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FOREWORD 

In the past decade there has been a proHferation of signal processing algorithms proposed to 
reconstruct information from noisy measurements. Most of these techniques have been variations or 
extensions of the popular Kalman filter. Too often, the literature has obscured the basic concepts of 
Kalman filtering and its modifications with unnecessary mathematical abstractions. It is the purpose 
of this report to expose the easily understood fundamentals of Kalman filtering, and to provide the 
reader with the foundation required to utilize the theory in real-world engineering problems. 
However, the transition from theory to practice is usually a non-trivial step. 

This work was performed under the Naval Air Systems Command Air Task A510-5103/008- 
2/6235-000-143. This report is released at the working level for information purposes only. 
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I.   INTRODUCTION 

I.l   PROLOGUE 

Physical systems are designed to accomplish well-defined tasks. 
The importance of navigation for aircraft and orbit determination for 
satellites is fundamental.  In order to estimate whether either is likely 
to accomplish its objectives, and ultimately to control its performance, 
the engineer must know the "state" of his system.  For aircraft naviga- 
tion, the state consists of position and velocity; for satellites, it 
consists of the orbital parameters.  Regardless of the problem under 
consideration, the state of the system is observed, often indirectly, 
using a suitable set of sensors referred to as the measurement system. 
Inevitably, these observations are contaminated with noise that is 
generated by the phenomena observed and the sensors themselves.  Thus, 
the measurements yield only crude information, which may be only 
indirectly related to the parameters of interest.  This latter point is 
easily seen in orbit determination problems, where the measurements 
typically consist of range, range rate, and the direction cosines from 
the observation site.  Whereas, the orbital parameters to be estimated 
are eccentricity, semimajor axis, argument of perigee, and the mean 
Kepler anomaly. 

The filter theory of Kalman represents, in principle, an almost 
ideal solution to the above type problems of smoothing noisy measurements 
and reconstructing estimates for parameters which can not be directly 
measured.  It accomplishes this by optimally* utilizing any dynamic, 
geometric and statistical relationships that exist between the noisy 
data and the desired information.  In addition, it processes the data 
sequentially.  Thus, we are led to the following definition. 

DEFINITION:     A Kalman filter is an optimum recursive algorithm 
for extracting information from noise-corrupted data. 

It is the purpose of this report to provide an intuitive development of 
the Kalman filter and to confirm this result rigorously via maximum 
likelihood and minimum variance estimation theory. 

At this point it is important to observe that even though Kalman 
filtering is an excellent solution to many data processing problems, it 
would be of only academic interest in aerospace applications without the 
rapid development of powerful airborne digital computers. 

The optimality is to be interpreted in a minimum mean-square error sense. 
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1.2 TYPICAL APPLICATIONS 

The application of modern filter theory to multisensor avionic 
systems began only a few years after Kalman published his original 
papers in the early 1960s (Ref. 1 and 2). For example, the Kalman 
filter provides a systematic method for optimally employing all external 
measurements (position, velocity, or attitude) to improve the accuracy of 
inertial navigation systems (Ref. 3).  The block diagram for such an 
augmented inertial navigation system is shown in Figure 1-1. 

Another important application is in precision pointing devices 
(Ref. 4 and 5).  These systems must be able to track in a rapidly 
changing dynamic environment.  Conversely, the bandwidth must be narrow 
enough to sufficiently attenuate the servo and sensor noise to achieve 
the accuracy required for precision pointing.  These two conflicting 
requirements are resolved by using a modified Kalman filter to generate 
an aided-tracking input to the controller as shown in Figure 1-2.  Since 
in this case the output of the filter is a rate, the aided-tracking 
input, in effect, adds a derivative feature to the controller. 

INERTIAL 
NAVIGATION 

SYSTEM 

COMPENSATED OUTPUT 

1    ■ 

ESTIMATES OF SYSTEM ERRORS, 

;, 

e.g., GYRO DRIFT RATES, 
ACCELEROMETER  BIASES, 
SENSOR SCALE FACTORS, 
SENSOR MISALIGNMENTS; 
POSITION, VELOCITY, AND 
ATTITUDE ERRORS. > ' 

KALMAN 
FIL TER 

f 
EXTERNAL 

MEASUREMENTS 

FIGURE 1-1.   Feedback Compensation of Augmented Inertial 

Navigation Systems. 

4 
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FIGURE 1-2.  Rate-Aided Precision Tracking System. 

1.3 SYSTEM MODELING: A CRUCIAL PRELUDE TO FILTERING 

Before the filter theory of Kalman can be applied to a problem, the 
dynamics* of the quantities of interest and any measurements of them must 
be in a specific format.  This format requires that all difference equa- 
tions describing the dynamics be written as a set of first order differ- 
ence equations.  The following simple, but useful, example introduces the 
modeling process and will be employed later to illustrate different 
aspects of Kalman filtering. 

Example 1.1:  Radar Tracking of Nominal Constant Velocity Vehicles 

The assumputions for such trajectories are: 

(1) The average acceleration is zero. 

(2) The acceleration between radar scans is constant, i.e., 

a(t) = a -, = a constant 
n-1 

(n-l)T < t < nT 

where T is the time between radar samples. 

(3) The acceleration between scanning intervals is uncorrelated. 

* Since digital computation is assumed, the dynamics will be in difference equation rather than differential 

equation form. 
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It is not possible to set the instantaneous acceleration equal to zero 
due to wind gusts, short-term irregularities in engine thrust, etc. 
Under assumptions (1) through (3), the position x and velocity x vary 
according to the equations       '-    ■'...'■ 

X  = X  , + Tx  , + V" a  T n   n-1    n-1   /  n-i 

X  = X  -, + Ta  T 
n   n-1    n-1 

(n-l)T < t 1 nT 

(1-1) 

(1-2) 

where a^^.]^ is a random sequence with zero-mean and a mean-square accel- 
eration of 

E a. a, 
2   k 

a for j = k 
0  otherwise 

(1-3) 

Note   that   Eq.   1-1  and  1-2  are   first  order  difference  equations   as 
required.     They can be more  compactly written  in vector-matrix notation 
as 

where 

X    =  'J>(n,n-l)X     ,   + W     , 
n n-1 n-1 

(1-4) 

X    = n 

is defined as the state vector at time t = nT. 

1  T 

L 0  1 J 

(1-5) 

$(n,n-l) = (1-6) 

is the state transition matrix that describes the dynamic evolution of 
X from time (n-l)T to nT, and 

W 
n-1 n-1 

I 

TV2 

T 

is the unknown random disturbance. 

The radar measurements are represented by 

Z  = H(n)X + V 
n       n   n 

(1-7) 

(1-8) 

where Z^  is the observation vector at time nT, H(n) is the observation 
matrix, and V^ is the measurement noise.  Just as with the random 
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•HP* 

acceleration,   we  will  assume   that   the  measurement  noise has   zero  mean 
and   is   uncorrelated  from sample   to   sample.     The  H matrix  is   determined 
by   the   sensor   set  available.     For  example,   if  x(n)   represents   range 
in  Eq.   1-5   and  range  plus  range-rate   sensors  are  available,   the  corre- 
sponding  H matrix   is ? 

H   = 
1     0 

0     1 

In the common case where only position information is present, H reduces 
to a row vector 

H = [1  0] (1-9) 

Equations 1-4 and 1-8 represent the fundamental structure required 
in optimal filtering to estimate the state X^ in a recursive fashion 
from the measurements Zn.  Therefore, this form will be used as a start- 
ing point for the derivations which follow. 

1.4 PHILOSOPHY AND ORGANIZATION 

The discrete-time version of the Kalman filter is developed in this 
report; that is, we assume sampled-data observations of a dynamic system 
described by difference equations.  The discrete time problem was chosen 
due to the prevalence of digital computation and because it has a 
number of inherent tutorial and theoretical advantages in an introductory 
treatment.  In simple problems the discrete algorithm can be manipulated 
easily with a hand calculator, so that considerable insight can be gained. 
Furthermore, the step-by-step processing of information lends itself to a 
more straightforward heuristic solution than does the continuous problem. 
This development of Kalman filtering is presented in Section II. 

Two different approaches are invoked to obtain a rigorous derivation 
of the optimal filter equations.  The maximum likelihood method is 
employed for this purpose in Section III.  Then minimum variance estima- 
tion theory is used to rederive the Kalman filter in Section IV.  The 
reason for presenting two different developments, when one would be 
sufficient, is they illustrate the important fact that there is more than 
one way to view and solve the problem.  More importantly, it is hoped that 
by approaching it from different avenues a deeper understanding of the 
physical and statistical features of the Kalman filtering algorithm will 
be achieved.  In addition. Sections II, III, and IV are written so they 
can essentially be read independently.  Also included is a section 
on practical aspects of Kalman filtering.  Section VI summarizes the 
contents of this report and provides a perspective of Kalman's contribu- 
tion and its relationship to problems encountered in other fields.  An 
Appendix is included which contains several matrix definitions and 
theorems employed throughout the sequel. 
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II.   A HEURISTIC DEVELOPMENT OF KALMAN FILTERING 

The  derivation of   the   filter  equations   presented   in   this  section  is 
intended   to   appeal   primarily   to   intuitive   reasoning.     This  approach   is 
taken   initially   to   provide   insight   into   the  characteristics   of   the  solu- 
tion   that   the mathematical manipulations  of   Sections   III and  IV might 
obscure. 

2.1   PROBLEM STATEMENT 

Given   the discrete   time   dynamic   system described by   the state 
equation 

X     =  $(n,n-l)X     ,   + W     , n n-1 n-1 

and measurement data related to the state by 

(2-1) 

Z     = H(n)X    + V n n n 
(2-2) 

where 

X    is   the m X 1  state vector n 
$(n,n-l)   is   the m x m transition matrix 

W     ,   is   the m X 1  system perturbation noise n-1 
Z     is   the p  X  1 measurement vector n 
H(n)   is   the p x m observation matrix 

V     is   the p  X 1 measurement  noise n 

The noise  sources   are  assumed   to  be  zero-mean uncorrelated  noise sequences 
with   the  following  covariances: 

EJw.wJj =  Q(k)6.^ 

EjV.V^ [ =  R(k)5 
jk 

EjV.w;^    =0 for all  j,k (2-3) 

and  5.,    is   the Kronecker   delta.*     A linear  unbiased  recursive  estimate  X 
Jk n 

• These restrictions could be relaxed to include cross-correlated, sequentially correlated and non-zero mean 
noise sources, but such a generalization would significantly complicate the sequel. 
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of   the  state  X^  is   to  be  computed   from  the data  sequence   {ZQ, Z]_, . . . , Zj^} 
so   that   the mean-square   error  of   the  estimate   is minimized. 

