
^ A m FILE COPY
^/a/ <?&

t

r

01

in
to
or)
<
i

CMU-CS-79-105

An Overview of the Production Quality Compiler-

Compiler Project

Bruce W. Levereft

Roderic G. G. Cattell

Steven 0. Hobbs

Joseph M. Newcomer

Andrew H. Reiner

Bruce R. Schatz

William A. Wulf

February 1979

«.
i

i

DEPARTMENT
of

COMPUTER SCIENCE

DISTRBUTTON ST/.TEMENT A

Approved for public release;
DUtrlbution Unlimited

JUL161990

li

Carnegie-Mellon University

90 07 16 465

CMU-CS-79-105

An Overview of the Production Quality Compiler-Compiler Project

Bruce W. Leverelt

Roderic G. G. Caltell

Steven 0. Hobbs

Joseph M. Newcomer

Andrew H. Reiner

Bruce R. Schatz

William A. Wulf

Abstract

The Production Quality Compiler-Compiler (PQCC) project is an investigation of the code
generation process. The practical goal of the project is to build a truly automatic
compiler-writing system. Compilers built with this system will be competitive in every
respect with the best hand-generated compilers of today. They must generate highly
optimized object code, and meet high standards of reliabü ty and reasonable standards of
performance. The system must operate from descriptions of both the source language and
the target computer. Bringing up a new compiler, given a suitable language description and
target architecture description, must be inexpensive and must not require the assistance of
builders or maintainers of the compiler-writing system itself. This paper describes the goals
and methodology of the PQCC project.

APP.xOVEL Fun PubLIC RELEASE
DISTRIBUTION UNLIMITED

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F336i5-78-C-1551.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

Table of Contents

Introduction
1. Goals of the project

1.1. Subgoals
1.2. Limitations
1.3. Supergoals

2. Research context
2.1. Compiler-writing systems
2.2. Code optimization
2.3. Current research

3. Overall strategy
3.1. System organization
3.2. Disclaimer
3.3. A note on phase ordering problems

4. Intermediate Representations
4.1. LGN

4.1.1. Example
4.1.2. Primitive data types
4.1.3. Composite data types
4.1.4. The definition file generator
4.1.5. Observations on LGN and its support

4.2. TOOL
5. Constant folding and constant propagation
6. Flow Analysis
7. The DELAY phases

7.1. Context determination
7.2. Desirability analysis
7.3. Lnary complement operator propagation
7.4. Evaluation order and targeting
7.5. Other tree transformations
7.6. Access mode determination ("AMD")

8. Register allocation
8.1. TN assignment
8.2. Packing

9. Code Generation
9.1. Machine Descriptions and Code Generator Generation
9.2. The Maximal Munching Method

10. The FINAL phase
11. Summary

11.1. Optimizations not mentioned above
11.2. Status
11.3. Acknowledgements

References

Accession For

NTIS GRA&I
DTIC TA3 1
Unannounced
Justification.

1"!

By
t-.rlbution/

Availability Codes
[Avail and/or

JDist Special

1
2
2
2
3
4
4
5
6
7
7
9

10
11
11
11
12
13
14
16
16
23
24
28
28
29
31
32
33
36
38
40
41
44
44
46
50
54
54
54
55
55

flDfflmifliijra /H

Introduction

The Production Qualify Compiler-Compiler (PQCC) project is an invrsfigation of the code

generation process. The practical goal of the project is to build a truly automatic

compiler-writing system; compilers built with this system will be competitive in every respect

with the best hand-generated compilers of today. They must generate highly optimized

object code, and meet high standards of reliability and reasonable standards of performance.

The system must operate from descriptions of both the source language and the target

computer. The cost of bringing up a new compiler, given a suitable language description and

target architecture description, must be small — on the order of three man-months, without

assistance from builders, maintainers, or other persons deeply involved in the original system.

This research builds on previous work in two areas: code optimization, and

compiler-writing systems ("compiler-compilers"). Section 2 describes the developments in

those areas which we believe are relevant to our work. The jiation of the PQCC project to

previous (and current) work in these areas, or to the state of the art, can be summarized

briefly:

- With some notable exceptions, previous work in compiler development tools has
focused on the parsing and lexical analysis phases of compilation. Thus,
"compiler-compiler" has come to be almost synonymous with "parser generator".
We would like to extend the function of compiler-compilers, to include the
production of optimizers and code generators. We believe that
compiler-compilers will become far more popular as commercial software
development tools when this is done.

- A great many code optimization techniques are known and have appeared in the
literature. Nevertheless, construction of optimizing compilers is still nearly a
black art. As a result such compilers tend to be expensive both to build and to
use. They also tend to be unreliable, in that the object code produced after
optimization may be either worse than the unoptimized code, or altogether
wrong. We would like to organize, even to formalize, the huge "bag of tricks"
associated with code optimization. Ultimately optimization should be done as
routinely, cheaply, and reliably as parsing.

In the next section we will examine what these broad statements mean in specific terms, and

we will outline the limitations and specific objectives of the PQCC project. Sections 3 and A

give an overview of the strategy and methodology of the project. The remzining sections,

until the summary, are discussions of each of the phases of the code generation process, In

our proposed organization of it.

1. Goals of the project

1.1. Subgoals

Estimating the "quality" of a compiler is a complex matter. In order to evaluate the success

of a compiler-compiler, we must have standards for each of several dimensions for a compiler

prod: ced by it: the quality of optimization (size and speed of code produced), the size and

speed of the compiler itself, its reliability, the friendliness of its user interface, and perhaps

other characteristics of it which are not user-visible, such as the time required to produce

and the costs of maintenance.

We consider the quality of code produced by the Bliss-ll compiler [25] to be a standard.

That is, to whatever extent the compilers produced by the PQCC fail to meet this standard,

our treatment of optimization will be considered incomplete. Several tools, of varying

degrees of sophistication, are available for measuring the quality of code produced by a

compiler, by comparison with other compilers [54, 55, 20]. A great deal of subjectivity

remains in this measurement, in spite of these advances.

It is easier, but less useful, to set hard standards W compiler size and speed, and for the

time required to produce the compiler. In the former areas, the Bliss-ll compiler sets

standards that are reasonable but not high. We do not wish to constrain ourselves to

particular limits of size and speed without having a thorough (quantitative) understanding of

the costs of various code generation and optimization techniques. It seems clear that with

this information we could choose a collection of techniques with acceptable performance. We

estimate that the time required to produce a compiler for a different language and/or target

machine, possibly including the time required to write the necessary descriptions of the

language and machine, should be fewer than three man-months. But at this early stage of the

research, It is not possible to be very precise about this goal.

1.2. Limitations

We have chosen with some care the means of keeping our research task to finite size. We

have retained ambitious goals, as described above, with regard to the saving in the cost of

compiler construction and the degree of code optimization attainable. However, we have

placed real limits on the range of languages to be compiled and the range of target machines.

In addition to these, we have set some other limits to our ambitions, having to do with the

process of production of compilers; these will be described in section 3.2.

We consider only the "algebraic" languages. This is a vague term; it is easier to describe

■n ii IMM ■

what sort of language characteristics we do not expect to handl«;, than to describe what we

do expect to handle. We exclude languages which provide the programmer with a

well-supported and non-trivial data abstraction from the start, e.g. list processing (LISP),

array processing (APL), string processing (SNOBOL). While these languages present

interesting and worthwhile optim zation problems, optimization and code generation must be

done in terms of run-time subroutines rather than instructions. With our instruction-level

machine descriptions and optimization techniques geared to saving individual registers or

reducing code size in words, we have little to offer to the advancement of that variety of

technology. We are more at ease with ALGOL, PL/I, FORTRAN, BLISS, PASCAL, C, Ada, and

other general-purpose languages.

We consider a wide but still limited range of target machine architectures. These include

one-address (PDP-8, NOVA), two-address (PDP-11), general-register (PDP-10, 1108, S/370),

and three-address (VAX) architectures, and mixtures of these (almost all real computers are

mixtures). We exclude pure stack machines, and other designs even more specialized to

high-level languages, for reasons similar to the reasons for excluding special-purpose

languages. For these architectures, many of the usual techniques for code generation and

optimization, such as global and local register allocation and targeting, are partly or even

wholly irrelevant. Techniques that are useful, on the other hand, are outside our domain of

expertise. In addition, we do not consider the issues raised by vector machines, or by vector

instructions on otherwise conventional machines, or by machines implemented with pipelining

or other schemes for achieving parallelism.

Note that particularly poorly designed architectures are not excluded. Thus, we are

pref ed to deal with very asymmetric instruction sets, or systems in which supposedly

genprai-purpose registers or other locations must be very nearly dedicated to particular

purposes. (This latter category includes instruction sets in which common arithmetic

operations may only read their operands, or write their results, in highly restricted

categories of registers. The 8080/Z80 machines are a well-known example.) In spite of some

visible progress in the art of instruction set design, new architectures appear every so often

which are no better than those of twenty years ago, and we cannot afford to ignore these.

1.3. Supergoals

The goals of the PQCC project arise from several broader goals:

- We would like to attack the high cost of software, by making high-level
languages more viable as software construction tools. Our approach to this is to
try to decrease the costs of compiler construction, and to improve the quality (in
terms of both effectiveness and reliability) of code generation. To some extent
the PQCC project is an outgrowth of the Bliss-11 optimizing compiler project

[25]

We are interested in applications of formal, symbolic descriptions of computer
architectures. Other research in this area has investigated the generation of
aGsemblers [56], verification tools [30], emulators, and other tools directly from
computer architecture descriptions. The PQCC projec' is partly an outgrowth of
the SMCD (Symbolic Manipulation of Computer Descriptions) projects [48].

We believe there are serious unanswered questions about the design of
intermediate languages for target machine independent compiling systems,
e-.pecially when the production of high-quality code is an issue. We discuss
some of these in section 4.2; our proposal, called TCOL, may be thought of as
another entry in a field that includes the original UNCOL [52], BCPL OCODE [38],

and JANUS [28].

• We would like to formalize code generation and optimization techniques, in much
the same way that parsing [39] and flow analysis optimization techniques [45]
have been formalized. More generally, we wish to know how techniques are
related to one another, and for any technique, to have a good understanding of
its costs, its applicability, and its effectiveness.

2. Research context

2.1. Compiler-writing systems

Many compiler-writing systems provide little or no support, or even a well-defined

framework, for code generation. Typical of the usual approach is YACC [58]. This is a parser

generator, which works from a language description in the form of a context-free grammar, or

set of productions. With each production, the compiler writer may associate a subroutine he

has written, and an indication of what arguments are to be passed to it. (Arguments may

include references to tokens in the production.) These subroutines must do all the processing

necessary for semantic analysis and code generation. They are written in a general-purpose

language (C [9] or a dialect of Fortran); except for the ability to refer to tokens in the

productions, no support is provided to the writer.

A slightly more interesting system is GCL, a language for writing code generators, used to

build the PL/1 optimizing compiler [19]. This is based on a general-purpose language, but it

offers automatic facilities for generating labels in the code stream, allocating (very)

temporary storage (and using it in the object code), and generating any of the target machine

(S/360) instructions. More importantly, it offers a significant abstraction to the user, that is,

a framework for the code generation process. A parse tree is assumed, and there is a set of

primitives for extracting information from it and for "walking" it: using its structure to direct

the flow of control. The GCL system is typical of another class of compiler-writing systems

[14], in which some attention has been paid to the code generation phase, but the system

builder must still design and implement all the strategies, including most optimizations, himself.

Sometimes these systems come with a pre-code-generation phase which does some

rudimentary flow analysis on the program. In general, however, such systems are not

adequate for, and even preclude, techniques that involve multiple phases, or non-trivial

auxiliary data structures.

In recent years there have been several attempts to formalize the code generation

process, with a view to building compiler-writing systems. These efforts are closer in their

aims to the PQCC project than are the more popular compiler-writing systems mentioned

above. A survey of these has been written by Cattell [10]. In addition, two efforts should

be mentioned which were too recent to appear in the survey [22, 12]. We will discuss this

code generation research in more detail in section 9.2.

2.2. Code optimization

The literature on code optimization begins at least as early as the Fortran 1 compiler [23].

Since then there have been several famous (or notorious) optimizing compilers about which

landmark papers (or books) have been written [21, 19, 25], and dozens, perhaps hundreds, of

papers about individual optimization techniques. ([2] is a fairly recent bibliography; partial

catalogues can be found in [3, 50, 32].) Unfortunately, except for a few very well-researched

areas, such ar global (intraprocedural) flow analysis [4], and evaluation order and targeting

[7], much of the published literature is difficult to use. Algorithms are frequently very

dependent upon the target architecture, or upon the nature of the run-time support, or upon

peculiarities of the source language; sometimes they can be generalized in non-obvious ways,

but usually the authors make no attempt to do so. Frequently authors are unaware of other

attempts to solve identical problems (a phenomenon not at all limited to literature on

optimization, or even computer science). Performance measurements are exceedingly rare,

whether of algorithm size or speed, or of effectiveness in improving object code quality.

As a result, standards of optimization in the compiler community are low. Most compilers

perform no significant optimization at all. Good optimizing compilers are usually the result of

expensive projects requiring many real years as well as man-years of effort. Many

optimizers do not reliably produce correct code, causing users to routinely disable them when

running the associated compilers. Others use "heuristic" algorithms, which sometimes make

the resulting code worse than the unoptimized code. Useful optimization techniques are

rediscovered many times by different compiler writers — or, more often, not rediscovered.

Some significant optimization techniques are almost wholly independent of the architecture

of the target machine. These include data and control flow analysis [24. 4], evaluation order

rearrangement [7]. and the "packinS" phase of global register allocat.on [15. 29]. In a few

other areas, ouch as code selection and local register allocation [49], attempts have been

made to parametrize a technique, such that it can be moved from one target mach.ne to

another with changes only to a set of tables describing the machine. This is our pmc.pal

method; the bulk of our work is to find formalizations for as many as possible of the known

useful optimization techniques, such that they can be easily parametrized.

