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ABSTRAC'T

Envelope solitons for surface waves in deep water
are studied using the coupled equation for the Fourier
amplitudes of the surface displacement. Comparison is
made with some wave-tank experiments of Feir. A linear
stability analysis is made for an imposed transverse rippie.
A slowly growing instability is found at wavelengths com-
parable to, or longer than, the length of the soliton. A
slowly developing instability is found also for a soliton
propagating through a train of waves cf wavelength appre-
ciably smaller than that of the soliton. A soliton pro-
pagating through a train of waves with wave-length much
larger than that of the soliton exhibits gross distortion
due to the orbital fluid velocity of the wavetrain. This
distortion is to some extent reversible, as the soliton
tends to "recover" when the wavetrain is damped to zero

amplitude.

$he 40 it 0% LN T Fat e v
Y ™ ) ")
04 J. TLUGCLY % I'!- J‘ v
3 e R V5. ¢ 5 3




1. INTRODUCTION

.

In this report we discuss the effect of the nonlinear

.—‘
Sees

terms in the eigenmode equations given by West, Watson and

*
Thomson (1974) on the evolution of a narrow spectrum of

&

- gravity waves on the ocean surface. This spectrum produces

;: an envelope of a carrier wavenumber kM and the nonlinear

EF equation of evolution of the envelope is found to have the

Bé form of a nonlinear Schrbdinger equation, as discussed by

ﬁ Davey (1972). The envelope represents a wavepacket propaga-
ting on the ocean surface. The propagation of a symmetric

Eg wavepacket of deep water waves was studied by Lighthill

(1965,1967). 1In his analysis nonlinear interactions led to

the development of a nonsymmetrie shape and a peaking of the

packet envelope function. The relation between the eigen-

mode equations and the averaged Lagrangian technique developed

by Whitham (1965,1967) for water waves is also discussed.

A R

That certain waveforms have a persistent shape due

= A

'

to the balancing of nonlinear and dispersive eftects has been

Z

.

observed by Benney and Newell (1967). Experimental studies

L}
o,

-

of such wavetrains propagating in wave tanks have been

reported by Feir (1965) and by Lake and Yuen (1975). The

observed properties of these wave systems seem to be consis-

-
)
o tent with theoretical expectations w[e.g. see, Chu and Mei

. i (1970, (1971)] . The Nonlinear SchrSdinger equation describes

*
This reference will hercafter he referred to as I or Part I.
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the space time evolution of the envelope function of a

narrow bandwidth train of deep water waves. It is shown

n
in Section 2 that the nonlinear Schrodinger equation has

soliton solutions for an initially narrow spectrum as dis-
cussed by Kadomtsev and Karpman (1971) and Zakharov and
Shabat (1972).

The effect of spectral broadening on the nonlinear
interaction is investigated numerically using the code
developed in Part I. 1In I the authors make a numerical
analysis of the coupled mode equations describing the non-
linear interaction of surface gravity waves. In this
analysis a tendency for "bumps" in the envelope of a wave-
train to grow was noted. Indeed, unless care was taken to
avoid such "bumps" in selecting the initial conditions, the
growth of these tended to obscure the other phenomena being
studied.

In Section 2 the nonlinear Schrbdinger equation
is obtained as an approximation to the coupled mode equations.
Solutions for envelope solitons and the Benjamin-Fier
instability criteria will be noted for subsequent reference
in Section 3. Some numerical examples of the propagation
and distortion of solitons are also given in Section 3 and
the calculated results are compared with observations from
wavetanks.

Soliton stability is studied in Section 4. It is

shown that a periodic modulation parallel to the wavecrests
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causes a rather slowly growing instability. It is also
shown that even in the one-dimensional case that the
envelope soliton appears to be unstable upon encountering

a second wavetrain of substantially different wave numbers
than those of which the soliton is constructed. This does
not violate the conclusions of Zakharov and Shabat (1972),
ie., solitons are stable when interacting with other wave-
trains described by the same nonlinear Schrodinger equation,
since the two wavetrains of substantially different fre-

quencies each satisfy different nonlinear Schroodinger

equations.
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2. THE EIGENMODE EQUATIONS

Consider a current at the ocean surface represented

by a superposition of modes parallel to the x axis,

U(x,t) = {Z Uy COSKE (2.1)
K

where £ = x—cIt, and Cy is the velocity of the current

profile. Each mode in Eg. (2.1) has a wavelength 27/K and

amplitude U The equation describing the linear inter-

K-
action of a surface current of the form of Egq. (2.1) and

the linear wave field at the ocean surface was found in Case,
Watson and West (1974)%, to be of the form of a Schrodinger

equation.

Following the notation of III we define the complex

'amplitude
2(r,t) = Z a(k) exp(ik-.T) (2.2)
X
where T = (x,y' is a horizontal vector on the ocean

surface. The surface elevation may be written in terms

of the complex amplitudes as,

il
'

h(z,t) Im [z(‘f,t)]

[Z(’f,t) - z*(EE,t)] . (2.3)

N b

*
This report will hereafter be referred to as III.
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The equations describing the interaction between the

surface wave field and the surface current are written
. . *
in medel form in Watson, West and Cohen (1973) , in terms

of the wvariable

c(k) = a(k) exp(ikc t) (2.4)

-5
rather than a(k). The wavenumber kx is the horizontal
wavenumber parallel to the surface current. The resonant

coupled mode equations are,

6 = weepe® + ) [ EBedR © @ Ro

K
L et
- X% ¢ (Z)yc(p)e (K)exp[i(k R +]5
- & C=L
1,p,n P oo ] Ren-Top

kn
where the coupling coefficients FI¢ are given in Part I,
p
the A(+) (K,K) are given in II and the effects of wind,
viscosity and surface tension have been neglected for the

moment.

