud but is still

faintly visible. The upper side of the U is developing into a bow which is enlarged and blown downward in the subsequent photographs.

In Figures 3.9 and 3.10, at the lower left top of the U, another section of the trail can be seen, joined to it by a shear region of approximately 180 degrees. It is obvious that the pattern in Figure 3.10 (say) is considerably different from the approximately 8-shaped pattern in Figure 3.4 which is more typical. Note the dramatic change in the descent portion of the trail between Figures 3.8 and 3.9. The descent section of the trail is deformed into a U similar in shape to that of the ascent portion. Compare Figure 3.10 with Figure 3.11.

Plotted in Figure 3.12 are the wind speeds and directions for this trail. The speeds (up to 180m/sec) are higher than usual, but it is the wind directions and shears which are completely unusual. The two approximately 180-degree shears which are usually separated by 20 to 30 kilometers in altitude are compressed into a single spira' (approximately 360 degrees) shear, at the top of which the wind is blowing toward the south instead of toward the west, which is always observed in this altitude region. No doubt this indicates

modification of the E- and F-region winds due to currents of electrons and ions induced in the north-south direction by charged particles trapped by the earth's magnetic field at higher altitudes.

### 3.2 BLUE GILL PRIME

A sodium trail was released at approximately 2020 hours (local time) on 25 July 1962. Although the subsequent ruclear test was unsuccessful, the data is of interest to see if any effects from Star Fish Prime persisted in this altitude region.

In Figures 3.13, 3.14, and 3.15 are shown successive phases of this trail at 3, 5 and 7 minutes after the launch of the rocket. In Figure 3.13 the position of the rocket (at the end of the diffuse, or broad section of the trail) is easy to identify. At the time of this photograph the rocket has just passed apogee. The trail can be followed downward, where it experiences a 180-degree bend, then upward where there is a bend of more than 90 degrees, right until a 180-degree bend is reached, and then left toward the center again, this being the lowest part of the trail. In Figure 3.15 the rocket has continued past apogee and made its descent. It can be seen in the photograph that the new part of the trail is higher than the other part which

crosses it. The marked turbulence in the lower portion of the trail is obvious in the photographs. In the vicinity of the upper altitude limit of turbulence, the photographs also illustrate the fact that, at a given pressure, turbulent diffusion is much more rapid than normal molecular diffusion.

The wind speeds and directions deduced from the above photographs are plotted in Figure 3.16. The wind pattern is almost normal in magnitude and direction, except for the superposition of an extremely strong (approximately 255 m/sec or 570 mph) wind toward the south at about 100 kilometers. This results in a strong north-south pseudo-shear due to the strong gradient in the wind speed in this direction.

### 3.3 BLUE GILL TRIPLE PRIME

The rocket scheduled for the evening twilight before Blue Gill Triple Prime had to be cancelled due to the heavy cloud cover at that time.

The rocket scheduled for the dawn twilight following this event was fired on 26 October 1962, at 0636 hours local time. The rocket and payload performance were completely normal. Since the solar depression at the time of launch was 9-1/2 degrees, the sodium was not visible until it reached an altitude above 90 kilometers. As time passed and the solar depression became less, the trail became sunlit

at lower altitudes. Sodium was emitted between about 50 kilometers and the rocket peak altitude of about 140 kilometers on the ascent of the flight and down again to about 90 kilometers on the descent.

Figures 3.17, 3.18, 3.19, and 3.20 show a series of photographs of this trail. The approximate times of the photographs, after launch of the rocket are 5-1/2, 7, 9-1/2, and 13 minutes, respectively. In Figures 3.17 the ascent portion starts near the center left side and can be followed to the center of the photograph. This portion exhibits the effects of atmospheric turbulence. It is also faint, as it was still within the earth's shadow. The peak is the widest portion and is just above the center of the photograph. The tip of the trail, near the bottom right corner of the figure, is the lower end of the descent portion. The pattern in Figure 3.18 is similar except that, due to a smaller solar depression angle, the lower parts of the ascent and descent are more clearly visible. In Figure 3.19 some of the trail is partially obscured by cloud. In Figure 3.20 atmospheric winds have spread the sodium over such a large region that a large part of the trail extends beyond the photograph.

