AD-A954 882

- :“ K"'m‘““m
1 domacent hag been approvad

C L paklle rdon and sales it

| iomibution ls unitmited,

e e T A A tins

5 BN
F [

O
.
E
i [
v
45

E ‘ o 1
- AReA JTPT

2! ILLIAC IV Document No. 225

¢ @
o o0 Welsor Bt
:
A 109
_I ! Center for Advanced Computation A/\L%"; VQ. 2

f. University of Illinois at Urbana-Champaign
o Urbana, Illinois 61801 G[L/
i
'.4 L!‘
o
| =
)
o
N: ','.':
ol
-

[
i AN INTRODUCTORY DESCRIPTION OF THE ILLIAC IV SYSTEM
E:_: :::' Volume I
P
i b by
:
F:ﬁ o Stewart A. Denenberg
;!
: = | Accession For / / APPROVED FOR PUZLIC RELEASE.
g " MNTis GRA&I of DISTRIBUTION 15 UNLIMITED .
o (4)
Y DTIC TAB 0
T 1 Unannounced O
L Justification
s - -
F ¥ 34
R = YistFipwttons
A -~ :
e | aeaiiabtlity Codes
B L T sl and/er
b = st | ssetal ‘
- i I
% |
R i) ence T
» j Départment of Computer Science File No. 850

gans LAY ‘July 1 1
greto "‘r“ y 15, 1971

This work was supported by the Advanced Research Projects Agency, as
administered by the Rome Air Development Center, under Contract No.
USAF 30(602)-llhk,

ot~

e
RO AR T A

To Claire

R el W s S

v o

o m s 8 & 4 _a

"
3

TS

", T
.

VAt

A

0t

—
:-‘-.‘...'

-
1

SR

Read This First

- This book was written for an applications programmer who would
like a tutorial description of the ILLIAC IV System before attempting to

) read the reference manual. As & tutorial, the level of detail presented
in this book is fairly general; particular information can be found in

rat

fﬁw the Burroughs Reference Manual "ILLIAC IV Systems Characteristics and

- Programming Manual."

In order to use this book most effectively, the Chapters should

&l. be read in order. The reader who wants a very quick loock at the capabil-

-, ities of ILLIAC IV may skim just the summaries of parts A, B and C of
Chapter I and begin reading on page I-55. He may then read pages II-1

AL through II-20, skipping the detailed description of the ILLIAC IV Arrsy
(pages II-21 to II-41). Pages II-L1 through II-T3 are optional; the

e reader should at least look at them and decide for himself. As much of

(s Chapter IIT as possible should be read--the instruction repertoire, more
than anything else, defines the capabilities of a computer. A valid answer

E? to the question "What is ILLIAC IV?" would be to hand the questioner a

description of each instruction in the repertoire.

For a more complete understanding, however, the reader should

ti come back and read the sections he skipped on the first pass. It is the
nature of ILLIAC IV, to a degree much greater than the conventional

b
o
&e computers, that its hardware structure is bound up very closely with its

l
o
&

A

TOL O Ty Rk .-r W v\r\-‘r;- "-‘ '{.;1.' X \'\‘{T' B

OO N R PRy ;,'r-"_..“; AT

e e T T R S A

g W
-

‘AW |

3

FareALs
2
.

i «
.
-
o
N
;

o™

——_

capabilities. It is therefore necessary that the reader spend the time

ot e

necessary to understand the architecture of ILLIAC IV.

<
-

l The Table of Contents in the front of the book is in an

:E abbreviated format while each chapter will be preceded by a finer Table _EL
~

; of Contents. A Hardware Glossary which is essentially a glossary for 9

i Chapter II is at the end of the book. .

3 ' 3

?: ‘Chapter I presents the background concepts necessary for an i
E; understanding of ILLIAC IV. A short section is devoted to the historical Zi
g development of digital computers and their evolution is described in M
g terms of the problems that had to be solved. After conventional computer E§
g organizations are described, unconventional ones are presented as design =
i options to speed up the operation of a computer. Two design philosophies, \ *‘
;: overlap and replication, represent two major methods used to increase the 3

] B
y
-
-,

computer's operational speed. Overlap is effected by the buffer and

B PR
-
-

pipeline mechanism and replication is embodied in the general multi-

. r
o3

processor. ILLIAC IV is shown to be a variant of a general nmultiprocessor

,

using buffering and a modified pipeline mechanism in the instruction

3
1 L]
)

execution section.

/]
2 A

IR £ it
L ARe

Ll

Chapter II describes the architecture or the hardware structure

|

of ILLIAC IV., The ILLIAC IV Array is discussed in broad terms followed

I .

LS

T A S N

by some illustrative problems which point out some of the similarities and

differences between problem-solving on sequential and parallel machires.

The problems also serve to illustrate how the hardware components are tied

r
‘e
=5

4 Lo
L': “'\:{1
: 5
8 e
ﬁ ii

3 @)
A]
}“ir

R 2 8l 2 I Arw B ae it et ik (¥ oL - Y T T T T M T 8 T R B b T T P e gy
SO A e S ™ A S W LR WAL I R NSRS P S I I SO VR S TS e SE e SR

<,

e W BN

2 s arw B w

it 4

together. Following is a more detailed description of the ILLIAC IV Array,
then another illustrative problem (Laplace's eguation describing steady-
state temperature distribution in two-dimensions) followed by some data
allocation considerations; the ILLIAC IV I/0 System is discussed briefly,

and some conclusions and opinions end the chapter.

Chapter III presents the Assembly Language ASK in a functional
and pragmatic way: a problem is déscribed and then only those ASK
instructions necessary for the solution are described. In this wsy the
five problems introduce forty ASK instructions and the flavor of the
assembly language which, from a programmer's standpoint, is an indication
of the capabilities of ILLIAC IV itself. The five problems are: Summing
an arregy of numbers, Finding the maximum value in an array of numbers,

Matrix multiplication, Matrix transpose, and Laplace's equation described

in Chapter II.

