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AERODYNAMIC SYMBOLS

1. GENERAL

m  Mass
. i Time
) V  Resultant linear velocity

Q@  Resuitant angnlar velocity

? Density, o relative density

¥ Kinematic coefficient of viccosity

R Reynolds number, R = {V/» (whece ! is a suitable lincar ulmen\m‘l)
Normad femperature and pressure for zeromautical vork are 15” C
and 760 mmno.
Fez air under these fp = 0-002378 slug,cu. ft,

- conditions | » = 1:§6 x 10~* ft.2/sec.

The slug is taken to be 52-2 lb.-imass

« Angie of incidence

¢ Argle of downwash

S Area

B Span

c Chord

A Aspect ratio, A =: B/s

i Lift with coedicien* Cy, = LjkeV3S

D raz, with coclicient Gy, = DjipV=s

y v.;uurf angle, tany = DyL

L Riiiiag moment, with coeflivient C, == L/4nV?S

. I Piching moment, with coeffivient C, = M/§pV-e>

N Yawing moment, wilh ccefficient C, = NjpV%3
2. AIRSCREW

EAWe
% Revolutions per second

fameter
J V/uD
P Power
¥ Thrust, with cosfficient &y == T/pn?D? -

0O Torque, with ccefficiean &y = Q/e»°D?
% E:ﬁ»lvn\:\A, ny == TV/P Jk{ 2J.k;
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The Calculation of Aerodynamic Loading on Surfaces
of any Shape
B

Y
V. M. FaLxner, B.Sc., AAM.I.Mech.E.,

of the Aerodynamics Department, N.P.L.

Repores and Men\zoranda Mo. 1910
2624 August, 1943

Summary.—The object of the report is to establish a routine method for the calculation of aerodynamic loads on
wings of arbitrary shape. The method developed is based on potential theory and uses a general mathematical formula
for continuous loading on a wing which is equivalent to a double Fourier series with unknown coefficients. In order to
evaluate the unknown coefficients the continuous loading is split up into a regular pattern of horseshoe vortices, the
strengths of which are proportional to the unknown coefficients and to standard factors which are given in a table.
The total downwash at chosen pivotal points is obtained by summing the downwashes due to the individual vortices,
a process which is simplified by the use of specially prepared tables of the properties of the horseshoe vortex. Byequating
the downwash to the slope of the wing at each pivotal point, simultaneous equations are obtained, the solution of which
defines the unknown coefficients.

The first layout invelves a total of 76 vortices over the wing, and a second Jayout, involving a total of 84, is chown to
be of superior accuracy. The effect on the soluticn of the number of pivotal points is investigated and it is concluded that
by a suitable choice, it is unnecessary to use a large number. Results for a rectangular wing at 0°, and ax elliptic
wing at 0° and 30° yaw are compared with those obtained by other worke: : and it appears that there may be errors
ir. published results in at least one of these cases. Immediate development 11cludes the application o the calculation
of the characteristics of actual sweptback wings, inclading rotary derivatives, and future development includes also
applicatiors in wind tunne] design and technique.

1. Recent design work on sweptback wings has drawn attention to the increasing need for a
development of the simpler theory of aerodynamic loading which has served well in the past
and will no doubt still be used for approximate calculations. Problems for which a more
coraprehensive theery is necessary include, in addition to the properties of sweptback wings,
efficiency of wings, controls, wind tunnel inteiference, scale effect, design of wind tunnels, effect

o1 airscrews and so on.

The present work was undertaken in order to reduce to a standard and easily understood routine
the caiculation of the loading distribution on a wing of arbitrary shape, initially to determine
the simpler properties such as lift, induced drag, aerodynamic centre, effect of sweepback and
twist, and with the immediate development in view of the calculation of rotary derivatives.
Later developments will be directed towards the secondary characteristics such as effect of
sialling and changes due to scale effect. :

The work is based wholly on potential theory and, although the present work is confined to the
simpler applications of this theory, the writer has no doubt thai the effects of viscosity, often of
considerable importance, can, for practical purposes, be represented by developments or
modifications of potential theory. The work falls into two distinct categories (z) the purely
mathematical problem of establishing solutions of known accuracy for certain assumed conditions,
() the problem in applied mathematics of using these solutions to predict the physical properties
of actua: wings.

2. The present work is based or. the theorem! that any continuous irrotational motion of an
incompressible fluid, whether cyclic or not, can be represented by a distribution of vortices over
the boundaries. The work will, as far as calculations are concerned, be limited for the present
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to thin wing theory, in which any aerofoil is represented by a vortex sheet located on the surface
which is the mean of the upper and lower surfaces. The effect of thickness is regarded as suitable
for treatment either by modifications of potential theory or by correction factors.

The use of continuous loading in the spanwise direction was developed by Prandtl, Betz,
Munk and others (1918-1919). Betz?, in order to calculate the spanwise distribution of lift
of a rectangular wing, uses the expression for the circulation (see Fig. 2), I' = V1 — 2 (qy +
a7 + ag;n? + . . . ), and this was later expressed by Munk?® and Glauert4 in the more conven-
tional Fourier series, with which it is identical with the exception, perhaps, of a difference in the
mode of convergence. Each term can be identified with terms of the equivalent Fourier series ;

for instance V1 — 5% = sin ¢, V1 — 72 = % sin 2 ¢, and so on. :
b

Continuous loading in the chordwise direction was developed by Birnbaum® in connection
with the two-dimensional properties of wing sections; he used the form -%— = dg —;——__’—_—i-
+ V1 — £3(Ay + A + Ay6% + ...), where k is the vorticity loading per unit length. This
forms the foundation for the thin wing theory developed by Munk? and Glauert®, who use the

corresponding Fourier form, —‘I—;— = a, cot —g— + X Apsin n0.