It is of interest to watch the progress of the turbulent jets that have separated from the main cloud by the time the

exposure illustrated in Figure 3.17 was taken. The vertical motion is made apparent by a comparison of Figures 3.17, 3.18 and 3.19. As a negative temperature gradient is known to exist in this region, there can be little doubt that the gases in the globules are of a higher temperature than the ambient and that the motion is due to unstable convection. A comparison of Figure 3.19 with 3.20 shows that little vertical motion relative to the remainder of the cloud has taken place in the intervening 3-1/2 minutes, indicating that the convection has ceased and that the gases of the jets are approaching equilibrium with the ambient. The dimensions of the globular jets in Figure 3.20 have increased over those of Figure 3.19, suggesting that turbulent diffusion has, or is about to commence. There is also a very evident change in the density profiles of the globules between Figures 3.18 and 3.20.

Figure 3.21 shows the wind speeds and directions deduced from these photographs.

### 3.4 KING FISH

Three rockets were fired successfully after King Fish. One was fired on 1 November 1962, at 0638 hours local time

(H + 4-1/2 hours); the second was fired at 0638 hours, on 2 November (H + 28-1/2 hours); and the third at 1907 hours, on 2 November (H + 41 hours).

Figures 3.22, 3.23, 3.24, 3.25 show a series of photographs of the trail obtained at 0638 on 1 November 1962. The approximate times of the photographs after launch of the rocket are 4-1/2, 6-1/2, 8-1/2, and 11-1/2 minutes, respectively. Unfortunately, some sodium was obscured in each photograph due to scattered clouds moving across the field of view. In Figure 3.22 the lower portion of the photograph, including the lower ends of both the ascent and descent, is These parts of the trail are more obscured by clouds. clearly visible in Figure 3.23. The ascent starts as a . faint turbulent region near the center of the photograph, moves to the right, then turns to the top of the photograph, turns left to the left corner, and then moves to the peak of the trail, which is located near the center of the photograph. The descent can be traced similarly. From the pattern and rate of spread of the trail, it is obvious that marked wind shears and high wind speeds existed at the time. This deduction is confirmed by Figure 3.26, which shows the wind speeds and directions computed from these photographs.

Figures 3.27, 3.26, 3.29, and 3.30 show photographs of the trail obtained at 0638 on 2 November 1962. The approximate times of the photographs after launch of the rocket are 4-1/2, 7-1/2, 10, and 12-1/2 minutes, respectively. Again, there was some, but not serious, obscuration of the trail by scattered moving clouds. In Figure 3.27 the ascent portion is near the bottom of the photograph, it curves toward the peak and the descent section, which ends near the center of the photograph. In Figure 3.28 the pattern formed by the descent is almost identical in shape and orientation, but smaller, than that formed by the ascent. Most of the ascent has spread beyond the limits of the photograph in Figure 3.29, and Figure 3.30 contains little more than the central portion of the trail. The corresponding wind speeds and directions are given in Figure 3.31.

Photographs of the trail obtained at 1907 hours on 2 November 1962 (3 November GMT) are shown in Figures 3.32, 3.33, 3.34, and 3.35. The photographs were taken at 4, 6, 8, and 10-1/2 minutes after the rocket was launched. In Figure 3.32 the rocket is still emitting sodium and is located at the tip of the trail. There is considerable turbulence exhibited by the ascent portion, which is near the bottom of the photograph. Note that the Cajun exhaust trail

is also visible. This is fainter in the next photograph. Figure 3.33 provides an excellent guide to the winds present, because both the ascending and descending sections are complete, and both exhibit the key characteristics of the winds. Starting at the peak of the cloud (the broadest portion) and moving upward on the photograph, the first wind shear is encountered. This bends ascending and descending portions into apparently opposite directions. The second sharp shear is next encountered in both portions of the trail. Continuing along the two portions, a third shear is seen, below which considerable turbulence is observed. The wind speeds and directions deduced from these photographs are given in Figure 3.36.

