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SUMMARY

This report is intended to assist non-specialists in understanding the
numerous specialist papers on linear elastic fracture mechanics. The
main concepts are described, and the various terms and conventions used
are explained. Advanced mathematical techniques are used in fracture
mechanics; some of these are described briefly, but results rather than
methods are emphasized.

Fracture mechanics developed from the study of brittle fractures
which had taken place below general yield; it is found that such failures
always originate at some type of crack or flaw. Previously, the problem

of brittle fracture has been tackled by empirical methods based on service
experience but the problem can only be properly understood using fracture
mechanics, which is the applied mechanics of crack growth starting from
a flaw. Stress analysis of cracked parts leads to the concept of stress
intensity factor, which describes the elastic crack tip stress field. A
critical value of this factor at which crack growth starts is a useful mea-
sure of the fracture toughness, or resistance to brittle fracture of a high
strength material, which can be used for material development, qua litV
control, design and failure analysis. I he stress intensity factor can also
be applied to other types of crack growth such as stress corrosion and

% fatigue crack growth.
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a Half length of internal crack or notch, length of surface crack or notch

at a2a3'a4  Coefficients of stress field expansion

B Specimer thickness --

B Net section thickness

b Semi-minor axis of ellipse

C Material constant

c Semi-major axis of ellipse

E Young's modulus

G Shear modulus E/(2 + 2v)

G c  Effective surface energy (both crack surfaces)

G, G , G7 , Strain energy release rate for different modes

Gt Value of G for plane strain conditions

K Rate of increase of K1 with respect to time

KB Stress intensity factor for plate bending

K c  Critical value of K-
*K Value of K due to external loads

K Ih, KHI Stress intensity factor for different modes

KTa K, for anisotropic materials

KIC Kc for plane strain conditions

K1sCc Critical value of K for stress corrosion cracking

K Maximum value of K1 during fatigue cycle

K Mean value of K, during fatigue cycle

K Mn Minimum value of K, during fatigue cycle

K Provisional value of Ke .

K Value of K due to the relief of internal stresses on the introduction of a crack

K s  Stress intensity factor for plate shear

K T Stress concentration factor (a . /a)

(iv)



K Critical value of K11

A AK K -
max in

U Bending moment
h.s."-.

" im An exponent

N Number of cycles

P L oad 
ax ..

PMP PS Loads defined in Appendix III and Fig. 13

R Resistance to crack growth

P Stress ratio o in/Ctt a X

r,9 Polar coordinates (Fig. 1)

r* Plastic zone radius

S Maximum stress rate (rate of increase of stress)

t Time from zero load

u,v,w Displacements in x,y,z direction

V Crack velocity

W Specimen width

* x,y,z Rectangular coordinates

." Y Stress intensity factor coefficient

* a Correction factor for the geometry of the flaw and structure

S y Surface energy

- Critical value of crack opening displacement

A Compliance (reciprocal of stiffness)

I 1' ,2 [Dimensionless elastic constants

v Poisson's ratio

* p Notch root radius

a Gross stress, stress remote from crack or notch

- a,y a.

Stress components in the x,y,z or r,O directions

(V)



ama Maximum stress at a notch

am a% Maximum stress during fatigue cycle

am aan Mean stress during fatigue cycle

amin Minimum stress during fatigue cycle

ay Yield stress (taken as the 0.2 per cent proof stress)

tI Shear stress components.
re

(vi)



1. INTRODUCTION

Fracture mechanics has developed from the study of brittle fracture; that is the catastrophic
failure of a structure made from a normally ductile material at a load below that necessary to
cause general yielding, and without noticeable plastic deformation. Experience shows that
brittle fractures always originate at cracks or flaws of various types, for example, fatigue cracks
which develop during service, or welding cracks which may be introduced during fabrication.
Previously, the problem of brittle fracture was tackled by empirical methods based on service
experience but the problem can only be properly understood using fracture mechanics, which is
the applied mechanics of crack growth starting from a flaw. Linear elastic fracture mechanics
makes use of the elastic stress analysis of a cracked part to define the conditions under which
the existing crack, or crack-like flaw, will extend. The basic assumptions are the same as those
in strength of materials theory: the material is a homogeneous isotropic continuum (that is micro-
scopic irregularities in structure are neglected); stress is proportional to strain; strains are
small; and distortions are neglected. The material is also assumed to be free from self-
equilibrating internal stresses. Various modifications can be made to the basic theory to allow
for the actual behaviour of real materials.

This report is intended to assist non-specialists in the understanding of the numerous
specialist papers on various aspects of linear elastic fracture mechanics which are being
published. The symbols used are generally those which are commonly accepted, but some varia-
tions will be found in the literature. Table 1 shows customary and SI units used in fracture -..
mechanics. In this report K. is taken to have a general meaning as any critical value of Ky ---
irrespective of the state of stress, but where KC is used as a critical value under plane stress
conditions, the term 'plane stress K is used. The references cited in each section have been

C
chosen to give an overall view of the subject matter covered; most of the topics are discussed in
detail in Reference 1.

2. MODES OF CRACK GROWTH

There are three basic modes of crack surface displacement 2 ) which can cause crack growth
and these are shown in Fig. 1.

(1) The opening mode. The crack surfaces move directly apart; analogous to an edge
dislocation.

(II) The edge sliding mode. The crack surfaces move normal to the crack front and
remain in the crack plane, also analogous to an edge dislocation.

* (III) The shear mode. The crack surfaces move parallel to the crack front and remain in
the crack plane; analogous to a screw dislocation 3 ).

The superimposition of these three modes is sufficient to describe the most general case
of crack surface displacement. It is conventional to add roman numerals I, II, Ill as subscripts
to various symbols to indicate the mode. In isotropic materials brittle fracture usually occurs
in mode I. Consequently, attention is largely confined to this mode; in this report mode I is
implied unless otherwise stated.