The two systems were combined by Blenk? to give a formula for the continuous loading over
a rectangular wing of finite aspect ratio, which can be expressed either in terms of the functions
above, or as a double Fourier series. This formula is quite general within the limits of the
assumptions involved, and, after generalisation for shape of wing, gives the following basic
formula of the present work, the variables being defined in Fig. 1 :—

ke

— [/
. m=\(1—02 [COti(ao"*‘bo’l+Co’72+do7]3+5077‘+--")

+sin 0 (4 + by +om?+dm® et +. . )
+Sin29(ag+bgﬂ+021)2+d2173+827;‘+..'.)+...}- e Q1)

In the formula a is the angle of incidence from zero lift. If we use the theorem that the effects
of camber and twist are independent of incidence effects,® ® the following additional form (also
used by Blenk) represents conditions at zero lift :— .

k T 2 6 [ ’ ’ A : {p ! . r B
8—3%7= Vi —nz[cot—f(ao + bo'n F c'n2 F ..+ sin 6 (g +bn + ¢n?+. ..
+Sin29(a2'+bzlﬂ+02'7]2+'..-)+..o]' "~ e .o (2)
The complete solution is the sum of the * loadings "’ given by these two forms. Relation (1) is
used to calculate lift and moment derivatives and that part of the induced drag due to incidence,
while relation (2), which is used with the condition that C; = 0, is used for the calculation of
moment at zero lift, angle of incidence for zero lift, and induced drag at zero lift.*

Relations (1) and (2) may be written more concisely :—

_T
SV = VI [Ffn) oot + Fyfn) sin 0 + Fyfm)sin20] .. .. (3
e e 0 . .
8% =VI-— ﬂg[Go(n) cot 5 + Gy(7) sin 0 + Gz(n)smze] N 1)
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3. In order to consider how far the resulis given by (1) and (2) may be applicable to actual
wings in a viscous fluid, the following list gives the assumptions which are 1nvolved in the use
of {1) and (2) :—

(@) The fluid is incompressible.
() The flow i= wholly potential.

() The wing is represented by a thin plate, the mi v iam planc between the upper and lower
surfaces.

(@ It is assumed that the wing tips are square or ounde off. Pointed *ips would require

(e) The apphcauon of theory, foilowing Bionk, Glauert and o;hers, in which the downwash
ratio /v is cquated to the local slope of the plate is equivalent to the assumption
that the load is vanisningly small at 2!l points. This cendition cannot, in fact, be
satisfied if camber and twist are present.

(f) The Kutta-Joukows'¢ circulation giving the stagration doint at the trailing edgn is
assumed.

(g) Even if it is possible for the load generally to vanish everywhere at the same time, there
is still a singularity at the leading edge aiising from the cot 6/2 term, which is not an
adequate representation of the flow in that it gives the forward stagnation point at
the leading edge. This singularity is discussed in Durand®, and leads to a paradox
tegarding the resistance. The errcr is regarded as vanishing with the lift, and it is
not known under vhat conditions it might be appreciable

In spite of this formidable list it seems that much valuable work can be done with the bare
theory belore modifications are considered. Some corrections, e.g., the effect of the boundary
layer on circulation and effects of partial stalling can. it is predicted, be treated quite easily
by modifications, whoily potential, to the formulae 1 and 2; these will be introduced at a later
stage of the work. Others can be effected by the use of snnple factors ovtained either theoretically
or experimentally.

4. The most frequently used method for computing aerodynamic leading on wings is that
which has reached its highest development in the Lotz® method, in which the ioading represented
by (1) is reduced to the first term in 0, i.e., cot 6/2, the term whlch represents the vortex sheet »
of a flat dP'('OfGll in two-dimensional motic1. The load 1s {aken a< concentrated at 0-25 chord
and the 0-23 chord line is assumed to be straight. The downwash due to the trailing vortices
v'hrh spring fiom the 0-25 chord line can be readily calculated by Fourier analysis a.nd in effect,

e solution is obtained by equating the downwash tg the slope of th: plate at selected’ points on

ﬂe (- 25 chord line. This theory is notoriously inaccurate for sm~ll 2spect ratios Lut it has not

nitherto been realised that it is sufficiently inaccurate for conventional wings to make revision

necessary of the methods used for computing section coefficients from results with a finite aspect
ratio. This matter will be dealt with in §14.

The error is more scrious when problems of control -r.effect of s“eepbac.: are in question.
A modification of this method which consists in the calculation of downwash on the three-quart::
chord line has been used by Weighardt? and Mutterperl®. The theory of thin acrofoils suggests
that this method should be of superior accuracy. It is shown in Vol. II of Duranc, p. 49, it
if a thin aerofou section is cambered parabolically or in the form of a circular arc, the effective
angle of attack is the slope at the three-quarter chord lme. IIcnce, as effective camber is always
present in three-dimensional flow, the use of the single slope chor dwise at 0-73 chord to define
the incidence is more accurate than the use of the slope at 0-25 chord. 1t is hoped that this
idea can be further d=veloped at a later stage of the work when considering the most effective
means of simplifying the calculations.

ol ae
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The effect of increasing ‘he nwuber of load lines in the chordwise direction while retaining
continu:.y in the spanwise direction has been calculated by Weighardt?® for a rectangular wing
using 2 and 4 load lincs i

Continuous ioading in both chordwise and spanwise direc*ion has been dealt with by Blenk’
for the rectangular nlate, yaved and unyawed, and the arrow-shaped plate; by Kinner!! for
circular plates using the mecthod of acccleration potential; by Krienes!? for cliiptic plates
yvawed and unyawed using the metiiod of acceleration potential ; and recently by W. P. Jones!?
as a side (nvestigation in the calculation of derivatives for an oscillating wing. The position
as regards some of these n.athematical solutions is unsatisfactory, as they are not usually, in
fact, comnplete mathematical solutions of the problem. Two examples are given :—Blenk gives
the integrals for his probizm, but in the analysis has firstly to evaluate the<e integrals by approxi-
mate methods involving series, and cecondly to find the values of certain coefficients by the use
of a limited number of pivotal points on tne plate. The final solution is obtained onlv when

> these two processes have converged simultaneously.  For the yawed elliptic aerofoil, Krienes
N gives no indication that his solution has reached convergence with respect to the number of

pivotal points and there are indications of considerable error in his results.