In III the linear part of Eq. (2.5) is reduced

tc the form
i ¢ = Hy {2.6)

where H is a nermitian matrix and § is related to c (k) by

~

a linear transformation. In the following sections

*
This report will hereafter be referred to as II.
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Eq. (2.6) will be generalized by keeping the nonlinear part
of Eg. (2.5) in the analysis and constructing a nonlinear
R equation of evolution for the envelope function of an

initially isolated wave.

6
) <300 J A% ) ‘> v .*'l i L) r t"l [ T, 'i‘: w i h ’4" ‘i".' #“;
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2.1 THE ENVELQOPE FUNCTION

If we define the x component of the surface waves

;;g to be in the direction of the current given by Eq. (2.1},

X

g then we may proceed as in III and parameterize the depen-

: & dence of the surface wavenumber on the direction orthogonal

to the current. We write the surface wavenumber as

.,
e,

k ='\}kx2+ p2 , where p is a parameter. Further, since

k >> K for all surface waves of interest on the ocean, we

=

write

o dP P ud
"

k. = nK , n=1, 2, ... (2.7)

e

A o so that the wavenumber component parallel to the current

5 is a multiple of the surface current fundamental wavenumber (K).

S
¥ o
(o S o)
e e b

Equation (2.7) allows us to iewrite Eq. (2.5) in

terms of the discrete quantities

&

| = —l >
. @ Y(n) =y = c(k) (2.8)
] g so that
g i\f;(n) = En\p(n) + Vn n+l p(n+l) + Vn n-1 P (n-1)
A
E *
L \\-‘
[ - Z 8 Bse (@0 pim) ex [—i(2+m— -n} m—.]
] - q+n_2_m Q,m YqYQ,Ym ‘1’ q ‘1) l!) p q )
¥ i q,4%,m
(2.9)
i 7

N T R R b e N0 0
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AH) (n) '

A = al) (n) 7 (2.10)

w, = w » and Q@ is the frequency of the surface current

(= KCI)' If we now choose *+he transformation coefficients

}
Yo1/¥n = [2% -1 /a0 ()] (2.11)

-\]A(+) (n) 287 (1)

<
|

v = Va1 2 () (2.12)

the matrix V will be symmetric. Equation (2.9) now has

the form

i {+n)

[xev)y ] )

~ o~ A

) ng Y Y,Y
Z Sqtn-g-m T~ L 2T oy yim)y (q)exp[i(n+q-2—m)9t]
f2,m,q m Yn

(2.13)




the linear part of which is given by Eq. (2.6), with

T e i,

P
=~

=

5
I
t

o}
303

5

If we consider a solution to Eq. (2.13) of the form

(M)
n,t) = 3_ 3(n,t) exp(-iE,t) (2.14)
2 Yy

xR

Eern

o which is a simple wave of wavenumber ky at t = 0

B

=0) = (M)
bin,t=0) = & . Q7 /2y,

a_w
._s'q;;

B T, Wy A
E

i.e., lim ¢(n,t) » &§ .., we obtain from Eq. (2.13)
£0 nM

i o(n) = (En—EM) d(n) + Vn 1 ¢ (n+l) + Vn S

I

N+ 1 ¢ (n-1)

R g Y

2
M™ vovyY
n+g=424+m " !

- 5

CEERE O 55 B

(2.15)

Usiang the complex amplitude defined by Eq. (2.2), the

relations (2.4) and (2.8) and from II

=E e

c(k) = q, exp(—iwkt)//f
k

i

i
)| | E

we may write

o

R e e e R e FeT NS L o Ry e Cap Mo
NS E% % VA ¥ - LR R



3 Y, ¥(n) -
7 (x,t) -_-Z 2 Lk—__ exp[i(}?n-r—nfzt)] (2.17)

= n
k
n

where kn E‘\/(nK)2 + p2. In terms of the solutions (2.14),

Eq. (2.17) can be written

(M)
Z(Z,t) = Qk exp[i(kME—wMFﬂ EE:
M An

n
(2.18)

where An = n-M,§{ = x - cIt and céM)

is the group velocity
of the central mode. The sum on tne right-hand side of
Eqg. (2.18) defines the envelope function for the initial

wave, i.e.,

ky v
G(M) = ZE: kM Yn d(n,t) exp(iAnKg') (2.19)
s n 'M

and is expected to be slowly varying (£’ = x - (cI+c(M))t)
The evolution of the surface modulation can be obtained
from the dynamic equation for the envelope function. Taking

(M)

the derivative of G with respect to time yields,

(M) | S
g_éi =Z oo [—iAanIcp(n) + i’:;éﬂ]exP(iAan)

n YM
n

or equivalently,

-
- 3 (M) _ n 'n - . 9%(n)
i (5? v o, ax) cM _ L F exp(LAnKE) i L (2.20)
n 'M
n
lo

l'\

3 APy " M " 3 s ot A N ;4-
RO I IR S e W TS L e e .-V‘Q.A;‘_“‘,‘t .U f‘}

" b h 'r
LDt | U 20 b Y A X | 0,0 PP 5.4 B A% 8,8 0. 0 0" '-‘”i'-:" l"' " "“ .\‘” E " N 5“

o(n,t) exp[iAnK(E—céM)tﬂ
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Equation (2.20) may be evaluated by substitution from

Eq. (2.15).