This book will be issued in three volumes. The first three
Chapters represent Volume 1, Chapters IV through VII will comprise Volume 2,
and Chapters VIII through XI will be Volume 3. Volumes 2 and 3 will be

supplied as soon as they are available.

iii

L T A i e e T N A S S A T s '} I R
I S U R B A N g I N T A A

TE

2
A
S EVOREN

‘v"-‘ 14

—

L B

N
B

Abstract

)

Written specifically for an applications programmer, the book

>
=

3]

presents a tutorial description of the ILLIAC IV System. Volume 1 contains

three chapters -- Background, Hardware Structure, and The Assenmbly Languege-- i

. |

ASK, as well as a Hardware Glossary. Many illustrative problems are used to %
Gt}

educate the beginner in the use of the ILLIAC IV System. tj
0

R A R R R R R R R r——

4 KO

iv

Al
™
)

i
WP ISR

Chapter I

Chapter II

Chapter

Chapter
Chapter
Chapter

Chapter

Chapter
Chapter
Chapter

Chapter

W .

TABLE OF CONTENTS

Volume 1

Background . . « « ¢« ¢« v o 4 o
Hardware Structure
The Assembly Language--ASK . .

Hardware Glossary . . . « « o

Volume 2

ALGOL for FORTRAN Programmers
A High-Level Language--GLYPNIR
A High-Level Language--FORTRAN

Word Formats . « . « ¢ « « o &

Volume 3

The Operating System

Utdilities = %« « = ®m &« 5 k G W W

Test/Repair Equipment and Diagnostics

Physical Characteristics . . .

’

(to be
(to ve
(to be

(to be

(to be
(to be
(to ve

(to ve

64 pages
Tl pages
90 pages

10 pages

supplied)
supplied)
supplied)

supplied)

supplied)
supplied)
supplied)

supplied)

T L P e T g ey) o T S B TR - be N T R e R YT LY AT L e L T e ~‘-~‘.~"_" 4
:\‘ i .!‘Lu-f\.. .‘.;:“.: it_. r\- .’ ‘..",;'h"‘_‘ P““;‘ r-‘-,:r',.-\',’! "- ';‘ % N ;F'. ")“ "} L ™ I'-‘h Lo Kotyt A < "- U " . -J-'-r R Y .'l"\. l. B G =

=~

Foreword eﬁl

o

This book is based upon the many reports and documents generated

DS

at the University of Illinois and the Burroughs Corporation during the

]

design and development of the ILLIAC IV computer. In addition, much of the

N |

content of the book was influenced by the material offered in the graduate

l_J‘

level computer science course, CS 491, "Architecture, Applicetions, and

5
el

Languages for a Parallel Computer" as well as the many one-day, two-day and

2

- g
.
'

z

one-week seminars on ILLIAC IV. I learned a great deal from my "students"

&S

I would like particularly to thank Professor Daniel Slotnick

and my friend Mr. George Westlund who provided the overall guidance for

st

s
i;r‘.l.a =2

this book and whose idea it was to create it in the first place. Much

specific help was given me by Walt Heimerdinger in the ares of hardware

structure, and Jim Stevens and John McMillan in the area of ASK. Mike Sher

L

and Cal Corbin helped proofread and make final suggestions before this book

when to press. I am also very grateful to Joyce Fesnacht who cheerfully

typed and retyped the many versions of the text with incredible accuracy,

and who drafted the original versions of all of the figures from my

=

L

pencil scratchings.

-
EREE]
[

Any errors you may find are not only my responsibility but

-
ol

TR

become yocurs also. If you inform me of them I will correct them in the

£

next edition.

Stewart A. Denenberg
Urbana, Illinois

1971

¥
o

. - = y
T
. pt

PR T e T) 3 - R Y ok o

. T P AT A - = T ..« D i e s e e P --1_ i' e
PR REAY PRI A e TR R ".:".' -'J _.\‘ i.‘ "'.J- \a " 75 la) r R, .p\ .".b - \ - -‘_n_a R A, 8, S, LSy R Ty LR ".L&'.- ..W’g" Y oty

o s «P8 o"a

Find S it
s R e

o 3.~ P,

pi s e

e

‘-’.}“.f.

—
¥
L

BT

-
+

[vy
e o o Tl
o o7 L 8’ I

4

- ——
.

A. Summary

CHAPTER I -- BACKGROUND

TABLE OF CONTENTS

e o e o o o o e e o (] . a o (] . . LI LI | . L) L .

B. A Review of Digital Computing Machines . . + ¢ ¢ v « ¢« « « o &

1.
2.

-1 O\ FWw

C. Unconventional Digital Computer Organizations

1.
2.

L,

References

S‘mmw L]
Babbage's Difference Engine and Analytical Engine ., .

a. The Difference Engine . . « « « o ¢ o o o o o« &
b. The Analytical Engine . . +« o o o ¢ ¢« ¢ ¢ o v &

Automatic Sequence Controlled Calculator (Mark I).

Electronic Numerical Integrator and Calculator (ENIAC)
Electronic Delay Storage Automatic Calculator (EDSAC).
University of Manchester Computers . . . ¢ ¢« « o ¢ ¢ &

Electronic Discrete Variable Automatic Calculator (EDVAC)

Slnnmaw L] L] L] L] [] L] [] L] L] L] L] L] L] L] L] . L] L] L] L] L] L] L]
Overlap MechaniSms . « o« « o « o o o o o o o o o o o o

- Buffer [a e . LI) LI] [. e o o s " L .
bc Pipeline (] . . . LI a o * o e« o o 0 9 . . L) .

1.5ummary « « . ¢ 0 0 0 e e e e 0 e e e e e
ii. Background . . ¢ ¢ 4 o 0 0 0 0 0 00 0 0o
iii. A Pipeline Adder . . 8 Sl Se ¢
iv. A Pipeline Instruction Execution Uhit A NIE

Replic&tion—-The Multiprocessor e e o & o e s o+ o o

a. Centralize Memory * e * e o " o . e .

b. Centralize the Arithmetic and Logic Unit (ALU) .
c. Centralize the Control Unit (CU) . « + « « & «

ILLIAC IV . v & ¢ ¢ o o o ¢ o

D W)

Page

I-1

I-2

I-2
I-3
I-3
I-7
I-11
I-1k
I-16
I-20
1-22

I-25

1-25
I-30
I-30
1-36
I-36
I-37
I-bh
I-k49
I-51
1-52
1-53
1-55
1-58

I-6k

L‘ ﬂﬂ ."l -'\
- CP q *5 o
_4_24*1 4"4".L-'J.__a" ‘4.‘1 .')..M\‘ et

I-1.
I-2.
I-3.
I-4,

I-5.

