

U. S. NAVAL PROVING GROUND DAHLGREN, VIRGINIA

UNCLASSIFIED

NPG REPORT NO. 5-47

BALLISTIC TESTS AND METALLURGICAL EXAMINATION OF JAPANESE HEAVY ARMOR PLATE

Prepared by: HI. De Kocher Prepared by: H. L. DeRocher W. W. Meyers Ordnance Engineer Metallurgist

Reviewed by:_ dane Reviewed by: R. H. Lyddane Director of Terminal Ballistics Research

C. G. Franklin Comdr., USN Terminal Ballistics Officer

Reviewed by: W.C. Reviewed by: W. C. BRYSO Capt., USN Experimental Officer

W. H. BENSON Capt., USN Ordnance Officer

APPROVED: /J03

× *

Rear Admiral, USN Commanding Officer

CLASSIFICATION (CANCELLED) (CHANGELA Unclapsified in Achiever of and in the obs 2 /1178, PAH on 6/24/76 B. Brouges (MANK) SSII '0/31/73 (DAIR) (MANK) UNCLASSIF UNCLASSIFIED Page 1

UNCLASSIFIED

BALLISTIC TESTS AND METALLURGICAL EXAMINATION OF JAPANESE HEAVY ARMOR PLATE

1. The U.S. Naval Technical Mission to Japan obtained a number of armor plates from the Japanese and forwarded them to the U.S. Naval Proving Ground, Dahlgren, Virginia. A representative number of these plates were tested ballistically and were subsequently given a metallurgical examination. The results of these tests are presented herein.

2. The ballistic tests were performed by the Plate Battery of the U.S. Naval Proving Ground, Dahlgren, Virginia, and the metallurgical examination was conducted at the Armor and Projectile Laboratory of the U.S. Naval Proving Ground, Dahlgren, Virginia, as part of the general program of investigation on foreign ordnance.

1

UNCLASSIFIED

PREFACE

AUTHORIZATION

Authorization for testing the Japanese armor plates was given by BuOrd Ltr. EF37(Re3a-G3) dated 15 August 1946.

<u>OBJECT</u>

This investigation was conducted to obtain ballistic and metallurgical information on Japanese Armor and to verify where possible the Japanese manufacturing methods reported by the U.S. Naval Technical Mission to Japan.

SUMMARY

Twelve Japanese heavy armor plates from 3" to 26" in gauge were tested ballistically in accordance with standard U. S. testing procedures. Where the plates were of the same gauge as U. S. armor the same test conditions were used. Following the ballistic test a complete metallurgical examination was made on each plate, including the following: chemical analysis, tensile data, Charpy V-notch data, normal tensile data, hardness distribution (Class A only) macrostructure, and microstructure.

Ten of the 12 Japanese heavy armor plates were found to be inferior to average quality U. S. armor. One plate, 7" Class A Plate No. 3133, was equal to the best U. S. armor of the same gauge. The 26" Japanese Turret Face plate could not be compared as no U. S. armor of this gauge has been manufactured. Experience with heavy U. S. armor, however, indicates this plate to be inferior also.

UNCLASSIFIED ` ¥'∂ `

NPG REPORT NO. 5-47

The metallurgical investigation revealed the Japanese plates to have inferior Charpy V-notch impact properties and to contain a greater amount of dirt than U. S. armor. The four Class A plates were found to have light chills and low face hardness. None of the metallurgical characteristics were found to be superior to those of U. S. armor.

Only those metallurgical data obtained by the Naval Proving Ground are contained in this report at present. Data obtained by the several U. S. Armor Manufacturers, Appendix (B) to this report, will be forwarded when received by the Naval Proving Ground.

UNCLASSIFIED

Page iv

PAGE

٩

CONTENTS

		<u>_NO</u>
I.	INTRODUCTION	l
II.	THE BALLISTIC TEST	2
	 Methods Test Conditions and Results 	2 3
III.	SAMPLING PROCEDURE	7
	<pre>1. Selection of Coupons 2. Sectioning</pre>	2
IV.	METALLURGICAL TEST RESULTS	9
	 Chemical Analyses Tensile Properties Charpy V-notch Properties Normal Tensile Properties Macrostructure Hardness Distribution Microstructure 	9 10 10 11 11 12 12
۷.	MANUFACTURING PROCESS	14
VI.	DISCUSSION	15
VII.	RECOMMENDATIONS	17
APPEND	IX A - TABLES AND FIGURES	18
AP PEN D	IX B - METALLURGICAL TEST DATA FROM THE ARMOR MANUFACTURERS (To be forwarded under separate cover when received by NPG)	35

UNCLASSIFIED

٠

I

l

1

* .

LIST OF FIGURES

UNCLASSIFIED

.

	Fig. 1	NP9 33777	Face of Plate No. 3133
	Fig. 2	NP9 33778	Back of Plate No. 3133
	Fig. 3	NP9 33783	Face of Plate No. 3124
. •	Fig. 4	NP9 33784	Back of Plate No. 3124
	Fig. 5	NP9 33978	Face of Plate No. 3113
	Fig. 6	NP9 33979	Back of Plate No. 3113
]	Fig. 7	NP9 34246	Face of 26" Turret Face Plate
]	Fig. 8	NP9 34247	Face of 26" Turret Face Plate
]	Fig. 9	NP9 34248	Back of 26" Turret Face Plate
1	Fig. 10	NP9 33775	Face of Plate No. 3114
I	Fig. 11	NP9 33776	Back of Plate No. 3114
H	Fig. 12	NP9 33661	Face of Plate No. 3116
F	Fig. 13	NP9 33662	Back of Plate No. 3116
F	fig. 14	NP9 33666	Face of Plate No. 3120
F	fig. 15	NF9 33667	Back of Plate No. 3120
F	`ig. 16	NP9 33779	Face of Plate No. 3122
F	`ig. 1 7	NP9 33780	Back of Plate No. 3122
F	'ig. 18	NP9 33650	Face of Plate No. 3123
F	ig. 19	NP9 33663	Back of Plate No. 3123
F	ig. 20	NP9 33781	Face of Plate No. 3128
F	ig. 21	NP9 33782	Back of Plate No. 3128
F	ig. 22	NP9 33787	Face of Plate No. 3118
F	1g. 23	NP9 33788	Back of Plate No. 3118

Page vi

.

Fig.	24	NP9 33648	Face of Plate No. 3108
Fig.	25	NP9 33649	Back of Plate No. 3108
Fig.	26	NP9 34728	Charpy V-notch Impact Properties Plate No. 3133
Fig.	27	NP9 34729	Charpy V-notch Impact Properties Plate No. 3124
Fig.	28	NP9 34730	Charpy V-notch Impact Properties Plate No. 3113
Fig.	29	NP9 34973	Charpy V-notch Impact Properties 26" Turret Face Plate
Fig.	30	NP9 34727	Charpy V-notch Impact Properties Plate No. 3114
Fig.	31	NP9 34977	Charpy V-notch Impact Properties Plate No. 3116
Fig.	32	NP9 34976	Charpy V-notch Impact Properties Plate No. 3120
Fig.	33	NP9 34978	Charpy V-notch Impact Properties Plate No. 3122
Fig.	34	NP9 34731	Charpy V-notch Impact Properties Plate No. 3123
Fig.	35	NP9 34975	Charpy V-notch Impact Properties Plate No. 3128
Fig.	36	NP9 34979	Charpy V-notch Impact Properties Plate No. 3118
Fig.	37	NP9 34974	Charpy V-notch Impact Properties Plate No. 3108
Fig.	38	NP9 34621	Hardness Distribution Plate No. 3133
Fig.	39	NP9 34622	Hardness Distribution Plate No. 3124
Fig.	40	NP9 34623	Hardness Distribution Plate
IIN	CLASSI	FIED	11.LC • UI.L

Page vii

1

UNCLASSIFIED

•

I	Fig.	41	NP9	34722	Hardness Distribution 26" Turret Face Plate
	Fig.	42	NP9	34987	Macroetched Longitudinal Section Plate No. 3133
	Fig.	43	NP9	35184	Macrostched Longitudinal Section Plate No. 3124
	Fig.	44	NP9	35185	Macrostched Longitudinal Section Plate No. 3113
	Fig.	45	NP9	35186	Macroetched Longitudinal Section 26" Turret Face Plate
1	Fig.	46	NP9	34982	Macroetched Longitudinal Section Plate No. 3114
	Fig.	47	NP9	34983	Macroetched Longitudinal Section Plate No. 3116
	Fig.	48	NP9	34984	Macroetched Longitudinal Section Plate No. 3120
	Fig.	49	NP9	34986	Macroetched Longitudinal Section Plate No. 3122
	Fig.	50	NP9	34985	Macroetched Longitudinal Section Plate No. 3123
1	Fig.	51	NP9	35187	Macroetched Longitudinal Section Plate No. 3128
	Fig.	52	NP9	35188	Macroetched Longitudinal Section Plate No. 3118
	Fig.	53	NP9	35189	Macroetched Longitudinal Section Plate No. 3108
	Fig.	54	NP9	35195	Microstructures Face of Class A Plate No. 3113 and Back of Class A Plate No. 3124
	Fig.	55	NP9	35196	Microstructure Class B Plate No. 3128
1	Fig.	56	NP9	35197	Microstructures Class B Plate No. 3128
	Fig.	57	NP9	35342	Microstructures Showing Typical Dirt Class B Plate No. 3122
				Page	viii UNULASSIFIEU

1

UNCLASSIFIED

PAGE

•

<u>.</u>

X

LIST OF TABLES

TABLE		NO.
I	List of Japanese Heavy Armor Plates Tested at the U.S. Naval Proving Ground	18
II	Chemical Analyses	19
III	Tensile Data	20
IV	Charpy V-notch Impact Data	21
V	Normal Tensile Data	23
VI	Class A Hardness Data	27

₩ 3

.

1

*

*

UNCLASSIFIED

· • _ •

UNCLASSIFIED

REFERENCES

(a)	Extract for Exam	of nina	Japanese ation.	Armor	Required	for	United	Kingdom
-----	---------------------	------------	--------------------	-------	----------	-----	--------	---------

- (b) NPG ltr A8-2(3)EF37(BPO 97993) dated 25 June 1946.
- (c) BuOrd ltr EF37(Re3a-G3) dated 15 August 1946.
- (d) U. S. Naval Technical Mission to Japan Report "Japanese Heavy Armor" dated January 1946.
- (e) Hardness Conversion Chart for Hardened Steels H. Scott and T. H. Gray.
- (f) NPG ltr A8-2(3)EF30(P 70245) dated 25 February 1947.

I.

