

Best Available Copy

DEFENSE NUCLEAR AGENCY FIELD COMMAND KIRTLAND AIR FORCE BASE, NEW MEXICO 87115

26 FEB 1976

FCTMEI

SUBJECT: Minutes of HUSKY PUP Pre-Fielding Instrumentation Meeting

SEE DISTRIBUTION

Attached are the minutes of the HUSKY PUP Pre-fielding instrumentation meeting. It is hoped that you will find these to be a beneficial point of reference for future events. I would appreciate written suggestions on ways to improve future instrumentation meetings and their subsequent minutes.

FOR THE COMMANDER:

l Incl as

......

HENRY J. THAYER

HENRY J. THAYER For LTC, USA CHIEF, ENGINEERING BRANCH

DISTRIBUTION:

Director, Defense Nuclear Agency, ATTN: DDST (Dr. D. Oakley), SPTD (Lt Col Samuelson, LCDR J. Lund), Washington, DC 20305 Director, Air Force Weapons Laboratory, ATTN: DYV (J. Marshall, Lt D. Warley), Kirtland Air Force Base, NM 87117 DEVELCO, Inc., AFTN: Mr. Charles Moore, 530 Logue Avenue, Mountain View, CA 94043 EG&G. Inc., Las Vegas Division, ATTN: Mr. Ken Sites, Mr. J. Tsitouras, Mr. R. Kitchen, 680 Sunset Road, Las Vegas, NV 89101 Kaman Sciences Corporation, ATTN: Dr. H. Hollister, Mr. R. Jackson, Mr. R. Smith, Mr. D. Secrist, 1500 Garden of the Gods Road, Colorado Springs, CO 80907 Lawrence Livermore Laboratories, ATTN: Mr. K. Alrick, Mr. L. Loquist, Mr. D. Vollmer, P.O. Box 808, Livermore, CA 94550 Lockheed Missiles and Space Company, ATTN: Mr. E. Sumner, Mr. T. Maguire, Mr. F. Moyer, Dept. 85-85, Bldg. 102, P.O. Box 504, Sunnyvale, CA 94088 Lockheed Missiles and Space Company, ATTN: Mr. J. Neuer, Dept. 52-14, Bldg. 528, P.O. Box 504, Sunnyvale, CA 94088 Lockheed Palo Alto Research Laboratory, ATTN: Dr. S. Salisbury, Mr. J. Schallau, Dept. 52-11, Bldg. 203, 3251 Hanover Street, Palo Alto, CA 94304 Los Alamos Scientific Laboratories, ATTN: Dr. J. McQueen, Mr. E. Stefani, Mr. D. Engstrom, P.O. Box 1663, Los Alamos, NM 87544 Philco-Ford Corporation, ATTN: Mr. J. Polastri, Mr. K. Attinger, Ford & Jamboree Road, Newport Beach, CA 92663 Physics International Company, ATTN: Mr. D. Keough, Mr. D. Randall, Mr. C. Vincent, 2700 Merced Street, San Leandro, CA 94577 Sandia Laboratories, Albuquerque, ATTN: Mr. J. McIlmoyle (1126), Mr. H. Miller (1123), Mr. J. Allen (1124), P.O. Box 5800, Kirtland Air Force Base, NM 87115 Science Applications, Inc., ATTN: Dr. R. Miller, Mr. J. LePage, 1257 Tasman Drive, Sunnyvale, CA 94086 Science Applications, Inc., ATTN: Dr. J. Cramer, Dr. P. Cooper, Mr. R. Higgins, 122 La Veta Drive NE, Albuquerque, NM 87108 Stanford Research Institute, ATTN: Dr. C. Peterson, Mr. L. Hall, 333 Ravenswood Avenue, Menlo Park, CA 94025 Systems, Science and Software, ATTN: Dr. H. Kratz, Mr. W. Muhl, P.O. Box 1620, La Jolla, CA 92038

Internal Distribution:

FCT (1) FCTMO (1) FCTMD (8) FCTME (12) FCTMOT (2)

MINUTES OF THE HUSKY PUP PREFIELDING INSTRUMENTATION MEETING

1. The HUSKY PUP Prefielding Instrumentation Meeting was held on 28 and 29 April 1975 at Test Directorate (FCT), Field Command, Defense Nuclear Agency (DNA), Kirtland Air Force Base, New Mexico. The meeting was held as a premortem review of the instrumentation systems to be used on the HUSKY PUP Event.

2. The meeting was opened by Mr. Ray Gann who reemphasized that the purpose of the meeting was to discuss any anticipated problems based upon past results, new systems techniques and methods of acquiring higher quality data. The agenda is shown in Inclosure 1. A list of attendees is included as Inclosure 2.

3. The following is a synopsis of each presentation:

a. Science Applications Inc. (SAI) - Output Diagnostics, Neutron Time of Flight, Energy Coupling (Inclosure 3).

b. Systems, Science and Software (SSS) - Particle Velocity (Inclosure 4).

c. Stanford Research Institute (SRI) - Energy Coupling Stress Measurement (Inclosure 5).

d. Physics International (PI) - Energy Coupling Shock Time of Arrival and Containment Diagnostics (Inclosure 6).

e. DEVELCO, Inc. - Free-Field Stress with Memory and Postevent Interrogation (Inclosure 7).

f. Lockheed Missiles and Space Co. (LMSC) - USN RB Systems and Materials Studies (Inclosure 8).

g. Lockheed Palo Alto Research Laboratory (LPARL) - Output Diagnostics (Inclosure 9).

h. Sandia Laboratories Albuquerque (SLA) - Containment Diagnostic and Materials Fhenomenology (Inclosure 10).

i. Los Alamos Scientific Laboratory (LASL) - Output Diagnostics and Materials Studies (Inclosure 11).

j. Air Force Weapons Laboratory (AFWL) - Materials Phenomenology (Inclosure 12).

k. Kaman Sciences Corporation (KSC) - Materials Phenomenology (Inclosure 13).

1. Lockheed Missiles and Space Co., Pipe Division (LMSC(PIPE)) -Closure Monitors and Tunnel Environment Measurements (Inclosure 14).

HUSKY PUP

PREFIELDING INSTRUMENTATION MEETING

AGENDA

Tuesday, 8 April 1975

4

0845 - 0900	Introduction - Ray Gann						
0900 - 0945	SAI (Sunnyvale) - Jim LePage						
0945 - 1005	SAI (Albuquerque) - Bob Higgins						
1005 - 1020	COFFEE BREAK						
1020 - 1045	SSS - Frank Peterson						
1045 - 1115	SRI - Lee Hall						
1115 - 1200	PI - Coye Vincent, Don Randall						
1200 - 1300	LUNCH						
1300 - 1400	LMSC - Fred Moyer						
1400 - 1445	LPARL - Jim Schallau						
1445 - 1500	COFFEE BREAK						
1500 - 1600	SLA - Jim McIlmoyle						
Wednesday, 9 April 1975							
0900 - 1000	LASL - Dr. McQueen						
1000 - 1100	AFWL - Lt Warley						
1100 - 1115	COFFEE BREAK						
1115 - 1145	KSC - Ray Smith						
1145 - 1215	LMSC (Pipe) - Jack Neuer						
1215	CLOSING COMMENTS						

Inclosure 1

ATTENDEES

NAME

ORGANIZATION

PHONE NUMBER

BARASCH, Guy E.	LASL	(505)	667-7568		
BUSICK, John J.	LASL	(505)	667-5255		
CHRISTENSON, Charles L.	FCDNA	(505)	264-9301		
COOK C Wayne	SLA	(505)	264-8935		
COLLINS Burt H	TRT	(505)	264-5678		
COOPER Philip	SAT	(505)	266-5693		
DENNEY Corl A		(505)	264-9010		
DENNEI, CALLA.	ECDNA	(505)	204-0910		
DUBBINS, John B.	FCDNA	(505)	264-4601		
DUIMSTRA, Carl O.		(505)	264-1667		
ENGSTROM, Dale R.		(505)	66/-5/68		
GANN, Raymond H.	FCDNA	(505)	264-7888		
GIARA, Emil J.	AVCO	(617)	657-2601		
GILLIAM, Robert P.	PDA	(714)	979-4671		
GRIFFIN, Richard E.	FCDNA	(505)	264-7888		
HALL, Lee B.	SRI	(408)	326-6200		
HART, Eugene C.	AFWL	(505)	264-1851		
HIGGINS, Robert W.	SAI	(505)	266-5693		
HING, Kay Mane L.	LPARL	(415)	493-4411		
HOLLISTER, Herbert	KSC	(303)	599-1500		
HAVLAND, Stephen A.	LMSC	(408)	742-7306		
JOHNSON, William J.	FCDNA	(505)	264-7866		
KITCHEN Walter R	FG&G	(702)	739-0681		
KOCHIV Joseph A	PT	(415)	357-4610		
KOCHLI, JOSEPH A.		(413)	264-6016		
KRACKO, LEOHAIG A.		(J0J)	204-0010		
MCILMUILE, James 1.		(303)	204-2072		
MCNAIRY, KAY M.	SAL	(702)	382-3836		
McQUEEN, John H.	LASL	(505)	667-5155		
MARSHALL, Joe T.	AFWL	(505)	264-1781		
MAULDIN, Winford E.	FCDNA	(505)	264-9301		
MILLER, Harvey M.	SLA	(505)	264-4060		
MILLER, Richard I.	SAI	(408)	734-4162		
MOORE, Thomas C.	DEVELCO	(415)	9 69- 1600		
MOYER, Alfred J.	LMSC	(408)	742-7306		
MUHL, William O.	SSS	(714)	453-0060		
NEELEY, Lee B.	SLA	(505)	264-6982		
NEUER, John J.	LMSC	(408)	742-7426		
OTTATI, Francis A.	AVCO	(617)	657-2601		
RANDALL, Donald S.	PI	(415)	357-4610		
RENNER. Mary Ann	LMSC	(408)	742-7652		
ROBERTS Donald C.	LASL	(505)	667-4624		
POCERS Brown B	FCDNA	(505)	264-9301		
DIMINAR John J	LASI	(505)	667-5768		
DUTTER Debort I		(505)	264-7053		
RUITER, RODELL L.		(J0J)	204-7055	EVD	45220
SALISBURY, Stanley K.	LFAKL	(413)	493-4411	LAI	43220
SAMUELSON, Reid R.	HUDNA	(202)	325-7169		1
SCHALLAU, James W.	LPAKL	(415)	493-4411	EXT	45481
SHUNK, Reynold A.	SA1	(505)	266-5693		
SIMENSON, Daniel H.	LMSC	(408)	742-4097		

Inclosure 2

SITES, Kenneth R.	EG&G	(702) 739-0681
SMITH, Ray E.	KSC	(303) 599-1500
STEPHANI, Evon L.	LASL	(505) 667-5768
STRIBLING, Donald R.	SAI	(505) 266-5693
TSITOURAS, John	EG&G	(702) 739-0681
WAGNER, Charles M.	EG&G	(702) 739-0295
WETZEL, David C.	FCDNA	(505) 264-7888
WHEELER, Bruce H.	FCDNA	(505) 264-1622

S

B

HUSKY PUP PRE-FIELDING INSTRUMENTATION MEETING

Agency: SAI

Projects: Calorimeter and Energy Coupling Dr. R. I. Miller 1257 Tasman Drive Sunnyvale, California 94086 Phone (408) 734-4162

Instrumentation

Fielding Agency: EG&G, Inc. K. R. Sites 680 East Sunset Road Las Vegas, Nevada 89119 Phone (702) 739-0681

INTRODUCTION

SAI will field three experiments on this event--a Calorimeter located at station one, a XRD Debris Energy Coupling Experiment and a NTOF Flyer Plate Velocity Experiment both of which will be located near the granite block at the working point.

