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AERODYNAMIC SYMBOLS

1.GENERAL
11 Mass
t Time
V Resultant linear velocity
Q Resultant axwrnlar -velocity
P Density, a relative density

"Kinem~atic coefficient of viFýwosity
RZ Reynolds nnimber R == IV/v (v'heze I -is a suitable lincar dimnensioi)

Normal temperature and pressure for aerona-utical work arle 15" C
and 76O mrnn.
1k: air unider 0hese £ .- 0-0029378 slugcuVa ft.

conditions v = 1-56 x 10-4ft.2 /sec.
T11he slu.- is iak-e,- to b- 52-2 ib.-mass.

a Angie of incidence
t? A-zgle of dowi-wash
S Area
b Span

C Chord
A Asjxuct ratio, A =zb 2/S,
L- Lift. with :oeificient C, L/ip V2S
D D-r.a_, wýith c~efficilnt Q, = D/jpV:!S
y Gildig angl.e, '.an T' DL

L, RJi.-g mo~ment, %with coefficient L., L!)W 2h-S
-iPitc-hing m oment, w-ith coefhfiHent C,, 111M/A;W-:

NYaw,-ing miument, wi~h ccefficieanL C, N ijpV-bS

R( Reoltions per. Aeo
*D L-iameter

J Vfr'D
P Powe-r

T Tiiru::, with co-:,fficient k, T!pyt2D4
0 Tor af-, -with ccefficieii. kq 1,p'21)s

ti~ cin TV/P j=Ti;-~

Lkeprtoduct d Imr Api
Lest j.,



The Calculation of Aerodynamic Loading on Surfaces
of any Shape

By
V. M. FALKN.R, B.Sc., A.M.I.Mech.E., ( ''-

of the Aerodynamics Department, N.P.L.

Reports and Memoranda No. 199 .o

26th August, 1943

Summary.-The object of the report is to establish a routine method for the calculation of aerodynamic loads on
wings of arbitrary shape. The method developed is based on potential theory and uses a general mathematical formula
for continuous loading on a wing which is equivalent to a double Fourier series with unknown coefficients. In order to
evaluate the unknown coefficients the continuous loading is split up into a regular pattern of horseshoe vortices, the
strengths of which are proportional to the unknown coefficients and to standard factors which are given in a table.
The total downwash at chosen pivotal points is obtained by summing the downwashes due to the individual vortices,
a process which is simplified by the use of specially prepared tables of the properties of the horseshoe vortex. Byequating
the down%,ah to the slope of the wing at each pivotal point, simultaneous equations are obtained, the solution of which
defines the unknown coefficients.

The first layout involves a total of 76 vortices over the wing, and a second layout, involving a total of 84, is ,shown to
be of superior accuracy. The effect on the solution of the number of pivotal points is investigated and it is concluded that
by a suitable choice, it is unnecessary to use a large number. Results for a rectangular wing at 0°, and an elliptic
win at 0* and 300 yaw are compared with those obtained by other workei - and it appears that there may be errors
ir pyiblishod results in at least one of these cases. Immediate development i icludes the application to the calculation
o' the characteristics of actual sweptback wings, including rotary derivatives, and future development includes also
applicatiors in wind tunnel design and technique.

1. Recent design work on sweptback wings has drawn attention to the increasing need for a
deveJoprnent of the simpler theory of aerodynamic loading which has served well in the past
and will no doubt still be used for approximate calculatiQns. Problems for which a more
comprehensive theory is necessary include, in addition to the properties of sweptback wings,
efficiency of wings, controlg, wind tunnel inteiference, scale effect, design of wind tunnels, effect
ol airscrews and so on.

The -uresent work was undertaken in order to reduce to a standard and easily understood routine
the cautulation of the loading distribution on a wing of arbitrary shape, initially to determine
the simpler properties such as lift, induced drag, aerodynamic centre, effect of sweepback and
twist. and with the immediate development in view of the calculation of rotary derivatives.
Later developc•ents will be directed towards the secondary characteristics such as effect of
stalling and changes due to scale effect.

The work is based wholly on potential theory and, although the present work is confined to the

simpler applications of this theory, the writer has no doubt L 'aL the effects of viscosity, often of
considerable importance, can, for practical purposes, be represented by developments or
modifications of potential theory. The work falls into two distinct categories (a) the purely
mathematical problem of establishing solutions of known accuracy for certain assumed conditions,
(b) the problem in applied mathematics of using these solutions to predict the physical properties
of actuai -wings.

2. The present work is b'-sed or, the theorem' that any continuous irrotational motion of an
incompressible fluid, whFther cyclic or not, can be represented by a distribution of vortices over
the boundaries. The work will, as far as calculations are concerned, be limited for the present

(�t rVZ) A
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2
to thin wing theory, in which any aerofoil is represented by a vortex sheet located on the surface
which is the mean of the upper and lower surfaces. The effect of thickness is regarded as suitahle
for treatment either by modifications of potential theory or by correction factors.

The e of continuous loading in the spanwise direction was developed by Prandtl, Betz,
Munk and others (1918-1919). Betz 2, in order to calculate the spanwise distribution of lift
of a rectangular wing, useq the expression for the circulation (see Fig. 2), r = -- n2 (a0 +
a 1 + a271

2 + .... .), and this was later expressed by Munk 3 and Glauert 4 in the more conven-
tional Fourier series, with which it is identical with the exception, perhaps, of a difference in the
mode of convergence. Each term can be identified with terms of the equivalent Fourier series;
for instance v/i -- ,2 = sin ý, 72i -- = - sin 2 $, and so on.