I-10.
I-11.
I-12.
I-13.

I-1k,

LIST OF FIGURES

Transmission of Data in Babbage's Machine « .
Mercury Delay Line or Ultrasonic Store . . « + + « ¢« « &
Functional Relations within a Conventional Computer . .
Process Execution with and without Buffer

Two Inputs Transformed to Two Outputs via a
Three-Stage Sequential Process . « ¢« ¢« ¢« ¢« ¢ ¢ o o o o &

Two Inputs Transformed to Two Outputs via a Three-Stage
Pipeline where PM is the Maximum of Pl’ P2, and P3 s T e

Seven Pairs of Numbers being Added in a
Four-Stage Pipeline Adder . . « ¢ ¢ ¢ ¢« + ¢« ¢« ¢ o o o &

Functional Relations within a General Multiprocessor . .
Multiprocessor with Common (Lumped) Memory
Functional Block Diagram of Intrinsic Multiprocessor . .

Serial CPU vs. Parallel CPU . « ¢ ¢ ¢ « o o o o o o s

A Vector or Array Processor . . « « o« o s o o« o o ¢ & o

Functional Block Diagram of SOLOMON . . . « + ¢ ¢ ¢ « &

Functional Block Diagram of ILLIAC IV . . . « ¢ ¢ + o &

TABLES

I-17
1-26

I-35

I-48
I-51
I-52
I-54
I1-56
I-57
I-59
I-61

.)

o

=

ved o1

LEPRR

.

‘} AR

I-ll

S W S -r«-p.-'

<\P‘-

Difference Method for Evaluating Polynomial

Function X + X + 1 & ¢ ¢ ¢« ¢ ¢ o o o o o o o o o o o »

Y

e T L T e N L 2 o T e T L

r
A

L

R PR
)
S

o

CHAPTER I
. BACKGROUND
H A. Summary
él
c Chapter I traces out some of the background concepts necessary

for an understanding of ILLIAC IV. A short section is devoted to the
historical development of digital computers, indicating how computer
systems evolved to the Von Neumann state of organization. Also discussed
[} is the tendency computers have had in creating problems themselves. The
N first computers were designed to solve specific applications problems such

as computing a table of values for a certain mathematical function or

ﬁ“— solving a differential equation which described the ballistic path of an
, artillery shell. As computers became more useful, they started to con-
Z tribute problems of their own to be solved such as the need for easier-
. to-use programming languages. The most pressing of these problems was the
’ Ca need for faster and faster operating speeds. If the computer could be
E' made to process information at a faster rate, and costs could be held
N constant, then the per-unit-time cost of processing information would
=
y L be effectively lowered. The remaining sections of the Chapter describe
' -, how Von Neumann organization may be modified to increase operational
:' speed. Two design philosophies to achieve increased speed are discussed:
f' 1) Overlapping the operation of two or more of the functional components
S
- of a conventional computer and 2) Replication of one or more of the
‘ f: functional components many times. Since these philosophies are not mutu-
‘(ally exclusive, a third option exists whereby both 1) and 2) are effected.
g
[:’ I-1

) b

3
3

u-« . TN IR, R) T - e ICRIS W
,....' . "‘\ qu ‘ ' ' " W\". -, \'\.‘-

A
te? ™
('_,. W

'ﬁ Overlap can be achieved by utilizing the Buffer and Pipeline mechanisnms; ?%
i} however, the Pipeline is limited to the number of stages into which an §
Y operation can be decomnosed, and ultimately by the speed of light. The ‘
£ replication philosophy :s typified "y the generrl Muitiprocessor, but the ?3
i cost is extremely high. Various re-designs of the Multiprocessor are ﬁ}
| explored in order to reduce its high cost: Re-centralizing Memory, ‘:
if the Arithmetic and Logic Unit, or the Control Unit. ILLIAC IV is Sg
Ei represented as a Multiprocessor with the Control Unit re-centralized. -
- This particular option was chosen for two main reasons: 1) much of the gg
ﬂ cost ©f a digital computer is tied up in the Control Unit and 2) there ?
‘i are large classes of problems that can be solved by a single instruction gﬁ
: stream which operates on data that can be structured as a vector. P ¢
E ILLIAC IV also utilizes the Buffer and modified Pipeline mechanisms to g,,»
:i overlap the operation of its instruction execution unit. zi'
-
D

B. A Review of Digital Computing Machines

>

v
¥ e
g &% B

2 l. Summary
|
: '-«n‘
[|

; Perhaps the first computer was a coin. If a computer is a tool

used by man to solve a problem, then a coin fits the description. A coin

&
g ."l
."7’!

was (and still is) used as a tool to help men make decisions. It is a true

E binary decision meker: a flip of a coin and a decision is automatically o
. made: heads, one course of action is teken--tails, another. Whether the 3
- first computer was a coin, an abacus, Pascal's Calculator or Jacquard's _:f
s Anih
35 Loom is not argued here; instead the starting point is arbitrarily chosen '5333
3 g
- I-2

o

.."‘vjb"-"'\\"o.,‘- R Sy e e L e e S e fmy Srwe e . ot NsTmmgy
R N A Pt N A N Lyl TR, -G DI G

|i with Babbage's machines. The Automatic Sequence Controlled Calculator
= (Mark I), ENIAC, EDSAC, the University of Manchester Computers, and EDVAC
&; are used to re;cesent the major chain of machines which evolved to the

Von Neumann organization.

-
o 2. Babbage's Difference Engine and Analytical Engine
&
3 a. The Difference Engine
- In 1812, when Charles Babbage was an undergraduate at Trinity
o]
College, Cambridge, mathematical tables of functions were generated by
;ﬁ hand. The production of a table of values for just one mathematical
function was & tedious and cumbersome job. A group of over 100 people,
- called "computers," were trained to follow a finite difference algorithm
Fo to compute values of the function over a specific range and for specific

interval widths within the specified range.