To simplify the nonlinear term in Eq. (2.15) we

rewr:te the restriction on the sum in the integral form

W

1 )
Wi exp[1(ﬁ>+§--€-r-r*1) Z] d2r .

over the area of ocean W. If we further assume the nonlinear

interaction to be local, so that the interaction coefficient

k,k k
is strongly peaked about kM’ we set I‘(M)E —R’—km——cl I‘;'lr?l to be a
n

constant. The cubic term in Eq. (2.20) may then be expressed as

2 8
(M) E k Y Y
Q (M) M L 2 s m
(————kM ) r (——YM) —k ®(2) exp(iA’kE) T ¢ (m)

2,m,q 2 m

!
N

Y *
exp (1AmKE) 2 ¢ (q) exp(-iAQKE)
q

and using the definition of the modulation function,

Eq. (2.20) reduces to

i{ 2, . i}c‘“’ et gl 2 e

§ Ky Y
M 'n
+ Y, {(En-EM) ¢(n) + Vn,nJrl o (n+l) + Vn,n-l (I)(n-l)}
An

X exp(iAnK) . (2.21)

11

VY
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The cubic coupling coefficient is given hy

i 2
con .1 ™) o
=42 kM

so that using the diagonal nonlinear coupling coefficient

ﬁﬁ = -wy from Part I since equations are in terms of slopes,

we have

E

M 1 M)} 2
con__1, [o00) W

We can expand the diagonal matrix elements of the

Hamiltonian (K+V) (n) about n = M to obtain

2

OE 2 3°E

(n-M) n

E -E_ = (n-M) —2 + Y mmae
on 2 8n2

Using this expansion allows us to sum the first series

in (3.14), i.e,

2

kY _ 3E M) , "2, ~2_.(M)
E MD (E -E ) 8(n,t)exp(ilnKE) = -i 2 6__ _ 1 _M¥e .
kK v, ‘“n"Eym 3k, 8% 2 .2 2
A n'M M gk ox
n M
(2.23)

The second series may be summed in a similzr manner when

the current has a harmonic decomposition, i.e.,

1 . - (M) . d M
:E: [. 'n+l¢(n+l)+Vn’n_l@(n—l)]exp(lAnKE) = kMU(; -1§§[UG( )] s
An

QA B 020 O Aoxmay 0 EmmRme) 0 Dxumooa 0 Jommgesl 0 DEoEmaml 0 Soreenmaal 000 SEMEENETE 00 Seapewen 0 SRmemen 00 SSroen 00 EoEmenl 20 peeamda 0 geaeans 0 omam E 0 fomeeed 0

(2.24)
Since EM : wM—MQ . we have
EE_M'.=U_)' —.Q:c(M)—c
oKy M K g I ! (2.25)

12
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the differe..ce between the group velocity of the central

mode and the phase velocity of the current patvern. Using

Egs. (2.23) - (2.25) in (2.21) yields

2_ (M) :
.3 AT U M) _ 1L o 3 [ _ (M) L (M) 2] M)
(2.26)
dsz
where mﬁ = :

ak,/

Fquation (2.26) is the equation of evolution for

1
the envelope function G(h). In the absence of a current

ar1 in a coordinate system translating with the group

velocity cg“” 7 Le€ny; & = x—cg“” t, Eq. (2.26) can be
written
(M) 2. (M)
G ==L wp 6 o) o002 o) (2.27)
t 2 M ag2

which is immediately identified as a nonlinear Schrodinger
equation. The discussions leading to Eq. (2.27) have been
varied, some based on scaling arquements, e.g., Diprima,

et al. (1971), Benney and Newell (1967), and more recently
on the averaged Légrangian approach of Whitham, e.g., Lake
and Yuen (1975). This later approach was also used taking

into account dissipatio.: by Davey (1972) to derive (2.27) .

13
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In addition to the wave-wave nonlinear interaction,
the current interactioi: and the dispersive effects of the
wave field, we introduce a lin:ar model for the generation

of waves by wind and their viscous decay

s & 6 i . . .
oy = kM [i—ma's1gn(kM) - v] (2.28)
where u and v are the wind and viscosity coupling strengths
respectively. Including these terms in the equation of

evolution of the envelope functiocn yields

B 3, AU _ (M) (M) 2 () L1 L. (M)
i apt (oytl) ot -ay+C |67 [“) @ +5 0yl G

- [kMU . CR‘M) IG(M)IZ] g™ (2.29)

The nonlinear coupling coefficient is imaginary in the non-
conservative system, i.e., (“M) E-CRQ“ + i CIQD . Note
that the wind coupling model is intended to demonstrate the
effect and not to provide a "realistic" generation term

for the wind. 1In calculations this term would be replaced

by the Phillips-Miles linear model of wind coupling to the

air-sea interface.
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2.2 THE CONSERVATIVE SYSTEM

Consider the form of Eg. (2.28) for an inviscid

fluid in the absence of wind and with no current present.

If we also suppress the index of the central mode (M) then

N

J': : oG 9G il 32G 2

£ 1 —— ! il — ! '-—.. =

B Lysg F o' 5t 7w 5 + Clg|“ G =0 : (2.30)
o % dx

Assume a solution to Eq. (2.30) of the form

ﬁ”_
=4

L e
S el Rl )

[ o

G(x,t) = A(x,t) exp[i@ (x,t)] (2.31)

where A and @ are real. Using (2.31) in (2.30) and equating

T
e
poss
ot

ol W

real and imaginary parts yields

i Box —GDQZA N —%_ [th tu' @

(N]

[@ A ] [A + w'A ]A (2.32)

where the subscript notation for partial derivatives has
been adopted and ' denotes a derivative with respect to k.