Continuous loading in the chordwise direction was developed by Birnbaum-" in connection

with the two-dimensional properties of wing sections; he used the form - a c -

+ V 1 -- (A0 + Ajý + A2$2 + .... ),where k is the vorticity loading per unit length. This
forms the foundation for the thin wing theory developed by Munk3 and Glauert6, who use the

corresponding Fourier form, -k- = a. cot -0 + A. sin nO.,

The two systems were combined by Blenk7 to give a formula for the continuous loading over
a rectangular wing of finite aspect ratio, which can be expressed either in terms of the functions
above, or as a double Four;.er series. This formula is quite general within the limits of the
assumptions involved, and, after generalisation for shape of wing, gives the following basic
formula of the present work, the variables being defined in Fig. 1:-

kc =[ ( + + c + d + .
8sV tan o

+ Sin 0 + a +K ta+ + 17ns d 173 +.• 9 .)
+ sin 20 (a2 +b + C272+do2 3 + e• 7 +. +

In the formula a is the angle of incidence from zero lift. If we use the theorem that the effects
of camber and twist are independent of incidence effects,& Is the following additional form (also
used by Blenk) represents conditions at zero lift :-

" = - - [cot 0 (a.' + b.'77 + c.'I+...) + sin 0 +cj "+.

+ sin 20 (a.' + b2 n + c2
1112  ... ) +.. + ]. . . (2)

The complete solution is the sum of the "loadings" given by these two forms. Relation (1) is
used to calculate lift and moment derivatives and that part of the induced drag due to incidence,
while relation (2), which is used with the condition that CL = 0, is used for the calculation of
moment at zero lift, angle of incidence foi zero lift, and induced drag at zero lift.'

Relations (1) and (2) may be written more concisely:-
k = -;FF(? • c o 0

8sV tan c V - r2LF(•) cot-•- + F,(r,) sin 0 + F,(ti) sin 2 0] (3)

kcII !- [.-, o ,,7 i ,j)sn20 4
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3. In order to consider how far the resuls given by (1) and (2) may be applicable to actual
wings in a viscous fluid, the following list gives the assumptions which are involved in tihe use
of fl) and (2)

(a) The fluid is incompressible.

(b) The flow is wholly potential.

(c) The wing is represented by a thin plate, the ni - him_ plane between the upper and lower
surfaces.

(d) It is assumed that the wing tips are square or rounded off. Pointed 'ips would require
a modified formula with the V/I - nO2 factor omitted.

(e) The application of theory, following B.`'nJ, Glauert and others, in which the downwash
* ratio wo/v is equated to the local slope z.f the plate is equivalent to the assumption

that the load is vanisaingly small at a.l points. This ccndition cannot, in fact, be
satisfied if camber and twist are present,

(f) The .Kutta-Joukows'-z circulation giving the stagnation )oint at the trailing edge is
assumed.

(g) Even if it is possible for the loh-d g•nerally to vanish everywhere at the same thie, there
is still a singularity at the leaaing 'edge awising from the cot 0/2 term, which is not an
adequate representation of the flow in that it gives the forward stagnation point at
the leading edge. This singularity is discussed in Durand 8, and leads to a paradox
.egarding the resistance. The error is regarded as vanishing with the lift, and it is
not known under what conditions it might be appreciable.

In spite of this formidable list it seems that much valuable work can be done with the bare
theory be~ore modifications are considered. Some corrections, e.g., the effect of the boundary
layer on circulation and effects of partial stalling can. it is predicted, be treated quite easily
by modifications, wholly potential, to the formulae I and 2; these will be. introduced at a later
stage of the work. Others can be effected by the use of simple factors obtained either theoretically
or experimentally.

4. The most freqluently used method for computing aerodynamic loading on wings is that
which has reached its highest development in the Lotz8 method, in which the loading represented
by (1) is reduced t6 the first term in 0, i.e., cot 0/2, the term which represents the vortex sheet
of a flat aerofoil in two-dimensional motiL a. The load is taken as concentrated at 0-25 chord
and the 0-2Z chord lihe is assumed to be straight. The downwash due to the trailing vortices
which spring fiomn the 0- 25 chord line can be readily calculated by Fourier analysis and, in effect,
the solution is obtained by equating the dowrnwash to the slope of ti.! platc at selected points on
the 0-25 chord line. This theory is notoriously inaccurate for sm-ri aspect ratios Lut it has not

Shiitherto been realised that it is sufficiently inaccurate for c iaventionai wings to make revision
necessary of the methods used for computing section coefficients from results with a finite aspect
ratio. This matter will be dealt with in §14.

The error is more serious when problems of control -)r. effect of sweepback are in question.
A modification of this method which consists in the calculation of dow.nwash on the three-quart;;:
chord line has been used by Weighardt 9 and Mutterier1°.. The theory of thin aerofoils suggests
that this method should be of superior accuracy. It is shown in Vol, II of Durand, p. 49, tii*
if a thin aerofoil section is cambered parabolically or in the form of a circular arc, the effecti-.".
angle of attack is the slope at the three-quarter chord line. hlence, as effective camber is always
present in three-dimensional flow, the use of the single slope cbordwise at 0. -7 chord to define
the incidence is more accurate than the use of the slope at 0-25 chord, It is hoped that this
idea can be further developed at a later stage of the work when considering the most effective
means of simplifving the calculations.