Finally graphical nethods of solving .he contintous loading problems have been sugygested
and demonstrated by Cohenl4

5. Having regard to the scope an:i object of the investigation, none of the work described in
he preceding paragraph is of a sufficiently comprchensive nature to use as the general basis
of the work. It is clear that it is difficult and specialised work to express in mathematical formn
even the integral relative to the simpler shapes of unyawed wings. When the investigation is
extended to wings of arbitrary shape, yawcd and with rotary moticn, the mathematical expression

- of the dcwnwash integral is so difficult as ‘¢ be a practical impessibility. The proper function of
the mathematician is to provide solutions of specified accuracy of some of the more simple
problems which can be used as standa:ds for the -estirg of easier approximate methods which
cffer a much wider field of utility by avoiding excessive mathematical rigidity

At the other extreme, graphical methods o solution have nothing to recommend them, as they
fail to saiisfy any of the essential conditions of « problem of this nature. Considering the possible
uses and appiication of the work, the following conditiens, "vhich apply to the method which will
be described below, are considered to be necessary (—

(a) The whole of the assumptions are contained in the original layout of the work. The
number and dispozition of the vortices to be used and the number and position of
pivotal points are specified by the technical man on the basis of Lis previous experience.
The remainder of the work is pugely routine calculation which is suitable for the
application of rigid checks for accuracy.

{b) The accuracy of a given result can be tested, frequently without undue labour, by revising
the layout to the next higher approximation.

(¢} Certain effects, such as efiects o: sweepback, derivatives with respect to yaw. and so on,
can be calculated uccurately with a comparatively simple lavout, involving as they do
only differences.

{d) Because of the rigid specification, the work can “e repeated at any time {o find the effect
of modifications.

Graphical metheds fail to satisfy the above conditions. For instarce, it is not easv to specify

a rigid layout for graphical methods ; the work, if carried out by computers, could not be checked

except by a complete recalculation, because of the difhculty of separating arithmetical errors

from crrors of judgment ; the results could not be checked by proceeding to the next approxi-

zation ; the rigd framework essential for the accurate calculation of derivatives, and effects of

smali vanations. i> lavking, _and, finally, maiters involving judgment may sometimes waiste
a considerable amount of tirae. '
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6. The present work is based on an idea which has been used frequently in other fields of
* research, that is, the replacement of a continuous loading by a patterned layout of isolated loac .
It will not be disputed that, if the method of layout is sound, and the spacing is reduced indefinitelr,
the correct answer can be obtamed The unportant question is—can the layout be so arranged
that good accuracy is obtained with a wide spacing of tle Joads, thus reducing the work of cal-
culation, which involves the properties of the isolated loads, to a reasunable minimum ? The
present work aims to show and prove that this can be accomplished for the loading represented
by vortex sheets.

. Consider the distribution of vorticity given by relation {i). It is required to split this into a
pattern of isolated vortices both chordw1se and spanwise sc that the coefficients a,, b,, etc., can
be calculated for a specified wing. In the present work the chordwise loading is repreeented by
four loads placed at 0-125, 0-375, 0-625 and 0-875 chord. The procedure for defining these
Joads is the same whatever the number of loads, and the choice of {our was influenced by the
circumstance that, having regard to possible developments, fewer than four would hardly be

satistactory and, in fact, may be inadequate for special problems. — On the other hand, Frandti®
is satished that good accuracy for a fiat wing can be obtained by the use of four lcad lines.

In the spanwise direction * was predicted that intervals of 0- 1 semi-span would be satisfactory
aad later work has shown th«t these intervals, after slight modification by t}s- addition of corrector
vortices at each tip, are satifaccory, The maximum number of loads which have so far been
used thereiore total 84 for the complete wing.

7. The splitting up of the load in the choidwise direction is accomplished by the following
process applied in turn to each term of (1). The pivotal points at which downwash will be
equated to the slope of the plate are specified as the midpoints of the four chordwise loads,
i.c., at the 0-25, 0-50 and 0-75 chord points. The fundamental condition which must be
satisfied at these pivotal poiats, 1s that the downwash due to the isolated loads, in two-dimensional
flow, shall be equal to that giver by the continuous load. With the other condition that the

~ sum of the isolated loads, vshlch is in this case the circulation round the chord, is equal to the
integral of the continuous load, the relation betwgen isolated and continuous :0ads 1s specified
exactly.

Consider the first chordwise term V cot 0/2. Tt can casily be shown that if £ = V oot 6/2,
w V =} at ary point of the chord, ard the integral of V cot 6/2 along the chorg is zVe.
" Hence if K,. K,, K, and K, be the four isolated loads

K, + K, + K, + K, = laVe,

The downwash factor at 0-25 chord due to K, at 0-125 chord is ‘\’ 2?\{,2 ; that due to K,
at 0-375 chord is — SK, ; and summing the total downwash and cquating to the correct

.. 2aVe
value, we cbtain
SK; - 8K2 - 2'6K3 - 1'6K4 = nVC.
Sinuilar relations for the 0-5 and 0-75 chord positions give
2-6K, + 8K, — 8K, — 2-6K, = V¢
and 1-6K, + 2-6K, + 8K, — 8K, = =Vc.
The solution of this set of simultaneous equations gives the result that for &£ = V cot 0/2,
the four isolated vortices are 0-2734Vea, 0-1172Vex, 0-0703Vex and 0-0391Vex, <imming
to 0-5Vza.

A similar routine apphea ‘1 sin 0 and sin 2v gives factors which are given in Table 2. The
downwashes and iutegials of vorticity relating to two-dimensional flow are given it Table 1.
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If the plane in which the downwash is to be calculated is at a considerable distance from the
horseshoe vortices, the set of four can be reduced without appreciable error to one at the centre
of area. Table 2 gives this alternative representation—for instance, V cot 6/2 is represented
by 0-52Vc at 0-25 chord, V sin 6 by 0-25a2V¢ at 0-3 chord, and so on.