2.3. Current research

At least three other promising research or development efforts, with goals similar to those

of PQCC. have recently been described. A comparison of their goals and methodotog.es w.th

ours will help to clarify the PQCC effort.

The Experimental Compiling Systems (ECS) project [16. 17, 18] is addressing the problems

Of target-machine and language independence in optimizing compilers. They are pr.mar.ly

interested in modularization and standardization of optimizing compiler design; though the

goal of this work is not a compiler-writing system, it would be a very logical by-product.

Their model of the compilation process involves translation to a nearly uniform intermed.ate

language (ID, followed by a loop in which machine independent optimizations are performed

for as long as is deemed to be useful, followed by a "machine tailoring" phase in which the IL

representation is brought much closer to the instruction level of the target machine.

There are major differences in methodology between the two projects. The ECS and PQCC

treatments of optimization are two widely separated points on a philosophical spectrum, from

"knowledge-impoverished" to "knowledge-based" systems (to use terms borrowed from

Artificial Intelligence research [37]). Central in the ECS approach is the attempt to avo.d

special case analysis - to use a few powerful and general optimization techn.ques, such as

global flow analysis, constant folding and propagation, procedure integration, and dead code

elimination, to subsume optimizations that are usually discovered only by more spec.ahzed, or

even ad hoc, methods. The PQCC methodology, by contrast, is knowledge-based opt.m.zat.on

- we are willing to use all the (dozens of) known optimization techniques and

sub-techniques, subject only to the condition that we can parametrize them to use easily

understood machine and language descriptions. This difference in philosophy is reflected m.

among other things, the difference between the intermediate representations for programs,

discussed in section 4.2.

The other major difference in methodology is the means of adapting a compiler to different

languages and machines. The procedure given in [16] for the "particularization" process

involves writing programn: a storage mapper, defining procedures written in 1L, and perhaps

others (a final component which does peephole optimizations is mentioned briefly). As

discussed earlier, we are strongly committed to the use of formal descriptions, which tend to

take the form of tables of information, rather than programs; the compiler writer's view of

the PQCC system will be nearer the declarative end of the "procedural vs. declarative"

spectrum of knowledge organization. A good summary of the arguments on both sides of this

issue can be found in [b

The MUG? project [j^: - J, ^3], like the PQCC project, is an effort to produce (multipass)

optimizing compilers from language and machine descriptions. The model of the code

generator presented In [43] is closely related to our own, and is described further in section

9.2. [35] describes a language for describing optimizations, especially tree transformations of

the kind discussed in section 7.5; the language, OPTRAN, is to allow the compiler-writer to

impose a control structure of his own choosing on the search for such optimizations.

The portable C compiler [41, 42] is not a compiler-compiler system, but a compiler for C

written with an attempt to isolate the machine-dependent portions. It has been transferred

to a large number and variety of machines with a change of roughly 207. of the code; the

transfer required about three man-months of effort, by the author of the original compiler.

The portable C compiler does almost no global optimization, but the local code generation is

of high quality [20]. In addition, compilers for another language (Fortran 77) have been

written using approximately the same portable C code generator. Thus the portable C effort

has made some progress toward the goals of language and target machine independence

which we are interested in; it is difficult to tell from the published descriptions, however,

whether the system could be extended to do more optimization, or to compile slightly

higher-level languages (e.g. Pascal), or whether the system could be ported easily by a

person other than the original implementor(s).

3. Overall strategy

3.1. System organization

Figure 1 is a crude box diagram of the PQCC system and a compiler generated by it. The

compiler consists of a skeleton compiler (PQC) and a set of tables which it uses as input (in

addition to the user program); the tables contain all the necessary language and target

machine dependent information. Note, however, that these tables are not themselves written

or modified by the compiler writer, that is, they are not the original descriptions of the

language or target machine. They are instead output from the "compiler-compiler" system

(PQCC), which takes as input the original descriptions.

8

Source
program

Language
description

Machine
Description

Skeleton compiler (PQC)

Tables

Table generator (PQCC)

-^, Object
program

Figure 1: Crude box diagram of PQCC system

TCOL program

Source
program

Languase
description

Machine
description

> Object
program

Figure 2: Detailed box diagram of PQCC system

Figure 2 shows some of the structure of the PQC and of the PQCC. The division of the

compiler into phases has two important consequences to our system development

methodology:

The phases operate serially (at least in the experimental vorsions of the system),
each taking as its input the rntire output of the previous phase and performing
some intellectually manageable subtask of the compilation process. This allows
the PQCC itself to be decomposed into intellectually manageable portions: with
each phase there Is associated a "phase generator", which creates the
language/machine environment information required by that phase.

Work on each phase can proceed independently of work on (almost) any of the
other phases. Thus, if some phase does not work, or does not even exist,
progress can still be made on the phases following it in the compiler. This has
been very difficult to achieve. It requires that any phase should be debuggable
in "stand-alone mode", that is, without being plugged in to the entire compiler.
This in turn requires several conditions:

- It must be possible to prepare input for that phase, and examine output
from it. Thus, the phase must be written to read from, and write to,
standard input-output devices (usually disk files). It must read and write
text files, not binary files, because humans must be able to read and write
them as well.

- The notation in wh'ch the files are written must be sufficiently general, or
sufficiently rich, so that the entire state of the compilation can be
recorded. (We have opted for generality instead of richness.)

- The notation must be nearly uniform from phase to phase. This allows us
(sometimes) to experiment with the ordering of the phases, or to run a
phase even if we cannot provide a "dummy" version of the previous phase.
The one exception to this is the notation used for output from the CODE
phase (and input to the FINAL phase); this has the same syntax as the
notation used for previous phases, but does not use the same semantics.

The intermediate notation is discussed in later sections: LGN syntax in section
4.1, and TCOL semantics in section 4.2.

3.2. Disclaimer

There are two aspects of the compilation process which we resolutely refuse to study.

Whatever systems we build will have to be plugged into other systems, not written by

ourselves, to carry out these necessary tasks:

- Parsing/lexical analysis: we will presume the existence of a compiler front-end
sufficient to transform a source program i ?o a TCOL-like parse tree. The art of
parser generation is sufficiently well developed that we are not interested in
trying to advance It. Note that the problem of imposing uniform semantics on
TCOL is a different matter; we would like to understand the problems of language
semantics well enough to go beyond ad hoc techniques for "fixing" the output of
given parsers.

- Loading and relocation: we will presume the existence of a compiler "back end"
sufficient to turn the output of our last phase into executable code. We can
provide instructions formatted for an assembler, or even formatted for binary

10

files, ü- :ng information present in our target machine descriptions; but we are
not interested in the problems of loader independence (which are indeed
difficult).

3.3. A note on phase ordering problems

A problem common to multi-phase optimizing compilers is that there is no "idear ordering

of phases. Phase A transforms the propam in ways that obliterate some optimizations that

otherwise could have been performed by phase B, which follows it; but if the order of the

two phases is switched, phase B performs optimizations that deprive phase A of

opportunities. The dual of this situation is one in which the two phases open up new

opportunities for each other. WP refer to these as phase ordering problems, or "chicken/egg

problems", after the famous q> iion, "Which rame fifst, the chicken or the egg?". The first

type are negative phase ordering problems, and the second type are positive. There are

several ways of dealing with such situations.

- One can use iteration. The two phases are simply repeated, one after the other,
until the program settles down. We are not accustomed to the use of iteration
until convergence in compilers, but in fact this technique is highly successful in
the FINAL phase of the Bliss-U compiler [25], and it is used in the PQC FINAL
phase as well (see section 10). Of course, it is no solution to negative phase
ordering problems, but it may be the only optimal solution for positive problems.
In order for it to be applicable, there must be some guarantee of convergence; in
order for It to be practical, convergence must almost always occur after a very
small number of iterations.

- One can ignore the problem. This approach is reasonable if the interaction
between the twe phases is rare, or is otherwise unimportant, or if there is no
other practical alternative.

- One can use iteration without convergence; that is, the number of iterations of
each phase may be fixed ahead of time.

- One can use what we call "wild guess" techniques. These may be used for both
positive and negative phase ordering problems. Phase A may make -cme simple
set of assumptions about the results of phase B, and act on them. This gives
some of the effect of having two iterations of phase B. The advantage of it over
having two iterations is that phase B need not be programmed to allow iteration,
that is, it need not be idempotent. This is important, because writing a phase to
be idempotent, especially if it computes new attribute values for program tree
nodes rather than simply performing tree transformations, requires at least a
strong programming and design discipline, and at worst may be hopelessly
difficult.

We will encounter various phase ordering problems in our discussion of the phases of the

compiler; we will try to indicate for the important ones how we have dealt with them.

11

4. Intermediate Representations

4.1. LGN

The* following list should be appended to the list of requirements, presented in section 3.1,

which must be met by our external representation of programs:

- The notation should be able to represent an arbitrary directed graph with many
links, including cyclic links.

- The notation should be able to represent information independently of its
implementation, . .g., representing a sequence of data which may be stored as a
list, a set, a vector, etc. This is because the optimal representation of
information for one compiler phase may not be optimal for any other.

- The notation should be transformable to an efficient representation, e.g., a highly
packed bit representation with single bits for boolean«, small fields for small
values, etc. In particular, it should be possible to discard the input-output
between two phases and collapse them into a single program; ultimately, we
could develop source code that would integrate into a single compiler without
any intermediate representation other than the binary image in memory.

- The implementation should not lose information because a particular phase does
not need it; in particular, it must preserve such information idempotently from
input to output.

The "Linear Graph Notation", or LGN1 meets these goals to varying degrees. The syntax of

LGN describes nodes of 'the graph in terms of a node type and attribute-value pairs

associated with the node. Each node is labeled, and the label was chosen to be an octal

number so that an implementation could emit the machine address of the node as its label (as

indeed our debugger does). However, the only important requirement on labels is uniqueness

within a particular graph. This is checked on input (duplicate labels indicate an error

condition) and Is expected to be preserved on output.

4.1.1. Example

An example here might give more of the flavor of LGN:

Th« name IndicaUi »hit the noUlion it • lintar rtprtuntttion of ■ fontrtlly non-linaar, «vtn non-plinir, inUrnal
graph ■fruciura.

12

17« OBJECT
(NAME BALL)
(COLOR YELLOW)

23: ACTOR
(NAME JACK)
(AGE 6)

31: RELATION
(NAME PLAYS-WITH)

(WHAT 23:)
(TOWHAT 17:)

This example was chosen because it has nothing whatever to do with compilers. It is

therefore possible to concentrate on what the notaiion says without worrying about what we

must say to describe z compiler data structure; that is discussed later in section 4.2 (see

figure 5). This shows that there exist things called OBJECTS that have names and colors,

ACTORs that have names and ages, and RELATIONS for connecting actors to objects (or

possibly objects to actors), which have names and directed arcs WHAT and TOWHAT.

Attribute names such as "NAME", "AGE", "WHAT", and "TOWHAT" are not interpreted by the

LGN support system — any other identifiers could have been used equally well. Moreover,

the NAME fields in the three types of nodes, OBJECTs, ACTORs, and RELATIONS, are not

necessarily related to each other, or confused or connected with each other in any way by

the LGN system. Thus LGN could be the external representation of a conventional record

structure, as provided by languages like PASCAL.

4.1.2. Primitive data types

The primitive types for the attribute values are:

integer represented externally by a string of digits, or by a symbolic name;

label represented by an octal number followed by a colon (forward references
are handled correctly);

identifier represented by a string of letters, digits, and even some punctuation
marks;

streng quoted strings of arbitrary characters;

sequence sequences of values (separated by blanks) of any of the above types,
possibly with various types intermixed.

Values of the identifier type are represented internally by unique integers generated by the

LGN system; two of them can be tested for equality, but no other meaningful operations can

13

be performed.

An LGN support package provides the software necessary to work with these

representations in a program. It contains:

- A definition-file generator, which takes a specification of the node types,
attribute names, and allowable value types and values, and produces definition
files used by the source program. These files provide the necessary access to
the fields, to the node information, and to the representation. They additionally
define the tables required by the input/output support.

- Input/output runtime support, which reads and writes LGN files.

- Runtime utility support, which provides procedures for set and list manipulation,
storage management, creation and deletion of nodes and complex values, and
error handling.

Attributes of type integer and identifier frequently appear similar in the external

representation. This is because of the facility for defining symbolic names for integer

attribute values. Consider, for instance, the attribute COLOR, of "object" things. The user can

specify that the only legitimate colors have symbolic names BLUE, RED, YELLOW, and GREEN,

and can further specify which integers these four names represent. If, alternatively, the

COLOR attribute had type identifier, then any name would be a legitimate color; two colors

could be tested for equality, but no other operations (such as typical integer operations)

would be meaningful.

Attribute names and symbolic names, like identifiers, need only conform to the very

permissive LGN syntax for identifiers. Since most languages (BLISS in particular) have more

restricted identifier syntax, the LGN facility for defining them allows them to be associated

witb "internal" identifiers, which are expected to obey the rules of the host language.

4.1.3. Composite data types

The internal representation of a sequence is defined by the user; thus, the sequence

(SUDNODES 178 44! 76i 122l 5»)

may be stored as

an array: the order is preserved, and the r" element of the array is the t'h value
In the sequence;

a set: the order is not preserved, and duplicate entries are omitted. Insertion
and retrieval are efficient;

a list: the order is preserved, and insertions and deletions are efficient while

14

indexing is not (li'^ts are doubly linked).

(All of these representations are fully supported by the LGN software.)

In addition, atomic types or arrays may contain values of type item. An item has a value

which can ha any of the atomic types or composite types, and has a type-tag indicating which

type the value possesses. For example, the following sequence could be stored only in an

item-array, set, or list:

(THING-SEQUENCE "string" 17: 45 any-ld)

Similarly, the following two nodes would require that the VALUE field be of type item, and the

type of the item would be determined at run time by examining a tag field.