In fracture mechanics only the macroscopic mode of crack growth is considered although, on
a microscopic scale, fracture is usually a very irregular process. Crack growth which forms
shear lips (Fig. 2), often referred to as 'shear fracture', is a combination of modes I and I1, but
is usually treated in calculations as if it were mode I.

For strictly two-dimensional cases aud in shell problems, only modes I and II can exist.
However, 'two-dimensional' is often taken to include examples of plates of finite (constant) thick-
ness. Mode II displacements can only exist at internal or mathematically deep external cracks.

I -1-



3. STRESS INTENSITY FACTOR

Crack surfaces are stress-free boundaries adjacent to the crack tip, and therefore dominate

the distribution of stresses in that area ( 2). Remote boundaries and loading forces affect only the

intensity of the stress field at the crack tip. These fields can be divided into three types corres-

ponding to the three basic modes of crack surface displacement, and are conveniently character-

ized by the stress intensity factor K (with subscripts I, 11, I1 to denote the mode). K has the

dimensions (stress) x (length)4 and is a function of the specimen dimensions and loading condi-

tions: in general it is proportional to (gross stress) x (crack length)2. Conventionally K is

expressed either in hbar(cm) , MN/my2 or lb/ini (sometimes written k.s.i.(in)%). Expressions for

K1 for several configurations ( 2' 4' 5 ) are shown in Fig. 3. When K is known, stresses and displace-

ments near the crack tip can be calculated using standard equations (see Appendix I), the stresses

are always inversely proportional to the square root of the distance from the crack tip and become

infinite at the crack tip. Provided that only one mode is present the stress intensity factors due

to different loadings can be superimposed by algebraic addition; if more than one mode is present

the individual stress components and displacements can be similarly superimposed.

Small-scale non-linear effects, such as those due to yielding, microstructural irregularities,

internal stresses and local irregularities in the crack surface, do not affect the general character -.

of the stress field and can be regarded as being within the crack tip stress field. They can

therefore be neglected in a reasonable approximation( 2 ). The actual fracture process can simi-

larly be regarded as taking place within the stress field at the crack tip; the concept of stress

intensity factor therefore provides a convenient mathematical framework for the study of fracture

processe.s. The effects of residual stresses are discussed in Appendix 11.

The representation of a crack tip stress field by a stress intensity factor is a basic concept

in fracture mechanics. The term should not be confused with 'stress concentration factor' or

'stress intensification factor', which are terms used to describe the ratio between actual and

nominal stress at a discontinuity.

It is found that under increasing load a crack will start to grow (provided that general yield-

ing does not intervene) when K1 reaches a critical value (K.), and will continue to grow as long
as the loading conditions are such that K > K. Under certain conditions K can be regarded

as a material property and is a convenient measure 6 ) of the fracture toughness, or resistance to

brittle fracture, of a material.

For a crack to grow under static loading, two conditions are nercssarv and sufficient(7 ) .

There must be sufficient stress available to operate a suitable mechanism of fracture, and the

strain energy released by an increment of crack growth must equal or exceed the energy required

to form the new crack surfaces. That is,

G1 G.

GI = strain energy release rate (1)

G = effective surface energy (both surfaces).

In metals the true surface energy is small compared with the additional energy absorbed by

the plastic deformation adjacent to the crack surface which always accompanies fracture. It can

be shown") > that both these conditions are satisfied when F, > K, and that

K,= (EG,)'z , (2)

for plane stress. For plane strain E is replaced by E/(l -v).

K and G are similarly related and are therefore equivalent measures of fracture toughness.
C
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This equation is sometimes written

K ( = )(3)

with the result that all other equations involving F' differ by a factor (rr)'2. This variation has
caused some confusion in the literature. The form shown in equation (2) is more generally used
and is adopted in this report.

4. CRACK DIRECTION

For an isotropic material a crack usually tends to grow in the opening mode and the favour-

able initial direction of crack growth is often stated( 9 10) to be perpendicular to the maximum
principal tensile stress. More strictly' it is along a plane intersecting the crack tip and
perpendicular to the greatest local tensile stress. This plane is often approximately the same as
the one perpendicular to the maximum principal tensile stress in an uncracked specimen. For the
two-dimensional case the direction of initial crack growth is along a principal stress trajectory
whose direction is given by' 9'')

K sin 0 = K (3Cos 0 -1). (I)

If mode Ill displacements are present a preferred plane for crack growth will intersect the
crack front at only one point, so that initially the crack is constrained to a less favourable path
although the crack surface may be stepped""' . If permitted by the specimen geometry, the
crack will twist to a favourable path as it grow,;. The situation may be summarized by stating
that whenever possible a crack in a brittle isotropic material grows in mode I.

5. EFFECT OF YIELDING

An uncracked metal plate loaded in uniaxial tension is in a state of plane stress. The
insertion of a crack does not affect the plate remote from the crack tip, which remains in plane
stress, but the highly stressed material near the crack tip is prevented from contracting in the
thickness direction by the material further away from the crack, and is therefore in a state of

plane strain. In the interior of the plate there is a transverse stress a = 1(a - a ) where v is
Poisson's ratio. All the plate surfaces, however, will still be in a state of plane stress.

In a metal the yield stress is exceeded near the crack tip and a plastic zone develops, the

approximate extent of this plastic zone can be estimated by substituting a yield criterti, into
the stress field equation. If the plastic zone is small compared with the plate thickness, trans-
verse yielding is restricted and conditions near the crack tip still approximate to plane strain
through most of he plate thickness. In fracture mechanics this localized plane strain situation
is called plane , '  see Fig. 4, and exists in most metals' 4 ) , provided that the thickness
is at least 2.5(KT, y ), where a is the yield stress (usually taken as the 0.2 per cent proof
stress). A large plastic zone means that a z is not fully developed through the specimen thick-
ness; when the plastic zone size becomes comparable with the thickness, yielding can take
place on 45' planes, and t he stress state near the crack tip changes to plane stress. This

happens when the thickness <<2.5(Kr/av)' and in fracture m'echanics is referred to as plane stress.

