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ABSTRACT 

In an enquiry into the effects of precursor-type and other nonideal blast waves on 

the loading of structures,  attention is fixed on the effects of slow rise times.    This is ap- 

proached through the medium of sound-pulse theory,  and there is derived a very simple 

rule for accounting for their effects.    It is then argued that this rule,  exact in the acoustic 

case,  is approximately correct for shocks of finite strength. 

In the course of the argument a calculation is made of loading on a structure for a 

step-function incident wave. This result is compared with shock-tube results and various 

standard estimates of loading. 

Finally,  it is pointed out that consideration of slow rise times touches on but part of 

a larger problem. 
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ON THE EFFECT OF SLOW RISE TIMES ON THE BLAST LOADING OF STRUCTURES 

Statement of the Problem 

Since the results of Operation BUSTER brought the matter drastically to our attention, 

it has become more and more evident that shock waves do not always have the ideal behav- 

ior described in textbooks (Fig.   la).    A shock wave is usually described as a pressure 

wave characterized by an almost instantaneous rise in pressure.    That such waves do exist 

there is no doubt; they have been observed repeatedly and used both in experiments with 

shock tubes and with high explosives.    On the other hand,  while such waves may result 

from a nuclear explosion they do not always.    In retrospect,  nonideal shock fronts can be 

read into some pressure records from nearly every full-scale operation from SANDSTONE 

on. 

h 
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<u 
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Time 

Fig.  la -- Ideal shock wave 

Several possible explanations of nonideal shock waves have been proffered,  of which 
1 2   3 the hot-layer theory developed simultaneously at NOL1 and elsewhere •     seems most sat- 

isfactorily to describe observed phenomena.     This theory postulates an interaction between 

the ground and thermal radiation from the bomb which results in a layer of hot air along 

the ground in front of the advancing shock wave.    Through this high velocity   channel energy 

leaks out and forms a precursor,  which,  as its name implies,  is a wave running before the 
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principal shock.    In the earlier stages of development the precursor and principal shocks 

are separate,  and a gauge in this region will respond first to one and then to the other, 

yielding a pressure time wave as in Fig.   lb.    As the shock travels further from the explo- 

sion,  together with a decrease in pressure goes a difference in the character of the pre- 

cursor phenomenon.    The precursor merges with the principal shock,  yielding a single- 

pressure wave,  not an ideal shock with a sharp front but one with a slow rise time and 

rounded peak (as in Fig.   lc) whose properties vary with the height from the ground. 
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Fig.  lb -- Typical gauge record in the 
early precursor region 
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Fig.  lc -- Typical gauge record in the 
late precursor region 

CONFIDENTIAL 



fN 

CONFIDENTIAL 

The state of knowledge of the precursor is at present in the yes-or-no stage; one can 

predict whether or not a precursor will arise under a particular set of burst conditions, 

but cannot predict with confidence the degree to which it will affect pressure waves.    Indica- 

tions are that the stage represented in Fig.   lb will be present in the 60 to 20 psi overpressure 

range,   while that in Fig.   lc will obtain in the 12 to 8 psi overpressure range.    The interme- 

diate 20 to 12 psi range will divide itself between the two ranges in a manner depending on 

the burst height and yield of the weapon. 

A question of considerable importance in the projected use of nuclear weapons is how 

the degradation of blast waves by precursors will affect the loading and hence the response 

of structures exposed to them.    It is a very difficult question,  one to which this report 

does not propose to give a complete answer:   the intention is to attack a part of the problem 

that can be treated in the hope that a partial answer will help the complete answer to come 

sooner. 