17: SOMENODE
(VALUE 44:)

23: SOMENODE
(VALUE 5)

In this example, the type tag associated with the VALUE field of node 17: would indicate that

the type of the VALUE field is label, and the type tag of the VALUE field of node 23: would

indicate that the type of the value field was mtcger. As with "union mode" or "variant

record" features in many languages, this feature defeats some of the type checking that

normally is done.

4.1.4. The definition file generator

The LGN definition file generator is a program which reads a description of the nodes,

including the names of the fields, type of value, possible values, etc. and emits the source

code necessary for defining these data structures to the language used for the

implementation. Although currently all the source code is in BL1SS-10 [6], the specifications

are in LGN itself and the definition file generator could emit record declarations for SAIL,

PASCAL, C, or whatever the desired target language would be.

A particularly useful feature, mentioned earlier, is the ability to construct tables for

dispatching to specific procedures based upon the value of a field in a node. For example,

one may wish to "understand" in some way the properties of the binary operators:

15

+ commutative, associative
* commutative, associative
/ not commutative, associative

not commutative, not associative
mod not commuatlve, not associative

which might involve the following code:

case node[operator] of
begin

[Addop] COMASSOC(node);
[Mulop] C0MASS0C(nodc)>
[Dlvop] NC0MASS0C(node){
tSubop] NCOMNASSOC(node)i
[ModOp] NCOMNASSOC(node)

end;

In any tjuage, this is awkward, because as the set of operators is extended, each site in

the program which involves such a dispatch table must be extended in kind. While this

certainly can be done, it is tedious, and difficult to do correctly (consistently). The LGN

system allows dispatch tables to be built without regard to the actual values assigned to the

symbolic names allowed for a particular integer field} It sorts the set of dispatch table entries

provided by the user, and fills in default entries for symbolic names which the user has toiled

to provide for. In the BLISS system, the dispatch table is simply a table of subroutine

addresses, and the dispatching code looks like:

, DI spatchTabl et. nodet Operator]] (,node)i

Note that the code at the dispatch site is not sensitive to the actual size of the table, i.e. to

the number of operators. The table is sufficiently simple that it can be generated by the

definition file generator; this assumes that the act of incorporating this table into the actual

source program is accomplished by some compiler directive, such as (depending on the

language) require...source, include, copy, etc.

The file generator has the advantage of knowing the exact values it has assigned to the bit

patterns which represent the tokens "♦", "/", etc. in the operator field of a node, and can

therefore emit a correctly sorted table. Declarations exist for what to do with unspecified

operators.

16

4.1.5. Observations on LGN and its support

The uoe of LGN has not been entirely ideal. The reader/writer routiner, have a significant

impact on the performance; several minutes (of real time) are required to read in a large

database such as a machine description. This limitation is almost entirely at the I/O and

buffer-scanning level, rather than in storage allocation or manipulation. Once the data

structure is read in, we pay no time penalty for the use of LGN, although we incur some

space penalty due to the internal symbol tables it maintains.

The current implementation does not allow a typical space optimization used in real

systems, which is to re-use the (idle) space of one phase in another phase. Thus, we were

unable to create data structures in which the fields of one phase overlapped the fields of

another phase, even though there was no conflict in their use. Although largely an artifact of

one particular implementation of the LGN support package, this did cause us problems in that

a large number of words (currently 19 words) are required to represent a tree node, when in

fact fewer than half of these contain useful information at any one time.

Neither of these defects are serious enough to cause us to reconsider the use of LGN. The

ease with which we were able to manage a large, complex database (the representation of

♦he basic tree nodes) and create many small, special-purpose representations for each phase

contributed significantly to the rapid implementation of the first compiler-, in fact, about six

months elapsed between the beginning of serious coding on the compiler and the prototype

demonstration system.

The interactive debugger for Bliss (SIX12) was extended to use the internal LGN tables,

and we could thus examine and display our data structures using LGN-like syntax. The ability

to debug in terms of our conceptual data structures rather than their internal representation

was another factor which contributed to rapid development. Although some systems, such as

LISP, provide such features as a matter of course, very few algebraic languages or

implementation languages provide such facilities.

4.2. TCOL

An issue not settled by the design of LGN described in the previous sections is which data

structures are to be used to represent the source program. The initial choice is between

various linear representations, such as triples or quadrupbs (two-address and three-address

"instructions"), and a two-dimensional representation (such as a parse tree). We chose the

latter. Some arguments for this choice are prr in [19, 14]. We summarize our

principal reasons as follows:

17

- The linear representations are too confining In their prescriptions for the
storage and retrieval of operation results. It is difficult to generate good code
for three-address machines from triples, or for two-address machines from
quadruples.

- The linear representations require that source-level control constructs be
broken down into tests and jumps. The disadvantages of doing this too early in
the compilation process are discussed below.

- The tree representation has a good deal of psychological "naturalness". It seems
to be much easier for a human reader to grasp the data dependencies of a
program from a (suitably prettyprinted) parse tree than from a (suitably
prettyprinted) list of triples or quadruples; the latter has all the readability
problems of assembly code.

It's important to remember that the two kinds of representation are essentially equivalent

in power. It is equally possible to construct a control flow graph (see section 6) from either

form, and in fact we maintain a linear list of all tree nodes in execution order. Conversely,

the subtree pattern-matching optimizations described in section 7.5 could be described and

performed with almost equal facility on a linear representation of the program — if it were

thoroughly analyzed and augmented with enough information to reconstruct the tree

structure. However, much less effort, both in coding and in understanding, is required to

regenerate linearity information from the tree structure, than to regenerate data dependency

information from a linear structure.

We have elevated our representation of programs to the status of a notation or language,

called TCOL This acronym is historically motivated; the last three letters are from the earlier

acronym UNCOL [52], and the first letter stands for "Tree". An appraisal of the aims and

approaches of UNCOL-like systems, by comparison with our own, can be found in [36].

Although those systems are not especially appropriate for producing good-quality code, we

have borrowed one central idea from them: the notion of a single, (almost) uniform

intermediate language, to allow simultaneous compatibility between the output of many

parrers and the input of many code generators. Unlike most UNCOLs, which are like

instruction sets of a stylized computer, TCOL contains no implicit computer model; it can be

regarded as a stylized programming language.

We do not work with a parse tree, but with a tree that reflects abstract syntax:

- operator precedence rules, and parenthesization by the programmer to get
around them, are no longer evident in the tree;

- constructs which are indefinite sequences of other constructs are represented as
nodes with indefinitely many operands, though they may have been represented
in the parse tree as (highly unbalanced) trees. An example of this is given in
figure 3;

18

- terminals in the grammar are not necessarily represented by leaves in the tree.
In particular, a binary operator expression is represented by a node with two
operands; the value of the op attribute is the identity of the operator. In a
parse tree, the node would have had three operands, of which the middle one
would be the operator.

In addition, some semantic rules must be followed:

- All operations, including coercions and dynamic checking of subscript ranges and
types, must be explicitly represented in the tree. This includes the
"dereferencing" coercion, so effectively TCOL uses the Bliss "dot" notation [6].
Ficure 4 shows some typical examples of the results of this policy, for various
programming languages. Figure 5 shows a TCOL tree represented in LGN; this is
(slightly simplified) output from a BLISS parser which we use for testing
purposes.

- Different operators must be represented by different names. Thus integer and
real addition are just as distinct from each other as are addition and
multiplication.

- Control structures are represented by structures, not broken down into tests
and jumps. This means that the control structures in TCOL vary somewhat
depending on what language is being implemented. For instance, one of the
TCOL operators for Algol 68 is for; for BLISS there are incr and deer; for
FORTRAN there is do. All the expressions which are parts of the construct are
operands of the operator; thus the tree node for a for loop in an Algol 68
program has a from operand, a by operand, a to operand, and a do operand.

- Declarations are not ordinarily represented in the tree. Exceptions are
declarations with which code is specifically associated, such as the BLISS enable
declaration; an initializing declaration of a variable would be represented as an
assignment.

- No tree node may appear in more than one basic block in the ultimate control
flow graph. The terms basic block and control flow graph are defined in section
6; the practical meaning of this rule is that the code generated for a control
construct node must be straight-line code. This sounds bizarre; what it means is
that some such nodes must have dummy operands, which represent various
pieces of straight-line code. Here are some examples:

- The Algol 60 if-then-else statement is represented by one node. Its
operator is called if. It has three operands: the boolean expression, and
the two alternative statements. NO CODE will be generated for the if node.
This is because the testing and conditional branching will be generated
automatically for the boolean expression node, and the branch at the end
of the then part will be generated automatically for that node. Therefore,
the if statement node presents no problem.

- The if-then-else expression, on the other hand, requires some care. Given
that the value of the expression is required, it may have to be moved
around. The value of the node will be held at run time in some target
machine storage location, such as an accumulator or a memory location.

19

The values of the then part and the e!se part will al&o be held in locations,
and all three of these locations may be different from each other. Code
must be generated to move the contents of the latter two locations into
the first location. There will thus be two straight-line pieces of code,
which for simplicity should be represented by two dummy operand nodes.
Each dummy operand node has an operator named copy. It stands
between the if node and the corresponding alternative node; that is, the
then part is no longer an operand of the if node, but rather an operand of
the first copy node.

Stepping loop constructs, in many languages, require considerable care.
Consider the Algol 68 for expression:

for i from el by e2 to e3 do e4 »d

The semantics of this construct require that the by and to parts must not
change during execution of the loop. Therefore the initialization code,
which already includes the initialization of t to el, must also (possibly)
initialize two compiler-created variables to c2 and e3. The initialization
code is represented by a dummy operand node whose operands are i, el,
e2, and e3. The loop increment code is represented by a dummy operand
node, and the loop test code by yet another dummy operand node. Finally,
some languages, such as BLISS, allow for the loop to return a value, in
which case there is some code to store the value in an appropriate
location; this code is represented by the incr node Itself.

Statement: BEGIN j :- Ij k := 2; I :- 3 END

Wrong Right

SYMBOL

T
CONSTANT

etc. etc.

Figure 3: Right and wrong TCOL representations of a compound statement

Many artifacts of the compilation process are not reflected in TCOL The TCOL tree

representing a program should not be affected by the presence or absence of such parser

features as: macros and open subroutines; generic operators and routines; compile-time type

checking and verification condition checking; source-file inclusion facilities (PL/I includo,

COBOL copy); and conditional compilation. Moreover, block structure and encapsulation, which

20

Statement (Source Language) TCOL tree

i-j

i •=• i

(Fortran)

(Algol 68)

(Bliss)

/
:•» .
\

i ♦- .j SYMBOL DERER
1 1
1
V SYMBOL

1
■l*H

a - j

a :=■ j

(Fortran)

(Algol 68) _A
;s=

\
or

a :- REAL(j) SYMBOL FLOAT
1 1
1
"i" DEREF

1
SYMBOL

1
"i"

Figure 4: Examples of TCOL trees

play important roles in language syntax definition, leave few traces in the TOOL

representation of a program. Along with the parse tree there must be a symbol table, but

this has no structure; it is just a set of LGN graph nodes, one for each user variable, with no

necessary relation to each other. Each node holds just enough information about the variable

so that later phases can allocate storage for it (e.g. whether its lifetime is static, stack-like, or

heap-like), determine what its aliases may be, and generate debugging information (e.g. a

print name) for it.

The semantics of each TCOL operator may vary from target machine to target machine and

from language to language. At the very least, the meaning of each arithmetic operator

changes when the word size of the target machine changes; and TCOL operators which are

not relevant to a particular language (such as string operations in a language that does not

provide strings) may simply be dropped. More subtle or more interesting changes may occur:

the relationship between negation and logical complementation is different for two's

complement and one's complement machines; some arithmetic operations may be checked for

21

overflow and may therefore have potential 5ide-effects; the semantics of built-in data

abstractions such as strings may differ slightly from one language to another. These

differences do not appear in TCOL, but in a set of axioms which are incorporated into the

language definition. The use and nature of these axioms are described briefly in section 9

and in more detail in [11].

There are other issues of semantic variation from one TCOL to another that we have not

yet dealt with. These are variations of semantics of basic language constructs: parameter

passing, aliasing, the treatment of limit and increment parameters of stepping loops (touched

on above). We hope eventually to develop notations for expressing these characteristics of

languages, and to determine precisely their effects on the PQC compiler. Until then we will

have to deal with these issues in an ad hoc manner, whenever bringing up a compiler for a

new language.

The treatment of array and record accesses is to represent the address computations

explicitly in the TCOL tree. The motivation for this will become dear when we describe

optimizations performed on these address computations in various phases (FLOWAN and

several DELAY phases); it is mpossible to manipulate these computations, and compare them

with each other, in a rationa! manner without exposing the arithmetic operations of which

they are composed. The penalty paid for this is that information is lost, or at any rate

scattered and made difficult to use: target machine indexing operations, so obvious in the

source code, must be rediscovered in a separate phase (see section 7.6) of the compiler.

The treatment of control structures is still more unusual, for the opposite reason. As

mentioned earlier, these are represented in a tree form close to their original parse tree

form; if we treated them as we treat data structures, we would instead break them down into

tests, jumps, and labels. The tradeoff is different here. The benefit of breaking control

constructs into tests and jumps is not in better optimization. In fact optimization is likely to

be worse: it is extremely difficult to recognize the applicability of a special target machine

instruction for loop control, if the components of the stepping loop are scattered hither and

yon through the program tree. Rather, the benefit is in slightly decreased cost of

transporting a compiler from one target machine to another. For each control construct

operator in a TCOL, one or more descriptions of code sequences that can implement it must

appear in the code generation template library; the significance of this will become clear in

section 9. In the absence of quantitative knowledge or even estimates of this increased cost,

we have tentatively chosen the scheme that allows better optimization.