The actual size and shape of the plastic zone depends on the plastic flow properties of the

material( 4 ), but it is proportional to (Ki/ay)2 . The relaxation of stresses, caused by yielding
insie the plastic zone means that to maintain equilibrium the stresses outside the plastic zone
must increase slightly. The plastic zone thus increases the effective length of t he crack. This
effective increase called r (a symbol for nominal plastic zone radius) is given approximately by

3
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r for plane stress (5)

a. rI = for plane strain (6)

and is about half the extent of the plastic zone. These corrections are only applicable when the
plastic zone is small compared with specimen dimensions in the plane of the plate, and are there-

fore within the region where the stresses are reasonably accurately described by the stress
intensity factor. If the plastic zone becomes too large, which happens when the net section
stress exceeds about 0. 8 , (6), linear elastic fracture mechanics is no longer applicable. It is

not always possible to define the net section stress unambiguously and other criteria may be

adopted', for example, that the crack length is at least 2.5(K/ Cy)2. -

The value of K is normally a minimum under plane strain conditions, as shown schemati-

cally in Fig. 5; it becomes a material property, denoted K ,, in the same sense as the 0.2 per
cent proof stress. The existence of K,, as a. material property is the main iustification for the

application of linear elastic fracture mechanics to brittle fracture problems.

*.When a specimen containing a crack is loaded, the crack tip opens without extension of the

This movement is called the crack opening displacement and is associated with the

development of the plastic zone. Its critical value , when the crack starts to grow is roughly
constant 14 i and approximately equals G "cyY % is used as a measure of toughness for low

* strength s gels and has the advantage that it still has meaning at and beyond general yield.

The shear lips I' which develop at specimen surfaces (Figs 2a and 5) are a result of

plastic flow. Shedr fiacture is associated with yielding under plane stress conditions, which
initially exist only at the plate surfaces, and extends progressively as the crack grows until the

full width of the shear lip is reached. Shear lip width is roughly constant for a given material,
and under plane stress conditions they meet giving a fully developed shear fracture (Fig. 2B).

During development of the shear lips the crack tends to bow forward in the plate interior. Even
when there is a fuly developed shear fracture there is always an initial portion of square fracture

roughly triangular in shape (Fig. 2b). Plane stress does not necessarily produce shear fracture;

for example, beryllium and some titanium alloys show square fractures irrespective of the state

of stress. 'Ahen the crack front has a complicated shape only average values, through the thick-

ness, can be calculated for G, or KC Various aspects of yielding at crack tips have been fully

discussed by a number of authors ' 24io ' t ° ' iQ'

6. R.CURVE HYPOTHESIS

It was assumed in Section 3 that G (and KC) are independent of crack length so that

behaviour is of the type shown in Fig. 6, where instability under rising load conditions occurs

when a line (which may be curved) of G, against a, at constant load, reaches a value equal to

G at the initial crack length: the load at instability is the same as the load at the start of
C

crack growth.

It is evident"'6 °20 from the progressive development of shear lips in a thin specimen that

the resistance to crack growth R increases as the crack grows from its initial length as shown

schematically by curve .4 in Fig. 7. Instability occurs when a line of G, at constant load is a

tangent to the R curve, that is G, = R and 4Gr ',a = ,iR 4a. It is reasonable to assume that the

form of the R curve i independent of the initial crack length. lowever, if the initial crack length

is altered, instability may occur at a different value of G, (Fig. 7, curve B), thus the value of G
taken as the value of G at instability, depends on the initial crack length.

Under plane strain conditions ithick plates the R curve tends towards the ideal case shown

in Fig. 8 (compare with Fig. 6), where the plane strain C G,,, equivalent to K,,) is independent

of the initial crack length, but R still increases with G', until instability. For some materials

4



of engineering interest, such as maraging steels, the R-curve tends to be of the type shown in
* Fig. 7 irrespective of specimen thickness. Intermediate behaviour is sometimes observed

(Fig. 9); at longer crack lengths (Fig. 9, curve B) there may be a burst of square fracture in the

interior of the specimen which is arrested by the development of shear lips; the burst of fracture
is often accompanied by an audible click which is called 'pop-in'.

Once instability is reached subsequent behaviour depends on the relative stiffness of the

specimen and the loading arrangements. As the crack grows the stiffness of the specimen is
reduced. If the load source is 'soft' (approaches constant (dead) load conditions) the displace-
ment will increase automatically to compensate for the loss of stiffness without decrease of load ,V
and the crack will extend catastrophically. When the load source is sufficiently 'hard' and
approaches constant displacement (fixed grip) conditions the loss of stiffness may unload the
specimen sufficiently to arrest the crack. Further displacement will be required to extend the

crack, and the load will adjust itself so that the R curve is followed 2 1) . Whether the crack will

extend catastrophically when it starts to grow therefore depends on the relative stiffnesses of the
specimen and the load source; a large specimen may contain sufficient strain energy to cause
complete fracture even under hard loading conditions.

7. DETERMINATION OF K1C AND PLANE STRESS K.

*The complicated nature of crack growth in metals means that K,, cannot necessarily be

calculated from the load at which instability occurs under plane strain conditions. However, it

has been found 2 2 ) that consistent values for K1 are obtained if it is calculated from the load -i

necessary to cause a significant increase in crack length. A significant increase is defined as

an increase in effective crack length (actual crack growth plus the apparent growth due to the

development of the plastic zone) of 2 per cent, and at least half this must be actual crack growth.

Crack growth can be detected by measuring the displacement across the crack, using a

strain-gauged clip gauge ( 2 3 ) (Fig. 10), which is not damaged when the specimen breaks. If a

curve of load against displacement is recorded autographically the load used to calculate K,, can

be obtained by a simple geometrical construction (see Appendix III), known as the offset procedure.