In the present report only the lower range of pressures is considered,  principally 

because it is easier conceptually,  although fortunately it includes a large fraction of the 

number of structures of military interest.    (The only kind of above-ground structure whose 

index of vulnerability12 exceeds 14 psi is reinforced concrete structures of earthquake - 

resistant design. )    The incident wave is treated as if it were a plane wave perpendicular 

to the ground, at least in the neighborhood of the structure in whose loadings one might be 

interested.    For the sake of the present argument let it be assumed that it is possible to 

estimate reasonably well the loads resulting from pressure waves with zero rise time,   so 

that the only remaining difference between the nonideal and the ideal shock wave is in the 

front itself.    Therefore,  the phenomenon in Fig.   lc has been idealized to that in Fig.   2, to 

wit,  a flat-topped wave with a linear rise in pressure to its maximum.    This pressure wave 

is fully described by the rise time and by the ratio of the overpressure of the wave,  p,  to 

the ambient air pressure, P .        _^,|      |^_ rise time, t 

a» 
u 
3 
CO 
CO 

p, overpressure 

P , ambient air pressure 

Time, t 
Fig. 2 -- Idealization of nonideal shock wave 
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For one particular instance    one can calculate the loads such a wave would produce 

on a structure,  using the sound-pulse theories developed by Friedlander4 and by Keller 

and Blank. 5   This is the case in which the overpressure, p,  is much smaller than the am- 

bient pressure,  P ,  and the loads are measured about the central portion of a long (or two- 

dimensional) building struck normally by the blast wave.    The loads in these cases can be 

determined exactly for early times   and approximately for a short while thereafter.    The 

purpose of this report is to consider how such wave fronts will influence the loads on struc- 

tures subject to them.    We shall present and discuss the results of calculations in the acous- 

tic case and shall estimate their applicability to finite shocks under actual conditions. 

The Sound-Pulse Theories 

Independent theories have been developed by Friedlander4 and by Keller and Blank, *> 

each of which describes the diffraction and reflection of sound pulses by wedges.    In each 

it is necessary to find a solution of the wave equation subject to appropriate conditions at 

the surfaces of the wedge and to the presence of incident and reflected waves.    The nature 

of such an interaction of a sound pulse with a wedge is indicated in Fig.  3:   in region I 

only the incident wave is present, in region II there is also a reflected wave,  and in region 

III a centered rarefaction and compression describes the effect of the corner. 

r\ 

III 

IV 

II 

Fig.  3 -- Interaction of a shock 
wave with a wedge 
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Keller   solves the problem of distribution of pressures in region III by performing 

a conical transformation on the wave equation,  resulting in a problem which can,  in prin- 

ciple,  be solved by the usual methods of potential theory.    To extend the results to other 

than flat-topped pressure waves,   Keller employs Duhamel's Theorem.    Friedlander's 
4 6 

solution is based on a much earlier paper by Sommerfeld on X-ray diffraction. Al- 

though the concepts expressed are not as clearly evident as in Keller's paper, the re- 

sults are expressed as a definite integral involving the shape of the incident pulse; and 

for this reason, Friedlander's formulation is used as the basis of this report. That 

Friedlander's and Keller's methods give the same answers we have assumed from the 

Uniqueness Theorem and the identity of boundary conditions, but have not succeeded in 

showing the results to be mathematically identical. 

For a right-angled wedge,  Friedlander's expressions can be manipulated to describe 

the compression-rarefaction wave in region III in the form: 

(1) p=   |     P(ct - r cosh b) q!(b) db, 
h I 

"^ where 

1       -1 (     sin 2TT/3 sinh 2b/3    ) 
q(b) ■ "-tan      | cos 2(0 - 0»)/3 - cos 2TT/3 cosh 2b/3j 

1       -l( sin 2TT/3 sinh 2b/3    ) 
~ ir (COS 2(0 + 0')/3 - cos 2rr/3 cosh 2b/3 j   ' 

and 

q(0) = 0. 

In this formula   0 is the angle of measurement (0° and 270° on the surfaces of the 

wedge in Fig.  3) and 01 is the direction of travel of the incident wave (180° in Fig.  3). 

The expression,  P(ct - r cos (0 - 01)), describes the incident wave in regions I and IV. 