8. The splitting up of the loading in the spanwise direction is carried out by a rather different
method. Along each of the four lines of concentrated load at 0-125, 0-375, 0-625 and 0-875
chord it is assumed that the vorticity loading and so the circulation remains constant ior a set
distance, then, after changing suddenly by the shedding of a trailing vortex, again remains
constant for a similar distance, and so on. If the wing is divided into intervals of 0-1 semispan,
this is equivalent to the use of the regular system of horseshoe vortices shown in Fig. 2 for layout 1.
It was predicted that intervals of 0- I would give good accuracy, and a side investigation suggested
that the correct magnitudes of the vortices are the magnitudes of the continuous load at the
points corresponding to the centres of the bound vortices, which define the location of the load.

For example, consicer the V1 — 72 term in (1). The appropriate strengths of the horseshoc

vortices to represent this term are 1-0 on the median line or 5 = 0, V'1 — (0-1)% or 0-9950 at
5 =9-1,0:5798 at 0-2 and so on. Similarly the n V1 — 3? term is represented by 0 on the
median hne, 40-0995 at » = 40-1 and so on. All of ‘these quantities vanish for y = 1, and
the i=st vortex for this layout, termed layout 1, is at 4 = 0-9. The factors for terms up to
4% /1 - % are given in Table 2.

Subscuent invectigation showed that this method of representation was quite sound as long
as the ‘in:tion representing the continuous load could be expressed over the interval concerned
as a pow.r series of the second degree. The form of the functions, for all of which the load at the
tip vanishes as V'1 -~ 72, shows that error will appear first at the tip. Integrations of one or
two simple limiting ¢.:2<, and comparison with a simple known solution, to be described below,
suggestec¢ that the*tin er-or could be corrected by the addition of an extra term near each tip
for 4 == - 0-9625, representing a vortex of width } of the remaining vortices. These are termed
corrector vortices and their strength is defined in exactly the same way as the other vortices.
When used they convert the lavout 1 shown in Fig. 2 with its 76-point loading, to the layout 2
with 84-noint loading. The extra work involved in the use of layout 2 is small, and it is thought
that the accuracy is at least equal to that which would be obtained from the next approximation
with one half the interval in the spanwise direction. No work has yet been done on this higher
approximation, which is held in reserve for future use.

The two layonts have z subsidiary distinction depending upon whether or not the reduction
to 1-pcint loading in the chordwise direction is used. A description is given in Table 2.

9. A demonstration is now given of the exact relation between Table 2 and the relation (1).
Suppose that the analysis is limited to a symmetrical wing at 0° yaw, which mecans that coefficients
of odd powers of 5 are all zero, and that three terms chordwise and two terms spanwise are
retained. -

Then

kc o ] . s . . o
8sV t(an =V I —F [cut 2 (ag + cgy®) -F sin 0 (ay -+ ;%) + sin 20 (a, i ¢y?) ] .. (5)

For n = 0, the factor V1 — 42 is 1-0, while 2 V1 — 52 = 0, and hence, using the factors for
cot 4 2,sin 0, and sin 26, the relative strengtl. of the vortex at 5 =0, 0-125 chord is G-2734q, :

0-04884; + 0-0732a,; at n = 0, 0-375 chord is 0-1172q, -+ 0-07624, -+ 0-0381a,, and so on.
Similarly for ;, = 0-1, the strength of the vortex 4t 4 == 0-1, 0-123 chord is

0-2734 » 0-9950a, -+ 0-0488 % 0-9950a, + 0-0732 » 0-9950a,
4 0-2734 x 00099, -- 0-0488 < 0-0099, + 0-0732 > 0-0099¢,
and so on.
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SA All of the vortices are defined explicitly in terms of the unknown coefficients in (5), and the same
S0 applies however many coefficients occur in {5). The position and magnitude of the vortices being

known, the downwash at any point can be calculated using the usual formula.

10. The work can be reduced to a minimum by tabulating the properties of the horseshoe
vortex. This can be done simply because we are concerned only with downwashes on lines at
regular distances, in terms of the vortex widtl., from the centre line of the vortex. The formulae
are derived simply and are given in Glauert’s booké. By the use of these formulae, downwash
factors have been computed and printed on the National machine under the supervision of
e Dr. L. J. Comrie of Scientific Computing Service, Ltd. to five places of decimals, with first and

£, second differences. The tables are computed for regular intervals of y*, where y* = y/yy (sce
; ;§ Fig. 3), with x* = x/yy as> the variable. The tables give the value of a factor F, corresponding
‘% ! to a* positive, and a complementary factor I’, corresponding to x* negative, such that the
¥

downwash ratio «/V is equal to F x ?ﬁ}\%f where K is the strength of the vortex. These tables
7 v

are not reproduced here but it is hoped that it will be ; ossible later to circulate them after
complete subtabulation. The writer has subtabulated to give correct answers to three places of

B N b,
™% v

it = decimals by the use of the first difference only, the use of second and higher differences not
it . being recommended for inexperienced computers.

gii 11. The solution of any problem involves the calculation of the downwash at a certain numbe1
i of pivotal points bv <~ -*  *ho effect due to each individual vortex. The bare minimum
ol number of points 1s equal to the number of unknowns in the relation (1). .To final decision has
e yet been made as to the necessary number of points to give a specific! accwacy. wvidence
b which will be giverr as each case is considered suggests that for a symmectrical wing without
Y sweepback six points on the halfwing, those marked 1 to 6 in Fig. 2, are sufficient. By symmetry
% this 1s equivalent to the use of 12 points for the wing. For sweptback symmetrical wings it is
¥ probably necessary to use ninc coefficients and nine points, those marked 1 to 9 in Fig. 2.

e < The calculated values of «, V are equated to the slope of the plate, in this case tan q, at the

point concerned, and the sclution of the simultanéous equations gives the values of the coefficients
in relation (1).

ox
2
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One important theorem, suggested originally by Dr. H. O. Hartley, assistani to D-. Comirie,
has been demonstrated by trial solutions. When using the bare minimum of pivotal points,
they must agree in number in the two directions with the coefficients retained in the relation: (1).