With lower strength materials the value of KIc tends to increase and the minimum specimen dimen-

sions necessary to obtain a plane strain fracture, and ensure essentially elastic behaviour,

increase rapidly as ay decreases. In practice K,, can only be conveniently determined if ay is

greater than about 100 hbar (65 ton/in2 ) for steels and 30 hbar (20 ton/in2 ) for aluminium alloys.

To obtain consistent values for KIc the crack tip radius must be below a certain critical

value, which for most metals is less than the sharpest possible machined notch. Specimens are

therefore cracked by fatigue loading before testing; the notch from which the crack is grown, and

the fatigue loading, must be carefully controlled so that the crack is of the desired form, with a

reasonably straight front. To obtain reproducible results the test procedures must be strictly

controlled; if test requirements are violated there is usually no means of telling whether the

apparent value of Krc is greater or less than the true value, or of estimating the likely error.

Standards describing methods of determining KIC are being prepared.

Although K usually has a more general meaning it is sometimes used to indicate the

critical value of K, under plane stress conditions 6 ) . A shear fracture (Fig. 2b) is taken to .-

indicate plane stress conditions, and K is calculated from the crack length and load at instab-

ility. The R curve is usually well rounded (see Section 6) so that the value of the plane stress
K will depend upon the initial crack length. There is. usually some slow crack growth before

C
instability, so that the determination of the actual crack length at instability is difficult( 6".

Plane stress K testing is less well developed than K,, testing. K c values are sometimes

measured for intermediate states of stress using the plate thickness which will be used in service.

If a specimen is loaded so that more than one mode of crack surface displacement is present

crack growth will start at a critical value of some function of K, Kit and K , but will not, in

5
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general, be in the same direction as the original crack (see Section 4). Crack growth will often
be stable in the sense that a rising load is needed to cause further growth. For plate bending
problems critical values of the plate bending stress intensity factor KB (see Appendix I) are
occasionally quoted.

B. EFFECT OF ANISOTROPY

*' Elastic anisotropy can usually be ignored in the measurement of K,, and plane stress K.
(see Appendix IV), provided that crack growth occurs in the original crack plane. In the presence
of moderate toughness anisotropy the specimen is simply oriented so that toughness is measured

*" in the direction of interest. Similarly, if toughness varies, for example in the vicinity of a weld, -

- the specimen is cut so that the crack tip is in the required zone. If the toughness anisotropy is
marked crack growth will tend to be in the weaker direction, and may not be in the direction of
the initial crack even for mode I loading. The testing of a glued joint can be regarded as an
extreme case of toughness anisotropy.

When the direction of crack growth is unstable (Appendix 1) (Fig. 3e ) an artificial plane of
weakness is sometimes created by cutting one or two side grooves along the prospective crack
plane to ensure that the crack grows in the desired direction. Only an approximate correction( 2 4 )

is 2vailable to allow for the effect of the side grooves on the stress intensity factor.

Values of K can be obtained for fibre reinforced materials, provided that the crack extends

in its original direction(25 ); this will always be the case in the weak direction, but only occurs
in the strong direction for less satisfactory composites. In a good composite the crack is
diverted parallel to the fibres and a complex crack pattern appears which increases the toughness.
No mathematical solution is available for this situation, so that at present the toughness of fibre
reinforced materials cannot be satisfactorily assessed using fracture mechanics techniques.

9. EFFECT OF STRAIN RATE

The stress intensity factor concept can be applied to moving cracks (see Appendix V) and
can therefore be applied to the examination of the behaviour of a propagating crack. When K1

exceeds K c a crack will start to grow, and will continue to grow provided that K, is at least
equal to K.. Any energy in excess of that required to form new crack surfaces causes the crack
growth rate to accelerate towards a theoretical limit; as this is approached surplus energy
causes crack branching and, possibly, shattering. If K. increases with crack speed the crack
speed adjusts itself so that K = K 1 .

Provided the rate of increase of K1, K, is known, the strain rate for any point near the crack
tip can be calculated using equation (1.1) of Appendix I. Similarly, the strain rate can be calcu-
lated for a propagating crack from the value of Kr and the crack speed. Increase of both k and
crack speed cause an increase in strain rate near the crack tip, but there is no simple relationship
between the two. The situation is further complicated by the presence of a plastic zone, and for
some purposes it is convenient to compare stress rates(' 3 1 (rate of increase of stress) rather than
strain rates. The stress rate is a maximum at the leading edge of the plastic zone. For plane
stress the maximum stress rate S at a stationary crack with constant rate of load increase is
given by

s 24'., (7)

t = time from zero load.

For a crack propagating at velocity V and under plane stress conditions S is given by

cV = a~~v (8) ."'
$ 2r .

where r is given by equation (5).
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If the material is strain rate sensitive the problem is further complicated by the increase in
Oy at high strain rates, because the value of ory is itself a function of S.

Most high strength materials are not particularly strain rate dependent so that K is only

slightly affected by the value of S. Mild and similar steels are markedly strain rate sensitive,
and crack initiation is more difficult than crack propagation ( 

1
3 2 6 ), particularly above the transi-

tion temperature. The relationship between K and S, above the transition temperature, is shown
schematically in Fig. 11. At low loading rates mild steel is too tough to obtain a value for K

C
using specimens of practical size, but if a crack is initiated by any means it will accelerate
rapidly towards the crack speed associated with the minimum K c and is not readily arrested. The
decrease in KC at high loading rates with the associated increase in a. means that much smaller

specimens will behave in an essentially elastic manner' 27 ) , and explains the importance of impact
loads as a cause of brittle fractures. The K c required to initiate a crack can also be consider-
ably reduced by metallurgical damage, perhaps associated with welding, and by local cooling.

10. FATIGUE CRACK GROWTH

The previous sections were concentrated on the application of linear elastic fracture mech-
anics to brittle fracture. Powever, the concept of stress intensity factor can be used in the
study of mechanisms (28 ) such as fatigue and stress corrosion, which cause slow crack growth at
stress intensity factors below K, and are sometimes referred to as 'sub-critical crack growth'.