-IcA
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The effect of increasing 'he number of load lines in the chordwise direction while ietaining
continfu:,y in the spanwi-e direction has been calculated by Weighardt9 for a rectangular wing
using 2 and 4 load lines

Continuous loading in both chordwise and spanNise direc+ion has been dealt with by Blenk7

for the rectangular rnlate, oa':ed and unyawed, and the arrow-.haped plate ; by Kinneri for
circular plates using the method of acceleration potential ; by Krienes`2 for elliptic plates
yased ai.id unyawed using the method of acceleration potential ; and recently by W. P. Jones13

as a sidie (investigation in the calculation of derivatives for an oscillating wing. The position
as regards- some of these n.athlematica! solutions is unsatisfactory, as they are not usually, in
fact, complete mathematical solutions of the problem. Two examples are given :-Blenk gives
the integrals for his problcm, but in the analysis has firstly to evaluate th-e integrals by approxi-
mate methods involving serips, and -econd!y to find the values of certain coefficients by the use
of a limited number of pivotal points on thle plate. The final solution is obtained only when

* these two processes have convergcd simultaneously. For the yawed elliptic aerofoil, krieries
gives no indiation that his solution has reached convergence with respect to the number of
pivotal points and there are indications of considerable error in his results.

Finally grpphical methods of solving dbe continuous loading problems have been suggested
and demonstrated by Cohen14.

5. Having regard to the scope and object of the investigation, none of the work described in
Lhe preceding paragraph is of a sufficiently comprehensive nature to use as the general basis
of the work. It is clear that it is difficult and specialised work to express in mathematical form
eve-i the integral relative to the simpler shapes of unyawed wings. When the investigatioi, is
extended to wings of arbitrary shape, yawcd and with rotary motion, the mathematical expression
of the dcwnwash integral is so difficult as %" be a practical impossibility. The proper function of
the mathematician is to provide solutiors of spcified accuracy of some of the more simple
problems which can be used as standads for the -estir.g of easier approximate methods which
offer a much v. ider field of utility by avoiding excessive mathematical r'gidity

At the other extreme, graphical mtthods o. solution have r,othing to recommend them, as they
fail to saiisfy any of the es;ential conditions of proble.mt of this nature. Considering the possible
uses and appication of the work, the following conditions, wvhich apply to the method which will
be described below, are, considered to be neccssary :-

(a) The whole of the assumptions are contained in the original layout of the work.- The

number and dispolitior of the vortices to be used and the number and position of
pivotal points are specified by the technical man on th'-. basi, of his previous experience.
The remainder of the work is pu-ely routine calculation which is suitable for the
application of rigid checks for accuracy.

(b) The accuracy of a givea result can be tested, frequently without undue labour, oy revising
the layout to the next higher approximation.

(c) Certain effects, such as effects o. sweepback, derivatives with respect to yaw. and so on,
can be calculated accurately with a coniparatively simple laymout, involving as they do
only differences.

"(d) Because of the rigid specification, the work can `e repeated at any time to find the effect
of modifications.

Graphical methods fail to satisfy the above conditions. For instance, it is not easy to sp,-cify
A rigid layout bor graphical methods; the work, if carried out by compu~ers, could not be checked
except by a complete recalculation, because of the difficulty of separating arithmetical errors
from errors of judgment ;, the results could not be checked by proceeding to the next approxi-
mation ; tie rigid framework essential for the accurate calculation of derivatives, and effects of
small variations, i. lac-king, and, finally, xnaiters involving Judgment may sometimes wisfe
a considerable amount of timae.

4.4
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6. The present work is based on an idea Ahich has been used frequently in other fields of
research, that is, the replacement of a continuous loading by a patterned layout of isolated loac ,
It will not be disputed that, if the method of layout is sound, and the spacing is reduced indefiniteh.,
the correct answer can be obtained. The important question is-can the la3 out be so arranged
that good accuracy is obtained with a wide spacing of tle loads, thus reducing the work of cal-
culation, which involves the properties of the isolated loads, to a reasonable minimum ? The
present work aims to show and prove that this can be accomplished for the loading represented
by vortex sheets.

Consider the distribution of vorticity given by relation (1). it is required to split this into a
pattern of isolated vortices both chordwise and spanwise so that the coefficients ao, bo, etc., can
be calculated for a specified wing. In the present work the -hordR~ise loading"'is represented by
four loads placed at 0- 125, 0-375, 0-625 and 0-875 chord. The procedure for defining these
loads is the same whatever the number of loads, and the choice of four was influenced by the
circumstance that, having regard to possible developments, fewer than four would hardly be
satislatorV" and, in fact, may be inadequate for special problems. On tOw other hand, t'randtl' 5

is satisted that good accuracy for a flat wing can be obtained by the use of four load lines.

In the spanwise direction " was predicted that intervals of 0- 1 semi-span would be satisfactory
and later work has shown th-t. these intervals, after slight modification by the addition of corrector
vortices at each tip, are sati-fac~ory, The maximum number of loads \-*hich have so far been
used therefore total 84 for the complete wing.

7. The splitting up of the load iii the ill,,odwise direction is accomplished by the following
process applied in turn to each terni of (1). The pivotal points at which downwash will be
equated to the slope of the plale are :,pecified as the midpoints of the four chordwise loads,
i.e., at the 0-25, 0-50 and 0-75 chord points. The fundamental condition which must be
satisfied at these pivotal points, is that the downwash due to the isolated loads, in two-dimensional
flow, shall be equal to that given by the continuous load. With the other condition that the
sum of the isolated loads, which is in this case the circulation round the chord, is equal to the
integral of the continuous load, the relation between isolated and continuous roads is specified
exactly.,

Consider the first chordwise term V cot 0/2. It can easily be shown that if k = V cot 0/2,
V - at any point of the chord, and the integral of V cot 0&,2 along the chore is IaVc.