! 0001 begin

1 8682 local X|

1 8883 own R,Bt

1 8884 X .- .fl +

1 8885 and

VERSION 16 NODES #11618

.B

ROOT TREE 2343i

li SYHBOL
(NfldE "X")
(LIFE DYNflniC)
(SIZE 2)

2» SYMBOL
(NAHE "fl")
(LIFE STATIC)
(SIZE 2)
(GLOBAL NO)

3t SYMBOL
(NAHE "B")
(LIFE STATIC)
<SIZE 2)
(GLOBAL NO)

2343« TREE
(OP i»)
(SUBNOOES 2344« 2345«)

234 4« LEAF
(OP SYMBOL)
(ANCESTOR 2343«)
(VAL Is)

2345« TREE
(OP +)
(ANCESTOR 2343«)
(SUBNOOES 2346« 2347«)

2348« TREE
(OP DEREF)
(ANCESTOR 2345«)
(SUBNOOES 2356«)

2358« LEAF
(OP SYMBOL)
(ANCESTOR 2346«)
(VAL 2«)

2347« TREE
(OP OEREF)
(ANCESTOR 2345«)
(SUBNOOES 2351«)

2351« LEAF
(OP SYMBOL)
(ANCESTOR 2347«)
(VAL 3«) . , _..

Figure 5: Example of a TCOL tree represented in LGN

TT

5. Constant folding and constant propagation

Conceptually the first compiler pha'.e to operate on the program is one of constant folding.

We distinguish between constant folding and constant propagation:

- Constant folding is the evaluation of arithmetic expressions at compile time, when
their operands are known. This also may include provision for operands which
are addresses of variables -- not necessarily known until load time, or even run
time. Thus, the address computation involved in an array access with constant
subscripts is done during constant folding. Reduction of expressions involving
identities is done during this phase as well; for instance, "a ^ 0" is reduced to
tt ■! a .

- Constant propagation is a different optimization, involving data flow analysis (see
section 6). The contents of a program variable may be known at compile time
for certain limited sections of a program. (These usually are the sections
immediately after initialization of the variable.) In these sections, references to
the contents of the variable may be replaced by references to the compile-time
constant.

We assume that if the language allows declarations of names for constants (e.g. the constant

declaration of Pascal), these names have been replaced by their meanings in the program

tree. Thus it might seem that constant folding is an easy step, once done and then forgotten.

However, it is here that we encounter the first of the (positive) phase ordering problems

discussed in section 3.3. Subsequent optimizations create new opportunities for constant

folding. This is particularly true of the Iree-transformation subphases (see section 7). For

instance, the expression:

(a + 3) + 4

will be simplified to

a + (3 + 4)

at which point it would be useful if the constant folding phase could be run again. Our

solution to this particular phase ordering problem is to modularize the constant folding phase.

It consists of a module which controls the walk of the program tree, and a module which,

given any expression node whose operands are leaf nodes (constants), does the arithmetic

necessary to "fold" the expression, returning a single leaf node representing the result. This

latter module is available to be called by subsequent phases.

Constant folding may be extended to include compile-time determination of control flow

results. Thus, the expression:

if true then thenpart else elsepart fi

may bo reduced to just the then-part. This is useful if the constant-folding feature of the

optimizer is to be used to construct a conditional compilation facility. Ordinarily, however,

24

conditiorml compilation will have taKcn effect before the code Generation phases are begun —

supported, perhaps, by a macro processor or preprocessor.

6. Flow Analysis

The FLOWAW, TNBIND (section 8) and FINAL (section 10) phases all do some sort of data

and control flow analysis of the program. The first of these is FLOWAN; the purpose of this

phase is to detect optimizations involving code motion and elimination of redundant

computations.

Crucial to the action of this phase, and later phases, is the construction of a control flow

graph. This is a graph whose nodes represent basic blocks; a basic block [23] is a sec.ion of

the program containing no branches, except at its end, and no labels, except al its beginning.

In our representation, of course, a basic block is an ordered set of nodes from the program

tree. Links in the graph are directed, and represent possible transfers of control between

basic blocks. This data structure is basic, in that it is common to almost all flow analysis

systems [4]; other structures will be built on top of it, including the execution list, a linked

list of all the program tree nodes threaded in (approximate) execution order.

We will not try to catalogue all the optimizations that are or will be done by this phase,

but a brief summary of them will give some of the flavor of it. We will refer to the diagrams

in figure 6, which cover two separate pages. In these, bits of Algol 68 program text are

presented, along with arrows denoting (possible) transfers of control from one to another.

Greek letters are used to indicate pieces of program text that are irrelevant to the

optimization be.ng described. V always denotes a variable created by the compiler,

guaranteed to have a namt.- distinct from those of all user variables and all other

compiler-created variables (CCV's).

1. Diagram a shows an example of redundant expression elimination. (The
misnomer 7'common sub-expression defection" refers to the same transformation.)
Before optimization the expression a + fc * c is evaluated twice. After, it is
evaluated once; its value is saved in a CCV, and used twice. There are always
restrictions on the "irrelevant" code in order that it be truly irrelevant, e.g. it
must contain no assignments to a, 6, or c, and there may be no control transfers
from outside it to withi-- it. Diagram b shows a more complicated example.

2. Diagram c shows the hoisting code motion: two occurrences Of the same
expression or statement are combined into one, by moving them "backwards"
over a fork in the program flow graph. If they are expressions (or even if only
one of them is an expression), a CCV must be created, as in the examples of
redundant expression elimination. Diagram d shows reverse hoisting-, only
statements can participate in this code motion.

3. Diagram e shows another kind of code motion; for lack of a better name, we will

25

Before After

f (a + b * c);

g (a + b « c)

t := a + b » c;
Mt);
or;
g(t)

t :=• a + b;
f (th
a

1
x;
h(t)

t := a + b;
g(t);
ß

a :- b + cj

V
a ••" b + c;
X

Figure 6: Diagrams for flow analysis optimizations

26

Before Affer

f (a + b);
ß

a i
t := a + b

t := a + b;
f (t);
ß

i
XI
g (a + b)

i
x;
g(t)

g

ß;
f (a + b); 6
X

 >

t := a + b

ß : ßi
f (t>,
X

* t

FOR i FROM 1 TO 10 DO f (i * 5) OD

FOR i FROM 5 BY 5 TO 50 DO f (i) OD

FOR i FROM a TO b DO P OD

Figure 6 continued

27

call this rho motion, the name uccd in [25]. Here, an expression or sfafcmonf is
moved so that it is only evaluated once on each path leading to a join point in
the flow graph. This is most useful when the join point is the entry point of a
loop, and the expression is being moved out of »he loop. A degenerate case of
this optimization occurs when the two instances of the expression are the same
instance, i.e. the same node in the program tree. This is shown in diagram f.
This is the optimization classically Known as "moving invariant code out of loops".

4. Diagram ^ shows an example of strength reduction. This optimization changes an
expensive operation in a loop (such as multiplication) to a simpler operation
(such as addition), or even gets rid of the expensive operation altogether by
changing the loop control, as in the example. While the example is rather
exotic-looking, this optimization finds considerable use in the treatment of array
subscripts [23]. Where the source program increments an array subscript by 1
each time around a loop, the object program may increment a pointer by some
number different from 1; this is useful for arrays of more than one dimension,
but also for one-dimensional arrays, if (as on the IBM S/370 or DEC PDP-11) the
address difference between two consecutive array elements is more than 1.

5. Finally, diagram h shows, not an optimization, but an example of source code for
which the FLOWAN phase will make an important determination about the object
code structure. The Algol 68 specifications of the semantics of stepping loops
are that the increment and limit parameters do not change during the loop. Thus,
if the loop body contains code that may change the value of variable 6, the loop
initialization must copy the contents of 6 into a CCV t, and use the contents of t
instead of b as the loop limit. FLOWAN determines whether or not this copying is
required. (Note that even if it is not required, it may be useful, e.g. if b is not in
a fast register, but could be copied into a fast register for the duration of the
loop. This is discovered in INBIND (see section 8), not in FLOWAN.)

The optimizations described in paragraphs 1, 2, and 3 above are frequently unprofitable in

situations where they happen to be feasible. There are two possible reasons for this. One is

the well-known tradeoff between time and space. If a hoisting code motion requires a CCV, it

may increase the time required for execution of the program, even though it decreases the

size of the object code. Contrarily, if rho motion requires a CCV, it may decrease the

execution time, while increasing object code size. Although most program optimizations are

beneficial to both execution time and code size, the tradeoff is occasionally important, and it

has been suggested that it be under control of the programmer (or at least under control of

the project manager). The other reason is that when these optimizations involve expressions,

and hence require CCV's, sometimes the expressions involved are so easy to compute that

they are swamped by the cost of ...nipulating the CCV's.

This tast consideration is rather important. Unfortunately it has received almost no

attention in the literature (that we know of). Code motion and redundant expression

elimination are most useful when they are applied to address compulations, such as for

indexing into arrays or for record accesses; but it is precisely in these cases that target

28

machine features, such as indexing and indirection, tend to make expressions very easy to

compute. The analysis necessary to determine whether one of these optimizations is

profitable {dcsirabiUty analysis) is very target machine dependent; we have separated it from

the FLOWAN phase, and it is discussed under DELAY <see section 7.2). Thus the FLOWAN

phase does not actually carry out those optimizations, but leaves indications that they are

feasible. This phase is entirely independent of the target architecture, but dependent on the

semantics of the language.

7. The DELAY phases

DELAY is the name given collectively to a group of phases which do source-to-source

transformations of the program tree before the reg.ster allocation and code generation. With

some exceptions, these transformations are target machine dependent. The AMO and context

determination phases do not, strictly speaking, transform the tree, but associate semantic

information with each node. It is reasonable to expect that some of these phases could be

run concurrently with each other, but for our (research) purposes, clarity is more .mportant

than efficiency, and we have kept them separate. The name "DELAY" is a misnomer; ,1s

history is explained in section 7.3.

7.1. Context determination

We define the context of an expression to be the information, derivable from its position in

the program tree, about how its value is to be used. For ins.ance, in languages which allow

an assignment to be either an expression or a statement, the context of an assignment

determines which it will be. From the earlier discussion of FLOWAN, it is clear that at least

some context information must be available before that phase, and in fact we will probably

move part of the context determination phase to a position before FLOWAN.

At present we distinguish four different contexts which an expression may be in.

- the no-value context: its value is thrown away, that is, it is a statement.

- the flow-value context: its value is used only to determine the subsequent path
of control. This is the context of, for instance, the boolean part of a cond.tional
expression, or the while part of a while-do loop.

- the operand context: this is the usual context of an expression; its value is used
as? ?or Tnstance, the source of an assignment, or one of the operands of an

arithmetic operator.

- the address context: its value is used as an address; for instance it may be the
destination of an assignment, or the operand of the "dereference" operator (see

section 4.2).

29

In addition, if an cypresoion is in tho operand or address context, we determine how many

bits of it are to be used; the knowledge that part of a value is irrelevant sometimes enables

better code to be generated for the computation of it.

The above context information is obviously useful for expressions whose values are simple

machine words. Other context information might be valuable for more interesting data types:

for complex numbers, only the real or imaginary parts might be used; for strings, only the

length might be used, or only certain character positions.

If an expression involving one of the logical operators (and, or, etc.) has a flow-context, it

may be that no code at all need be used to evaluate it. Instead, its operands are evaluated,

and the flow of control is determined directly from them. This means that code to evaluate

the second operand may not be executed, if the flow of control can be determined from the

first operand. (Of course, the legality of this coding requires that the second operand have

no side effects.) This is referred to in [50] as the McCarthy conditional transformation. It

sometimes "competes" with some of the FLOWAN optimizations for the right to affect a piece

of code; for example, if the second operand of a logical operator is to be made conditional, it

must not contain the initializations of any CCV's. Thus, there is a negative phase ordering

problem between context determination and FLOWAN.

Context determination is implemented as a simple top-to-bottom tree walk. Context

information may be passed from the destination of an assignment to its source, or from an

expression or statement to its operands.

7.2. Desirability analysis

Suppose that FLOWAN finds two instances, el and c2, of the same expression in a program,

and finds that c2 is redundant with respect to el. The straightforward course of action is to

designate a CCV for this pair of expressions; code is generated so that el is stored in the

CCV before being used (it may in fact be computed directly in the CCV), and the section of

the program which would have used c2 uses the contents of the CCV instead. This course

may be less profitable than leaving the code alone, however, for any of three reasons:

- subsumption: the computation of el and e2 might be carried out implicitly
because of the nature of their ancestors in the program tree. For instance,
consider:

a :- 6 [« + 1];
o :« rf [« <• 1];

where both b and d are statically allocated arrays. Here, the two instances of
a; + 1 are of interest. If no CCV is designated to represent them, the addition

30

operation will be "folded" into the address computation, so that it costs nothing.
To make this clearer, we give two code sequences for the DEC PDP-10 for the
above program text, illustrating the two ways of dealing with the redundant
expression situation:

"x + 1" computed in CCV "x + 1" not computed In CCV

MOVE
ADDI

Rl,
Rl,

X
1

MOVE
MOVE

Rl,
R2,

X
B+1(R1)

MOVE
MOVEH

R2,
R2,

D(R1)
A

MOVEH
HOVE

R2,
R2,

A
D+1(R1)

HOVE R2, D(R1) HOVEH R2, C
HOVEH R2, C

In the second code sequence, a CCV has been designated to represent the two
occurrences of x. When one set of redundant expressions is broken up, the
operands become eligible to be treated as redundant.

addressing hardware: the computation of el and e2 might be done cheaply, by
using the effective address computation available on the target machine.
Generally address computations have some cost, but If there are not too many of
them, they may be cheaper than the instructions necessary to manipulate a CCV.

An example of this is:

a := 6 [*]
b [r] := c

Here, it is feasible to compute the address 6 [x] in a CCV (by moving the
contents of x into it and adding the address of 6 to it), but this is wasteful on
almost any target machine, because the address can be computed more cheaply

by an indexing operation.

- operand vs. flow-value context: some operators, including of course the logical
operators and and or, but also including (on most target machines) the operators
for comparison between values (=, r*. <, S, >, ^). require substantially less
computation when they are in a flow-value context than in an operand context.
If ci and c2 are both in flow-value contexts, and they are in this set of
operators, it is usually not profitable to compute el and save it in a CCV,
because this effectively puts it in an operand context. However, if one of them
is already in an operand context, the boolean value must be computed anyway,
so it might as well be stored in a CCV.