The recursive   feature restricts   the  solution   to  be an explicit 
function  of   only   the  present  measurement   Z^  and   the  previous   estimate 
Xn-1.     The  familiar  sample-mean calculation  can  be used   to   illustrate   the 
desired   form. 

Example 2.1:   Sample-Mean Computation 

Consider   the  problem of   estimating  a  DC voltage  X  from a  set of n-1 
noisy measurements  of   the  form 

Z     = X + V n n (2-4) 

Note   that   Eq.   2-4  is  a  special  case of   Eq.   2-2.     The  sample-mean estimate 
of   the constant X results   from averaging   the measurements 

n-1       n-1   f-",      1 
1=1 

After the next measurement, the sample mean becomes 

1 A X = - E z. n  n .•^-',  1 

(2-5) 

(2-6) 

What is needed is a recursive version of Eq. 2-6 which incorporates new 
data as it is received.  This is accomplished by rewriting Eq. 2-6 as 
follows 

A. 

X 
n 

= n-1 
n n 

1 
-1 

n-1 

E 
i=l 

Z. 
1 

+ 1 
n 

Z 
n 

n-1  " 1 =   X + - ■/, 
n n -1 n n 

= X , + - (z - X , ) 
n-1  n \ n   n-1/ (2-7) 

Several important facets in the structure of this equation are relevant to 
Kalman filtering.  The estimate is an explicit function of the past esti- 
mate and the present measurement only.  Thus, the necessity of storing past 
data and repeating the averaging operation of Eq. 2-6 is eliminated. 
Note also that, just before the nth measurement, the best prediction of 
X is simply the last estimate Xn-l.  This follows because X is a constant. 
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I *^ 
'i ' In addition,   X^_i  is   also   the best   predicted value  for   Z^,   because  the 
! noise has   zero-mean.     Therefore,   we may   interpret  Eq.   2-7   as   follows: 

The new  estimate Xn   is  a  linear  combination of   its  best  pre- 
dicted value  Xn-1   plus  an  appropriately weighted   difference 

; between   the  new  measurement   Z^  and   its   best   predicted  value 
' Xn-1.     The weighting  is   supplied  by   the  time-varying  gain 1/n. 

t In  fact,   the   sample-mean  is   the  Kalman  filter   for   the  special  case 

I ^n+1  ^ \ 
t =  X 
s 
c 

I = a constant 
I 
I where 

I $(n+l,n)   =1 

[ . Wn =  0 

\ "(^)   =  ^ 

I' and 

I' R(n)   =1 
It 
!' - 

2.2  HEURISTIC SOLUTION 

By  analogy with   the sample-mean example,   we can proceed heuristically 
to  a  logical  structure  for   the  general Kalman  filter.     Suppose  that  at 
time   (n-l)T an optimal  estimate X^_i  of  X^_i  given  the  data   {ZQ,•.•.Z^-i} 
is  available  for   the system of  Eq.   2-1.     Since  the average  value of   the 
noise   term W^  is   zero,   it  is  reasonable   to   extrapolate  Xn-i   forward   to 
time nT using   the  dynamic model relating X^-i   to  X^.     This  gives 

X   I      ,   =  $(n,n-l)X (2-8) 
n|n-l n-i 

. The  prediction of  X^  from X^.i  is  denoted by  Xn|n-1.   and  is   to be 
interpreted  as   the  best  estimate  of  Xn,   given  measurements  up   through 
time   (n-l)T.     Based on   this  prediction,   the  anticipated value   for   the 
new  observation   Zn  can be  expected   to  be 

Z   I = H(n)X   I     , (2-9) 
n|n-l n|n-l 

This follows from the measurement equation (2-2) and the assumption that 
the noise Vn has zero mean.  From the sample-mean example, we know that 
the information contained in the new measurement must also be reflected 
in the difference between the measurement and its predicted value.  Con- 
sequently, this difference is referred to as the innovation sequence and 
is defined by 

10 
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V     A   z     -   Z   I n  ~    n n n-1 

=  Z     - H(n)X   I      , 
n n n-1 

(2-10) 

(2-11) 

Obviously,    the  error  represented  by  Vn must  be due   to  a  change  in  the 
state  and/or   sensor noise.     Thus,   Vn   is  proportional   to   the correction 
that   we   should  make   to   the  prediction  Xn|n-1   to   incorporate   the new 
information  contained   in  Z^.     Now   the  filter  was   required   to  be a  linear 
function of   the  present  measurement   Z^ and   the  previous   filtered  value 
Xn-l-     Motivated  by   this   restriction,   suppose we construct   this  estimate 
Xn by  a  linear  combination of   the  predicted   value,   and   the   innovation, 
Eq.   2-8  and  2-11   respectively.     Furthermore,   by analogy with   the sample- 
mean algorithm,   let   this   linear  combination have   the  form 

X    =  X   I      -,   + K 
n n n-1 n Z     - H(n)X   I      , 

n n n-1 (2-12) 

Note that Eq. 2-12 is an explicit function of Xn-l and Zn only, because 
from Eq. 2-8 it can be rewritten as 

X^ = <I)(n,n-l)X  , + K  Z  - H(n)$(n,n-l)X  J 
n n-1   n [ n n-ll (2-13) 

Observe   that  Eq.   2-12  has   the   intuitively  satisfying  structure of  a 
predictor-corrector  algorithm. 

However,   the m x  p  gain matrix Kn must  still be chosen  to  minimize 
the mean-square  error,   where   the  error  itself  is  defined  by 

= X    - X n n (2-14) 

An   expression  for   this   error as  a  function of  Kn  can be obtained by 
substituting  Eq.   2-12   into  Eq.   2-14 

= X     - X   I     -, n n n-1 Z    - H(n)X   I      , 
n n n-1 

= e 
n|n-l 

- K H(n)X    - H(n)X   ,     ,   + 
n n n-1 

=  e -  K 
n|n-l n 

I   - K H(n) 
n 

H(n)e   I      ,   + V 
n n-1 n 

e   I      .   - K V 
n n-1 n  n (2-15) 

11 



TN  4070-58-75 

Equation   2-15   is   a   function  of   the  error   in   the   predicted   estimate, 
which  can  be written  as 

A 
n|n-i n n|n-l 

=  $(n,n-l)X     ,   + W     ^   -  <J)(n,n-I)X    , 
n-1 n-1 n-1 

=  $(n,n-l)e + W     ^ (2-16) 
n-1 n-1 

Since it was specified that the filter estimate X^  be unbiased, i.e., 

EIX ! = X 
I   - ( ni    n 

it   follows   that   the average value  of  e^ must be   zero.     Thus, 

Eje^j  =0 ^ (2-17) 

Therefore,   from Eq.   2-16,   we have 

^hn|n-li   =  ^(-'-DEle^.^l  + E|W^_^|  =  0 (2-18) 

because W^-l  is   also   zero-mean.     Equation  2-18  implies   that  X^ln-l  is 
unbiased  and,   consequently,   the  covariance of   the error  in   this  estimate 
is   from Eq.   2-16 

^K|n-l^n|n-ll  = ^(n, n-l)E je^_^e^_^} ^^(n.n-l)   + E{W^_^W^_J     (2-19) 

Using Eq. 2-3, the last expectation in Eq. 2-19 is Q(n-l),  Denoting the 
error covariance matrix by P, Eq. 2-19 can be written 

^n|n-l " '^(n,n-l)P^_^$^(n,n-l) + Q(n-l) ' (2-20) 

This   equation  is  known as   the discrete Riccati  equation. 

Employing Eq.   2-15,   the error  covariance of  the filtered  estimate 
error  is 

^n=   ^IVnl (2-21) 

=  E}[I  - V(n)|e^|^_^(e^|^_^[l  - K^H(n) j^ + V V ) 

+ K V   (e'^l      Jl  - K H(n) F + V^K'^ ) (2-22) 
n  n\   n|n-lI n I n n / ) 

12 
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As   a  result   of   the uncorrelated  and   zero-mean  properties  of   the measure- 
ment   noise, 

E  e    1      ,V 
(   nIn-1   n 

(2-23) 

Consequently,   P    reduces   to n 

P    = n I  -  K H(n) n 
I  -  K H(n) n 

T T 
+ K  R(n)K 

n n 'n|n-l 

Now Kj^ must  be selected   so   that   the mean-square  error 

(2-24) 

M.S.E. = E e e n n 
(2-25) 

is minimized.  By comparing Eq. 2-25 with Eq. 2-21, it is evident that 
the mean-square error is the trace of the error covariance matrix.  Thus, 
one approach to choosing K^ is to minimize the trace of Pn-  This is 
accomplished by setting the partial derivative of the trace of Pn equal 
to zero and solving for K^, 

aftrace P 
I n 

8 K 
= 0 (2-26) 

First, substitute Eq. 2-24 into Eq. 2-26 and utilize the matrix 
relationship 

3 D 
trace DED = 2DE (2-27) 

when E is symmetric.  Remembering that all covariance matrices are 
symmetric, the differentiation in Eq. 2-26 gives 

-2 I - K H(n) 
n 

P I  ,H (n) + 2K R(n) = 0 
n n-1        n 

Solving  for Kj^ yields 

K     =  P ' n n-1 
T 

H'(n) H(n)P   I      ,H   (n)   + R(n) 
n n-i 

-1 (2-28) 

Substitution of   this   expression into   Eq.   2-24   gives,   after  some 
manipulation, ,- 

P    =  P   I      1   - P   I     iH'^(n) n n n-1 n n-1 

ri  - K H(n)lP   I      . 
L n J  n|n-l 

H(n)P   I      ,H   (n)   + R(n) n n-1 
-1 H(n)   P n n-1 

(2-29) 

13 
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The development  of   the  optimal   recursive   filter   is  almost  complete. 
There  remains   only   the  specification  of   the  initial   conditions   for   the 
filter.     These are  determined   from   the requirement   that   the  filter  esti- 
mates   be  unbiased.      Since  Vn   is   unbiased,   it   follows   from  Eq.   2-15   that 

EJe   I   = r I   -  K H(n)lE{e   ,      . | (2-30) 
(   n I       L ti        J    I   n|n-l 1 

Clearly, E 16^/ is zero (i.e., X^ is unbiased) if the prediction X^ln-l 
is unbiased.  And from Eq. 2-16, Xnln-l is unbiased if X^ is unbiased. 
Carrying this argument to its logical conclusion implies that the 
estimates are unbiased for all n if, and only if, the initial condition 
for the predicted estimate is chosen to be unbiased.  That is, 

. ^i^0|-li= ^i^oj (2-31) 

This initial condition and its covariance PQI-I must be given.  In 
practice, an educated guess for XQI-I and PQI-I, obtained from a priori 
or externally computed information, is often used. 