CALORIMETER EXPERIMENT

Ten channels of data will be recorded from resistive slug sensors exposed to the X-ray fluence. Each channel will contain one exposed slug and one background slug that form two arms of a bridge circuit. All signal conditioning and calibration circuitry will be located in the station one alcove. The conditioned signals will be transmitted from the alcove to trailer 50020 on TSP cable, where it will be recorded on an oscillograph. The data will also be digitized by a 4 to 15 channel multiplexer in the alcove and transmitted in a PCM format to trailer 50020 for processing by the TDIC system.

XRD DEBRIS ENERGY COUPLING EXPERIMENT

Sixteen oscilloscope channels will record data from fourteen XRD detectors and two gamma trigger diodes located near the granite block at the working point. Fourty-seven oscilloscopes and four 7912 digital transient analyzers will be employed to record these data in in trailer 50031. The 7912 digital data will be transmitted in a PCM format to trailer 50020 for processing by the TDIC system.

Inclosure 3

Three measurements will be made to determine the X-ray magnitude and arrival times at the flyer plate, the stagnation region on the block front surface and the shock temperature several centimeters inside the block.

The detector signals will be transmitted to the trailer on RG-333/U cable that will be equalized to about 350 MHz bandwidth.

NTOF FLYER VELOCITY EXPERIMENT

Six oscilloscope channels will record data from six PIN type detectors located near the bypass drift extension. These detectors will be viewing the flyer plate at the front of ite granite block.

Three channels will be recorded on two oscilloscopes via RG-331/U cable equalized for approximately 5 MHz bandwidth. The remaining three channels will be conditioned by log amplifiers located at the station two alcove and then transmitted to the trailer to be recorded on two scopes per channel. A third scope will be employed to record log amp calibration data just prior to event zero time.

SAI ACTIVE EXPERIMENTS

DODESE EN NORTHER DO STATE DO

• CALORIMETER

18. Pall Pall, Pall Hall Ball Hall Said Said Pall Pall Call Said

10 CHANNELS STATION 1

• ENERGY COUPLING

16 CHANNELS WORKING POINT

• NTOF FLYER VELOCITY

6 CHANNELS WORKING POINT

INSTRUMENTATION AND DATA ACQUISITION FOR THE TIME OF FLIGHT-DEBRIS VELOCITY EXPERIMENT HUSKY PUP

1. GENERAL

The time of flight spectrometer scheduled for the HUSKY PUP event will look at the neutron output of the device after it has been attenuated by the debris velocity flyer plate. Shifts in characteristic neutron absorption resonances will be used to measure the velocity of the plate. The experiment should be capable of measuring the total neutron output to an accuracy of approximately 15%. However, the system requires the ability to respond to small changes in the neutron output as a function of time in order to define neutron cross-sections of materials in the line of sight. In this regard, the system requires a bandwidth of approximately 50 MHz.

The spectrometer experiment and its line of sight is shown in plan view in Fig. 1. The spectrometer consists of two sections aligned to a line of sight and set upon a common monolithic support pedestal. The beam is precollimated near the working point and channelled to the primary experiment within an evacuated beam pipe. At the experiment the beam is further collimated by means of the staged collimator shown in elevation view in Fig. 2. Here the beam is sized and directed into the experiment canister. In the readiness configuration, the staged collimator-canister system will be completely shielded with lead and steel shot, and a polyethylene-Borax mixture.

2. THE EXPERIMENT CANISTER

Within the evacuated experiment canister are housed the reaction foils, detectors and support components for the experiment array. The experimental arrangement is shown schematically in Fig. 3, giving the relationship between the reaction foils, the detectors, and the collimated beam within the evacuated canister. The reaction foils are mounted at three axial stations as noted in the figure. The solid state silicon diode detectors are similarly mounted at three corresponding stations, with two detectors mounted symmetrically at each of the three stations.

Charged particles are emitted from the reaction foils as the collimated beam interacts with the deposited reaction elements on the foil surfaces.

These particles pass through the diodes, causing them to conduct, and resulting in voltage signals proportional to the charged particle concentration. These signals are correspondingly amplified in the acquisition process.

A typical output signal from a diode is shown plotted in Fig. 4 for the time of interest anticipated for a linearly amplified signal for the time of flight experiment. The gamma flash and onset of 14 MeV neutrons are shown. The output of one detector viewing each foil will be logarithmically amplified in the alcove to provide better resolution of the low level, late time signals. The output of these amplified signals will be 0-10 volts across a 50 ohm load in the trailer. The prime source of background in this experiment is the production of charged particles in the foil backing material. This is measured by having detectors view a blank foil with no deposit.

3. DATA ACQUISITION

The signal outputs of the six solid state detectors will be conditioned and recorded by circuitry and recording equipment mounted in a signal conditioning alcove and in trailer 50031. A typical circuit for a logarithmically amplified signal is shown in pictorial and schematic form in Fig. 5, showing the physical relationship of the experiment canister with conditioning and acquisition components in the alcove and the instrumentation trailer. Typical circuits for linear and logarithmic amplification of the detector signals are shown in the one-line oscilloscope diagrams given in Fig. 6. The conditioning and acquisition circuitry will float with respect to ground potential, with cable shields tied to ground within the 50031 trailer.

Detector bias voltage sufficient to prevent detector saturation will be applied to the detector through an isolation circuit contained within the signal conditioning alcove. The bias voltage supply will be physically located within this alcove and will be remotely controlled from the instrumentation trailer.

The conditioned and amplified signals will be conducted to the instrumentation trailer over RG331 coaxial cable where the signals will be equalized if necessary and split prior to being redundantly recorded on Hewlett-Packard 180 oscilloscopes.

4. SCOPE TRIGGERING AND CROSS TIMING CIRCUITRY

Primary timing and triggering reference for the detector signals will be provided by redundant x-fidu signals, backed by gamma detector timing reference as shown in the one-line oscilloscope diagrams depicted in Fig. 7. The figure represents redundant circuitry required to drive the trigger generators and for ultimate recording of the signal shape on 180 and 519 oscilloscopes.

The signals generated by the redundant trigger generators are shown in the one-line fan out diagram in Fig. 8. Here the anticipated fan out circuitry from the trigger generators is shown for the oscilloscopes required for the experiment. The upper portion of the circuit shows the trigger fan out. The lower half of the figure shows the marker generator and oscillator circuitry required for cross timing reference. The circuit logic for these marker and oscillator signals is incorporated in the prebase sequencer which programs the systematic recording of baseline and oscillator traces on the oscillograph record within the final two seconds prior to the event and acquisition of the detector signals themselves.

See Reference Box Social

Ficure 2. Elevation View of the Time of Flight Experiment

4.-

CONTRACTOR SCOOL SCOOL SCOOL SCOOL

Figure 3. Schematic Representation of the Time of Flight Experiment

and the second second

• 7

1.20

にはたちののの

TYPICAL LOGARITHMIC AMPLIFIED SIGNAL CIRCUIT

Figure 6. One Line Diagram of the Data Acquisition System Trailer 50031

Figure 7. One Line Diagram of X-Fidu and Gamma Trigger Circuits 500000000

アクトラクシング

1.6.0.8

X-FIDU

1 0.5 6.1 6. 1 5. 5. 5. 0.

• •

X-FIDU

1979 1979 76 WERE BORNER BORNER BORNER 1999000 1990000 BORNER BORNER BORNER BORNER BORNER

SYSTEMS, SCIENCE AND SOFTWARE PARTICLE VELOCITY

GENERAL

The velocity gauge consists of a field coil wound on a thick metal disc, and three coaxial pickup coils located at various distances from the disc along the axis. Motion of the field coil (assumed to move at the particle velocity of the medium in which it is embedded) induces signals in the pickup coils, the amplitudes of which are related to the velocity of the field coil.

Figure 1 is a section of the gauge assembly taken on a diameter and shows the positions of the various coils, assembly, lead dress and cable attachment. The gauge assembly is essentially a granite cylinder consisting of a series of short sections bonded together to facilitate machining and coil fabrication. Present plans are for the gauge to be installed in the block by injecting a viscous alumina filled epoxy at the bottom of the hole and allowing it to extrude out as pressure is applied to the rear of the gauge over a period of several hours.

FIELD COIL

The field coil consists of 140 turns of #12 aluminum magnet wire wound on a 6 inch diameter metal disc, the diameter then being increased to 8 inches by the addition of a metal ring around the disc. The disc and ring together lengthen the time constant of the coil enabling the field to persist for milliseconds after current ceases flowing in the coil. Since the measurements to be made are completed within 100 microseconds, the field remains essentially constant over the period of interest. Current is supplied to the field coil through two #4 conductors from the battery alcove to the rear of the gauge and then forward to the coil in magnet wire.

Inclosure 4

1. 1 2. 1 2. 1 2. 1 1.

PICKUP COIL

The construction details of a single pickup coil are shown in Figure 2 and illustrate how the coils are positioned in grooves machined on the face of a granite cylinder. The coil actually consists of a 20 turn inner and a 5 turn outer coil connected in a "Bucking" configuration. Since the area of the outer coil is four times that of the inner, no signal is produced by a changing <u>uniform</u> field. The inner and outer coil are both wound from a single continuous piece of .062" diameter solid sheath coaxwith MgO dielectric, the individual turns being insulated from each other by mica composites and bonded together with epoxy. After installation of the coils in the granite, the residual voids will be filled with alumina loaded epoxy.

POWER SUPPLY

The power supply shown in Figure 3 provides approximately 400 amperes to the field coil starting at - 100 milliseconds, and is turned off at zero time. In this circuit the current is turned on with one SCR, flowing through R5 and the field coil. At the appropriate time the second SCR is turned on, turning the first off through the commutating capacitor C, and transferring the load to R4. Complete isolation from instrument ground is provided through the use of transformers to trigger the SCR gates, and a current transformer to monitor the field coil current.

Lead-acid batteries appear to be the only reasonable power source available at the required current levels. Due to the high ambient temperatures present in the battery alcove, charging capability is provided to compensate for the attendant high self discharge rate of the cells. A full wave charger is shown with the charge rate determined by the output voltage

accessed restricts reresting

4

FIGURE 3 FIELD COIL POWER SUPPLY

- REAL

CONTRACT REPORT REPORT RECEARD REPORT REPORT REPORT REPORT REPORT REPORT

TANANANANANA

and the value of R1. No charging is anticipated after stemming which should eliminate the problems created by an accumulation of hydrogen gas evolved during charging. Battery voltage may be monitored by the voltage divider R2 and R3, while charging current is monitored through a current transformer, both circuits being active only during the charge cycle.

Due to the voltage and current capability of the required battery, we feel that it is necessary to divide the battery into discrete, enclosed, sublethal packages. The battery is therefore divided into seven 60 volt groups that can be electrically opened by hand should the need arise. Voltage will be applied to the SCR circuits through a 2 pole normally open DC contactor capable of breaking both ends of the battery at rated voltage and current. This contactor will be closed only when the system is armed at - 1 minute. At the high end of the battery will be a current overload breaker that will open should fault currents develope beyond the capability of the DC contactor.

SIGNAL CONDITIONING

AN CALE POOLOGIES POOLOGIES POOLOGIES

Figure 4 shows a complete data channel proposed for each of the three pickup coils. The signals are carried to the signal conditioning alcove from the pickup coils by RG-22 cable, with all three shields connected to a common earth ground at the gauge. Each signal path is isolated from trailer ground by a wide band isolation transformer with differential input to reduce common mode signals induced in the gauge and cable. Since the signal is expected to exceed 200 volts at the gauge, the transformer output is attenuated to a more reasonable level for transmission to the trailer and recording. Dry run signals will be generated at the alcove by a capacitive discharge through an SCR and coupled

into the isolation transformer via a relay that will be disabled at shot time. Each signal is carried to the recording trailer by an RG-331 cable and then recorded on three RM-546 oscilloscopes. Figure 5 is the signal expected at the oscilloscope and shows the small negative component due to the decay of the field after current shutdown in the field coil. The signal rises sharply as the metallic disc starts moving, increasing rapidly as it moves toward the pickup coil.