Note that in the last two cases (but not the first), the number of instances of the expression

involved is important: the more there are, the more attractive is the option of using a CCV.

The desirability phase examines each redundant expression set, and each code motion

involving an expression, deciding whether or not to carry out the optimization as specified by

FLOWAN. Sometimes a single expression can be removed from a set, if it is one of the

redundant members, leaving the rest of the set intact. When a set Is broken up, similar sets

31

are formed using the operands of the orißinal expression. The phase takes a number of

parameters describing the target machine, including a table of the relative costs uf the code

sequences for each operator in each of the relevant contexts (flow-value, operand, and
address).

7.3. Unary complement operator propagation

The "unary complementation" operators, such as negation and logical complementation, are

involved in a several interesting kinds of optimizations. Sometimes it is possible to push them

upwards, so to speak, so that they are subsumed into operations occurring at higher points in

the program tree. Diagrams a and b in figure 7 show examples of this. The policy of

delaying code generation for unary complement operators as long as possible, used by the

Bliss-11 compiler [25], was one of the functions of the DELAY phase in that system, and the
origin of its name.

Before After PDP-11 code

a (-a) + (-0) -(a + ß)

fe {-a)*(-ß) atß

c a :-(NOT b) AND c a :-c AND (NOT b) MOV c,a
BIC b,a

ä a:-b-B a:--(a-b) SUB bta
NEG a

or
a :- (-a) + b NEG a

ADD b,a

Figure 7: Diagrams for unary complement optimizations

More interesting are the optimizations which involve taking advantage of target machine

instructions which perform peculiar combinations of binary operators and unary complement

operators. Most machines have a subtraction instruction; some but not all have negation;

fewer still have an instruction which negates a quantity while moving it from one location to

another. On the DEC PDP-10, all 16 of the possible logical functions of two variables can be

performed in one instruction; on the PDP-11, only five (six on some models). Sometimes it is

possible to get better code by taking advantage of the commutativity of an operator.

32

Diagrams, d «nd e '„how examples of these optimisations; in both cases, the PDP-11 code

associated with the optimized form of the expression is also shown.

7.4. Evaluation order and targeting

Targeting is an optimization that is useful on one-address, two-address, and

general-register architectures. It is the attempt to make use of the commutativity of

arithmetic operators, in order to avoid loads and stores. On a two-address or

general-register machine, it may be possible to compute an expression in the destination to

which it is to be assigned; if one of the operands of the expressiott is the former value of

that destination, even the initial loading of that location may be elided. (This optimization is

called "renaming" in [46]). Referring to figure 8, diagrams a and b

Before After

a a:=b + c*d a:=c*d + b

b a:=c*d + a a:=a + c*d

c (a + b) * «c * d) + (e * 0)
evaluation on a single-accumulator machine

straightforward evaluation order better evaluation order
using two temporaries (tl and t2) using one temporary (tl)

load a load c
add b multiply by d
store to tl store to tl
load c load e
multiply by d multiply by f
store to t2 add tl
load e store to tl
multiply by f load a
add t2 add b
multiply by tl multiply by tl

Figur© 8: Diagrams for targeting and evaluation order

show examples of targeting. It was touched on briefly in the examples for section 7.3; a

single algorithm, to be discussed in a future paper, performs both targeting and unary

complement transformations.

Note that questions about side effects do not arise in the decisions about whether or not

to commute the operands of an operator. Regardless of whether or not the operands are

33

comrnuled, they can be evaluated (if Ihoir evalualion requires any code) in Ihe order specified

in the source program. Evaluation order determination, which must deal with the question of

side effects, is a separate optimization.

Diagram c shows an expression for which changing the order of evaluation of the operands

allows better code to be generated. This is the smallest example of such an expression, and

since expressions of this complexity are extremely rare in user programs [31], it is clear that

this optimization is of limited value. Nevertheless it has received a great deal of attention in

the literature [7], partly because it has been confused with the targeting problem, and partly

because it seems so cleanly defined, easy to study.

For simple expression frees, without redundant expressions or side effects, there is a

simple algorithm involving a bottom-to-top tree walk for finding the optimal evaluation order.

The most that need be done to the original program is that, for some expressions with two

operands, the order of evaluation of the operands is switched. Complications are introduced

when trees contain either initializations or uses of CCV'S; in addition, it may be desired to

treat more than one tree, as with a sequence of statements in a block each involving an

expression tree. Either of these complications makes the evaluation order problem

NP-complete. It may be necessary to interleave evaluation of operands of an operator, not

just to switch them.

We are currently using a simple heuristic modification of the algorithm for single

expression trees, to handle single trees containing references to CCV's. this is described in

[25]. A more sophisticated algorithm, involving a constrained sorting of the tree nodes, is

under consideration (also see [1]).

7.5. Other tree transformations

An interesting and useful set of optimizations meet all the following requirements:

- They are easily characterized as transformations of the program tree.

- They are target machine independent.

- The conditions necessary to apply any transformation can be verified by
inspecting a fixed-size subtree of the program tree.

These optimizations are performed by the tree transformation phase. This phase is driven by

a table of transformation patterns. Each pattern consists of two subtree skeletons; the first

describes the conditions that must be met for some transformation to be applicable; the

second describes the result of the transformation. (The library of patterns is organized to

speed the search for applicable transformations; this Is discussed in section 9.) The phase is

34

oreanizod ar. a tree walk; at each node, all transformation patterns which might be applicable

are matched aGainst the local portion of the program tree. This pattern-matching operation

uses variables: «he nodes which match the leaves of the pattern subtree are remembered,

and can be referred to in the result subtree.

Some examples which maKe 'his process clear are given in figure 9. Diagram a is a simple

example given in [50]. The transformation being described is from "(el - e2) > 0" to

"el > e2", for any expressions el and e2. This example already raises some interesting

issues.

- The same transformation is applicable for each of the other five comparison
operators-, the pattern notation should be rich enough to describe all six
transformations with only one pattern.

- The pattern matcher should understand that some operators are commutative,
and indeed that the comparison operators have a peculiar variation of
commutativity: "0 < (el - e2)" is equivalent to "(el - e2) > 0".

- There is a negative phase ordering problem between this phase and FLOWAN. If
"el - c2" is represented by a CCV, the transformation cannot be performed; but
if the transformation could have been performed, perhaps "el > e2" could have
been represented by a CCV instead. One possible resolution of this problem is
to have a "canonicalization" transformation phase before FLOWAN: the reverse
transformation (see diagram b) is performed, in anticipation of creating as many

CCV's as possible.

Diagram c illustrates the distribution of multiplication over addition. Here, some of the

leaves of the subtree must match constants (i.e. leaves of the program tree), but the values

of the constants are not specified. This optimization is not useful by itself, but occurs when

the resulting "+" node can be involved in further optimizations. In particular, it occurs when

the newly created constant which is the right-hand operand of the node can be "folded" into

another constant by taking advantage of the associativity of addition.

This brings up another issue. The tree transformation phase being described cannot be

responsible for taking advantage of associativity of operators. The TOOL representation of

these operators is binary, and thus the size of the subtree that must be examined in order to

find associativity cotimizations cannot be bounded. One solution of this problem is to

represent such operators as n-ary, that is, to allow them to have any number of operands,

and to combine them during this phase, perhaps sorting the operands (assuming the operator

is commutative) to expose as much constant folding as possible. We will probably use a

different scheme, involving a separate phase, in order to retain the simplicity of having to

deal only with binary operators in later stages of the compiler.

35

Before After

el: e2:

CONSTANT
el: e2:

el: e2: A-K CONSTANT

el: e2:

Alk

A^K CONSTANT

el: CONSTANT
c2

cl

^

/IK CONSTANT

el: CONSTANT cl * c2

c2

^K
/^K CONSTANT

el: CONSTANT cl

cl

CONSTANT

CONSTANT

- [LENGTH

CONCAT

/ \
el: e2:

LENGTH LENGTH

el: e2:

Figure 9: Tree transformation phase examples

36

The distribution optimi?ation ir. ireful, as mrntionrd ahovp, only when there is '-ome

potential for using the "+" node so created in some further optimization. In order to detect

this while examining only the fixed-size subtree, we must somehow encode the potential for

further optimizations as "context" information in the original "*" node. We expect to do this

by making a guess about this potential during the context phase (see section 7.1). This will

be discussed in more detail in section 7.6.

The reverse of the distribution transformation (see diagram d) can also be useful, if it

produces a new "+" node whose constant operand is 1, and it on the target machine the

addition of 1 is easier than the addition of other constants. This transformation is thus not

entirely target machine independent, in that it is useful on some machines but not on others;

however, it may be useful to include such transformations in this phase. Notice that two of

the nodes which match leaves of the pattern subtree must be identical (in this case, identical

constants). This is denoted by having one leaf refer to the pattern variable defined by the

other one.

Diagram e describes a transformation mentioned in both [19] and [16] as being a useful

test case. It is reassuring that the pattern-result notation is concise enough to describe this

optimization cleanly and elegantly, without recourse to details of the design or implementation

of the tree transformation phase.

7.6. Access mode determination ("AMD")

Many target architectures allow address computations that do mon >an simply indexing

and indirection. A standard example is the S/370, which frequently allows indexing with two

index registers. More recent examples are the DEC VAX-11/780 [53] and the LLL S-l [^4];

these both allow indexing combined with (implicit) shifting of the index register, and double

indexing combined with indirection. For these aichitectures, the question of how much of the

program calculation can be performed by the addressing hardware is non-trivialj the

complication is compounded by the possibility of using CCVs to assist with address

computation. Even for the DEC PDP-11, with a simple addressing architecture allowing simple

indexing and indirection (possibly combined), the use of CCV's makes the problem sufficiently

difficult that the simple algorithms presented in [25] for solving it are sometimes inadequate.

The Access Mode Determination (AMD) phase assigns to each program tree node a list of

the ways in which it could be represented as an instruction operand. For instance, consider

the BLISS expression

..U + 4)

37

using the DEC PDP-11 as a Is-pcl m.ichinn. For readers unfamiliar with BLISS, "." is the

explicit ciofcrcncing operator. Thus x is being used as p variable which holds a pointer to an

array of pointers. .* is the value of the variable, that is, an address; .(.r + 4) is the value

retrieved by an array access, that is, another address (ore of the pointers); and the value of

the whole expression, .U + 4), is the contents of the location pointed to (an integer,

perhaps). Suppose it appeared in an operand context, such as the source of an assignment.

The assignment would eventually result in the generation of a MOV instruction, of which the

source operand could take any of ten forms:

©'KRa) -- if .x were loaded into register R3,

(?0(R3) — if .x+'l were a CCV, loaded into register R3,

(?(R3)+ — same as the above, but this is the last reference to the CCV.

(?6(SP) — If ,(.x+4) w^re loaded into a memory location six bytes
distant from the top of the run-lime stack.

@(SP)+ — same as the above, but the memory location is at the top of
the stack, and this is the last reference to the expression.

@R3 — if .(.x+4) were a CCV, loaded into register R3.

6(SP) — if the whole expression, ..(.x+4), were a CCV, loaded into
a memory location six bytes from the top of the stack.

SSP — same as the above, using the top of the stack.

(SP)+ — same as the above, at the last reference to the CCV.

R3 — if ..(.x+4) were a CCV loaded into register R3,

Of these, three involve the use of the auto-increment feature of the PDP-11 hardware: the

third, the fifth, and the ninth. This feature will be discussed in section 10; at this stage of

compilation, they are treated as identical to the forms directly above them — the second,

fourth, and eighth respectively Skeletons for any of the other forms could be associated

with the tree node for "..(.x + W, depending on which of the subnodes could be represented

by CCV's (in the absence of CCV's only the first and fourth forms are relevant). With each

skeleton there is a list of "actual parameters" — indications of which subnodes must be

loaded into registers or memory locations in order to use the form.

We will discuss in sections 8 and 9 how these ferns are used in code generation. An

interesting point of methodology is raised by this phase, for we are (tentatively) following a

38

different otralegy with operand accc« modes than we follow in the other phases.

Specifically, we provirle an exhaustive emimoration of all the access modes relevant to a

node. Our policy throughout the compiler phases, whenever several possible ways of

generating code are available, has been to choose one (possibly correcting it later) and

ignore {he rest. This is a straightforward way of avoiding slow cearching algorithms 'though

it doe^ no!, of course, ensure that the compilation process will be f.st). We have abandon

it in this case, in the belief that in general there will be few access modes associated w-Vn t

node. Most nodes cannot be computed at all by effective address hardware; for these nn6m

the only possible access modes are those for direct access to the various kinds of registers

and memory. Skeletons for these are usually not associated with the nodes (i.e. they are

implicit); this greatly decreases the cost of the AMD phase.

This ohase is parametrized by a list of the possible operand access modes (AM^s), each

associated with the skeleton program subtree that it represents. This list is preprocessed so

that, using a simple bottom-up tree walk, access modes can be associated with nodes w.thout

the use of pattern matching. The preprocessing involves creation of something like a fmite

state machine, in which the "state- of a node depends on its operator and the states of its

two operand nodes.

There is a complete set of mutual (negate) phase ordering problems between FLOWAN,

the desirability analysis phase, the phase to perform associativity transformations, and the

AMD phase We have put FLOWAN first arbitrarily, but we will attempt to resolve the confix

between the latter three phases by the "wild gue.s" method. The context phase tempts ?0

guess whether a node will be involved in an address computation, or in an assoodivity

transformation, by using a set of very approximate, local, easily computed criteria. fbo

desirability phase read., the record left by the context phase, giving less preference tha

usual to using a CCV for a node if the node is likely to be active in the later (assoc.at.v.ty

and AMD) phases.

8. Register allocation

The term "register allocation" has been used in the literature lo describe at least three

related activit.es. We w.ll call these local, pseudo-local, and global register allocation.