Equations 2-8, 2-12, 2-20, 2-28, 2-29, and 2-31 comprise the 
algorithm referred to as the Kalman filter.  They are summarized for 
convenient reference in Table 2-1.  The associated block diagram along 
with the system and measurement models is illustrated in Figure 2-1. 

Note that the filter contains the dynamic model within it, around 
which is a negative feedback loop containing the measurement model. 
The error signal driving the filter is the innovation process, which 
represents the new information contained in the measurements.  Thus, 
the Kalman 'filter can be viewed as a model-following feedback control 
system. 

One significant attribute of the Kalman filter is its recursive 
structure.  This property makes it ideally suited for sequential 
real-time digital processing of new data.  Another feature that 
adds to the popularity of the Kalman filter is the generation of its 
own error analysis via Pn|n-1 ^'^'^ ^n> which are inherently calculated 
as part of the algorithm.  However, the most important property of the 
filter is its ability to reconstruct the entire state vector from a 
noisy scalar measurement of the state vector.  This capability is 
dependent on the observability concept.  Mathematically the system of 
Eq. 2-1 and 2-2 is observable if, and only if, the m x m symmetric 
matrix M(0,N) is positive definite for some N > 0, where 

N 

1=1 
M(0,N) = ^ $^(i,0)H^(i)H(i)<J)(i,0) 

14 
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and 

$(i,0)   = $(i,i-l)<Ki-l,i-2)---<D(l,0) 

Physically,   this  means   that   the measurement must  be  related  dynamically 
to  all   the elements   in   the state  vector. 

TABLE 2-1.   Summary of the Discrete Time Kalman Fiher Algorithm. 

DYNAMIC MODEL 

MEASUREMENT MODEL 

X = <I)(n,n-l)X  , + W  , 
n n-1   n-1 

Z  = H(n)X + V 
n    ^ ' n   n 

(2-1) 

NOISE STATISTICS E V.  = 0, E W.  = 0 

^hi\ = ^^^^V' '!vk! = ° (2-3) 

PREDICTED ESTIMATE 

COVARIANCE FOR 
PREDICTION ERROR 

EiW.W,^ 
2   k 

nin-1 

n n-1 

= Q(k)5 
jk 

= ^(n.n-DX 
n-1 8) 

y 

>(n,n-l)P^_^<I)'(n,n-l) + Q(n-l)    (2-20)  ^ 

FILTER GAIN MATRIX K = P I  ,H^(n) n   n n-1 H(n)P I  ,H (n) + R(n) 
n n-1 

-1 
(2-28) 

FILTERED ESTIMATE X = X I  , + K 
n   n n-1   n Z  - H(n)X I  , 

n       n n-1 
(2-12) 

COVARIANCE FOR 
FILTER ERROR 

P  = 
n I - K H(n) n n n-1 (2-29) 

INITIAL CONDITIONS ^!^oi-ij = ^Kj (2-31) 

^oi-i = ^roi-i^oi-i 

15 
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DYNAMIC MODEL MEASUREMENT   MODEL n 
w_ 

■<i> 

L 

H(n) 

UNIT 
DELAY 

*(n,n-l) ^n-1 

r' 
j 

KALMAN  FILTER 

MEASUREMENT NNOVATION CORRECTION 

€>■ 
FILTERED  ESTIMATE 

nln-1 

L_ 
H(n) 

n|n-1 

A 

UNIT 
DELAY 

PREDICTED ESTIMATE 
't'In.n-l) 

FIGURE 2-1.   Discrete Time Kalman Filter and the Associated System Model. 

Although our development has  been heuristic,   it  can be made  rigorous 
as  will be  shown in  Sections   III and   IV.     In fact,   it will become  evident 
that   the Kalman  filter   is  not  only   the best   linear  filter  for   the system 
of  Eq.   2-1  and   2-2,   but  also   the best   filter   (linear  or nonlinear)   if 
the noise  sequences   are  gaussian  or  if  only  first and  second  order 
statistics   are known. 

Before proceeding   to   Section  III,   a  specific  problem will  be solved 
and  discussed   in  order   to   enhance   the reader's   intuitive   feel  for  the 
characteristics   of   the Kalman  filter.     The steady-state  Kalman  filter 
solution will   then be related   to   the  familiar   transfer   function method 
of   filter  design. 

Example 2.2:  Design of an Alpha-Beta Filter Using the Kalman Algorithm 

Given   the model  of  Example  1.1,   we wish   to  estimate  position and 
velocity   from noisy  position measurements  only.     If   the measurements  are 
available   twice  per  second,   then  the system  Eq.   1-4   through  1-8  are 

16 
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X 
n 

X n _ 

1  1/2 

0   1 

r ^    ^ ri/8i 
n-1 + 

1/2 
L    n-1 J 

n-1 

'.-b »] + V 

= X  + V 
n   n 

Now assuming the root mean-square magnitude of the perturbation 
eration is 2 meters per second and since 

(2-32) 

(2-33) 

(2-34) 

accel- 

W 
n-1 

1/8 

L 1/2 J 
n-1 

(;he Q matrix can be calculated using Eq. 1-7. 

Q(n-l) = E}W^_,W;_J 

'1/16  1/4 

_l/4    1 

The initial condition PQ|-1 is chosen to be 

(2-35) 

0-1 

10 0 

0 10 
(2-36) 

To display the automatic variation of the Kalman gain matrix to 
compensate for a time-varving environment, let the covariance of the 
observation noise be 

R(n) = 
+ (-2)' 0 

10 
< 10 (2-37) 

From an inspection of Eq. 2-37, it is not difficult to see that the gain 
matrix K^ should be increased when processing measurements at odd 
values of n to take advantage of the relatively less noisy observations. 
Thus, there will be less lag in the filtered estimates, and the error 
covariances should be smaller.  Correspondingly, the gains should 
decrease for even-numbered measurements to suppress the increased noise 
level.  This, however, will increase both the filter lag and the error 
covariances.  Figures 2-2 and 2-3 graphically display these characteris- 
tics of the Kalman algorithm.  Note from Figure 2-2 that the filter 
gains, computed from Eq. 2-28, reach a periodic steady-state quickly. 

17 
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After the 10th measurement, the covariance of the noise remains constant 
at four.  Consequently, the filter gains become constant after the 
transient effects of this change die out. 

This example serves to introduce another facet of the Kalman 
algorithm.  Alpha-beta trackers were originally devised to predict 
position and velocity.  Such a predictor can be obtained directly, 
without explicit filtering, by substituting Eq. 2-12 into Eq. 2-8.  The 
result is 

X ^, I  = 'l>(n+l,n)X I  T + G , ^ n+1 n n n-1   n+1 
H(n)X n n-1 

(2-38) 

where 

n+1 
|(n+l,n)K (2-39) 

Therefore, if the filter gain is known, the prediction gain G^+i can be 
quickly determined from Eq. 2-39.  Conversely, the filter gain may be 
calculated from the prediction gain through the inverse relationship 

K $ ■'"(n+l,n)G 
n+1 

(2-40) 

Since many graphs exist for choosing G^+]_ given a desired damping ratio 
and bandwidth, Eq. 2-40 is particularly useful for obtaining the corre- 
sponding filter gains. 

Under steady-state conditions, it is possible to determine the 
general filter transfer functions for our example.  This will allow us 
to interpret Kalman's time domain solution in terms of familiar frequency 
domain concepts.  Rearranging Eq. 2-8 and 2-12 and collecting the 
coefficients of the filtered estimates into one matrix gives 

nj 

1-K(1,1)   [1-K(1,1)]T 

-K(2,l)     1-TK(2,1) 

n-1 

. n-1 

K(l,l) 

K(2,l) 
(2-41) 

n+1 n 

^n+lln 0 1 

x 
(2-42) 

Note that the sampling time T between measurements has been retained in 
Eq. 2-41 and 2-42 for the sake of generality.  Taking the 3_^_traJlsform of 
tliese two equations and applying simple matrix manipulations, the 
transfer functions for filtered position xp, filtered velocity xp, 
predicted position xp and predicted velocity xp are found to be 
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Z(2) 

K(l,l) + TK(2,1) - K(l,l) 

1 + -2 + K(l,l) + TK(2,1) Z-1 + 1 - K(l,l) 
,-2 (2-43) 

Z(2) 
K(2,i)|i - r 

(   •   ) 
(2-44) 

Xp(2) 

zTir 
K(l,l) + TK(2,1) - K(l,l)2 

-1 

( ) 
(2-45) 

x^(Z)   K(2,1)Z Ml - 2 ^ 

Z(3) ( • ) 
(2-46) 

Observe that the characteristic equation is the same for all four trans- 
fer functions as indicated by the ( • ) notation. 