Numerous, apparently different, 'laws' of fatigue crack growth have been described in the-
literature ( 2 9 ), and by making various plausible assumptions some of them can be derived theo-
retically. All the laws can be regarded as valid in the sense that they describe a particular set
of fatigue crack growth data, and they can be used to predict crack growth rates in situations
similar to those used to collect the data. It is sometimes possible to fit the same set of data to %. "
apparently contradictory laws, but owing to the inherent scatter in fatigue crack growth data it is
not possible to decide which law is the most 'correct'.

Linear elastic fracture mechanics provides a particularly convenient means of correlating
fatigue crack growth data( 3 ° ) because the stress conditions at the crack tip can be described by
a single parameter, the stress intensity factor. Apart from the development of shear lips and
tilting of cracks onto a shear plane, sometimes observed in thin sheets, fatigue crack growth
normally occurs(3 1 ) in mode 1, and its direction is therefore as described in Section 4. The
fatigue cycle is usually described by AK (K.. - Kri., where K G and K are the maximum
and minimum values of K during the fatigue cycle). It has been shown experimentally that AK
has the major influence on fatigue crack growth (3 0 ) and that if AK is constant the fatigue crack
growth rate is constant (3 2 ) . For many materials where the fatigue cycle is entirely tensile the
rate of fatigue crack growth can be expressed by the equation

da/dN = C(AKY"  (9)

where N is number of cycles, C a material constant, and m is an exponent usually about 4.

Equation (9) is sometimes modifie." to allow for the increase in crack growth rate which
usually occurs as K max approaches K, and for the effect of mean stress, which influences
fatigue crack growth rate in some materials. If AK is below a certain threshold value fatigue
crack gr.owth does not occur

Equation (9) applies only to an essentially elastic situation, so that limitations of the type
described in Section 5 should be applied to K a.; corrections to K may be made for plastic
zone size using equation (5) or (6). Corrections to AK may be made for plastic zone sizes using
these equations, but ay is replaced by 2oy(1, The resulting correction to AK is usually very
small and is normally neglected. The minimum value of K, (K. ) during the fatigue cycle equals
K 3 -AK. For the case of a zero minimum load K. n would be expected to be zero, but if

7a
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plastic zone corrections are applied K > AK, and Km i has a small positive value; the crack -.

is effectively held open by the plastic zone, so that a small compressive load is required to close
the crack and reduce K. to zero. For an alternating load it is conventional to calculate AK on
the assumption that the crack is completely closed on the compressive half cycle so that the
effective load cycle is zero to maximum load. The effect of the plastic zone is to increase AK
somewhat because the crack is actually open during part of the compressive half cycle; the effect
is more marked for short crack lengths. When a crack has grown for some distance the permanent
deformation adjacent to the crack surface, left behind by the passage of the plastic zone at the
crack tip, may be sufficient to cause closure of the crack before the load has fallen to zero 3 4),
thus reducing AK. .a

When a centre crack specimen (Fig. 3 c) is used K M and AK both increase with crack length,
but the stress ratio R remains constant; data are usually presented as plots of da/dN aeainst AK
for constant R. Constant K specimens where K, is independent of crack length (Fig. 3e) are
particularly convenient because all the parameters can easily be varied independently. Note that
plotting data by different methods, for example, da/dN against AK for constant K instead of
constant R, can give a different impression of the fatigue crack growth properties of a material.

If the maximum fatigue load is such that general yielding occurs it may still be possible to
linear elastic fracture mechanics, provided the alternating load is small. In this case it

can be argued that the unloading displacements during the first cycle, and all the subsequent
cycles, will be essentially elastic so that it is possible to calculate AK, although K cannot
be calculated. This argument has been found 3 3 ) to be justified for some materials because
equation 9) has been found to be applicable beyond general yielding.

11. STRESS CORROSION CRACKING

In a conventional stress corrosion test a plain specimen is loaded to near its yield point and

left to break. Most of the time to failure is occupied by the development of corrosion pits which
eventually lead to cracking and failure. The test is thus primarily a test of resistance to pitting,
and not of the ability of a cracked material to resist crack extension in the presence of a corrosive.
In-service, cracks may be present, so information on the stress corrosion resistance in the
presence of a crack 3 s) is required. This is particularly important for materials such as titanium
alloys, which are resistant to pitting but may be sensitive to stress corrosion in the presence of
a crack 13 6 ).

In these circumstances a fracture mechanics approach can be used. Cracked specimens can
be loaded to various values of K T and the stress corrosion crack growth rate determined. It is
found that there is a threshold value( 2 8 ', 35 , 3

6) of K 7 (Krscc) below which no crack growth occurs;
KIscc is a useful index of a materials stress corrosion resistance. For satisfactory results
specimens should be of such a size that behaviour is essentially elastic and plane strain condi-
tions exist (see Sections 5 and 7).

12. APPLICATIONS

In the past the problem of brittle fracture was tackled by empirical methods based on service
experience, and a great many tests were devised, the best known of which is the Charpy impact
test. Until the ad.vent of fracture mechanics there was no really satisfactory method of assessing
the fracture toughness of high-strength materials (say, greater than 100 hbar (65 ton/in2 ) for
steels and 30 hbar (20 ton/in2 ) for aluminium alloys), but the determination of K is now an.
established method of assessing such materials( 37 ) .

Methods of measuring toughness are needed for the development of new materials, for quality
control during material production, and to provide design information. The determination of K"
is now being used for material development, and its use is being planned for quality control and
specification purposes. One particular value of KTC is that it can readily be used to measure
the toughness at any area of interest, for example, at or near welds, by suitable orientation of the ,

test specimen and positioning of the initial crack.