### 3.5 TIGHT ROPE

One rocket was fired before Tight Rope, at 1907 hours local time, 3 November 1962 (4 November GMT). The photographs in Figures 3.37, 3.38, 3.39, and 3.40 are of the accompanying sodium release. They were taken 3-1/2, 5, 7, and 9 minutes, respectively, after the rocket was launched. The rocket flight was normal, and from radar tracking, was found to reach a peak altitude of 133 km. Unfortunately, the sodium was above a cloud of cirrus, as can be seen in

the photographs. Nevertheless, the photographs are reasonable and quite adequate for data reduction.

At the time of the flight, winds were very strong from ground level (about 20 knots) up to the upper limit of rawinsonde observations. This trend continued in the region in which measurements were made with the sodium trail. It is for this reason that the trail was quickly dispersed.

In Figure 3.37 the Cajun exhaust trail, exhibiting the effects of strong wind shears, overlays the sodium and constitutes most of the image. At the time of the photograph, the rocket had just passed its apogee and is located at the tip of the trail. The sodium may be more clearly identified in Figure 3.38, starting at the tip of the trail (the lower end of the descent) near the center of the photograph and moving down the photograph to the first kink, which corresponds to the peak. The smooth trail can then be followed toward the lower right corner, where it makes a sharp change in direction to the left (and at the same time exhibits the effects of turbulence). This part of the trail curves until it ends almost touching the image of the peak. The rest of the turbulent trails in the photograph are due to the rocket exhaust. Due to dispersion and cloud cover,

only portions of the sodium are visible in Figures 3.39 and 3.40.

The corresponding wind speeds and directions are shown in Figure 3.41.

### 3.6 DIFFUSION COEFFICIENT DATA

The sodium trail at dusk on 25 July was densitometered at 107, 112, 118, and 120 km, as indicated in Figure 3.42. Some difficulty was encountered because of low contrast between the trail and sky background. The diffusion coefficients obtained are given in Table 3.1, and plotted in Figure 3.43. In Table 3.1 the "Time After Release" indicates the interval after release of the sodium for which photographs were studied. The K-24 photographs were taken at 20-second intervals and the stereo at 60-second intervals. Data up to 160 seconds after release was used to obtain the diffusion coefficient. At later times the plot of  $r^2$  versus t deviated from a straight line, as predicted by Equation 1.12. The values at 112, 118, and 120 km are consistent with theoretical values for molecular diffusion. The curves of  $r^2$  versus t for 107 km are shown in Figure 3.44. The trail growth for about 100 seconds after release was due to molecular diffusion and yielded the values of the diffusion coefficient given in

Table 3.1. However, between 100 and 200 seconds the rate of growth rapidly increased due to the onset of turbulence. This gave an apparent diffusion coefficient which increased with time as indicated in Figure 3.43 (horizontal line at 107 km).

For isotropic (weak shear) turbulent diffusion the rate of growth is given by

$$r_{o}^{2} = \frac{8}{3} \epsilon t^{3} \left[ 1 + \ln \left( \frac{r_{o}^{2} \max}{2r_{e}^{2}} \right) - \ln \left( \frac{4/3 \epsilon t^{3}}{r_{e}^{2}} \right) \right] \qquad (3.1)$$

where  $\epsilon$  is the rate of viscous dissipation of turbulent kinetic energy, per unit mass (Reference 13). Equation 3.1 can be rearranged in the form

$$\frac{r_{o}^{2}}{t^{3}} = \frac{8}{3} \epsilon \left[ 1 + \ln \frac{3r_{o}^{2}}{8} - \ln t^{3} \right]$$
  
= A - B ln t<sup>3</sup> (3.2)

where A and B are constants.  $r^2/t^3$  versus  $t^3$  is plotted in Figure 3.45 for several isophotes. These curves should have negative slopes according to Equation 3.2, and it can be seen that as turbulence took control this condition was attained.