- Let us consider how the function f(X) = %2 + X + 1 would be
calculated over the range 1 < X < 5 and for an interval width of 1. (see

: It was known at the time that the nth differences of an n-degree
i: polynomial are constant. By convention, the zero~-differences (DO) are the
o

e~ values of the function. Dg is the value of the function at Xi: f(Xi)EIDQ.
e For the simple example used here, when i = 3, Xi = 3, and Dg = 13, The

f& first differences (Dl) are found by subtracting previous values of D0 from
7 succeeding values of DO:

A Y

n:ﬂ'

¥4

A

e TR EN NN ~ L NN 9 s S 2
.®n r\...\.“ 3 ‘._,."-"v

f.'-‘ ‘.-‘.q‘ R LK "‘h\- T J‘. O IGE
RS S AT C G R GO A R S A A S PG m&_.h&.._m.. D

;: ‘ "
k- 'v;:’ !
})
. o
Teble I-1. Difference Method for Evaluating G|
5 Polynomial Function X2 +X+1

" I
" l,"
; 8

i ol e

£(X) = X2 +X+1 E}
0 :

i X, D p! p?

; — =k — 3
3 1 1 3 &3
3 ' 3
“ 2 2 T 2 o)

W'y
Wy

r.'\;q

|
&
- L L 21 2 }é
.: 10 ‘
" 5 5 2 -
. e
b, 23

"‘ ¢
: Contents of =
Step No. ¥ ot P -
d 3

1 0 (Initial Value) L 2
- z 4 2 i
te
- 2 6 2

3 13 6 2 :‘;
2 4 13 8 2 -
5 5 21 8 2 3
" 6 21 10 2 -
7 31 10 2
; 5
!: ﬁ
» I‘.N-
, ".g*}
: 9
~J I—)-lv X

\.',‘..1: ‘!".- WA, ‘.1\ *.-‘ -'\u' -.‘.-‘ " \-.$-_‘.;'..'v.¥ S _-\. R \-\—.-,._',..&K;".'...ﬁ A

Ve oS N 2 8 T OV VRS e e s v & LMY s 4 8.7 .V YT & S e W

-
- %
o

g

0 0
)-f(Xi)=D. =D

1
D, = £(X 1ol

i i+l

The second differences are the differences of the {irst differences and
are calculated the same way:

? ek, -}

i iv1 ~ i

The top part of Tasble I-1 shows Do, Dl and D2 for the X values. DNote that

the second differences are constant (the value 2). Also shown is how we

can work backwards if we are given Do, D1 and Di by summing instead of

32 "’
subtracting:
0 _ .0 1
Di+l = Di + Di
g | 2
and Di+l = Di + Di

Therefore, if we have 3 registers to store the values of D., Dl and D2 as
we sequentially apply the sbove two equations we can generate Dg for as

long as we wish to compute. All we need are the 3 initial values

0 2 _
Dl=3, Di hanle-e

In Teble I-l, each step is numbered and the direction of addition indicated

by an arrow.

The lower part of Table I-1 displays the contents of the three
registers, Do, D1 and D2 after each step circled in the top part of the

table.

I-5

R S T ——

i

B IR
« 'z 8 m

F ottt e s s

RSP

' '-‘_‘.\ PP

It was Babbage's contention that not only could a mechanical
machine be built to perform the finite difference algorithm, it would be
faster and much more accurate. He had even designed his Difference
Engine to print the results directly from the wheels which displayed the

numbers, thus eliminating the possibility of a human transecription error.

Babbage fabricated a small Difference Engine which could tabu-
late a second degree polynomial (or any other function whose second
differences were constant) to 8 decimal digits of accuracy. In 1823 he
was given a grant by the British government to build a machine that could
generate tables for a function whose seventh differences were constant to
an accuracy of 20 decimal digits. His ambitious project was never com-
pleted. Work stopped in 1833 when Babbage ran into financiul difficulties
with his engineer who resigned from the project taking with him all of the
specially constructed tools for the building of the Engine (under English

law at the time, the engineer had the right to do §0).

Babbage was probably the first computer designer to run into
financial difficulties because the state-of--the-art of technology lagged
too far behind the state-of-the-art of conception. His ideas were sound,
but his funds were hopelessly inadequate to create the technology which in

turn would be used to create his computer.

The Difference Engine was more than just an automatic calculator
capable of addition, subtraction and multiplication--it could also perform
a procedure or a program. There was only one program that it could

perform, however, and that was the finite difference algorithm. From the

1-6

I‘l‘-"n‘l“q‘ﬂ“"’n" ‘"\““!' T e R N S 4 d I I Rt g e f
& . . 3 ‘- > -.L. .“.')-_(."\‘-,_. = ST _‘,‘",‘r_..u".\,... S " o .-‘ i -,' AN

O YN S

® Ny

1
o

i

(b e

(A

13

)

{7‘.
PRI

c o .«]
LI

e
e o

t.'....]

(I

.' i) ST

A

IS

P!
%)

A

-

o

point of view of modern computing, the Difference Engine was a single-
purpose computer with no program software; the program was intrinsically
part of the machine, imbedded into the configuration of the gears and

shafts.

b. The Analytical Engine

The Difference Engine had failed, but Babbage had even greater
pPlans for a new machine, the Analytical Engine. Either he did not realize
that his machines could not be built by the existing technology or he was

optimistic enough to believe he could supply the ideas for both.

Babbage designed the Analytical Engine to be able to perform more
than only one algorithm; so that the program as wel. as the data could be
supplied to the machine as an input, and the machine would process the data

according to the instructions of the program.

In order to create a machine of this far-reaching capability,

Babbage foresaw the four main functional sections of the modern-day

computer:

+ Control Unit
* Memory Unit
+ Arithmetic and Logic Unit

« Input/Output Unit.

The Control Unit was to act on the same principle as the Jacquard

Loom Controller: a sequence of plaques with holes punched in them drawn

- o @ R R AN PRI TR Rt R P et A s,] “'.-."'L'l.‘-h.‘.\‘.‘\.\“. .\.r."-‘_' ‘_'u._ -_. .\".
N .-:;.:.‘-:..‘u:\. ;.,".-\:_..‘...;-1 " \-_“.P.'.‘ -f'_‘- LTS \.."\- o r \t\-'h..q.. AT A% A " -4\- “. LTI . L

™

of holes in a plaque to specify a weaving operation, Babbage's Difference
Engine used each plaque to store an instruction which specified an arith-
metic operation. The plagues were drawn over a drum one at a time and the
. pattern of the holes was sensed mechanically. Each plaque instructed the
j Engine to perform one well-defined operation and a set of plaques,
therefore, constituted a program. Groups of sets of plagues represented a

i Program Library.