From these 2-transfer functions, the corresponding Laplace transfer 
functions may be obtained by using a suitable inverse mapping. In low 
pass filters, the simple backward difference approximation to S is usually 
sufficient, i.e., 

1  -  I 
-1 

or 

,-1 
1 - TS 

The Kalman  gains   can   then be used   to   find   the  S-plane  pole-zero   configu- 
ration.     From  this   S-plane  plot   it   is  obvious   that   the  gains   determine 
the damping  ratio  and  undamped   natural   frequency of   the  filter.     Thus, 
the  frequency domain  effect  of   increasing   the  gains,  when  the measurement 
noise decreases,   is  an  increase   in   the  filter bandwidth.     The converse is 
true when   the measurement  noise  increases. 

21 
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III.   MAXIMUM LIKELIHOOD ESTIMATION FOR 
LINEAR DYNAMIC SYSTEMS 

3.1   PROBLEM FORMULATION 

Assume   that   the  quantities   to  be  estimated  are   the states of  a 
dynamic   system.     The  equation   that  describes   the  state  propagation  is 

X   ,,   = <i'(n+l,n)X    + W (3-1) 
n+1 n n 

where 

X is the m X 1 state vector ' • 
n 

W is an m X 1 system perturbation noise n ' 

$(n+l,n) is the m x m state transition matrix. 

The measurements are related to the state in the following way 

Z = H(n)X + V (3-2) 
n      n   n 

where 

Z     is   the  p  X  1  vector  of  measurements 
n 

H(n)   is   the  p  x m observation  matrix,  which relates   the  measurements 
to   the  state  vector 

V     is   a p  X  1  vector which  represents   the noise  or  errors   in   the 
n measurements. 

The noise vectors  Wn and Vn are assumed   to be stochastically  independent 
gaussian vectors  with   zero  means  and   the following covariances: 

EJW.WJ}  = Q(k)6. 

E{v.V^}=R(k)6.^ 

EIW.VJI =  0     for all  j,k (3-3) 

where  5jk  is   the Kronecker  delta.     In addition  X„   is  assumed   to  have  a 
gaussian distribution. 

22 
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The   problem can  be  stated as   follows:     given   the  observations 
Zo,7.i, . . .,Zn,   find   the   "best"  estimate   Xn   of   Xn.      If   n  =   N,   we  have   a 
filtering  problem,   and   if  n   >  N,   we  have   a  prediction  problem.     Here we 
will  be   concerned  primarily with   filtering.     However,   the   one-step  pre- 
dictor  is   obtained automatically  in   the   filtering  solution.     The   criterion 
for   the   "best"   estimate  will  be   determined   from   the   maximum  likelihood 
principle. 

f 

3.2   THE METHOD OF MAXIMUM LIKELIHOOD 

Maximum likelihood is a classic technique for estimation developed 
by R,   A. Fisher.  The basic concept is quite simple:  define a likelihood 
function of the state Xn and measurements ZQ = zo,Zi = zi,...,Zn = Zn 

L(X^,ZQ,...,Z^) 

This function is maximized with respect to XQ by solving 

9L(X^,ZQ,...,ZJ 

3 X = 0 

X =x 
n n 

(3-4) 

such that 

9^L(X^,Z^,...,ZJ 

3 X2 
n 

< 0 

X =x 
n n 

(3-5) 

In this development, it will be crucial to distinguish between the random 
sequence Zo,Zi,.,.,Zn where each Zi is a function and a particular reali- 
zation of this sequence ZQ = ZQ.ZI = zi,...,Zn = z^ where each zi is a 
number. 

g 

Generally,   the likelihood  function  is  selected   to  be  the joint 
probability density  function   (p.d.f.), 

fn .ZQ, ,z n)  =  P(\'^0  =  ^0"--'^n =  \) (3-6) 

However, it is more convenient to maximize the marginal distribution of 
Xn conditioned on ZQ = zo,...,Zn = Zn, i.e., choose 

i'n .ZQ, ^n) = PKI^O = ^0'---'^n=^ (3-7) 

The estimate Xn obtained by solving 

!_A\[ h  = ^0>---»Zn = ^n 
3 Xn = 0 

X =x 
n n 

(3-8) 
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* 

I 

is  known as   the Bayesian maximum  likelihood   estimate   (B.M.L.E).     For   the 
case  of   linear  systems  with   gaussian   noise with  which  we   are   dealing, 
both   the  likelihood   functions  of   Eq.   3-6  and   3-7   yield  identical  results. 
In  addition,   since   the   logarithm of   a   function varies  monotonically with 
that   function,   an   equivalent  and   simpler   likelihood   function  is 

LK'^0'---'^)=^"P('nl^O  =   ^0'---'^n=   \) 
(3-9) 

Therefore,   we will work with  Eq.   3-9. 

3.3   SOLUTION OF THE STATE ESTIMATION PROBLEM 

Using   the method  of  maximum likelihood   to   find   the  conditional 
p.d.f.   required  in Eq.   3-9,  we  employ  Bayes  rule 

P   X ̂ nl^O'---'^n) = P(Zo,...,zj 
(3-10) 

Applying Bayes rule, the numerator of Eq. 3-10 can be decomposed as 
follows '        , 

Now 

P(X^,ZQ,...,ZJ 

= P(ZJX^,ZO,...,Z^_JP(XJZQ,...Z^_JP(ZQ,...,Z^_^ 

PKI\'^O'---'VI) =P(«(-)\-^\IV^O"--'VI) 

= p(H(n)X^)-fp(vJZo,...,Z^_^) 

= p(H(n)xJ + p(vj 

(3-11) 

(3-12) 

(3-13) 

The last equation follows since V^ is stochastically independent of 
Zo,...,Zn-l.  But Eq. 3-13 is identical to the p.d.f. of Z^ conditioned 
on Xn.  Therefore, 

H\K'^0'---\-l)   =P(^nl\) (3-14) 
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From   this   fact,   Eq.   3-11   reduces   to 

fabstituting   Eq.   3-15   into   Eq.   3-10   gives 

P(ZJXJP(XJZQ,...,Z^_^)P(ZQ,...,Z^_^) 

p(\l'o'---'\) = p(Zo.---'\") 
(3-16) 

Lviding the numerator and denominator of Eq. 3-16 by pCZg, • • •, Z^^-l) 
;- Imp lif ies it to 

p/Z |X )p(X |Z ,...,Z   ] 
n/y \7 Z \ =  ^ " " I  "   ^^^ (3-17) 

From this result, we can find the conditional p.d.f. of Xn given 
?.Q,...,Zn bv evaluating the p.d.f.'s on the right-hand side of Eq. 3-17. 
To accomplish this, it is necessary to remember that any linear trans- 
formation of a gaussian process is also a gaussian process.  Consequently, 
both X and Z are gaussian, since they are generated by linear combinations 
of gaussian random sequences.  This is the reason it was necessary to 
require the distribution for XQ to be gaussian in Section 3.1.  As a 
consequence of this structure for X and Z, only the mean and covariance 
of each p.d.f. in Eq. 3-17 need be determined. 

Considering pCZ^IXn) first, its mean value is 

EJzJxJ =E|H(n)X^+vJx^j 

=H(n)X (3-18) 
n 

Equation 3-18   follows,   since  {Vn)   is  a   zero  mean process   that  is   inde- 
pendent  of  Xn-     The covariance   is 

Cov}zJxJj  =  E}[z^-H(n)xJ[z^-H(n)xJ^lx^}    ' (3-19) 

E{V v'^ n n 

= R(n) (3-20) 
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Thus, Che gaussian p.d.f. p(Zn|Xn) is 

exp ! - ^fz  - H(n)X ]V^(n)|z  -H(n)x]! 
p(z |X ) =  ? ^' "  ,     "' ^-^ ^Ji (3-21) 

^ "  "^ V(27r)'^ det R(n) 

Next we will define the mean and covariance of p(Xn | ZQ, . . . , Zj^_j_) . 

E!X \Z., ...,Z   I 4 X I  . (3-22) 
( n' 0     n-lj    n|n-l 

Later,   justification will  be  given  for  defining  E{Xn|ZQ,...,Zn-l)   to  be 
the  same  as   the maximum likelihood  solution  to   the one-step  prediction 
problem.     The  error  covariance  for   the  prediction  is 

Cov     X   |Z_, .. .,Z     J   =   E f X     -  X   I      ,1 fx     -  X   I      J'^|Z-,...,Z     . (   n'   0 n-1) (I    n n|n-lll   n n|n-lj    '0 n-1) 

4  P^i      , (3-23) n|n-i 

Therefore, the p.d.f. for Xn conditioned on Zg, . . ., Zj^_-j_ can be written 

(If    •^    1T -1   r    ^ 1 ) exp  - ^ X - X I  J P T  Jx - X I  J 
p/x |Z^,...,Z A=   '  ^' ^   "1'^-^'  n|n-ll^ njn^^ 

^  "  °     "-^^ V (271)"^ det P I , 
n|n-l 

Actually, it is not necessary to determine the p.d.f. p(Zj^I Zg, . . . , 
Zn-l) in the denominator of Eq. 3-17 because in the likelihood equation 
the numerical values zg , . . . , z^^ for the measurement sequence ZQ , . . ., Zn 
are used.  Therefore, p(Zn = zn|ZQ = zO,...,Zn-l = zn-l) is just a 
normalizing constant and does not enter into the minimization process 
of Eq. 3-4.  However, the justification for the notational definitions 
in Eq. 3-22 and 3-23 is facilitated by doing so.  Hence, 

^(^nl^O'---'Vl|=^i"^^)\ + \I^O'--"Vl 

= H(n)EJXjZQ,...,Z^_^j (3-25) 

= H(n)X^|^_^ (3-26) 

To obtain Eq. 3-25 the fact that {V^} is an independent zero-mean process 
has been exploited. Equation 3-26 follows from Eq. 3-22. The covariance 
is 

m 
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Cov  jZ^k^o'---'Vl '=(l^^n-»^")^'nln-l||\-"^"^^a|n-iri^'0'---Vl 

( T 1     T 
H(n)E   Ix     -   X   I      JIX     -   X   I 1    |Z        . .,Z H   (n) 

In n n-l||   n n n-l|        U n-i) 

+  E  V  V 
n  n 

=  H(n)P   I      ,H   (n)   +  R(n) 
n  n-1 

(3-27) 

(3-28) 

Equation  3-27   is   derived  by  substituting  for   Z^  and  again employing   the 
independent   zero-mean property  of Vn-     Using   the  definitions   for   the pre- 
diction  error   covariance  Eq.   3-23  and   the measurement  covariance Eq.   3-3 
yield   Eq.   3-28.     The  gaussian p.d.f.   for   Z^ conditioned  on  ZQ,...,Zn-1 
can now be written. 