STANFORD RESEARCH INSTITUTE

PROFILE OF PRESSURE VS TIME IN GRANITE BLOCK

SRI will field six manganin gages to be staggered within two 8' cores drilled into the granite block.

Figure 1 shows the general system layout. The dotted enclosure around the gages is an aluminum sheath. Cable shields will be carried all the way to the gages while the outer shields will be terminated and tied together at the granite block rear surface.

Figure 2 is a closer view of the gage installation.

Figure 3 shows a detailed view of gage emplacement.

Figure 4 is the SRI built pulsed manganin Power Supply to be located in the battery alcove. The gage resistance will be between .05 & .1 and hence will probably not be shunted by the increased conductivity of the granite block. At the currents expected the gages will survive ≤ 250 ms with signal risetimes of ≤ 100 ns. The crowbar circuit incorporated is for dry runs only and will be disconnected for the shot.

The system instrumentation diagram is drawn in figure 5; note that all shields are shown as being tied together.

Figure 6 indicates a typical expected channel performance. Signal rise times will probably be longer than 30 ns with a bandwidth of ≈ 4 mc. The tape recorder will run in the direct mode.

Inclosure 5
WV/W COPE / TAP TRLE SOO JO 1 SANGANO i INSTITUTE INI -9% e, ----8ª STANFORD RESEARCH 缼 曰 沪 臼 鈩 沪 T816 RECORDING TRAILER 1 (a) 315 £.... The second secon (A) 10 715 11 (¥-) (L. ... (A) 115 * (1) m SHE 2 114 214 TURES W 2 ER 46-12/4 (MONE) IN ER 15 15 1514 16 251/10 11 251 ¢-(4 AL) N/ICC-52 Φ CARLE RUN 10.01 ACCON. -4 Send and T H -++ 10 ## 1 CUT BINS CUISING IN Z taki GRANITE BLOCK 12 8 14 " SIME DRAW ****** COMP. ----GAGES IN ---ļ * đ

Figure 1

፟ዿ_፝ቒጞቚዀዀ፟ቒጞቚዀጞቚዀጞቘዀቔቘዀቔቘዀቔቔዀጞቘዀ፝ቔቔዀቔቔዀቔቜዀቔቜዀቜቜ^ጞቚቔቜ

1

PAID PARK, CAU

• •

<u>"* e'\$`=*}`s*8`s*4`s*8</u>

٠.

Figure 4

j

Figure 5

EXPECTED CHANNEL PERFORMANCE HUSKY PUP- SRI

2µsec/cm 5µsec/cm 10µsec/cm < 40V ~ 402 ~ 5V ZHWOI~ - 30NSEC SHX OS CH ± 2V CH ± 5V } 407 DEV FM FULL SCALE AMPLITUDE AT GAGE FULL SCALE AMPLITUDE AT TRAILER SCOPES FULL SCALE AMPLITUDE AT < ∞ 20 TAPE RECORDER SCOPE SETTING WIDTH **RISE TIME** ò 9 2 ST.JQV BAND

7

Figur-

300

200

00

TIME, MSec

PHYSICS INTERNATIONAL

SHOCK TIME OF ARRIVAL IN GRANITE BLOCK

1. General view of experiment emplacement.

- 2. Cutaway showing pin-switch installation and locations.
 - a. 12 switches installed in 4 groups of 3 each for recording purposes.
 - b. Installed in aluminum shell.
- 3. Typical recording system for a group of PIN switches.
 - a. \approx 10ms recording time for the entire experiment. b. Shields tied to rear of granite block.
- 4. Cutaway drawing showing the ladder circuit installation.
 - a. ≈ 20 electrical steps in the ladder & will be designed for $\approx 75\%$ of these to give data.
 - b. will be powered with a constant current power supply.c. Installed in an aluminum shell.
- 5. Ladder circuit recording system.
 - a. Recording time ≈ 60 us-90us. b. Shield tied to back of block.
- 6. Predicted output from ladder experiment.
- 7. Overall general recording schematic for both experiments.

Inclosure 6

Participation of the state of the

Figure 3. Pin Signal Circuit Typical of Four

CANNER WOODDA PARAMA PROVINCE PROVINCE PROVINCE PROVINCE PROVINCE PROVINCE PROVINCE

4

NY.

ANAM

Ċ.

Figure 5. "Ladder" Recording

AND LOUGH STORES PORTA NOTION . NAMES AND ANY AND ADDRESS IN TAXABLE REPORTS LOUGHA - PARSON.

17.17.18

. •

-

......

Figure 7. Recording Schematic Debris Coupling (HUSKY PUP)

PHYSICS INTERNATIONAL

STEMMING & CONTAINMENT

PERSONAL PROPERTY

日のうろうです。

The following are the experiments to be fielded on HUSKY PUP.

1. List of measurements.

a. Carlson platter diaphragm moves as a piston (not bound at circumference) for more uniform pressure measurements. These gages will measure the stemming pressure at DAC #2.

b. Slip joint direct coupled pressure gages at muffler possess slip joints between two pipes (containing signal cables) to enable cables to live longer.

2. Detailed breakout of measurements.

3. Simplified typical multiplex system.

a. Only the center frequencies shown will be used on HUSKY PUP.

4. Typical multiplex system with mixed gages.

5. Detailed block diagram of the multiplex system.

a. Flat 3KC VCO response or rise time of 12 ms.

b. Oscillators drive 1/2 gage each, such as an LVDT. Modulator mixes these outputs.

c. Band-pass filter (GCO oscillator filter) filters out all but the difference frequency from the mixer.

d. Alarm relay monitors current to a given multiplex system.

e. Hybrid transformer stage enables external signal injection such as IRIG A, etc.

6. GCO oscillator filter.

7. Typical filter susceptance simulating network.

a. Used to simulate an empty gage slot from the output of the GCO bandpass filter all the way to the gage.

b. Use of this network eliminates reflections and maintains constant impedances.

8. Gas pressure recording system.

9. Ytterbium transient power supply & recording system.

10. Ytterbium gage shot record using transient power supply.

11. Ytterbium gage amplitude-modulated carrier system.

12. Ytterbium gage shot record using carrier system - showing separation of noise phenomena from signal.

13. Quartz (PCB) impulse gage circuit.

a. Gage will listen for debris impacting on WP door of DAC #2.

b. VCO & MUX system will be located in a cross cut (or alcove).

c. Final output filter will keep signal integrity in case a gage runs amuck.

d. All quartz gage systems are multiplexed at the outputs of the final filters.

e. A final filter will be located in the trailer.

P. I. HUSKY PUP INSTRUMENTATION

1.0 STEMMING PHENOMENA

- 1.1 CAVITY PRESSURE
 - 1.1.1 OIL COLUMN COUPLED PRESSURE GAGES

1.2 MUFFLER EFFECTIVENESS

- 1.2.1 OIL COLUMN COUPLED PRESSURE GAGES
- 1.2.2 DIRECT COUPLED PRESSURE GAGES
- 1.2.3 SLIP JOINT DIRECT COUPLED PRESSURE GAGES
- 1.2.4 EXTERNAL DIRECT COUPLED YTTERBIUM STEEL FLAT PACK GAGES.

X

NAMES OF STREET, STREE

6.000 M

- 1.3 DAC PERFORMANCE
 - 1.3.1 OIL COLUMN COUPLED PRESSURE GAGES IN LOS PIPE
 - 1.3.2 GROUP PRESSURE CARLSON PLATTERS AND YTTERBIUM C-7 EPOXY GAGES
 - 1.3.3 SOIL PRESSURE YTTERBIUM C-7 EPOXY GAGES IN TUFF
 - 1.3.4 DAC IMPULSE PCB QUARTZ MINIATURE PRESSURE TRANSDUCERS

Figure 1

TASK	Measured Parameter	Measurement System	Number of Measurements 2nd Location	Recording System	Expected Data
1. Cavity Dynamics	Cavity P (t)	Oil Filled High Pressure Tubing, Diaphragm Pressure gages Piezoresistive gages	Four gages One tube Approx. 200 ft.	VCO. 40 kHz carrier and mag- netic tape. chart recorder	Residual Cavity pressure from approx. 0.1 sec to as long as possible (hrs)
2. Muffler Effectiveness	 Pipe P (t, x) Muffler P (t, x) First arrival Velocity of peak 	 Yb flat pack steel Oil filled tube, diaphragm gages Oil volume, diaphragm gages 	 1. 10 active Yb 6 dummy 2. 10 active diaphragm 6 dummy From 150 ft. to 216 ft. 	 40 kHz carrier and mag. tape VCO and mag. tape 	Pipe and muffler pressure and plasma velocity decrease due to muffler
3. Grout Flow Dynamics	Grout pressure -time at DAC #2 plug	1. P (t) gages Diaphragm Yb	 Diaphragm: Diaphragm:	1. VCO and mag. tape 2. 40 kHz carrier and 3. mag tape	Grout stagnation pressure Pressure-time vs DAC door impulse
4. #2 DAC Door Dynamics	1. Force-time 2. P (t)	 Piezoelectric impulse gages Oil tube, dia- phragm gages 	 5 gages located on DAC housing 2, 0 one each on WP and portal side of DAC doors 	VCO and mag. tape and scopes	Time of door failure Differential Pressure on DAC door
5. Free Field Dynamics	1. Stress-time 2. Velocity (Acc.) -time	 Yb-epoxy gages High g accelero- meters 	 3 active 3 dummy 3 dummy 2. 3 active 1 dummy Located in pillar at 2.1 and 0.5 kbar in Tuff 	 40 kHz carrier and mag. tape & scopes Mag. tape & scopes 	Free-field stress impulse and velocity

Figure 2

CONSTANT BANDWIDTH FREQUENCY MULTIPLEXED INSTRUMENT SYSTEM (GCO)

22.2

Dec eccord

PRASSASSO PURPHENE

80.0.00

Figure 4

£`,&``@`,&``@`,``@`,`@`,*`;@`,*`;@_&`_&;

1.1.1

GCO OSCILLATOR FILTER

FILTER SUSCEPTANCE SIMULATING NETWORKS

These two terminal networks are to be used in place of the corresponding channel filters when the latter are not required.

They maintain the susceptance of the absent filters over the band of the other filters that are being used for correct performance.

		TABLE 3		
IN PLACE OF	Network Design	<u> </u>	C	Fr
40KHz Filter	N,	3.26MH	4870 _F f	39.85 KHz
55 " "	N ₂	3.26 "	2570	54.90 "
70 " "	N3	2.87 "	1780	70.00 "
85 " "	NA	2.87 "	1230	85.00 "
100 " "	N ₅	2.87 "	884	100.00 "
115 " "	N	2.87 "	666	115.00 "
200 " "	N ₇	1.43 "	437	200.00 "
230 " "	N ₈	1.43 "	340	230.00 "
260 " "	Ng	1.43 "	257	260.00 "

NOTE: These networks are also for use in checking band performance of each band filter.

Figure 7

..

÷

10-20-20 A

「日本ののののの」

Soon Processing Reported Inconstant Processing Advances

1999 REPORT SAMOON RANGER BOOMER WINNER RECEIPER WALLER BOOMER RESERVER HEREITER

• *

••

ł

 $\mathbf{20}$

National Parts

21

V-LV-

1.51

44" . Tata . T

COCCUPACIÓN OC

The second second

and a second the second s

HUSKY PUP PRE-FIELDING INSTRUMENTATION MEETING

Agen y: DEVELCO Charles Moore 530 Logue Avenue Mountain View, California 94043 Phone (415) 969-1600

Instrumentation

Fielding Agency:

EG&G, Inc. Kenneth R. Sites 680 East Sunset Road Las Vegas, Nevada 89119 Phone (702) 739-0681 DEVELCO will field four instrumentation canisters that will be buried in the tunnel bypass drift at separate locations with respect to ground zero.

