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FOREWORD 

This report was prepared at the Flight Research Laboratory, Wright 

Air Development Center, by W. J. Moreland project engineer on RDO 

Number 461-1-15, "Landing Gear Vibration." The request for this pro- 

ject was initiated by Mr. Frank Minch and Dr. 0. R. Rogers of the 

Aircraft Laboratory. The arrangements of the equations for computation 

were carried out by Paul E. Gies and George H. Moore of the Flight 

Research Laboratory, Wright Air Development Center, Dayton, Ohio. 
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ABSTRACT 

The self-excited vibration of a landing gear is generated in an 

interplay of effects present in the tire, the landing gear proper, 

and in the entire airframe itself. The analysis of these simultaneous 

actions is given in simple form; the manner in which energy enters 

the system, and the necessary structural modifications to control 

shimmy are explained. 
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SYMBOLS 

QUANTITY UNITS 

A Amplitude  of pivot  displacement in 

a Horizontal  distance  betveen Pt   and CG. in 

Cc Reference  damping  coefficient   (2   \^^w  ) in-lb-sec 

C+ Torsional  damping  coefficient in- lb-sec 

D Differential  operator  notation 

F] Lateral  force  on  swiveling  structure  at  P2 lbs 

F Ground force  acting normal   to wheel   at P± lbs 

F Force  at  P2 parallel   to  flight path lbs 

f a/L 

I„ Moment  of  inertia of swiveling structure 
about  center  of gravity in-lb-sec 

2 
I     Diametral   moment   of   inertia of   the  wheel in-lb-sec 

KltK2    Lumped  airframe  and nose  gear  elasticities lbs/in 

Kv Virtual   spring  constant  of non-swiveling 
structure lbs/in 

Kt Torsional   spring  constant  of nose  gear in-lbs/radian 

L Trail   of wheel   axis  behind axis  of  rotation of 
swivel in 

M Mass  of  airplane lb-sec  /in 

M1,M2     Lumped  airframe  masses lb-sec  /in 

Mr (1 ~ f)m/N 

m Mass   of  swiveling  structure lb-sec  /in 

siji     Mass  of non-swiveling  structure lb-sec   /in 
2 

*„    Mass  of  spindle lb-sec  /in s 
2 

Mass   of wheel lb-sec  /in 

2 
N (m±   +   fm) lb-sec  /in 
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p Tire  compressibility 

Q CcV/KtL     (Velocity ratio) 

R Ratio  of Ct   to  Cc     (Damping  ratio) 

r1,r2,r2i Dimensionless  frequencies 

S 4 KtNL2/Cl     (Mass  ratio) 

s Displacement   along  flight path per  cycle 

T 

T*IS 

U 

V 

w 

in/lb 

x 

L   /\JK1/Kt     (Trail  Ratio) 

K1Iw/NKt     (Inertia  ratio) 

PK± 

Forward velocity  of airplane 

K^CV/kO V^'i/iV 

Displacement   of P2   from  equilibrium position 

Displacement   of C.G.   from  equilibrium position 

Displacement  of wheel 

Angle  made  by wheel  with flight path 

Angular   displacement   of  damper piston  from 
it%  normal  posit ion 

Period of  vibration 

Circular  frequency 

in 

in/sec 

in 

in 

in 

radians 

radians 

sec/cycle 

radians/sec 
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1 

I. INTRODUCTION 

Self-excited vibration in a landing gear nose wheel takes place 

because a component of the contact force between the wheel and the 

ground causes a drag against the forward motion of the aircraft. The 

energy transferred to the nose gear by this single force results in 

the violent motion called shimmy. If a precise mathematical descrip- 

tion of this simple phenomenon were attempted it would involve so 

many parameters that solution of the problem and interpretation of 

the results become impractical, if not impossible. For example, in 

the nose gear proper, the stability of the system is influenced by 

the wheel load, spin-up and aerodynamic forces, gyroscopic and tire 

properties and, most important, nonlinearities and airframe modes 

of motion. However, the difficulties in the way of solution are due 

to the mere number of factors, and, if it can be established that 

some of these are more significant than others, the problem can be 

simplified. In this study it has been shown that the main character- 

istics of shimmy are dependent on the relationship of a single non- 

dimensional number called the "inertia ratio" and the airframe 

dynamics. Also, the theory developed here accounts for instability 

at zero trail (Schlippe reports instability at zero trail is caused 

by tire effects only), and the fall and rise of stability as the 

trail increases. The dependence of stability on mass distribution 

( NACA TN 760 ), and of frequency and damping on velocity (R.A.E.- 

A.D. 7/5166/G. Temple ) is brought out. Guruewicz and Kruse ( ATI- 

23097, translation ) comment on the "unaccountable presence of 

superimposed oscillations." This effect is predicted by the theory 

that follows. 

The landing gear of an aircraft is at best an awkward mechanical 
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structure. The designer is beset with a number of conflicting require- 

ments and functions to perform. The gear must be able to withstand 

static and dynamic loading; it must have directional stability and 

permit maneuvering; it must be vertically flexible and retractable; 

it must be light and of minimum overall dimensions; and it must meet 

all of these requirements in extremes of enviornmental conditions. 

The final design must of necessity be a compromise, and any solution 

which optimises one function is not likely to be satisfactory. It is 

probable, however, that much more can be achieved toward the goal 

of a dynamically stable system without precision artifical damping 

if close attention is given to the influence of the various physical 

parameters. 

In order to simplify the development of the analysis, systems of 

two, three and four degrees of freedom are examined in that order. 

If the effect of tire elasticity is included there is little to be 

gained since the results cannot be expressed with sufficient clarity 

to be useful in design. It is, however, significant to compare the 

behavior of the system with and without tire elasticity by means of 

an analog computer. In all the cases tested it was shown that when 

the simple system was stable the higher order systen, was not less 

stable. This problem is discussed in more detail in Appendix (B). 

II. THE THIRD ORDER SYSTEM 

The purpose of analyzing this idealized system is to explain: 

a. That instability may exist for a system in which the ground 

forces enter inelastically. 

b. The manner in which energy is transferred from the forward 

motion of the aircraft to the oscillatory motion of shimmy. 
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Description of the System: 

The basic components of the nose wheel assembly are shown in 

Fig. 1 and in the schematic diagram Fig. 2. The assumption is made 

that the system consists of two parts - the swiveling structure of 

mass m which is in contact with the ground through the wheel at Plt 

and the non-swiveling structure of mass m±   which is made up of all 

parts not subject to the angular motion 9. These two parts are in 

contact at the oleo bearing P2. 

TRUNNION 

SHOCK STRUT 

LOWER RETRACTING LIN 

NOSE WHEEL STEERIN 
8 DAMPING  MECHANISM 

DIRECTION  OF^V 
FORWARD 
MOTION 

SCISSORS 

NOSE WHEEL 

NOSE WHEEL ASSEMBLY 

FIGURE   1 
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WHEEL,   m 

SCHEMATIC  OF  NOSE   WHEEL   ASSEMBLY 
FOR  THIRD   ORDER  SYSTEM 

FIGURE   2 

The following assumptions are made in the analysis: 

a. The non-swiveling structure (including the adjacent fuselage) 

is joined to a fixed support. The elastic restoring force on 

this mass m± due to the combined bending and twisting of the 

fuselage is taken proportional to x,   with Ki   the equivalent 

elasticity. 

b. The wheel has neither side-slip nor distortion. 

c. The swiveling member is rigid. 

Kinematics of the Motion: 

The component velocities of P±   and P2, along the line joining 

them are equal and since Px   has no normal velocity, the angular 

velocity of L   can be found from the normal velocity of P2. In Fig. 3, 

the velocity of the point P2 relative to Px   is - LB.   But since P± has 

no velocity normal to the link L,    the normal velocity of P2 is also 
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KINEMATICS   OF   SWIVELING   MEMBER 

FIGURE   3 

the relative velocity of P2 to Px.   Hence for small values of 9, 

-LQ  = x  + VQ 

_e = JL + m 
L        L 

(1) 

Eq. 1 shows that the two degrees of freedom are kinematically coupl- 

ed. Eq. 1 can be developed to show the nature of the motion of the 

system. 