In principle application to design problems is straightforward ( 3 8
,

3 9 ) . The relationship
between K,., applied stress a, and initial flaw size a at the start of crack growth can be written
in the general form

K = o(ra) a, (10)

where a is a correction factor for the geometry of the flaw and structure. The determination of
stress intensity factors for various geometries is described briefly in Appendix VI. Thus, if any
two factors (that is, flaw size, applied stress or K,,) are known, it is then possible to determine
the value of the third to avoid brittle fracture. The plastic zone increases the effective flaw
size, and a correction should be included if it is a significant proportion of the flaw size. -___

Equation (10) only holds under essentially elastic conditions (see Sections 5 and 7) where failure
occurs at below general yield. If the material is too thin for fully developed plane strain condi-

* tions (Fig. 5) Kr in equation (10) is replaced by the value of K c appropriate to the thickness.

If the flaw is too small to cause a brittle fracture it may nevertheless be above the threshold
size (see Sections 10 and 11) for stress corrosion or fatigue crack growth. In this case the time

* required for the flaw to grow to a critical size can be obtained from appropriate crack growth data
and be used to estimate the safe life of the component.

In practice there are considerable difficulties in applying this approach. First, accurate
values of a in equation (10) for three-dimensional bodies are only available for a few simple
crack shapes in regular bodies; at present this is the biggest obstacle to a more widespread
application of fracture mechanics in design. Secondly, the loadings on the structure may not be
sufficiently known for accurate estimates of stress level to be made. Thirdly, flaw size often
cannot be accurately determined using the available non-destructive testing techniques and lastly,
there may be considerable scatter in the toughness of a material, particularly in the vicinity of
welds. Despite these shortcomings fracture mechanics has been successfully applied to a
number of design problems, especially in the aerospace industry, and has proved particularly
valuable in failure analysis.

Many of the difficulties associated with the analytic approach outlined above can be avoided
by proof testing( 3 8

,
3 9 ) . If the structure does not fail, and K is known, the stress intensity

factor at the tip of the worst flaw cannot exceed KIC at the proof load, and on this basis it is
sometimes possible to make realistic calculation on the rate of growth of cracks during the service
life of the structure. This approach has been applied to pressure vessel design.

13. CONCLUSIONS

(1) The crack tip stress field in an essentially elastic situation, that is below general yield, can
be described by the stress intensity factor, which has the dimensions of (stress) x (lengthA. The
stress intensity factor should not be confused with either a stress concentration factor or a stress
intensification factor. Two alternative definitions of stress intensity factor exist: these differ
numerically by a factor of r%.

(2) Crack growth under static loading starts when the stress intensity factor reaches a critical
value; under plane strain conditions this is a minimum denoted KIC, which can be regarded as a

material property in the same sense as the 0.2 per cent proof stress, and is a convenient measure

of a material's fracture toughness, or resistance to brittle fracture. The determination of K, 0
involvescareful experimental work; published values should be regarded with suspicion unless

it is known that the test technique is adequate.

(3) The concept of stress intensity factor can also be used in the analysis of stress corrosion

. and fatigue crack growth data. In both cases it is found that there is a threshold below which
crack growth does not occur.

9
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(4) The high stresses at a crack tip lead, in metals, to the development of a plastic zone, which

increases the effective length of a crack. In accurate work it is sometimes necessary to make a

correction for the plastic zone.

(5) The concept of stress intensity factor can be applied to problems in design and failure

analysis provided that general yielding does not occur. A serious limitation is a lack of informa- --

tion on stress intensity factors for irregular cracks in complex three-dimensional shapes.
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APP ENDIX I

ELASTIC STRESS FIELDS

The elastic stress fields and displacements corresponding to the three modes of crack
surface displacement are ( 2 ) , referring to Fig. I for notation (where u,v,w are displacements in the

% , y,z directions).

Mode 1:

a =X. cos s in sin

(2ffrp"
-" K,

(y 2 2 2)

a.= v(a + a- +)(..

v = - sin 2 - 2v - cos 2  -.

W =0.

Note that the crack opens into a parabola, and that because a crack is regarded as a n.athe-
matical 'cut', 0 must lie within the range ±n."

Mode I:

a 1  (2mr)~'sin 2 + cos cos 6

K11  00
in= ,ncos-Cos

'r (tr) 2 2 2
(21rr)l 2

r r 0 y (1.2)

xx yE

t = K1 sin 2 - 2v + cos'

v= ( cos I + 2 v + sin 2

W = 0.
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Equations (1.1) and (1.2) are written for plane strain; they can be changed to plane stress

by writing a. = 0, and substituting the appropriate value for v.

Mode III:

Krx sin

(2yrr)" 2

K11
=(2trr)'r 2

or 0 = Oy0 , = 0 (1.3)
z y z xy

w = 0r..
G --- sin 2 G i-.?

U = V = 0.

Equations (1.1) to (1.3) are for static or slowly moving cracks and were obtained from the

series expansion of the stress fields by neglecting higher terms in r. They can be regarded as

a good approximation when r is small compared with the other dimensions of the body in the x-y

plane and are exact as r tends to zero.

K, is taken as positive when the crack surfaces move apart. A negative K, only has mean-

ing if the crack is regarded as a narrow slit because if the crack surfaces are pressed together

the crack has no effect on the stress distribution. The signs of K11 and K r are a matter of

convention, but are generally taken as positive.

For some problems involving the bending of cracked plates it is convenient to determine

elastic stress fields in the vicinity of cracks, using plate bending theory( 2
,

40 ) . The resulting

stress fields are described by stress intensity factor K B (for bending) and K. (for shear).

K B= K (3 + v)/(1 + v) and is equivalent (at the plate surface) to K1 ; and K s is equivalent to K

There is no equivalent to K,-.