[Z     - H(n)X   I      J 
[   n n|n-lj 

(3-29) 

where 

A = (27T)P  det H(n)P   i      ,H   (n)   + R(n) 
I n n-1 

-1/2 

By  substituting  Eq.   3-21,   3-24,   and  3-29   into   Eq.   3-17,   p(XnIZQ,.••.Z^) 
is   found   to  be 

P(XJZQ,..:,ZJ = B  expj- |([Z^ - H(n)xjVl(n)[z^ - H(n)xJ 

+ IX   - X 1    J'^P }    -, [x   - X I    T 
n n n-ll     n n-ll   n n n-1 

-K- «(")\ln-ir(»^^^^n|n-/(")   + ^^^^l'^ K ' «(")^^n|n-l|)l    ^^"^^^ 

where 

B = 
-1/2 

(27T)'" det  R(n)   det ^\_^  ~ det    H(n)P^,   _^H   (n)   + R(n)j 
1/2 

(3-31) 
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The likelihood function is determined by substituting Eq. 3-30 into 

Eq. 3-9, yielding .  ; 

L(X^,Z,,...,ZJ = - ||z^ - H(n)xjV\n)|z^ - H(n)xJ 

T|X    -X   ,     JVJ     JX    -X   I     , 2l  n n  n-l I     n  n-ll    n n|n-l 

+ £n  B  + C 

where  C  is   the  constant 

(3-32) 

c = l z  - H(n)X I  , 
n       n n-l 

H(n)P 1  ^H (n) + R(n) 
n n-l 

-1 

z  - H(n)X I  . 
n       n n-l 

(3-33) 

and In  B is the natural logarithm of the constant defined in Eq. 3-31. 
Equation 3-33 confirms our earlier observation that p(Zn = ZnlZQ,--., 
Zn-1 = zn-l) is simply a normalizing constant, thereby eliminating the 
necessity of computing viZ^l'Z.Q, . . . ,Z^-i) .     The likelihood equation is 
found from Eq. 3-4 to be 

H^(n)R-^(n)[z^ - H(n)xJ - P^j^.^jx^ " X^|,_J = 0 

Xn'^Xj^ 

(3-34) 

The  solution  to   Eq.   3-34   is   the B.M.L.E.   Xn  and  represents   the   filtered 
estimate of  Xn  given  ZQ,...,Z^.     It   is 

X    = 
n 

H^(n)R ^(n)H(n)   + P  V.^ -1 

H^(n)R  ■'■(n)z    + P  |     ^X   ,      . 
^ n n|n-l  n n-l 

(3-35) 

At this point it is appropriate to justify our definitions in 
Eq. 3-22 and 3-23.  It is not difficult to see that p(Xn|ZQ,...,Zn) is 
gaussian.*  Since a gaussian p.d.f. is symmetric and unimodal, its 
expected value coincides with its maximum value.  Consequently, the 
maximum likelihood solution X^ is equal to E{Xn|ZQ,..•.Z^l, i.e., 

n n'   0'        '   n 

P(Xn ZQ ^n> 

where 
\/(27l)iii dct Hn 

Pn^F-{lXn  ^ ^nl [Xn - ^ni' | ZQ Zn) } 

28 

(3-36) 

In fact, Eq. 3-30 can be put in the form 



TN  4070-58-75 

Similarly,   the maximum  likelihood   estimate  for   the one-step prediction 
Xnln-1   is   equal   to   the  expected  value  of  X^ conditioned   on  Zo,...,Zn-l. 
This   is   true  because  p(Xn ] ZQ, • . ., Zj^_2^)   is  also  gaussian.     Thus, 

X    I       ^    —   hiX      Z^, ...,/.      -j 
n  n-1 I   n'   0 n-1I 

(3-37) 

which  corresponds   to   Eq.   3-22. 

From  Eq.   3-1,   X^   is   generated   by 

X     =  ^Cn.n-DX     ,   + W     . 
n n-1 n-1 

Thus,   Eq.   3-37   can be written 

X   I      ,   =  E l-Cn.n-DX + W Z 
n n-1 ' n-1 n-i'   U 

= $(n,n-l)E  X^_^iZQ, ,Z 

,Z n-1 

n-1 

(3-38) 

(3-39) 

(3-40) 

To   obtain  Eq.   3-40,   the  independent   zero-mean  characteristics  of Wn-i 
were   exploited.     Using   the  general  result  of  Eq.   3-36,   it  follows   that 

n-1 I   n-1'   U ^n-1! 

Therefore,   Eq.   3-40  reduces   to 

X   I      ,   =  $(n,n-l)X     T 
n n-1 n-1 

(3-41) 

This   is   the desired   form for   the one-step  Kalman predictor.     It  could 
have  been derived  directly  from  the maximum likelihood   equation in a 
manner  analogous   to   the method used   to   arrive  at   the  filtered  estimate. 
However,   the  likelihood approach requires  more  involved  algebraic 
manipulations. 

The definition  for   the prediction error  covariance  Eq.   3-23  is  a 
natural   consequence  of   Eq.   3-37.     This   is   easily  seen since   the predic- 
tion error   is 

n|n-l n n|n-l 
(3-42) 

and  its   covariance  is   given by Pn|n-1.     Substituting  Eq.   3-41  into   the 
definition  Eq.   3-23  for Pn|n-1 yields 

P   I      -   =  E   [x    -  X   I      , 
n|n-l ([   n n|n-l 

=  E     X    -  $(n,n-l))^     , 
(1   n n-1 

n n|n-lJ     |   0 n-1) 

X     -  $(n,n-l)X     , 
n n-1 

ZQ,...,Z^_   '(3-43) 
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Substituting  Eq.   3-38   into   the above  expression  gives 

n|n-l (1   n-1 n-1 

! T      ) +  E W     .W     . n-1   n-1 

X     .   -  X     ^ 
n-l n-1 ^o'---'Vir ^"'"-'^ 

(3-AA) 

Since the error in the filtered estimate (at time n-1) is 

e  T = X   - A  T ■ 
n-1   n-1   n-1 

(3-45) 

the  first  expectation  in  Eq.   3-44   is   just   the covariance  of   the error   in 
the  filtered  estimate.     That   is, 

n-l 
^   E  e (   n-1  n-llO Z„,...,Z 

n-1 
(3-46) 

The second expectation in Eq. 3-44 was defined in Eq. 3-3 to be the 
covariance of the system perturbation noise.  Therefore, Eq. 3-44 
reduces to the attractive sequential relationship. 

P I  , = $(n,n-l)P  ,$ (n,n-l) + Q(n-l) 
n n-i n-1 

(3-47) 

The inverse of Pnln-1 is required in the estimation of Xn using 
Eq. 3-35. In fact, as it now stands, Eq. 3-35 involves taking the 
inverse of two m x m matrices and a p x p matrix at every measurement 
update. This represents a prohibitive computational burden. What is 
needed is a recursive version of Eq. 3-35 which eliminates the matrix 
inversions. This can be accomplished in the following manner. First 
define 

P  A H^(n)R '^(n)H(n) + P |  . 
n n-1 

-1 (3-48)A 

A straightforward  application of   the  inside-out  lemma   (see  Theorem A.2 
of   the  appendix)   allows  P^^   to  be  rewritten 

P     = P   I      1   -  P   I      TH^(n) n n n-1 n n-1 
R(n)   + H(n)P   i      ,H'^(n) n n-i 

-1 H(n)P^,      .   (3-49) n n-i 

* The Pp defined lierc is the explicit form of the error covariance of the filtered estimate defined in the footnote 
on page 28. This equivalency will be established subsequently. It is introduced at this point for iiotational convenience 

only. 
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This   form  for   P^   requires  only one   p x   p matrix  inversion  instead  of   the 
two  m X m and  one  p  x  p matrix  inversions   required   in  Eq.   3-48.     Thus, 
the  computational   load   is   significantly reduced,   especially  since  p   is 
less   than   or   equal   to  m.      Equation   3-49   is   the   sought-after   recursive 
relation   for   updating   the   error   covariance  matrix. 

Using   the  definition of  Eq.   3-48,   the  filtered  estimate   in  Eq.   3-35 
reduces   to 

& A* 

X     =  P n         n 
i 
«« 

-y^ It can  be  si 

n-1   f^"'" 
S^ ^ 
m^ 
ST A. 