3 For instance, if the coefficients ay, ¢y, 4;, ¢;, a,, ¢, are retained, three in the chordwise and two in
e the spanwise direction, the points 1, 2, 3 and 4, 5, 6 can be used. The points 1, 3, 4,6, 7,9
N3 would probably give a false result unless used with ay, ¢, €, a;, ¢;. ¢;. It has not been considered
oy advisable to place any pivotal point nearer the tip than 0-8 of the semispan.

:g 12. The actual method of layout of the work with suitable checks for accuracy will vary
& =~ depending on the machines and computing staff available. That devised by the writer at 1he

laboratorv differs from that used by Drs. Comrie and Hartley. As it mav not be possible to
show the complete layout for a wing, a demonstration is given of a simple p~~blem, that is, the
calculation by the present method of the loading on an elliptic wing with ratio of major to minor
axis of 5 to 1, using the same assumptions as in the Glauert-Lotz methed, i.e., load concentrated
at 0-25 chord, the locus of which is a straight line This case, for which the true analytical

solution is given by the simple expressionml'— =9 ? :;vl 0 O 4-781 forms a valuable test case
. T
* for assessing the value of the present method and the effect of the corrector vortices.

e %
x1

In Table 3 the data conforms to the original layout 1, excluding the corrector vortices. The
coefficients of odd powers of 5 vanish through symmetry ; by the assumed conditions the coeffi-
cients of sin 6, sin 20, . . . are all zero and we retain four coefficients @y, ¢y, ¢, and g,.  The values

of \V'1 — 1% 32Vl — 52« . . from Tablc 2 are set out and denoted by A,, A;, A;and A,. The

Tl e Tl 2§09, RO PP B 9.1 “H‘ml‘l'i'-'??i'J’J I B R LR oA 2O B BP0, R, SV 4 I Wil Tl S Dol Siatl. SN
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four chosen pivotal points on the chord line are at 0-1, 0-4, 0-6 and 0-8 of the semispan. IFrom
the tables, the factors appropriate to the positions of each vortex with respect to each pivotal
point are set down under the preceding values and denoted by B,, B,, Bgand B,. For this simple

case, in which #* = 0, the factor simplifies to the expression e 5);,:{ i- The sum of
the A coefficients is denoted by XA, and the B coefficients by ZB.

The sum of the products B,A,, B.A,, B,A; and B,A, for point 1, and similar products for points
2, 3 and 4 are computed and tabulated. The check for accuracy is that the sum should equal
I ZA x 1B, an error in the last figure being allowed on account of cumulative errors arising
from the limited number of figures in the individual totals. For this case, including ouly the cot
0/2 term concentrated at the centre of area, relation (1) becbmes

r - 2
SV = VI 5[t et et
Now
w 1 Ed

'*V— = m‘; 8sVtana ) [ aOEBAl + COZBAz + eDZBAa + goEBAa ].
The element of lift is
8seVitan a V1 — 52 —72‘~ (ag + cgn® + egn® + gon®)-

»

Alternatively, the element of lift is

2230V [tan % — —:’7]
Equating these
a [ ¥ VITyE 4 2088, ] + 5, [405 n VIZ 3 + 2OEBA2]+ =1
For the 3/1 ellipse, c/s = 0-4V'1 — 72, hence
ag[1+ 2EBA] + by [#? + 2ZBA,] + ¢ [7% + 2EBA,| + 4, [#¢ + 2ZBA,] = 0-1.
The resulting equations for the four points n = 0-1, 0-4, 0-6 and 0-8 are given in the table.
The solution gives (see Appendix I) —%%L' = 4-746, the exact solution being 4-781. A repetition

of the solution with six pivotal points » = 0-1, 0-3, 0-4, 0-6, 0-7, 0-8 gave 4:740, and a
repetition using the corrector vortices at = +0-9625, and using the four points n = 0-1, 0-4,
0-6 and 0-8 gave ‘fii' = 4-778. This result is takem by the writer as evidence that (1) no
appreciable error i involved in the use of only four pivotal points (2) the addition of the corrector
vortices is an effective means of obtaining a higher approximation.

13. The layout for a wing using distributed load does not differ in principle from that shown
above. The factors A, to A, would be the same ; an extra table derived from the plan of the wing
and giving the relative positions of each vortex is necessary so that values of x* and y* applicable
to any pivotal point can be computed and tabulated. The factors are th.n read from the tables
and set down under the A coefficients, and when the full 4-point loading chordwise is adopted
there will be four corresponding factors at each position along the span. The downwashes are
computed in terms of sums of products and the coefficients a,, etc., and are equated directly to the

slope of the aerofoil at the point concerned. The solution of the simultaneous equations gives
the values of the coefficients.

e s e em- e - ey = " . s vt s %
%}i‘?f‘iﬁ‘fi’a?‘iﬁk'lwiw;Wi"'qﬁﬁﬂ"«‘ﬁ‘i‘-" LI T T S T T e ST N S S T e sl il tadnh il
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The solution of the properties at C;, = 0 is obtained by the use of relation (2), the equations
being derived in precisely the same way as when finding dC,/dx. The unknowu g’ is eliminated
by using the condition for no lift (see Appendix I)i.e., 182y’ + 8e," 4- 4¢," + 2¢," 4 2¢y' +¢," =0,
and in place of this the unknown «, the angle of incidence for no lift, is introduced. The
downwash at any pivotal point is equated to «, plus the slope of the plate at that point. From
this solution «, and C,, are derived.

14. Rectangular Wing, Aspect Ratio 6 to 1.--The results of various calculations of the centre
of pressure and lift derivative for steady motion are given in Table 4. The first -point to be
noted is the close agreement between the straight solution and the least squares solution computed
for layout 1. This provides effective evidence that there is very little, if any, error involved in
limiting the number of pivotal points to six. Another important point is the difference between
the lavouts 1 and 2, ie.. without and with the corrector vortices. The effect of the corrector
vortices 1s to increase dCpydx by only about 2-495, and this is the order of correction which has
been found in all cases which have been tried, It secms justifiable to assume that the answer
given by layout 2 must ke very nearly correct. The figure %% = 4-296 is in close agree-
ment with that obtained by W. P. Jones, i.e., 4-303, by a different method.