From Fig. 4, let 

Y  = * + LQ 

■••9 ■ V 

Y - x 
L 

Substitute in (1) 

- Y +  x  = x  + ^  (Y - x) 
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GEOMETRY   OF   THE   MOTION   OF THE   SWIVELING   MEMBER 

FIGURE 4 

-Y = £ (Y - x) = ve (1A) 

If the motion of P2 is assumed sinusoidal and of amplitude A,   then 

Y + M Y  = % x  = (X A)   sin  ut 
t    L     L 

— A sin oot - tan 

 Ju  (2) 

r£- of + (o2 

The amplitude of Y  may be expressed independent of frequency. Thus 

or y  = s =  s  
T  2rt/u 
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Hence 

or, 

Y = 

[#' AE^ll 

* A   sin   [ -2S   Vt -   tan''  ~2^~] 
L s sV/L 

Y = 

/L)2        2 

sin[(2n/s)Vt -   tan     2n:L/s] (3) 

The amplitude of P±   is always less than A   and lags behind the 

spindle position by an angle less than 90 degrees. For example, 

when (L/s)   <<   l/4n2,   the amplitude of the motion of Pj. approaches 

that of P2. Also, 

tan   lag—^0     and   lag  —>0 

And for (L/s)   >>   l/4n2,   the amplitude of the motion of P± approaches 

zero, while the lag angle approaches 90 degrees. 

-Bvnamic!* of the Motiorn: 

The following factors have been neglected in the analysis: 

a. Backlash. 

b. Coulomb friction. 

c. Moment caused by the weight on the nose-wheel acting through 

the moment arm due to the laterally deflected nose-wheel. 

d. Elasticity of the tire. 
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e. Gyroscopic effects. Preliminary analysis indicates that 

gyroscopic effects will alter principally the magnitude 

rather than the nature of the motion. Moreover, it ap- 

pears that local elastic effects will considerably reduce 

the gyroscopic torques. 

The force at P± (Fig. 2) between the wheel and the ground is F    nor- 

mal to the plane of the wheel. The elastic restoring force Ktx  acts 

on mj but the force that reaches the swiveling structure at P2 is 

Kxx  + m±x. (i.e. the greater x  becomes, the greater will be the re- 

action on the pivot P2. This is in the same direction as the spring 

reaction. Hence, Force  = K1x  + m1x).   Then the force equation becomes 

(for small values of 6). 

Fn -  (Kxx  + mxx)   = mx     = m(x  + 69) (4) 

and for the moments about the CG., for small values of 9, 

Fna  + (K,x  +  m±x)b  - Cf9 = Ig0 (5) 

By eliminating Fn   in (U)   and (5) 

(K±x  + Kxx)a  + (x  + bQ)am  +   (K±x  +  mxx)b   - C  9 = I  0        (6) 

Eq. l can be rewritten, 

x = -te -ve 

Successive differentiation of this form and substitution in (ß) 

gives 
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(I    +  ma2   +  miL
2)   9  +   (Ct  +   amV +  mtLV)   0  + ^L"   6  + K±LV 9  =   0 (7) 

or 

2 
+   (Ct  +   amV +  m±LV)   " + K,L ^_  Q  + K^V ^_ 

(I     +   ma2   +   miL2) (I     +~ma2+m1L   ) (I     +   ma     +  wijL   ) 
6 5 & 

Applying  Bouth's  criterion   for  stability, 

C,  +  amV +  mj.LV KjL2 v , Kj.LV 

I     +   ma2   +   m^ I     +   mo2   +   niiL2 I     +   ma2   +   miL 
& & O 

CtL + amVL + i^VI2 > IV + ma2V + m±VL2 

9 = 0  ($) 

C  > ^ [I„ + ma2 - (ma2 + ma6)] 
I   8 

Ct  > IfJg _ ma6) (9) 

Considering usual proportions of nose-wheel assemblies,most of 

the sniveling structure can be considered as concentrated at the wheel 

and at the spindle P2. Then 

a  -  L Is   .      b   = L     i 

and considering the moment of inertia of the spindle about its own 

axis negligible in comparison with Iw  , 

h  -  I. + «.«" + *s*>2   -  I,  + L*  ^ (10) 

/n 

Combining (9)   and (10) 

1       L m m 
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or, 

c,  > Jfl.) (il> 

It follows from Eq. 11 that for the structural proportions found 

in practice, the system (idealized as in Fig. 2) is inherently un- 

stable. The damping required for stability increases with velocity 

and moment of inertia of wheel and decreases with increasing trail. 

It will be of some interest to examine how these conclusions may be 

altered, even qualitatively, for apparently minor changes in the 

physical system. 

Energy Analysis: 

In order to obtain a clear picture of the manner in which energy 

is transferred from the forward motion of the aircraft to the swivel- 

ing structure, the following energy analysis is useful: 

ENERGY   ANALYSIS   DIAGRAM 

FIGURE   5 
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Assume:    (a) No slipping at Pa. 

(b) The velocity of the aircraft remains constant in mag- 

nitude and direction. 

(c) The mass of the sniveling structure is concentrated 

at P1. 

(d) The mass mt   equal to zero. 

From Fig. 5: 

Forces: 

Fn - K,x  = mj (12) 

FnQ  + Fp  = mw(LQ  x 9 + L92) (13) 

Torques: 

KlXL - FpLQ  - Cte  = IWQ (U) 

From (12)   and (13): 

Fp  = ~(Ki*  + *j)  9 + mJLQ  x 9 + LQ2 ) (15) 

The work required to maintain the velocity of the aircraft is: 

Work done against F    -  J0 FV dt   for one cycle. 

Hence from (15)'- 

Wp  = -  V foßi* +  *WY)   9  dt  +  mwV JoL(Q  x  Q  +  Q2)   dt (16) 

If  x   is  assumed  to  vary  harmonically,   then 

x  =  A    sin wt (17) 

and 

y = 4sjn   (ut - <?) 
H 
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Where   from   (3), 

H =  \\1  +(^)24rt2 and cp  =   tan    ^ 

...   Y = - &&-sin(ut - cp) (i#) 

9  = — — = — ^y cosfwt - cp) (See  Eq.   1A) ^19; 

From   (Id), 

So Ye  dt  = ^- Jo
n  sinfut - cp)   cosfoot - cp)  iOälX  =   0 

Hence   (16)   becomes: 

W    = -  VKt  Jox8  dt  +  mwV J'oL(Q x  9  +  92)   dt 

Since  the  second   integral   is  zero   for  the  complete  cycle,   it 

follows   from   (17)   and   (19) 

K VA^ T 
If     =   +  _J   (j  /     sinwt   [cos (Wt  -cp)]    (it 

P HV 

,2 

f    =  ^i_ u   sin „  j0
2Tt   sirl

2
Wt  dm* 

P H u 

.2 

If    =  fTj.  4- Ti   sin cp r20) 
P ff 

(Tire elasticity will increase the lag angle cp). 

Energy Analysis Discussion 

Eq. 20 shows that energy can be transferred from the forward 

AFTR 6590 12 



motion of the aircraft to the oscillatory motion of shimmy only if 

a phase lag qp exists. Eq. 3 shows that for the system under discuss- 

ion a finite phase lag between 0  and 90 will always be present. 

