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\,N INTRODUCTITON

In a recent memorandum - the use of th for trigonometric
interpolatioil of sampled complex functions was presented. Here we
consider trigbnometrie smoothing of samples of a complex function,
followed by interpolation of this smoothed function. Such a technique
is useful, for imooLhing random (Inta, for example. As a by-product, a
short-cut for filldin4 shitionary points of a real function of complex
variables is presented In the Appendix.
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PROBLEM STATEMENT

Suppose complex waveform y(t) has been sampled at times 1At,
Oi kSN-I, giving values

We wish to construct a smooth curve that approximates the sample values,
according to a series of trigonometric functions. To be explicit, we
assume that y(t) is periodic*, of period Nat, and we approximate it by
low-order harmonics. That is, we choose a smoothed function of the
form

7 C xy~ 2T-2- N N). N A (2)

and choose tLe M + I complex constants 1C.. such that the error be-
tween Y(t) and y(t) is minimized. Our measure of error is

Once the optimum coefficients fCQ have been obtained fo- minimum
error, we wish to know (a) the sense in which smoothing is accomplished
by (2), (b) how interpolated values of the smoothed function Y(t) can
be obtained from the samples (K4)j" , and (c) the minimum error
in (3).

PROBLEM SOLUTION

The analytical.details fpr the solution of the problem posed here
are very similar to those given in Il. Accordingly, reference is made
to appropriate sections of [11 in order to avoid re-derivations here.

Substituting (2) in (3), we have for the error,

"See [11, Sample Modifications section.
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Partially differentiating E with respect to I' (See Appendix for
this shortcut) and setting it equal to zero, we obtain

M
N-1

the5 a F0-' MJ lq (5)7. -.o M,- ,ej_
We define the FFT of sequence JL.}at)3-1 as

0 N-1

- 5 (jk(At) . (-i2-kj/T') O - - . (6)

Then (5) gives for the optimum coefficients for minimum error,

Y 0 MiI

Equation (7) indicates that the lowest frequency components of the FFT
of the sampled waveform should be used for the smoothed function "(t)
in (2).

SMOOTHING FUNCTION

To find the smoothed function (t), we substitute (7) in (2) and

obtain [i, Appendix A]

N-!
__ A (k N E- ' (8)

where smoothing function 5,,is

SN N -s'ti[lrx/Nq] (9)

Equations (8) and (9) indicate the sense in which smoothing is accom-
plished. The smoothing function 50,.,has the properties:

(a) S is re,I "
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(b) (o)=
Np

(d) SW 7 -0 v *0) C-

Properties (b),and (d) indicate that the smoothed function does not
pass through the sample points (1), but rather performs a local weighted
average over approximately N/(M +l) sample values. The smoothing
function behaves as

-M -- (iO)

which is a scaled sinc-function.

INTERPOLATION OF THE SMOOTHED FUNCTION

Now we investigate actual computation of smoothed function *(t).
Explicitly, suppose we wish to evaluate -(t) at times

N A 2l K1 a , -L- ) (11)
) L- L L

where L is an integer larger than M (and larger than N if desired);
there are no other restrictions on L. Substituting (7) in (2), and
letting 4, we find [l, Appendix B]

"= -I-T Li (12)

where sequence qQ is the inverse FFT of sequence iQ0, 1iich is
obtained from sequence IY 3 - according to

MV ! (13)

That is, sequence jy)',t is split into three parts; the first part, of
length -16I , is saved intact; the second.part, of length N-11-1, is
discarded; the third part, of length _M is shifted to the end of
the Y,, sequence.
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We can therefore obtain values of the smoothed function as sum-
marized below:

N- T1 3 Z14-1
h,. -,N-1

VitkVI T4o)YA ~ ~ OACCOrc4i' +0 3)

L o_. _ L-.

MINIMUM ERROR

The minimum value of error E is found by substituting (7) into (ii).
After some manipulations and employment of (6), there follows

- _I ' ') ::"

That is, the minimum error is proportional to the discarded hi h-
frequency components representing the original samples tj(Y-& 4". This
is consistent with the obsefvations under (7) that only the lowest
frequency components are used for ¢ , and also with (13) where
frequency components YNl through y'1  were discarded.

COI.ENTS

The sample odifications and comments in Ref. 1, pp. 6-8, are also
relevant here and should be revieved before application of the formulas
given above.

Dr. A. 11. Nuttall, Research Associate
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APPENDIX. STATIONARY POINTS OF A REAL FUNCTION
OF COMPLEX VARIABLES

Consider the real funtion II of complex variables

H ( ,, u,,...,I.Y
22 * ' '

Define the real functions

%J=J . ±Ii (A2)'6-- H C.,,a,... - , Ij [, , ., ,j
al

The necessary conditions for a stationary point of 11 are

(A3)

Eq. (A3) constitutes 2N real equations in 2N real unknowns.

Now consider the complex function G obtained from (Al) by replacing
j by the complex variable U , and - by the complex variable V

(U.~5 I3~ vs) 11) 14 N0

Using notation similar to that defined in (A2), and assuming G analytic,
we have

.&-T. %.U ~V1 ) i2 j+N A~v

Lt -V-V 5
an .. 2

12
and ft, .. ,. ] (V 12 ,---, •* * L-

+.l-h ( ,-,  , T,...  (. ,6

.6
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In particular,

2 2 (A2 )

and

, ,, .( = (

since i and in (A7) take on real values. Therefore the necessary
conditions in (A3) for a stationary point of H dictate that

- 3 1*4 = 0 *10(A9)

(The conditions (A3) also dictate that

j t IN4,)z - (Alo)

however (AlO) follows from (A8) and (A9) and furnishes no new conditions.)
Eq. (A9) constitutes N complex equations in N complex unknowns, and are
often of simpler form than (A3).

A rigorous interpretation of (A9) is

"~ (1 (U. -V Vj U Jj~ / -i~)ji)

~ (All)
I. L OO

.

Hlowever, the following 'imprecise interpretation is easier to use:

where 1 j I N, are considered fixed during the differentiation
wii~i rL-spec to .\t is -61C. -14" rds4Ib OF this
Example:

+!2, ---- . (A3)

.7
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Matrix[ImK.,is Hermitian. Notice that a common complex scaling of
every 2 does not change the value of I. I

From (A].2), we obtain

" Mj N -- N. (A15)

Since complex scaling is irrelevant, and the right-hand side of (A15)
is a constant, set

. -M_ ,l- N. (A16)

Then 2

'125
.9_;'.VI_=% (AIL7)

where , follow from (A].6). Alternately,

where jK is the J, k-th element of the inverse of matrix [M,<j]

.~j ~8
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