The trail at dawn on 2 November was photometered at a series of altitudes between 109 and 128 km, as shown in

Figure 3.46. Between 111 and 128 km the diffusion was molecular and the values of the coefficient are given in . Table 3.2. At early time, turbulence appeared to cease at 95 km. However, later exposures (say, six minutes after rocket launch) indicated visible turbulence as high as 109 km. A finite time for the onset of turbulence (particularly at higher altitudes) is usually observed. The diffusion coefficient for 109 km was obtained by using only photographs at early times before visible turbulence appeared. The values of the coefficients for 2 November are compared with theory and other experimental values in Figure 3.43 and agree well with both. Figure 3.47 illustrates  $r^2$  versus t for 125 km. The curves for the different isophotes remain linear until about 150 seconds after release time. An increasing slope after 150 seconds would indicate a departure from an  $r^2 \sim t$ dependence toward a r  $\sim$  t relation symptomatic of shear turbulent diffusion (Reference 13), while a decreasing slope would indicate that molecular diffusion was still dominant and the third term in Equation 1.12 was becoming important. In the example cite, however, there is no clear cut trend for t > 150 seconds, and one cannot determine whether any change in the slope of the  $r^2$  versus t curve is taking place.
| Altitude<br>(km) | Time of Release <sup>a</sup><br>(sec) | Film<br>Type | Time of<br>Photographs | Diffusion<br>Coefficient<br>(cm <sup>2</sup> /sec) | Time after<br>Release<br>(sec) |
|------------------|---------------------------------------|--------------|------------------------|----------------------------------------------------|--------------------------------|
| 107              | 104                                   | K-24         | 2024-2025              | $2.83 \times 10^{6}$                               | 136-196                        |
| 112              | 111                                   | <b>K-</b> 24 | 2024-2024:40           | $4.66 \times 10^{6}$                               | 129-169                        |
| 118              | 121                                   | <b>K-</b> 24 | 2024-2024:40           | $2.68 \times 10^{7}$                               | 119-159                        |
| 120              | 125                                   | <b>K-</b> 24 | 2024 - 2024 : 40       | $3.36 \times 10^7$                                 | 115-155                        |
| 120              | 125                                   | K-24         | 2024-2024:40           | 3.36 x 10                                          | 1                              |

TABLE 3.1 DIFFUSION COEFFICIENTS MEASURED WITH THE SODIUM TRAIL FROM ROCKET LAUNCHED AT 2020 LOCAL TIME 25 July 1962 (26 July GMT)

<sup>a</sup> Time after launch of rocket, from radar data.

| Altitude<br>(km) | Time of Release <sup>a</sup><br>(sec) | Film<br>Type | Time of<br>Photographs | Diffusion<br>Coefficient<br>(cm <sup>2</sup> /sec) | Time after<br>Release<br>(sec) |
|------------------|---------------------------------------|--------------|------------------------|----------------------------------------------------|--------------------------------|
| 109              | 106                                   | <b>K</b> -24 | 1641-1643              | $4.97 \times 10^{6}$                               | 74-194                         |
| 111              | 109                                   | <b>K-</b> 24 | 1641-1643              | 4.15                                               | 71-191                         |
| 112              | 111                                   | stereo       | 1641-1643              | 6.42                                               | 69-189                         |
| 114              | 114                                   | stereo       | 1641:30-1644           | $1.15 \times 10^{7}$                               | 96-246                         |
| 121              | 126                                   | stereo       | 1641-1643:30           | 3.98                                               | 54-204                         |
| 125              | 134                                   | stereo       | 1641-1644              | 5.93                                               | 46-226                         |
| 128              | 138                                   | stereo       | 1641-1643:30           | 8.05                                               | 42-192                         |

TABLE 3.2 DIFFUSION COEFFICIENTS MEASURED WITH THE SODIUM TRAIL FROM ROCKET LAUNCHED AT 0638 LOCAL TIME 2 November 1962

<sup>a</sup>Time after launch of rocket, from radar data.



