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In a recent memorandum ")) Lhe use of Lhe':& for trlbonometric
interpolation of sampled vomoley functions was presented. Here we

consider trigbnometric smcot.hing ot samples of a complex tunction,

followed by interpolation or this smoothed function. Sach a technique
is userul for Amoothing randem data, for cxumple. As o by-product, a

short-cut for finding .,l.nt.iondxy points of a real function of complex
variables is presented in the Appendix,
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PROBLEM STATEMENT

Suppose complex waveform y(t) has been sampled at times K at,
0< X< N-1, giving values

{yx ), (1)

We wish to construct a smooth curve that approximates the sample values,
according to a series of tvigonometric functions. To be explicit, we
assume that y(t) is periodic¥, of period Nat, and we approximate it by
low~order harmonics. That is, we choose a smoothed function of the
form

"
G - %Cm exp(izmnot) M< N, M even, @

and choose the M + 1 complex constants {CQ} such that the error be-
tueen $(t) and y(t) is minimized. Our measure of error is

Ny P
E - g;\g(kdb y(ked)| (3)

Once the optimum coefficients ﬁ;} have been obtained fo' minimum
error, we wish to know (a) the sense in which smoothing is accomplished
by (2), (b) how interpolated values of the smoothed function §(t) can
be obtained from the samples {30(4&5}:4 , and (¢) the minimum error

in (3).

A
\
! PROBLEM SOLUTION
1) .
The analytical"he%ails for the solution of the problem posed here
arve very similar to those given in [f). Accordingly, reference is made
to appropriate sections of [I] in order Lo avoid re-derivations here.

Substituting (2) in (3), we have for the error,
M

N- el *
E-= Z k 2_ Con Q.XP(izwrmk/N)— j(k Af) . ")

= =M
X=0 m=-3

¥Sce [1], Sample Modificalions section.
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Partially differentiating E with respect to Cy * (See Appendix for
this shortcut) and setting it equal to ?ero, we obtain

Z Z_QXP(\'Z«r(m—J)k/N> Z_j(KSL}Q‘F("?"'Jk/”) (5)

M--t‘.\ K=o

M..SJ < -&Lo
We deflne the FFT of sequence {gﬂ<af%- as
W
\(-, = > ylkat) expleizek/h), 02 2 No. (6
K=o

Then (5) gives for the optimum coefficients for minimum error,

o M
J 7N (7)
M 3o
Y}N, —_?T ‘S-J S

J

Equation (7) indicates that Lhe lowest frequency components of the FFT

of the sampled waveform should be used for the smoothed function ¥(t)
in (2).

SMOOTHING FUNCLION

To_find the smogthed function ¥(t), we substitute (7) in (2) and
obtain [l, Appendix A]

. Nl +
jw A =ylked S, G-, ®)
where smoothing %uncthu SNM}s

_ sin[ (M+Dwx/ N] .
SNM (X) = N sin[ar X/N] (9)

Equations (8) and (9) indicate the sense in which smoothing is accom-
plished. The smoothing function S,,, has the properties:

(a) SNM is  real
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(b) SNM (0\ =

(c) SNM 1S Periodic, of Per-ioc\ N
(@)  Swn (k ﬁ"i—Q =0 F K#0,xMD,=20-),...

Properties (b) .and (d) indicate that the smoothed function does not

pass through the sample points (1), but rather performs a local weighted
average over approximately N/(M -+L) sample values. The smoothing
function behaves as

S &) = 5‘"[<T:;>wx/ LI ] <<,

which is a scaled sinc-function.

(10)

INTERPOLATION Or THE SMOOTHED FUNCTION

Now we investigate actual computation of smoothed function y(t.)
Explicitly, suppose we wlsh to evaluate ¥(t) at times

Nht,zl\lbt BNA'E

.y (11)
vhere L is an integer lerger than M (and larger than N if desired);

there are no OL&\GI restrictions on L. Substituting (7) in (2), and
letting +t= 01 i , we find [1, Appendix B]

.N A{') J} 0 </q L- (12) .

~
where sequence {‘lo o 1s the inverse FFT of sequence {Y,\"jo, uhich is
obtained from sequence {Yg‘,:" according to

0,

Yn) Oxn= 2
Cad M M
Y“ = 0, Tl =ns -2
Yﬂ""‘-) % "n-\: L—‘

That is, sequence {Y)i' is split into three parts; the first part, of
length 41, is saved intaect; the second part, of length N-M-1, is
dlscmdnd the third part, of length -';—f— > is shifted to the end of
the Y, sequence.

-

(13)

4
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We can therefore obtain values of the smoothed function as sum-
marized below:

P = Eer gttt
{?.3}';‘ Found From {Y}g:-' O\Ccorcﬁna to (3)

[5; = TreT{ls
SK,QNI__E.{Z) = =Gy, 05 A= Lk

(1h).

MINIMUM ERROR

The minimum value of error E is found by substituting (7) into ().