Local allocation is two tasks: selecting accumulators and other specialized storage locations

for evaluation of simple arithmetic expressions, and selecting storage in which to save the

results if they are not used immediately in the evaluation. Historically [47], this top.c has

also included the targeting and evaluation order problems discussed in section 7.4, but we

have treated them separately here.

39

Pseudo-local allocalion ir, an intermediate tack, the allocation of storage for an entire basic

block. Consider the compilation of a long sequence of statements, involving much arithmetic,

subscript calculation, and indexing, for a target machine with a limited number of accumulator

and index registers. In the compiled code, variables, subscripts, and intermediate computatic»

results will constantly be moved into registers, used, perhaps modified, and returned to

memory. The task of pseudo-local allocation is to choose the "right" registers to use for each

action that occurs, and thus to reduce the amount of traffic between registers and memory.

[26] is a classic paper on the subject; various other algorithms have been presented that are

more suitable for one-pass compilers.

Global allocation is the allocation of storage for more than one basic block, or an entire

subroutine, at a time. Successively more ambitious compilers have attempted to keep

constants and CCV's in registers [8], to keep user variables in registers [25], to keep

variables in registers during loops and other bounded program regions [21], and to keep

variables in registers during arbitrary program segments [5]. Other techniques are possible.

The goal of global optimization may b^ to reduce the traffic between memory and registers,

to reduce the traffic between registers, to allow use of register operands instead of memory

operands in instructions, to reduce the amount of memory used, or any combination of these.

There is a difficult phase ordering problem in the relation between local allocation, global

allocation, and code generation. Local allocation is closely tied to code generation in an

obvious way: the storage which is required for the result (and operands) of an expression is

determined by the instructions used to compute it. Global allocation, on the other hand, not

being a one-pass process, must be done separately from code generation. Moreover, local

allocation can make good usf of information about register availability and correlations

between registers and variables, derived by global allocation, while global allocation can make

good use of information about register availability and prospective loads and stores, derived

by local allocation.

Our approach to this problem is related to those presented in [5] and especially [25, 29].

Register allocation and code generation are not two but three phases. The first of these can

be thought of as a "guess" at code generation.

In order to discuss these three phases it is first necessary to define a basic concept, the

Temporary Name (TN). TN's are records, used to hold all the information about the results of

register allocation that must be available to the code generator. They are used to represent

entities that must be allocated storage, such as variables or the results of expressions; but a

TN can only correspond to one storage location, so that it may be necessary to represent a

single variable with more than one TN. Note that local, pseudo-local, and global allocation are

■10

unified, in the senj.e that they all ur.e TISTs.; this facilitates communication between them.

The first of the three phac.es can be called TN assignment; it determines the

correspondence between TN's and program entities. The second phase is packing] it

establishes the correspondence between TN's and target machine storage locations. The

third phase is code generation — a scarcely avoidable misuse of a term that we have used

earlier to describe the whole compilation process after parsing. TN assignment is discussed

in section 8.1, packing in section 8.2, and code generation in section 9. The first two pjases

together are referred to as TNBIND, the name for the module of the Bliss-11 compiler which

performed their functions.

8.1. TN assignment

The association of TN's with local entities, such as expression results or operands, is done

by a traversal of the tree (or of the execution list) closely related to that done for code

generation. The description of this traversal is postponed until section 9. The same library

of code sequences is used; however, instead of associating a code sequence with a node, this

phase associates information abstracted from the code sequence. This includes not only the

requirements for various types of local storage by that sequence, but also usage information;

thus, one or more TN's may be associated with a node, and with each TN there will be

information about when it is used (i.e. at what nodes it appears in instruction operands) and

how it is used (i.e. the relative costs, in words of code or in memory references at execution

time, of allocating the TN to the various different categories of storage).

The derivation of this usage information is discussed in [29]. In conjunction with the

information left by the AMD phase, a two-dimensional table of target machine dependent

information is used: for every category of storage (there may be several kinds of registers,

plus static and stack memory), and for every formal parameter of every instruction-operand

tree skeleton, there is an entry indicating the cost of trying to use a unit of that kind of

storage as an actual parameter in that skeleton. (The instruction-operand tree skeletons are

discussed in section 7.6.) Note that each TN will, in general, appear in several instruction

operands, using different access modes (e.g. direct access, indexing, indirection).

Note that the abstraction of TN-related information from code sequences can be done by

the compiler-compiler system; that is, the library of code generation templates may be

separated into two sub-libraries, one of which contains only information relevant to TN

assignment, the other of which contains information for code generation. This can be

expected to save substantial storage during both compilation phases.

TN's must also be associated with global entities, such as variables (including CCV's). This

41

is done r.pparatcly; it :o dono before the local ar^ignment pa',-;, in order to associate usage

information with global as well as local TN's. The global assignment phase must guess when it

would bo useful to assign more than one TN to a variable; this guess would ordinarily be

based on the loop structure of the program, as determined b;' FLOWAN. Note, however, that

if the guess is overoptimistic and assigns too many TN's, little harm is done; if there are not

enough fast registers to accommodate the most important of these TN's, they will revert to

the same location as the others, just as if ^nly one TN had been assigned to the variable.

After the assignment passes, complete lifetime information is associated with each TN. (A

TN is alive at some node in the program tree if there is some possible path of execution,

starting at that point, along which the next reference to the TN fetches from it, rather than

assigning a new value to it. Thus if two TN's are both alive at some point, they may not be

allocated to the same location.) Each TN has a list of (disjoint) "lifetime pairs": pairs of points

in the program, between which the TN is alive. Given two TN's, it can easily be determined

whether their lifetimes overlap, by inspecting their lists of lifetime pairs.

Note that this organization of lifetime information is completely different from that given in

[4], in which the information is associated with basic blocks (or, at a finer grain, with program

points). Thus different flow analysis algorithms must be used to gather it efficiently. The

organization of lifetime information is determined by the plans for the packing phase

(discussed in the next section).

The TN assignment phase is also responsible for gathering preference information. This

will be defined and discussed in the next section.

8.2. Packing

It might seem that the packing phase would be very target machine dependent, because of

the wide variety of register configurations in architectures currently in use:

- There are mac les with separate index registers and accumulators, machines in
which some re^ Jers can serve both functions, and machines in which any
register that can serve the former function can also serve the latter.

- There are machines in which some registers of a class are arbitrarily restricted.
Thus the DEC PDP-11 has six floating-point registers, but two of them cannot be
used for a wide variety of operations.

- On some machines, consecutive pairs of registers are required for some
operations. Sometimes the first member of the pair must be even, or must be
odd.

- Some storage classes are finite (such as registers), while some are effectively
infinite (such as various types of memory).

42

However, the target machine dependence of this phase is very easily parametrized. A

notation has been developed to describe how many members each class of storage has, how

the classes overlap with each other, and how they are related to each other (e.g. class A is

the restriction of class B to its first four members); once a target machine has been described

in this notation, the packing phase has enough information about it to run. (Note that this

machine description is also used by the TN assignment phase, to describe restrictions on TN's

and to organize the usage information about them.)

The fundamental data structure of the packing phase is an interference graph (see figure

10). Each graph node represents a TN; a link between two nodes indicates that the two TN's

have overlapping lifetimes (i.e. may not be allocated to the same location). (It would also be

possible to use the reverse of this graph, in which a link indicates that the lifetimes do not

overlap.)

Superimposed on the interference graph is a preference graph (see figure 11). Each link in

the preference graph indicates that the two TN's "should" be allocated to the same location,

to avoid loads or stores. These links are labeled with counts of the loads and stores

involved, possibly weighted to give more importance to those which occur in loops.

Figure 10: An interference graph

A good packing must meet four criteria:

- No two TN's which are connected by an interference arc may be packed tn

(allocated to) the same storage location.

43

Conflict arcs

Preference arcs

Figure II: A preference graph and an interference graph

- The cost measure determined by summing the relative costs of all TN's, as
derived from the usage information discussed in the previous section, and from
the knowledge about which storage class each TN has been packed in, should be
kept low (perhaps minimized).

- The profit measure determined by summing the values of all preference arcs that
connect two TN's packed to identical locations should be kept high (perhaps
maximized).

- For some storage classes, there may be a cost associated with using any member
of the storage class, which is fixed regardless of how the member is used. For
instance, a run-time convention for the preservation of register contents across
routine calls may require that if a register is used by a routine, it must be saved
at the beginning of the routine and restored at the end. Thus there is a cost
measure determined by the number of locations (of certain classes) which are
used in a given packing; this should be kept low.

It can easily be seen that packing is a particular kind of graph coloring problem. Also, the

resemblance of packing to bin packing problems has been observed in [29]. A number of

algorithms have suggested themselves to us, in addition to the many which have appeared in

the literature, and we plan to do considerable experimentation with the packing phase.

Following the policy described in section 7.6, we are primarily interested in algorithms that

are one-pass, usually "greedy", rather than those which exhaustively search the space of

possible packings. However, experience with systems described in [25] and [29] has shown

us that a modest, controlled amount of backtracking can be worth its cost.

9. Code Generation

The code generator described here is basically an extension of the one built by Cattell

[11]. The extensions are primarily for the use of information gathered in previous phases,

including register allocation, access mode determination, and evaluation order and target path

determination. Both the code generator and the method of target machine description are of

interest; we will summarize them in the following sections, but for details we refer the reader

to [11] and [13].

9.1. Machine Descriptions and Code Generator Generation

The code generation phase Is driven by a library of code generation templates. Each

template consists of a subtree pattern and a code sequence. Examples of templates for the

PDP-10 are given in figure 12; briefly, if a subtree of the program tree matches the subtree

pattern in the obvious way, and various other conditions (not shown) are met, the template is

instantiated, that is, the instructions given in the code sequence are emitted, their operands

being determined from the values of the pattern variables (the program tree nodes which

matched the leaves of the subtree). A better description of the use of the library will be

given in the next section; what concerns us here is how the library Is constructed, from a still

more primitive machine description.

We will refer to the more primitive machine description as the MD table. This

representation is genealogically related to ISP [27, 33]: there are descriptions of the storage

classes available, descriptions of the effective address calculations, and descriptions of the

computation performed by each instruction. The principal difference is that each instruction

is represented, not by an algorithm to simulate it, but by a group of preconditions and

postconditions (in terms of the machine state, i.e. the contents of various locations) of its

execution. It is easier in this formulation to understand the effect of an instruction; some

characteristics become harder to describe, mostly involving the effects of different

serializations of the address computation steps.

Given descriptions of the instructions, in a TCOL-like notation, it is possible to find a

sequence of instructions to evaluate any TCOL tree, by a search process reminiscent of those

In many Artificial Intelligence systems. This is too slow to be used in the compiler Itself;

'MD •lands for "M«chin» D»»crip»ion*i in [11) this it «IM tht MOP table

45

Tree pattern Code sequence

als el:

ADO al, el

TEST

IK

^s (true)
Ssll:

ah

AND CONSTANT

el:

TDNN al, el

JRST 11

Figure 12: Some sample code generation templates for the PDP-10 (simplified)

instead, it is used to create code generation templates for a predetermined set of

interesting" subtrees. This set is generated using a number of rules. Two rules in particular

serve to insure that some kind of code can be generated for any program:

- There is one template for every TCOL operator, whose pattern tree is simple
enough that it is always applicable wherever viiat operator occurs. The first
example in figure 12 is one of these.

- There is one template for every possible data move (load or store); that is, if
there are n different kinds of storage on the target machine, there are n?
templates for generating code to move a data item from one type of storage to
another.

In addition there is at least one template for every instruction, in which the pattern tree

describes the effects of that instruction; the second example in figure 12 is an example of

these. Other rules encourage the discovery of "clever code sequences"; however, finding all

of these is equivalent to solving the halting problem, and the number of such sequences that

are ultimately represented by templates depends on how long the template search is left to

^6

run.

Some arithmetic operators in a ßiven TCOL may not appear anywhere in the MD table. For

instance, the logical exclusive or (XOR) operation does not appear anywhere in the

description of the DEC PDP-11/20 architecture; thus using the MD table alone it would not be

possible to determine how to generate code for this operator. The search process must

know aoout the following Language axiom:

a xor 6 s a and not 6 or 6 and not a

This must be included in the set of axioms alluded to in section 4.2. For typical machines, the

only control operators which appear explicitly in the MD table are go to ... and if ... then go to

..., so templates for the other control operators must also be derived using axioms about

control.

The most important omission from the MD table is information describing the run-time

conventions and subroutines, or CWVM (Compiler Writer's Virtual Machine), of the planned

compiler. This includes:

- fundamenial conventions, such as the representation of simple boolean variables;

- data structure conventions, such as the representation of arrays, records, and

invocation frames;

- detailed operating rules, such as the names and calling sequences of preceded

support routines.

We have dealt with these in an ad hoc manner up to now - an approach that is reasonable

for languages with minimal run-time support, such as Bliss. In the near future we expect to

study the CWVM issues more closely.

9.2. The Maximal Munching Method

The hasty description of the use of code generation templates in the previous section left

out the most interesting parts. In this section we will describe the template library in more

detail, and the algorithm for walking the program tree, known as the "Maximal Munching"

algorithm.

The template library is divided into several sub-libraries, or schemas. The choice of

Schemas to be searched to find a pattern matching a node is determined by the context of

the node. The two patterns in figure 12 would be found in different schemas: the first

would be in an operand-context schema, the second in a flow-value-context schema. An

additional classification of patterns is done, to speed up the code generation search: they

47

are hashed by the principal cpr?ralor. Thus the first pattern would only be tested in

generating code for an (integer) addition; the second only for an equality comparison in a

flow-value context. Further hashing may prove to be useful in some situations.

All templates make some requirements on the forms of their operands: ihe AM's associated

with them by the AMD phase must include some which are suitable in the instruction

operands in the template's code sequence. However, the pattern match with a template does

not fail if the operands do not meet these requirements; instead, load or store code is

generated so that they do meet them. This is the use of the fetch decompostion rule; the

corollary store decomposition rule is used when the pattern imposes requirements on the

destination of the principal operator. The top node in a pattern tree in the operand-context

schema is always assignment (":■="); but an actual assignment need not be present in the

program tree in order to match such a pattern, thanks to fetch and rtore decomposition. In

the TN assignment phase, the use of fetch or store decomposition causes a new local TN to

be created and associated with the appropriate node; in the code generation phase, the TIM is

used as the destination of the load or store code that is generated.