- ---- -

Figure 3.1 Sodium trail at dusk before Star Fish Prime. 1 minute after rocket launch.



Figure 3.2 Sodium trail at dask before Star Fish Prime, 3 minutes after rocact launch.



Figure 3.3 Sodium trail at dusk before Star Fish Prime, 5 minutes after rocket launch.



. . . . . . .

Figure 3.4 Sodium trail at dusk before Star Fish Prime, 9 minutes after rocket launch.



Figure 3.5. Upper atmosphere wind speeds and directions at dusk before Star Fish Prime.



· . ·

Figure 3.6 Sodium trail at dawn following Star Fish Prime, 2<sup>1</sup>/<sub>2</sub> minutes after rocket launch.



Figure 3.7 Sodium trail at dawn following Star Fish Prime,  $4\frac{1}{2}$  minutes after rocket launch.



Figure 3.8 Sodium trail at dawn following Star Fish Prime  $6\frac{1}{2}$  minutes after rocket launch.



Figure 3.9 Sodium trail at dawn following Star Fish Prime,  $10\frac{1}{2}$  minutes after rocket launch.



Figure 3.10 Sodium trail at dawn following Star Fish Prime,  $14\frac{1}{2}$  minutes after launch.



Figure 3.11 Sodium trail at dawn following Star Fish Prime,  $20\frac{1}{2}$  minutes after launch.



Figure 3.12. Upper atmosphere wind speeds and directions at dawn following Star Fish Prime.



Figure 3.13 Sodium trail at dusk before Blue Gill Prime, 3 minutes after rocket launch.



Figure 3.14 Sodium trail at dusk before Blue Gill Prime, 5 minutes after rocket launch.



Figure 3.15 Sodium trail at dusk before Blue Gill Prime, 7 minutes after rocket launch.



----

Figure 3.16. Upper atmosphere wind speeds and directions at dusk before Blue Gill Prime.



Figure 3.17 Sodium trail at dawn following Blue Gill Triple Prime,  $5\frac{1}{2}$  minutes after rocket launch.



Figure 3.18 Sodium trail at dawn following Blue Gill Triple Prime, 7 minutes after rocket launch.



Figure 3.19 Sodium trail at dawn following Blue Gill Triple Prime,  $9\frac{1}{2}$  minutes after rocket launch.



Figure 3.20 Sodium trail at dawn following Blue Gill Triple Prime, 13 minutes after recht launch.



Figure 3.21. Upper atmosphere wind speeds and directions at dawn following Blue Gill Triple Prime.



Figure 3.22 Sodium trail at dawn (4<sup>4</sup><sub>2</sub> hours) after King Fish, 4<sup>4</sup><sub>2</sub> minutes after rocket launch.



Figure 3.23 Sodium trail at dawn  $(4\frac{1}{2} \text{ hours})$  after King Fish,  $6\frac{1}{2}$  minutes after rocket launch.



Figure 3.24 Sodium trail at dawn  $(4\frac{1}{2} \text{ hours})$  after King Fish,  $8\frac{1}{2}$  minutes after rocket launch.



Figure 3.25 Sodium trail at dawn (4  $\frac{1}{2}$  hours) after King Fish, 11  $\frac{1}{2}$  minutes after rocket launch.



Figure 3.26. Upper atmosphere wind speeds and directions at dawn (4-1/2 hours) after King Fish.



Figure 3.27 Sodium trail at dawn (28  $\frac{1}{2}$  hours) after King Fish,  $4\frac{1}{2}$  minutes after rocket launch.



Figure 3.28 Sodium trail at dawn  $(25\frac{1}{2}$  hours) after King Fish,  $7\frac{1}{2}$  minutes after rocket launch.



Figure 3.29 Sodium trail at dawn  $(28\frac{1}{2} \text{ hours})$  after King Fish, 10 minutes after rocket launch.



Figure 3.30 Sodium trail at dawn  $(28\frac{1}{2} \text{ hours})$  after King Fish,  $12\frac{1}{2}$  minutes after rocket launch.