The values accepted as correct by the writer are ~dd(;“ = 4-30, C.P. at 0-239 chord. The

acceptance of hese values involves a modification in the formulae for converting results for
A = 6 to infinite aspect ratio, The new ratio of lift slopes will be 22/4-30 instcad of 2z/4-53
and there is an additional correction of 40 011 on the ‘centre of pressure. The new value
modifies the computed section values of dC;/da by about 59%,.

In converting from A = 6 to A = w, it is always assumed that the values of C,, and o, are
w changed. In Table 5 are given the corrections which should be applied to the N.A.C.A.
series for various positions of maximum camber. The values for A = 6 have been computed
by the method described in this paper using six pivotal points. The values corresponding to
A = w were computed by the thin wing theory described in Glauert, using the same three points
of coincidence in the chordwise direction at 0-25, 0-5 and 0-75 chord. For the particular type
of camber of the N.A.C.A. series, this may be too few to give the absolute values, and the differences
only, which are corrections, are given. The corrections apply to a camber of 2%, and are pro-
portional to the camber.

15. Elliptic wing, major axis{minor axis = 5 to 1.—The results of calculations on a wing of
this plan form at 0° and 30° yaw in steady n:otion are given in Table 6. For 0° yaw, the aspect
ratio is 20/x or 6-37, the Glauert value of dC,/dw is 4-78, and the C.P. at 0-288 of the median
chord. For 30° yaw, at which anele the span is reduced in the ratio 0-872 to 1, the aspectr. ,
is 4-84, the Glauert value of dC,,d« is approximately 4-45 and the C.P.is approximately at
0-288 of the median chord.

Values obtained by Krienes using the acceleration potential method are 4-55 and 0-283 at
0" yaw, and 3-26 for dC,/dx at 30' yaw. An unofficial examination of Krienes work is in hand
by Dr. Hartlev. The compiete results are not yet available, but it seems that there is very
little error if any in the result for 0° yaw.

The straight solution for 0° yaw was computed for layout 1, which gives (f{(;’(' = 4-49. This

would agree with Krienes’ result if increased by 1-3°, : it will be scen from the results at 30°
yaw that the addition of corrector vortices increases dC, /dx by 1-3°,, hence it is deduced that
the present method, using layout 2, would give complete agreement with Krienes result for
0° yaw.
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Three solutions Have been computed by Scientific Computing Service Ltd. for 30° yaw. The
first two demonstrate that there is no appreciable error in limiting the number of pivotal points
to 12 over the wing, and the third shows that the coirector vortices increase dC,/da by 1:3%,.
Hence, unless there is some hidden flaw in the present method, it seems that the value of
dC,/d» for the wing at 30° yaw cannot differ appreciably from 3-81. Any further discussion on
Krienes’ results is held over until the receipt of a report from Dr. Hartley.

16. Work is proceeding on calculations for sweptback wings, and, as far as can be seen, good

- agreement with wind tunnel tests will be obtained. ‘These results will be given in a later paper,

as the matter cannot be treated effectively until exumination has been made of the present
inadequate knowledge of section coefficients.

17. The immediate programme of work includes :—

(@) Revision of section coeflicient calculations as described in §14.

(b) Calculation of lift, moment and induced drag for various shapes of sweptback wings
using the bare theory.

{c) Modification to include effectz duc to loss of circulation and incipient stalling.
(d) Establishment of the proper routire for predicting actual wing properties from (b) and (c).

Work scheduled for the near future includes

(e) Calculation of rotary derivatives.
(f) Effect of flaps.

(g) Effect of airscrews.

(h) Effect of fins,

() Effect of body.

(7) Effect of controls.

The work under (¢) and (%) will involve the computation of further tables relating to the horseshoe
vortex. This can be carried out most effectively by Scientific Cer.iputing Service, Ltd. who have
also expressed their willingness to undertake the subtabulaticn of the original tables so that
interpolation will require only the use of first differences.

The writer wishes to express his indebtedness to Drs Cemrie and Hartley for helpful advice
given during discussion of the work, and to state that the success of the investigation is in no small
part due to having beer able to hand over the more difficult computation problems to Scientific
Computing Service Ltd. For the problems in asymmetry, the work involves, in the words of
Dr. Comrie “ that pitfall for the inexperienced, a large number of simultaneous equations which
are not always well-conditioned . If it is possible to hand over further work in the same way,
the progress of the whole investigation—which may also be used ih connection with wind tunnel
interference and wind tunnel design—will be expedited.

_The writer also wishes to express his thanks to Professor W. G. Bickley for helpful advice
given during a discussion of the problem.

Acknowledgments are due to Miss G. Bollom, who assisted the writer in some of the work of
computation. )
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APPENDIX T -

Calculation of Lift Coefficient
The analysis is limited to three terms in the chordwise direction and five in the spanwise
direction. If I" be the total circulation around any chord ¢,

‘+Cf.’. .
I'= ' Rdx.
o _c,‘)

= Therefore, from (1) . )
r 1] 0, x LA x LA X
R ot = d = 2 20d>
Vi = Fo_[_‘cot 542+ F.'f_ism 0d2 + F, gnzeds
But .
x % <o
o= 4 cos 0, andd(?) =~} sin 6 a6 -
Hence
i 6, x jo 6 . =
f_icotfd = 3 zcot —Zasmode =3
Similarly )

] i
[[snoa%—=2and[ sin20d ¥ =o.
L c 4 -1 c
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Therefore

'SQV%YTE = VI-g? [ (@o+n%+n% +r1‘d.,+r"e,,)+ i (@+nbi-tg cl-i-n‘dd—n‘f,)]

-

The element of lift oa a chord is ¢VI['dv or total Lft 1sf gV ['dy. Hence

. " oVId
B . CL = J—-‘s _3___%"4 Pu]tr
3oV°S VS "
Evaluating the integrals
165%x t 7 , 7
Co= 2| Slay + fau + 5 (oo + d0) + [ (oo + 1&1) |
N 1s%2t
=g s—"—a-““[m + 8a, + 4cy + 2, + 2, -+ e,]
dC 1 s2z2
‘ =g L16a0+8a1+4c0+201—5-260+e1]
= These formulae are independent of the wing shape.
APPENDIX II ~