UNCLASSIFIED

INTRODUCTION

The U. S. Naval Technical Mission to Japan located a number of plates at the Japanese Naval Proving Ground, Kamegakubi, Kurahashishima and at the Kure Naval Arsenal, Kure Navy Yard, Japan. Eighteen (18) of these plates of various thickness and compositions, both Class A and Class B armor, were forwarded to the U. S. Naval Proving Ground, Dahlgren, Virginia. A portion of this armor, as listed in reference (a), was forwarded to the United Kingdom for test and examination. A ballistic test for a representative group of 12 plates was proposed in reference (b). Further testing on the remaining plates was to be dependent upon the ballistic and metallurgical results on the first 12 plates. The list of plates and the conditions of test proposed by reference (b) and authorized by reference (c) is given below. The ballistic tests on the Japanese armor plate were conducted at the Naval Proving Ground during September and October 1946.

> List of Japanese Heavy Armor Plates Tested at the U.S. Naval Proving Ground

	_		_	% of 0:	rd. Sk. 78841
<u>Plate No.</u>	<u>Gauge</u>	<u>Class</u>	<u>Test Condition</u>	Est.B.L.	U.S.Average
JE- 50 - 3133	7-1/4"	A	8" AP Mk. 21-3	118±1	112.8
			8" AP Mk. 21-5 at 30°	110-111	109.7
JE- 50 - 3124	13"	A	14" AP Mk. 16-8 at 30°	87±1	89.7
JE-50-3113	15"	A	14" AP Mk. 16-8 at 30°	82±1	89.6
Turret Face Plate	26"	A	16" AP Mk. 8-6 at 0°	90±3	•,
JE-5 0-3114	3-1/4"	В	6" AP Mk. 35-5	104-105	111.8
JE- 50-3116	3"	В	6" AP Mk. 35-5	107 ±1	110.6
JE- 50-3120	3-1/4"	В	6" AP Mk. 35-5 at 30°	101-102	111.8
JE- 50-3122	6 [#]	В	8" AP Mk, 21-3 at 35°	98±1	107.2
JE- 50 - 3123	6"	B	8" AP Mk. 21-3 at 35°	98±1	107.2
JE- 50-3128	7 "	B	8" AP Mk. 21-3 at 35°	94 ± 1	105.4
JE-50-3118	9"	B	12" AP Mk. 18-1 at 35°	94-95	96.3
JE-50-3108	12"	В	14" AP Mk. 16-8 at 30°	91±1	95.1 HINCLASSIFIED
			_		

- 1 -

II. THE BALLISTIC TEST

1. METHODS

The testing of the plates was conducted in accordance with the standard testing procedure used for U.S. armor. Briefly this procedure was as follows: The plate to be tested was secured in butts approximately 400 feet from the gun. The plate was blocked to the desired degree of obliquity by means of wooden blocks which were backed by heavy steel supports set securely in the ground. Sand was piled behind the plate to stop the projectile and fragments. Obliguity was measured from the plane normal to the plate thickness. Velocity was measured by firing the magnetized projectile through coils of wire connected to recording oscillographs. The disturbance in the field of the coils caused by the passage of the projectile was recorded on photographic paper. Counter chronographs were also used as an added check. The limits are given herein in terms of percent of Ordnance Sketch 78841. The ballistic limits are estimated from the percentage figures for the striking velocities of the complete and incomplete penetrations on each plate. The striking velocity percentage is based on a 100% velocity obtained from the sketch. The 100% velocity can also be calculated from the following formula:

$$VL = \frac{Fx \sqrt{6} x d}{41.57 x \sqrt{6} x \cos \theta}$$

Where VL = 100% velocity

- e = plate thickness in inches
- d = projectile diameter in inches
- m = mass of the projectile in pounds
- Θ = angle of obliquity, degrees
- F = Navy F coefficient, calculated thus: 6 (e/d - .45)(θ^2 + 2000) + 40,000

No attempt should be made to compare a limit at one set of conditions with a limit at another set of conditions on the basis of a lower or higher percent. The sketch is based on an empirical formula, consequently if average quality at one condition is below 100% there is no basis on which to consider this armor inferior to armor at another condition showing an average over 100%. The sketch does, however, furnish a convenient method of expressing limits in figures which are independent of minor gauge and obliquity variations and also facilitates corrections for variations of this type during the ballistic test. UNCLASSIFIED

- 2 -

2. TEST CONDITIONS AND RESULTS

The details of the ballistic test are summarized and the photographs of the ballistic test plates are presented in Figures 1 to 25. The results on each plate are discussed briefly below. In order to evaluate the data correctly certain U. S. armor and German armor limits are cited for comparison.

(a) <u>7"25 Class A Plate No. 3133 (Figures</u>	<u>1 and 2)</u>
Versus the 8" AP Proi Mk 21-3 at 309 Obl	% of Ord. Sk. 78841
Japanese Plate No. 3133	118±1
Average Quality U. S. Armor	112.8
U. S. Plate No. 1G469A1 (7.6" non cemented) 116-117
U. S. Plate No. RR324 (7"/3" cemented)	117±1

Versus the S" AP Proj. Mk. 21-5 at 30° Obl.

Japanese Plate No. 3133	110-111
Average Quality J. S. Armor	109.7
Highest U.S. Plate No. 1G469A1	
(7.6" non cemented)	112 ±1
German Plate No. 33032 (8-1/2")	113±1

It can be seen from the above that plate No. 3133 is slightly superior to the highest U. S. plates when tested with the 8" AP projectile Mk. 21-3 but is slightly inferior when tested with the Mark 21-5 projectile. This plate is considered equal in quality to the best U. S. armor. It is the only one of the 12 plates tested to have a limit above the U. S. average.

(b) <u>13" Class A Plate No. 3124 (Figures 3</u>	<u>and 4)</u>	a 1.
Versus the 14" AP Proj. Mk. 16-8 at 30° Obl.	% of 0rd. 78841	SK.
Japanese Plate No. 3133 Average Quality U. S. Armor	87±1 89.7	

Plate No. 3124 is approximately 3% of Ordnance Sketch 78841 inferior to average quality U.S. armor tested under the same test conditions.

UNCLASSIFIED

- 3 -

(c) 15" Class A Plate No. 3113 (Figures	5 and 6)
Versus the 14" AP Proj. Mk. 16-8 at 30° Obl.	% of Urd. Sk. 78841
Japanese Plate No. 3113 Average Quality U. S. Armor German Plate No. 34563 (15")	82±1 89.6 97-98

Plate No. 3113 is approximately 7.5% of Ordnance Sketch 78841 inferior to Average Quality U. S. Armor tested under the same test conditions.

(d) <u>26ⁿ Class A Turret Face Plate (Figures 7, 8, and 9)</u>

The estimated limit of the subject plate versus the 16" AP projectile Mark 8-6 at 0° obliquity is 90±3% of Ordnance Sketch 78841. No U. S. plate of similar gauge has ever been manufactured so no direct comparison of ballistic limits is possible. Early ballistic tests conducted on heavy Class A and B armor at low obliquity indicated that the limit of U. S. armor under similar conditions would approach 100%. It is interesting to note that, assuming the turret face plate was mounted at approximately 45° to the vertical, calculation indicates the inability of the modern 16" U. S. projectiles to penetrate a plate of this gauge at any range. However, as can be seen from Figure 7, the plate broke in half on both the complete and incomplete penetrations, and a failure of this type in service would partially, and perhaps completely, disable the turret.

(e) <u>3"25 Class B Plate No. 3114 (Figures</u>	<u>10 and 11)</u>
Versus the 6" AP Proj. Mk. 35-5 at 30° Obl.	78841.
Japanese Plate No. 3114 Average Quality U. S. Armor	104 -1 05 111.8

Plate No. 3114 is approxiantely 7% of Ordnance Sketch 78841 inferior to average quality U.S. armor tested under same conditions.

UNCLASSIFIED

(f) <u>3" Class B Plate No. 3116 (Figures</u> Versus the 6" AP Proj. Mk. 35-5 at 30° Obl.	12 and 13) 5 of Ord. Sk.
Japanese Plate No. 3116	107±1
Average Quality U. S. Armor	110.6
Highest U. S. Plate No. 051664	114±1
Lowest U. S. Plate No. 54E424133	106-107

Plate No. 3116 is comparable to the lowest quality 3" Class B plate tested under the same conditions at the Naval Proving Ground. It is approximately 4% of Ordnance Sketch 78841 inferior to U. S. Average Quality.

(g) <u>3.25^H Class B Plate No. 3120 (Figures</u>	14 and 15)
Versus the 6" AP Proj. Mk. 35-5 at 30° Obl.	% of Ord. Sk.
Japanese Plate No. 3120 Average Quality U. S. Armor	101-102 111.8

Plate No. 3120 is approximately 10% of Ordnance Sketch 78841 inferior to average quality U. S. armor tested under the same conditions.

(h) <u>6" Class B Plate No. 3122 (Figures</u>	<u>16 and 17)</u>
Versus the 8" AP Prot Mk 21-3 at 35° Obl	% of Ord. Sk. 78841
Japanese Plate No. 3122 Average Quality U. S. Armor	98±1 107•2

Plate No. 3122 is approximately 9% of Ordnance Sketch 78841 inferior to average quality U.S. armor tested under the same conditions.

(1) <u>6" Class B Plate No. 3123 (Figures</u>	<u>18 and 19)</u> % of Ord. Sk.
Versus the 8" AP Proj. Mk. 21-3 at 35° Obl.	78841
Japanese Plate No. 3123 Average Quality U. S. Armor	98±1 107.2

Plate No. 3123 is approximately 9% of Ordnance Sketch 78841 inferior to average quality U.S. armor tested under the same conditions.

UNCLASSIFIED

- 5 -

عد

NPG REPORT NO. 5-47

(j) <u>7" Class B Plate No. 3128 (Figures 20</u> Versus the 8" AP Proj. Mk. 21-3 at 35° Obl.	and 21) % of Ord. Sk. 78841
Japanese Plate No. 3128	94 ±1
Average Quality U. S. Armor	105 •4
German Plate No. 42711	105 ±1

Plate No. 3128 is approximately 11% of Ordnance Sketch 78841 inferior to both U.S. average quality and to 7" Class B German Plate No. 42711 tested under the same conditions.

(k) <u>9.75ⁿ Class B</u>	Plate No. 3118 (Figures	<u>22 and 23)</u>
Versus the 12" AP Proj.	Mk. 18-1 at 35° Obl.	% of Ord. Sk. 78841
Japanese Plate No. Average Quality U.	3118 S. Armor	94-95 96.3

Plate No. 3118 is approximately 2% of Ordnance Sketch 78841 inferior to average quality U.S. armor tested under the same conditions.