An examination of Fig. 5 and the above analysis will make it clear 

that the force being overcome in the forward motion is the parallel 

component of the ground force (FnB)   at the wheel. And because of 

the phase lag <p, this force is directed predominantly against the 

motion of the aircraft. Moreover, this same force in combination 

with the elastic force at the spindle produce the uncompensated an- 

gular acceleration which stores energy in the swiveling structure 

which is the observed shimmy. In the event that the precise amount 

of damping, Cf  = (V/L)IW,   required to prevent instability is sup- 

plied, then the steady state motion will be truly harmonic and all 

the energy supplied will be absorbed by the damper. The proof may 

be obtained from Eq. 14 as follows: 

The energy absorbed by the damper is, 

E  = J C+d  dB     over one cycle of 9 

Mult. (1U)   by dB 

Ct0 dQ  = (KlXL  - FpLB)   dB  - Iw& dB  = dE 

Since flmQ  dB  -   0     for one cycle of sinusoidal motion, w 

E  = / (KtxL  - FpLB)  dB (21) 

But, - IF LB  dB =Lf(K1x  +  mwY)   B     dB  which is negligible for small 

values of 9 
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Hence (21)   becomes: 

E = KXL I x dQ 

K1LA oj   rx . . 
E = —— J0 sin tot   [sin(ut - cp)J   dt 

HV 

or, 
2  2 

E  = — cos qp S0    sin ut  äOLU 

But, 

Hence, 

.-. E  = (——n)(^)  cos  cp 

^ = tan cp  (Eq. 3) 

E  = K,   — re sin cp r22) 

Therefore the energy absorbed by the damper is precisely that 

supplied to maintain the constant velocity of the aircraft. (See 

Eq. 20). 

III. ORDER SYSTEM 

With sufficient data on the distribution of mass and elasticity 

of the nose-wheel gear and its supporting structure, and on the nat- 

ure of the external forces that enter the system, it is possible to 

set up differential equations that describe the system more or less 

accurately. Added degrees of freedom, however, increase the difficulty 

of interpreting the solutions, and, if the supporting data is in- 
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accurate, may be of no practical value at all. The following equat- 

ions describe an idealized system of three degrees of freedom, which, 

though neglecting such factors as the decrease in lateral elasticity 

caused by the offset vertical load, and the load peculiar to tire 

elasticity which in a true shimmy may be small, reveals factors of 

some significance. 

FOURTH   ORDER   SYSTEM 

FIGURE  6 

Fig. 6 is a schematic diagram of the three degrees of freedom 

system. An angular displacement 6 of the nose-wheel is transmitted 

to one end of the elastic member K.,   the other end of which drives 

the damper piston through the displacement Q±.   The force in the 

elastic member due to its distortion Kt(9— Q±)   is the same as that 
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transmitted to the damper piston CtQ±.    (It is immaterial whether the 

elastic member comes before or after the damper). The analysis is: 

Forces: 

Fn 
+ Fl  = »ig (23) 

- Kxx - Fl   =   m±x (2U) 

Swivel Torque: 

FRa - Fj^b  - (damper   torque)   =   I Q (25) 

Damper Torque: 

cte1 = Kt(e - ej (26) 

Kinematic: 

- ■ L9 = x  + VG (27) 

Geometric: 

xg  = x  + 60 (28) 

The above six equations contain six variable functions of time. 

Eliminating Fn,   Fj and Qx   gives, 

CtKtQ  =   [a(KlX  + mtx  +  mxg)   +   b(KlX  + mxx)  - IgQ](Ct  + Kf/D)D (29) 

Differentiating (29)   and combining with (27)   and (28)   gives, 

[Ct(Tg + miL
2 + ma2)]   9  + [Kf(I     + mxL2   + ma2)   + CtV(mxL   +  ma)]    Q  + 

[KtV(miL  + ma)   + Ct(Kf + K±L2)]   9 + [Kt(CtLV  + KfL2)]   0 + [K^K^V]   9 
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Applying Routh's criterion for stability to this fourth order 

equation gives, 

[Kt(I    + »iL2 + ma2)   + CtV(m±L  +  ma)] [Ct(Kf  + KXL*)   +  KtV(*xL  + ma)]> 

KiL(KtL  + CtV)   Ct(I     + mil2 + ma2) 

KiK+LV   [ KJIa +  «iL2   +  »a2)   +  CtV(m1L  +  ma)]2 

+  * l—& fc — ( 31) 

K±KtL2    + CtKxLV 

The inequality (31)   contains nine parameters. If we elect, for 

example, to solve for the threshold value of Ct  sufficient to estab- 

lish equilibrium it is a cubic equation in Cf  with eight independent 

parameters. Since the equation contains the three fundamental units 

of length, force, and time, it follows from the laws of dimensional 

analysis that the number of essential parameters can be reduced by 

three if the equation is expressed in non-dimensional form. Moreover, 

if the given relationship involves more than one of the same kind of 

quantity, such as several lengths and masses, then all of the same 

kind of quantity can be expressed in terms of one of them and ratios 

of the others to it. In this way, as shown in the appendix, the eight 

independent parameters of (31)   are reduced to three. By this means 

it is possible to reveal the conditions that must be met to insure 

that a simultaneous change in the variables will represent an essen- 

tial change in the' dynamic characteristics of the system. The four 

non-dimensional parameters used to describe the system are: 

R = ct / cc = ct I 2>jp 

Q =  CV I KfL 
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T = L/]JK1/Kt 

S =   WKtL2/C2
c (   Where N =  ut   +  /«  ) 

In  terms of  these dimensionless  Quantities,   the  inequality   (31) 

becomes: 

QS(1 - f/S)  R3  +   [i  + S(2 -  T2/5)l   fl2   +   [fl  + S)/<? - QS/4]   Ä 

-   fi  + S)/4 =   0 (32) 

This equation will be used in the remainder of the report to describe 

the influence of all the essential parameters on the dynamics of the 

nose gear. 

The dimensionless quantity T  /Sw hereinafter referred to as the 

" inertia ratio " is the number which serves to identify the nature 

of the damping requirements for stability of any particular system. 

The significance of the dimensionless parameters in eq.(32)   can best 

be exposed by plotting values of the threshold damping ratio R   (i.e., 

R  that makes the left member equal to zero ) versus T /S,   the inertia 

ratio. From the definitions of T  and S the inertia ratio is 

T2/S  = KiC2/4K2/V = —i*  
NKt  I K, 

a quantity independent of the trail L   for constant values of a/L. 

From Descartes' rule of signs or an inspection of Fig. 7a, it can be 

seen that for values of the inertia ratio less than unity the cubic 

in R  can have no more than one positive root, and hence the system 

will be stable for all values of R  above those values shown by the 

ordinates of the graph. For values of the inertia ratio above unity 

there is at first a range in which there are two positive roots- 
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and hence the system can be stable only between these two values of 

R.   Finally, beyond this range, there is a region of no positive roots 

which means that the system cannot be stabilized regardless of the 

damping applied. Graphs of damping ratio versus inertia ratio may be 

plotted for a range of values of the dimensionless parameters Q  and 

5. These charts can then be entered for any given system under study 

by computing the values of Q,   S  and T*/S.   It can then be directly 

determined whether the system is stable or not and whether the damp- 

ing range is limited or unlimited. In order to determine what adjust- 

ments in the dynamic parameters of the system would be required so 

that a satisfactory point on the stability chart would be occupied, 

(32)  may be examined for the inertia ratio value of unity. For this 

case (32)   becomes quadratic from which 

\(1  + S)      Q   -  yl4fi + S)      Q 

Reducing the values of Q  and 5 will lower R  which means that the point 

on the chart showing the actual system damping has penetrated further 

upward into the stability region. Hence, stability can be adjusted 

favorably in this region by lowering T2/S,   Q  and 5 simultaneously. 

This may be accomplished, for example, by reducing the lateral elast- 

icity and the mass of the system and increasing the torsional elast- 

icity. It would be of some value to be able to determine the magnitude 

of the inertia ratio beyond which stability is impossible. Since the 

limit of stability is characterized by the cubic in R  having two 

equal roots (see Fig. 7a) the relationship between the parameters 

may be found by setting the discriminant of (32)   equal to zero. For 
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example, if the coefficients of R   ,   P  ,   R  in (32)   are a,   b,   c,   res- 

pectively and the constant term is d  then the solution of the follow- 

ing equation for T /S  will be the value of the inertia ratio beyond 

which stability is impossible: 

18  abed  - 4 b*d  - 4 c3a  + £>2C
2 - 27 a2<f2 = 0 

2 / 
If it is desired to extend the range of T /S it is apparent from 

Fig. 7a and 7b that this may be accomplished by reducing the parame- 

ters S and Q. 