Not only did Babbage design a machine that would execute a

program of instructions, he also included the Test-and-Branch type of

instruction which is at the very heart of using a program to solve a

i problem, In his plan, the Analytical Engine had the ability to roll the
~ chain of instruction plagues forward or backward depending on whether the
Ei contents of a specified register turned negative during execution of the

program. Rolling the chain in either direction is equivalent to a "jump"

in the opposite direction in the program.

v The Test-and-Branch instruction provides the programmer with an

"alternate route" capability while his program is executing. Different

3 sections ¢f the program may be entered and executed based on the values of
T% numbers that were computed in previous sect’ 'ns the program. An addi-
:; tional benefit of a Test-and-Branch capabili that it affords the

5 programmer a shorthand by which he can specify a large number of program
> operations with a small number of instructions. By decrementing or

incrementing a register until it reaches a specified value, a section of

over a drum by chains. Where Jacquard's Loom used a particular combination

i

P
ey
St —
i

-
f_r_‘

2l

- s

& Ae

-
o
il

Tm?

(b s o

s o 8
¥

]

g

o]

TR
=

.
uf

o
8

XX

il 7

r
fa
&

Sl

-t

1

——
Fe T

it :’
w3 the program can be executed repeatedly. Without the Test-and-Branch type
¥}
s of capability, a programmer would have to specify every operation with at
;3 least one instruction.
g: The Memory or "store' as Babbage referred to it, consisted of
= wheels. The position of a wheel denoted the value it was storing. Numbers
i% were transmitted to and from the "store" by means of racks. The racks were
;1 cut to engage the gears of a wheel so that the position of one wheel could
S be transmitted to another. The racks, of course, could be connected to
:{: rods, shafts, or other racks to further transmit the motion. (See Figure
o I-1.) Since each wheel would store 1 decimal digit and Babbage proposed

" Gear Gear

L. A M A MMM L NnoOonAaAnnNn

C ack

Figure I-1. Transmission of Date in Babbage's Machine

that the "store" have a capacity of 100 numbers of 50 decimal accuracy,
this meant the Engine would have 50,000 wheels. Since the instructions
were not stored in the memory but were punched into the plaques and thus
o would not be modified during program execution, Babbage's Analytical Engine

LIRS was not a stored-program computer.

F, - - = e o S p— TR R R g PR e P T P - ~ e R e romo FOR LN
.' . . -"S .'..""L- ‘1‘ ‘.:; ‘." -" .:‘ 1 F,l' e .“‘:-‘_‘.‘ ~(‘..{ : .‘{' J:. . -;\- -...‘.’..' N -":-, "\:.« 'p-""ﬁ-' .‘I;-'_":-.,.-‘ "T...".’ . .-_\:-, \.‘f : . \1‘\ .-.‘F d'ﬂ.-\"’

The Arithmetic Unit was called the "mill". Babbage went to great
pains to optimize the design of the mill, particularly the problem of
carrying when the sum of two numbers is greater than nine and a digit
must be carried over to the next significant position. With customary
fastidiousness and foresight, Babbage represented the algebraic sign of a
number as a separate wheel which would not be connected to the other

wheels during carries.

The Input/Output was to be effected by punch cards much like the
punch cards or plaques that supplied instructions to the Engine. Some of
the input was to be done manually--the initial settings of the wheels of
the "store" were to be done by hand. Babbage also considered the possi-
bility of printing output directly from the wheels of the "store" as he had
with the Difference Engine. By embossing the digits on each wheel, they
could be inked at the end of a calculation and the results transferred
directly to paper. This not only made the results neat and legible but

completely bypassed the possibility of a human transcription error.

Babbage estimated the following operation times:

Addition/Subtraction 1 second

Multiplication (50 decimals by 50 decimals) 60 seconds

Division (100 decimals by 50 decimals) 60 seconds

The description for the Analytical Engine prompted some
scientifically-inclined people of the day to try their hand at programming.

L. F. Menabrea, a General in the Italian Army, was at the Military Academy

:\""l'ﬁ'ﬁ"- '.'."

in Turin when he heard Babbage speak on his Analytical Engine to the

Ttalian mathematicians. Menabrea demonstrated how one would solve two

sirmultaneous equations in two unknowns with Babbage's Analytical Engine.

Lady Lovelace, Lord and Lady Byron's daughter, devised many
programs; among them, one to calculate Bernoulli numbers from a recurrence
formula. In order to calculate the Bernoulli number Bn’ n + 1 operations
must be performed. Lady Lovelace described how she could store the
quantity "n" in a register and decrease it by 1 each time an operation
within the cycle was performed; when the number finally turned negative,

the cycle had been repeated n + 1 times and control could be passed to the

next part of the program. She had invented the concept of a loop.

Although Babbage did not build his Analytical Engine, he left the
detailed drawings and notebocks which are currently in the Science Museum
at South Kensington, England. He defined most of the concepts used in a
modern computer, including the most important one which Jacquard had sensed
before him: it was possible to build a machine that would automatically
simulate a process if the process could be described in terms of a sequence

of well-defined operations.

3. Automatic Sequence Controlled Calculator (Mark I)

Babbage's work was soon forgotten, because his Analytical Engine
was never completed. In 1937, Professor Howard Aiken designed and devel-

oped an automatic calculator based on components currently available in IBM

I-11

T - p T TR U TR T R o T s TRt Tt 7 Tt oA T S it R St Y G T T T D Ty T B 1) S Y .._'.._’. P -"'
MR N P N O G B S A G A R L b L i L e et T T T T

v i’y e N

N .
-
[}

s iy

L.

£

-
-
»

—

L

.

.3

£ »

‘..lc.

N LY T

a%a

-

At £T

RTINS, ¢ VA

=%

()

b

punched card equipment. In cooperation with IBM, Aiken built and presented

the calculator to Harvard University in 194k, Harvard named the caleculator
"Mark I".