Associated with each canister will be five ground motion sensors. Two sensors will be housed within the canister while the remaining three will be positioned within a drill hole extending from the canister. These data will be conditioned, digitized and stored in a solid state memory within the canister. One channel of analog data will be transmitted from each canister on a TSP cable to trailer 50020 located in the mesa trailer park. These data will be recorded on magnetic tape.

The onboard memories will be interrogated post shot. That data will be transmitted through the earth to a receiving antenna that will be located adjacent to the mesa trailer park. The received data will be recorded on magnetic tape and then converted back to analog data.

T&F and monitor signals will be transmitted between the trailer and the canister via TSP cables. The TSP cables will be fully floated with respect to earth ground while the TSP overall shield will be connected to the canister which will be in intimate contact with the earth. The overall shield will be floating at the recording trailer.

Inclosure 7

t.s"t.p

5

198

473

A 1 3

. 464

.#..#.*.#.*.f.#.#.#.#*

100000

000000

00222200

ł

. "AL."AL. "IL. "IL. "IL. "IL.

104

ATTACK STATIST

WELLHEAD TO CANISTERS CONTROLS AND EMP CIRCUITS (DOWNHOLE)

Received Package Version Package

.* 4.* #1* 0.* 14* Be

1

CIRCUIT DIAGRAM OF A 100-mamp CONSTANT-CURRENT SOURCE FOR THE YTTERBIUM STRESS GAGES

11

•

-

•

LOCKHEED/SSPO INSTRUMENTATION SUMMARY

1. Figure No. 1 is an overview of the instrumentation fielded by LMSC on HUSKY PUP. Three trailers will be on the mesa; two for Station 1 (97-26727 and 50017) and one (50018) for Station 2. A total of 260 measurements will be recorded, 226 on Mag tape and 34 on Oscilloscope/camera systems.

Two types of strain measuring devices will be used, i.e., the conventional foil type and the Kulite semiconductor strain gage. Selection of one or the other depends on the anticipated strain level. Displacements are measured on a Kaman Science Model 2300 non-contact displacement systems.

Impulse and momentum will be measured by momentum and partitioning gages which are electrically similar using a linear velocity transducer (LVT) to detect sample motion. Effects Technology Inc. will install specimen samples in the gages and perform gage calibration. Also supplied by ETI are the Carbon Pressure Gages used for measuring material stress.

Asterisks flag totals that include measurements recorded for SLA and LASL and are described by them.

2. Figure 2 is a block diagram of the Station 1 instrumentation. Analog voltages are transmitted to the instrumentation trailer where signal conditioning and amplification are provided prior to being recorded on Mag tape. To minimize the risk of losing data because of "out of band conditions" or poor "signal-to-noise ratios" at the VCOs 100 percent redundance in recording channels is provided. In an attempt to reduce system noise for six strain measurements, their outputs will be transmitted to the mesa over Twinax RG 22/U cables.

3. In the pressure measurement system shown in Figure 3 the double shielded RG 214/U and RG 223/U from the gage to the alcove is used. From the alcove to the trailer signals are transmitted over RG 331/U to the Pulse Power Supply and RG 59 (75 ohms) Inclosure 8

cable to the oscilloscopes. Redundant oscilloscopes using different vertical amplitudes and sweep speeds to reduce the danger of losing data will be used. 4. Figure 4 shows Station 2 and instrumentation in trailer 50018. As previously stated this trailer records both Mag tape and oscilloscope data. Figure 5 presents the typical grounding and shielding technique used. The instrumentation Van shell is the reference is floated above earth ground.

Pair shields are carried through to the Amplifier Guard Shield. For strain measurements or transducers requiring bridge excitation these shields are then tied to the low side of the power supply at the Instrument Van terminal board. Overall shields of multi pair cables are returned to the van shell reference of the van terminal board.

Coax shields are tied to the chassis of the Pulsed Power Supply which also connects to the van shell as are all the low sides of tape recorders and scopes. Pertersity Restriction

CONCOLOR BOOMOON

BOLDER A

Received a

122800

5. Figures 6 and 7 show typical strain gage beam and ring installations, respectively.

Sec.

Figure 1

MARCH 1975

	HUSKY PUP REC	ORDING SUMM	ARY	
MEASUREMENT	1	RAILERS		
MAG TAPE	97-26727	50017	50018	
STRAIN	57*		54*	111
DISPLACEMENT	4*		*9	10
ACCELERATION	*9		17*	23
IMPULSE	59		20	62
PRESSURE	2		H	က
SCOPE				
PRESSURE (C)		26	œ	37
TOTAL	128	26	106	263

3

Received Received

BUTTON RECENCE FARMERS FRAMERS INVENTIAL RECENCE (DECORDER)

DOUTS A SOUTH AND DOTE ANY SOUTH ANY SOUTH ANY SOUTH AND ANY SOUTH ANY

6

0.

··

2003 Referent Resurvey Provided Resources Developed

HAMMADD DUCKAPOL DATADOUR

2

10

Service Service

Provide and the second of the second s

B1404

No. Composition

KANANA KANANA KANANA

BOCHERA PAPALITA RECORDER BEDRAVA CONSISTA

Figure 6

LPARL Measurements HUSKY PUP

LPARL will field diagnostic measurements at a stub pip location behind stationl. These measurements will consist of 16 fast spectral channels, 16 slow spectral channels, and 6 total fluence channels.

The fast spectral measurements will utilize 10 photodiode and 6 XRD detectors. The diode assembly (Figure 1) is a design used successfully in many DNA/LPARL experiments. The construction is modular which permits ready replacement of malfunctioning modules in the field. The basic module is an ITT FW114A photodiode assembled with a high frequency connector and surrounded by a coaxial Mylar anode bypass capacitor. Anode bias of about 3KV is delivered by a DC/DC converter module which produces a 3KV output from an input of 28vdc at 3mA. Isolation networks in the trailer and in the detector provide separation of the signal and the dc bias.

A bias of -7.5KV is applied to each XRD detector as shown in Figure 2. A DC/DC converter produces the 7.5KV from an input of 50vdc at 4mA. Isolation networks are utilized in both the trailer and the tunnel.

The XRD channels will utilize RG-333 cables equalized to approximately 200MHZ, depending on the oscilloscopes utilized, the predicted signal amplitude, and the cable length. The diode channels will utilize RG-331 cables equalized to 50 - 100MHZ. The signal paths for these channels are illustrated in Figures 3 and 4.

All detectors are throughly calibrated in the LPARL laboratory before installation in the field.

The sensor designed for the slow spectral channels is a beryllium slug thermopile (Figure 5). The thermocouple junctions - both the active and reference - are connected in a series/parallel arrangement.

The total fluence calorimeters are the graded-Z type (Figure 6) used for many of our previous measurements. A resistance wire is wound around the slug as the sensor; differential balance is provided by an identical slug

Inclosure 9

and winding located in the same housing as the absorbing slug but shielded from the flux field.

A differential amplifier/line driver system located in the tunnel and powered from the trailer is utilized for the slow spectral and total fluence measurements. VR3300 tape recorders and CEC 5-133 oscillographs will be used for data recording in the trailer. This signal path is illustrated in Figure 7.

The signal system is designed such that the 20% of response just prior to saturation is a region of somewhat lower gain. This provision is to record signals that are up to a factor of five times the predicted level.

0.00000000

1220-022

Sectores to Manager

School Service

9.0.0.0 m.n

VAR WAR WAR WAR WAR DIE WAR BURTHAM

Figure 2

î

T

Figure 4

• *

Service and an open services and the service of

ŝ

Figure 6

Figure 7

CALIFORNIA CONTRACTOR CONTRACTOR

CALORIMETER SIGNAL SYSTEM

۰.

こうしていていたい いたい いたい ひとう アイシン したい アイシン したい ちょう

SLA HUSKY PUP CONTAINMENT DIAGNOSTIC GAGE LAYOUT

The first viewgraph depicts the location of gages to be used on Husky Pup. FCP canisters P142, 163 and 212 are located on either side of the muffler. Similar canisters, P316 and 327 on the LOS pipe, and P315, located in the bulkhead forward of DAC #2 will be recorded on a SCEMS unit. A ported pressure canister, PP316, is located forward of DAC #2. The GRMS (Gate Rupture Monitor System) located behind DAC #2 is designated DM-1 through DM-6. The 15 Lithium Niobate gages are located in four drill holes, i.e., two horizontal and two vertical. TOA-1 through TOA-14 designate 14 loop gages located in the granite block for the debris coupling experiment.

Inclosure 10

:

SLA CONTAINMENT DIAGNOSTIC MEASUREMENTS, HUSKY PUP

PHOTODETECTOR CIRCUITS

- PERCENSION

PODDO-

ありちゃき こうちゅうちょう

<u>SLIDE 1</u>: FULL BRIDGE GAUGE CIRCUITRY

The fluid coupled plate (FCP) canister measures the radial pressure due to gaseous material flowing in the LOS pipe. It consists of a rigid force plate supported by a bellows with one corrugation. This portion of the gage is machined from a single piece of ultrahigh strength stainless steel. The inside of the gage is filled with Dow Corning 710 fluid which has less than 5 percent compressibility at 2 KBAR. The dynamic internal gage pressure is monitored with two ruggedized high pressure silicon diaphram pressure transducers. Time response is less than 20 microseconds.

The transducers are excited by an Endevco Model 4470 Universal Signal Conditioner and a Model 4476.2A Amplified Bridge Conditioner mode card. The output signal is either recorded directly or multiplexed onto magnetic tape.

FULL BRIDGE GAUGE CIRCUITRY

SLIDE 2: VARIABLE RELUCTANCE GAGE CIRCUITRY

Ported pressure gauges are used to measure the arrival time, magnitude, and shape of the gas pressure pulse flowing within the LOS pipe. Three 2-arm variable reluctance type pressure transducers are installed in a canister mounted in an 8-in diameter 150-pound flange welded to the LOS pipe. The high and low range gages communicate into the LOS pipe. A third inactive dummy gage monitors motion effects on the system. The canister also contains three gage couplers which house the bridge completion resistors, line matching transformers, relays, and calibration resistors.

The gages are excited by a Natel 6-KHz carrier system located in the instrument trailer. The Natel system also amplifies and demodulates the gage signal prior to multiplex recording on magnetic tape.

VARIABLE RELUCTANCE GAUGE CIRCUITRY

SLIDE 3: SCEMS

The SCEMS (Self-Contained Environmental Measuring System) is a completely self-contained high shock digital instrumentation system which is built to withstand and record environments of up to 5000g's acceleration and 4 kilobars of overpressure. It is contained in a heat tempered 500-pound steel canister that has a 9-inch 0.D., 3/4-inch thickness, and 3 feet total length. All necessary functions, i.e., the transducers, amplifiers, A/D converter, data programmer and processor, and the data storage elements are completely contained in the canister. External leads are required only to fire the thermal batteries for internal power, monitor battery condition, and provide a fidu signal to turn on the memory system for 100 to 200 milliseconds. In some cases, a backup accelerometer is used to turn on the memory prior to data arrival.

The twister memory system contains 1024 storage locations with 14 bits in each location, divided into 2 each 5-bit words and 1 each 4-bit word.

On Husky Pup, SCEMS No. 1, located in grout forward of DAC #2, contains two carbon stress gages, and four accelerometers. SCEMS No. 2, located at DAC #2, will record data from six FCP (Fluid Coupled Plate) pressure gages installed near DAC #2.