The second example in figure 12 is a pattern for one of the special cases of testing for

equality. Not only is there a requirement on its right operand (it must be a constant, whose

value must be zero), but also there is a requirement on the operator of the node which is its

left operand. For such patterns to be used, the library must be ordered, so that they are

always tested before the "general case" patterns are tested. In addition, and most

importantly, the order in which the program tree nodes are treated must be top down. In

this example, for instance, the code generator must not reach .the and node before reaching

the "=" node -- otherwise code would be generated for the logical and operation, and the

special case would no longer be applicable. This backwards traversal of the program is

absolutely crucial if the large amount of special case testing characteristic of good code

generators is to be kept intellectually manageable. The use of templates sorted so as to "bite

off" as large a subtree as possible of the program tree, with the backwards traversal of the

tree, is described in [11] as the "Maximal Munching Method".

The mechanism of the backwards tree traversal is meshed with the mechanism of fetch

decomposition. If an operand does not require fetch decomposition, that is, it is a tree which

exactly matches the skeleton tree for some appropriate access mode, no code need be

generated, in order to represent it as an instruction operand. Usually, however, on. of its

subtrees does not match the corresponding part of the access mode tree; or, the whole

operand tree does not match any access mode tree. In this case, code must be generated to

evaluate the non-matching tree, leaving the result in the designated destination; this causes

the code generator to be called, recursively.

48

For some tarßet machines, especially those with large instruction sets, there may be

several code generation templates whose pattern trees differ from each other only in the

requirements on the access modes of the nodes. For instance, two of the PDP-10 instructions

to do integer addition are represented by the same pattern tree; the only difference is that

one leaves its result in an accumulator, while the other leaves its result in the other operand

(generally a memory location). Neither of these templates is a special case of the other. The

choice between them, therefore, cannot be determined beforehand; that is, in the ordering of

templates in the template library, neither of these may precede the other. Instead, the code

generator must choose between them, by estimating the amount of fetch and store

decomposition that must occur for each one, and using the one that will cost the least.

Because register allocation has been done in a previous phase, the estimate may be

constrained to use local information only: information about the nodes which match the root

and leaves of the pattern tree.

In the presence of the more advanced evaluation order algorithms hinted at in section 7.4,

and the code motion optimizations described in section 6, it may prove to be necessary to

walk the execution list rather than the program tree to generate code. However, this will not

affect the code generation templates, or even the Maximal Munching Method. It means only

that a coupling is broken: the coupling described above, between the discovery that there is

not a perfect match between some operand node and the corresponding AM skeleton tree,

and the subsequent call of the code generator to evaluate that node. This raises some

annoying implementation problems, but these are outside the scope of this paper.

The idea of generating code using libraries of templates is not new, and it is useful to

compare the system described above with others that have appeared in the literature. A

well-known example was used in the Fortran-H compiler [21]. In that system, there is one

template per operator. The template contains all the instructions which could ever be used in

coding that operator, including loads and stores. Each instruction is associated with a vector

of bits which describes something about when it is to be used. When the template is applied,

another vector of bits describing the "status" of the operands (i.e. whether they are in

registers or in memory, and whether or not they must be in registers after the operation) is

put together; then a curious algorithm is used, which will not be described here, to use this

vector and the bit vectors in the template to determine which of the instructions will be

emitted.

The Fortran-H scheme is not addressed to the problem of target machine independence,

and thus is less genera! than our system in obvious and perhaps easily remediable ways: the

meanings of the operand status bits are closely tied to the S/360 architecture; there is little

^9

or no provision for thp use of itcresling AM's. More important are differences in the

structure of the templates. In our system, load and store instructions do not appear in the

templates for the basic operators; this makes the latter simpler, while somewhat complicating

the code generation process, in addition, if there are several instructions each of which

could bo used to evaluate an operator, depending on where its operands are, we will have

several templates instead of just one; this also contributes to the simplification of individual

templates. The simplification of the templates contributes to the maintainability of the

template libraries; at present we are concerned that the libraries be understandable and

maintainable, because we anticipate that this will contribute to usability of the

compiler-writing system as a whole by persons other than ourselves.

There are also differences in descriptive power between the Fortran-H templates and ours.

There does not appear to be any mechanism in the former system to take advantage of

knowledge about special operand cases, such as operands which are constants, or constants

whose values are known. (However, some particular optimizations, such as converting

multiplications by powers of two into shifts, are described; these are the kind of

transformations that we discuss in section 7.5.) Even more specialized cases, such as the

example shown above in which one operand must itself have a particular operator, likewise

cannot be accommodated into the Fortran H templates.

Snyder [^9] describes a template system in which there may be more than one template

for each operator; in addition, some provision is made for special cases of constant operands

(although the further special cases involving multiple operators are not detected). Thus the

code generation algorithm itself is somewhat similar to our own. There is no provision for a

separate register allocation phase, or for operations which require completely temporary

storage (i.e. storage which is distinct from the operands and the result).

The code generation templates described by Ripken [43] are very close, in their design and

in the overall approach to the problem of target machine independence, to the templates we

have described here. The principal difference is in the control structure of the code

generation algorithm itself. Ripken's algorithm first walks the tree from the bottom up. (As

we have noted, this precludes the use of special-case templates, such as the second one in

figure 12). This phase addresses the problem described earlier, of multiple templates for the

same tree pattern: all the templates applicable to a given nude are recorded (that is, their

costs are recorded, though no code is generated). The next phase uses the cost information

to allocate registers locally, walking back down the tree and choosing code sequences. This

has the flavor of a dynamic programming algorithm; though there is no provision for any

interaction between local and global register allocation, the local allocation may be optimal for

a given global allocation because of the exhaustive enumeration of possible code sequences

50

in the first (bottom-up) phase. (Optimality may be lost in some circumstances because of

some simplifications in the cost recording mechanism, but in the usual cases it is achieved.)

The LIS [12] system for constructing code generators is of interest, because it involves a

primitive description of the target machine, with separate descriptions of each instruction; the

instructions are automatically grouped by the system, so that different instructions can be

chosen for a given operator, depending on what kinds of storage locations are to contain the

operands and result. However, despite claims to the contrary, this system is only minimally

addressed to the issues of target machine independence. It would require substantial

receding (and redesign of basic data structures) to describe machines other than the UN1VAC

1108; and describing machines that are not either two-address or general-register

architectures would seem to be impossible.

10. The FINAL phase

The output of the code generation phase Is a doubly linked list of intermixed instructions

and labels. These are in a format that retains only minimal target machine independence.

The instruction operands are lists of actual parameters for the subtree skeletons of the AM's;

these are constants or references to storage locations. In principle the effect of any

instruction could be reconstructed, forming a TCOL tree, from the MD table entry for it and

from its operands. The reason for this is that further optimizations are done on the program

while it is in this format.

Notwithstanding the arguments in section 4.2 for the use of tree-structured intermediate

representations, there are some optimizations which are more easily done on the final linear

form of the object code. These may arise from any of several circumstances:

- Instructions may have effects other than those for which they were emitted. For
in-.tance, on a machine with condition codes, an instruction which was emitted by
the code generator because it performs some arithmetic operation may,
incidentally, set the condition codes. Instructions whose sole purpose is to set
the condition codes can sometimes be subsumed in instructions which
accidentally set them. It is not desirable for the code generation phase to
"know" all the effects, or indeed any of the effects, of the instructions it emits;
this knowledge is more appropriately delegated to a separate phase.

- Reverse-hoisting code motion (referred to as cross-Jumping in [25]) that was not
evident at the TCOL level may become evident at the instruction level. This is
because operations which are single nodes in the TCOL tree (or single
instructions in triple or quadruple program representations) may produce
multiple instructions; and frequently the cleanup instruction sequences for
non-identical TCOL nodes may be identical. This is especially true for operations
such as subroutine calls, which are likely to involve highly stereotyped
instructions to maintain the CWVM, such as instructions to cut back the run-time

51

5.Uck.

- The code generator is more intellectually manageable if it does not have to be
too careful about the senses and destinations of conditional and unconditional
branch instructions. That is, it may emit a branch instruction whose destination
is another (unconditional) branch instruction, or a branch whose destination is
the next instruction, or a conditional branch which only skips over an
unconditional branch --code that is correct but wasteful in obvious ways. It is
easiest to leave glitches like this to be cleaned up by a conceptually separate
phase.

- Some optimizations can only be performed with a detailed knowledge, not only of
the effects of instructions, but of their sizes as well. A classic example of this is
the resolution of short and long branch instructions on the PDP-11 [25, 51]. A
branch instruction can lake two forms: the short form if its destination is known
at assembly time and is within 256 bytes of the origin, or the long (costlier) form
otherwise. The algorithm to determine which form is used for each branch must
take account of the number of bytes required by each instruction, including, of
course, the branch instructions themselves.

FINAL performs some optimizations that are usually called "peephole" optimizations [40].

However, since the wholt list of instructions is kept in cote, 'hat term is inappropriate; in

fact, for any optimizing transformation which involves two or -nore rs jted instructions, FINAL

allows for indefinitely many intervening instructions, provided that they are irrelevant to the

optimization.

The FINAL phase relies on control flow graph data structure attached to the program, as

described in section 6. The structure of the graph may change from FLOWAN to FINAL, and a

basic block now represents a list of instructions rather than a list of program iree nodes.

The control structure of the FINAL phase is based on an infinite loop, as discussed in

section 3.3. Four classes of optimizations are performed, each of which may open up new

opportunities for most of the others:

- removal of useless instructions: an instruction whose effects are ignored by
subsequent instructions may be removed. A complete data flow analysis is
performed on the control flow graph, so that at any instruction, 't is possible to
determine whether the locations it modifies, including "status" Ic .ations such as
condition codes, are alive after it is executed (see section 8 for .he definition of
aliveness).

- branch and label optimizations: the consequences of deliberately careless code
generation, described above, are corrected.

- cross jumping: the reverse hoisting optimization mentioned above is performed.
For each basic block, the instructions which could (if it were useful) be moved to
the end of the block are collected into its postlogue set-, the postlogue sets of
basic blocks which share a common join point are compared with one another.

52

- peephole tranoformationr.: a '.e\ of optimizations on instructions, pairs of
inMruclions, or larger groups, are performed; the optimizations are taken from a
library of patterns which will be described below. Typical optimizations may
reduce two instructions to one, or replace two instructions by two cheaper
instructions, o^ replace one or vnre operands by cheaper operands.

Passes are made over the whole program, or o/er individual basic blocks, until convergence is

achieved, i.e. until no further optimizations can be found. Some optimizations, such as the

resolution of short and long jumps described above, may be done as separate subphases. In

fact, we know that there are negative phase ordering problems in the interactions of some of

the different peephole optimizations, and the simple structuring of FINAL as an infinite loop is

not sufficient to take account of these. Not only must there be some splitting of the phase

into subphases, but also the criteria for doing this splitting must be specified in terms of

easily described characteristics of the target machine; the splitting can then be done by the

FINAL phase generator, or if necessary by the compiler writer.

There are non-trivial problems in the parametrization of the target machine dependence of

parts of FINAL. These are primarily the problems of dealing with the peephole optimizations:

the library of them must be generated; their applicability conditions must be determined; and

the conditions under which they improve, rather than worsen, code must be determined. We

have chosen to allow the compiler builder to "suggest" optimizing transformations; this is

reasonable if there are not too many of them. (The current Bliss-11 compiler [25] uses about

30.) A program, the iegaUty checker, determines the conditions under which a transformation

is correct, i.e. it lists a set of restrictions on the instruction operands and other parameters

to the trans'orrmition pattern, such that it does not change the meaning of the program.

Experience ha^ shown that the human compiler writer is very likely to do this task

incorrectly. Sometimes there are errors due to neglect of special cases, or even outright

misunderstandings of the effect of the transformation; sometimes there are clerical errors.

The last component of the parametrization is a cost function: a function that, given an

instruction in FINAL format, returns some suitable measure of its cost (for example, its size in

bytes, or its execution time in cycles). This function is easily derivable from information in

the MD table. Whenever a peephole transformation is found to be applicable at some point in

a program, the costs of the instruction sequences it creates and destroys are compared, to

determine whether it should in fact be applied.

Figure 13 shows an typical pattern for a peephole optimization, for the DEC PDP-11. The

purpose of the transformation is to reduce two instructions to one. The second instruction

increments a register by two; since the PDP-11 is byte-addressable and each word consists

Of two bytes, this is a common operation, used in stepping a pointer through an array of

words. The transformation subsumes the second instruction into an operand of the first, by

53

Before After

OPCl=<any> »gRj, OPC1 »(Rp+j

ADD »2,Rj

Figuro 13: A typical peephole optimization

making use of the "autoincrement" feature of the PDP-11: the use of the autoincrement

access mode automatically steps the register hv two, while acting otherwise as if simple

indirection through the register had been do-

This example, simple as it is, raises some interesting points about the pattern notation, the

legality checker, and the FINAL phase as a whole:

- The opcode of the first instruction is irrelevant, and the commas surrounding its
operand indicate that it may have other operands as well. The notation must be
rich enough to allow for a great deal of unspecified information. (Implicitly it is
assumed that any instructions whose effects are known not to be relevant to this
optimization may come between the two relevant instructions.)

- Correspondingly, the legality checker must be able to detect when the
unspecified information must obey certain limits. This transformation is invalid if
the opcode is one which operates on bytes instead of words (in these cases the
register is stepped by one instead of two). It is also invalid if there is an
operand after the one given, and this other operand makes reference to the
same register. The legality checker must make sure that both these conditions
are imposed.