H'^(n)R ^(n)Z    + P   }     ^X   i      . ^ n n n-1  n n-1 
(3-50) 

be simplified further by adding and subtracting PnH'^(n)R l(n)H(n) 
from the right side of Eq. 3-50 

X = P 
n   n 

H^(n)R ^(n)Z + P |  ^X ,  . + H^(n)R ^(n)H(n)X i n   n n-1 n n-1 n n-i 

- H'^(n)R -^(n)H(n)X 

= P 

n n-1 

P I ,   +  H^(n)R ^(n)H(n) 
n n-1 

(3-51) 

n n-1 

+ P H'^(n)R ■'■(n) 
n 

Z  - H(n)X I  , 
n       n n-1 

(3-52) 

In the last equation the coefficient of the first term is the identity 
matrix. This follows from Eq. 3-48. Therefore, the expression for Xn 
becomes 

X = X I  . + P H (n)R  (n) 
n   n n-1   n 

Defining the gain matrix K^^ as 

Z  - H(n)X 1  , 
n       n n-1 

(3-53) 

K  i P H^(n)R"^(n) (3-54) 

reduces Eq. 3-53 to 

X  = X I  -, + K 
n   n n-1   n 

Z  - H(n)X I  - n       n n-1 
(3-55) 

This is the desired recursive filter algorithm.  Note that all matrix 
inversions, except the one required in computing K^, have been eliminated. 
The matrix K,^ is known as the Kalman gain.  As will be shown below, expres- 
sion 3-54 for Kn is equivalent to Eq. 2-28 of Section II.  Substituting 
Eq. 3-49 into Eq. 3-54 gives 
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K     =   P   I      ,H^(n)R   ^n)   -  P   ,        H^(n) 
n n n-1 n|n-i 

R(n)   +  Il(n)P   I      ,H   (n) 
n n-1 

-1 

•   H(n)P   I      ,H^(n)R  ^(n) 
n n-1 

P   I      ,H'^(n)   R   \n) 
n  n-1 ( 

R(n)   + H(n)P   i      ,H^(n) 
n n-i 

•   H(n)P   I      ,H'^(n)R  ^(n) 
n n-1 ) 

n n-1 
R(n)   + H(n)P^i   _^H   (n) 

-1 

R(n)   + H(n)P   i      .H   (n) 
n n-1 

-1 T,   s^-1, 
R     (n)   - H(n)P   i      ,H   (n)R     (n)j 

n n-i ) 

n n-1 
R(n)   + H(n)P   i      ,H   (n) 

n n-1 
-1 

I  + H(n)P   ,      ,H'^(n)   - H(n)P   i      TH'''(n)R  ^(n) 
nin-1 n n-1 

= P   1      ,H^(n) 
n n-1 

R(n)   + H(n)P   i      ^H   (n) 
n n-i 

-1 (3-56) 

which   is   identical   to   Eq.   2-28. 

To  complete   the Kalman  filter   algorithm,   there  remains  only  to  show 
that   the Pn defined  in Eq.   3-48,   or   its   equivalent  Eq.   3-49,   is   indeed 
the  filtering  error  covariance matrix.     By  definition  the  error  covari- 

ance   is 

X     -  X 
n         n 

X     - 
n 

X 
n 

^  Z               Z 

=  E X     -   X 
n         n \ ^0'---'^nj  " ^i X     - 

.   n 

A. 

-  X 
n 

-! 
X 

r 
-  X 

1         n 
T 

X 
n 

z          z  1 

xJZo,...,z^ 

(3-57) 
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?]quation    ' 
optimal   L'si i""' 

,,   ,   r.ind.imental   property   that   the  error   in  an 
..,11M ■;   ' I    fo   the   estimate,   i.e., 

,..   >,i 111"!'""'''    ^' 

,/. -   0    ' (3-58) 

EX 

This   resII1 ' 

Similarly. 

,.    V.'l 

I lie    I    M 

,111"^^ 

^     ^T 
.    1   i,v   dirrrl   calculation  of   E {[Xn   -  XnlXn 

.    Ilia I 

I   ,,. IMi< ^^^   |,^^^   3-53  for   the  optimal  estimate. 

EX "ii   II 
(1   II 

III I ■'' 

Adding  ami   ■'" 

"   'I   II 

■•   I ■ I      II 

ll    'I 
1^)' ^^.h« (3-59) 

I 111)',   ^n|'> 
_,    in  Eq-   ^-57  results   in' 

+ X 
i.|n-L nl. 1-1 

-K(z„-"(")\i„-i)!i\-\i„-i+\i„-iri 
111'^^ 

^.|n-I 
\,  '   ^n|n-l. 

+ EX     -  X   I      Jx'i      , 
In n n-lj   n n-1 

-   X 
K   ll("^'''( i.)K   h„   -     n I n-1 'I    -^ 

X     -   X 
n n-1 

iTI I      r ^ iT 
P     -  K E  V     X     -   X   I      J 

n      n I   n        n n-1j 

Ix'^,      , }  - K E{V_X: 

11(11 
,|.:||X„  -  ^>|n-ll'n|n-l)   "    n   )   nn|n-l 

(3-60) 

. nd   third   terms  are,   respectively,   Pn|n-1  and 
,^ ,     ill.'   Lli-'^    i' ind   fifth   terms   are   zero  due   to   the orthogon- 

From Eq.    '"'    '     fii,.  si'^'OH'   -'^\^^^   fourth   and  sixth   terms  are   zero   since V^ 
-KnH(n)P„|.i    I;,,   K,,.    1   '>''•        |,',jom  sequence.     Therefore,   the error 
ality  coiwIM , ,„|r|»MulenL        . reduces   to 

I I 11 or   cbtimauu is  a   zero  ll"''"'     ,      i i 
.   1111 covarianci 

EX, 

By substit"! I III'. 
I'.'I 

- iTl-/    z != [l - K H(n)]p I 
- K   Kn"" ■ n   1    n   1 n|n-l 

n I   " 

,.S6 Lnto Eq. 3-61 we obtain 

(3-61) 

E!|X„  - \. II  " 

I 

-   ''i.ln-' 

k   I 

„T(,0[R(n)   + H(n)P^|^_/(n)l-^H(n)P^|^_^(3-62) 
.1 n-1 

»   llCMtlM<lllll| 

contusion will i'""' 

•r    ,Mi wliicli the expectation is conditioned will be omitted when no 
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Thus, we have demonstrated that Pn as defined in Eq. 3-48 or, equiva- 
lently, Kq. 3-49 is the error covariance for the filtered estimate.  We 
could have more easily shown this by using the method of Section II. 
Our purpose in employing the present approach was to expose the reader 
to the principle of orthogonality, Eq. 3-58.  It is in fact a necessary 
and sufficient condition for optimal filtering and was the starting 
point for Kalman in his original Hilbert space derivation of the filter 
algorithm.  Actually, Eq. 3-58 is a discrete time version of the Wiener- 
Hopf equation which is fundamental to many problems in mathematical 
physics. 

We have completed the maximum likelihood derivation of the Kalman 
filter.  The results are summarized below. 

Predicted      X i  , = $(n,n-l)X  , ■  (3-41) 
„  . n n-i n-i 
Estimate ' 

Covariance for  P i  , = $(n,n-l)P  ,$ (n,n-l) + Q(n-l) (3-47) 
_,  ..   .       n n-1 n-1 
Predicted        ' 
Estimate 

Filter Gain    K = P i  ,H'^(n) fH(n)P i  -,H'^(n) + R(n)]~''"       (3-56) 
n   n|n-l    I     n|n-l J 

= P H'^(n)R"-'-(n) (3-54) 
n 

Filtered X    =  X   i      ,   + K   fz    - H(n)X   i      J (3-55) 
„  ^.     ^ n n n-1 nl   n n n-lj 
Estimate ' ■ ' 

Covariance  for     P     =  [l  - K H(n)IP   i      , (3-61) 
•c-1 ..       I- n n n n-1 Filter  Error ' 

= P   |„   1   - P   |„   ,H^(n)[R(n)   + H(n)P   ,      ^H^(n)l"^ n|n-i n|n-l I n|n-l J 

•  H(n)P   I     , (3-62) 
n|n-l 

Initial        E X^i^ = E X^ 
Conditions       (  I  ) 

•  ^o|-i = ^{l^o -^o|-iI[^o-^o|-i 
It is worth emphasizing that incorrect initial conditions have no effect 
on the filter after the initial transient period. 
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3.4   THE KALMAN FILTER AS A MAXIMUM 

LIKELIHOOD ESTIMATOR 

Because we have  derived   the Kalman   filter via   the method  of maximum 
likelihood,   it   has   all   the attendant   attributes  of  maximum   likelihood 
estimators.     Some  of   the more   important  aspects   are mentioned  below. 

The covariance  of   the  error   in any  estimate can be bounded  from 
below by   the Rao-Cramer   Inequality.     An  estimate which  achieves   this 
lower bound   is   called  an  efficient  estimate.     It  is  not difficult   to 
show   that   if   such an  estimate  exists   it   is  a maximum likelihood  estimate, 
For   gaussian  processes   the maximum likelihood  estimate and,   therefore, 
the Kalman  filter  are  efficient   estimates. 

We  can relate maximum likelihood   estimation  to   least   squares  esti- 
mation by observing   that  Eq.   3-32  has   the form of  a  loss   function 
corresponding   to  a  least  squares  estimator.     This  implies   that   the 
Kalman  filter  can be derived  from a  least   squares  point  of view.     To 
accomplish   this,   the weighting matrices  in  the loss  function must  be 
selected   such   that   the  least   squares   estimate  has minimum variance. 
One such development will be presented   in  the next  section. 
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IV.   MINIMUM VARIANCE STATE ESTIMATION FOR 
LINEAR DYNAMIC SYSTEMS 

4.1   MINIMUM VARIANCE ESTIMATION 

The  principles   and most   important   result  of minimum variance 
estimation  are  embodied   in   the  fundamental  Gauss-Markov  Theorem. 