If Fig. 7b is plotted in three dimensions as shown in Fig 7c, a 

clearer picture is obtained of the region of stability. The stable 

region is inside the surface. It will be noted that, as Q  becomes 

large, the surface approaches the plane T /S -   1.   Physically, this 

may be caused by an increase in velocity. The maximum taxi velocity 

(and hence the maximum Q)   will be determined from aerodynamic con- 

siderations. This value of Q  can then be used to determine the value 

of T /S  required for the operating point to remain in the stable re- 

gion. 

In the previous discussion the surface of neutral stability was 

considered. Another consideration is how the degree of stability 

changes as points move into or away from the line of neutral stability. 

The investigation was accomplished by assigning values to the 

parameters in the fourth order equation and placing the resulting 

equation in 6, on an analog computer. The logarithmic decrements were 

then determined and plotted ( Fig. 7d ). 

Two points of interest are to be noted. First for a given value 

of R,   relatively large changes of the inertia ratio can be made with- 
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out appreciably changing the rate of growth or decay of the shimmy 

when operating close to the stability surface. Second, for low values 

of the inertia ratio the rate of growth or decay of the shimmy is 

changed considerably with a small change in R. 

Analysis of the Requirements for Threshold Stability: 

Case I. Zero Damping. If Ct   is taken as zero, (31)   becomes 

2 K,K+LVKt(Ia  +  mxL     + ma Y 

or 

but 

L   -   a  + I /ma 

I„ = I.„ + maL — ma 
g   y> 

.-. L  = L  + 1,,/ma 

Hence, with no damping the system is inherently unstable. The 

requirement for stability can be approached by reducing the inertia 

of the nose-wheel relative to the trail and mass of the system. 

Case II. Zero Trail. As the trail L   approaches zero, (31)   becomes, 

for any finite value of the velocity V 

[KtlJ [CfKt]   = -i-* *_g_ 
* 8   * *     CtK±V 

or 
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OP 

ft = 1/2 

Hence, as the trail approaches zero, the damping ratio approaches 

1/2, and the absolute damping coefficient C, may be reduced by lower- 

ing the torsional elasticity and the inertia of the «heel. 

Case III. Zero Trail. At zero trail determine the partial deriva- 

tive of the damping ratio with respect to the trail. This quantity 

determines whether the required damping for a given system increases 

or decreases in value as the trail is increased from zero. 

From (32)   with L —> 0,   and ft = 1/2 

9fi = CCVK% 

dL 8K\ 

K 1_ 
2CCV 

Since this expression may be positive or negative it follows that 

increasing the trail from zero  may require more or less damping 

depending upon the relative magnitudes of the two terms. Expressing 

the above relation in terms of the dimensionless parameters of the 

system gives 

dB 

dL 

QT 

8L 2QL 

and the condition for zero slope is 

QT =   2 

If the dimensionless product QT  exceeds 2,   the damping ratio must 
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be Bade greater than 1/2 to maintain stability; for QT less than 

2 the threshold damping ratio becomes less than 1/2 as the trail 

increases. (See Fig. 9a) 

Case IV. Effect of Velocity on Stability. This relationship can 

be depicted by plotting Ü as a function of Q,   since Q  is proportional 

to V.   Figs. 8a, 8b, 8c, are plotted for values of the trail ratio 

T  of 0.707,   1.0  and 1.118  respectively. For convenience 5 has been 

taken as unity and Cc/KfL  as 0.002. Inspection of these figures in- 

dicates that the damping requirement increases as the velocity in- 

creases, but for values of the "inertia ratio", T2/S,   greater than 

1.0,   there is an upper limit to the damping that will stabilize the 

system. As the velocity increases these two damping values coalesce, 

and above this critical velocity no stability is possible. (See Fig. 

8c) 

Case V. Effect of Trail on Stability, For this case the value of 

R  may be plotted as a function of the trail ratio T. It is to be 

noted that Q  and 5 are each functions of L   and hence both of these 

parameters must be recalculated for each point plotted. For values 

of the inertia ratio less than unity, stability is possible for all 

values of the trail - the required damping usually increasing with 

trail to a maximum and thereafter approaching zero asymptotically. 

These results are shown in Fig. 9a. For values of the inertia ratio 

slightly above unity the range of damping for stability is limited 

(e.g. between branches of T*/S  = 1.1,   as shown in Fig. 9b). For 

values of the inertia ratio above a certain critical value there 

are intermediate values of the trail ratio for which stability is 

impossible (e.g. with T /S  = 1.25,   the system is unstable regardless 

of the damping employed if the trail ratio lies between 0.55  and 
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and 1.9,   Fig.   9b),   and outside  these values  stability  is possible 

but only over  limited ranges of damping. 

Solnt.ion  of  Equation   (30) 

Eq.   30  may  be  expressed  in  non-dimensional   form   as   shown   in 

Appendix  A.   Thus 

D*Q    +    f r/2lfo[ 1 + S( 1__+__QRJ]D3Q    + 

(  1 + S ) RT2/S 

[(  1 +  f  )R + QS/4 ]  ß2e    +     ( T/2]J~S) S( 1 + QR ) ^ 

(  1 + S )RT*/S ( 1 + S ) Rf/S 

+ ^ e    -    o 
(  1  + S )  RT*/S 

(33) 

where the derivative is taken with respect to the dimensionless time 

/\JKJN    * t.   The solution of Eq. 33 is: 

9  = Cxe +  C2e 

fo2 + J'u2)t'     „  fa2 - j'w2)t' (34) 
+  C3e 

+  We 

in which the coefficients of the dimensionless time t' are the roots 

of the characteristic equation 

Y4 + Aax3     + A2y
2  + /liY1 +    A0     =    0 (35) 

the A terms being the dimensionless coefficients of Eq. (33). If 
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these coefficients are computed for the particular case of neutral 

stability (by selecting values of R   from the graph of Fig. 7) then 

Eq. 34 must exhibit a sustained (constant amplitude) oscillation. 

If the frequency of this oscillation is assigned the subscript 1, 

at   must be zero and the coefficients of (35)   become: 

A3   = - 2a2 

i   _y2.    2  .   2 . A2   - (a2 + u)2 + uj 

J4± - - 2a2(>i1 

A0   -  u\(a\   + Uj) 

Hence, the roots of (35,) are readily found: 

a2   = — -4-/2 

2    ^1 

Aa  1  + i/Sfi + Qfi) 

2  _ ^0^3    ^3 w2 -  

It will be useful at this point to prepare a graph showing the relat- 

ion between the frequency of the neutrally damped shimmy and the 

lateral elasticity Kt.   This has been done using Fig. 7b, (Q =   2). 

Since T /S =  K1Iw/NKt   the values of K1   may be found by assigning 

a fixed value to Iw/K-t  and to N.   Then, (using Kv   for the variable K^) 
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K. 
T2/S 

and 

2 
«I i + 1/5C1 + Qfl)   iV 

(36) 

(Where Uj is the dimensional shimmy frequency) 

Fig. 10 shows the relationship between u±   and Kv> The numbers on 

the graph are the damping ratios required for neutral stability and 

the oo's are the neutrally damped (N.D. ) frequencies. 
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Accompanying the motion of frequency Uj there is, of course, the 

motion of frequency u2. The latter is usually lower than the former 
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and is heavily damped. The respective amplitudes of the two frequenc- 

ies depend on the initial conditions and the respective modes may 

be found from Eq. 34. For example, if in this equation C3 and C4 are 

made equal to zero, all the initial conditions required from the mode 

corresponding to the pure harmonic a^ may be found by successive 

differentiation of (3k).   Again, to determine the initial configuration 

to insure the presence of the («)2 motion alone, Cx and C2 are set equal 

to zero and the above process repeated. 