SLIDE 4: GATE RUPTURE MONITOR SYSTEM

The GRMS (Gate Rupture Monitor System) consists of an array of six light sources and six photodetectors located on the portal side of DAC #2 (as shown on slide 4). The light sources (photo flash bulbs) are located under the LOS pipe and are fired at minus 500 ms by an EG&G closure. The light sources are directed at photodetectors at the top of the LOS pipe (Slide 5). Any debris which interrupts the light beams will change the signature of the received signal. Both the source canister and detector canister contains a detector and small LED light source which flashes at a 1 KHz rate to verify integrity of the complete system. A complete schematic of the system is shown in slide 6, and slide 7 shows typical pulses from the LED sources. When the photoflash bulbs are fired, the photodetectors are saturated at 7 volts as shown on slide 8. If debris interrupts the light beam, the signals from the top detectors revert to pulses, as shown on slide 9. All 12 channels are multiplex recorded on magnetic tape in the instrument trailer.

:

:

SLIDE 10: LITHIUM NIOBATE GAGES

The signal conditioning for the Lithium Niobate gages will be located in TC-1 alcove on Husky Pup. The gage capacitance (Cg), shunt resistance (Rs), and cable capacitance (C₁) must be accounted for in determing the value of the standardizing capacitor (C_s) to provide a known voltage (usually 2 volts) into the high impedance amplifier. Power is turned on at -2 minutes by an EG&G relay. An automatic timer then shorts the input to the amplifier for 40 seconds, cals for 10 seconds, removes the cal. voltage for 30 seconds to observe system drift, cals again for 10 seconds, and then shorts the input at -30 seconds. At zero time, a fidu signal operates a relay to unshort the system prior to data arrival. All signals are recorded on magnetic tape in the instrument trailer. MEASUREMENT SYSTEM LITHIUM NIOBATE STRESS CAGE

9

States and states

「こののなる」

•

SLIDE 11: TOA LOOP GAGE CIRCUITRY

Time-of-arrival loop gages will be used to measure shock arrival in the debris coupling experiment granite block. The measurement consists of a battery powered oscillator located in a downhole alcove with a coaxial cable extending to the granite block. A transistion is made to a high temperature radiation resistant cable which enters the block for some distance, turns 180 degrees, exits the block, reverts to larger coaxial cable to the trailer for The ideal measurement consists of the shock wave recording. shorting of the loop and cutting off the oscillator. The loops will be installed in an 8-inch and 4-inch cored holes in the granite block. Eleven 1 MHz loops will be used to measure shock TOA at various distances from the 5 MB level and will be recorded on magnetic tape. In addition, three 10 MHz loops will be used to measure free surface velocity across a 2 CM void area in the block. The three 10 MHz loops will be recorded on 15 oscilloscopes in the instrumentation trailer.

۰.

۰.

:

 Ξ

HUSKY PUP

SANDIA LABORATORIES

Sandia Laboratories instrumentation participation on HUSKY PUP consists of recording 253 active gages located at three stations, 6 levels, 2 STU's and 2 AFU's. These gages are summarized in figure one and include recording for LMSC and LASL, in addition to Sandia. Four trailers will be fielded on the event with the recording divided as shown in figure 2. Trailer B-22 will record multiplex data from ES #1 and scope data from ES #2.

Two methods are utilized to record data on HUSKY PUP. The first method is essentially the way Sandia Labs has done recording in the past. Ring experiments will be treated differently in an attempt to apply knowledge gained in MING BLADE and DINING CAR instrumentation development experiments. The second method will be discussed later.

Explanations of the standard recording method will be given for each figure.

- Figure 3: Typical cable routing is given here. Junction boxes in the alcoves can be used for bridge completion, calibration, cable routing, excitation or whatever is required.
- Figure 4: Ground reference for all shields will be the instrumentation trailer shell. For balanced cables the individual shield is carried to the signal conditioning card and tied to the shell at that point while overall shield and coax shields are tied to the trailer shell where they enter the trailer. The trailer will be floating from earth ground.

Instrumentation for the STU's and AFU's is presented in figures 5 thru 14. Cabling to each STU from the alcove will consist of six - 20 pair cables which is converted to nine - 15 pair cables going to the mesa. Experiment types and agencies were segregated as much as possible in the cables going to the mesa.

Figure 5: This figure represents SLA strain gages. It is not known at this time the gage configurations which will be fielded so definition is not complete. However, gage completion and calibration will be accomplished in the alcove junction box.

SANDIA LABORATORIES

HUSKY PUP GAGES

2	ea.	STU's	42 17 6 1	STRAIN ACCELEROMETERS DISPLACEMENT PRESSURE	(84) (34) (12) (2)
2	еа.	AFU's	7 4 2 2	STRAIN ACCELEROMETERS DISPLACEMENT PRESSURE	(14) (8) (4) (4)
5	еа.	RINGS	2 1	STRAIN DISPLACEMENT	(10) (5)
4	ea.	RINGS	2 1 1	STRAIN DISPLACEMENT LVT	(8) (4) (4)
2	ea.	PLATE MOTION	3	ACCELEROMETERS	(6)
1	ea.	NEUTRON WHEEL	4	RPM	(4)
17	ea.	STRESS	1	QUA RT'Z	(17)
5	ea.	IMPULSE	1	LVT	(5)
12	ea.	STU BLOWOFF	1	LVT	(12)
8	ea.	TIME HISTORY	1	COMPTON	(8)
4	ea.	HTRM	1	LVT	(4)
4	PR.	BLOWBACK	1	1. V T	(4)

TOTAL OF 253 GAGES

:

FIGURE 1

Persona ...

Received.

POCCOST ------

HERENCE MODOODS

:

「ちちにもちちし」

000000000

FIGURE 2

:

State and

The seales of the

24

Terrecood Process Process Process Process

:

DWG. E ... JH

1.0 10

g

9.38

:

FIGURE 5

- Figures 6 & 7: Displacement gages on the units will have the oscillatordemodulators located in pits by the pipe. These pits will be shared with LASL and LMSC, but individual boxes are used by only one agency with the exception of one box.
- Figures 8 & 9: These accelerometers are the same model gages having two active arms with completion and calibration done in the alcove. Since the gages are not critically damped, it is expected they will ring at approximately 40 KHz and at an amplitude of up to ten times the signal. This ringing can be removed during data reduction if the gage or recording channel do not limit. To alleviate this problem on some recording channels, a 10 KHz low pass filter is being used to attenuate the ringing. On these the sensitivity of the recording will be increased to give better resolution.
- Figures 10 & 11: On the STU's one pressure gage will be recorded while on the AFU's two are utilized. The second gage on the AFU's will monitor a pressure which is actuated at -10 sec.

LOOPEROD

LOCOPPER

Presson bootters

2

- Figure 12: LMSC gages on the units will have two active arms with completion and cal accomplished in the alcove. Care will have to be taken in selection of the completion resistors to prevent a large quiescent unbalance at the bridge. Predictions indicate less than four millivolts out of the foil gages when loaded by 100 ohms so an amplifier will be used downhole to boost the signal.
- Figure 13: LASL is also using foil gages but with one active arm. Unbalance is not as serious a problem here but once again low level outputs will require an amplifier downhole.
- Figure 14: LASL has accelerometers on the STU's which have two active arms which will be completed and calibrated in the alcove.

Sandia Laboratories phenominology and diagnostic experiments which will utilize the standard recording system are represented by figures 15 thru 24.

Figures 15 & 16: These figures show the compton diodes which will be used for both gamma time history and for triggering the scopes. Compensation at 100 = 1 will be used.

.

FIGURE 8

KOLL CARE

.

:

total Bolineral personal bitterral Partituta Recorded Downen Receiver Economy

a na a a a a a a a

AND REASONAL RECORDER LOSSEN DEPASSA REPORTED LOSSEN DEPARTA RECORDED AND AND AND ADDRESS DEPARTA

:

1.8. Cat. 142

a state and a state of the

Beenergy Hoesessor

:

FIGURE 12

Doococi

FIGURE 14

いたい アイビス かいてい たいしん しょうかい ひのつう かいがい ひかつ ひかい ひかつつつ した たい しゅう ひょう しゅう ひのの ひのの

REFERENCE REPORTER REPORTER BUILDER REPORTER R

:

•

FIGURE 16

- Figure 17: A total of 17 quartz gages will be fielded on HUSKY PUP. 5 = 1 compensation will be used on the RG-331 cable and the data recorded on two scopes.
- Figure 18: One neutron wheel package will be fielded which contains four discs. Two will rotate at 400 r.p.s. and two at 800 r.p.s. Recording is for magnetic pick-ups to give the exact rotational velocity at zero time.
- Figures 19 & 20: Two types of High Time Resolved Momentum (HTRM) Gages are shown. The first is an LVT type gage but has a RG-22 cable for frequency response. The other gage is a carbon bridge type gage. It is uncertain at this time if it will be ready for HUSKY PUP. If not, two additional gages will be fielded.
- Figure 21: This figure shows the standard LVT gage, however, four of them are on rings so a latch indicator is not used.
- Figure 22: Four sets of accelerometers in triaxial configuration are being fielded to determine plate motion. Because of temperature compensation problems, the calibration will be a trailer insertion voltage instead of the normal downhole parallel step.

The remaining figures, 23 thru 28, are for the special system which is a continuation of MING BLADE. There are several basic differences between this system and the standard system. These differences are:

- An EMR shield is maintained around the cables and alcove equipment from the test chamber ports to where the uphole cables are connected. To maintain this shield a 1 1/2" water pipe will be used to run the cables from the alcove to the test chamber. In addition an RF tight box will house all pertinent alcove equipment.
- 2. A downhole multiplex system will be used to put the data in an FM format which will make it less susceptible to cable bundle noise. In addition, the analog data will be sent on RC-22 cable with a blocking amplifier to prevent cable bundle noise from perturbing the mux channels.

- 3. Excitation of the gages will come from the alcove instead of the trailer.
- 4. Triaxial connectors for balanced cable will be used at the ports to carry the shield through uninterrupted, instead of the multipin connectors normally used.

1 Com	Service Servic	1909 - 101 1919 - 101	(2080	208	208								SWG	(000)	10L	1001
*		COPE VO				-		-					LDEFL	GAGES	1010	0
1 7 273		11.8	5.5	6.5	6:0								JUNE	RTZ	Con tare to	4-13
1251/125	A A A A A A A A A A A A A A A A A A A	TRAILER	2514	2515	2516								т Т	N O	-	IED B
S. N.	₽ Ţ	PORT ON	20-13	20-14	20-15								Ħ			ISSIF
200 L		402	05087	05066	05083								- 0	PART CLASSIFIC		UNCL
		NO DE	2050	1502	2502								Number of Street			
	61213 GP	101	30-12-105	6-11-21.06	11-21-07								LING DATE			
		EXP	20-15	20-153	20-153								8		Ц	11
	SPL SPL SPL SPL SPL SPL SPL SPL	PE CODE NO	3610	3611	3612	36/3	304	3415	1610	Itell	1612	1613		2141	2612	2613
		93°	-	-		1					-		ł		ł	-
	B UGIZI	TLRSCOR		642	622	666	622	822	672	<i>t 12</i>	672	572	10	200	6.0	F EC
		TRAILER	2517	2518	5219	2520	2521	2528	2464	2465	2466	2467	2676	2672	2524	5252
		NO	21-86	36-13	38-14	31-92	38-16	21-88	15-7	15-31	6-31	15-10		2-1-5	20.6	20-7
		4 NON	5000	1005	2005	E003	E5004	2005	5006	10053	:5008	:5009	(Second	01000	69050	02030
	r		0	ō	20	60	8	5	00	1 10	02 0	33 (8	2 2	22	53
	8 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	90	ě	36	9	0	e	e	60	0	2	1	0 3	2	0

:

FIGURE 17

:

REPART SECOND FULLARY DEPENDED FOROMER POSSIBLY FULLARY DESCRIPT PERSON DESCRIPTION

1.0

1

AL. 845. 349. 241.