Calcmatwn of Centre of Presrure and no Lift Moment Coefficient for Rectangular Wing at 0° Yaw
(Symmemcal Loading)

The moment of a strip about the line 6 = 7 Tis given by :(—
aM ]
—ﬁs—\/—:an }chdy LF cot——;—F sin9 -+ F, stO]cosBd-—
SdC .
or oim [ 4aF, + %ﬁFz]dy
dCm 882 ‘
o Pl [}n[ Fodn + ﬁn F dr)J
d n 1 %'52 «
The centre of pressure in terms of the shord ¢ forward of the midpoint of the chord is given by
dC,/dC, or
1 16ay + 4cq + 260 + 8a, + 2 + ¢
, 4 16ay + 8uy + 4dcp + 20, + 26 + ¢
Similariy,

1- s
Cro = 45 “g [Ibao+4co~r2e(,—r8az-chQ+ez]

!
or eliminating a, from the condition that C, =0

) 3
Cao = 7 ‘ 32"‘ [ 8a,' + 82y — 2/ + 2% — &+ |-
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APPENDIX Ii®
. Calculation of Centre of Fressure for Eiliptic Weng at 0° Yaw

4

The moment of a strip about the line 9 = o is given by

. I
3sV tan«

Substituting ¢ = ¢, V'1 — 4% and svaluating the integral,

= YV VI —4? [;‘;n Fo+ 4= szidy .

Also dl.jdx where L is the
AL 1

Er
RHence C.P. is at
' 16¢,

105

kit is given by

rk
= 4 QVCdyJ_l{FOCOt'g + Fysin @ 4+ F,sin 20]cos g1 : B

752V, [7an -+ 1454 +46¢4 + 35a, + ¢, + 3ez]~

r , 1
pV2s3z? liﬁaa +8ay + g+ 2, + 25 ¢ -

105x

Cable -y Downwashes due to Continrous Chordwise Load, Two-Dimensionul Flow.

[?:Olzo "*‘ 14‘(59 + 680 ‘*' 35a2 + ’16:1_ -+ 332_]
i6ay + 824 4@-4- 20y + 26y + €,

forward of the major axis, where ¢, is the minor axis.

TABLE 1

B2

if ¢ be the chord, and x length 'n the chordwise direction with the origin at the midpoint of ¢ :—

<|w

<=

<|=

/] [ . {
=cot 2 vy T J
. w
=S-n0 _}:.-—*Coso,j
. w
= sin %0, v = — jcosrd,

tel
f
—cn
.
Ty
~¢lz
+o2

¢
-

¢
cot — dx = }ac

sin 6 dx = }ac”

sinnddx =0
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TABLE 4
Caicwlations on Rectangular Wing, Aspect Ratio 6, 0° Yaw :—Centre of Pressure and Lift Deiow'ive

i |
Operator |  Method Description i Coefficients dCyjda | C.P.
Blenk .. .+ | Blenk .. | 6 pivotal points on half | a, | +0-0668 i o | +0-0295 ; 4-196 | 0-240
wing at 0-067, 0-5 and | @; | —0-0015 . ¢, | —0-0205
0-933 chord for n = 0-25 | a, | +0-0001 !cz | ~0-0037
. and 0-75. ; i
Falkner .. .- | Falkner .. | Layout 1A. Two places of | g, | +0-0670 f s +0-0303 | 4-182 | 0-236

decimals used in factors: | @, | —0-0012 | ¢, | —0-0268
6 pivotal points on half | a, | 4-0-0006 ‘ ¢, | —0-0030
wing at 0-25, 0-5 and |

0-75 chord for n ="0-2 -
i and 0-8..
L 3
Scientific Computing ; Falkner .. | Layout 1. Four places of | a, | +0-0670 | ¢, | +0-0322 | 4-195 | 0-237
Service Ltd. decimals used in factors: | 4, | —0-0015 | ¢, | —0-0277

=6 pivotal points on half | 2, | 4+0-0001 | ¢, | —0-0051
wing at 0-25, 0-5 and
0:75 chord for n = 0-2

- and 0-8..
Scientific Computing | Falkner .. | Layout 1. Four places of | 4, | +0-0668 | ¢, { +0-0314 | 4-196 | 0-239
Service Ltd. decimals used in factors: | @) | —0-0014 | ¢, | —0-0247
12 pivotal points on half | ‘a, | +0-0004 | ¢, | —0-0065
. wing at 0-25, 0-5 and

0-75 chord for = 0,
0-2,0-5 and 0-8. Least
squares sclution.

Falkner . .- | Falkner .. | Layout 2A. Three placesof | a, | +0-0677 | ¢, | -+0-0347 | 4-296 | 0-239
decimals used in factors: | ¢, | —0-0009 -~ | —0-0267
6 pivotal poinis on half | a, | —0-000 —0-0050

wing at 0-25, 0-5 and
075 chord for n = 0-2
} and 0-8.

W.P. Jones .. | W.P. Jones  C.P. on all sections assumed s 4-303 | 0-250
to be at 0-250 chord. -

Glauert .. - Fourier series. Single 4-53 | 0-250

? straight vortex filament.

TABLE §

Calculated Corrections on Cry and w to be Applied to Cambered Rectangular Wings of the
N.A.C.A. Series when Converting from Aspect Ratio 6 {0 0.
The corrections are proportional to the camber,,

Camber, Position of , Correction on Correction on
per cent. max. camber ‘ Coo %o : degrees

2 0-2chord | —0-0011 +0-01

2 0-3chord | —0-0015 —0-01

2 0-4 chord —0-0020 —0-01.