(1) <u>12" Class B Plate No. 3108 (Figures</u> Versus the 14" AP Proj. Mk. <u>16-8 at 30° Obl.</u>	24 and 25) % of Ord. Sk.
Japanese Plate No. 3108	91±1
Highest U. S. Plate No. TT200 (13.5 ⁿ)	96-97
Lowest U. S. Plate No. 9535 (13.5 ⁿ)	93.5-94.5
Highest U. S. Plate No. 10882 (10.5 ⁿ)	95+96

 Algnest U. S. Plate No. 10002 (10.5%)
 95+90

 Lowest U. S. Plate No. 35E130A1 (10.5")
 95±1

 Average Quality U. S. Armor (13.5")
 95±1

 German Plate No. 42940 (12")
 90±1

No U. S. 12" Class B plate has been tested at the Naval Proving Ground at these conditions. A comparison is made with 10.5" and 13.5" armor. The two 10.5" Class A plates listed above are the only plates of this gauge tested at the above conditions. Plate No. 3108 is approximately 4% of Ordnance Sketch 78841 inferior to average quality U. S. armor of similar gauge tested under the same conditions. Although the 14" AP projectile Mark 16-8 was broken up upon the incomplete penetration (see Figure 24), nc great significance is attached since several U. S. plates have rendered the same projectile ineffective on both complete and incomplete penetrations.

HNCLASSER

- 6 .

UNCLASSIFIED

III. SAMPLING PROCEDURE

1. <u>Selection of Coupons</u>

Upon completion of the ballistic test a metallurgical sample approximately 7" x 18" x the plate thickness was flame cut from each plate. Water was used to keep the samples cool during the cutting. In addition to the metallurgical sample for the Naval Proving Ground three 2' x 2' square sections were removed from each plate and one each forwarded to the following companies:

> The Bethlehem Steel Corporation The Carnegie-Illinois Steel Corporation The Midvale Co.

It is understood that the coupons forwarded to these companies are to be metallurgically examined and the results of the examinations made available at a later date. When available, the results of these examinations by the companies will be forwarded under separate cover as Appendix (B) to this report.

Also samples from each of the following plates were forwarded to the British for examination and ballistic tests:

JE-50-3123	6" B	2 foot x 2 foot square
3116	3" B	2 foot x 2 foot square
3122	6" В	2 foot x 2 foot square
3128	7" В	2 foot x 2 foot square
3118 3133 3124 3113	9 -3/4" B 7 - 1/4"A 13" A 15" A	2 foot x 2 foot square 2 foot x 2 foot square
JE-50-3108 3111 3114 3119 3120		One half of plate One half of plate

UNCLASSIFIED

. 7 -

UNCLASSIFIED

2. <u>Sectioning</u>

The 7" x 18" x plate thickness samples were sectioned in the laboratory on a water cooled abrasive cut off wheel. All tensile, normal tensile, and Charpy impact test specimens were cut from the 1/4 point, that is they were taken as nearly as possible in the area half way between the surface and center of the plate. This was done to permit comparison with U. S. armor physical tests which are taken from this area. Two hardness strips the full cross-section of the plate were taken from the center of the Class A plate samples. These strips were cut and surface ground carefully to prevent any burning in order that the true hardness pattern would be obtained.

UNCLASSIFIED

- 8 -

IV. <u>METALLURGICAL TEST RESULTS</u>

The detailed metallurgical test results are given in the tables and figures at the end of the report and are referred to in the summary of the metallurgical data given below.

1. <u>Chemical Analysis</u>

The analysis was determined for each of the 12 Japanese plates and is listed in Table II. Spectrographic analysis was used for all the elements except carbon and sulfur which were determined gravimetrically and phosphorus which was determined volumetrically. In addition to the elements reported in the table the spectrograph revealed no trace of Va, W, Sn, Pb, Zr and Ti.

Reference (d) gives the seven analysis types used by the Japanese and the specified chemical ranges for each type. From reference (c) and from comparing the chemical analysis determined in the laboratory with the specified ranges given in reference (d) the analysis type was established for each of the Japanese plates and is listed in Table II. With only a few minor exceptions the analyses fell within the specified ranges. The three analysis types not represented in Table II are as follows:

> VC = Vicker's Cemented CNC = Copper alloy, non-cemented CNC₂ = Copper alloy, non-cemented

Types VC, VH and NVNC differed only in application and not in alloy content, all three being a nickel chrome composition similar to U. S. armor. Types MNC, CNC, CNC₂ were the result of experiments conducted to reduce the nickel and chrome by the substitution of molybdenum and copper.

It should be noted that the carbon content is much higher in the Japanese plates than in U. S. armor. This would tend to make the plates more difficult to treat and still maintain the desired ductility, but should aid in obtaining a higher face hardness in the non-cemented Class A armor. This was not accomplished, however, as can be seen from the hardness data presented in Figures 38 to 41. With the exception of the high carbon and the substitution of copper for nickel, the Japanese armor can be considered very similar in analysis to U. S. armor. From a hardenability

UNCLASSIFIED

- 9 -

standpoint the analyses appear to be sufficient for every gauge except the 26" turret face plate. With an oil quench as reported in reference (d) it seems unlikely that the center of this plate would quench out properly.

Although the plates were reported to be type VH (non-carburized) and the macroetched sections (discussed later) did not reveal a carburized zone, a check was made on the carbon in the face of one of the Japanese plates. The results given below show the lack of carburization and indicate some decarburization.

Distance from the Surface in Inches

<u>1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2</u>

Percent Carbon

Plate 3133 0.37 0.46 0.49 0.50 0.51 0.51 0.51 0.51

2. <u>Tensile Properties</u>

The tensile properties of the 12 Japanese plates as determined by the U. S. Naval Proving Ground are listed in Table III. The first three Class A plates have tensile strengths very close to the U. S. average for each particular gauge although plate No. 3133 is slightly higher than average 7" U. S. armor. The low tensile strength of the 26" Turret face plate probably resulted from the inability of the Japanese to fiber such a heavy plate at higher tensile strength.

The tensile properties of the Class B plates fall well within the range expected for U. S. armor of similar gauge. The 9" and 12" plates have somewhat lower properties than recent U. S. plates of the same approximate gauges. The tensile results of the other plates however, fall within 4000 or 5000 psi of the U. S. average.

3. Charpy V-notch Properties

The Charpy V-notch impact data are given in Table IV and are plotted in Figures 26 to 37. In every case the Japanese plates had impact values below the average for U.S. plates of the same gauge. In some cases the values were the lowest yet determined at that gauge. On Class A armor they were only slightly inferior to the U.S. average but on the

UNCLASSIFIED

. . .

- 10 -

.. ...

UNCLASSIFIED

lighter gauge Class B armor they were very much lower. A few U. S. plates of 3" gauge have given impact values of better than 100 F* at -78°C and 80 FG# at -100°C in contrast to the Japanese plates which show about 45 FG at -50°C.

* F = Fibrous fracture # FG = Mostly fibrous, some grain

4. Normal Tensile Properties

The normal tensile properties given in Table V are the lowest of any group of plates yet tested. In almost every gauge category the Japanese armor was found to be lower than any previous plate tested. It should also be noted that for most of the plates the tensile strength found on the normal tensile test was considerably lower than that found on the standard tensile test. Coupled with the low elongation and reduction of area this lack of ductility indicates an excessive amount of dirt. A brittle granular fracture with considerable shelving was shown by all the Japanese plates on this test.

5. <u>Macrostructure</u>

Figures 42 to 53 present the results of the macroetch test. In the photographs it can be seen that most of the Japanese plates were very dirty. It was also noted during the etching that the Japanese plates appeared to be much more porous and less resistant to acid attack. While the normal time of etching on U. S. armor has been found to be about one hour at 70°C the Japanese plates were heavily attacked in about one half hour.

The absence of carburization can also be observed in the macroetch tests on the Class A plates since there is no change in color at the face of the plate. The Class A etch specimens were annealed at 1200°F for 2 hours before etching and consequently no hardened zone would be revealed. However, a persulfate macroetch which is presented along with the hardness curves in Figures 38 to 41 does reveal the structural changes through the plate thickness and this shows that the plates were not carburized.

It was reported in reference (d) that plate No. 3124 and plate No. 3113 were forged, while the balance of the plates were rolled. Most of the plates show very straight flow lines and were undoubtedly rolled. Plates 3124 and 3113 do not show pronounced curved flow lines, HNCLASSIFIED

- 11 -

and it is impossible to determine definitely from the macroetch whether the plates were rolled or forged. The flow lines of the 26" Class A Japanese Turret face plate show some curvature indicating that is was probably forged.

6. <u>Hardness Distribution</u>

The hardness data for the Class A plates are presented in Figures 38 to 41 and in Table VI. All four of the plates have very light chills ranging from 20.5 to 26% which is very low when compared to U. S. standards. The hardness curves however, verify the Japanese practice as reported by reference (d). According to reference (d) the Japanese tried to obtain from 30 to 33% chill at 42 Shore hardness. Using a hardness conversion table (reference (e)) 42 Shore converts to 27 Rockwell "C". The hardness curves reveal the percentage over 27 Rockwell "C" to be slightly lower than 30% in each case. It is possible that the Japanese attempted to obtain 30%-33% chill on these plates but were unable to control the hardening process well enough.

Since reference (d) reports that the plates were heated to 850°C or above at the face it is hard to understand why the face hardness is so low. With the high base carbon of the plates and with no face carburization to cause retained austenite, the face should have attained a hardness of at least 60 Rockwell "C". On the final drawback the Japanese were reported to heat their plates to 150°C only, but the low face hardness makes this appear unlikely.

It is interesting to note that the 7" plate which performed well ballistically has the highest face hardness and deepest chill of the 4 Japanese Class A plates tested. Cross section hardness surveys were made on all the Class B plates. The hardness was fairly uniform across the section of each plate and the strength obtained in tensile tests adequately shows the relative hardness of each plate.

7. <u>Microstructure</u>

Typical microstructures are presented in Figures 54 to 57. The faces of the four Class A plates were all very similar, and consisted essentially of a martensite matrix with numerous undissolved carbides. The amount of undissolved carbides decrease near the plate surface but a large number remain, indicating that the plates were not heated to a temperature higher than that reported. No evidence of retained austenite was noted. The microstructure of the face of plate No. 3113 is shown in Figure 54(A).

The backs of the Class A plates and the Class B plates had similar microstructures. The structure showed a ferrite matrix with many spheroidized carbides (see Figure 54 (B) for the microstructure of Class A plate No. 3124 and Figure 55 for the microstructure of Class B plate No. 3128). Some of the carbides were quite large and apparently were undissolved carbides remaining from the austenitizing treatment. In certain of the Class B plates these undissolved carbides seem to be more numerous in bands indicating alloy segregation. An example of this is shown in Figure 56. The photomicrographs of plate No. 3128 were taken with a lens having a low resolving power in order that the carbide distribution could be more readily seen. From a spheroidized structure of this nature it is difficult to determine what prior quench structure existed, but since the Japanese gave their plates a timed quench in oil the structure before tempering was undoubtedly lower bainite.

The plates were all examined at 100X for dirt and were found to contain a number of long stringers of which Figure 57A is a typical case. Examination at higher magnification revealed these stringers to be complex sulfide silicate stringers (see Figure 57B). Examination at higher magnification of the unetched specimens also revealed clusters of what appeared to be alumina inclusions.