When 0! = 0   the two terms in q(b) are alike and only one is used. 
) 

For a simple step-function wave (t   = 0 in Fig.   2) equation 1 becomes 

p = J    2 qi(b) db = q(b2), 

where 

b    = cosh      ct/r. 
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The interesting and useful aspect of this solution is that the time and space vari- 

ables always occur in the combination ct/r: 

(2) p = p (ct/r,   0,   0'). 

These functions have been calculated for the conditions t 

0 = 0,   270°; 

0' = 0,   180°; 

and are plotted in Figs.  4a and 4b. 

If,   instead of being a simple step function,  the incident wave takes a time ct    = a 

to rise to the flat top,  we have 

(3) P(z) =0       z < 0 

P(z) not specified        0 < z < a 

P(z) =1       z >a 

Thus for ct - r £ a,  equation 1 becomes 

'0 

Integrating by parts    we get 

JO 

2 P(ct - r cosh b) qf(b) db . 

p  = P(ct - r cosh b) q(b) 
0       Jo 

b
2 

P'(ct - r cosh b) q(b) d(r cosh b) . 

The first term vanishes at both limits.    In the second term,   substituting ? = r cosh b we 

get 

f (4a) p  =   I       P'(ct -?)p (£/r)d? . 

If, on the other hand, ct - r > a we would have arrived at the expression, 

•ct 
(4) P'(ct -S)p(S/r)dC . 

fct-a f Jd 

In these figures,  and hereafter,  all overpressures are expressed as normalized 
pressures,  p/p    ,   ie,   divided by the strength of the incident wave. 
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Fig. 4a -- Diffraction pressure corrections for top of wedge 
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Fig. 4b -- Diffraction pressure corrections for front and back of wedge 
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This expression is actually equivalent to equation 4a because of the condition that 

P(z) = 0       z < 0 , 

so it will be used henceforth. 

The physical meaning of equation 4 is that if the rise is not instantaneous then the 

resultant pressure at a point is an average of p(ct/r) over the range from ct - a to ct, 

weighted according to the factor Pf(ct - £). 

Thus, if the rise is a double jump P!(z) becomes the sum of two Dirac delta func- 

tions.and the resulting strength of the diffracted wave at any point is the arithmetic aver- 

age of the values p(ct/r) and p(ct-a/r).    Again,  if the rise is a linear rise, 

P(z) = 0 z < 0 

(5) P(z) = z/a       0 < z < a 

|^> P(z) =1 z >a 

then Pf(z) = l/a,  and the resultant pressure becomes the average value of all values of 

p(ct/r) between ct-a and ct. 

The conclusion expressed in equation 4 is a very important one,  essential to the 

whole of the following argument. 

Application of the Theory 

As it stands the sound-pulse theory is applicable only to infinite wedges.    Fortu- 

nately,  however,  acoustic theory is a linear theory:   it admits direct superposition of 

solutions.    This fact will be used to make the results indicated above apply to a two- 

dimensional building.    To illustrate its use let us consider a building whose length in 

the radial direction is twice its height. 

A space-time plot for such a building is outlined in Fig.   5.    The vertical scale 

represents position and the horizontal scale,  time.    No pressure contours are shown, 

but the lines A to C represent waves traveling over various portions of the structure. 

When an acoustic shock strikes and reflects from such a structure    the pressure 

on the front doubles (area I,  Fig.  5).    The wave front of the rarefaction relieving this 

pressure is seen as line A.    Lines B and C represent the shock fronts traveling over 

the top and back faces of the building.    In regions II and III   the pressure distribution 

CONFIDENTIAL 13 
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Prepared by 

Sandia Corporation 
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ct Normalized time,  ■—■ 
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Fig.  5 -- Space-time plot of pressures on 
a 2:1 building 

14 CONFIDENTIAL 



1 

CONFIDENTIAL 

consists of a superposition of a wave centered at X on a constant pressure of 2 in region 

II and 1 in region III.    In region IV the reflection of the rarefaction must also be con- 

sidered; it appears as a rarefaction wave centered at Y,   which is the point X imaged in 

the ground. 