We identify the derivatives of the phase function

EZm ER F¥=E e

with a wavenumber (k) and frequency (Q),

‘-
£ t =)
s

.~$ K = @X ; Q=—@t (2.33)
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so that (2.32) becomes

A - K2A - _Z_ [—Q-+Kw' - CA2]A =0
XX wll

- £ ‘A Ja =
[KA]X‘FNH A, +wA JA=0 . (2.34)

The first of Eq. (2.34) can be integrated under the assump-
- tion that k and Q are constant to yield

2

a)? = 2 [-Q-+Kw' + % K o't - % CAz]Az . (2.35)

wll

The solution to Eq. (2.35) is

A= AO sech B(t - x/vg) (2.36)
with
» l1 2 . L ; 2
Q= ko' + 5k w' 5 CAO
]
B = £ A vV (2.37)
== w.. O g . -

From the second expression in Eq. (2.34) we have

A + (0" + k0" A =0 (2.38)

so that the amplitude is constant along the trajectory
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The solution to Eg. (2.30) is therefore

%

G(x,t) = A0 sech (Bgr) Aﬁfx-vgt) exp i(kx-Qt) (2.40)

which is both localized and stationary as discussed by
Hasegawa and Tappert (1973a,b). The quantity'(agr)
1s seen from Eg. (2.22) to be related to the slope of

the central mode [/7 kM Q(M)], so that aqain using indices

we have
G(M)(x,t) = A sech[,ﬁ'kM Q(M)Ao(x—vgu” t)] exp i[KMx-QMt
(2.41)
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3 STABILITY OF FINTJTE AMPLITUDE WAVES

In a now classic experiment, Benjamin and Feir (1967)
mechanically generated a wave of fairly large slope (.17) on
the surface of a water tank. Perturbations of this wave
located at sidebande of the initial wavenumber induced a
modulation of the generated wave. The location of these
sidebands were determined from a pertirbation analysis
and found to grow exponentially out of the background noise
in the surface wave spectrum. This instability waz: ob-
served exéerimentally as a randomization of the finite
amplitude wave some distance irom the wave source. A
numerical calculation of this break up process using the
third order nonlinear modal equations was done in Part I
for deep water waves.

Hasimoto and Ono (1972) have shown, using a pertur-
bation expansion of the dynamic equations for water waves,
that the envelope function of the first order surface wave
amplitude satisfies an equation of the form (2.30). TiLeir
analysis indicates that a nonlinear plane wave solution to
Eq. (2.30) yields a second order Stokes wave profile for
the surface elevation. The aritical results of Benjamin
(1966) and Whitham (1967) for shallow water wave profile for
reproduced, i.e., the dynamic equation changes character
from elliptic (Kho < 1.36) to hyperbolic (Kho > 1.36) where
K is the wavenumber of the wave train and ho is the depth of

the water.
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Whitham (1967) determined that the coupled modulations
of the phase and amplitude in the averaged Lagrangian approach
is equivalent to the sideband modulation used by Benjamin
(1966) and later by Benjamin and Fier (1967). Recently,

Lake and Yuen (1975) have shown that Eg. (2.30) can be derived
from an averaged Lagrangian when the spatial variation in
the envelope function is not neglected. One may also derive

Egq. (2.32) iu a coordinate system translating with the velocity

w', i.e., £ = x-w't, from the Layrangian.

SHCRTICIEES EEE

(3.1)
where A and @ are defined in Eq. (2.31). The equations of

motion are obtained from the variation

3A 9A B B _
(SJ-L[ ’ 'é'gr 'é";_’r @r agr at] dxdt = 0 (3.2)
to be

o e ], [oer ]_ o
ot JA 9§ 9A 9A

_3('3—5), _B(BE)J
9 9L 9 i 9L ] oL
3 {7y T aE T = . (3.4)
()]t p(5Y) <

L _\d0&/ .

Equation (3.4), using (3.1) is identical to Equation (2.32).

This system behaves like a particle under the influence of

19

RO T TR LT S 22D
-} ’J" AR K '?'J‘. N '.j‘“‘-d (LT N St

..} 7 L L L N ‘ AN W
L N R U X X X %4
o ,:i ) _r“ AR A0 0% g‘._“ Y

fﬁ;’hﬁn




a central potential of the form

v(a, @ = - 18,2, —ETiA4 _ (3.5)

w'' 9t 2w

as discussed by Watanabe (1969).

To examine the instability of the finite amplitude

wave, we extend the arguments of Hasimoto and Ono slightly

and consider the envelope function

G(x,t) = (A + ea)) expi (kx-0t+e0), (3.6)

(1)

where Ao’ k and Q are constants, A
x and t, and € is a.smallness parameter. Substituting

Eq. (3.6) into (2.30) and linearizing with respect to ¢

and 0 are functions of

yields,

Aél) + % w'' Al egg =0

R 6, = % w' Aéé) - 2CA02 afl) o 0 (3.7)
where it is determined that

= kw' + % sz"- CA02 . (3.8)

as found in Section .2.2. Equation (3.7) is defined in a

coordinate system translating with a velocity w' + kw'',

i.e., £ =x - (0" + x0'" )t .
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To determine the stability of the solutions to
Equation (3.7), we substitute the second equation into

the partial time derivative of the first to obtain

.i:q

AL 4 (1 w2 Al + e ea 2 A <

3.
tt EEEE o &g ) (3-9)

|_f

-

il

i A solution to Equation (3.9) of the form exp[i(klx—wlt)]

yields the dispersion relation

EAES

llkl 2 ’

A 2 _jw _2 - 2 [N ]

- T R (kl 4CAO/m) (3.10)
¢ &

, which, since C/w'' > 0, has unstable solutions when

g »

E

i 2n, Vesu >k, . (3.11)

Using the value of C/w'' obtained in Section 2.2, we have

-~
P
a

= "%
>
a .1;1'.;

the condition

a 3/2 (M)

e (2) AOkMQ > kl (3.12)

2 M

e (M)

N where Q and kM are the initial slope and wavenumber of
4 the central mode.

} Condition (3.11) is just that obtained by Benjamin

) !