Hence if KI. K2, K3 ard K. be the four isolated loads

K, + K2 + K3 + 1("4

The downwash factor at 0-25 chord due to KI at 0-125 chord is K ; that due to K.,*X' 2nVc

at 0s- K2 " and summing the total downwash and equating to the correctat 0375 hordis-2.7-Vc'

va•lue,, we obtain FK1 - 8K, - 2-6K3 - 1-6K 4 = Vc.

Sin-.ilar relations for the 0" 5 and 0-75 chord positions give

2-6K, 4- SK 2 -- 8K3 - 2-6K, = nVc

and 1,6K1 + 2-6K2 + 8K., - 8K 4  7rVc.

TThe solution of this set of simultaneous equations gives the result that for k =- V cot 0/2,
the four isolated vortices are 0.2734Vc-r, 0-1172Vcr, 0-0703Vca and 0.0391Vc.,, cumming
to 0.5Va'.

A similar routine applieo t' sin 0 and sin 2ti gives factors which are given in Table 2. The
downwashe- and integ-als of vorticity relating to two-dimensional flow are given i' Table 1,

A
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If the plane in which tile downwash is to be calculated is at a considerable distance from the
horseshoe vortices, the set of four can be reduced without appreciable error to one at the centre
of area. Table 2 gives this alternative representation-for instance, V cot 0/2 is represented
by 05.rVc at 0-25 chord, V sin 0 by 0.25nVc at 0-5 chord, and so on.

8. The splitting up of the loading in the spanwise direction is carried out by a rather different
method, Along each of the four lines of concentrated load at 0-125, 0-375, 0-625 and 0 875
chord it is assumed that the vorticity loading and so the circulation remains constant for a set
distance, then, after changing suddenly by the shedding of a trailing vortex, again remains
constant for a similar distance, and so on. If the wing is divided into intervals of 0- 1 semispan,
this is equivalent to th3 use of the regular system of horseshoe vortices shown in Fig. 2 for layout 1.
It was predicted that intervals of 0- 1 would give good accuracy, and a side investigation suggested
that the correct magnitudes of the vortices are the magnitudes of the continuous load at the
points corresponding to the centres of the bound vortices, which define the location of the load,
For example, consider the Vi - 7)2 term in (1). The appropriate strengths of the horseshoe'
vortices to represent this term are 1-0 on the median line or 1) = 0, 1v -- (0. 1)2 or 0-9950 at

3- 1, 0-9798 at 0-2 and so on. Similarly the 7 27i--term is represented by 0 on the
median line, -- 0.0995 at ij = 0- 1 and so on. All of'these quantities vanish for n = 1, and
the >t vortex for this layout, termed layout 1, is at ?I = 0-9. The factors for ternms up to

V- r,• /- are given in Table 2.

Snb.cltuent invez-igation showed that this method of representation was qu;te sound as long
as the ,',,ri:tion representing the continuous load could be expressed over the irterval concerned
as a power series of the seconddegree. The form of the functions, for all of which the load at the
tip vanishes as V -1 -2, shows that error will appear first at the tip. Integrations of one or
two simp!e limiting ce, and comparison with a simple known solution, to be described below,
suggested that the'tnp er:or could be corrected by the addition of an extra term near each tip
for ji 0-9625, representing a vortex of width . of the remaining vortices. These are termed
corrector vortices and their strength is defined in exactly the same way as the other vortices.
When used they convert the larout I shown in Fig. 2 with its 76-point loading, to the layout 2
with 84-2oin loading.. The extra work involved in the use of layout 2 is small, and it is thought
that the accuracy is at least equal to that which would be obtained from the next approximation
with one half the interval in the spanwise direction.. No work has yet been done on this higher

0 approximation, which is held in reserve for future use.
The two layouts have a subsidiary distinction depending upon whether or not the reduction

to i-point loading in the chordwisc direction is used. A description is given in Table 2.

9. A demonstration is no-v given of the exact relation between Table 2 and the relation (1).
Suppose that the analysis is limited to a symmetrical wing at 00 yaw, which means that coefficients
of odd powers of ri are all zero, and that three term-s chordwise and two terms spanwise are
retained.

Then
c 0 1 " -4- sn , v )(

8sVta - 1 ' ~ Lcot a C0rl' + sin 0 (a, - rijj') sin 20)8sV tan 2

For n = 0, the factor v'l -- ,t is 1-0, while 1 Vi r/2 = 0, and hence, using the factors for
cot 0 2. sin 0, and sin 20, the relative strengtl. of the vortex at I = 0, 0-125 chord is0'-_2734ao
0-0488a +t- 0-0732a2 ; at j - 0, 0-375 chord is 0-1172a, + 0-0762al + 0-0381a,, and so on.
Similarly for i, = 0-1, the strcngth of the vortex at ij = 0, 1, 0- 12)5 chord is

0- 2734 x. 0- 99,50a% -" 0- 0488 x 0- 9950a, + 0- 0732 x 0-9950a.,

0 -2734 0-0099c,, 0-0488 x 0-0099c- -4- 0-0732 0.0099c,

and so on.
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All of the vortices are defined explicitly in terms of the unknown coefficients in (5), and the same-
applies however many coefficients occur in (5). The position and magnitude of the vortices being
known, the downwash at any point can be calculated using the usual formula.