IV. THE INFLUENCE OF THE AIRFRAME 

In each of the preceding systems it was assumed that the point 

of attachment of the elastic element (Kx)   to the airframe remains 

fixed laterally - or, more precisely, that the airframe has infinite 

mass. But, in order to understand the true nature of the self-excited 

vibration and its possible multiple modes of motion, the airframe in- 

ertia and elasticity must be considered. The direct method of accom- 

plishing this would be to set up the dynamics equations for the over- 

all system and obtain the single high-order differential equation 

from which the stability criterion and frequencies may be found as 

shown in Appendix A. It is, however, simpler and more instructive to 

adopt the following procedure. 

The method to be described may be considered to be a modification 

of the impedance method which makes it applicable to the peculiar 

requirements of self-excited vibrations. The procedure is general 

and will apply to any linear physical system. The advantages of this 

approach are more marked in the case of systems of sixth and higher 

order. It is not necessary to solve the high-order differential equat- 
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ion since the method presents more information about the shimmy and 

the factors that influence it in a simpler way; but, more important, 

it permits the use of experimentally determined data in the analysis 

in such a manner that the effects of controllable parameters can be 

readily seen. In effect, the system to be analysed has been divided 

into two fourth-order systems, one of which is self-excited and the 

other passive. The solutions are obtained by matching the impedances 

of the two systems at their common junction. 

The point of attachment of the elastic element (Kx), the oleo, 

to the finite mass airframe experiences a lateral displacement (per- 

pendicular to the line of flight) which will be called x±. If the 

airplane is rigid all points will turn about a vertical axis which 

intersects a line along the axles of the main wheels midway between 

these wheels. Let the moment of inertia of the airplane about this 

axis be I0. The natural frequency of the system when the lower end 

of the oleo is held fixed is /\jK1d^/l0     , where d  is the distance 

from the axis to the strut. The quantity I0/d
z   may then be used to 

define an equivalent mass M1   (i.e. Mx   =  I0/d2)   in the equivalent 

rectilinear system as shown in Fig. 11. 

NOTE: 

The system illustrated in Fig. 11, though highly idealized, may 

be used to clarify the significant effects obtained with an actual 

aircraft. Ground shake tests of a typical airplane were run to 

determine the modes of motion. A harmonic sidewise force of grad- 

ually increasing frequency  was applied to the strut at the level 

of the axle. Resulting motion of the aircraft was recorded with 

accelerometers. The test arrangement is shown in Fig. 12. 

Preliminary results show that the node position in the strut 

moves upward from a point below the ground, passes through the 
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point at which the vibrator is attached (theoretically infinite 

coefficient of elasticity) and on up into the fuselage. The node 

then takes up various positions axially along the fuselage influ- 

enced particularly by the phase relation of the wings and stab- 

ilizer. It is this point that clearly illustrates the impossibility 

of defining the lateral elasticity in terms of static measure- 

ments. It is a dynamic measurement that may in theory vary from 

minus infinity to positive infinity. 

Wheel 

SINGLE   MODE AIRFRAME 

FIGURE   II 

In this equivalent system if the lower part of the strut experi- 

ences a simple harmonic motion of amplitude ~x  and frequency u it 

follows that 

Spring  force   =  K^fx   sin  ut — x±)   = M1x1 

The particular solution of the above equation is 
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Ground Shake Test Equipment Arrangement 

FIGURE 12 
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KJM1       _     . 
   x  sin ut 

spring  force  -   K^x   sin Ut   (   1 - 
r^/wj - </ 

If now the virtual elasticity Ky  of the spring is defined as: 

Spring  force 1 
v = ~1~~77n~u~t~ = Kl T^KJMI (37) 

 5— 

it follows that the elasticity felt by the harmonically vibrating 

oleo is Kv,   a function of frequency as shown In Fig. 13. For example, 

if the system is vibrating at a frequency less than yK1/M1     the 

value of the virtual elasticity Kv   as read from the graph is negative. 

This would make the last term in Eq. 30 negative and hence the system 

would be statically unstable regardless of the magnitude of the re- 

maining parameters. If the system vibrates with a frequency greater 

than /^K1/M1     the elasticity felt by the strut is greater than K± 

and, as shown in Graph 7a or 7b, an increase in elasticity (which 

is proportional to T /S)   increases the damping required for neutral 

stability. The effect, then, of the finite mass of the supporting 

structure is always lo reduce stability. 

It remains to determine the actual frequency at which the shimmy 

takes place. Eq. 36 gives the relationship between the frequency and 

elasticity that exists for the fourth order system when it is neutrally 

damped. Substituting a series of values of K±   (which will be called K  ) 

in this equation will give the sustained harmonic frequency 

2 = 1 x Kj, 

1  + 1/S(1  + QR)   * N (3*} 
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If now a plot is made of K versus u from Eq. 36 and superimposed 

on Fig. 13, the point of intersection (A, Fig. 14a) is a point of 

equilibrium at which the elasticity required to maintain the sustained 
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frequency w is supplied by the virtual elasticity of the given spring 

K±.   The frequency shown at the point of intersection is the frequency 

of the neutrally stable shimmy, and the damping ratio shown at the 

same point is the damping required for neutral stability. Any value 

of R   in excess of this value represents stable motion while any lesser 

value causes the system to be unstable. 

From Fig. 14a it can be seen that the virtual elasticity can 

never be negative. Also, as Mt   is increased without limit the virtual 

elasticity approaches Kt (see Eq. 37). The statement has been made 

that "when the frequency of the shimmy matches that of some mode of 

the aircraft violent resonant oscillations will occur." The theory of 

shimmy as outlined here indicates that there cannot be an accidental 

coincidence of the shimmy and airframe frequencies. For example, com- 

bining Eqs. 36 and 37 gives: 

w
2 = h  + hlH.  (38) 

Mj.      1  + 1/S(1  + QR) 

Hence, the shimmy frequency always exceeds /UK^/M^      , the natural 

frequency of the single-mass mode. 

Rotta (Deutsche Luftfahrtforschung, #8006 p 58, or ATI 26981) states 

that the torsional rigidity of the aircraft should be large in order 

not to favor the conditions for shimmy by additional degrees of free- 

dom. But, increasing the rigidity against a particular mode of motion 

may not influence stability, or it may actually decrease stability, 

but in no circumstance can it increase stability. For example, Eqs. 

8 and 9 show that the lateral elasticity K±   may be increased without 

limit and not affect the stability. 

Maier suggests (Technische Berichte, #10, 1943) airframe elastic- 
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ity is a significant factor in shimmy if the natural frequency of 

the strut and wheel coincides with that of the shimmy. But, in the 

analysis given above, the reverse of this is seen to be more nearly 

true, since for large values of A\JK1/M1     , Eq. 38, the two frequencies 

referred to by Maier become more widely separated and the system be- 

comes less stable. 

If the equivalent mass Mt   of the airframe is gradually reduced, 

the point of intersection in Fig. 14 gradually moves outward indicat- 

ing an increase in both the damping required for neutral stability 

and the shimmy frequency. With M1   sufficiently reduced the second 

branch of the virtual elasticity curve will intersect the nose gear 

curve in two points A and B as shown in Fig. 14b. For this case 

stability exists for values of the damping ratio R   between those 

shown at A and B. Outside of this range the system is unstable on 

either side. The sustained frequency for the conditions of point A 

is uA, and, as the damping ratio increases toward B, the stable fre- 

quency is interpolated between uA and uß. (There is, in general, 

another frequency associated with the one discussed above since this 

is a fourth order system; this latter is usually relatively small 

and strongly stable, and its amplitude is determined by the initial 

conditions. The setting of the torsion spring Kt,   i.e. whether it is 

jnitally in tension or compression, is one of these conditions). 