° n 9.

SACA RECEVEN RECEVEN DEVELOPER REPORT REPORTED REPORTED RECEVEN RECEVEN RECEVEN. BUSICESS REPORTED

42

±4

POKC 2 ACC SORC and OKC BUC BAC TLR CABLE TR TLE MUX CO NO. 8 PAIR CHITANATA EU BOKC BORC 2 -04 CN TRAFT TO EW (HPING) (HPI536) (HPE312) i 731585 2132606 +TAPE CHANNEL DEF. DWG 31285 0.414 520 850 820 Name No Bard 838 838 838 L LJ ANS 11.86 21-5222 E1 E122 2213-10 11 8122 2223-13 2223-10 11 6222 14213 2223-9 IN DESIGNATION. 000 COOL IDENT NO. 9658 NUCCCEY UNCLASSIFIED ------2 Contra to 05125 2E-7 UDIC 2E-8 05127 2E-9 B5134 10-11 35135 10-12 05136 14-5 05137 14-6 21-01 21-10 PORT 20-11 1718 -31/22/0 CONOD 35 05032 05031 NON Deg CLASSINCATION LEVIL REENER 1000 EEWSEL Start Days wellow 10-1116 EA 70.12 1524 20-1116EA-4003 2500 20-1116EA-4004 2501 20 8312 MM-76-03 2522 ¥ NO 20-8312 MM-3602 2820 15/4 1515 1620.0 TLR TD î 13-1116EA-70.09 18-1116EA-70.10 ų INTIALS SANDIA EXP M524266R SOUTH APPENDING 4.5+ No. DATE 17314 CLASSEE SPLICE BLOG EL. CABLE 2 î M524266R 455-22-021ESW 153126-22-351E2N 1222-251 151 51 EDKC 2010 SOKG SORC 100 35 TLP MUN ± € NEW SER 638 ź 638 638 838 838 822 822 822 **6**38 822 822 822 TLR 322 大介 ALCOVE J-Box TLR CABLE NO & PAIR 85074 1C-9 2213-6 85074 1C-15 2213-7 Ê 2213-4 22/3 - 8 2213-2 2213-3 2217-8 2219-14 î C5079 1F-16 2213-9 2219-12 2219-10 E1-6122 2219-9 2219-15 2213-5 85024 10-10 2219-11 PLATE POSITION 46000-M53124 87-01-021ESW M53126-10-6P. 10-65 16-4 6-11 25023 10-8 5020 16-3 35021 10-7 PORT 16-7 C5025 14-1 C5026 14-2 C5027 14-3 14-11 î PORT 35090 C5028 -92156-62053 55077 5093 Î NON ON EXP 1003, とき とうびきしていいた とき NO. 0601 18-116 EA- 70.03 1912 18-116 EA- 70.04 1513 11-116 EA- 70.05 1520 18-1536JL-20:04 1003 10:8 16-1736 1-20.09 1028 10-1116EA-40.01 1500 IC-1116 EA- 70.07 1522 -USED ONLY C-1116 EA- 40 02 1501 B-11664-70.01 1510 1521 IC-111 664-70.08 1523 1601 8-1534-16-20.04 1013 B-116 EA- 70.02 1511 ¥ C-1536JL-22.04 10-1116 EA-70.06 0 0 10-1534-11-20.07 18-1536 JL-22-01 EXP NO.

The second se

2

FIGURE 21

43

うちん ちちちち

COPOSSAL PERSONAL PERSON

FIGURE 22

Sector Sector

12200004

:

46

FIGURE 24

:

a.a.a.t.a.a.a.a.b.a.b.a.a

48

:

The second

2000000

STORESSION THE PROPERTY STORESSION STORESSION AND THE STORESSION

•

5

にたいたいのということでしていたからの

<u>፝ዾጟኯጟቘኯጟቘኯቘጞኯዄቔዸዄቔኯዀዀዀዀዀዀዀዀዀ</u>

A STATE

COCHERCE

25555555555
LASL INSTRUMENTATION

on

HUSKY PUP

The LASL, in addition to providing the timing and firing of the HUSKY PUP source device, of the main auxiliary closures in the pipe (DAC's and TAPS), and of several special operations for individual experiments, will be fielding several other sets of measurements. Briefly, these are:

(Viewgraph 1)

While each of these will be discussed individually, a few general remarks may lend prospective.

The measurements on the STU at T.C. #1 are sort of "stand-alone" in this matrix. The signals-strain, acceleration, displacement, and internal pressure - are all relatively low frequency, and thus compatible with TSP cables and tape recording.

The other four sets of measurements are all prompt signal based using highfrequency transmission and oscilloscope recording. Additionally, they all require precise time cross referencing. Thus, the device REACTION HISTORY measurement will furnish the basic time tie and will provide the source input reference for the OPTICAL ALPHA and the TOTAL GANMA measurements.

(Viewgraph 2)

COLORES S

This viewgraph shows the geographical locations of the three so-called "close-in" measurements in relation to the WP and the other measurements in this area.

The five REACTION HISTORY detectors (here listed as γ -Alpha) are distributed along two collimator pipes behind the OPTICAL ALPHA pipe at distances from 25 to 28 meters from the WP.

The SLIT-TOA detectors are located just over 10 meters from the WP. The slit is just over two meters distant.

Optical signals for the OPTICAL ALPHA system are relayed by mirrors and lenses into the alcove where the photomultiplier detectors are located in an elaborate FARADAY shield system. The electric and magnetic field detectors are in the main OPTICAL ALPHA pipe.

Inclosure 11

(Viewgraph 3)

This viewgraph is a schematic of the cable and recording station layout to date (4/30/75).

The main station, SKID V, will be recording device-related signals (FRONT-END), the device REACTION HISTORY signals, and the OPTICAL ALPHA optical signals. If we go ahead with the TOTAL GAMMA measurement, it will probably be recorded in this station.

The SLIT-TOA signals will be recorded in the LITTLE ALPHA station (shack) with cross timing reference to SKID V.

The supporting electric and magnetic field measurements associated with OPTICAL ALPHA will be recorded in the ANCHORCITA station.

Though the details of the matrices of the recording systems are still being developed, it is expected that the total oscilloscope compliment of these three stations will exceed 200 in number.

The STU signals - strain, acceleration, displacement, and pressure - will be recorded on tape in the J-8-10 trailer with a primary and backup tape deck. While this diagram shows six each 19 pair bundles in the up-hole run, I believe there is a request for an additional 15 pair cable to handle the total of 126 pairs required.

 $\underline{2}$

LASL ON HUSKY PUP

1. <u>STU</u> IN T.C. #1

42 STRAIN GAGES

17 ACCELEROMETERS

6 DISPLACEMENT

126 TSP TO J-8-10 TRLR.

0000000

1 PRESSURE

- 2. DEVICE REACTION HISTORY CLOSE-IN 5 DETECTORS - 5 COAX CABLES TO SKID \underline{V}
- 3. <u>SLIT-TOA</u> ON DEBRIS COUPLING ADD-ON CLOSE-IN 6 DETECTORS - 5 COAX CABLES TO LITTLE ALPHA

4. <u>OPTICAL ALPHA</u> - CLOSE-IN
19 OPTICAL DETECTORS - 19 COAX CABLES TO SKID <u>V</u>
7 E & B DETECTORS - 7 COAX CABLES TO ANCHORCITA

3

5. <u>TOTAL GAMMA</u> BEHIND T.C. #1 (TENTATIVE) SEVERAL DETECTORS - 1 COAX CABLE TO SKID $\overline{\mathbb{Y}}$

HUSKY PUP LASL J-14 ALPHA SYSTEM

PURPOSE: 1) TO RECORD REACTION TIME HISTORY OF DEVICE,

- 2) RECORD ZIPPER PERFORMANCE,
- 3) RECORD HE TRANSIT TIME,
- 4) OBTAIN YIELD ESTIMATE.

L'OCATION: IN EXTENDED LOS OF OPTICAL ALPHA SYSTEM.

RECORDING: ALPHA V

DETECTO)R		ΜΔΧ	ΜΔΧ •
No.	LOCATION, M	CABLE	D.C. VOLTAGE	CURRENT, A
10	30.3	RG331/RF-13	8 κV	60
20	26	RF-13	NONE	1000
30	25.6	RF-13	NONE	1000
40	29.6	RF-13	NONE	200
50	28	RF-13	NONE	200

Z MONITOR			
2 EA PHOTOMULTIPLI	ER		
~1	RG-21 5	3 кV	1000
X UNIT			
2 EA, NO DET	RG21Q/RG-215	NONE	1000

GROUNDING

いんないたため、 000000000

CABLE SHIELDS ARE TIED TO DETECTOR HOUSING AND GROUNDED TO LOS PIPE. AT THE RECORDING END, SHIELDS ARE TIED TO STATION WALL AND TO BURIED EARTH GROUND.

Alpha Detectors

and Beengan reasons washing washing and a reason have been and heread hereads been and

The second second

HUSKY PUP LASL J-14 DCAO SLIT TOA EXPERIMENT

PURPOSE: To measure time dependent velocity of flyer plate. Gamma radiation from the plate is imaged through a pinhole (slit) and recorded by an array of detectors.

LOCATION: LOS TO ~11 M, DETECTORS AT 10 M.

DETECTOR TYPE: FLUOR PHOTODIODE

CABLE: 5 EA RF13

RECORDING: LITTLE ALPHA

MAX D.C. VOLTAGE: 6 KV

MAX CURRENT: 10A

GROUNDING: CABLE SHIELD TIED TO DETECTOR HOUSING AND GROUNDED TO LOS PIPE, CABLE SHIELD IS TIED TO RECORDING STATION WALL AND TO BURIED EARTH GROUND. 0011000

MAX TEMPERATURE PERMITTED: 63[°] C.

うちょう

-

1

HUSKY PUP S-TOA EXPERIMENT PIPELINE ASSEMBLY

HUSKY PUP LASL, J-14 OPTICAL ALPHA

PURPOSE: To compare reaction time history of the device obtained by recording optical signals at various wavelengths with that obtained by conventional gamma techniques.

LOCATION: LOS TO 23 M, DETECTORS IN 20 M ALCOVE.

RECORDING: ALPHA V

DETECTORS: PHOTOMULTIPLIER (31036)

CABLES: 19, RF13 26 c, #16 D.C. CALIBRATION

MAX D.C. VOLTAGE: 3 KV

MAX CURRENT: 1 A

GROUNDING: FLOAT AT DETECTOR TIED TO EARTH GROUND AT RECORDING STATION

T

[,]⁰4[°],⁰8⁴,⁰8⁴,⁰8⁴,⁰8⁴,⁰8⁴,¹

1

seal sectored hereited

Optical Alpha Grounding

FIELD MEASUREMENTS (P-3)

BAUM B SENSORS (12 M)

Sensor 1. At air-foam interface

Sensor 2. Between interface and pipe wall

COMPTON-DIODE E SENSORS (22 M)

Sensors 3-6. Various termination R's, longitudinal E field

BAUM PLANAR E SENSOR (19 M)

Sensor 7. Longitudinal E at baffle

いちに かきまきの ちちまた

2

TATAL CALLER CAL

HUSKY PUP INSTRUMENTATION

	LASL	LOCKHEED	<u>SANDIA</u>	<u>TSP</u>
STRAIN	27	10	5	84
ACCELEROMETER	6	0	11	34
DISPLACEMENT	0	0	6	6
PRESSURE	_0	_0	_1	_2
	33	10	23	126

3 PIN/TSP

66 CHANNELS 126 TSP

several several several supplies supplies because any sec

SALASSA BUTTAR RECEARD RESEARCE REFERENCE REFERENCE DESCRIPTION DESCRIPTION DESCRIPTION REFERENCES

:

4 FR - 1800 RECORDER 11 AFFEX TRAILER VIDAR 203 VCO - SIG. 0 + SIG. Q GUARD HUSKY PUP LASL STU INSTRUMENTATION B AND F 24,60 CONDITIONER 30-100F-2 P. S. -O + EXCIT. C - EXCIT. - ALCOVE -C ć -1 Ċ đ đ Haid --GAGE 4

:

٩,

LEG&G

INTER-OFFICE MEMORANDUM

¹⁰ Husky Pup File (AFWL)

DATE 29 April 1975

W. R. Kitchen : 77K

SUBJECT PRE-FIELDING INSTRUMENTATION MEETING, 30 APRIL 1975

1.0 View Foil No. 1

This figure details the carbon or quartz gage recording scheme. The gage is mounted and electrically connected to the bulkhead in the test chamber. This is the only earth ground point. The gage is connected to the vacuum port with RG-223/U cable The cable from the vacuum port to the alcove is RG-214/U. At the alcove the signal enters the DNA supplied cable system. The cables type RG-223/U and RG-214/U both have two shields in intimate contact.