10. The work can 'b- reduced to a minimumn by tabulating the properties of the horseshoe
vortex. This can be done simply because we are concerned only with downwashes on lines at
regular distances, in terms of the vortex width., from the centre line of the vortex. The formulae
are derived simply and are given in Glauert's book 6. By the use of these formulae, downwash
factors have been computed and printed on the National machine under the supervision of
Dr. L. J, Comrie of Scientific Computing Service, Ltd. to five places of decimals, with first and
second differences. The tables are computed for regular intervals of y*, where y* = ylyv (see
Fig, 3),. with x* =- x/y, at the variable. The tables give the value of a fac or F, corresponding
to x* positive, and a complementary factor F', corresponding to x* negative, such that the

K
downwash ratio w/V is equal to F x 4 where K is the strength of the vortex, These tables

are not reproduced here but it is hoped that it will be ,os'Tble later to circulate them after
complete subtabulation. The writer has subtabulated to give correct answers to three places of
decimals by the use of the first difference only, the use of second and higher differences not
being recommended for inexperienced computers.

11. The solution of any problem involves the calculation of the downwash at a certain numbei
of pivotal points bv.. " ei effect due to each individual vortex.. The bare minimum
number of points is equal to the number of unknowns in the relation (1), .To final decision has
yet been made as to the necessary number of points to give a specitLh acc,-at.y. •,-uence
which will be given as each case is considered suggests that for a symmetrical wing without
sweepback six points on the halfwing, those marked I to 6 in Fig. 2, are sufficient. By symmetry
this is equivalent to the use of 12 points for the wing. For sweptback symmetrical wings it is
probably necessary to use nine coefficients and nine points, those marked 1 to 9 in Fig. 2.

The calculated values of w, V are equated to the slope of the plate, in this case tan a, at the
point concerned, and the solution of the simultaneous equations gives the values of the coefficients
in relation (1).,

One important theorem, suggested originally by Dr, H. 0. Hartley, assistant to D.-. Comrie,
Ihas been demonstrated by trial solutions. When using the bare minimum of pivotal points,
they must agree in number in the two directions with the coefficients retained in the relation (1).
For instance, if the coefficients a0 , co, a,, cl, a2 , c._ are retained, three in the chordwise and two in
the spanwise direction, the points 1, 2, 3 and 4, 5, 6 can be used. The points 1, 3, 4, 6, 7, 9
would probably give a false result unless used with ao, co, e0, a, c,. c,.. It has not been considered
advisable to -place any pivotal point nearer 'he tip than 0-8 of the sernispan.

12. The actual method of layout of the work with suitable checks for accuracy will vary
depending on the machines and computing staff available. That devi.sed by the writer at the
laboratory differs from that used by Drs, Comrie and Hartley. As At may not bc possible to
show the complete layout for a wing, a demonstration is given of a simple p',blem, that is, the
calculation by the present method of the loading on an elliptic wing with ratio of major to minor
axis of 5 to 1, using the same assumptions as in the Glauert-Lotz method, i.e.. load concentrated
at 0-2-5 chord,, the locus of which is a straight line This case, for which the true analVitical

solution -, given by the simple expression- - -i-- 1 2 or 4-781 forms a valuable test case

for assessing the value of the present method and the effect of the corrector vortices.

In Table 3 the data conforms to the original layout 1, excluding the corrector vortices. The
coefficients of odd powers of ,i vanish through symmetry-; by the assumed conditions the coeffi-
cients of sin 0, sin 20, . . are all zero and we retain four coefficients a0, co, eo and go. The values
of V 1 2, 2 -%/ i, -7i 2 from Table 2 are set out and denoted by A,, A2, A3 and A4. The

-'IN
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four chosen pivotal points on the chord line are at 0-1, 0.4, 0-6 an&0.8 of the semispan. From
the tables, the factors appropriate to the positions of each vortex with respect to each pivotal
point are set down under the preceding values and denoted by B1, B2, B3 and B4. For this simple

case, in which x* -- 0, the factor simplifies to the expression y, The sum of
y* + I y

6 the A coefficients is denoted by ZA, and the B coefficients by ZB.

The sum of the products BA,, B.A., BA 3 and B1A4 for point 1, and similar products for points
2, 3 and 4 are computed and tabulated. The check for accuracy is that the sum should equal
5- YEA ,, EB, an error in the last figure being allowed on account of cumulative errors arising
from the limited number of figures in the individual totals. For this case, including owiy the cot
0/2 term concentrated at the centre of area, relation (1) becbmes

r SsV tan2 a + c 2 + eon 4 6

Now
1 - 8sV tan a.-My ao BA + co BA2 + e 3BA3 + go BA •

V 47,Vy, ~ 2L 0 1 '

The element of lift is

8seV2 tan o 2/2-- •- (ao + eor,4 ÷ go-7 6).

Alternatively, the element of lift is

2x4eV2c [tan c ~- p]w .
Equating these

[4s ] 4s +]0'Aa(, ..C /- " + 20EBA, + b° ;c- / -r• 0B2 ""=1

For the 5/1 ellipse, c/s = 0-4V/1 - 172, hence

a.[I + 21 BAj] + bo[,q + 2 BA2] + Co[,4+ 2 BA3] + do[,6 + 2 BA4] 0"1

The resulting equations for the four points nj = 01-, 0-4, 0-6 and 0.8 are given in the table.

The solution gives (see Appendix I) dC-. _ 4.746, the exact solution being 4. 781. A repetition

of the solution with six pivotal points q- = -0.1, 0.3, 0-4, 0-6, 0-7, 0-8 gave 4-740, and a
repetition using the corrector vortices at -= 4-0.9625, anid using the four points ? = 0.1, 0-4,

0.6 and 0-8 gave K, = 4-778. This result is taken, by the writer as evidence that (1) no
dc~

appreciable error is involved in the use of only four pivotal points (2) the addition of the corrector
vortices is an effective means of obtaining a higher approximation.