Figure 3.31. Upper atmosphere wind speeds and directions at dawn (28-1/2 hours) after King Fish.



Figure 3.32 Sodium trail at dusk (41 hours) after King Fish, 4 minutes after rocket launch.



Figure 3.33 Sodium trail at dusk (41 hours) after King Fish, 6 minutes after rocket launch.



Figure 3.34 Sodium trail at dusk (41 hours) after King Fish. 8 minutes after rocket launch.



Figure 3.35 Sodium trail at dusk (41 hours) after King Fish,  $10\frac{1}{2}$  minutes after rocket launch.


Figure 3.36. Upper atmosphere wind speeds and direction at dusk (41 hours) after King Fish.

.



Figure 3.37 Sodium trail at dusk prior to Tight Rope,  $3\frac{1}{2}$  minutes after rocket launch.



Figure 3.33 Sodium trail at dusk prior to Tight Rope, 5 minutes after rocket launch.



Figure 3.39 Sodium trail at dusk prior to Tight Rope, 7 minutes after rocket launch.



Figure 3.40 Sodium trail at dusk prior to Tight Rope, 9 minutes after rocket launch.



Figure 3.41. Upper atmosphere wind speeds and direction at dusk prior to Tight Rope.



Figure 3.42 Sodium trail 26 July 1962 (PM), including altitudes at which it was densitometered.









Figure 3.45 Plot of  $r^2/t^3$  versus  $t^3$  for isophotes between 0.2 and 0.8 for trail of 26 July (PM), altitude 107 km.



Figure 3.46 Sodium trail 2 November (AM), including altitudes at which it was densitometered.





## CHAPTER 4

Zonal wind components (Reference 2) are shown in Figure 4.1. These represent a typical wind pattern as a function of latitude for summer and winter, respectively. Note that the directions given are those from which the wind comes, which is the meteorological convention, and opposite to that used in this report. Vertical lines have been put in at 16.5 degrees latitude to indicate the location of Johnston Island. Very little wind data is available at high altitudes in the tropics. At the highest altitudes winds come from the east. There is a shear, which usually lies between 90 and 110 km, and whose exact altitude is determined by latitude and season, among other factors. Below this shear the wind is from a westerly direction.

In Figure 3.5 are shown the wind speeds and directions obtained for the evening before Star Fish Prime. Although the upper wind shear was higher than average, the wind speeds and directions observed are otherwise typical of summer conditions at this latitude. The winds shown in Figure 3.12 for July 9, morning, exhibit the highly disturbed conditions

following Star Fish Prime High wind speeds including very marked pseudoshears (or sharp changes in speed), were coupled with a unique pattern of wind directions. A double shear (or corkscrew change through 360 degrees) between 85 and 100 km was observed, instead of two approximately 180-degree shears, which are usually separated by about 30 km in altitude. Above this the wind was directed to the south instead of the west, as is invariably observed in this altitude region. This could be the return of material blasted to the north earlier. Ionized material travelled north and downward immediately following the detonation. The direction indicates the effect of magnetic field alignment on the motion of charged particles.

The wind speeds and directions obtained for 25 July, evening, are shown in Figure 3.16. The wind pattern was reasonably typical except for the presence of a north-south pseudoshear indicated in the previous chapter.

The high-speed north-south wind suggests the effect of a magnetic disturbance, inducing currents in the E-region which, by means of collisions with the neutral atmospheric gases, cause the observed wind. The observed wind was in some ways analogous to that measured the morning after Star Fish Prime, and it is tempting to postulate that it was due

to some residual effects from Star Fish Prime, for example, related to high-altitude trapped radiation. However, there are important differences in the winds. Following Star Fish Prime the wind was to the south at all altitudes (for which measurements were made) above 95 km. In this case, there was a strong wind to the south only between about 95 and 105 km.