"After some manipulations and employment of (6), there follows

N-2-)
S B~ i
Evin = N )%; \Y“‘ . (15)

That is, the minimum ervor is proportional to the discarded hipgh-
frequency components representing the original samples {y(Kkat ", This
is consistent with the obsefvations under (7) that only the lowest
frequency components are used for {qﬂ , and also with (13) where
frequency components \Q}{| through \;ba_‘ were discarded.,

[

\ COMMENTS

\

L

The sample modifications and comments in Ref. Y, pp. 6-8, are also
relevant here and should be reviewed before application of the formulas

given above.

Wbt A VY

i

Dr. A. H. Huttall, Research Associate
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APPENDIX. STATIONARY POINTS OF A RFAL FUNCTION
OF COMPLEX VARIABLES

Consider the real funtion H of complex variables 2;=X;+iy;,
1<j< N
¥ * * /s
242 '2-2 2 A2 R-, {al)
H(xl)gl) ) XN)‘d 3 H( ' I.2 [} ) ) __u_.._-ﬁ-z ) -_,{‘—5:——§.

\

Define the real. functions

,3—3— H (x,,y,)...,x,,, ‘JN) = J.H (X.,\j.,..., Xy, yw) ‘
—O%,— H ("-)99 ) "Nﬂw) = Hj (y') Yy cYN)ﬂNS

The necessary conditions for a stationary point of H are

SH(X"}’"N'XN) Yn) = O }=j = N, (A3)
HJ !\Xn Yiy ey Xy HN) =0

Eq. (A3) constitutes 2N rcal ecquations in 2N real unknowns.
How consider the complex function G obtained from (Al) by replacing
2y by the complex variable Yy, and :J by the complex variable N

WiV U=V w4V U,—V, Al
G(Un,vu )uN,Yr-) \H( '1',__;_3.__’,._, N2 X, ”lzN). ( )

\
Using notation similar to thet defined in (A2), and assuming G analytic,

we have U =y
] ] uN“‘VN u.,-VN iR
G-(u,) Vi ,u,,,,v~) = JH( IR A et R

WYy, U=V Un ¥V =V ) (AS)
"‘Hj('z" T T ) ”\2 Ja?

UtV U~V u +V “ -V
and o {(u,,v)e u,,'v,,)_ H(—‘——'»—‘({‘-) WtV uy ")J.

Ny =V Uy +Y eV,
—\-H (ua . 'i'z ey St n | W i1N> ("i'lf) (A6)
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In particular,

R "‘2 = 19 Z -Z'N
&3(2,,2’?,...,%,,2*} y (e |, BalEL Za)
L H, (_u__ N
and
* "
Je(z,,z’f,...,zmai‘q) = & (%.,a’f,...,%,%), (a8)

since jH  and ¥5 in (A7) teke on real values. Therefore the necessary
condltlons in (A3) for a stationary point of H dictate that

63(2.,2?&)...,2",20-—- O+i10, I= 3= N, (~9)
(The conditions (A3) also dictate that
* * . . .
j&'(z.,'ﬁ‘)---)?u)?">= °+‘0) ISJS. N’ (AlO)

however (AlO) follows from (A8) and (A9) and furnishes no new conditions.)
Eq. (A9) constitutes N complex equations in N complex unknowns, and are
often of simpler form than (A3). :

A rigorous interpretation of (A9) is

U kY U~V U, +V, -V, . v
'D%'H( T g i uk}(:«*”) = O+i0, 1sjsN.
J “'ﬂh
v,=2
\ . R (ALL)
\ Wady
' Vi e 25
However, the followiﬁg‘impreciseinterprctution is easier to use:
l »
m-a 2y 2y B~ . .
*H( rrul il Ry )3‘1‘-5_-"—>=0+'°) 1=5=N, (A12)

uhcxe 2, 1sjsN, m.e considered fixed during the differentiation
with \r‘vsyer.{‘ to x&_, (A12) is thie main resyt of this appandix.
Example:

2

N
E Nuw (A13)

gz
H

Z".' ? K-"_g‘; :Dth

k
‘\(2| "2 2 2 vy ?u-i ] ?“"2'") -
2 2z /-




Tech. Memo.

No. TC-9h-TL
Matrix [Mx,;l is Hermitian. Notice that a common complex scaling of
every z does not change the value of H.

“w N
N
2 (g, et 2l ) Do (e Z
2 - Y

03] i2 2 (2 Den (ALY)
From (Al2), we obtain "
N
Den . .
é-‘z*Mx‘J = Num %%"7 b=y= N (A15)

Since complex scaling is irrelevant, and the right-hand side of (AlS)
is a constant, set

N .

> un M= 1, is)= N (AL6)

K=
Then N 2

N
rox Num i o %2" = 2 Zy,

Den 2—3 z'; n=1 (ALT)

where {:"Xt follow from (Al6). Alternately, .
N
Num | _ (A18)
mo«i Dcn‘g = %'“‘Jx >
P