The Control Unit of Mark I was primarily a Paper tape reader.
Each instruction was punched into a paper tape that was 24 holes wide and
fed past a set of 24 rods that made an electrical contact if a hole
existed. The first version of Mark I had no Test-and-Branch capability;
the best it could do was compare two numbers in different registers and if

one was greater, the machine would stop. We might say the machine had a

Test-and-Stop instruction.

Mark I was later modified to include a conditional type of
instruction. The conditional instruction caused control to be switched
from the currently executing paper tape to any of three alternative tapes
if the contents of a specified register were zero. Once control had
passed to a specified alternative tape, the program was executed from
instructions punched on that tape until either the progrem ended or
control was passed back to the original or yet another tape. If control
was passed back to the original tape, it would start executing where it
left off by virtue of the fact that its physical position in the tape
reader had not changed. Endless tapes were used for looping. This method
of passing control to a new tape was faster than the method of rolling a
set of cards backward or forward as Babbage had proposed, but Babbage's
technique is still conceptually closer to the kind of program control that

is used today. Neither Mark I nor Babbage's Analytical Engine were stored

program computers.

I-12

N SR

“w

o

[
i

Lo

"

-
D
v
e

.':'3

-
‘I
Tt

S

) BOES

Ei

{(k

[1.1
I

5 I3

()

i

pca |

wTet
¥]

E;.

)
ok

pon

i

=

[)
A

&: » .l. .l

&3

2
2,
L
!! The Storage section of Mark I consisted of wheels as did the
e Babbage Machine. There were T2 Accumulator Registers each capable of
l_‘.‘
A holding a 23-digit computed value, plus 60 sets of switches for holding
g! constants. The switches were set manually and were not under program
~
\ control.
- As with Babbage's Engine, numbers were transmitted to and from
:4 Storage by rotating shafts connected to the wheel storage.
'ﬁ Input-Cutput ccnsisted of a typewriter as well as punched-cards.
[o .
5 The operation speeds of Mark I were:
&
- Addition/Subtraction .3 seconds
-. Multiplication (23 digits by 23 digits) 6 seconds
-~ Division 11.4 seconds
. There was also built-in hardware which computed:
%t Sin (X) in 60 seconds
e 10% in 61.2 seconds
= and Log,, X in 68.4 seconds ‘
3 ‘we
e, all to 23 decimals of accuracy.
E Mark I contained more than 760,000 parts and the sound of its
g
lP: q"
b o thousands of electromechanical relays in operation has been likened to

re a roomful of ladies knitting.

I-13

8 oV T N B LT, e e TEEY ..
s
s 4

<]
-
1
¥
. <
*
"
[
7’
e -
¥
'
5
.
v
A
‘I
.
.
M
k]
.
i
'
s
." ' 1
v
"
.l
f . |
']
155
'.
&
7/
7
'
21
7’
»
-,
3
”
-
»
® s
s
.
.
's
>
*
s
®)
v
i
.
.
1]
>
»
P
»
-
b
a2
h

b=*o)
L L L W R SO POt Wh O RS PO AT BN ¥ Rl e Y oA - IR T

N
.":I

>

PLEE -

e e

b=

vl el

s a8
o R

Pt

“a s _a
s

o e an B T

N

e v v _ 7 e WL °

£

Tl
o e

N WX

i:-ll ‘-

LN

el

5

4. Electronic Numerical Integrator and Calculator (ENTAC)

In 1946, the first electronic computer was built by J. Presper

Eckert and John W. Mauchly at the University of Pennsylvania. ENIAC was

built for the U. S. Army to calculate ballistic tables by integrating an

ordinary differential equation. Another type of problem, the interaction

of shock waves in a fluigd

logical design of ENTAC.

The Memory Storage section consisted of tubes--triodes and

pentodes. The flip-flops were triodes and along with the pentodes

(that were used as "AND" circuits and "OR" circuits), there were over

18,000 vacuum tubes and about 1,500 relays in a 20 feet by 4O feet box

for the entire machine. 1In addition there were about 6,000 switches for

Storing constants that could not be changed by the program.

The Control section consisted of a 100 ke/sec oscillator which

produced pulses 2 psec wide. As the clock generated pulses, the program

was executed through the many wires that connected one part of the machine

with the others. The programmer did the actual wiring through plugs,

sockets, and switches; the various components of the machine were

"stimulated" or not depending on whether a wire carrying a pulse reached

that component. For example, if an accumulator received a program pulse

it would be stimulated to add. Since both instructions and data were
represented as trains of electronic pulses, a conditional operation on the

sign of a number could easily be programmed by running the wire that

carried the sign bit of that number to an accumulator. If g negative sign

I-14

g R— - . . e g e e N e
R AR £ T AC RSO AT S S et ?? "‘."-‘;1:"i“v“:":.:g.'w--‘.5 \3".‘-.‘\'_'."_.' o i _} AR o
R W% c -

“
X 3 AR SAN

s prompted John Ven Neumann to modify some of the

Fesme

{k

Ereli

g1 !

e,

o

f"‘.
3
.

Frar e U - . A SRS N TR T S R A s PRSI e

=

e,
I5F O

Se e . ¥ RTIEEEY. 4 8 K8

" sle. P NEBTCTe 8 ara 8 3 -SEEVT Ty

L TS LGSV N eV T

O

('

)‘:-"v" ;L‘.A..t. l’mn_‘ “".zfl.}.’iml—a&;;_‘c‘::-'d ."‘ } 5

1

is represented by the presence of a pulse, then the accumulator would be

"stimulated" if the number was negative; if the nurber was positive, no

pulse would appear and the accumulator would not be "stimulated" and hexnce

not enter into the program. Thus ENIAC had its program "wired" into its
hardware. ENIAC also had external switches which caused certain opera-
tions to be performed more than once, giving the programmer a looping
capability (there were extra switches so that a programrer could loop

within loops).

ENIAC had an advantage over Mark I in terms of speed; once
initial program wiring had been done, instructions could be executed al

electronic speed rather than at the speed of a paper tape reader.

Changing programs, however, meant a massive rewiring job. Many hundreds of

wires had to be re-plugged in order to instruct the machine to perform a
different algorithm. At the time it was recognized that switch settings
and plugged-wire connections could also be coded in the same way that
numbers were coded. If a large capacity storage device were to become
available, then the program as well as the datas could be stored in the
machine. Although ENIAC had only 20 storage locations, one must remember
that ENIAC was a special purpose machine built to solve a specific
problem--to compute values for ballistic tables, and it performed this

function very well.