.? L"‘v: . .

g O and Fier (1967) for the stability of a finite amplitude

L . wave. The amplitude of the sideband (al) grows like

a; ~ exp(yt)

W
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where from Eg. (3.10)

( 1/2
. | M) 2 2
Y =3 mM{Z [Q Ao] -8 } S (3.13)

with Wy the frequency and Q(M)

the initial slope of the
a central mode, and § the fractional chanqe in the frequency

% induced by the nonlinearity. Taking the variation of Yy

_ o)

with 6, we determine Gmax

A, so that the initial slope
iy of the central mode determines the position of the sidebands

s . . M) |
f receiving maximum amplification, i.e., w, = [l t Q( )Ao]wM

- rate is
Y=i/_2_m(KA)2
k o :
: On writing m = KAo fcr the slope of the large amplitude

. wave, we see that
|

Top = (V7 m?) 1 (3.14)

describes an e-folding time for the Benjamin-Feir interaction.
Reference to the nonlinear term in Eq. (2.5) suggests that

and k, = [1 £ 2Q(M)Ao]kM. At these wavenumbers the growth i
) -gp €an be taken as a characteristic time scale for nonlinear ‘

) interactions to develop.
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3.1 COMPARISON WITH THE FEIR EXPERIMENTS

The numerical code described in Part I integrates
Egs. (2.5) for a specified set of modes, but is restricted

to one-dimension, with all wavenumbers parallel to, say the

x-axis. A "fetch" L is specified with periodic boundary

conditions at x = - % and x = %. The mode spacing is

Ak = 2n /L.
To integrate Egs. (2.5) with CI=0’ ie., no external
current, the jinitial amplitudes an(O) (kn = nAk, n =1, 2,

...) at t = 0 are specified.

v )
If the initial state of Eq. (2.5) is prepared to be

that of a soliton, then the nonlinear interactions should not

change the surface structure, i.e., the soliton should persist

as it propagates along the water surface. The initial condi-

tions for Eq. (2.5) are obtained by taking the Fourier trans-

form of the envelope function at time t = 0, to obtain the

mode amplitudes

o]

a_(0) = %f G(E,0) exp[i(K - k) g]dg : (3.15)

where G(£,0) is given in Eq. (2.41). Integrating and norma-
lizing Eq. (3.15), we obtain for the mode amplitudes of an
initial soliton

an(O) = aN(O) sech (N - n) mAk (3.16)

V8 m K

with the central mode given by wavenumber K = NAk and m the

slope of the soliton.
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In calculations, Eq.

(3.16) is used to represent the

initial soliton by a finite number of modes.

In Figure la

is shown an envelope function constructed from fifteen modes

0.01 cm_1

with the parameters, K = 0.2516 cm

m = 0.064, where m is the slope of the soliton.

This envelope

is given by the absolute value of

q_(t)
Gix,t) = j{: L
kn

n

where

Q
i

exp[i(N - n)Ak(x - cgtq

(w, ~wy) /8K (N = n)

is the group velocity of the central mode and the slope

The modal rate

variables from Eq. (2.16) have been used.

equations in Part I are written in terms of the mode slopes,

i.e., the g's, so that in Fig. 1 and in all subsequent figures

involving ‘“he envelope, it is the absolute value of Eq.

that is plotted. The mode slopes for Fig. 1 are listed in

Table I.

In Fig. lb the displacement of the water surface is

depicted for the above soliton.

The surface displacement '

described by Egs. (2.2) and (2.3).

The parameters for this

example were selected to correspond to the wavepulse exper-

iments conducted by Feir (1965).

The initial amplitude of

the central mode in Eq. (3.16) is obtained from the exper-

iment using the expressicn
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TABLE I: Slope amplitudes [see Eq. (3.164 for the "solitons"

_ studied,
s
L
e Mode Number Mode Slope Amplitudes of Solitons - q, (0)
T n - N
7 107° 4 % 107°
-6 2.33 x 1072 9.32 x 107%
-5 5.36 x 10”2 2.14 x 1073
-4 1.2, x 1073 4.84 x 1073
;. -3 2.66 x 1073 1.06 x 1072
R w3 5.6 x 102 2.24 x 1072
- =1 1.03 x 1072 4.12 x 1072
0 1.41 x 1072 5.64 x 1072
- =7
By 1 1.22 x 1072 4.88 x 10°°
E§ 2 7.73 x 1073 3.09 x 1072
e 3 4.34 x 1073 1.74 x 1072
! 4 2.34 x 1073 9.36 x 1072
R 5 1.25 x 1073 5.0 x 10>
i 6 6.64 x 10”4 2.66 x 1073
L -4 -3
W 7 3.5 x 10 1.4 x 10
. . 2 2
& Viscosity 0.47 cm”/sec 0.19 cm™/sec
Wi coefficient-v
i Soliton 0.064 0.256
Slope-m
oS Central 0.2516 cm T 0.2516 cm T
W Wavenumber-K
: -1 -1
Mode 0.01 cm 0.01 cm
. Spacing- k
.4:‘-‘.'.:
%9 Nonl inear 11.0 sec 0.69 sec
0% Growth time-t
26
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aN(O) = G(x=0) j{: sech[ﬂ&k{n - N]K(r% mK)]

n !
(3.18)

e

ot
- where m = 0.064 and G(x = 0) = 0.254 cm for the first trace

e |

in Fig. 3 of Feir (1965) yielding aN(O) = 0.056 cm. The

slope of the soliton is given by the sum of the mode slopes,

% W e

f -
L =5

i.e.,

(3.19)

| = R
3
1
=
:[\v/]
Q
s
WA
5" S

¥ which is also equal.to the central wavenumber times the

]

maximum surface displacement.

Figure 1 analytically models the shape of the pulse

4
-‘

' generated in Feir's experiment as measured four feet from the

wavemaker. At a distance of twenty-four feet fiom this

A

point, i.e., twenty-eight feet down the tank, the pulse

amplitude is one half its initial value. This dumpinyg of

the pulse is simulated in the present calculation using a

phenomenological viscosity coefficient in the rate equations.