In regions I to IV the pressure is known exactly,  but not in any other region.    Sound- 

pulse theory at present permits the calculation only of the diffraction of a plane wave,  and 

regions like that to the right of C have the contribution of the diffraction of nonplane waves. 

Nevertheless,  the values of pressures along the lines J and K are known up to time ct = 3H* 

because of the interesting and useful fact (Fig.  4) that a centered diffraction wave approaches 

the value 2/3 of the incident pressure at the apex of a right-angle wedge on which it is 

impinging.    Thus,  the value of pressure along the line J is 

2 for the reflection on the front face, 

less 2/3 for the wave centered at X t 

less 2/3 of the wave centered at Y. 

The force or average pressure on any surface of the structure can be obtained from 

Fig.  5 by averaging over a vertical line.    It can be calculated exactly for all times, 

ct 5 2H,  and can be estimated for ct < 3H. 

A detailed space-time plot for a step-function acoustic shock (equation 6) is shown 

in Fig. 6. Pressure profiles derivative from it are shown in Fig. 7, and are integrated 

to get the force-time curves shown in Fig.   8. 

Figure 8 shows that the initial portions of the force-time curve are linear.    That 

such a thing is reasonable can be seen as follows. 

From Fig.  6 it is evident that,  p(ct/r,   270°,   180  ) being a wave centered at X,  the 

force on the front is 

Fp(t) ■ 2 - { p(ct/r, 270°, 180°) dr 

(6) 

-»r ■2-^j    p(l/€, 270°, 180°) d€ . 

Thus,   initially the force on the front face decreases linearly with time as shown in Fig.   8. 

It is convenient to express times as normalized times,  ct/H,  ie,  divided by the 
time necessary for the shock to travel a distance equivalent to the height of the structure. 
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Fig.  6 -- Space-time plot of loading on a 2:1 building 
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Similarly,  on the top: 

FT(t) = ^ <1 + p(l/C,  0°,   180°) d? ■*K 
and the force on the top face increases linearly with time. 

This whole process could be repeated for other types of waves,  especially that of 

Fig.   2.    However,  an analysis based on equation 4 shows that this process is not neces- 

sary.    If the forces on the various faces of a structure are known for an incident wave 

with an abrupt rise,  a step-function incident wave,   the forces for incident waves with 

other rises can be derived from the first in a simple manner analogous to that of equation 

4.    We shall demonstrate that this result applies exactly for early times and infer that it 

also applies for later times. 

Using equation 4 in an equation of the form of equation 6,   we find that the total force 

on the front face becomes 

i fct f 
"Jo   X 

1 f HJo 

Ct 
P»(ct -€)p(€/s)df ds 

et-a 

ct 
p(?/s)ds>d? ; 

and thus, 

J*ct 

ct-a 
(8) F   (t) =    I P«(ct -?) FF(£)d€ . 

Jet-a 

The same result can be shown for the top face. 

We have therefore come to the conclusion,   expressed analytically in equation 8, 

that total forces on the various faces of a structure are related to the same forces re- 

sulting from a step-function wave by a simple weighted average,   whose weights depend 

on the method of rise of the incident-pressure pulse.    This conclusion has been verified 

for early times,  ct < 2H,  and it is a logical induction to expect that it should be true for 

later times,  it only being necessary to assume that all later pressures can be expressed 

as the sum or integral of a finite number of centered waves. 
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The Effects of a Slow Rise 

In Fig.   8 we have seen what the loads will be on a 2:1 structure if struck by a step-- 

function wave.    Let us apply the methods of equation 8 to those results and find out what 

these loads will be like if the structure is struck by a slow rise wave. 