I1. The layout for a wing using distributed load does not differ in principle from that shown
above. The factors A, to A4 would be the same ; an extra table derived from the plan of the wing
and giving the relative positions of each vortex is necessary so that values of x* and y* applicable
to any pivotal point can be computed and tabulated, The factors are th,' n read from the tables
and set down under the A coefficients, and when the full 4-point loading chordwise is adopted
there will be four corresponding factors at each position along the span. The downwashes are
computed in terms of sums of products and the coefficients a., etc., and are equated directly to the
slope of the aerofoil at the point concerned, The solution of the simultaneous equations gives
the values of the coefficients.
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The solution of the properties at C, = 0 is obtained by the use of relatioh (2), the equations
being derived in precisely the same way as when finding dC,/do. The unknowu a0' is eliminated
by using the condition for no lift (see Appendix I) i.e., 16a0' + 8a1' + 4c0' + 2c,' + 2eo' + e,' = 0,
and in place of this the unknown a0, the angle of incidence for no lift, is introduced. The
downwash at any pivotal point is equated to c0 plus the slope of the plate at that point. From
this solution o0 and C,,0 are derived.,

14. Rectangular Wing, Aspect Ratio 6 to 1.--The results of various calculations of the centre
of pressure and lift derivative for steady motion are given in Table 4, The first .point to be
noted is the close agreement between the straight solution and the least squares solution computed
for layout 1. This provides effective evidence that there is very little, if any, error involved in
limiting the number of pivotal points to six. Another important point is the difference between
the layoulB 1 and '2, i.e.. x\ithout and with the corrector vortices. The effect of the corrector
vortices is to increase dC,./dx by only about 2.•0/, and this is the order of correction which has
been found in all cases which have been tried': It seCrns justifiable to assume that the answer

given by layout 2 must be very nearly correct. The figure d- 4-296 is in close agree-

ment with that obtained by W. P. Jones, i.e., 4-303, by a different method,

The values accepted as correct by the writer are d,, -' 4-30, C.P. at 0-239 chord. The
acceptance of hese values involves 'a modification in the formulae for converting results for

A = 6 to infinite aspect ratio.. The new ratio of lift slopes will be 2n/4-30 instead of 2;r/4-53
and there is an additional correction of +0 011 on the 'centre of pressure. The new value
modifies the computed section values of dCa.idc by about 5%.

In converting from A = 6 to A = co, it is always assumed that the values of C,,, and ao are
u, :hanged. In Table 5 are given the corrections which should be applied to the N.A.C.A.
series for various positions of maximum camber. The values for A = 6 have been computed
by the method described in this paper using six pivotal points. The values corresponding to
A = cc were computed by the thin wing theory described in Glauert, using the same three points
of coincidence in the chordwise direction at 0 25, 0.5 and 0-75 chord. For the particular type
of camber of the N.A.C.A. series, this may be too few to give the absolute values, and the differences
only, which are corrections, are given. The corrections apply to a camber of 2%, and are pro-
portional to the camber.:

this plan form at 0' and 30' yaw in steady motion are given in Table 6. For 00 yaw, the aspect
ratio is 20,1a or 6-37, the Glauert value of dCKJda is 4-78, and the C.P. at 0-288 of the media-
chord. For 30' yaw, at which anale the span is reduced in the ratio 0-872 to 1, the aspect r.
is 4-84, the Glauert value of dC,./dt is approximately 4-45 and the C.P.. is approximately ,at
0-288 of the median chord.

Values obtained by Krienes using the acceleration potential method are 4-55 and 0-283 at
0 yaw, and 3-26 for dC,.Idx at 30' yaw. An unofficial examination of Krienes work is fin hand
by Dr. Hartlev. The compiete results are not yet available, but it seems that there is very
little error if any in the result for 0' yaw.

The straight solution for 03 yaw was computed for layout 1, which gives dCK, = 4-49, Thisb ' dot30

S- ~ would agree with Krienes' result if increased by 1-3% : it will be seen from the results at 30'
yaw that the addition of corrector vortices increases dCKl/do by 1-30, hence it is deduced that
the present method, using layout 2, would give complete agreement. with Krienes result for
0' yaw.
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Three solutions tfave, been computed by Scientific Computing Service Ltd, for 30' yaw. The
first two demonstrate that there is no appreciable error in limiting the number of pivotal points
to 12 over the wing, and the third shows that the corrector vortices increase dC.,/dc by 1.3%,
Hence, unless there is some hidden flaw in the present method, it seems that the value of
dC,.ido' for the wing at 300 yaw cannot differ a:ppreciably from 3.81, Any further discussion on
Krienes' results is held over until the receipt of a report from Dr. Hartley.

16. Work is proceeding on calculations for sweptback wings, and, as far as can be seen, good
agreement with wind tunnel tests will be obtained. These results will be given in a later paper,
as the matter cannot be treated effectively until examination has been made of the present
inadequate knowledge of section coefficients.

17. The immediate programme of work includes:-
(a) Revision of section coefficient calculations as described in §14.
(b) Calculation of lift, moment and .nduced drag for various shapes of sweptback wings

using the bare theory.
(c) Modification to include effect, due to loss of circulation and incipient stalling.

(d) Establishment of the proper routine for predicting actual wing properties from (b) and (c),

Work scheduled for the near future includes

(e) Calculation of rotary derivatives.
(f) Effect of flaps.
(g) Effect of airscrews.
(h) Effect of fins.
(i) Effect of body.,
(j) Effect of controls.