The elastic stress field can be more accurately represented by including further terms. The

first four terms for the opening mode, expressed in polar coordinates (Fig. 12) for compactness,

are'
9 )

o = _:1 5 Cos - COS + a cos 2 +

+4 3 cos 2 + 5 cos + cos + cos +

-1 a ()t (3 cos 2+ cos + a sin' 0+

ae= 4 r 2

(1.4)

+ 2) os Cs5 +3 cos 0 cos 30)+ 0%)

GO 4- (2a) (s2a sn~.~ i 0

* 1 (19j, (sin -9 +sin si (2 (sn+ 3si 0

The coefficients asi a 2, n3 have the dimensions of stress. Because

K
I(.5)

16



it is equivalent to the opening mode stress intensity factor K, this term dominates the stress
field near the crack tip and controls crack initiation; the other terms become increasingly
important further away from the crack tip. If the coefficient a2 is positive, as it is for the speci-
men shown in Fig. 3e, the crack will tend to deviate increasingly f.om its original path as
indicated by the dotted line. For the remaining specimens in Fig. 3, a is negative and the cracksa2

will grow in their original paths. The sign of a 2 can be determined from the isochromatic fringes
on a photoelastic model; if they lean forward in the direction of crack growth a2 is negative and
if they lean back it is positive. The terms in a2 represent stresses parallel to the crack, andB2
crack deviation can be prevented by applying a compressive load parallel to the crack.

Under a constant load a crack which has started to grow will continue to grow provided that
K increases with the crack length a, that is dKr/a is positive. The value of aK/8a can either
be obtained from the expression for stress intensity factor for the specimen concerned or from the
equation

S(a- a)' (1.6)
-a a a3 2

The sign of aK /8a is positive for the specimens in Figs 3a, c, d and f, negative in Fig. 3b
and zero in Fig. 3e.

1-
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APPENDIX II

EFFECT OF RESIDUAL STRESSES

Non-linear effects due to the presence of small-scale residual stresses can be regarded as
occurring within the crack tip stress field, and can therefore be neglected' 2 . The general
effect 4 1 ) of such stresses is to reduce the critical crack length for instability, compared with
stress-free material, so that the K1 of the material will be lowered.

The introduction of a crack into a body containing large-scale residual stresses will relieve
, the residual stresses originally present on the crack plane. The effect on the crack tip stress

field is the same as if stresses, equal in magnitude to the original residual stresses but opposite
in sign, were applied to the crack surfaces ( 1 4 . The resultant stress intensity factor (which may
be called KR) can be calculated from an appropriate expression for such loads. Crack size and
direction will affect the value of KR; it will be positive for tensile residual stresses, and will
be superimposed on any stress intensity factor (K,) due to external loads.

If KR is not small compared with K the stress intensity factor at the crack tip will not be
given accurately by K., so that in the determination of K1 for materials containing complex
residual stress patterns there will be an apparent scatter in the values of Kc, and anomalies in
the results obtained from different sized specimens. These variations should not be confused
with scatter due to metallurgical factors or errors caused by the use of specimens of inadequate "'-
size. The occurrence of detectable distortion of the specimen when the crack starter notch is
machined indicates the presence of residual stresses likely to affect the determination of Kl.-
The presence of residual stresses must be allowed for when applying fracture mechanics to
design problems, and will also affect stress corrosion crack growth.

Because it is the range of stress intensity factor \K which controls fatigue crack growth
and the value of K.... (or the mean stress) has only a second order effect on the crack growth -
rate, large-scale residual stresses can be expected to have little effect on crack growth, unless
they cause the crack to close, although small-scale residual stresses have been shown (

4 2
) to be

a cause of mean stress sensitivity.

18
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APP ENDIX III

OFFSET PROCEDURE FOR DETERMINATION OF K1 -

To use the offset procedure( 2 2 a precise autographic record is made of the displacement,
across the open end of the crack, against load, as the specimen is loaded to failure. Three
possible types of load-displacement record are shown in Fig. 13. A secant is drawn whose slope .-

is about 5 per cent less than that of the tangent OA to the initial part of the record (the actual
percentage depends on the specimen type). The load Ps is at the intersection of. the secant with
the record, and gives the load when the effective crack length has increased by 2 per cent. This
effective increase is made up of actual crack growth plus an apparent crack growth which is
caused by the development of the plastic zone at the crack tip. To determine whether the actual

* crack growth is at least I per cent of the initial crack length, a horizontal line is drawn to repre-
sent a constant load of 0.8 Ps; provided that the distance along this line from the tangent OA to
the record does not exceed one quarter of the corresponding distance at P the minimum I per cent
has been obtained.,

The load P is used to calculate K1C and is determined as follows.

If the load at every point on the record which precedes P. is lower than Ps' then P P

(case I); if there is a maximum load preceding P which exceeds it, then this load is P (cases 1 -

and Ill).

.9

. --
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APPENDIX IV

ELASTIC ANISOTROPY

On a macroscopic scale, most structural metals, even those having considerable toughness
isotropy, are reasonably isotropic in their elastic properties, and the assumptions made in

• .Section 1 can be regarded as being satisfied.

-, A few materials, such as some alpha titanium alloys in sheet form( 4 3 ) , show normal aniso-
tropy; elastic properties are isotropic in the plane of the sheet, but are different through the
thickness. Except for az, stresses are as given by equations (1.1) and (1.2), and the usual equa-
tions for stress intensity factor apply.

In a rectilinearly anisotropic material, the elastic constants vary with direction at any given
point, but the directions associated with particular values do not vary from point to point.
Anisotropic stress intensity factors for such materials can be obtained by methods similar to those
for isotropic materials( 2 ' 4 4 ) , and the elastic stress fields are given by equations similar to
equations (1.1) to (1.3). Thus, for example, opening mode stress fields are given by

K 1aRe 2 )
S "2 (cos 0 + sin 0 2 (cos 0 + sin

or K1  Re 2 (IV. 1)
2 (cos 0 + pi sin 0)2 (cos 0 + p sin

L L 2t/ =!- 1 R - / (cos 0 + pz sin0 0) (cos 0 + t sin ) :'

K, is the anisotropic opening mode stress intensity factor and #I and U2 are dimensionless
elastic constants (2 ) . For the isotropic case A,= = i and equations (IV.1) reduce to

- equations (1.1).