At this point we must assume a rise time and relate it to the time scale already 

being used,  one based on the structural dimensions.    For the sake of example let us as- 

sume two values:   a = ct    =.4Hand a = H.    (The first might,  for instance,  represent a 

a wave with a rise time of 10 msec impinging on a structure 30 ft high. )   The results are 

shown in Figs.  9 and 10.    It is evident that the maximum pressures on all faces are low- 

ered and delayed, the longer the rise time the greater the effect.    Actually, the reduc- 

tion of pressure is not unexpected,  and the assertion that it must be so has been used 

as an argument that slow rise waves may not be as damaging as step-function waves of 

the same amplitude. 

Comparison with Previous Estimates 

In the course of the development of the art    various empirical means have been 

devised for estimating blast loads on structures and for correcting these estimates for 

the effects of finite rise times.    We wish here to compare these estimates with the re- 

sults expressed in Fig.  8 and equation 8. 

7 
A linearized estimate has been developed by Armour Research Foundation,     which 

is based on shock-tube data and information on the Air Force structures in GREENHOUSE. 

In this estimate the front face load is approximated by two lines,  one representing the 

pseudo-steady state pressure (average pressure due to wind alone) and one a straight 

line connecting the reflected overpressure at zero point to the first at a time related to 

the height of the structure and called the clearing time: 

t    = 3H/c    . 
c '   r 

Top face pressures are approximated by two lines,  one again being the pseudo-steady state 

pressure and the other a straight line joining the zero zero point with the first line at a 

time related to the length of the structure: 

t = L/U . 
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Fig. 9 -- Correction of forces for a finite rise 
time, ct   = 0. 4H 
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Fig.  10 -- Correction of forces for a finite rise 
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IQ 

In Fig.   11 this estimate is compared with the calculation.    The extent of disagreement 

is not large and would probably seem less if the time scale were compressed.    This same 

estimate has been adopted by M. I. T.  for use in a forthcoming manual on protective con- 
8 9 

struction.      We in the Sandia Corporation have suggested a somewhat different estimate 

also based on shock-tube data. The differences between it and the Armour estimate are 

principally a matter of method and detail. The Sandia estimate will agree with the cal- 

culation from sound-pulse theory because it was in part based on that calculation. 

To correct for the effect of a slow rise time on front-face loads,  Armour suggests 

drawing a third line from zero zero to a point representing a pressure equal to the re- 

flected pressure at a time equal to the rise time.    The area remaining under the several 

curves is taken as the estimate of loading.    No correction is made on the top face. 

A somewhat related method, which is implied in AFSWP-226, even if not explicitly 

stated, is to correct for slow rise by drawing a straight line from zero zero to intersect 

the otherwise predicted loading curve at a time equal to the rise time. 

Both of these possible estimates will underestimate the resultant maximum force 

on the building; or,  expressed otherwise,  both will overestimate the effect of the slow 

rise.    This can be seen in Figs.   12 and 13,  where the calculated load is compared to the 

l\^ other two proposed estimates.    The Armour proposal does not make as great an error in 

maximum pressure level,  but it does make an error in the time at which the maximum 

occurs.    The Sandia estimate makes a greater pressure error but no time error (Table I). 

Neither estimate makes any allowance for the changes in top-face loading implied in 

Figs.   9 and 10. 

TABLE I 

Effects of Slow Rise as Predicted and Calculated 

t   = .4 H r /c t    = H/C r        ' 

A P (calc) .08 .20 

AP (ARF) . 12 .29 

AP (SC) . 15 .38 

T        (Calc) max*         ' .40 1.00 

T        (ARF) max           ' .38 .86 

T         (SC) max 
.40 1.00 
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Fig.  11 -- Comparison of Armour linearized estimate 
of forces with calculation 
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Fig. 12 -- Comparison of various estimates of the effect 
of a slow rise, ct    ■ 0. 4H r 
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Applicability to Finite Shocks under Actual Conditions 

A heading such as this implies not only that the effects of slow rise times might 

be somewhat different for finite shocks than for acoustic shocks,  but also that actual 

conditions might be out of the ordinary in some other respects. 