Inspection of values of  $K_p$  (geomagnetic index) for the month of July shows that, by coincidence, the wind measurements were made at the time of highest magnetic activity for the month of July (6<sup>+</sup> at 0600Z on 26 July). This unusual activity was probably related to an observed sudden ionospheric disturbance

The wind patterns following the later nuclear detonations were not simple. This is probably due to three main reasons. One is that later detonations were of smaller yield, resulting in smaller, and hence less clearcut, perturbations. Secondly, the detonations were at lower altitudes, resulting in complicated hydrodynamical effects rather than the relatively simpler magnetohydrodynamical effects which dominated the Star Fish Prime event. Finally, the later detonations were so close together in time, including some large airdrop detonations, that changes in wind patterns were not simply related to a single detonation.

The wind measurements after Blue Gill Triple Prime were made at the following dawn, approximately six hours forty minutes after the detonation. (The data plotted in Figure 3.21 constitutes a revision of that in the interim report.) A comparison between the revised data and the rather limited data collected prior to the tests indicates that there was no significant perturbation in the wind patterns as a result of Blue Gill Triple Prime. However, the turbulent jets illustrated in Figures 3.18, 3.19, and 3.20 are unusual and possibly indicate enhanced turbulence persisting after the detonation.

The three occasions (Table 2.2) at which winds were measured following King Fish were 4-1/2, 28-1/2, and 41 hours after the detonation. Revised results are shown in Figures 3.26, 3.31, and 3.36. The results are puzzling since the perturbation appears to increase for some time before starting to return to normal again. The wind vector gradually rotated clockwise. On 1 November morning (H + 4-1/2 hours) it was displaced about 90 degrees clockwise compared with what would be expected. The following morning (H + 28-1/2 hours) the directions were little different up to 110 km, but above that altitude there was a further displacement of about 90 degrees. The evening (3 November PM) above 115 km the directions started to return to normal. Between 115 and

100 km they are approximately the same as in the morning, followed by a curious transition to an almost normal set of directions between 80 and 90 km.

The next measurement was made 24 hours later (4 November PM) just before Tight Rope. The maximum wind speed, 180 m/sec, was still high. The altitude separation of the wind shears (30 km) was normal, but their actual altitudes (97 and 127 km) were about 20 km above even their average summer altitudes. In early November the shears would normally be about 15 km below their summer altitudes, as the atmosphere cools toward its winter conditions. This suggests that residual energy deposition in the atmosphere following the nuclear detonations caused the change.





## CHAPTER 5

## CONCLUSIONS AND RECOMMENDATIONS

Wind speeds and directions, in the altitude range 80 to 130 km, have been determined from all eight sodium trails discussed in this report. Diffusion coefficients and turbulence distribution have been obtained for two of the trails. Both the wind velocities and diffusion coefficients can be used to determine the rate and direction of dispersal of the nuclear debris. The diffusion coefficients obtained depend strongly on the amount and type of turbulence present. Turbulence can change the magnitude of diffusion coefficient by as much as one or two orders of magnitude at a particular altitude. Because of the variation of these properties with altitude, long-term debris tracking (several days) is complicated unless the precise altitude of the material is known.

In addition, it has been possible to study intermediate and long-term effects of nuclear detonations, of various yields at several different altitudes, on winds in the ionosphere. The most pronounced and clear-cut effects were caused by Star Fish Prime. Blue Gill Triple Prime did not produce significant long-term effects on the wind circulation pattern between 80 and 130 km. All three measurements following King Fish showed winds that were unusual. However, their interpretation and variation with

time are not simple. This probably should not be surprising, since the measurements followed a period when a number of nuclear devices were detonated at various altitudes, separated only by short intervals of time. The perturbations of the wind circulation patterns caused by a nuclear detonation may be greater during October and early November, which are part of a period of transition between summer and winter wind flow patterns.

It is recommended for future high-altitude nuclear tests that wind measurements be made, not only at dawn and dusk using sodium trails, but also during the very night of the detonation, minutes before, and after, the event. Chemicals, such as nitric oxide and trimethyl aluminum, which form a persistent glow as a result of chemiluminescence, could be used.