Provided that loads are applied remote from the crack, the anisotropic stress intensity
factors are numerically equal to the corresponding isotropic cases. The stresses are still
proportional to r', but they are differently distributed about the crack tip. In some situations
for loads applied at or near the crack surface, elastic constants enter the equations for stress
intensity factor C4 4 ), and the isotropic and anisotropic values may differ numerically, so that the
isotropic results can only be used as a rough approximation.

The equations for displacements differ from the isotropic case, and the displacement direc-
tion depends upon the directional properties of the material so that in the general situation it is
no longer possible to associate each stress field mode present with the corresponding mode of
crack surface displacement (see Sections 2 and 3). If the material is orthotropic, that is it has
three mutually perpendicular planes of symmetry in its elastic properties, and provided that the
crack lies in one of these planes, then it becomes possible to associate crack displacement and
stress field modes. Some crystals, some fibre-reinforced materials( 4 - ), and wood are examples
of orthotropic materials. If only one stress field mode of displacement is present, then the crack
surface displacements will be entirely in this mode provided that the crack lies in a plane of
symmetry.

More generally where the direction of the properties varies from point to point, or where the
material is not homogeneous, or where a c-ack encounters, or lies along, a boundary between
materials of different properties, the stresses(2 ) may no longer be proportional to r- and it is not
possible to use isutropic solutions even as an approximation.
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APPENDIX V

ELASTIC STRESS FIELDS FOR PROPAGATING CRACKS

There is a theoretical limit"2 ) to the crack speed in an elastic body (approximately 0.38 of
the longitudinal speed of sound in the material), which is based on the rate at which elastic 4.%

strain energy can travel to the crack tip. The stress fields given by equations (1.1) to (1.3) apply
only to static or slowly growing cracks. However, the stress field does not undergo any funda- .

mental change until the limiting velocity is approached so that it is convenient to discuss crack
growth as well as crack initiation in terms of stress intensity factors. These may be calculated
to a reasonable approximation from the expression derived for the static case, although K,
actually decreases (4 ) as the crack speed increases.

As the limiting speed is approached stresses are still proportional to r" , but the character
of the stress field changes: nearly equal tensile stresses exist over a wide arc about the tip, so
that there is no clearly defined most favourable direction for crack growth. This encourages
crack branching, a feature of some brittle fractures.
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A P P E N D I X VI

DETERMINATION OF STRESS INTENSITY FACTORS

This brief description of some of the available methods is confined to the opening mode;

similar methods are used for the other two modes. For two-dimensional cases stress intensity
factors can be obtained analytically by the usual methods of stress analysis, and solutions are
available for a wide range of shapes and loading conditions, for example, Fig. 3 (a) and (b). A
stress function is found which satisfies the biharmonic equation (described in any standard text (47 )

on strength of materials) and the boundary conditions, while the stress intensity factor is
obtained from the stresses at the crack tip. Suitable stress functions are not available for many
specimens of practical interest (Fig. 3d) and the collocation method is often used; in this method
a stress function which fits the boundary conditions along the crack is modified, using a
computer( 4 ) 

, to fit the boundary conditions along the specimen borders at a finite number of points.
Provided sufficient points are taken, solutions can be made accurate to less than 1 per cent.
Alternatively, again using a computer, complex variable methods may be used where the boundary
conditions are satisfied exactly, and the shape of the specimen is defined approximately, using a
suitable mapping function expressed in polynomial form( 4 ) .

If an internal crack, length 2a, is remote from the specimen borders the stress intensity
factor can be obtained from a knowledge of the stresses on the prospective crack plane, with the
crack absent, using the Green's function (

2
)

K, f or(x, o) a+X d.. (VI1. 1)

The stress distribution can be obtained either experimentally or analytically.

If a suitable analytical expression for the stress concentration factor is available (Fig. 3c)
the stress intensity factor is given by

( 2 ' 4 8 ' 4 9 )

K= Urn (7 p (V 1.2)

where am is the maximum stress at the notch root and equals rKT, where a is the nominal stress
at the notch, and KT is the stress concentration factor. Any approximations involved in the
determination of the stress concentration factors are reflected in the resulting stress intensity
factors. Provided p is small K, can be obtained directly( 49 ) from a value of or... for a given
value of p. Any convenient experimental or mathematical method can be used to obtain a m a .

When a crack in a specimen is extended the compliance A (reciprocal of stiffness) is
increased. If A is measured experimentally for a range of crack lengths, the strain energy release
rate is given by(2

GP2O (VI.3)

where P = load, and B = specimen thickness.

In practice very accurate measurement techniques are required and the experimental method ... -"

is now normally not used. The stress intensity factor for the constant K specimens (Fig. 3e)
was originally obtained using the compliance method and was subsequently checked by colloca-
tion. Equation (VI.3) can be used to obtain stress intensity factors by means of a simple finite
element computer program (5° ). Crack surface displacements (3 1 ) or stresses(SI) near the crack

tip, obtained from finite element computer programs can be substituted into equations (1.1) to (1.3)
to obtain stress intensity factors, but a large number of elements are necessary for accurate
results.
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Various empirical methods of obtaining stress intensity factors have been proposed s 
2,5 3)

although these can only be egarded as approximations they are often useful in practical problems.

Analysis of three-dimensional cracks presents formidable problems. Available exact solu-
tions for the opening mode in three dimensions are confined ( 2 ) to axisymmetrical specimens and
to circular, elliptical and parabolic (5 4 ) cracks in infinite bodies. The elliptical solution has
been adapted for the case of a semi-elliptical surface flaw (Fig. 3f) and is useful in the analysis
of service failures where the flaw is small compared with the component dimensions. At present
only rough estimates can be made for irregularly shaped cjacks( 2S 55 ) , and where the crack size is
comparable with the component dimensions. Progress appears to depend on the development of
suitable finite element computer programs.

The analysis of cracked shells presents formidable mathematical difficulties, but steady
progress is being made05 6 ).
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