The loading of structures with finite step-function shocks is just the problem to 
10 

which shock-tube data give an answer. The calculated results for a front surface are 

compared to some of these data in Fig.   14.    The most obvious departure of finite shocks 

from the calculated result of an acoustic shock is in the initial reflected pressure on the 

front face.    This correction is easily made by using the reflection factor for finite shocks: 

'7P^ + 4 p 
R. F.   = 2 " (

?Po + 4 

)  7P    + \       o 

Thereafter the forces from finite shocks decrease in an approximately linear manner, 

although possibly with a slightly different slope than in the acoustic case. 

That the simple result of equation 8 is true depended upon the various diffraction 

I^v waves being centered waves (ie,  describable in the form p(ct/r)) and that the acoustic 

theory results in a linear integral equation.    There is every reason to expect that finite 

shocks,  being in other respects nonlinear,   will not yield diffraction loadings in such 

simple linear forms as equation 1.    On the other hand,  it is certainly probable that for 

finite but weak shocks,   such a form will serve as an approximation,   the undetermined 

exact form differing from it by terms of the order of p/P    or smaller.    We are therefore 

inclined to use equation 8,  as it stands,  for weak but finite shocks,   say for 

p/P    <0. 7 . r'    o 

Another respect in which blast waves in general differ from those hitherto assumed 

is that the pressure in such waves decreases after reaching its maximum instead of stay- 

ing constant.    An argument similar to that already given shows that if two shock waves 

differ only in their rise times,  results analogous to equation 4 and 8 apply.    Thus,  if 

P.(z) is a pressure wave with a zero time of rise,  and P?(z) is identical except for a 

finite rise time,  t ,  then their ratio,  g(z),  has the properties listed in equation 3,  so 

that the result of equation 4 is valid,  providing the expression P1 is replaced by g1: 

•ct 
g'(ct -€)p(§/r)d? f Jet 

(4b) g(z) = P^zj/P^z) . 
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P/Po = 1.92 
(S.T.) 

Prepared by 
Sandia Corporation 

1 

Normalized time,  ct/H 

Fig.  14 -- Comparison of calculation with shock-tube results 
(shock-tube data from Princeton,   Ref 10) 
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Similarly,  equation 8 can be rephrased as 

(8a) F(t) =   I g'(ct -5) F(?)dS, ■f Jct-£ 

where p(ct/r) and F(t) are now the point pressures and total forces resulting from an in- 

cident wave,  P«(z). 

As derived,   these expressions apply only to long buildings of rectangular cross- 

section and without windows.    However,  they may be safely used for buildings that are 

not long,  for the effect of the added dimension is only to contribute additional centered 

diffraction waves.    They may also be used for buildings not rectangular in section since 

relations similar in form to equation 1 can be set up for angles other than right angles. 

On the other hand,  if the structure has any considerable number of openings in it   the 

above expressions probably are no longer valid. 

1^) Even more than these things,  it is important to remember the practical fact that 

slow rise times are but one of several effects associated with the formation of a pre- 

cursor. This one effect has been seized upon because it can be handled; but if only it 

is taken into account,  other equally important effects will be neglected. 

When the precursor region is investigated,  not by one gauge but by several gauges 

at various heights above the ground or by photography,  the other effects become apparent. 

The layer of hot air along the ground merges gradually into unheated air above so that the 

velocity of sound in front of the advancing shock wave varies continuously from normal 

velocities at considerable heights above the ground to very large values near the ground. 

The advancing shock is not perpendicular to the surface of the ground but travels toe 

first.    The angle the shock makes with the ground can be very different from a right 

angle; at early times this angle might be as little as 30 ,  but by the time the precursor 

has merged with the main shock,  this angle has probably increased to approximately 60  . 

Together with variable velocities and nonperpendicular wave fronts goes a variation with 

height of wave shapes and probably of rise times. 