UNCLASSIFIED

NPG REPORT NO. 5-47

V. <u>MANUFACTURING PROCESS</u>

The manufacturing procedures followed by the Japanese are given in full detail in reference (d). In every case where this metallurgical investigation furnished information as to the manufacturing methods, the data given in reference (d) were verified with the possible exception of the final drawback temperature. Comparison of the U.S. practice with the Japanese practice shows that they are similar in many respects but differ significantly in the following:

- 1. The carbon content of Japanese armor is higher than U. S. armor.
- 2. The substitution of copper for nickel was made by the Japanese, as the result of a nickel shortage.
- 3. The acid open hearth was used by the Japanese instead of the basic open hearth.
- 4. Ingot to plate reduction was accomplished by forging and then rolling, whereas almost all American plates above 4" gauge are reduced entirely by forging.
- 5. The quench after austenitizing was in oil instead of in a water spray as used in U. S. practice.
- 6. The Japanese produced non-cemented armor for use on their ships while non-cemented U.S. armor has been used only for experimental and projectile test plates.
- 7. The Japanese attempted to obtain a much lower percent of chill in their face hardened plates.

UNCLASSIFIED

VI. <u>DISCUSSION</u>

On the basis of the 12 plates tested ballistically, Japanese armor is definitely inferior to U. S. armor. Only one plate, (7" Class A Plate No. 3133) was better than the U. S. average, being equal to the highest quality U. S. plate. This was also the only plate able to damage the projectiles significantly. The balance of the plates showed limits below the U. S. average, in some cases as much as 9 or 10%.

From a metallurgical standpoint the Charpy V-notch impact test revealed the plates to have poor impact properties and the normal tensile test, macroetch test, and microexamination showed the plates to have excessive dirt. This undoubtedly explains the poor performance of the homogeneous plates.

Since the above conditions also existed in the Class A plates and since all four plates showed a low face hardness and light chill it is hard to explain the performance of plate No. 3133. The amount of dirt necessary to affect the limit of a Class A plate is often greater than that for a homogeneous plate and perhaps the effect of dirt may be discounted in this instance. The impact ductility of plate No. 3133, while not high, was the best of the four Class A plates and as has already been pointed out plate No. 3133 had the hardest face and the deepest chill. In addition its back had the highest tensile strength. This combination of factors might account for the superiority of plate No. 3133 over the other three plates but seems insufficient to account for the very high limits found on this plate.

Prior to the testing of the 15" Class A German plate No. 34563 (reported in reference (f)), it was thought that a superior plate should have a high face hardness with the greatest depth of hardness that could be obtained consistant with at least 40% or more ductile, high strength back. Plate 34563 showed that it was possible to have a superior plate with all the above attributes except the high face hardness. It was felt that by drawing the face of their plates at a higher temperature than U. S. practice the Germans lost hardness but gained some impact ductility in the face.

UNCLASSIFIED

. . . .

NPG REPORT NO. 5-47

Plate No. 3133 judged from either of the above criteria has only a large amount of high tensile back to recommend it. The ballistic test shows that the high limit undoubtedly resulted from the ability of the plate to damage the projectile. Since this plate's chill characteristics differ so radically from those judged desirable and still performed well, it seems that a great amount of work must still be done in this field before optimum chill properties can be definitely stated.

UNCLASSIFIED

- 16 -

UNCLASSIFIED

VII. <u>RECOMMENDATIONS</u>

1. In view of the above results, it is believed that no further ballistic testing is necessary and it is recommended that the ballistic tests of Japanese heavy armor be considered complete.

2. It is further recommended that an investigation of optimum chill characteristics be conducted on Class A armor.

- 17 -

UNCLASSIFIED

٠

¥

APPENDIX (A) TABLES AND FIGURES

TABLE I

1

List of Japanese Heavy Armor Plates Tested at the U. S. Naval Proving Ground

Plate No	Gauga	(1966	Test Condition	<u>% of Orc</u>	1. Sk. 78841
riate no.	Jaugo	<u>vrass</u>	1831 COllar Clon	TO COLONA	U D M VOL ARO
JE-50-3133	7-1/4"	A	8" AP Mk. 21-3	118±1	112.8
			8" AP Mk. 21-5	110-111	109.7
JE- 50-3124	13"	A	14" AP Mk. 16-8	87 ±1	89.7
JE-50-3113	15"	A	14" AP Mk. 16-8	82±1	89.6
Turret Face Plate	26"	A	16" AP Mk. 8-6 at 0°	90±3	-
JE- 50-3114	3-1/4"	B	6" AP Mk. 35-5	104-105	111.8
JE-50-3116	3"	В	6" AP Mk. 35-5	107 ±1	110.6
JE-50-3120	3-1/4"	В	6" AP Mk. 35-5	101-102	111.8
JE- 50-3122	6 "	в	8" AP Mk. 21-3	98±1	107.2
JE- 50-3123	6"	P	8" AP Mk. 21-3	98±1	107.2
JE- 50-31.28	7 "	В	$8"$ 4° Mk. 21-3	94±1	105.4
JE-50-3118	9 "	В	12" AP Mk. 18-1	94-95	96.3
JE-50-3108	12 "	В	14" AP Mk. 16-8 at 30°	91±1	95.1

UNCLASSIFIED

TABLE II

<u>Chemical Analyses</u> Japanese Heavy Armor

<u>Class A</u>

Plate No.	Gauge	Analy- sis <u>Type</u>	<u>C</u>	Mn	<u>P</u>	. <u>S</u>	<u>S1</u>	<u>N1</u>	<u>Cr</u>	Mo	<u>Cu</u>
3133	7-1/4"	VH	•52	•39	.026	•036	.21	3.82	2.12	•04	.11
3124	13"	VH	•46	•43	.029	.031	.17	3.65	2.19	.06	.10
3113	15"	VH	.51	•37	.027	•037	.14	3.65	1.96	•06	.11
Turret Face	t 26"	VH	.48	•39	.016	•026	.18	3.67	2.13	.06	.12

<u>Class B</u>

3114	3-1/4"	CNC1	.50 .39 .021	.037 .16	2.25	2.25	.21 .79
3116	3"	CNC [‡]	.41 .42 .029	.019 .27	2.22	1.81	.26 .85
3120	3 - 1/4"	NVNC	.47 .35 .021	.038 .18	3.36	2.02	10
3122	6 "	MNC	.36 .38 .022	.028 .11	3.25	1.93	.30 .11
3123	6 "	NVNC	.54 .35 .023	.031 .17	3.72	2.01	12
3128	7"	MNC	.38 .36 .025	.036 .12	3.30	2.00	.37 .10
3118	9"	MNC	.42 .41 .011	.031 .15	3.85	2.10	.42 .10
3108	12"	NVNC	.50 .38 .014	.034 .18	3.53	2.05	.06 .11
							i

* All the above steel was made in the acid open hearth except plate No. 3116 which was made in the basic open hearth, (from reference (2)).

- VH = Vickers hardened
- CNC1 = Copper non cemented
- NVNC = New Vickers non cemented
- MNC = Molybdenum non cemented

UNCLASSIFIED

- 19 -

.

TABLE III

<u>Tensile Data</u> Japanese Heavy Armor

<u>Class A</u>

Plate No.	Gauge	Location	Y.S. (<u>.2% Offset</u>)	<u>T.S.</u>	<u>% El.</u>	<u>% R.A.</u>
3133	7-1/4"	Longitudinal Transverse	80,050 70,160	108,970 108,000	24.2 2 2. 5	64.8 55.4
3124	13"	Longitudinal Transverse	81,700 63,780	102,500 100,250	25.5 26.0	64.6 57.5
3113	15"	Longitudinal Transverse	71;470 71,450	103,430 103,990	25.0 23.8	63.3 58.0
Turret Face	26"	Longitudinal Transverse	68,500 70,100	99,400 98,200	22 .3 25 . 5	45.6 62.2
			<u>Class B</u>			
3114	3-1/4"	Longitudinal Transverse	99,350 99,400	121,120 120,780	23.5 20.2	60.1 49.2
3116	3 "	Longitudinal Transverse	92,830 86,120	121,160 119,160	22.5 22.8	60.2 54.4
3120	3-1/4"	Longitudinal Transverse	86,620 71,890	113,300 109,080	25.0 24.5	64.0 57.8
3122	6"	Longitudinal Transverse	96,000 93,800	119,200 118,900	22.8 21.2	63.5 57.0
3123	6 "	Longitudinal Transverse	73,890 73,390	107,340 107,260	26.0 27.3	57.3 59.6
3128	7"	Longitudinal Transverse	87,500 89,800	114,600 114,650	22.8 19.8	60.1 50.9
3118	9"	Longitudinal Transverse	71,900 81,300	101,350 102,500	24.8 22.8	61.5 56.0
3108	12"	Longitudinal Transverse	87,050 80,400	102,400 101,200	23.3 19.5	64.2 48.2

Note: Each value listed here is the average UNCLASSIFIED obtained from two test specimens.

- 20 -

TABLE IV

<u>Charpy V-Notch Impact Data</u> Japanese Heavy Armor

<u>Class A</u>

Plate <u>No.</u>	Gauge	Location	<u>-105</u>	<u>78</u>	-50	<u>0</u>	<u>50</u>	100
3133	7-1/4"	Longitudinal	30G	32G	60FG	74 F	76F	88F
		Transverse	15G 22G	27G 32G	53GF 55GF	68F 66F	75F 60F 60F	94F 80F 82F
3124	13"	Longitudinal	17G 140	26G 27G	36 F G 30FG	80F 80F	74 F 78F	98F
		Transverse	10G 10G	25G 14G	27G 27G	74F 75F	54 F 54F	70F 82F
3113	15"	Longitudinal	20G	20G	38G	69FG	64F	88F(L)
		Transverse	15G 15G	18G 28G	23G 23G	56FG	70r 53F 52F	72F 68F
Turre	t		F		-0-	<i>,</i>	/~-	001
Face	26"	Longitudinal	10G 14G	23G 20G	3 <i>5</i> G 31G	73FG 77FG	75F 94F	95 F 80F
		Transverse	8G 9G	20G 20G	30G 26G	56FG 48FG	73F 71F	70F 69F
			<u>Cla</u>	ss B				
3114	3-1/4"	Longitudinal	253* 206*	28GF*	28GF*	62F*	54 F *	60F(L)
		Transverse	15G 17G	20G 20G	28G 30G	40F 38F	52F 52F	3 <i>5</i> F 34F
3116	3"	Longitudinal	24G* 25G*	49FG(L) 47FG(L)	61 F *	68F*	58F	82F(L)
		Trensverse	25G 26G	35GF 31GF	48FG 47FG	701+ 56F 52F	56F 55F	72F 75F 76F
3120	3-1/4"	Longitudinal	20G 20G	45GF	48FG	68F 62F	65F	70F
		Transverse	20G 17G •	39FG* 32GF*	44FG* 48FG	55F 55F	70F 68F	64F 62F

UNCLASSIFIED

- 21 -

1

.

w 1.