## REFERENCES

1. L.B. Smith; "The Measurements of Winds Between 100,000 and 300,000 Feet by Use of Chaff Rockets"; J. Meteor., 1960, Vol. 17, pages 296-310; Unclassified.

2. R.J. Murgatroyd; "Winds and Temperatures Between 20 km and 100 km -a review"; Quart. J.R. Meteor. Soc., 1957, Vol. 83, pages 417-458; Unclassified.

3. E.S. Batten; "Wind Systems in the Mesosphere and Lower Ionosphere"; J. Meteor., 1961, Vol. 18, pages 283-291; Unclassified.

4. K.S.W. Champion and S.P. Zimmerman, "Winds and Turbulence at 200,000 to 400,000 Feet from Chemical Releases"; Proc. of National Symposium on Winds for Aerospace Design, AFCRL-62-273 (II), 1962; Air Force Cambridge Research Laboratories, Bedfcrd, Massachusetts; Unclassified.

5. J.F. Bedinger, E.R. Manring, and S.N. Ghosh; "Study of Sodium Vapor Ejected into the Upper Atmosphere"; J. Geophys. Research, 1958, Vol. 63, pages 19-29; Unclassified.

6. E. Manring and others; "Some Wind Determinations in the Upper Atmosphere Using Artificially Generated Sodium Clouds"; J. Geophys. Research, 1959, Vol. 64, pages 587-591; Unclassified.

7. E. Manring and others; "Upper Atmospheric Wind Profiles Determined from Three Rocket Experiments"; GCA Technical Report, No. 61-1-N, February 1961; Geophysics Corporation of America, Bedford, Massachusetts; Unclassified.

8. S.P. Zimmerman, "Upper Atmosphere Turbulences Near the 100 km Level"; Annales de Geophysique, Jan-March 1962, Vol. 18, No. 1; Unclassified.

9. S.P. Zimmerman, S.K. Majumdar and K.S.W. Champion; "Turbulence in the Upper Atmosphere"; Fluid Dynamics Div. of American Physical Society, Baltimore, March 1961; Unclassified.

10. S.P. Zimmerman and K.S.W. Champion; "Shear Turbulence in the Upper Atmosphere"; First Western National Meeting of American Geophysical Union, Los Angeles, December 1961; Unclassified.

11. S.K. Majumdar, S.P. Zimmerman and K.S.W. Champion; "Turbulence in the Upper Atmosphere"; Project Firefly, Semiannual Report, AFCRL Part I, July 1961; Air Force Cambridge Research Laboratories, Bedford, Massachusetts; Unclassified. 12. S.P. Zimmerman and K.S.W. Champion; "Molecular and Turbulent Diffusion in the Upper Atmosphere"; Project Firefly, AFCRL 256, Part I, 1961; Air Force Cambridge Research Laboratories, Bedford, Massachusetts; Unclassified.

13. S.P. Zimmerman and K.S.W. Champion; "Transport Processes in the Upper Atmosphere"; J. Geophysical Research, 1963, Vol. 68, page 3049; Unclassified.

14. E. Manring and H. Knaflich; "Some Measurements of the Coefficient of Diffusion in the Upper Atmosphere"; GCA Technical Report, No. 61-3-N, March 1961; Geophysics Corporation of America, Bedford, Massachusetts; Unclassified.

15. A.G. Weisner; "Diffusion of an Artificial Cloud of Neutral Atomic Sodium"; Unpublished memo. Evans Signal Lab, Belmar, New Jersey, 9 August 1951; Unclassified.

16. C.D. Shane; Lick Obs. Bull., 1941, Vol. 19, pages 119; Unclassified.

17. M. Minnaert; "The Sun"; U. Chic. Press, page 92; Unclassified.

18. T.M. Donahue and A. Foderaro; J. Geophys. Research, 1955, Vol. 60, page 75; Unclassified.

19. "Development and Testing of Ignition System for Rocket-Borne Sodium Vaporizer"; GCA Technical Report, No. 60-1-N, Nov. 1960; Geophysics Corporation of America, Bedford, Massachusetts; Unclassified.