The linear amplitude damping coefficient yields

= = TR

b

G(x,t) = G(x,0) exp (-at) (3.20)

SRR, ¢
vl

-,
B

A where t is given by the ratio of the distance traveled to

|25

the group velocity. The decay rate is given by a = 0.03

sec—l, or in terms of the viscosity coefficient v a/K2

= 0.47 cm2/sec.
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Feir's discussion does not include the concept of

a soliton. The analysis of Chu and Mei, (1970) however,

compares the evolution of the pulse modeled as a soliton
with the experimental results. As they pointed out the
dominant effect is the attenuation in amplitude due to the
short time of evolution; i.e., short compared with the
e-folding time which is given in Table I as 11 sec. 1In
Fig. 2 the results of the present calculation are given for
the pulse after 24 seconds or approximately 24 feet from
the initial point. The shape of the pulse is virtually
unchanged from Fig. 1. The normalization has changed from
0.254 cm, however, to 0.115 cm; a 0.45 reduction in amplitude.

Feir describes the launching of six pulse shapes,
all with the same central mode number an< length cf modu-
lation, but with increasing amplitudes. The simulation
of run (1), shown in Figs. 1 and 2, indicates that this
pulse is very close to a soliton in shape. The remaining
runs, with their increased amplitudes, must therefore not
be solitons. The modulation instatility of these waveforms
causes these pulses to kreakup into one or more stable
solitons asldiscussed by Hasimoto and Ono (1972). This
interpretation is consistent with what is observed in the
latter runs of Feir [1965].

In Fig. 3 the last of the six runs from Feir (1965)
is simulated. Since only the amplitude was increased between

this and the first run, the mode slopes of the soliton are

i
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éimply scaled by a factor of four to correspond with the
experiment. The viscosity coefficient has been modified
in this case to again give the gross attenuation of the
pulse. These quantities, along with the slope of the pulse
are listed in the second column of Table I.

The initial pulse is depicted in Fig. 3a, as it would
be at the wave generator rather than at four feet along
the tank as was the soliton in Figs. 1 and 2. This is
admittedly not a complete simulation of the experiment.
After traveling 28 feet down the tank, however, Fic. 3b
shows the same general structure observed for the breakup

of the iritial waveform.

3
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4. STABILITY*

We discuss first the stability of the soliton solution
to Eq. (2.27) given by Eq. (2.41) when a small sinusoidal
ripple is impressed on it transverse to the direction of
soliton propagation.

Equation (2.27) may be rewritten in a coordinate sys-
tem translating with a velocity cq parallel to the x-axis,

i.e., £ = x - cgt, in two dimensions in the more convenient form
if=—3|=—=5-2>+4&" |6]°c : (4.2)

From Eq. (4.1) we obtain the relation for the wave enerqgy

(in scaled units)

* *
.2 2 _ "k | * 3G 3G 3 [~* 3G _ _ 3G
1§E|G|—-——§§g(G > Gag) Zay(G 5y Gay).
(4.2)
A solution having finite extent in the £-direction and periodic

boundary conditions in the y-direction then satisfies the

energy integral

J[ |G|2 dt dy = constant (4.3)
N

over the surface area I. A developing instability thus

extracts energy from the soliton.

*This section is taken lirgely from Cohen, Watson and West (1975) .

32

U

% LS R T

. - i ; Wy " TR o o : ' . AV W N W L P T TR el M



o

= pt B AAA

LA

e

== =R

e e o

. P
= N
_ S /

¥ =

5

!

-

The solution of the nonlinear Sch:.ddinger equation

which we investigate is of the form

m2t/4) (4.4)

G = G, + Y(£,t) cos(Ly) exp(—in

where GS represents the soliton solution (2.41) and Y is
assumed to be very small relative to the amplitude of the
soliton. This is our transverse perturbation. Tt is con-

venient to introduce the dimensionless variables

-
1"

wKt/8

0
H

V2 m K & (4.5)
and to write the perturbation amplitude as the complex function
Y(s,t) = U(s,1) + 1 V(s,T) ; (4.6)

where U and V are real. Substitutiing expression (4.4) into
the equation of evolution (4.1), linearizing in Y, and equa-
ting to zero the real and imaginary parts of the resulting

expression, yields the coupled equations E

z |

oV _ 3°U
—5;-..——32+ (H + W)U
S
and
2
¥-=—3V+ (H - W)U . (4.7)
T as2

The coefficient functions in Eq. (4.7) are given by
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H=0Q -1+ 4 sechz(s) .

2 sechz(s) (4.8)

=
il

and
Q = 22/(mK)2 5 (4.9)

Consider first the case of a simple exponentially

growing instability, for which we write

(=1
"

u(s) exp(ET)
V = v(s) exp(ET) 3
When substituted into Eq. (34) this yields

~-Ev = uSS + (H + Wu

Eu = L + (H - Wv ; (4.10)

where the subscript notation for derivatives has been adopted,
i.e., u, = du/ds, etc. For stcable oscillating perturbations

we would, on the other hand, write

(=
I

u(s) sin (ET)

V = v(s) cos (ET)

which when substituted in Eq. (4.7) yields

Ev = uSs + (H + W)u
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Fu = Veg + (H - W)v L (4.11)

Since neither set of Egs. (4.10) and (4.11) is self-
adjoint, we have no a priori assurance that normalizable

solutions will be found with E real.

W BRSO

At this point it might be observed that our discussion

‘g 2 is similar to that of Schmidt (1975) who studied the stability
2% It

SN ERL . . .

™ of a plasima wave soliton. His soliton was of the form (2.41),
' g but his equation describing the transverse perturbation was

somewhat different from Egs. (4.7). Schmidt observed that

for the case

Egs. (4.10) and (4.11) have two sets of solutions:

Even Parity: v = V(O) = sech s
u =20
0dd Parity: v=0
u=ul® = g0 45 (4.12)

where the superscript indicates the condition 0 = E = O.