***** ~

- -

TABLE IV (Continued)

<u>Charpy V-Notch Impact Data</u> <u>Japanese Heavy Armor</u>

Plate <u>No.</u>	Gauge	<u>Location</u>	-105	<u>-78</u>	<u>-50</u>	<u>0</u>	<u>50</u>	100
3122	6"	Longitudinal	19G 20G 15G	34G(L) 30G 22G	54 F G 57FG 46GF	80 F 95F 67FG	68F(L) 75F 62F	70F(L) 92F 70F
		11.9112 / 01.26	20G	22 G	51GF	71FG	62F	60F
3123	6 ⁿ	Iongitudinal	30G(L) 7G	46FG* 48FG*	53FG* 46FG*	53 F* 54 F	54F 53F	74F 64F
		Iransverse	18G 20F	40GF 45GF	55 F G* 58F	60F 60F	58F 66F	68F 64F
3128	7 ^{**}	Longitudinal	20G 30G	34G 37G	50GF 62GF	65F 70F	68F 70F	85F 60F(L)
		Transverse	10G 18G	26G 26G	48FG 47FG	48F 62F	44F 45F	4 <i>5</i> F 54F
3118	9 % 75	Longitudinal	7G 7G	9G 17G	25G 22G	60FG 60FG	64F 68F	74F 73F
	•	Transverse	7G 7G	18G 15G	30G 25G	80FG(L) 60FG	58 f 66f	60F 70F
3108	12"	Longitudinal	20G 20G	46G 42G	47G 32G	71FG 1 66FG	.05F 98F	110F 110F
		Transverse	9G 21G	48G 20G	25G 25G	65FG 65FG	58F(L) 68F (L)	68F 64F
Mata (made								

Note: G = Grain GF = Mostly grain some fiber FG = Mostly fiber some grain F = Fiber L = Laminated * = Small splits

UNCLASSIFIED

.1

17 V

- - - -

. - -

.-

٩

TABLE V

Normal Tensile Data Japanese Heavy Armor

<u>Class A</u>

Plate <u>No.</u>	Gauge	Specimen <u>No.</u>	<u>T.S.</u>	<u>% El</u> .	<u>% RA</u>
3133	7-1/4"	1 2 3 4 5 Average	96,190 92,640 98,220 97,200 <u>106,700</u> 98,200	· 6 2 5 4 9 5•2	20.2 11.5 15.3 11.5 <u>18.9</u> 15.5
	Varia	ation High Low	106,700 92,640	92	20.2 11.5
3124	13 "	l 2 3 4 5 6 Average	101,810 103,360 102,420 105,600 102,220 103,250 103,110	20 19 21 18 19 19 19.4	42.6 43.3 45.7 44.0 45.7 <u>41.0</u> 43.7
	Varia	tion High Low	103,110 101,810	21 18	45.7 41.0
3113	1 <i>5</i> יי	l 2 3 4 5 6 Average	104,670 104,970 104,970 104,970 104,240 <u>104,870</u> 104,780	19 22 21 21 18 <u>22</u> 20.5	37.6 52.7 46.5 48.3 36.1 <u>50.5</u> 45.2
Turret	Varia	tion High Low	104,970 104,240	22 18	52.7 36.1
Face	26"	1 2 3 4 5 5 5 8 verage	89,280 94,980 92,200 95,100 89,670 <u>97,800</u> 93,157	Broke outside of Broke outside of 10.0 9.0 Broke outside of 2.1 7.0	gage length gage length 13.7 3.2 gage length <u>43.7</u> 20.3
			- 23 -	UNCLASSIFIED	

. .

-

UNCLASSING

· · · ·

. .

NPG REFORT NO. 5-47

,

<u>TABLE V</u> (<u>Continued</u>)

<u>Normal Tensile Data</u> Japanese Heavy Armor

<u>Class</u> B

Plate <u>No.</u> 3114	<u>Gauge</u> 3 - 1/4"	Specimen No. 2 3 4 5 6 Average	<u>T.S.</u> 111,600 1C2,850 104,700 99,400 100,200 <u>100,600</u> 103,250	<u>% E1</u> . 3.0 3.0 2.0 1.0 2.0 2.0 2.5	<u>% RA</u> 9.4 10.2 11.0 5.5 8.6 7.3 8.8
	Variat:	ion High Low	111,600 99,400	3.0 1.0	11.0 5.5
3116	3"	1 2 3 4 5 6 Average	112,400 110,000 116,100 109,500 116,500 <u>116,100</u> 113,450	5.0 2.0 4.0 3.0 5.0 Broke o <u>uts</u> ide of 3.8	10.2 7.1 7.8 7.9 6.3 gage <u>leng</u> th 7.9
	Variati	on High Low	116,500 109,500	5.0 2.0	10.2 6.3
3120	3-1/4"	l 2 3 4 5 6 Average	80,850 69,650 84,750 93,700 90,850 86,050 84,300	2.0 2.0 Broke outside of 2.0 1.0 <u>1.0</u> 1.5	7.1 4.1 gage length 11.6 7.8 <u>7.8</u> 7.7
	Variatio	on High Low	93,700 69,650	2.0 1.0	11.6 4.1

UNCLASSIFILD

- 24 -

1 _ _ _ _

-

- ---- 🗙 🔨 T

1

(* T⁻⁻

TABLE V (Continued)

. . .

Normal Tensile Data Japanese Heavy Armor

<u>Class B</u>

Plate <u>No.</u>	Specim <u>Gauge No.</u>	en <u>T.S.</u>	<u>% E]</u> .	% RA
3122	6" 1 2 3 4 5 6 Averag	95,120 105,560 102,680 97,140 94,570 <u>107,010</u> 6 100,350	2 3 3 5 1 4 3 • 0	5.6 12.3 13.7 11.9 11.9 10.8 11.0
,	Variation Hig Low	h 107,010 94,570	5	13.7 5.6
3123	6" 1 2 3 4 5 6 Average	91,350 104,400 107,050 106,800 101,650 <u>93,400</u> 8 100,800	5 10 15 11 7 	18.3 7.8 30.8 9.4 12.4 <u>9.4</u> 14.7
	Variation Hig Low	h 107,050 91,350	15 3	30.8 7.8
3128	7" 1 2 3 4 5 6 Average	105,800 91,000 101,700 92,800 94,750 93,200 96,550	4.0 1.0 2.0 2.0 2.0 <u>2.0</u> 2.5	10.8 4.8 5.6 9.4 9.3 <u>7.0</u> 7.7
	Variation High Low	105,800 91,000	4.0	10.8 4.8

UNCLASSIFIED

- 25 -

and the second second
NPG REPORT NO. 5-47

-

•-----

UNCLASSIFIED

<u>TABLE V</u> (<u>Continued</u>)

۳۳

Normal Tensile Data Japanese Heavy Armor

<u>Class B</u>

Plate <u>No.</u>	Sp Gauge	No.	<u>T.S</u> .	<u>% El</u> .	% RA
3118	9" Av	1 2 3 4 5 6 erage	103,400 104,400 104,500 103,200 103,600 103,600 103,800	10.0 19.0 18.0 15.0 16.0 15.0 15.5	21.6 33.3 38.9 30.7 37.7 <u>32.5</u> 32.5
·	Variation	High Low	104,500 103,200	19.0 10.0	38.9 21.6
3108	12" Ave	1 2 3 4 erage	100,200 103,200 100,400 <u>102,200</u> 101,500	9.0 12.0 8.0 <u>8.0</u> 9.3	17.4 21.6 16.8 <u>14.6</u> 17.6
	Variation	High Low	100,200 103,200	12.0 8,0	21.6 14.6

UNCLASSIFIED

...

NPG REPORT NO. 5-47

÷

UNCLASSIFIED

.

•

TABLE VI

Hardness Data

Japanese 7" Class A Plate No. 3133

Distance from <u>Face</u> Inches Percent	Rockwell <u>C Hardness</u> <u>1</u> 2	Distance from Face Inches Percent	Rockwell <u>C Hardness</u> <u>1</u> 2
1/8 1.7	51.0 50.5 53.0 50.5	3/4 37.9 3/4 37.9	20.0 19.5 20.0 19.0 18.0 20.0
1/4 3.4	53.0 53.5	3" 41.4	19.0 19.0
3/8 5.2	51.5 52.5	1/4 44.8	18.5 19.5
1/2 6.9	51.5 52.0	1/2 48.3	18.0 19.5
7.8 5/8 8.6	51.5 54.0 50.5 51.0 49.5 50.0	50.0 3/4 51.7 53.4	17.5 18.0 18.5 18.0 18.5 19.0
3/4 10.3	49.5 49.5	4" 55.2	17.5 20.0
7/8 12.1	47.0 47.0	1/4 58.6	20.0 18.5
1" 13.8 15.5	47.0 46.5 45.5 46.5 44.5 44.0	1/2 62.1 63.8	19.0 $19.518.5$ $16.516.0$ 16.5
1/4 17.2	43.5 43.0	3/4 65.5	15.5 13.0
1/2 20.7	40.5 41.5	5" 69.0	17.0 16.5
3/4 24.1	35.0 39.5	1/2 75.8	17.0 16.0
25.9 2" 27.6	34.0 33.5 31.0 31.0	6" 82.7	18.0 16.5
29.3 1/4 31.0	29.0 29.0 26.0 25.5	1/2 89.6	18.5 18.5
32.8 1/2 34.5	23.0 22.0 21.0 21.0	7" 93.1 7" 96.5 7-1/4"	18.0 15.0 18.0 15.5 Back

UNCLASSIFIED

UNCLASSIFIED

TABLE VI (Continued)

<u>Hardness Data</u>

Japanese 13" Class A Plate No. 3124

Distance fro <u>Face</u>	om Rockwei <u>C Hardne</u>	ll Distan ess <u>Fa</u>	ce from ce	Rocka C Hard	well Iness
Inches Perce	ent 1 á	2 Inches	Percent	1	2
1/8 1.0	5 49.0 50 5 50.5 51	0.5 1.5 1/4	31.4 32.4	19.0 20.5	19.5
1/4 1.9	50.0 51 50.5 52	2.0 1/2	34.3	17.0	17.5
3/8 2.0	50.5 5	1.0 3/4	36.2	17.0	17.5
1/2 3.8	51.0 5	L•5 5"	37.1 38.1	16.0	19.0
5/8 4.5	51.0 52 51.0 52	2.0 1/4	39.0 40.0	18.0 18.0 15.0	19.0
3/4 5.5	7 52.0 52	2.5 1/2	41.9	16.5	15.5
7/8 6.7	52.0 92 7 52.5 52	.5 3/4	43.8	17.5	17.0
l" 7.6	$52 \cdot 5 52$	••• 6"	45.7	16.0	17.0
1/4 9.		2.5 1/4	47.6	18.0	18:0
1/2 11.4	45.5 4	5.0 1/2	49.5	16.0	15.5
3/4 13.3		2.0 3/4	51.4	16.0	17.0
2" 15.2		0 7"	53.3	16.5	17.5
1/4 17.1	39.0 39	1/4	55.2	16.0	17.0
1/2 19.0		1/2	57.1	15.0	15.0
3/4 21.0	37.0 37	.0 3/4	59.0	15.5	17.0
3" 22.9	34.5		61.0	16.0	14.5
1/4 24.8	$34 \cdot 7 31$	2.0 1/4	62.9	13.0	16.0
1/2 26.7	26.0 25	5.5 1/2	64.8 45.0	17.5	17.0
3/4 28.6	23.0 24 22.5 21	-5 3/4	66.7	17.5	16.0
29.5 4" 30.5	24.0 24 5 21.5 20	••0 ••0 9"	68.6 111	NCLASS	
			U1	· · · · · · · · · · · · · · · · · · ·	

........