2 l 9-5 chord —0-0027 +0-04

2 | o06chod '] —0.0033 +0-08

2 | 07chord —0-0026 +0-06

i
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TABLE 6

Calculations on Elliptic Wing, Major{Minor Axis S fo 1

F Pl Al Mol Wl ok ALY S 4

. i
Yaw: é;pégt Operator t Method Description Cocfficients . i d;: ’C.P‘
! ! :
0° | 6:37 | Glauert i Single vortex filament : . | 4.78 | 0-288
- i
i
0° | 6-37 | Scientific Com- ; Falkner : Layout 1. Four {a, | +0-0739 ! ¢y ; 4+7-0015 | 4-49 | 0-280
puting Service places of decimals { ¢, | —0-0034 . ¢, ' —0-0093
L. used in factors: 6 | a, 0 (¢ ' —0-0016 |
| pivotal points on i :
i half wing at 0-25, !
0-5and 0-75 chord !
for n = 0-2 and
0-8. i
0° 1 6-37 | Krienes Aceceleration potential 4-55 | 0-283
30° | 4-84 | Glauert Single vortex filament 4-45
30° | 4-84 | Krienes Acceleration potential . 3-26
30° | 4-84 | Scientific Com- | Falkner | Layout 1. Four | e, | 40-0791 | ¢, | 4-0-0150 | 3-76
puting Service places of decimals | a, | —0-0008 | ¢, ' —0-0285
Lid. usedin factors: 12 | @, | +0-0013 | ¢, | —0-0159
pivotal points on | b, | —0-0076 | 4, | —0-0202
wing at 0-25,0-5, | b, | —0-0031 | 4, | +0-0258
0-75 chord for | b, | --0-0028 | 4, | 40-0184
7= -4 0-2 and
+ 0-8.
30° | 4-84 | Scientific Com- | Falkner | Layout 1. Four{a, | +0-0787 | ¢, | +0-0143 | 3-76
puting Service places of decimals | a, | —0:0001 | ¢, | —0-0278
Ltd. used in factors: 21 | a, | 4+0-0018 | ¢, | —0-0150
pivotal points on | 3, | —0-0049 | d, | —0-0241 |
wing at 0-25, 0-5 | &, | —0-0067 | 4, | +0-0312 |
and 0-75 chord for { &, | —0-0059 | d, | +0-0230
7 =0, +£ 02
4 0-5and 4- 0-8.
Least squares so-
_ lution.
30° | 4-84 | Scientific Com- | Falkner | Layout 2. Four | aq, | +0-0793 | ¢, | +0-0164 | 3-8i
puting Service places of decimals | a, | —0-0008 | ¢, | —0-0269
Ltd. used in factors : 12 | a, | 40-0013 | ¢; | —0-0613
pivotal points on | b, | —0-0073 | 4, | —0-0204
wing at 0-25,0-5 | b, | —0-0035 | 4, | 4+0-0254
and 0-75 chord for | b, | —0:0027 | 4, | +0-0191
n = + 0-2 and
j +0-8. |
!




6997,
¢S. 182
Dirgckior f Fig. 1.
I wird, )
. e gul
‘ / Ay
®
Port o !% $ sttd
A 3 7ei
Q=0
n=-l -}
Q’”// R Y g- L4
: - 5 g S
* -$
Madian line
Jangent at tip paraliel P bobwien L Tangent ak bip_ |
/l:o wine dirgobion. tip paralie] to wind
tangents. direckion.
- ?- -1-2 =cos O k -vcrl‘.-'c'ah.g londng perurit jength
- 7=y ecos ¢ 30
I"f“kdx =circulabion around any
/2 choryl,

The y axis is perpendicular to the wind direction, with the erigin on the
medinn ling.

For any chord ¢ paraliel to the wind direction, the x axis is parallel o bie
choed with the origin ok tha mid point of c.

General coordinabes for wing of any shape.

Tp Median ine
01 101 ] 011044061 ¢ 01101101304 100]|
N p A
Lagout | | 7 /‘l,
ol
1y
These 4 V/// ;! k2
corractor r//{ &
vartices added Yo% X
Forl.mput?’ b -
{ s 90l HepN]
ot
—-—'“"—‘
' AT B 1 Jq n

Pattern of horsashos vortices representing continucs !cachq,



P w‘,..}j N PRI LS ﬂj_\ﬁ‘\;.":-ﬂﬁ“‘,ﬁ-' P 1 n‘-:‘:ifun ey S aF wF o rad LB a AR Tl e SE e e
2 = e S il e Vs =7
<6 -
R
2 A
T 19
,r_es'
X 6997
o Fig. 3.
fan x
\
5 (é‘

y+ve

s 4
B
e W

'Jh

'

!

-
<« A

NEfesin

o
!
"“«’

() Origin and point

zFin;nq location
“oF vortex, ]

x + Ve 0 A

%
.

53
x
A

g g TR
d L,
i o8
|

X< x/ Yv Y

2z, = widlh of vortex.

Y 1"?
WPy

—

¥ y/ye- - v
-

- Dimensions of Horseshoz \ortex.

{66502) Wt 7/7118 8/#4 Hw. G371,

Wh .
e P P Y AL P R N e T T o T o o T TR T T T i T T o Tt~ G AN L LU P ) AL . 270 1 702 T e )



Symbol ! .
Designation | o Y N
Axes Positive longitudinal | lateral norrnal
direction forward starboard downward
Force Symbol X Y Z
Moment Symbol L Mo N
e Designation rolling pitching yawing
Angle of . |
Kotation Symbol ! v o A
Flnd Linear 14 v w
A% 1
Velocity Angular ! P q ¥
R b e -
Moment of Inertia A B C

LComponents of linear velccity and force are positive in the positive direction
of the corresponding axis. '

Components of angular velocity and moment are positive in the cyclic order
4 to z about the axis of %, 2 to x about the axis of y, and x to y about the axis of z.

The angular movement of a control surface {elevator or rudder) is governed
Ly the saine convention, the elevator angle being positive dowawards and the rudder
angle positive to port. The aileron angle is positive when the starboard aileron is
dovn and the port aileron is up. A positive control angle normally gives rise to a
negative momient about the corresponding axis.
Tihe symbols {or the control angles are :-—
¢ aileron angle
n elevator angle
yr tail setting angle
¢ rudder angle