Finally, if the equivalent mass Mx   is still further reduced until 

the virtual elasticity curve fails to intersect the nose gear curve 

(Fig. 14c) stability is impossible regardless of the damping employ- 

ed. This condition could exist in a low-inertia aircraft in combi- 

nation with a high lateral strut elasticity. 
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Application to Multiple-Mode Systems: 

The method outlined above is general in that it may be applied to 

the case of airframes that exhibit multiple modes of vibration provid- 

ed that the virtual elasticity curve is determined experimentally or 

computed for an equivalent lumped parameter system. For example, if 

the system can be represented as shown in Fig. 15, and point P is 

moved with simple harmonic motion of frequency w, the reaction of the 

spring K±   on the oleo at point P  can be shown to be that of a simple 

spring of elasticity (See Appendix C) 

K. K±[l 

2 /  2 
(j) /<i)2 

2/2...      2/2.- 
(1  -  U) IUf)(l  -  0) /OJS) 

(39) 

•  ^P 
Oleo 

MULTIPLE-MODE    AIRFRAME 
FIGURE   15 
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In Eq. 39 Ki is the static elasticity of the oleo structure, u2 is 

K2/M2,   Uyris the first natural frequency of the airfrane and oleo, 

while us is the second natural frequency of the same structure. If 

a plot of K    versus u from Eq. 39 is now prepared and superimposed 

on Fig. 10, the points of intersection will show the frequency and 

damping ratio required for dynamic equilibrium in the combined system. 

For example, if the damping ratio is adjusted to the value shown at 

point A Fig. 16, the system would be in dynamic equilibrium at fre- 

quency uA. This must be so since if the nose gear were supplied 

with a fixed-ended spring of elasticity KA and the damping adjusted 

to RA the system would approach a pure harmonic motion of frequency 

WA as time goes on. On the other hand, if the K±   M-L K2 M2 system is 

driven at point P with a forced oscillation of frequency w. it would 

react on P as though the spring Kjt were fixed-ended and of elasticity 

Ky. ( This assumes that the initial conditions are chosen so as to 

eliminate the transient.) Hence, with damping adjusted to RA, pure 

harmonic motion would insure a continuous equilibrium of forces 

throughout the entire cycle. The above argument may be repeated for 

points B and C. The conclusion to be drawn from this physical analys- 

is of the system is that the general solution of the sixth order dif- 

ferential equation must be so constituted as to be able to provide a 

solution in pure harmonic motion when the damping ratio is adjusted 

to any of the three values A, B or C Fig. 16. Point A represents a 

possible state of motion but one which cannot be realized in any 

actual case. Only between points B and C can the system be stable. 

This conclusion is quite general and can *e demonstrated by a simple 

analysis of the sixth order differential equation which represents 

the system. Let the characteristic equation for this sixth order 
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system be (See Appendix A for the differential equation) 

Y6  + ABys    + 44Y
4
 + A3Y3    + A^2    +    Aty    + A0  = 0  ((,0) 

Now consider point A, Fig. 16. With the damping ratio R adjusted to 

the value corresponding to this point a pure harmonic motion is 

possible. Hence, under these conditions Eq. 40 must contain a pair 

of pure imaginary roots, say ±>Wi. Dividing (40) by the factor 
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2      2 
f Y  + ui )   yields a fourth order equation from which the roots 

o2 ± Jw2/ and  a3 + j(t)3 may be found. Repeating this process for 

points B and C, data is obtained for constructing the graphs of Fig. 

17 which is a plot of the real and imaginary root components of Eg. 

40 as a function of the damping ratio required for neutral stability. 
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The general solution for the shimmy amplitude is 

With R  equal to flA, a± is zero and, hence, the sustained frequency 

is Uj. For R  equal to fiß or Rc,   a2 is zero and, hence, the sustained 

frequency at these points is u)2. In general, all three frequencies 

UL w2, 
and u3 are superimposed in the shimmy motion. (This compound 

harmonic motion has been observed and reported by Guruewicz and Kruse 

(ATI-23097, translation). 

Examination of Fig. 17 shows that points B and C are points of 

neutral stability, since the plot of a2   passes through zero at B 

and C, while outside this range the system is unstable since a2 is 

here positive. It is now clear why point A represents a possible mode 

of motion, since this can be brought about by adjusting the initial 

conditions so that the amplitudes of both the w2 and u3 modes are 

each zero. Obviously, any transient disturbance under these circum- 

stances would cause the u2 motion to grow without limit and so, in 

any actual case, damping below that shown at point B would result 

in unstable motion. 

V. THE USE OF THE CHARTS 

For the purpose of analyzing a given system the following steps 

are recommended: 

1 - Obtain the numerical values of L,   m,   mlt   f,   Kt,   and Iw. 

Assign a value to the taxi speed V. 
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2 - Compute Q  and 5. Plot R  versus T2/S.      (Eq. 32) 

3 - Plot Kv  versus u as in Fig. 10. 

4 - Plot Kv   as a function of u by ground shake tests or by cal- 

culation using lumped parameters.  (Eq. 39) 

5 - The plot (4)   superimposed on (3) will give points of inter- 

section which disclose the frequencies of neutral shimmy, 

and the minimum and maximum values of the damping ratio re- 

quired for stability. 

In order to examine the effect of changing the magnitude of any 

of the system dimensions Fig. 7 should be used. In constructing Fig. 7 

eight independent physical parameters are involved, but all the essent- 

ial information is contained in the three dimensionless numbers Q,   S 

and T /S.   For example, suppose in a given design 

Q = 4 

S  = 1 

T2/S  = 1 

Fig. 7b is applicable and from it is found the minimum damping ratio 

for stability 

R  = 0.6k 

The actual damping is 

Ct  = RCC  = 0.64 x 2 iKju 

Suppose, now, the following modifications are made in the nose-gear 

design: 

Reduce I to   1/2 its original value. 
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Reduce Kf   to 3/4 its original value. 

i.   Ki    ii 1/2  ii     ii      n 

These modifications give the following values for the dimensionless 

parameters: 

<? = 3.24 

S = 2.0 

T2/S  = 0.33 

The chart of Fig. 7b may be entered by interpolation with T /S  = 0.33 

and Q  = 3.2k  to find R  = 0.42. The effect of increasing S from 1.0 

to 2.0  is slight in this area and may be estimated from Fig. 7a as 

about 4%. Hence, the modification of the parameters makes the new R 

about 0.44. Therefore, the new absolute damping (which is proport- 

ional to the square root of Kf  
x Iw)   becomes 

Ct  = 0.44 x 2 ]j(0.75Kt)  x (0.5IJ 

or, Ct  = 0.27 x 2 ^ K%IU 

Comparing this value of the damping with that originally required 

shows a reduction of 58%. In addition, it is apparent from Fig. 7b 

that the parameter changes have removed the operating point from the 

region in which the upper damping is limited to one in which there 

is no upper limit. Finally, it can be seen that for any stabilizing 

damping ratio, say R  = 1.0,   at T2/S  = 0.33  the rate of damping of any 

given initial displacement will be greater than that found at higher 

values of the inertia ratio, T*/S.   These conclusions may be verified 

by an inspection of Fig. 7a where it can be seen that the margin of 
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damping above that required for neutral stability becomes less as 

2 / 
T /S  increases. This of course is due to the upward slope of the 

neutral stability graphs. (These conclusions have also been veri- 

fied by studies on an analog computer). 

Finally, the effect of varying the trail length L  should be exam- 

ined. It is most significant to note that the inertia ratio, T2/S, 

is independent of L.   However Q,   S  and T  are functions of L.   From the 

data of the modified structure discussed in the preceeding example, 

T2/S  = 0.33  and S = 2.0 it follows that TQ  = 0.66  and T =  0.815. 

Entering Fig. 9a with this value of T it is evident that a given in- 

crease in trail will result in a decrease in neutral damping ratio. 

Considerations other than stability will dictate an upper limit to 

the trail ratio selected in any given design. 