UNCLASSIFIED

TABLE VI (Continued)

Hardness Data

Japanese 13" Class A Plate No. 3124 Distance from Distance from Rockwell Rockwell Face C Hardness Face C Hardness Inches Percent Inches Percent 1 2] 2 16.5 16.5 18.0 18.5 17.5 17.5 18.0 16.0 16.5 16.0 85.7 87.6 89.5 70.5 14.0 14.0 13.5 15.0 15.0 15.0 1/213.0 1/274.3 14.5 10" 14.5 12" 91.4 16.0 17.5 16.5 16.5 16.5 93•3 95•2 78.1 16.0 80.0 15.0 15.5 17.0 15.0 1/2 1/297.I 81.9 83.8 16.0 11" 16.5 13" 99.0 13-1/8" Back

UNCLASSIFIED

...

UNCLASSIFIED

TABLE VI (Continued)

Hardness Date

Japanese 15" Class A Plate No. 3113

Distance from Face Inches Percent	Rock <u>C Har</u> 1	well <u>dness</u> 2	Distanc <u>Fac</u> Inches	e from e Percer	n Rock <u>C Har</u> it 1	well dness 2
1/8 .8	37.5 40.0	33.5 36.0	1/4	27.7 28.6	25.5 25.5	26.5 24.0
1/4 1.3	41.5	37•5 38•0	1/2	29.4 30.3	22.0 20.2	21.5
3/8 2.5	42.0	39•5 40•5	3/4	31.9	24.0	18.5
1/2 3.4	42.0	42.0	5"	33.6	20.0	19.0
5/8 4.2	47.5	43.0	1/4	35.3	19.5	17.5
3/4 5.0	44.5	44.0	1/2	37.0	18.0	16.5
7/8 5.9	45.0 45.5	44.0 44.0	3/4	38.7	21.0	17.5
1" 6.7	46.0	45.0	6 1	40.4	17.5	16.0
1/4 8.4	46.0	45.5	1/4	42.0	15.0	16.0
1/2 10.1	45.0	44.0	1/2	43.7	15.5	15.5 16.0
3/4 11.8	43.5	43.0	3/4	45.4	12.5	16.5
2" 13.5	41.5	41.5	7"	47.1	14.ó	15.0
1/4 15.1 16.0	42.0 39.0	39.5	1/4	48.8	13.0	15.0
1/2 16.8 17.7	40.0 39.0	38.0 37.5	1/2	50.4	12.5 16.0	16.5 16.0
3/4 18.5 19.3	38.0 38.5	37•5 38•0	3/4	52 .1 53 . 0	16.0 16.0	16.0 16.0
3" 20.2 21.0	37.5 37.0	29.5 36.5	8"	53.8 54.6	15.0 15.0	16.0 16.0
1/4 21.9	37.0	36.0	1/4	55.5	14.0 15.0	15.5 15.5
1/2 23.2	35.0	36.0	1/2	57.2	19.0 15.5	15.5
3/4 25.2	33.0	33.0	3/4	58.9 59.7	15.0 15.5	15.5
4" 26.9	29.0	29.0	9"	60.5	15 ,0	ī5.ó
		20			UNCLASSIFI	ED

.

TABLE VI (Continued)

<u>Hardness Data</u>

Japanese 15" Class A Plate No. 3113

Distanc <u>Fac</u> Inches	ce from ce <u>Percent</u>	Rocl <u>C Har</u> 1	cwell <u>dness</u> 2	Distan Fa Inches	ce from co Percent	Rock <u>C Har</u> 1	well dness 2
1/4	61.4	13.0 15.0	14.5 15.0	12"	79.0 80.7	17.0 16.0	16.0 16.0
1/2	63.9 64.7	15.0 15.0	17.5	1/2	82.4 84.1	16.0	17.0
3/4	65.6 66.4	15.5	14.0	13"	87.4	15.5	18.5
10"	67.3	15.0	15.5	1/2	90.8	16.0	16.5
1/2	70.6	15.0	15.5	14"	92.5 94.2	16.0	16.5
11"	74.0	15.5	16.0	1/2	95.8 97.5	15.0 15.5	16.0 16.0
1/2	77.3	15.5	16.5		99.2 14-7/8"	13.0 Back	13.5

1.1.1.1.1.5 still 11 12

- 31 -

.

Y

UNCLASSIFIED

UNCLASSIFIED

TABLE VI (Continued)

<u>Hardness Data</u>

Japanese 26" Turret Face Plate

Distanc Fac Inches	e from e Percent	Rockwell <u>C Hardnes</u> <u>1 2</u>	Distar s Fa Inches	nce from ace s Percent	Rockwell <u>C Hardness</u> <u>1 2</u>
1/8	•3	46.5 46. 47.0 48.	5 3/4 0	14.4 14.9	38.5 38.5 38.5 39.0
1/4	1.0	48.0 47.	0 .	15.9	38.5 41.5
3,/8	1.2	47.0 48.	5	16.8	40.5 39.0 40.5
1/2	1.7 1.9	47.5 48.	5 1/2 5	17.8	38.5 38.5
5/8	2.2	48.5 48. 47.0 49.	5 3/4 5	18.3	37.5 38.0 38.5 38.5
3/4	2.7	47.5 47.	5 5" 0	19.2	40.0 37.5
7/8	3.2 3.4	47.0 48. 48.0 47.	0 1/4 5	20.2	34.5 33.0
140	3.6 3.8	47.5 47.	5 1/2 0	21.2	33.0 31.5 32.5 32.5
1/4	4.3 4.8	47.5 48. 47.5 48.	0 3/4 5	22.1	31.5 30.5 31.5 30.5
1/2	5 •3 5 •8	48.0 48. 48.0 49.	5 6" 0	23.1 23.6	29.5 29.5 25.5 23.5
3/4	6.3 6.7	48.0 49. 51.0 49.	0 1/4 0	24.0 24.5	24.5 24.0 27.0 25.5
2"	7.2 7.7	50.0 48. 49.0 48.	5 1/2 0	25.0 25.5	25.0 25.0 25.0 24.5
1/4	8.2 8.7	48.5 47.	0 3/4	26.0 26.5	23.5 23.5 22.5 22.5
1/2	9.2 9.6	44.0 46. 43.5 44.	0 7" 5	26.9 27.4	22.5 21.5 20.5 21.5
3/4	10.1 10.6	42.5 45.	0 1/4 5	27.9 28.4	21.0 19.5 21.0 19.5
3"	11.1 11.5	41.0 41. 40.5 40.	5 1/2 5	28.8 29.3	19.0 19.5 20.0 18.5
1/4	12.0 12.5	40.5 40.0	0 3/4 5	29.8 30.3	17.5 18.5 18.0 17.5
1/2	13.0 13.4 13.9	40.5 40.0 39.0 39.0 38.5 38.	0 8" 0 5 1/4	30.7 31.2 31.7 32.2	17.5 17.0 16.0 17.0 18.0 16.0 16.0 16.5

- 32 -

UNCLASSING

(<u>Continued</u>)

<u>Hardness Data</u>

Japanese 26" Turret Face Plate

Dista <u>I</u> Inche	ance from Face As Percent	Roc <u>C Ha</u>	kwell rdness 2	Dista Inche	ance from Face es Percent	Roc <u>C Ha</u> 1	kwell rdness <u>2</u>
1/2	32.7	16.5	17.0	1/4	50.9	14.0	13.0
3/4	33.7	17.0	17.5	1/2	51.4 51.9	14.0 14.5	13.0
9"	34.2	17.5	17.5	3/4	52.3	14.0	14.0
1/4	35.0 35.6	14.5 15.0	13.5 15.5	14"	53.8	าา.ร	י. יי ד
1/2	36.1 36.5	14.5	14.5	1/2	54.8	15.0	15.0
3/4	37.0	15.0	15.0	7511	56.8	15.5	14.0
10"	38.0	13.5	14.5	1/0	58.7	15.5	14.0
1/4	39.2	13.0	13.0	1/2	59.7 60.6	13.5	13.5
T/2	40.0	12.5	15.0	T0	62.5	14.5 14.5	12.5 13.0
1/2	40.4	13.0	15.5	1/2	63.5 64.4	13.0 15.0	14.0 12.5
3/4	41.3	15.0 14.0	14.5 14.5	17"	65.3 66.3	13.0 14.5	12.0
11"	42.3 42.8	13.5 13.0	14.5 15.5	1/2	67.3	12.5	13.5
1/4	43.3 43.8	12.0 12.5	14.5	18"	69.2	14.5	13.5
1/2	44.2	13.5	15.5	1/2	71.2	15.5	13.0
3/4	45.2	14.5	15.0	19"	73.1	14.0	11.0
12"	46.2	13.5	14.0	1/2	75.0	13.5	11.0
1/4	47.1	12.5	14.5	20 ⁿ	76.0 76.9	13.5 13.5	13.0 13.5
1/2	48.1	14.5	14.0	1/2	77•4 77•9	13.0 13.5	13.5 10.5
3/4	49.0	14.0 14.0	13.5	21"	79.4 80.8	12.0 10.5	12.0
13"	49.5	14.5 14.0	13.5 13.5	1/2	81.8 82.7	12.0	10.0
UNVILL	50.5	14.0	14.0		83.7	14.5	11.ó

- 33 -

NPG REPORT NO. 5-47

1

UNCLASSIFIES

TABLE VI (Continued)

<u>Hardness Data</u>

Japanese 26" Turret Face Plate

Distance from Face		Rockwell <u>C Hardness</u>	Dista F	nce from ace	Rockwell <u>C Hardness</u>	
22"	84.6	11.5 11.5	24 "	92.3	13.5	12.5
1/2	86.5	14.0 11.0	1/2	93•3 94•2	11.5	12.5
23"	88.5	12.5 12.5 13.0 13.0	25"	95.2 96.2	14.0	13.0
1/2	89.5 90.4 91.4	11.5 12.5 13.5 12.5 12.5 13.0	1/2	97.2 98.1 99.0	13.0 14.5 12.5	14.5 14.5 17.0

26" Back

UNULASS FIEL

NP9-33777 - Ballistic Experimental Test and Limit Determination of 7"25 Class A Japanese Plate No. JE-50-3133 vs. 8" AP Projectile Mark 21 Mods. 3 and 5. 26 September 1946.