Theorem 4.1.   Gauss-Markov Theorem 

Let .• ; ^ 

Y  = MX +  c t  > m       ■   .     - (A-1) 

be the measurement model, where 

Y is a t X 1 vector of observations, 

M is a t X m mapping matrix of rank m, 

X is a m X 1 unknown vector to be estimated, 

e is a t X 1 zero-mean random error vector with covariance 

E ecTL c • '      (4-2) 

Then the minimum variance linear unbiased estimate (MVLUE) of X is 

/ T -1 \-l T -1 
X = (M C M)  M C Y     , ■.   (4-3) 

and its error covariance is 

P i EI(X - X)(X - X)^|YJ = Cov [X - X] = (MV^M)"^     (4-4) 

From the definition of expectation,       ;   ■ 

EJX} = E (M'^C~"''M)~VC~"'-Y 

I  T -1 \-l T -1 I I = (M C  M)  M C  EJYJ 

/ T -1 \-l T -1 1      I = (M C  MJ  M C  EJMX + EJ 

= (MVM"HMVME1X| 

=   EiXj 

Hence  X  is   unbiased. 
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Now   let 

X*  = AY 

and 

Now 

= ACA 

(4-5) 

be any  other  unbiased   estimator  of  X.     Then 

E|x'^i   =  E|XJ  =  E|XJ ^'-'\ 

from which  it  follows  that 

AMEJxi   =  Ejxl   =  G(MVHI)E1X| ,    (^"^^ 

where 

Since  Eq.   4-7  is  an  identity  in EW,  we have 

(AK-I)=0 ^'-'^ 

(AM - GMV^M) = 0 (^-^°^ 

(GM^C-^M - I) = 0 (^-^^^ 

Cov [ X*  - X ] = Cov  I AY  - X ] 

= Cov  [A(MX + e)   - xj 

=  Cov   |(AM -  I)X + ke] (^-12) 

Using Eq.   4-9,   Eq.   4-12 becomes 

Cov  [x*  - x]   =  Cov   [AG| 

( T1 =   EJAe(A£)    j 

(TIT = AEJec   ,A^ 

J (4-13) 
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Similarly, 

Cov [X -  X] =  Cov   [GMV-'-Y   - X] 

=   Cov   |GM'^C"^(MX + e)   -  X] 

=  cov   KGMVHI  -   I)X + GMV^C1 (A-14) 

From Eq.   A-ll,   Eq.   A-14   reduces   to 

Cov  [X -  X]  =  Cov   [GM'^C'^E] 

=   E!GM^C"^e(GM'^c"^e)^ 

= GM'^C ■"-Eiee'^lc hlG^ 

= GM'^C ■'■CC HIG"^ 

= G 
(A-16) 

which  establishes   the claim of  Eq.   A-A.     The  error  covariance of  X* can 
now be  related   to   the error  covariance of X.     Adding  and subtracting 
GMTC-1   in  Eq.   A-13 yields 

Cov   [X*-  X]   =   [A  -  GM'^C"^  +  GMV^1C[A  -  GMV^  + GM^C-^P 

= [A-GMV^ICIA-GMV^P 

+ 2[AM -  GM'^C'^MIG^ + GMVHIG"^ (A-17) 

The  first   term in Eq.   A-17   is   a non-negative  quadratic   form,   the  second 
term  is   zero   from Eq.   A-10,   and  from  Eq.   A-15  the  last   term is  equal   to 
Cov[X -   X].   Thus,   Cov[X* -   X]   =  non-negative   quadratic   form +  CovLX  -  XJ 
Since   the diagonal   elements  of   a  non-negative  quadratic   form are  non- 
negative, 

Cov   fx':  - X. I   >  Cov [ X     - X   1      j   =  l,...,m 

where x;   denotes   the  jth   element   of   X. 
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Therefore, we have shown that X is the MVLUE of X whose error 

covarfance is ^iven by Eq. A-A.  Uniqueness fol ows fro. Eq. A-17, for 

if Cov [X''= - X] = Cov [X - X], it is necessary that 

T -1 
A = GM C 

.. _  /. Q.E.D. 
which  implies   X" - X. 

4.2   A MINIMUM VARIANCE APPROACH TO KALMAN FILTERING 

Consider   the dynamic  model 

(A-18) 

and  the measurements 

Z     = H(n)X    + V 
(A-19) 

n 

where ,. ' ' 

X    is   the m X  1  state vector 
■ n ■ . 

W     is   the m X  1 dynamic   perturbation noise ; 
n 

$(n+l,n)   is   the m X m  state  transition matrix 

Z     is   the p X  1 measurement vector 
n 

H(n)   is   the p x m observation matrix 

V     is   the  p X  1 measurement  noise vector. 

Both Vn  and Wn  are  assumed   to  be  zero-mean random noise  sequences 

with  covariances 

'  EJw.w^j = Qa)6., 

E}v.V^}=R(k)6.^ >: 

EIV.W?^! =  0        for all   j,k _.    "'^ 

NOW  assume   that   the MVLUE Xn|n-1  of  Xn  given   the -^^^-^^-^^^^        .^ 
Zo,...,Zn-l  >ias   already  been computed^.     Then   the random error  vector  is 
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n n-1   n n-1   n 
(A-21) 

with covariance 

T      ) n n-1 (A-22) 

Since Xn|n-1 is unbiased, 6^1n-1 is a zero-mean sequence.  Upon receiv- 
ing the measurement Z^, we want to obtain the MVLUE X-^  of X^^.*  But 

Z  = H(n)X + V ■ 
n      n   n 

is a p X 1 vector, where 

p = t < m 

Therefore, Theorem 4.1 is not directly applicable. 

However, by forming a model using all the known information. 
Theorem 4.1 can be invoked.  This is accomplished as follows.  Rewrite 
Eq. 4-21 and combine it with Eq. 4-19, giving 

'H(n)' 
— I 

X    + 
n 

n |n-l 

By making the correspondences 

(4-23) 
'n n-1 

Y = 
X 

M 
n n-1 

H(n) 

I 
and e (4-24) 

'n n-1 

we have 

Y = MX + e 
n 

(A-25) 

where 

Y is a (p + m) X 1 vector 

M is a (p + m) X m matrix 

X  is a m X 1 unknown vector to be estimated 
n 

e is a (p + m) X 1 zero-mean random error vector with covariance 

* Note Ihut Xn|n.i is tlie onc-slcp prediction and X„ is tlic filtered value of X„. 
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E eeM   = C 

R(n)     0 

0 P ln-1 

c^- 

All   the   conditions   reauired   to   use  Theorem  4.1   are  now   satisfied.     Th--' 
All   tne   conaiLxo x ,      written  down  immedxately, 
the desired  estimate  Xn  of  Xn  can  oe WL±LL  i 

X =(MVHI)-VC-^Y (^ 
'/) 

Expanding Eq. 4-27 by usinc the correspondences of Eq. 4-24 and 4-2^, 

yields 

-1^ 
H(n) 

I 

Il(n) 

I 

R(n)   0 

0  P n n-1 ^.|n ' 

nln-1 

= |H^(n)R~\n)H(n) + P^j^,^ 

H(n) 

I 

1 

) [H^n) l] 
R ^(n)   0 

0      p~i n n -1 

T   -1        -1  -    , , ■'''' 
H^n)R \n)Z^ + P ,^_lX^l,_,f 

The reader should observe that Eq. 4-28 is identical to Eq. 3--^'" 

for the estimation error at time n is 

p = ( M'^C -^M) 
.T„-l„\-l 

w, r>^ 

but the first term in Eq. 4-28 is just the expanded form of (MTC'IM- 

This follows from an inspection of Eq. 4-27.  Therefore, 

P^ = [H^(n)R \n)H(n) + P^|^_i 

-1 <U   ■'''') 

Applying   the   inside-out   lemma   (see  Theorem  A.2   of   the  appendix)   to 
Eq    1-30  yields   a  less   sensitive  numerical  expression  for  Pn- 

n n n-1 n|n-l 
R(n)   +  H(n)P^,   _iH^(n)]"^H(n)P^|^^_, 
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Substituting Eq. 4-30 into Eq. 4-28 gives 

H'^(n)R"^(n)Z  + P~| X  = P 
n    n n n-1 n n-1 (4-32) 

Proceeding as in Section III (Eq. 3-51), add and subtract 

PnHi(n)R-l(n)H(n)Xnjn-i from the right side of Eq. 4-32.  This results 
in 

^n = ^n|n-l + \^''i^^'^-) Z    - H(n)X I  ^ 
n       n n-1 (4-33) 

Defining the gain term as 

K^ = P^H'''(n)R ^(n) 

provides the Kalman filter expression 

n   n n-1   n Z„ - H(n)X I  ^ 
n       n n-1 

(4-34) 

(4-35) 

To complete the derivation there remains only the determination of 

w!iriH^^ .;'" covariance P^|^_i.  From Theorem A.3 of the appendix, we 

L:: sef {S:.:^:z:-i}'i'zi:!!)t'^^^' ^^^'"^"^ °' ^^ ^^^^^ ^^^ -^^^^- 
\|n-l = Ejxjz(n-l) 

EJ$(n,n-l)X^_^ + W^_^|z(n-1) j 

(4-36) 

(4-37) 

Since Wn-i is a zero-mean sequence that is independent of Z(n-l)  Eq  4-37 
becomes \   / j  M • -> -^' 

^n|n-l = *(n,n-l)E{x^_Jz(n-l)} (4-38) 

^eJefore? '''^°'^'" '''^'   '''' '''''^"'^ ^""^ °' ^""^ '" ^'^^^ ""^  E {X^-l | Z(n-l) }. 

\|n-l = <^("'^-l)Vl (4-39) 

By definition the error covariance matrix is 

PI  , = EI 
n n-1 X - X I  ^ 

n    n n-1 X  - X I 
n    n n-1 Z(n-l) (4-40) 
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Substituting  Eq.   4-18  and  4-39   into  Eq.   4-40  gives 

P   I     ^   =  (I)(n,n-1)E 
n n-1 

X     ,   - X     , 
n-1 n-1 

X     T   -  X     T 
n-1 n-1 

( T      1 
+  E  W     ,W 

(  n-1  n-1) 

^|z(n-l) U''^(n,n-1) 

.      (4-41) 

The first expectation in Eq. 4-41 is just the covariance of the filtered 
estimate at time n-1, and the second expectation is defined m Eq. 4-2U. 
Thus, the error covariance of the predicted estimate is 

P I  , = $(n,n-l)P  *^(n,n-l) + Q(n-l) 
n n-1 n-i 

(4-42) 

Equations 4-31. 4-34, 4-35, 4-39, and 4-42 comprise the Kalman 
filter.  They are summarized below. 