On the mesa the trailers are connected to the DNA cable system with RG-213/U cable. Internally the trailers are wired with RG-213/U for the major lengths. The minor connections are made with RG-58/U for quartz systems and RG-59/U for the carbon systems.

Two oscilloscopes will record the signal. The first oscilloscope called "prime" is triggered from a gamma derived signal. The second oscilloscope called "back-up" is triggered from a delayed X-Fidu derived signal. If the back-up oscilloscope has a total sweep of less than 5μ seconds, then it will be triggered with the gamma derived trigger signal.

2.0 View Foil No. 2

This figure shows the method to record cutting wire gages from Level F. The gage is mounted to the bulkhead with the pair shield not connected to the cassette. The pair is cabled directly to the recording trailer on the mesa, via an alcove connecting point, where the resistance portion of the cutting wire gage is completed in a bridge circuit. The output to be recorded on tape is adjusted to be from negative one to positive one volt. The gage drives the VCO from the negative extreme to the positive extreme in ten steps.

Inclosure 12

LAS VEGAS OPERATIONS

HANNESS REACTED AND BOOK AND THE A REACTION REACTION REPORTS REPORTS

Hesky Pup File (AFWL) Pre-Fielding Instrumentation Meeting, 30 April 1975 29 April 1975 Page 2

3.0 View Foil No. 3

This figure shows the digital recording method. Digital information is generated at five locations and cabled to the recording trailer for Station 1. There it is recorded on three wide band tape recorders. The different locations are isolated with isolation transformers in each cable.

The left side of the figure lists the units which generate the digital information. They are:

- A. Pres/Temp is outputs from pressure and temperature transducers (not digital).
- B. The CMS is the LLL's device to digitize time information from closures. The CMS units will be recording from about fifty gages from each station. Fifty gages yield a sampling time of 56.2 µsec between samples.
- C. The 7912's are wide band oscilloscopes with a digital output.
- D. LEA 74-2129 is a 4 to 15 channel encoder. At the bit rates shown (614 K bits) and a 10 bit Λ to D format, the effective bandwidth is about 1 KHz for 10 channels.
- E. DEVELCO is measuring rock pressures and their analog signals are to be conditioned by a LEA 74-2129 conditioning unit in the recording trailer for Station 4.

The Transient Digitizer Interface Controller System (TDICS) will be fed from an output of the tape recorders.

4.0 View Foil No. 4

This table shows the Station 1 wideband tape and digital recording by tape machine number and track number.

5.0 View Foil No. 5

This figure shows the strain gage recording method using a quarter bridge with a compensating strain gage or a half bridge with positive and negative gage factors.

EGEG

Husky Pup File (AFWL) Pre-Fielding Instrumentation Meeting, 30 April 1975 29 April 1975 Page 3

The cable from the alcove to the experiment is shielded with a zip tube grounded at the experiment. The overall shield for each cable bundle starts at the cassette but has no connection to ground. The pair shields will start at the cassette or be extended close to the gages inside the cassette as is practical.

All cable pairs, shields and the cable overall shield have assigned pins in a multi pin connector at the vacuum port. The zip tube will fasten to the connector shell and then connect to a 1/4 inch stud in the vacuum dielectric disc. The atmospheric portion of the feedthrough connector and zip tube system connects to this stud outside the disc. The zip tube continues to the alcove where it ends. The cable overall shield connects to the alcove hardware and continues uphole to the trailer shell. The overall shield system is floating from ground. This includes the alcove equipment and the recording trailer.

The pair shields start inside the cassette or at the back shell of the cassette and are carried to the bridge completion equipment and then to the guard input of the differential amplifier. The output of the amplifier is single ended. The "low" wire of the pair and shield are driven together. The output impedance of the amplifiers is 0.5 ohms. The pairs and their shields are connected to guarded differential amplifier/ VCO's units in the trailer. There is a termination network and over voltage clamp in front of the VCO.

Attention must be given to the fact that the downhole amplifiers have a maximum output of 10 volts and 10 milliamps.

6.0 View Foil No. 6

This figure shows the method to record the output from the pressure transducers. The grounding and shielding scheme is the same as was described in Figure No. 5. The calibration resistors are sized to get a voltage unbalance which will be representative of a pressure. The setting of the voltage calibrations will be accomplished pre-shot. During the countdown, Timing and Firing signals will electrically calibrate the tape recorder.

7.0 View Foil No. 7

This figure shows the temperature measuring method. Again, the grounding and shielding scheme is the same as Figure No. 5.

3

П

EG&G

Husky Pup File (AFWL) Pre-Fielding Instrumentation Meeting, 30 April 1975 29 April 1975 Page 4

The thermocouple will measure the difference in temperature of the zone block and the experiment. A thermistor is bonded to the zone block to check for zone block temperature and its drift. An attempt will be made to keep all connections at the same temperature so there will be a minimum error due to unexpected and unwanted thermocouple junctions in the thermocouple loop.

To be determined is the termination method and a protective clamp at the input of the differential amplifier.

4

以EG2G

WRK:sm

Attachments

- cc: R. H. Gann, DNA
 - J. T. Marshall, AFWL
 - J. C. Tsitouras
 - C. M. Wagner

:

•

DOCUMENTS.

:

.

1

• -

6.414,614,918,918,919,9

NAMES AND A STREET AND A STREET

LISTING
CHANNEL 1
1 TAPE
STA TION

Tape #1 and #2 Sangamo Saber IV, Tape #3 Tidex

)					
Experiment Name	Originating Equipment	Number of Channels	Bit Rate K/Bits or Hertz	Originating Station	Agency	Tape #1 Channel	Tape #2 Channel	Tape #3 Channel	I
Pres/Temp	Tricom	7	250-1.5	SS-1	AFW1.	1		1	1 -
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL		1	2	~
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL	10		3	س
Pres/Temp	Tricom	2	250-1.5	SS-1	AFWL		10	4	4
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL	11		5	<u>ي</u>
Pres/Temp	Tricom	. 7	250-1.5	SS-1	AFWL		11	9	9
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL	12		2	ı-
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL		12	8	8
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL	13		6	ີ
Pres/Temp	Tricom	7	250-1.5	SS-1	AFWL			10	10
Impulse	CMS	42	1228	SS-1	AFWL	2	2		1 =
7912	PCM Tx	2	1228	SS-1	IRT	3	3		12
7912	PCM Tx	2	1228	SS-1	IRT	4	4		13
7912	PCM Tx	2	1228	SS-1	IRT	5	5		14
Calorimeter	74-2129	11	614	SS-1	SAI	8		11	15
Temperature	74-2129	10	614	SS-1	AFWL		8		16
Temperature	74-2129	11	614	SS-1	AFWL	6			17
Temperature	74-2129	6	614	SS-2	AFWL		6	13	18
Impulse	CMS	52	1228	SS-2	AFWL	9	9		19
Impulse	CMS	48	1226	SS-3	AFWL	7	7		20
Calorimeter	4-2129	12	614	SS-4	AFWL		13		21
Tape Speed			200			14	14	14	22
Ground Motion	4-2129	4	614	SS-4	Develco			12	23
									24

- .

:

ť

No. of the local sector of Shirbara Prisbora boolana koogaza Pristoon Arteolan koogina kitebaa mekerina

10

-

CANADARA CARACARA CARACARA CARACARA CARACARA

	HUS	KY	PUP	ACTI		XPE	ZIMEN	IT SUMMARY
	<	8	ల 			ب	TOTAL	(S) 24 APRIL 1975
CWG		12	14	32	48	33	139	(INCLUDES AREA EFFECTS)
IMPULSE			16	16			32	ROTATIONAL & TRANSLATIONAL
STRAIN				42	34	14	90	R-V FRUSTRA & RING
TEMP		9	15	6			30	PEN AIDS INFLATABLES
PRESSURE		4	9	9			20	PEN AIDS INFLATABLES
QUARTZ				2	+		L	
CARBON			9	22	11	5	48	
LVT				2	2		+	
DISP				9			9	R.V
CALORIM						14	14	
TRIM			2	9	4	4	16	
							406	NOTE: SUMMARY DOES NOT REFLECT Proposed changes to
								NHEP MATRIX

KAMAN SCIENCES CORPORATION

100000

TO REFERENCE

1000

HUSKY PUP PRETEST INSTRUMENTATION MEETING

1

Inclosure 13

INSTRUMENTATION AND GROUNDING

KSC will have one recording instrumentation trailer for all of our channels.

We are using two FM tape recorders with thirty-two tracks each: A Sangamo 4784 and a CEC 2800 machine.

For the fast data channels the data signals will be put on Tektronix 546 oscilloscopes: twelve scopes for Quartz and four for Fast Electromagnetic gages.

The grounding practice typically used at KSC is to electrically isolate all experiments from the LOS pipe and keep the instrumentation trailer shell above earth ground. The trailer shell is used as a reference point for tying dowr all cable shields. Our coax and twinax cable shields are tied at the connector plate on the trailer shell while TSP over shields are tied through A 10 ohm resistor to the shell. However, the TSP shields are carried to a common buss at the tape recorder VCO's.

VIEWGRAPH 1: INSTRUMENTATION SUMMARY

VIEWGRAPH 2: QUARTZ PRESSURE GAGE

The six quartz pressure gages we are fielding are the Sandia type. The gages are isolated from the LOS pipe and will be recorded on a primary and backup oscilloscope in a mesa recording van. The oscilloscopes will be triggered by a gamma signal and backups by X-FIDU signal.

VIEWGRAPH 3: Expected Channel Performance

HUSKY PUP INSTRUMENTATION SUMMARY

REAL REACTION LYNNER PRESSER FRANKLER FRANKLER

				LEVI		
		1A	1B	10	F	TOTAL
SCOPE CHANNE	ELS					
Fast Ei	LECTROMAGNETIC GAGES (FEM)			L;		4
QUARTZ	GAGE (Q)	2	3	1		6
	SUB TOTAL	2	3	5		10
F.M. TAPE CH	IANNELS					
FEM GAG	SE			Lj		4
TRIM GA	AGE (T)		2	Ļ	Lj	10
Softspe	eaker Gage (CA)			2	1	3
LINEAR	Velocity Transducer (B)	2	1	1		4
LINEAR	Piston Commutator (P)			2		2
Continu	JITY GAGE (E)			7		7
LINEAR	VELOCITY COMMUTATOR (K)	1		1		2
FOIL ST	rrain Gages (F)			16		16
Spinnin	ig Disk Tachometer				1	1
	SUB TOTAL	3	3	37	6	49
	TOTAL	5	6	<i>l</i> !2	6	59

ł

EXPECTED CHANNEL PERFORMANCE - QUARTZ

Full Scale Amplitude At	GAGE	30 v
Full Scale Amplitude At	TRAILER	30 v
Full Scale Amplitude at	Scope	6 v
Bandwidth		10 MHz
Rise Time		35 nsec
Cable Equalizers		5:1
Scope Settings - A B	5v/см 20v/см	3 HSEC 5 HSEC

CONTRACTOR NAMES OF A DESCRIPTION OF A D

IMPULSE GAGES

Time Resolved Momentum measurements are an attempt to: 1) directly observe the prompt and total components of the blow-off impulse generated by 3DQP, and 2) measure the amount and rate of momentum buildup of blow-off ejecta from 3DQP.