MkMod.	Turna et	Obl.	Thick.	S.V. (f.g.)	Pene.	% ντ.	Remarks
and a mood .	Impaco	<u> </u>	Inton.	5[1.5.]	1000.		II CARE I II D
21-5	33396	29-40	7.22	1627	Inc.	104.6	Proj. effective - nose chewed off - base slapped.
21-5	33398	29-30	7.21	1787	Comp.	115.4	Proj. effective with side slightly gouged.
21-5	33399	30-00	7.22	1706	Inc.	109.3	Proj. effective - nose chewed off - 1/3 base ring off.
21-5	33401	30-20	7.21	1748	Comp.	111.6	Proj. effective with side gouged and nose cracked.
21-3	33402	29-40	7.21	1808	Inc.	116.4	Proj. effective - nose chewed off - base slapped and body upset.
21-3	33 403	29-30	7.21	1867	Comp.	120.5	Proj. not effective. Nose chewed off - body extruded - 3/4 base off from forward edge of band score back.

View: Face of plate and sides of projectiles. Proj.

Estimated Ballistic Limit versus 3" AP Projectile Nk. 21-3 at 30° 11811% Estimated Ballistic Limit versus 8" AP Projectile Nk. 21-5 at 30° 110-111%

UNCLASSIFIED

NP9-33778 - Ballistic Experimental Test and Limit Determination of 7"25 Class A Japanese Plate No. JE-50-3133 vs. 8" AP Projectile Mark 21 Mods. 3 and 5. 26 September 1946 -

View: Back of plate.

.

MkNod.	Impact	<u>Obl</u> .	Thick.	3.V.(f.s.)	Pene.	%VL	Renarks
21-5	33396	29-40	7.22	1627	Inc.	104.6	Proj. effective - nose chewed off -
21-5	33398	29-30	7.21	1787	Comp.	115.4	Proj. effective with side slightly gouged.
21-5	33399	30-00	7.22	1706	Inc.	109.3	Proj. effective - nose chewed off - 1/3 base ring off.
21-5	33401	30-20	7.21	1748	Comp.	111.6	Proj. offective with side gouged and nose cracked.
21-3	33402	29-40	7.21	1308	Inc.	11ó.4	Proj. effective - nose chewed
21-3	33403	29-30	7.21	1367	ComP.	120.5	Proj. not effective - nose chewed off - body extruded - 3/4 base off from forward edge of band score back.

Estimated Ballistic Limit versus 8" AP Projectile Lk. 21-3 at 30° 118:15 Estimated Ballistic Limit versus 8" AP Projectile NK. 21-5 at 30° 110-111%

White -

1

NP9-33783 - Ballistic Experimental Test and Limit Determination of 13" Class / Japanece Plate No. JE-50-3124 vs. 14" AP Projectile Mark 16-8. 3 October 1946 -View: Face of plate and sides of two projectiles. <u>Impact Cbl. Thick. 3.V.(f.s.) Pene. SVL</u> 33413 29-40 13.22 1580 Comp. 89.4 Proj. effective with side gouged. Nose cracked after recovery. 33414 30-20 13.10 1512 Inc. 35.5 Proj. effective with side slightly gouged.

Estimated Ballistic Limit versus 14" AP Projectile 1%. 16-3 at 30° 87115

NP9-33784 - Ballistic Experimental Test and Limit Determination of 13" Class A Japanese Flate No. JE-50-5124 vs. 14" AP Projectile Mark 16-8. 3 Getober 1946 -View: Back of plate.

 View: Back of plate.

 Unpect
 Obl.
 Thick.
 3.V.(f.s.)
 Pene.
 JVL
 Remarks

 33413
 29-40
 13.22
 15"0
 Comp.
 89.4
 Proj. effective with side gouged nose cracked off after recovery.

 33414
 30-20
 13.10
 1512
 Inc.
 *5.5
 Proj. effective with side slightly gouged.

Estimated Ballistic Limit versus 14" AP Projectile MR. 16-8 at 30° 8711%

NP9-33978 - Ballistic Experimental Test and Limit Determination of 15' Class A Plate No. JE-50-3113 vs. 14" AP Projectile Mark 16-3. 9 October 1945 -Jene View: Face of plate and sides of three projectiles. Impact Obl. Thick. S.V.(f.s.) Pene. Remarks, ZVL. Proj. effective - nose cracked off. Proj. not effective - nose chewed off - body split longitudinally 33423 38.7 30-00 14.94 1739 Comp. 33424 29-30 1555 79.8 14.95 Inc. from nose to base. Proj. effective with side souged 33426 30-20 14.95 1657 Corr. 84.1 and nose cracked.

Estimated Ballistic limit versus 14" AD Projectile Mk. 16-8 at 300 82115

UNCLASSIFIED

Injact	Cbl.	Thick.	<u>J.V.(f.s.)</u>	Pene.	<u>SVL</u>	Remarks
33423 33424	30-00 29-30	14.94 14.95	1739 1555	Comp. Inc.	२न . ७ 79 . 8	Proj. effective - nose cracked off. Proj. not effective - nose chewed off. Body split longitudinally
33426	30-20	14.95	1657	Comp.	84.1	Proj. effective with side mouged and nose cracked.

Estimated Ballistic Limit versus 14" AP Projectile NR. 16-8 at 30° 82115

FIGURE 6

1.70-34246 - Ballistic Experimental Test and Limit Determination of 26" Class A Expense Turret Face Diste vs. 16" AP Projectile Mark 8-6 at C° Obl. 16 and 23 October 1945.

View: Face of plate and side of one projectile.

Impact	<u>061</u> .	Thick.	J.V.(f.s.)	Pene.	<u>ovi</u>	Remarks
33443	r-20	25.99	1992	Comp.	97.5	Proj. not recovered - plate broke
33459	C-30	25.99	1707	20"	83.6	Proj. effective and intact. Body slightly bent - plate broke into two pieces at impact point.

Estimated Pellistic Limit versus 10" AP Projectile Fk. 8-6 at 0° 90130

FIGURE 7

and the second second

NP9-34247 - Ballistic Experimental Test and Limit Determination of 26" Class A Japanese Turret Face Plate vs. 16" AP Projectile Nark 3-6 at 0° Obl. 16 October 1946.

View: Fa	ce or	plate.				
Impact	<u>Cbl</u> .	Thick.	3.V.(f.s.)	Pene.	<u>VL</u>	Pemerks
33443	C-20	25.99	1992	Comp.	97.5	Proj. not recovered. Plate broke into two pieces at impact point.

Estimated Ballistic Limit versus 16" AP Projectile 1%. 8-6 at 0° 90133

FIGURE 8

LEV-14248 - Ballistis Experimental Post and Limit Determinision of 20" Share A Superece Furnet Face Flate vs. 10" AF Projectile Park 8-5 at 66 GML &B Cotober 1945 View: Back of Plate. Intact Obl. Thick. J.V.(f.s.) Fene. <u>SVL</u> Remarks

33443 C-20 25.99 1992 Comp. 97.5 Proj. not recovered. Fiste troke into two pieces at impact joint.

Estimated Ballistic Limit versus lo" AP Projectile Mr. 8-6 at 0° 90_35

NP9-33775 - Ballistic Experimental Test and Limit Determination of 3"25 Class B Japanese Plate No. JE-50-3114 vs. 6" AP Projectile Fark 35-5. 26 September 1946 - View: Face of plate and sides of projectiles.

Impact	<u>061</u> .	Thick.	3.V.(f.s.)	Pene.	<u>%VL</u>	Remarks
33395	29-40	3.18	1109	Inc.	103.5	Proj. effective und intact
33397	29-40	3.17	1163	Comp.	105.7	Proj. effective and intact
33400	29-40	3.16	1138	Comp.	106.6	Proj. effective and intact

Estimated Ballistic Limit versus 6" AP Projectile MR. 35-5 at 30° 104-105%

UNCLASSIFIED

NP9-33776 - Ballistic Experimental Test and Limit Determination of 3"25 Class B Japanese Flate No. JE-50-3114 vs. 6" AP Projectile Mark 35-5. 26 September 1946 -

View: Back of plate.

Imract	<u>сы</u> .	Thick.	3.V.(f.s.)	Pene.	SVL	Remarks
33395	29-40	3.18	1109	Inc.	103.5	Proj. effective and intact
33397	29-40	3.17	1163	Comp.	108.7	Proj. effective and intact
33400	29-40	3.16	1138	Comp.	106.6	Proj. effective and intact

Estimated Ballistic Limit versus 6" AP Projectile 1%. 35-5 at 30° 104-1055

FIGURE 11

MCLASSIFIED

NP9-33661 - Ballistic Experimental Test and Limit Determination of 3" Class B Japanese Plate No. JE-50-3116 vs. 6" AP Projectile Mark 35-5. 12 September 1946 - View: Front of plate and sides of projectiles.

Impact	<u>Obl</u> .	Thick.	3.V.(f.s.)	Pene.	JVL	Remarks
33 373	29-00	2.96	1112	Comp.	109.8	Proj. effective and intact
33 375	29-10	2.97	1075	Inc.	105.1	Proj. effective and intact

Estimated Ballistic Lirit versus 6" AP Projectile NK. 35-5 at 30° 107±1%

FIGURE 12

M. C. M. M.

 NP9-33662 - Ballistic Experimental Test and Limit Determination of 3" Class & Japanese Flate No. JE-50-3110 vs. 6" AP Projectile Mark 35-5. 12 September 1946

 View: Back of plate.

 Impact
 Obl.

 Thick.
 3.V.(f.s.)

 Pene.
 2VL

 Remarks

 33373
 29-00

 329-10
 2.96

 1112
 Comp. 109.8

 Proj. effective and intact

 33375
 29-10

 2.99
 1075

Estimated Ballistic Limit versus 6" AP Projectile 12. 35-5 at 30° 107-1%

UNCLASSINED

liew: Front of plate and sides of four projectiles.

Impact	<u>Ctl</u> .	Thick.	3.V.(f.s.)	Pene.	<u>571</u>	Remarks
33381 33383 33385	29-40 30-10 30-10	3.18 3.19 3.18	$1175 \\ 1117 \\ 1046$	Corp. Corp. Inc.	109.6 103.6 97.2	Proj. effective and intact Proj. effective and intact Proj. effective and intact -
13387	30-40	3.17	1087	Inc.	100.5	Proj. effective and intact
Est	imated	Pallisti	c Limit vers	us 6" "	P Projec	stiles 1%. 35-5 at 30° 101-1025

3.117 3.117 3.117 3.102

FIGURE 14

use SSPEC

TP9-33667 - Ballistic Experimental Test and Limit Determination of 3:25 Class B Japanese Thate No. JE-50-312C vs. 6" AP Projectile Mark 35-5. 19 September 1946 -View: Back of plate. Remarks Obl. Thick. S.V. (f.s.) Pene. %VL Impact Proj. effective and intact Proj. effective and intact Proj. effective and intact -Comp. 109.6 Comp. 103.6 33381 33383 29-40 30-00 3.18 1175 3.19 1117 33385 30-00 Inc. 97.2 3.18 1046 cap stuck in plate. Proj. effective and intuct 100.5 33387 30-40 3.17 1087 Inc.