Each of the 20 storage locations was also an accumulator which
could add, subtract, store or fctch independently and simultaneously so

that its effective calculating time was very creditable:

I-15

. R ot iR B alnid oo i W I wE Sl o B e Yk AP R R . e LWL T % P s B W T W, e AT WL PR N T e Tt) e Y e . aae T L R T PR
R SO AN PO NGO WA AN S0 S A PR e AP U A O AP 5, SV G SC NS, R S S A 1 Pibo S B S BOAE b Wl ML S S A SO, MBS, BUCHS R T NS RO MR A e R e L L B Pt a TN P P,
=]
-

F%
e

S e e N
%%

p R

Addition/Subtraction 200 us -
Multiplication (10 decimels by 10 decimals) 2.8 ms

Division 6 ms

The Input was 80 column IBM cards and the output was either cards

or lights on a display panel.

Although ENIAC actually had its program stored jinside of it in &)
the form of wire connections, it was not a stored program machine. The

definitive characteristic of a stored program computer is not the fact that

a program is stored internally in the computer as opposed to outside on gg
paper tape, for instance. A stored program computer has the ability to ol
modify its instructions as well as its data while it is executing the t
instructions since both the instructions and the data are "inside" the e
machine using the same storage medium. Looping and indexing can be done =
by modifying the address field of an instruction while the yuiogram is §§
executing. Instructions can modify, destroy or create other instructions o
as the program runs. (The stored program concept was responsible for the §§
term "word" coming into use to describe what existed at a location in the 3
memory store. In order to avoid specifying whether the content of a given kj

storage location was to be regarded as & number or an instruction, it

became convenient to refer to it as a word of storage.)

5. Electronic Delay Storage Automatic Calculator (EDSAC) .
&
EDSAC was the first operational stored program, electronic com- e
A
puter. EDSAC ran its first program at the University of Manchester in May i
)
P
¥
b
I-16
¥

oF= =) .\>~'.u"_-"-"\ A gt b P AT AT 8 ey ') L P ek
B W AL S A S AL GO AN “-.‘ ¥

SR NGl R R R L ICTSGEFhE T Puiiint Sty .o i g i O e S e P G Y TN TR RN WU RIS TS IR TR TR TR LT TR SRR TSR TS SN SR TR TR ST TR R TR

of 1949. The EDVAC, discussed in the next section, was the first stored
program, electronic computer to be designed. (Design started on the EDVAC

o in 1945, while design started on EDSAC at the end of 1946.)

;I Both EDVAC and EDSAC are considered to be IAS computers since
their development was guided by the reports generated at the Institute for
sl Advanced Study (IAS) at Princeton, New Jersey by John Von Neumann and his
s colleagues in 1945. IAS eventually put forth their own computer in 1952

and the ILLIAC I (University of Illinois), Johniac (RAND Corporation),

k% MANIAC (Los Alamos) and WEIZIAC (Weizman Institute of Israel) soon

~ followed and were patterned after the IAS machine. They all had addition
W times of about 60 us and multiplication times on the order of TOO usec.
,. The storage device which permitted both data and instructions to
o be stored together in EDSAC was a mercury delay line or ultrasonic store.
"_.

o (See Figure I-2.)

n

\..h

Ry — I AW I A W o—

]
'—# Re-Shaper and Amplifier —

Output
o Input

y:; Figure I-2. Mercury Delay Line or Ultrasonic Store

LSRN
)
‘3";‘-“_

’x.:.-.,"..‘,:.:,. ._1." __ w Tel W J_ o ‘;_ i :J"J'-' W \\“p *.,. e

ek tine T

PO INGLIAD SR PIC]

A mercury delay line is a tube filled with mercury. A wire

coming into the tube carries a train of slectronic pulses which are trans-

formed into mechanical vibrations by means of a piezo-electric crystal.
The vibrations are transmitted through the column of mercury to another
crystal at the other end of the tube which converts the mechanicsal vibra-
tions into electronic signals. These signals are a bit distorted at this
point, so they pass through an electronic network which reshapes and

amplifies the pulses before sending them back through the tube again.

The length of the tube and the velocity of a disturbance in
mercury define the memory cycle time. The number of bits that can be
stored depends on the pulse rate of the clock. A major disadvantage of
ultrasonic storage is the long access time. The time required for an
accumulator to access a bit in storage varies from near zero, to the time
it takes a bit to travel the length of the tube. The access time is on
the average, one half the time it takes for a bit pulse to travel “rom

one end of the tube to the other.

Another problem one encounters using the ultrasonic store is the
interleaving of instructions and data in the pulse train so that the
arithmetic and logic unit is waiting for data a minimum amount of time.
(For example, it would not be wise to have an instruction that loaded the
accunulator with a number that was stored ahead of the instruction; the
accumulator would have to wait a whole memory cycle to get hold of that
number.) The practice of laying out the instructions and date in the

Wltrasonic store in an optimal manner was called optimum programming.

I-18

i AR AL S O SR A L S e, W O W 3 i o P AT ST R i T R PR Vi P S ey S

s X0 S T DRIt WAS

T—
- w4

£
1
p%s

S
'.