The solutions Egs. (4.12) suggest using perturbation
theory to analyze Eqs. (4.10) and (4.11) for small Q, or long
wavelength perturbations. Consider first the odd parity case

and define the operators
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L = (dz/dsz) + 2 sech2 s -1

(@%/as%) + 6 sech® £ ~ 1 . (4.13)

3
1]

Equations (4.10) can then be rewritten

L'u = - Ev - Qu

L'v=FEu-Qv + 4 v sech2 [ (4.14)
and . using Eq. (4.12),

ul@2 o (4.15)

Multiplying both expressions in Egs. (4 14) by u(o)

and
integrating over all s, using Egs. (4.15) and substituting

the first expression into the second, yields

E2 = --Q2 + 40 f u(O)v sech2 s ds j u(o) v ds

(4.16)

If we write the solution to Eq. (4.14) as a first order

correction term,

v=gvd | (4.17)

then from the second expression in Eq. (4.14), to lowest
order in E ard Q, we obtain [see Egs. (4.134

L V(l) = u(o) . (4.18)

~
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To evaluate the ratio of integrals in Eq. (4.16) and

thereby obtain the eigenvalue E, we use the relations

et o i 5s L 4
R = EEs

(=]

=S

The first of these relations derives directly from Eq. (4.14),

ez == =8

whereas the second is the result of a numerical integration.

Neglecting Q2 in Eq. (4.16) we obtain the eigenvalue

- 23

E ~ 1.16 g1/2 (4.19)

s

Equation (4.18) was numerically evaluated for later use.
Also the above integrals were evaluated numerically as a

test of the solution.

X
i

An analysis similar to the above, starting with the

even parity zeroth order solution [see Egs. (4.12)] gave

stable, oscillating modes [the case described by Egs. (4.11)]

R

for small Q. This contrasts with the results of Schmidt

(1975) for plasma waves, where the even parity solution was

T 2
&7

unstable.

ofa
W

For a shorter wavelength perturbation, corresponding

to Q >> 1, Egs. (4.7) have the approximate form
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These equations describe the propagation of linear waves,
decoupled from the soliton. An impressed ripple of short
wavelength will thus tend to propagate in accordance with
the linear dispersive wave equation.

For Q > 1 there is no normalizable solution to Egs.
(4.10) and (4.11) when E = Of sO a transition from simple
exponential growth to simple oscillatory behavior is not
possible in the range 1 < Q < .

Equations (4.7) were numerically integrated using the
perturbation solution u = u(o), v = Ev(l) as the starting
condition for t = 0. For Q < 1 simple exponential growth
consistent with the result (4.19) seemed to occur (for the
two exponentiating periods that the calculation was continued).
For Q = 2 the U and V solutions oscillated. Growth was not
observed within the accuracy of the calculation, but propaga-
tion away from the soliton did occur. For Q = 1.5 propaga-
tion away from the soliton was observed, but at a slower rate.
Some growth seemed to occur. The oscillatory motion for the
larger Q value is consistent with our conclusions based on

Egs. (4.20).

Defining the e-folding rate y by the relation yt = ET,

*In this case, Egqs. (4.10) and (4.11) are each equi-
valent to a one-dimensional Schrodinger equation with an

attractive potential. If Q > 1, this would correspond to a
bound state of positive energy.
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o M
Ay H:-
A L we have summarized ia Fig. 4 the instability discussed above.

The quantity YTgp [Eq. (3.14)] is plotted against Ql/2 = 2/ (mK).

A

o Due to the limited accuracy of our calculations, the growth

4 J l{ﬂ l
hy 4

uﬁ &5 rate in the interval O > 1 is not shown.

We now discuss the propagation of two specific solitons I

ANLE |

through a train of waves of wave number significantly different
from that of the soliton. For both solitons the interval L
was chosen as 100 m, so the wave-number interval was Ak =

0.0628 m L. The starting Fourier amplitudes were obtained

=8 mn

using Eq. (3.16). The initial slopes qn(O) are given in
columns (3) and (4) of Table I.

The soliton of column (3) has a central mode number

o
TEORS

¢ N = 10, with amplitudes in the range 6 <n < 14. We shall
refer to this as the "fat" soliton, since its broad spectrum

would seem to violate the conditions under which the nonlinear

e

Schrodinger equation was derived.

”

Equations (2.5) were integrated for an interval of

2, 20 seconds for the fat soliton with the initial conditions

P

of column (3) in Table I. The wave height ¢, as obta: ned

from Eq. (2.3), is shown in Fics. 5a,b at t = O and 50 secs

o |

Sy for the fat soliton and in Figs. 6a,b for the "thin" soliton.

The corresponding envelope function G for the thin soliton

|8
Iy
-
o
S

o is shown in Figs. 7a,b for t = O and 50 secs. Again no dis-

s

tortion is discernable.

We now study the interaction of these two solitocns

™ with other wavetrains. For the first case we let the thin
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o
n.q"

soliton interact with shorter wavelength waves, corresponding
to the mode numbers n = 32 and 33. The starting slopes at
t = 0 were q32(0) = 0.1 and q33(0) = 0.15, with respective
phases of 0° and 45. The wave amplitude ¢ is shown in Figs.
8a,b,c at t = 0, 30, and 50 seconds, respectively. The
envelope function G is shown at these times in Figs. 9a,b,c.
Little distortion has occurred at 30 secs. At 50 seconds,
however, the soliton edges show an appreciable distortion.
It is here where G is small that a modest phase distortion
can most readily upset the cancellation of Fourier amplitudes.
These results certainly suggest that eventually the soliton
wculd be destroyed by interaction with a spectrum of short
wavelength waves.

The next example of soliton interaction involved a
train of long wavelength waves, with mode numbers n = 6 and
7. The starting slopes were q6(0) = 0.1 and q7(0) = 0.15,

and the thin soliton was again used. The displacement ¢ is

shown in Figs. 10a-f at various times in the interval 0 < t<20

seconds. Marked distortion occurs at 2 secs, about one wave
period at the soliton carrier frequency. The soliton substan-
tially reconvers its shape at 10 seconds and then again at

20 seconds. It would appear that the soliton is being com-
pressed and stretched by the orbital fluid velocity of the
interacting wavetrain and that this is to some extent rever-

sible. To investigate this further, the above calculation

44
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0

was repeated but at 10 seconds the amplitudes dg and q, were
set equal to zero. At this time the soliton has the from
shown in Fig. 10d. At 20 and 50 seconds it has amplitude
shown in Figs. lla,b. The corresponding envelope function
is shown in Figs. 12a,b at 20 and 50 seconds. It is not
clear in this time interval that the soliton is undergoing

a progressive distortion. The leading edge (to the right)
of the envelope function does seem to be steepening somewhat
at 50 seconds. A similar asymmetric distortion was noted

by Lighthill (1967).