VI. GENERAL NOTES 

1 - Vertical Load. 

The vertical load on the nose-wheel does not appear directly in 

the theory presented here. Nevertheless, it is well established that 

reducing the weight on the nose-wheel does reduce the magnitude of 

the shimmy. This apparent contradiction is due to the following 

effects: a) It is tacitly assumed that sufficient weight acts at all 

times to support the friction force that acts normal to the wheel 

plane. If the wheel load is reduced and skidding occurs, the energy 

fed to the system is thereby reduced (See Eq. 20); b) Not only does 

skidding reduce the energy fed to the system, but, at the same time, 

it removes energy from the system at the contact point between the 

wheel and ground, and thus reduces the damper load; c) The lighter 
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load being accompanied by an extended oleo results in a reduction in 

the lateral elasticity and thereby increases the inherent stability. 

(See Fig. 7). 

2 - Lateral Elasticity. 

The stability criteria established for all but the third-order 

system show that the damping required for stability is reduced as 
i. 

the lateral elasticity K±   is reduced. On the other hand, it can be 

demonstrated that for neutrally damped systems with a given initial 

disturbance the amplitude of the neutral shimmy is reduced for larger 

values of the lateral elasticity. (See Eq. 42). These two statements 

are not contradictory but do require careful judgement in their appli- 

ation. For example, accompanying the reduced amplitude in the latter 

case, there will be increased frequency, spindle acceleration, and 

force transmitted to the fuselage. Hence, it may be unwise to attempt 

to fight a shimmy by opposing it directly with increased lateral 

rigidity. In this connection, it is planned to investigate the possi- 

bilities of shock mounting the nose-gear to reduce the lateral elast- 

icity over a limited range of amplitude. This, of course, makes the 

system nonlinear, and may best be handled by an analog computer. 

3 - Hiah-Frequenc.v Modes of Motion. 

From Fig. 16 it appears that if the airframe contains modes of 

motion with sufficiently high frequencies, no amount of damping can 

theoretically stabilize the system. Actually, the high frequency 

intersections imply correspondingly high virtual lateral elasticity 

so that if a pure high frequency mode is initially set up, its am - 

plitude is relatively small and is effectively checked by inherent 
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hysteresis damping. In addition, it is expected that for the more 

likely initial disturbances, the conditions for exciting the lower 

mode will be more favorable. 

4 - Velocity Effects. 

The amplitude (Eq. 42), frequency (Eq. 38), and damping required 

(Fig. 8) of a neutrally stable mode increase only, slightly with taxi 

velocity. However, strut acceleration, spindle force and ground force 

normal to the wheel plane increase approximately in direct proportion 

to that velocity. This information may be found from the solution of 

Eq. 8 for an initial condition of 90: 

1 
cos(ut   + cp) (42) 

30 ~ ^1 + L*KjV*Iu 

Experimental evidence usually supports the view that the severity of 

shimmy actually grows less with increased taxi speed. This is com- 

pletely false security since the observed diminution of shimmy meant 

simply that other conditions (e.g. sufficient tire friction force) 

were unfavorable to maintaining the vibration. Guroewicz and Kruse, 

(Untersuchung Des Spornflatterns FW190, ATI-23097) discuss a case 

in which shimmy appeared to rise and fall between 80 km per hour and 

90 km per hour. This phenomenon may be mistaken for simple resonance, 

but when other factors are correct the shimmy may return in full 

violence at higher speeds as was actually observed in these tests. 

5 - Stability Without Damping. 

Stability can be obtained without damping. For example, if the 

damper piston is locked in position the swivel torque (Eq. 25, p 16) 
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becomes 

Fna-Flb-Kte   -   y 

Combining this with Eq. 23 through Eq. 28 gives 

(I„ +  miL
2 + ma2)  9 + V(nxL  + ma)  9 + (K.   + KtL

2)  9 + K^LVQ    = 0 

( Compare with Eq. 30 ). Applying Routh's criterion to the above 

equation, the condition for stability with a locked damper is 

Kt    >    K,IW I N 

6 - Shimmy Frequencies For Neutrally Damped Systems. 

a) Third order system: 

4himmy     = K*-L*  I   Tw  + "*-* ( From Eq. 8 ) 

b) Fourth order system: 

2 KJN 
"Shimmy     =  <E«- 36> 

1  + 1 / S(l + QR) 

c) Fourth order system with one degree of freedom in the airframe. 

2 KJN 
"Shimmy     = K^M^   + "      (Eq. 38 > 1  + 1 I S(l  + QR) 

d) Sixth order system. (Two degrees of freedom in the airframe) 

"Shimmy  =(<*f+  us + Z  ± |K +  "I   + V* ~  ^"fl  + Z( *)  + W! " ^)])i/2 
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Where 
KjN 

Z  =       (From Eqs. 36 and 39) 
1  + 1/S(1  + QR) 

Use plus sign for all neutrally stable systems, u. is the first natural 

frequency of the system, u  the second natural frequency of the system, 

and w-L = Wjlj 
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APPENDIX A 

THE SIXTH ORDER SYSTEM 

FOURTH   ORDER SYSTEM WITH MULTIPLE-MODE AIRFRAME 

FIGURE    A-l 

Differential Equation for the. Nose-Wheel Rear with Two Degrees of 

Freedoa in the Air Frame. 

The simultaneous differential equations for this case (See Fig. 

Al) are: 
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Forces: 

Fn+ Fl  = «ig (Al) 

- Fx - Kx(x - x±)  =  iji" CA2) 

- #2C*2 ~ *i) = Mzx2 (A4) 

Swivel Torque: 

Fna  - FZ6 - Ct0± = Ig9 ^5) 

Damper Torque: 

cte± = ^ce - ej Mg) 

Kinematic: 

- L'Q = i + V9 CA7) 

Geometrie: 

*g 
=: * +  69 (AS) 

Combining  the  above  equations gives  the  following differential   eq- 

uation  in 9: 

[Ct(Iw + L2N)]Da6    +   [Kf(Iw + L2N)   + CtVL/V]Z)79 

+   [KtVLN + Ct{Kt  + L2Ki   +  (Iv + L2N)(K1/M1   + KJM*  + K2/\f1)y_DBQ 

+   [Kt(KtL2  + CtVL)   + {Ktf
Iw + L*N)   + CtKL/v]('A'1/A/1+R:2/M2+/(:2/W1)]i)60 
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+■ [K±KtVL + Ct(KjM±)(K2/M2)   { I, + L2(N + ^  + Af2)} 

+ Ät<'VL^ + Ct)(K1/M1  + K2/M2  + K2/tfj]ß
49 

+   ßx/M1)(Ka/Mi)[Kt  i Iv + L2(W + *i  + Af2)}     + CtKLCiV + Mx   + Af2)]D30 

+  (Kt)(K1/M1)(Ki/M2)[VL(N + Af±  + tf2)  + Ct]D
29 = 0 fA9) 

Substituting  the  following non-dimensional  numbers 

2 

2 
r2  = 

Ka/Ma 

KJN 

2 
r2i 

_ Ks/M1 

KJN 

(Q,   S T,   and ß as previously defined) gives the»following different- 

ial equation in 6 where the derivative is taken with respect to the 

dimensionless time yK^/N    t: 

■>8, (T/2 fS)[j + S(l  + QR)]   n7f 

(T2/S)(l + S)R 
D  9 + ' '      2,1. r—-^- 0 8 

[Q5/4 + fi   {  i +  T2   +   (T2/S)(l  + S)(rj  +   r2   +   r\xft   ]   ^ 

(T2/S)(l  +  S)Ä 

+   (T/2VS)[Sfj +  QRJfl  +   r2 +  r2   +   r\x)  +   r\  +   r\  +  r2J     B 

Cf/S)(l  + S)R 
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[   (QS/4)(1  +   r\  +   r\  +   r\x) 
(T2/S)(l  + S)R 