The work under (e) and (h) %Vill involve the computation of further tables relating to the horseshoe
vortex. This can be carried out most effectively by Scientific Coeputing Service, Ltd. who have
also expressed their willingness to undertake the subtabulation of the original tables so that
interpolation will require only the use of first differences.

The writer wishes to express his indebtedness to Drb Coinrie and Hartley for helpful advice
given during discussion of the work, and to state that the success of the investigation is in no small
part due to having been able to hand over the more difficult computation problems to Scientific
Computing Service Ltd. For the problems in asymmetry, the work involves, in the words of
Dr. Comrie " that pitfall for the inexperienced, a large number of simultaneous equations which
are not always well-conditioned ". If it is possible to hand over-further work in the same way,
the progress of the whole investigation-which may also be used iM connection with wind tunnel
interference and wind tunnel design-will be expedited.

The writer also wishes to express his thanks to Professor W. G. Bickley for helpful advice
given during a discussion of the problem.

Acknowledgments are due to Miss G.. Bollom, who assisted the writer in some of the work of
computation.
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APPENDIX I

Calculation of Lift Coefficient

The analysis is limited to three terms in the chordwise direction and five in the spanwise
direction. If P be the total circulation around any chord c,

P =- k dx.,"T o o ..
Therefore, from (1)

F-0 " cot d Z+ F,. fsinO0 + F2Jt sin2 0d
28sV tan t c c c

V But

F-= =cos 0, and d () -i sin 0 dO.

Hence S'o0 x. 0
2d - - cot y-sin dO=g 2

Similarly
_ X "T x

sin o -d = and sin 20 d 0.C 4 ~"' _ C
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ThereforeI, _

8sV tan oc•2 4

The element of lift oa a chord is EV:1d: or total l'ft is +eVrdy, Hence

q'oVrdy

'-VS__

Evaluating the integrals
CL-= 16•2w tan [2-"(-c+ )+ . ]

(jao + ja,) + - c f) (jeo , te)

L s2 cr- tan[ oF
"e=4 4 S 16a, +Sal+ 4co+ 2c,+ 2eo+eIe

dCL 1 s ]
dc --- 4 S - 6a + 2c0 + 2 2 0e, "

-•- These formulae are independent of the .ving shape.

APPENDIX II

Calculation of Centre of Pressure and no Lift Monent Coefficient for Rectangudar T'lng at 0' Yaw
(Symmetrictzl Loading)

7z

The moment of a strip about the line 0 = i- is given by

--dtancc =1eVc dy LFo cot + F, sin 0 + F 2 sin 2 0 cos 0 d x

S dCrn _

• ~~~8sV tan _ 2c
!-• •"•.•or 8gs-dCtanx = -[1;F. + ,zF,]dy

dCm 8sS rl-
d -= --97- -[rJ F1  -I- 1 d

dC._j_n . A0 sn 16aO + 4CO + 2-00 + 8a2 + 2C2 + C2"
di- 16 SII

-- The centre of pressure in terms oi the zhord c forvaxd of the midpoint of the chord is given by
dCxn/dC, or

I 16ao + 4c, + ?e, + 8a, + 2c2 + e2
-- a + a r - 2 , + 2 O + e

similariy,

CM0 1- S 16a.' + 4co' + 2e0' + 8a.' + 2c.' + e2'

or eliminating a. from the condition that CL = 0

1 [•-a[ '+-+CM°0 1 ¢, 8• + 8a2':-- 2C,' + 2C2' -- el' + e2' j[
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APPENDIX IH

Cakcudation of Centre of Fressure for Elliptic Wfng at 0' Yaw

The moment c!f a stri about the Jine 0 i b]

S[F 0 ]o-
&V ta .. .. 2 We iy -t rFo cot 0+ F, sin 0 + Fs sin 2 0 ]cos 0.1t x

Substituting c = co 1 i-- and evaluating the integral,

&sV tan a "V / aF 2Id

Therefore, for the complete wing

d• 4 s 2LV'*o 2COd -r -V ... F7i + I F -- Vd

10 1-s2eVc 4[70a,,-1- 14c, +;65e. + 3a C e]

Also dl/Idx where L is the H.it is given by

dL_, 1F, -I•-14- = - ,wS'-.t2- [1640 + Sal + 4c, 4- 2q + 2e, 4- el,'

Henwe C.P. is at

l6O [70ao +- 14c, ± 6e+ & - 35a,2 +---+ _ a.3e,

forward of the rnajor axis, where c is the minor axis.

TABLE 1

"(able ,f Downrashes duc to Continuous Chordwisc Loud, Two-Dimensional Flow.

If c be the chord, and x length 'n the chordwise direction with the origin at the midpoint of c
1 , 0 T• + ,' 0

- cot 0 cot 0 dx = 1w
V 2 V f -,/.