- T;!e reader may wonder why the given optimization wasn't included in earlier
compiler phases, perhaps by means of cooperation between the AMD phase and
the phases that use the code generation template library. The reason is really
that we don't understand it well enough. (This is true, generally, of all
optimizations involving the autoincrement and autodecrement features of the
PDP-11 and similar features on other target machines.) There is a dangerous
tendency for optimizations to slip into the FINAL phase simply because we don't
know how, at the current stage of the project, to include them in earlier phases
of the compiler. This tendency has to be monitored carefully, because it is
almost always true that when an optimization can be performed both at the TCOL
(source-program) level and the FINAL (object-program) level, it can be done
more powerfully, that is, on a larger scale, at the TCOL level.

The target machine dependence of peephole optimizations is obvious, and probably inherently

difficult to parametrize. This accounts for the scarcity of previous literature on peephole

optimization techniques. We have reason to hope, however, that using the system sketched

here, we can take most of the work of construction of this phase out of the hands of the

54

compiler writer.

11. Summary

1 1.1. Optimizations not montioned above

The reader who is familiar with the optimization literature will undoubtedly think of a

number of optimization techniques which were not mentioned in the previous pages. In most

cases, we are interested in these techniques, but simply have not integrated them into our

framework at this writing. Here are some of the better-known ones:

- Removal of "fail recursion". If it happens that, along some execution path leading
to the end of a subroutine, the last thing executed is a recursive call to that
subroutine, that call can be relieved of a great deal of he overhead usually
associated with subroutine calls. It can be coded as a resetting of the values of
the parameters (if any) of the current call, followed by a jump to the beginnmg
of the subroutine. This is an attractive optimization, not uncommon in recursive
programs, and it is trivially discoverable in the TCOL representation of the
program, supplemented by the control flow graph.

- Topological sorting of basic blocks. It is frequently useful to change the order in
which the basic blocks of the program are coded. This may be done to mm.mize
the number of branches from one block to another, and to move them to minimize
the number which occur in loops. The problem of finding the best ordering
seems to suggest some kind of topological sorting.

- Inter-procedural analysis and optimizations. A wide variety of benefits can be
gained by extending the compiler to hold data about more than one procedure m
core at a time. These include expansion of procedures in line (i.e. replacement o
procedure calls by procedure bodies), acquisition of better information abou
variable aliasing for use in flow analysis, and automatic allocation of global
variables and procedure parameters to registers and static memory locations.
Few of us have any familiarity with these optimization techniques, because we
are accustomed to compilers that deal with one subroutine or even one
statement at a time. But we suspect that the day is coming when smal
subroutines are the rule rather than the exception, and mlerprocedural
optimizations will be everyday tools rather than exotic subjects of research.

11.2. Status

At this writing, some phares of the skeleton compiler have been implemented; a few (some

of the smaller DELAY phases) are close to final form. Other phases exist only in preliminary

form or not at all. The phase generator for code generation has been implemented; no other

phase generators have even been designed. The phases and their generators, however, are

only part of the complete PQCC system.

55

■ TCOL must be nxactly specified. It must be possible for an uninitiRted
programmer, given a parser of any kind which produces as output a parse tree
as any kind, to figure out from our description just what semantic requirements
his parse tree should meet and how he should meet them. We have started
work, therefore, on a detailed TCOL manual.

A somewhat smaller task, though just as necessary, is the exact specification of
LGN, and the standard representation of TCOL in it. Again, we have the
beginnings of a manual. Some projects at CMU are already using LGIM-TCOL for
their own work in language implementation. The short term benefit of this is the
use of the (reasonably well-developed) LGN support system; in the long term, of
course, there is the benefit for us of additional testing of the code generation
system.

The rules for constructing MD tables must be drawn up. In addition, there must
be documentation for the format of the code generation template tables and the
table of tree transformation patterns; we expect that users of the system will
find it desirable or even necessary to extend these tables "by hand", for reasons
outlined in earlier sections. Though this documentation is far from complete, we
have had some success with teaching uninitiated programmers how to construct
and understand MD tables, and (untested) descriptions of several popular
architectures have been constructed by them.

11.3. Acknowledgements

In addition to the authors, a number of other people have made contributions to the PQCC

project, some of them substantial. Special mention must be made of Gary Feldman and Paul

Hilfinger, who are primarily responsible for the success of the LGN design and the support

package. Other participants have included (in alphabetical order) Mario Barbacci, Ron

Brender, Steve Byrne, Frank DeRemer, Peter Hibbard, Andy Hisgen, Regis Hoffmann, Lee

Szewerenko, and Gideon Yuval.

References

[1] A.V. Aho and J.D. Ullman.
Optimization of straight line code.

SI AM Journal of Computing 1(1):1-19, 1972.

[2] F.E. Allen.
Annotated Bibliography of Selected Papers on Program Optimization.
Technical Report RC 5889, IBM Thomas J. Watson Research Center, March 1976.

[3] F.E. Allen and J. Cocke.
A Catalogue of Optimizing Transformations.
In R. Rustin, editor, Design and Optimization of Compilers (Courant Computer

Symposium 5), pages 1-30. Prentice-Hall, 1972.

[4] F.E. Allen and J. Cocke.

56

A Program Dala Flow Analyr.io Procedure.

Communications of the ACM 19(3):137-1^7, March 1976.

[5] JC. Beatty.
Register Assignment Algorithm for Generation of Highly Optimized Object Code.
IBM Journal of Research and Development 18(l):20-39, January 1974.

[6] W.A. Wulf, D.B. Russell, and A.N. Habermann.
BLISS: a Language for Systems Programming.
Communications of the ACM 14(12):780-790, December 1971.

[7] J. Bruno and R. Sethi.
Code Generation for a One-Register Machine.
Journal of the ACM 23(3):502-510, July 1976.

[8} V.A. Busam and D.E. Englund.
Optimization of Expressions in Fortran.
Communtcations of the ACM 12(12):666-674, December 1969.

[9] DM. Ritchie, S.C. Johnson, M.E. LesK, and B.W. Kernighan.
The C Programming Language.
Bell System Technical Journal 57(6):1991-2019, July-August 1978.

[10] R.G.G. Cattell.
A Survey and Critique of Some Models of Code Generation.
Technical Report, Carnegie-Mellon University, 1977.

[11] R.G.G. Cattell.
formalization and Automatic Derivation of Code Generators.
PhD thesis, Carnegie-Mellon University, April, 1978.

[12] Chi Corporation.
Language Implementation System,
manual (undated, Cleveland, Ohio).

[13] R.G.G. Cattell, J.M. Newcomer, and B.W. Leverett.
Code Generation in a Machine-Independent Compiler,
(to appear).

[14] S. Warshall and P.M. Shapiro.
A General-Purpose Table-Driven Compiler.
In Proceedings of the Spring Joint Computer Conference, pages 59-65. AF1PS, 1964.
Also in S. Rosen, editor. Programming Systems and Languages^ McGraw-Hill (1967),

pages 332-341.

[15] W.H.E. Day.
Compiler Assignment of Data Items to Registers.
IBM Systems Journal 9(4):281-317, 1970.

[16] F.E. Allen el al.
The Experimental Compiling Systems Project.
Technical Report RC 6718, IBM Thomas J. Watson Research Center, September 1977.

[17] W. Harrison.
A New Strategy for Code Generation — the General Purpose Optimizing compiler.

57

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

,n "SIG^^^^ ofPro8ramminB Un^s. paEes 29-37.

J.L Carter.

A Case Sludy of a New Code Generation Technique for Compilers
CommunLcations of the ACM 20(12):914-920, December 1977.

M. Eloon and S.T. Rake.

Code-generation Technique for Large-language Compilers.
JBM Systems Journal 9(3):lb6-188) 1970.

W. Wulf, P. Feller, J. Zinnikas, and R. Brender

Äcal Reoort'ra:17" /M ^T'^ ^ ^"^^ *'^P^ ^de Generation. lecnmcal Report, Carnegie-Mellon University, (to be published).

E.S. Lowry and C.W. Medlock.
Object Code Optimization.
Commanications of the ACM 12(l):13-22, January 1969.

C,W. Fräser.

Automatic Generation of Code Generators.
PhD thesis, Yale University, July, 1977.

J.W. Backus et al.
The FORTRAN Automatic Coding System

^ ^llTutTl0/^6 ^^ ^^ ^^^ Con^ence' Pa8es ^8-198. AFIPS,

^Va^s 209S-T7.edi,0r' ~0firamminR Systems ^ UMUg&es, McGraw-Hill (1967),

CM. Geschke.
Global Program Optimizations.
PhD thesis, Carnegie-Mellon University, October, 1972.

W Wulf, R.K. Johnsson. C.B. Weinstock, S.O. Hobbs, and CM. Geschke.
I he Design of an Optimizing Compiler.
American-Elsevier, 1975.

L.P. Horwitz, R.M. Karp, R.E. Miller, and S. Winograd
Index Register Allocation.
Journal of the ACM 13(1M3-61, January 1966.

CG. Bell and A. Newell.
Computer Structures: Readings and Examples
McGraw-Hill, 1971. '

S.S. Coleman, P.C. Poole, and W.M. Waite.
The Mobile Programming System, Janus.
Software: Practice and Experience 4:5-23, 1974.

R.K. Johnsson.
An Approach to Global Register Allocation.
PhD thesis, Carnegie-Mellon University, December, 1975.

W.H. Joyner Jr., W.C Carter, and D. Brand.

58

UsLnp Machine DfitcripHons in Program Verification. , r i 070
Technical Report RC 6922, IBM Thomas J. Watson Research Center, 1978.

[31] D.E. Knuth.
An Empirical Study of FORTRAN Programs
Software: Practice and Experience 1(2):105-13^, ia/1.

n?! D B. Loveman. , ,.
Program Improvement by Source-to-Source Transformation.
Journal of the ACM 24(1):121-145) January 1977.

[33] U^P Sachte Descriptions for Automatic Generation of Code Generators.
X^eeTnlsof theSrä Jerusalem Conference on Information Technolog pages

503-507. (publisher or organization?), 1978.

[3A] r.n^atL an Intermediate-code Generator in a Compiler-Writing System.
1; E Gelenbe and D Rotier, editor. International Computing Symposium, pages

121-127. North-Holland, 1975.

H. Ganzinger, K. Ripken, and R. Wilhelm
Automatic Generation of OptimizingMultipass ^^^^^ North_Ho!Iandi ig77.

[35]

[36]

In B. Gilchrist, editor. Information Processing

Joseph M. Newcomer.
Machine-independent Generation of Optimal Local Code.
PhD thesis, Carnegie-Mellon University, May, 197b.

[37] Nils J. Nilsson.

TecS iATsUnford Research Institut., ArtifiCl mt.Higenc. Cnt.r, Apr«

1974.
Also in Proceedings of the 1F1P Congress (mvi

1974.

ted paper), Stockholm, Sweden, August,

[38]

[39]

[40]

[41]

[42]

M. Richards.
The Portability of the BCPL Compiler.
Software: Practice and Experience 1:135-146, 19/1.

A.V. Aho and J.D. Ullman.
The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, 1972.

W. McKeeman.
Peephole Optimization.
Communications of the ACM 8(7)^3-444, July 1965.

S C. Johnson and D.M. Ritchie.
Portability of C Programs and the UNIX System.
Be« System Technical Journal 57(6):2021, July-August 1978.

S.C. Johnson.
A Portable Compiler: Theory and Practice / „„„„„o« oaees 97-104.
In Fifth ACM Symposium on Principles of Programming Languages, pages

59

SIGPLAN-SIGACT, January, 1978.

[^3] Knuf Ripken.

Formale Beschreibung von Maschinen, Implementierungen und optimierender
Maschinecodc-erzcugung aus attributierten Programmgraphen.

PhD thesis, Technische Universität München, July, 1977.
In German; ruvicwed in English by Bert bpeelpenning, A Review cf Ripken's Thesis,

unpublished.

[44] Lawrence Livermore Laboratories.
S-l Processor Manual.
1978.

[45] M. Schaefer.
A Mathematical Theory of Global Program Optimization.
Prentice-Hall, 1973.

[46] B.R. Schatz.
Algorithms for Optimizing Transformations in a General Purpose Compiler:

Propagation and Renaming.
Technical Report RC 6232, IBM Thomas J. Watson Research Center, October 1976.

[47] R. Sethi.
Complete Register Allocation Problems.
SIAM Journal of Computing 4(3):226-248, September 1975.

[48] M. Barbacci and D. Siewiorek.
Some Aspects of the Symbolic Manipulation of Computer Descriptions.
Technical Report, Carnegie-Mellon University, 1974.

[49] A. Snyder.
A Portable Compiler for the Language C.
Master's thesis, MIT, May, 1975.

[50] T.A. Standish, D.C. Harriman, D.F. Kibler, and J.M. Neighbors.
The Irvine Program Transformation Catalogue.
Technical Report, DC Irvine, Department of Information and Computer Science, 1976.

[51] T.G. Szymanski.
Assembling Code for Machines with Span-Dependent Instructions.
Communications of the ACM 21(4):300-308, April 1978.

[52] T.B. Steel.
A First Version of UNCOL.
In Proceedings of the Western Joint Computer Conference, pages 371-377. AFIPS,

1961.

[53] Digital Equipment Corporation.
VAX-11/780 Architecture Handbook.
1977.

[54] B.A. Wichmann.
Basic Statement Times for Algol 60.
Technical Report NAC 42, National Physical Laboratory, 1973.

60

[55] B.A. Wichmann.
How to Call Procedures, or Second Thoughts on Ackermann's Function.

Software: Practice and Experience 7:317-329, June-July 1977.

[56] J.D. Wick.
Automatic Generation of Assemblers.
PhD thesis, Yale University, December, 1975.

[57] T. Winograd.
Frame Representations and the Declarative/Procedural Controversy.
In D.G. Bobrow and A. Collins, editor. Representation and Understanding, pages

185-210. Academic Press, 1975.

[58] 5.C. Johnson and M.E. Lesk.
Language Development Tools.
Bell System Technical Journal 57(6):2155-2175, July-August 1978.