We are not prepared to do more than guess what effects these factors have on the 

loading of a structure.    If the sound velocity were the same at all heights above the ground, 

its effect could easily be accounted for; but under these conditions one is probably forced 

to use an average velocity, albeit an elevatedone.    Because of the high-sound velocity    the 

time scale in Figs.   8 through 14 corresponds to a much smaller absolute time scale than 
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would ordinarily be expected; but on the other hand,a given rise time is relatively much 

longer and more important than at Standard Temperature Pressure.    Similarly, an aver- 

age wave shape and an average rise time will have to be used. 

Neither are we prepared at present to say what would be the effect of the front not 

being perpendicular to the ground.    Fortunately,   in the same region where pressures 

such as we have been   discussing occur,  the deviation from perpendicularity is rapidly 

becoming small. 

Simultaneously,  things are happening behind the front which perhaps ought to be 

considered in any complete description of the loading of a structure.    All the evidence 

points to great quantities of dust.    Obviously,  some of this dust will hit any building in 

its path, perhaps in quantities  great enough to affect its motion.    Also,  preliminary 

data from Operation UPSHOT-KNOTHOLE indicate that in the precursor region the dynamic 
2 

pressure, q = 1/2 pu ,  does not bear the same simple relation to the overpressure which 

it does for clean ideal shocks but runs high.    This will have an effect principally in the 

later stages of loading because in the earlier stages other factors,  in particular the re- 

flection factor,  are more important. 

All of this discussion is intended to point out that the problem of the loading of 

structures by precursor-type waves is a very complicated problem indeed.    Possibly its 

solution will never be entirely satisfactory.    Nevertheless,  it can be approached by the 

time-tried method of considering each factor separately to see what will be its effects. 

Conclusions 

The effects of precursor-type wave forms on the loading and hence the response of 

structures is a matter of considerable interest in any projected use of nuclear weapons. 

In this report we have concentrated on one part of the larger problem,  on the effects of 

the slow rises to their maxima of the pressure in blast waves.    A rule has been developed 

for their effects which is exact in the acoustic case and approximate for finite shocks.    ) 

is embodied in the integral: 

f Jet 

»ct 
g'(ct - 5) F(€)d€ , 

Jet-a 
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where 

F(t) = load on a portion of a structure resulting from the incidence 

of an ideal shock,  one with zero rise time; 

g(z) = the ratio of the nonideal shock actually incident on the struc- 

ture to the ideal,   where the nonideal differs from the ideal 

only by having a finite time of rise,  t ; 

F(t) = load on a portion of a structure resulting from the incidence 

of the nonideal shock. 

For a linear rise this rule amounts to averaging an ideal force between times t - t   and t. 

In general,  the effect of a slow rise is to decrease and delay the maximum force applied 

to a structure. 

The application of this rule is limited to shocks of overpressure less than 10 psi 

and rise times less than twice the time necessary for the shock to travel a distance equal 

to the height of the structure,  ct    < 2H.    The rule may be applied as it stands to any 
1 structure having few windows which is struck normally by a blast.    The rule may not 

safely be used for structures of the so-called drag-sensitive type. 

It must be emphasized that slow rise times appear together with other extraordinary 

phenomena.    These other effects include a variation of sound velocity and wave form with 

height above the ground,  an inclination of the wave front to the ground,  and considerable 

quantities of dust behind the shock front.    Indeed,  the proposal of the rule itself is some- 

what academic since as yet there is no good way to foresee what will be any of the pro- 

perties of a precursor in a given situation. 

During the course of the argument it was shown possible to derive the loading of 

structures by acoustic shocks without reference to experiment.    This matter is of interest 

in that such a result forms the limiting case of the loading of structures by successively 

weaker shocks.    (That it does indeed provide such a limit has been shown for one case by 

Keller.      )   This exact calculation was compared with Armour's linearized approximation 

and the disagreements were found to be minor. 
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