Predicted 
Estimate 

Error Covari- 
ance for 
Predicted 
Estimate 

Filter Gain 

X I  , = $(n,n-l)X 
n n-1 n-i 

"n n-1 
>(n,n-l)P^_^$ (n,n-l) + Q(n-l) 

(4-39) 

(4-42) 

K = P H'^(n)R ■'"(n) 
n   n 

Filtered 
Estimate 

Error Covari- 
ance for 
Filter 
Estimate 

Initial 
Conditions 

=  P   1      ,H^(n) 
n n-1 

n        n n-1 n 

H(n)P   I      ,H   (n)   + R(n) 
n|n-l 

Z     - H(n)X 
n n-1 

P     =     I  -  K H(n)   P   I      -, 
n       I n J   n|n-l 

=  P   I      ,   - P   I      TH'^(n) 
n n-1 n n-1 

(4-34) 

(4-43) 

(4-35) 

(4-44) 

R(n)   + ^('^^Pnln-l"   '^'^^ 
-1 

•   H(n)P 
n n-1 

(4-31) 

E!^oi-ii = ^ro: 

^01-1 = ^^ 1^0 - ^ol-iFo - ^ol-i 

Equations   4-43  and   4-44 were not   explicitly   developed   in  this  section. 
They  were,   however,   derived   in   Section   III  using   straightforward  matrix -y 
manip ulations   (see  Eq.   3-56  and   3-61). 
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4.3   ADDITIONAL ASPECTS OF MINIMUM VARIANCE ESTIMATION 

The  fact   that   the Kalman  filter   can be derived as  a minimum variance 
estimator   implies   that   it   could   also  be  developed   from   the  deterministic 
least   squares  approach.     This   follows   from  the   least   squares  criterion: 
given   the measurement  model 

Y  = MX + c 

the  least   squares  estimate X of  X is   selected  such  that 

(4-1) 

^ =   (Y  - MX)^W(Y  - MX) (A-A5) 

is   a minimum.     The result   is 

X =  (M\'M)~VWY (4-46) 

By choosing the weighting matrix W to be the inverse of the error covari- 
ance matrix C, Eq. 4-46 becomes 

X = (MV^M]-VC~4 , ' (4-47) 

This   equation  is   identical   to   the minimum variance estimate  of  Eq.   4-3. 
Thus,   the Kalman  filter may  be  interpreted  as  a  least  squares  estimate. 

At   this   point   it  is  worth  noting   that   the Gauss-Markov Theorem is 
the discrete   time  analog  of   the Wiener-Hopf   integral   equation.     Thus,   it 
can also  be derived   from  the orthogonality  condition of   Eq.   3-58.     Fur- 
thermore,   minimum variance  estimation requires knowledge   of  only   the 
fir^t _two jnqments_ (mean and  covariance)   of  a  probability  density   function 
(p.d.T.).'  The  exact   form of   the p.d.f.   is  irrelevant.     Tnis   is   in marked 
contrast   to   the method  of  maximum  likelihood where  complete knowledge  of 
the  p.d.f.   of  Xn conditioned   on  all   the measurements   is necessary. 
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V. COMMENTS ON THE PRACTICAL APPLICATION 
OF KALMAN FILTERING 

Kalman filter theory is defined in precise mathematical terms, but 
its application to practical problems is not a precise science.  Con- 
siderable engineering experience is needed to properly identify the 
system to which the filter is to be applied, to adequately model that 
system, and then to generate a practical machine language software 
program for the on-board computer.  In addition, most dynamic models 
are nonlinear and the Kalman filter assumes linear dynamics.  Thus, a 
form of linearization that adequately controls the truncation error 
has to be used.  The implementation of the filter must also include 
other factors which are difficult or impossible to characterize 
analytically, e.g., the trade-off between filter performance, computer 
program size, and execution time. 

Another source of difficulty is specifying the statistical parameters 
that represent sensor noise and dynamic modeling errors.  In general 
these parameters are complicated and not well-known.  Therefore, they 
usually must be selected using engineering judgment coupled with test 
data.  As a case in point, the covariance matrix of an operational 
Kalman filter in a navigation system contains an estimate of the root 
mean-square position accuracy.  The performance is usually optimized if 
this estimate closely matches the actual root mean-square position 
accuracy obtained by the system.  To achieve this match, the position 
noise parameters and/or dynamics must be somewhat arbitrarily adjusted. 

Another characteristic of airborne systems is a rapidly varying 
environment.  This condition often necessitates the incorporation of 
adaptive features in the filter structure.  The somewhat ad hoc methods 
required to satisfactorily solve this problem further enhance the value 
of engineering intuition and judgment needed in real-world filter design. 

Some of the additional features important to any practical implemen- 
tation of the Kalman filter are listed below: 

1. If the measurement is a scalar, no matrix inversion is required 
in Eq. 2-28.  Therefore, when more than one measurement is available, 
they should generally be processed one at a time. 

2. The matrix equations of Table 2-1 can be written out in scalar 
form.  This will often permit a large reduction in computational com- 
plexity as a result of the decoupling effect of terms that are zero. 
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3.     Theoretically,   the Kalman  filter  is  stable or   "robust"  in  the 
sense   that   the  effects   of   initial  errors,   round-off   and  other  computa- 
tional   errors   die  out  asymptotically.      This   is   true   only   so   long  as   the 
model   is   an  adequate   representation  of   reality,   including   the  numerical 
implementation.      Otherwise,   the   error   covariance matrix   can become   ill- 
conditioned  due   to   the  finite  nature  of   the computer  and/or modeling 
errors.     This   seriously  degrades   the  filter  performance. 

Extensive consideration of these and other problems associated with the 
mechanization of the Kalman filter are available in the literature, e.g 
see Ref.   6-8. 

■ft' 
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VI.   EPILOGUE:   A SUMMARY AND PERSPECTIVE 

6.1   SUMMARY 

In this report the discrete time version of the Kalman filter and 
some typical applications have been considered.  Section I introduced 
the underlying estimation problem to be solved and the basic format 
needed in its solution via Kalman filtering.  In Section II a heuristic 
development of the Kalman filter was presented.  It hopefully displayed 
the essential features of the Kalman algorithm in a transparent manner. 
To illustrate tlie numerical behavior of the Kalman filter, a specific 
problem was solved.  This example was then used to relate the Kalman 
algorithm to familiar frequency domain and transfer function concepts. 

Next the method of maximum likelihood was invoked to provide a more 
precise derivation.  Minimum variance estimation was also used to derive 
the Kalman filtering equations in Section IV.  The similarities and 
differences of the two methods were discussed and related to the Wiener- 
Hopf equation which plays a fundamental role in mathematical physics. 

In Section V some aspects of the difficulties that arise in apply- 
ing the Kalman filter to engineering problems were considered briefly. 
As a side effect, these comments should reinforce the fact that the 
transition from theory to practice is not a trivial task. 

6.2 PERSPECTIVE 

From the derivations and discussions of the previous sections, it 
is clear that the Kalman filter is simply an algorithm for the time-domain 
design of linear filters that are optimal in the minimum mean-square 
error sense.  Nevertheless, the significance of this achievement should 
not be underestimated.  It represents a complete and elegant solution to 
the nonstationary multidimensional Wiener-Hopf equation.  For this reason 
it has applications or interconnections to a large number of problems 
encountered in other fields ranging from econometrics to astrophysics. 
In fact, it was the astrophysicist Chandrasekhar (Ref. 9) who first 
solved the stationary multidimensional Wiener-Hopf equation. 

Even though its deriva 
found its greatest applicat 
accomplished by linearizing 
estimate (or an assumed nom 
this approximation, it must 
involves an infinite set of 
general method for satisfac 
difficulties, this general! 
wide attention, since it ar 
(Ref. 10), geophysics (Ref. 

tion assumes linearity, the Kalman filter has 
ion to nonlinear systems.  This extension is 
the nonlinear equations about the most recent 

inal solution).  In spite of the success of 
be used with caution. The exact solution 
simultaneous equations, and there exists no 
torily truncating tliis set.  In spite of the 
zation to nonlinear dynamics has attracted 
ises in many fields such as quantum mechanics 
11), and a majority of engineering problems. 
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Appendix 

FUNDAMENTAL THEOREMS 

Theorem A.l:     Let  H be  a  p x m matrix defined  on  the real  field,   then 
HTH  is 

(a) Positive definite   if   the  rank of   H  is  m and m <   p, 

(b) Positive   semidefinite  if   the rank of  H  is  p  and  p  <  m. 

It   is worth  emphasizing   that   positive  definite matrices  are  nonsingular, 
while  positive  semidefinite matrices  are  singular. 

Theorem A.2:     Inside-Out  Matrix   Inversion Lemma.     The  inverse of   the 
m X m matrix  S,   where 

-1 T -T 
S  = P  ■"  + H R  -^H (A-1) 

is 

where 

-1 T -1 
S       = P  - PH  D     HP 

D = R + HPRT is a P X P matrix, P < m 

H is a p X m observation matrix of rank p 

R is a p X p positive definite symmetric matrix, and 

P is a m X m positive definite symmetric matrix. 

Proof:  The result follows from the fact that 

(A-2) 

P ^ + H\ ^HUP - PH^D ^HP 

T -1       T -1       T -T    T -1 
I - H D  HP + H R -"HP - H^R -^HPH^D  HP 

I + I-H'^D ^ + H^R ^ - H^R ^HPH^D ^luP 

I + H'^R ^I-RD ^ + I - HPH^D ^IHP 

I + H\ -^II - DD -"hlP 

= I 
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Theorem A.3:     Suppose   that  a  random variable  X is   to  be  estimated   from 
the data  Z(k)   =   {Zi,Z2,...,Z^}   such  that   the  estimate  X  is unbiased  and 
has  minimum variance.     That   is, 

EiX(=E,Xi 

and 

I '^   T '- 
E   (X  -  X)    (X  -  X) 

is a minimum.  Then 

X = EixlzCk)! (A-3) 

Proof:  Write the error variance in terms of the conditional expectation 
using the identity 

EJa - x)'^(,x - x)j = E^JE^[(X - x)'^(x - x)|z(k)] 

At, 

Since   the  expectation with  respect   to   Z(k)   does not  depend  on X,   it   is 
sufficient   to minimize   the conditional  expectation.     Expanding  it  gives 

E^j(X -  X)'(X - X)|Z(k) 

/^Ty^ /^T     (      I I (     T     I 
=  XX  -   2X  E  X|z(k)     +  EX  x|z(k) 

X  -  E X  Z(k) X -  E X|Z(k) 

E X|z(k) 

+ E  X X  Z(k) 

> E  X  X|Z(k)     - 

with  equality  if,   and  only  if, 

(    I 
X  =   E  X|z(k) 

Eq.   A-3   is   unbiased,   since 

E  X  Z(k) 

E  X   Z(k) "E X Z(k) 

EX     =   E 
Z   "'X 

X   Z(k) =   EX Q.E.D. 
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