-- n 0f0  d = -Incos,

k.
Ssin no, icosr., sinnOdx- O

I:
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TABLE 4

Calculations on Rectangular Wing, Aspect Ratio 6, 0° Yaw :--Centre of Pressure and Lift De;-, ,,•,

Operator Method Description Coefficients I dC]dx f C.P.
Blenk Blenk 6 pivotal points on half a. +0-0668 Co +0-0295 i 4-196 0-240

~wing at 0-067, 0-5 and a, -0-0015 c, -0-0205

0-933chordforq=0-25 a. +0-0001 c, -0-0037 j
and 0-75. 75._

Falkner ... Falkner Layout IA. Two places of a, +0-0670 1 c, +0-0303 ! 4-182 0-236
decimals used in factors: a1  -0-0012 c1  -0-0268

points on half a, +0-0006 c2  -0-0030

wing at 0-25, 0-5 and
S0-75 chord for tj ='0-2

F nand 0 8..,

Scientific Computing Falkner Layout 1. Four places of a. +0-0670 co 1 +0-0322 1 4-195 0-237
Service Ltd. decimals used in factors: a.  -0-0015 c, -0-0277

"6 pivotal points on half a I +0-0001 c -0-0051
wing at 0-25, 0-5 and 2

0-75 choid for q =0-2
and 0-8. -

Scientific Computing Falkner Layout 1. Four places of a. +0-0668 c. +0-0314 I4-196 0-139
Service Ltd. decimals used in factors: a, -0-0014 c, -0-0247 I

12 pivotal points on half 'a, +0-0004 c2  -0-0065

= . wing at 0-25, 0-5 and I
0 0-75 chord for ij = 0,=i ~~0-2, 0.5and 0-8. Least[

squares solution.

Falkner .... Falkner Layout2A, Three places of a0  +0-0677 co +0-0347 4-296 0-239
decimals used in factors: a1  -0-0009 " -0-0267
6 pivotl points on half a, -0.000r, -0-0050
wing at 0-25, 0-5 and
0 0-75 chord for Y = 0-2
and 0-8.

W. P. Jones .. W. P. Jones C.P. on all sections assumed 4.303 0-250
to beat 0-250chord. I 0

Glauert - .Fourier series. Single 1 4 -53
straight vortex filament.__ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ i __ _ _ _ _ _ _ _ _ _ _ I

TABLE 5

Calculated Corrections on Cm, and ao to be Applied to Cambered Rectangular Wings of the
N.A.C.A. Series when Converting from Aspect Ratio 6 to D .

The corrections are proportional to the camber.

Camber, Position of Correction on Correction on
per cent. max. camber C. oco : degrees

2 0 0-2 chord -0-0011 +0-01

2 0-3 chord -0-0015 -0-01

2 0 0.4chord [ -0-0020 -0-01-

2 f 0-5 chord -0-0027 , +0-04

2 1 0-6 chord 'I -00033 I +0-08

7. 2 0-7 chord -0-0026 +0-06

Ii

_F :
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TABLE 9

Calcudations on Elliptic Wing, Major/Minor Axis 5 to 1

a Aspect I dCL 1

Yaw ratio Operator Method Description Coefficients * P

0° 1 6-37 Glauert Single vortex filament 4-78 0-288

0° 6-37 1 Scientific Corn- [ Falkner Layout 1. Four a, +0-0739 c +.3-0016 4-49 I 0-280
puting Service places of decimals a, -0-0034 c1 -0.0093
Ltd. used in factors: 6 a. 0 c2  -0-0016

pivotal points on

half wing at 0-25
0-5andO-75chord
for ij = 0.2 and0"8. 1 l.. .

0' 6.37 Krienes " Accelerationpotential i .-4- 5

30 4 -.84 Glauert ""_ Single vortex filament,! 4-4I5

30' 4-84 Krienes -- Acceleration potential 3

30' 4.84 Scientific Corn- Falkner Layout 1., Four a, +0-0791 co +0-0150 3-76
puting Service places of decimals a, -0-0008 c,  -0-0285
Ltd. usedin factors: 12 a2  +0-0013 c, -0-0159

pivotal points on bo -0-0076 d, -0-0202
wing at 0-25,0-5, b, -0-0031 d, +0.0258
0-75 chord for b, -- 0-0028 d2  +0-0184
10= -0-2 and
+0-8.

30* 4-84 Scientific Corn- Falkner Layout 1, Four ao +0-0787 c. +0-0143 3-76
puting Service 1 places of decimals a1  -0-0001 C, --0-0278
Ltd. usedin factors : 21 a2  +0.0018 C2  -0.0150

pivotal points on bo -0-0049 d, -0-0241
wing at 0-25, 0-5 b,  -0-0067 d, +0-0312
and 0-75 chord for b2  -0-0.059 d2  +0-0230
7 = 0, ± 0-2,0- 05 and ± 0-8.
Least squares so-
lution.

300 4-84 Scientific Corn- Falkner Layout 2. Four ao +0-0793 co +0-0164 3-81
puting Service places of decimals a, -0-0008 c, -0-0269
Ltd. used in factors: 12 as +0-0013 c, -0-0613

pivotal points on b, -0-0073 do -0-0204
wing at 0-25, .05 b --0-0035 d, +0-0254

"" Iand 0-75,chord for bb -0-0027 d, +0-0191
= +00-2 and

-0-8.
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Symbol

Axes Positive logi udinal ltalnormal
diec jnforward jstarboard downAward

FreSymbol -~ X Y z

:.omntSymbol L1 mNMoet Designiation rolling p~itching yawing

Angle of S~o
Rotation y

-F Linear V 7 wVelocity Aiua

Moment of- nrta A 13 C

Components of linear velocity and foreo. arc positive in the posltive direction
ell the corresponding axis.

Comnponenits of angular velocity and mioment are positive in thc cyclic order
y to:z about the axis of x, z to x abou t the axis of y, and x toy about the axis of z.

TFhe angular mioverncnt of a control surface (elIevator or rudder) is governed
by the saire convention, the elevator angle being positive downwards and the rudder
an~gle positive to port. The aileron angle is positive when the starboard aileron is
doni and the port aileron is up. A positive control angle normially gives rise, to a
negative moment about the rorrtesponidin- ai,a.

Tihe symbol's for the control angles aro
Saileron angle
Selevator angle

tpr tail setting angle
Srudder angle