Time Resolved Momentum measurements are made using TRIM, softspeaker and FEM gages while "total momentum" measurements are made using the LVT, linear piston commutator and the linear velocity commutator gages.

VIEWGRAPH 4: TRIM GAGES

The active components of this gage are a sample/holder carrier assembly and a stationary tube assembly, through which the sample carrier translates. Voltage is induced by the movement of a permanent magnet on the carrier through a series of four equally spaced induction coils wound around the tube. Digital velocity data is yielded by the spacing between the coils. The gage response or rise times are between 40 to 50 microseconds.

VIEWGRAPH 5: Channel Schematic

We have 10 channels of these gages which will use RG-22B/U transmission cable and they will be recorded on FM channel per track tape recorders on the mesa.

VIEWGRAPH 6: Expected Channel Performance

;

1

EXPECTED CHANNEL PERFORMANCE - TRIM

GAGE OPEN CIRCUIT OUTPUT AT GAGE 200mv/ktap CIRCUIT ATTENUATION (2000' TSP) 0.55 (2000' TWINAX) 0.80

Amplitude Into VCO (Trailer)

BANDWIDTH

RISETIME

٩,

20ĸHz

110mv/ktap 160mv/ktap

40µsec

VIEWGRAPH 788: FAST ELECTROMAGNETIC GAGES

The fast electromagnetic gages "FEM" and "Super TRIM" are designed for measuring rise times around 10 microseconds. The coil is wound directly around and bonded to the sample. This modification improves the mechanical coupling between the sample and coil thereby minimizing the response time of the gage.

VIEWGRAPH 9: Channel Schematic

é

Four channels of these gages will use RG22 transmission cables. The rise time portion of the signal will be recorded on oscilloscope and the total momentum portion of the signal will be recorded on tape.

VIEWGRAPH 10: Expected Channel Performance

VIEWGRAPH 11: LINEAR PISTON COMMUTATOR GAGES

The disk sample is mounted on a piston-shaped sample holder assembly which has a series of commutator rings attached to its stem. The holder assembly recoils and slides along the inside of the canister with the four brushes making contact with the commutator rings on the holder stem.

ľ

100 Mar 100 Mar

いたいないない

EXPECTED CHANNEL PERFORMANCE - FEM, SUPER TRIM

GAGE OPEN CIRCUIT OUTPUT AT GAGE

FEM Super TRIM

1ν/κταρ 100μν/κταρ

0.30

800mv/ктар 30mv/ктар

70kHz

5^µsec

.

CIRCUIT ATTENUTATION (2000' TWINAX)

AMPLITUDE INTO VCO (TRAILER)

BANDWIDTH

RISETIME

1.0v $\overrightarrow{\text{TIME}}$ 0v $\overrightarrow{\text{I}}$ $\overrightarrow{$

\$11 AT. 14. 4" AT. 18. "45. "45.

15

EXPECTED CHANNEL PERFORMANCE

Full Scale Amplitude At Bridge Input	+25.10 то 29.25
FULL SCALE AMPLITUDE AFTER DPN	-170 то +550мv
Bridge Excitation Voltage	±15v, 200 ma
Bandwidth, Approximate	20 кНz
DPN Amplitude Bandpass	<u>+</u> 1.8v

The recoil velocity, and hence the impulse, is determined by the frequency of the square wave signal generated by the commutator/brush contact system.

These 2 channels will be recorded on tape and transmitted over TSP cable.

VIEWGRAPH 12: Expected Channel Performance

VIEWGRAPH 13&14: LVT GAGES

We are fielding four LVT gages on TSP transmission cable. Our calibration circuit is applied uphole in the trailer in which an insertion voltage is used with gage, cable and termination resistance still in the circuit.

VIEWGRAPH 15: LINEAR VELOCITY COMMUTATOR GAGES

This linear velocity commutator gage is quite similar to the linear piston commutator gage in operation except this gage measures the whole body recoil velocity of structural response rings.

VIEWGRAPH 16: Expected Channel Performance

EXPECTED CHANNEL PERFORMANCE

「日日の日の」

No service of

- The set

「たちたちとう」を行う、「ななない」を行う

Full Scale Amplitude At Bridge Input	+27.3v то 20.3v
Full Scale Amplitude After DPN	+572mv To -890 mv
Bridge excitation Voltage	<u>+15</u> v, 200 ма
Bandwidth, Approximate	20 кHz
DPN Amplitude Bandpass	<u>+</u> 1.8v

VIEWGRAPH 17: STRAIN GAGE

We will be fielding 16 strain gage channels associated with structural response rings. These gages will have downhole signal conditioning. The strain gage bridge power and calibration sequence will be provided by the B & F, 1-700 Signal Conditioner units. The signal will be amplified by Baylab, Model 5503, amplifier units.

VIEWGRAPH 18: CONTINUITY GAGE

This experiment consists of exposing wire samples to low fluences and detecting the time of break through electrical means. The sequence of wire breakage is unknown and this will be determined by the various output steps associated with each wire. The seven continuity channels will use a constant current source. We are presently testing a B & F signal conditioner unit for this use.

VIEWGRAPH 19: SPINNING DISK

This experiment contains two channels of instrumentation. One is the speed monitor (tachometer) and the other is the softspeaker gage. The experiment is concerned with the collection of sample material blow-off.

The spinning disk deals with more electrical circuitry for the powering of the motor. The converter requires 24v DC to operate and its output is 115v AC, 400 HERTZ to drive the motor in the box. The DC power supply and converter will be in a cabinet located in an alcove.

The tachometer's output is around 100 mv.

.....

.

•

:

.

*

•

ŧ

VIEWGRAPH 20: SOFTSPEAKER GAGE

The softspeaker gage yields an analog output from a coil, positioned on the rear of the sample carrier, moving through a stationary magnet. The coil/magnet geometry of the gage is, then, analogous to that of a typical loudspeaker. This gage will measure momentum with a short time resolution and yield an analog output for at least 500 μ second.

There will be 3 channels of this type using TSP transmission cable and recorded on tape.

4. 4. 4.

:

(

reheed

MISSILES & SPACE COMPANY, INC.

In reply refer to: LMSC/D430418 Dept. 58-10, Bldg. 528 18 April 1975

Commander Field Command, DNA Kirtland AFB, New Mexico 87115

Attn: Mr. Raymond H. Gann (FCTD-EI)

Contract DNA001-74-C-0133 (ENGINEERING SERVICES, WA9-75A) Subject: Tunnel Environment and Closure Monitors

Enclosure: (a) 4 View Foils, Data Channel Summary, LMSC/D430417 (u)

Per your informal request, and our telecon of 11 April 1975, here are the view 1. foils giving the data channel information for the TECM instrumentation.

> Lockheed Missiles & Space Company, Inc. **Research and Development Division**

2 A. Kanel J. J. Neuer Staff Engineer Sr.

Approved: Zainer, Manager

DNA Programs

JJN/bp Commander cc: Field Command, DNA Kirtland AFB, New Mexico 87115 ATTN: Mr. R. C. Bivona (FCTD-E) (w/o encl)

> A SUBSIDIARY OF LOCKHEED AIRCRAFT CORPORATION SUNNYVALE, CALIFORNIA 94088

Inclosure 14

LMSC (PIPE)

TUNNEL ENVIRONMENT & CLOSURE MONITORS

1. (a) This figure shows the DAC breakswitch configuration and expected output signal.

- 2. (a) Typical thermocouple measuring system.
- 3. (a) Typical pressure measuring system.
- 4. (a) DAC door magnetic pickup velocity circuit.

LINSC D 430417

LNSC TECM EREAK SWS - DAC IST MOTION, CLOSURE (CL), & DOOR SHEAR OUT (SH) ISARR 75

SIGE CABLE PRE TRUR CHAN 2:10 SH BOZ 3 17 200 32 12 2:8 SH I I I 1 2:4 SH I I 2 1 2:4 SH I I 1 2:2 SH I I 1 2:2 SH I I 9 2:2 SH I 1 9 2:2 SH I 1 9 2:1 IMOT I 1 9 2:1 LIMOT 1 9 6 2:1 IMOT 9 6 4 1:1 R UL 1 1 4 1:1 IMOT 8023 2 2													
SIGE CABLE PR TRLR 2:10 SH B02.3 17 200.32 2:8 SH 16 15 200.32 2:4 SH 16 15 14 2:2 SH 14 15 14 2:2 SH 14 15 200.32 2:1 L 1 12 13 2:1 L 1 12 12 1:1 1 12 13 1:1 1 12 13	CHAN	ろこ	11	01	a	0	80	9	S	1	3	n	N
SIGE CABLE PR TRU 2:10 SH B02.3 17 200 2:8 SH B02.3 17 200 2:4 SH 14 15 200 2:2 SH 14 12 200 2:8 SH 14 12 200 2:8 SH 14 15 200 2:8 CL 14 12 200 2:8 IMOT 12 13 2:1 IMOT 12 10 2:1 IMOT 12 7 1:R IMOT 12 7 1:R IMOT 12 7 1:R IMOT 12 7 1:R IMOT 17 200	2	32											いい
SIGE CABLE PR 2:10 SH B02 3 17 2:8 SH B02 3 17 2:8 SH B02 3 18 2:4 SH 14 2:2 SH 14 2:1 CL 12 2:1 IMOT 12 2:1 IMOT 12 1:1 IMOT 8023 1:1 IMOT 8023	F	200											200
2:10 SH 8023 2:8 SH 8023 1:1 IMOT 8023	Ľ	17	16	ŝ	14	13	12	10	8	7	4	r	Ŋ
2-10 SH 802 2-8 SH 802 2-8 SH 802 2-2 SH 2-2 SH 2-2 SH 2-2 SH 2-1	Щ	0											n
2-10 5H 2-10 5H 2-2 5H 2-2 5H 2-2 5H 2-2 5H 2-2 5H 2-2 5H 2-1 1007 2-1 1007 1-2 CL 1-2	CAB	B 02											BO
	J	SH	Ч	SH	F	CL	IMOT	c۲	TOMI	CL	IMOT	GL	I MOT
	ū	2-10	2-8	1-2	2-2	2R	25	21	21	R	ñ	Ë	-

٢.

.

-

۲

1

ł

Ŧ				
TAPE 2	VR 3300			VR 3300
TRLR	20032			20032
ਸ਼ਰ	3-5	1-3	91-11	16-18
CABLE	8021	8021	8007	8007
Чo	2300			2300
LOC LOC	GSP	000	TAPS	TC

EL TEMPERATURES EXP. NO. 98601 66500 LMSC TECM

•

-

TUNNEL TEMPER				LMSC D 430417
TAPE 2	VR 3300			VR 3300
TRLR	20032			20032
R	S-5	1-3	91-11	16-18
SLE	51	31	07	10

Ì

In reply refer to: LMSC/D430418 Dept. 58-10, Bldg. 528

Chief Site Development Directorate Field Command, DNA P.O. Box 208 Mercury, Nevada 89023 ATTN: Mr. Robert Shirky (FCTD-N)

1000

ć