Estimated Ballistic Limit versus 6" AP Projectiles Mk. 35-5 at 30° 101-102%

FIGURE 15

11

NP9-33779 - Ballistic Experimental Test and Limit Determination of 5" Obser B Japanese Plate No. JE-50-3122 vs. 8" AP Projectile Mark 21-3. 15 Cotober 1946 View: Face of plate and sides of two projectiles. <u>Inpact Obl. Thick. 3.V.(f.s.) Pene. SVL Remarks</u> 33442 35-00 5.94 1452 Comp. 101.5 Proj. effective and intact. 33444 34-40 5.95 1366 Inc. 95.8 Proj. effective and intact.

Estimated Ballistic limit versus 8" AP Projectiles 1%. 21-3 at 35° 98115

FIGURE 16

VP9-33780 - Ballistic Experimental Test and Limit Determination of 6" Class B Japanese Plate No. JE-50-3122 vs. 8" AP Projectile Mark 21-3. 15 October 1946 -View: Back of plate.

ImpactObl. Thick.S.V.(f.s.)Pene.%VLRemarks3344235-005.941452Comp.101:5Proj. effective and intact3344434-405.941366Inc.95.8Proj. effective and intactEstimated Ballistic Limit versus 8" AP Projectiles 1%. 21-3 at 35°9811%

FIGURE 17

NP9-73650 - Bellistic Experimental Test and Limit Determination of 6" Cless B Japanese Plate No. JE-50-3123 vs. 8" AP Projectile Mark 21-3. 19 September 1946 -

View: Face of plate and sides of three projectiles.

Impact	<u>Cbl</u> .	Thick.	3.V.(f.s.)	Pene.	SVL	Rennrks
33382	35-30	5.86	1502	Comp.	105.4	Proj. effective and intact
33384	35-30	5.87	1439	Comp.	100.8	Proj. effective and intact
33386	34-40	5.88	1365	Inc.	96.7	Proj. effective and intact

Estimated Ballistic Limit versus 2" AP Projectiles 1%, 21-3 at 35° 98:15

NP9-33663 - Ballistic Experimental Test and Limit Determination of 6" Close & Separate Flate No. JE-50-3123 vs. 8" AP Projectile Mark 21-3. 19 Jeptember 1946 - Separate View: Back of plate.

Impac	<u>t</u> <u>0bl</u> .	Thick.	3.V.(f.s.)	<u>Pene</u> .	<u>%VL</u>		<u>kena i</u>	rk <u>s</u>	
33382 33384 33385	35-30 35-30 34-40	5.86 5.87 5.88	1502 1439 1365	Comp. Comp. Inc.	105.4 100.8 96.7	Proj. Proj. Proj.	effective effective effective	and and and	intect intect intect
Ξ	stimated	Ballisti	c Limit ver:	sus 8" A	P Projec	tiles Kk	. 21-3 at 3	35°	98_1\$

FIGURE 19

NP9-33781 - Ballistic Experimental Test and Limit Determination of 7" Class 2 e te ne Plate No. JE-50-3128 vs. 8" AP Projectile Mark 21-3. 9 October 1946 -View: Face of plate and sides of two projectiles. Impact Obl. Thick. 3.V.(f.s.) Pene. SVL Renarks 1659 33422 34-50 6.99 Comp. 101.7 Proj. not recovered Proj. effective and intact 33425 34-40 7.00 1572 Comp. 96.4 92.0 33427 34-40 6.99 1497 Proj. effective - base plapped Inc.

Estimated Ballistic Limit versus 8" AP Projectile 1%. 21-3 at 35° 94113

UNCLASSIFIED

NF9-33782 - Ballistic Experimental Test and Limit Determination of 7" Class B Japanese Plate No. JE-50-3128 vs. 8" AP Projectile Mark 21-3. 9 October 1946.

View: Back of plate.

Impact	<u>Obl</u> .	Thick.	<u>S.V.(f.s.</u>)	<u>Pene</u> .	ZVL	Remarks
33422	34-50	6.99	1659	Comp.	101.7	Proj. not recovered.
33425	34-40	7.00	1572	Comp.	96.4	Proj. effective and intact.
33427	34-40	6.99	1497	Inc.	92.0	Proj. effective - base slapped.

Estimated Ballistic Limit versus 8" AP Projectile Mk. 21-3 at 35° 9411%

FIGURE 21 -

119-33737 - Ballistic Experimental Test and Limit Determination of 9"75 Japanese Class B Flate No. JE-50-3118 vs. 12" AP Projectile Nark 18-1. 3 October 1946.

View: Face of plate and base of projectile stuck in plate.

<u>Impact</u>	<u>Cbl.</u>	Thick.	3.7.(f.s.)	<u>Pene.</u>	<u>%vl</u>	Recorks
33412	34-21	₩ . 75	1420	3 1 7	93.6	Proj. effective and intact. Base of projectile flush with face of plate.

Estimated Pellistic firit versus 12" AP Projectile NR. 14-1 at 350 94-953

UTICLASS .

ED9-33788 - Ballistic Experimental Test and Limit Determination of 9175 Superce Class B Clate No. JE-50-3118 vs. 12" AP Projectile Fark 13-1. 3 Cotober 1949.
View: Back of plate and nose of projectile stuck in plate.
<u>Inject (bl. Thick. J.V.(f.s.) Pene. SVL Remarks</u>
33412 34-20 9.75 1420 JIP 93.6 Proj. effective and intect.

						Be	ise ice	of I of I	rojec Niste	tile	flush	wite
Nst	tineted	Pallistic	limit	versus	12"	AP Projectile	12.	13-	l st	35°	94-95	• • •

FIGURE 23

NEM-53648 - Ballistic Experimental Test and Limit Determination of 12" class B September Plate No. JE-50-3108 vs. 14" AP Projectile Mark 16-8. 12 September 1946.

View: Face of plate and sides of projectiles.

Innet	<u>ct1</u> .	<u>Thick</u> .	j.V.(f.s.)	<u>Pene.</u>	3VL	<u>kenarka</u>
33374 30376	30-00 30-00	12.10 12.10	1533 1459	Corr. Inc.	43.0 ११.5	Proj. effective and intact. Proj. not effective, broken into three pieces.

Estinated Ballistic Limit versus 14" AP Projectile 1%. 16-8 at 30% 91:15

UNCLASSIFIED

NP9-33649 - Ballistic Experimental Test and Limit Determination of 12" Class B Japanese Plate No. JE-50-3108 vs. 14" AP Projectile Mark 16-8. 12 September 1946

View: Back of plate.

Impact	<u>061</u> .	Thick.	3.V.(f.s.)	Pene.	%VL	Remarks
33374 33376	30-00 30-00	12.10 12.10	1533 1459	Comp. Inc.	93.0 88.5	Proj. effective and intact. Proj. not effective, broken into three pieces.

Estimated Ballistic Limit versus 14" AP Projectile Mk. 16-8 at 30° 91±1%

۸.

\$

FIGURE 28 ETGLASSIFIED

U ULAGON

*

Ĩ

Mill and

I

ſ

FIGURE 35

1.

.

i.

- 0

l

Ŧ

I

•

*

1

Ĩ

.

~ ~

- -----م. حدد به ۲۰۰۰ مد 1.02 . - -. . . میں د د د . _____ -----

T

NP9 34987 Nacroetch Longitudinal Section Japanese 7-1/4" Class "A" Plate 3133 Etch: 12% H₂SO₄, 38% HCl, 50% H₂O - 70°C - 30 mins. Magnification: Approximately 3/415 Aug. 1947

FIGURE 42

UN: 1 ASSIFICO

T

NP9 35185 Macroetch Longitudinal Section Japanese 15" Class "A" Plate 3113 Etch: 12% H₂304, 38% HCl, 50% H₂O - 70°C - 30 πins. Magnification: Approximately 1/2

HINCLASSIFIED

15 Aug. 1947

DEFINITION

FI TURE 46

. . . 1 . ł

I

- 25 mins.

Approximately Actual Size

Japanese 3" Class B Plate No. Etch: 12% H2SO4, 38% HCl, 509 Magnification: Approximately

NP9-34982

3114

Macroetched Longitudinal Section

10 July 1947

57 BULLE

UNCLASSIFIEL

Macroetched Longitudinal Section 10 July 1947 ľ Ę, 6 n. Alt Q - 30 mins. 1 1.5 ent LE FIGURE 48 Japanese 3" Class B Plate No. 3120 Etch: 12% H₂SO4 38% HCl, 50% H₂O - 70°C Magnification: Approximately Actual Size i Ņ <u>515</u> • } NP9-34984 . 1 ۰. I

FIGURE 50

21 July 1947

NP9-34985 Japanese 6" Class B Plate No. 3123 Etch: 12% H₂SO₄, 38% HC1, 50% H₂O - 70°C - 30 minutes <u>Magnification</u>: Approximately 5/6

ſ

ľ

1

(

NP9 35187 Macroetch Longitudinal Section Sapanese 7" Class B Plate 3128 Stch: 125 Mp304, 335 MO1, 505 Mg2 = 50 C = 25 C = 125 Mp304.

UNA She

I

NP9 35188 Macroetch Longitudinal Section Japanese 9" Class "B" Plate 3118 Etch: 12% H₂30₄, 38% HCl, 50% H₂0 - 70°C - 25 mins. Magnification: Approximately Actual Size 15 Aug. 1947

WHEL SHIED

T

T

NP9 35189 Macroetch Longitudinal Section Japanese 12" Class "B" Plate 3108 Etch: 12% H₂SO₄, 38% HCl, 50% H₂O - 70°C - 30 mins. <u>Magnification</u>: Approximately 2/3 15 Aug. 1947

FININ (3

W VOLAS FIFE

UNCLASSIFIED

(A) Picral Nital Etch 1000X
Spheroidized Carbides in Ferritic
Matrix
1/4 Point 7" Class B Plate No. 3128

NP9 35197

28 Aug. 1947-

UNCLASSIFIED

(A) Picral Nital Etch Spheroidized Carbides in Ferritic Natrix

(B) Picral Nital Etch 1000X Spheroidized Carbides in Ferritic Matrix

Microstructures at the 1/4 point of 7" Class B Plate No. 3128 showing the banded distribution of carbides. Note the difference in carbide distribution between (A) and (B) which were taken at adjacent locations.

(A) Unetched

100X

(B) Picral Nital Etch 1000%

Inclusions at the 1/4 point of 6" Class 2 Plate No. 3122 Stringers typical of Japanese Armor Plate

FTGURE 57