+ fl{rf  +   r*   +  r*±   +   (rM) (7*/S) (1  + 5[i +  i/r?   +  r\jr\r\\ )} ] Z)*9 

(T2/S)(l + S)Ä 
3e 

(T2/S)(l + S)R {       ' 

By setting Wx = °° and K2  =  0  eliminates the effect of the airframe 

and thus reduces the 6th order equation to 4th order. 

nea + (T/*VS)ll * S(*  +  Wl _7Q + [fi + T*)R  + QS/4]  e D b +  s-; if   b +  _j> , f Ö 
(T !S)(1  + S;R (r/S)(l + S)R 

(T /S)(l  + 5)i{ ,       (r/S)(l + S)R x       ' 
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APPENDIX B 

TTRK ELASTICITY 

The effect of tire elasticity and creep is confined to the kine- 

matic Eq. A7 as shown in the following analysis: 

P. (Wheel Center) 

P8 (Spindle Center) 

P0 (Contact  point between tire ft ground) 

DIAGRAM   OF   TIRE   CHARACTERISTICS 

FIGURE     B -1 

The point P0 moves over the ground at an angle to the plane of 

the wheel due to the force Fn.   But since time is required to estab- 

lish this angle y  we have: 

y  + dv = - CFn 
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or 

- CF 
y =  - Q- 

1  + CXD- 

Where C±   is the time constant of this assumed first order system. 

Due to this slip angle \y, the point P0 has a velocity normal to the 

wheel plane equal to Vty. But because the tire is elastic, the wheel 

center P±   can move relative to P0. The actual stretch ( A) between 

P0 and P±   is due to the force Fn   transmitted from the ground thru 

the tire. Hence, 

A - - pFn     Where p   is the tire compressibility. 

Ä = - pFr n 

The total normal velocity of P±   is thus: 

CFV 
 D pF 

1  + C±D n 

And the angular velocity of the link is the velocity of Px   relative 

to P2, or: 

L9 = ( - JT^~D - PFn)  -   (*  + VQ) (Bl) 

For the usual range of shimmy frequencies, it can be shown that the 

effect of time constant Cx can be represented approximately by re- 

placing Eq. Bl with: 

Le = " To CFnV " pF" " (x + ve) (B2) 
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Eq. B2 may now replace the kinematic equation in any of the previous 

systems. For example, when Eq. B2 is combined with those of the 

fourth order system and non-dimensionalized by substituting 

Mr  =   (1 - f)*/N 

V  = pK, 

K±CV 

Q,   S,   T,  R,   and  dimensionless time 4/K±/N    t  as before,   we have: 

(UT2/S)R[Mr  +     1  + MrS]D6Q +   (T/\[s)[(Mr +  i  + MrS)(U/2 +  WRT/{s)]D*Q 

+   [UR {T*/S +  1  + Mr(l +  T2)} +   (WT/2^S)(Mr +  1  + MrS)  +(1  + S)RT*/S]D*Q 

+     [(UT/2is)(l  + MrS)+  WR{T*/S + i  + Mr(l +  T* )} + (T/2*JS) (1+S+ SQR)]B*e 

+     [UR +   (WT/2'{S)(1 + MrS)  +   (1  +  T2)i? + <?S/4]Z)29 

+     [W? +   (T/2l{s)S(l  + Qfi  )]ß9    +     (QS/Ä)   9      =       0 (B3) 

Setting p  and C equal  to  zero  reduces  (B3)   to  the  fourth order: 

[(T2/S)(l + S)R]D*e    +     (T/2]fs)[l + S + SQR]   D3Q    +     [(1 +  T2)fi 

+ QS/4]D2B    +     (T/2/\[s)[S(l +  (?fl)]Z)9    +     [QS/4]   9    =     0 (Bb) 

The  above procedure  differs  from   that  outlined by  Von  Schlippe 

in  that  no  account   is  taken of  the  shift of  the   force  center  in   the 

AFTR 6590 63 



tire footprint. In an actual shimmy, the pattern of tire distortion 

representing this shift would have to be established and erased ap- 

proximately 25 times per second. As yet, there is no experimental 

evidence that this action takes place, or that its influence can be 

anything but trivial. However, when Eq. B2 was used in place of the 

previous kinematic equation and the two compared on an analog, the 

system having the tire constants proved to be more stable. Example 

of the results are given in Fig. B2. 

An experimental program on the mechanical properties of pneumatic 

tires will be conducted at the Aircraft Laboratory at Wright Field 

and one of its major objectives will be to explore the part played 

by the tire in the phenomenon of shimmy. 

mmm^M^ ™ *%,mm£zz£mmm 

FieURE    B 2 
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APPENDIX C 

JTRTTIAT, ELASTICITY 

The equivalent lumped paramater system of the airframe is shown 

in Fig. Cl. Point P represents the point of attachment of the equi- 

valent elastic element to the oleo. K,,   represents the combined lat- 

eral elasticity of the oleo and the torsional elasticity of the fuse- 

lage. 

M 

x» 

I«, 

EQUIVALENT   AIRFRAME   SYSTEM 

FIGURE   C-l 

Considering the forces on Mi.: 

Kt(x - Xi) - K2(xi - x2)     =    Mxxi (Cl) 
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And for M0 

Ks(xi ~ *2)     = M2'x\ (C2) 

.2 
Substituting D x2   for x2  in Eq. C2, and solving for x2  gives 

K2 
x2    = *i  (C3) 

K2  + M2D 

( D stands for the differential operator). Substituting Eq. C3 in 

Eq. Cl gives 

"x"x  +   (Kx/Mx  + K2/M2  + K2/Mx)  x\  + (KxK2/MxM2)xx     = 

(KXK2/MXM2)X+  (Kx/Mx)  x (Ch) 

If P  is assumed to have simple harmonic motio of  requency w and 

amplitude ~x  then, 

x  -  x  cos  wt 

and Eq. C4 becomes 

*± + (Ui1   + U2 + U21) i\ + UiW**!  = b)lul(l   - (//(dg)* cosut    (C5) 

Whe,.  Ui = Kx/Mx   ,     w* = #2/^2   and  w2,. = K,,/^  . 

Assume for a trial solution that xx   is A  cos  ut. Then Eq. C5 becomes 

[u - (at +  u2 + u21)w
2 + WiUsl^cos ut = Wi<4f!f- uVw2)Icoswt 

It can be seen that A cos  ut is a steady-state solution of Eq.C5 if 
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 <«>i<4fi - ti)2/(«>g) x  
J% A    '      2    ' ' 2      2      2      2  2 

(i)  - ('(d1 + U2 + W21/) U  + UiU2 

The denominator of this expression may be written in terms- of its 

factors as 

(</ - w})(w2 - w*) 

Where i)/ is the first natural frequency of the system, (i.e. the 

value of w that causes A  to become infinite), and ws is the second 

natural frequency. Therefore 

2  2.,      2 /  2 .  — 
_     WiWafi - u /U2; X 

A 2—£— 2 /  2 — 2/,"2.- f00-' 
UfUgfl   - (Ü /Uf)(l   -    W /(0S) 

But (i)i(o2 = w^Jg since the last term of the biquardratic is the pro- 

duct of its roots. The downward force exerted on P  at any instant 

t  is Ki(x - xx),   and hence, the virtual elasticity Kv  against which 

P acts is 

Kt(x - xi)  _ K±(~x  - A)   cos  MI 
v X X    COS   Out 

or 
,      2/2 

v (1  - W /Uf)(l  - w /ws) 

As shown by the graph of this equation (See Fig. 16) the virtual 

elasticity is negative from w « 0  to w - Uyr. It then becomes infinite 

and positive until, at w = w2, the virtual elasticity equals the 

actual elasticity Kx. Further increase in the forcing frequency causes 
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Kv  to pass through zero and become minus infinity at u - us. Beyond 

this frequency the value of Kv  passes from positive infinity and be- 

comes asymptotic to Kt   as the forcing frequency increases without 

limit. 
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