The final illustration studied of soliton interaction
was that of the fat soliton interacting with a train of longer
waves. These corresponded éo modes n = 3 and n = 4, with
starting slopes q3(0) = 0.06 and q4(0) = 0.09 and respective
phases of 0° and 45°. The soliton is shown in FPigs. 13a-d
at times from 0 to 20 seconds. The soliton in this case
does not seem to recover, but progressively losses its initial
waveform. It should be recalled that this was thought to be
a "marginal" soliton.

The above examples suggest that a random field of waves
of wavelength much shorter than that of the soliton will
probably break up the soliton, but rather slowly. A random
wave field of much longer waves can probably destroy a soliton
in a few wave periods. A periodic train of long waves dis-

torts the soliton, but it shows some recovery.
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A

SUMMARY AND CONCLUSIONS

A nonlinear Schrddinger equation is derived from the
eigenmode rate equations developed in I, II and III. The
solutions to the nonlinear Schrédinger equation are solitons
which propagate without change in form as observed experi-
mentally by Feir (1965) and Lake and Yuen (1975).

Although the one dimensional form of the nonlinear
Schrgdinger equation is the same as that describing the
propagation of an electromagnetic pulses in nonlinear optical
fibers, the two dimensional equation is different. A linear
stability analysis is made for an imposed transverse ripple
in this latter equation. A slowly growing instability is
found at wavelengths comparable to, or longer than, the
length of the soliton. A slowly developing instability is
found also for a soliton propagating through a train of
waves of wavelength appreciably smaller than that of the
soliton. A soliton propagating through a train of waves
with wave-length much larger than that of the soliton exhibits
gross distortion due to the orbital fluid veloci:y of the
wavetrain. This distortion is to some extent reversible,
as the soliton tends to "recover" when the wavetrain is
damped to zero amplitude.

The calculations suggest that a random field of waves

of wavelengths much shorter than that of the soliton will
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probably break up the soliton, but rather slowly. A random

wave field of much longer waves can probably destroy the . |
Ly soliton in a few wave periods. A periodic train of long

waves distorts the soliton, but it shows some recovery. l
This suggests that the soliton mechanism will lead to a !
A measurably enhanced correlation times for gravity waves in
a random wave field. This speculation can be experimentally
tested using a form frequency radar to directly measure the
! fourth order cumulant of the wave field as discussed in l

4 Cohen, Watson and West (1976). ‘
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FIGURE CAPTIONS

The soliton specified by the slope amplitudes of
column (1), Table I, is shown at t = 0. (a) The
envelope G and (b) the wave displacement r are
normalized to 0.251 cm.

The soliton of Fig. 1 and its envelope are shown
at t = 24 seconds. (a) G and (b) r are normalized
to 0.115 cm.

Wave packet with slope amplitudes given in column
(2) of Table I is shown in (a) for time t = 0.

It is shown at t = 24 seconds in (b).

The e-folding rate y for soliton transverse instab-
ility is shown in units of the Benjamin-Fier time
scale Tap EQ. (3.14), The quantity Q is defined
by Eq. (4.9).

The "fat" soliton of column (3), Table I, is shown
at (a) 0 seconds and (b) 20 seconds. The surface
displacement is normalized to 24.7 cm and 23.48 cm,
respectively.

The "thin" soliton of column (4), Table I, is shown
at (a) 0 seconds and (b) 50 seconds. The surface
displacement is normalized to 10.19 cm and 9.91 cm,
respectively.

The envelope function for the soliton of Fig. 6

is shown at (a) 0 seconds with an AO of 10.19 cm
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and (b) 50 seconds with an AO of 9.91 cm.

The thin soliton passing through an infinite wave-

train of higher frequency waves is depicted at time

t with normalization A (a) t =0, A, = 10.19 cm;

0’ 0
(b) t = 30, A0 = 9.9 cm; (c) 50 seconds, AO

The envelope function for the interacting soliton

= 8.4 cm.

of Fig. 8 is shown at time t and normalization AO;

(a) £t =0, AO = 10.19 cm; (b) t = 30, AO = 9.0 cm;

(c) 50 seconds, A, = 8.4 cm.

0

The thin soliton passing through a wavetrain of

lower frequency waves is shown at time t and nor-

malization AO; (a) £t =0, AO = 10.19 cm; (b) t = 2,
A0 = 2..27 em (c) t = 8, AO = 20.32 cm; (d) t = 10,
AO = 16.19 cm; (e) t = 18, AO = 17.11 cm; (f) t =
20 seconds, AO = 18.22 cm.

The soliton of Fig. 10 is shown for the case that

the interacting wavetrain was damped to zero ampli-

tude at 10 seconds. The times and maximum surface

displacements are (a) 20 seconds, 16.42 cm and

(b) 50 seconds, 16.11 cm.

The envelope function, corresponding to the calcu-

lation shown in Fig. 11, is shown at time t with

corresponding A 's; (a) 20 seconds, 16.42 cm and

0
(b) 50 seconds, 16.11 cm.

The fat soliton passing through a lower frecquency

wavetrain is shown at times t with corresponding
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Ao's; (a) 0 seconds, 24.07 cm; (b) 2 seconds,
47.49 cm; (c) 10 seconds, 49.81 cm; (d) 20 seconds ‘

4 and 42.61 cm.
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