RECEE
i

1550

g,

e

LR,

-

.
il B)

Ls

b

LE

i : p " ; - 4 . . i R it iy st L it TR e TR e L i B
L LI B 28 T RTS8 ST R, PR Bty 9N e o Wi ke PVt P P Pl B s ® im P P Wk W e e P, Mo B W, Ot w e S0

SV r-F
l‘. - -

*

.
ap

G - ~
. R Sd W W IWLT
o
e

I
- Although vacuum tube flip-flops would have provided a faster-
3 L‘ access storage medium, they were not yet economical. EDSAC had 30 mercury
:‘: :; delay lines, each of which could hold thirty-two 17-bit numbers. There
- were also short mercury "tanks" that held just one number and were used as
B registers. The access time in these registers containing only one number
) -‘ circulating through a tank was shorter than the access time to a number
;. circulating in main memory. For the main memory, the circulation time or
i r memory cycle time was 1.1 ms. The other operation times were:
: l'J Addition/Subtraction 1.5 ms
) = Multiplication L ms
: .- Division was a subroutine which hal a variable operation time.
" ‘,‘ EDSAC had a single-address instruction format which necessitated
4 W the placing of an accumulator in the arithmetic and logic unit to accumu-
Zf late the results of the one-address operations. EDSAC had two types of
R Test-and-Branch instructions; one which branched on the contents of a
S
j) storage location being less than zero and the other which branched on the
J '. contents being greater thsn or equal to zero. It was admitted at the time |
. — that even though two tests were redundant, the extra one was included for |
- programming convenience. It must have been around this point in time that
L the programming profession began.
-
i "3 Input and output were combined on a teleprinter unit which could
g -
é “lj both type and punch five-position paper tape. Input data could be punched
¥ "‘-:l onto paper tape which in turn was fed into EDSAC and output could be
4 ;‘:‘-';} displayed via the typewriter part of the teleprinter.
v R
>
- I-19

——— - = r A 5 A SRR G A TN 1,. e
°"§°‘:‘\ ‘ -'u.‘\ \s -';-'f..\-..n ‘:h i-. e FesaTam Fol \}\}\.‘\.‘.'- LT -\-.L‘.\\"\ 'h'{" Terion

9 o i + —— e - & : » . ¥ i 3 L A
et BacaS, Snia®. POV SRR i S T Sl e VR T et B RS i W S0l SO O 0 T 0 P i, 6 B0l Sy - ,, 2 .. PE T S . ¥

6. University of Manchester Computers

EDSAC was merely the name given to the world's first operational
computer developed at the University of Manchester. As time passed,
EDSAC evolved into a computer system with refinements that expanded the

state-of-the-art of computing.

The ﬁilliams Tube memory was developed at Manchester in order
to increase the speed of memory access. Basically the tube was Just a
cathode ray tube (CRT) that could store an electrostatic pattern of bits
on the face of the tube. Moreover, the bits could be fetched or changed
by directing the cathode ray to the appropriate place on the tube. The
tubes at Manchester held 1024 spots and could therefore represent 1024

bits of information; the access time was on the order of microseconds.

One of the uses of the Williams tube was what we now call index-
ing. A Williams tube, called the B-tube (presumably because the letters
A and C were already used) was used to represent two registers. When the
programmer wrote an instruction, he also referenced the contents of either
one of these two registers. The contents of the specified register was
added to the address field of the instruction. In practice, the contents
of one of the registers was always zero so that when the programmer did
not wish to modify his address field, he coculd reference the register
containing the zero value. At the time, some people felt the B registers
were of little scientific value and that they were included merely for

programmer convenience. It seems the hardware design philosophy was

I-20

(A0TSR0

o 3

o

5%

o1

-v‘.
N

Ty~
)
= ¥

-
r @ 2]
L

Y Y
€5

P A
[S AR VS Y

(A RBAA, w cvun A pl WRER R BT £ a0 ik U ey ¥ e i P S0 0 i Al AT e I S S A A W S P W SN S S G O R g e it g e

.

s

u

\ 8

B

RN

u Qn:ﬁ'fv

' beginning to change~-a problem that now deserved consideration was

L W

h programming ease. Computers were still being built to solve specifie

s .

& ﬁf problems, but they were starting to create problems of their own to be
solved. The problem set had started to divide into "applications"

(-

X problems and "systems" problems.

i o The Manchester computers added a 128 word drum--each word was

g = 40 bits. The drum was slower than tube memory but it was cheaper in terms

F of cost per bit stored. Where the access time to tube memory was on the

SRS

LR order of microseconds, access to the drum was measured in milliseconds.

Therefore, the programmers at the University of Manchester were among

the first to contend with the problems of memory hierarchy and cost-

[Tt effectiveness in computer operations: if you have a larger, cheaper, and
slower memory and a smaller, more expensive, and faster memory, both of
i which can be accessed by the arithmetic unit, you must consider the
problem of making the most effective use of the total computer. If your

e criterion for effective use is to minimize the idle time of the arithmetic

L R e Yy N e e TR - Ve e T e T T SR
.’-
-

unit then you must keep it supplied with data as fast as you can. One
method of achieving this is to feed the small, fast storage from the large,

'i: slow one, transferring data in large blocks. The arithmetic unit then

TN O M
] T

¥ . Toe
£ S,

fetches from the faster storage. Results from the arithmetic unit are

LSRR
;

g stored to the faster memory, if possible, and eventually can be sent to

s the large, slow memory.

I-21

N H L SRR L AR RE B | & Ll bl el o MR
! - I.

kn(
W W W N SR e ".4‘\' ‘a F o Y - e T WA e TR ek =Y, h '_Y"
$:;.E‘ j :. }.q' ‘r. J"J‘&_ & L:‘w - .‘)\ “ x.‘ - .‘J!.?L.'.‘l"_l.‘f' b ‘. R NN .. 4" S5 it Ty ate e e L .r‘ .t - ' ...‘-

e

4

Sl ox)

:.‘ ;I'_ -l'. -.' ;I

55

e N
RPN B B
L i

AT

Wil

7. Electronic Discrete Varisble Automatic Calculator (EDVAC)

EDVAC was the first stored program computer to be designed.
In 1945 a report, "Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument" by A. W. Burks, H. H. Goldstine, and
J. Von Neumann, was prepared under contract to the ENIAC project. This
report described the concept of the stored program computer, and made
the recommendation that instructions and data be coded using a binary

representation.

The report pointed out that although the ENIAC appeared to be a
decimal machine, the decimal capability was built up from binary components
grouped to respond as decimal components. It was recommended that numbers
and instructions be represented inside the machine in terms of the exist-
ing binary components and that conversion to a decimal representation be
performed in the Input/Output phase by means of a program. In other words,
it was proposed to use software rather than hardware to teke care of
converting from the binary to decimal system and back. The report was
distributed at a summer meeting at the University of Pennsylvania in 1946
and was a strong influence on the design of all future computers, in

particular EDSAC and EDVAC.

As its primary storage, EDVAC used ultrasonic delay tanks similar
to the mercury delasy lines used by EDSAC. A tank was 58 cm long and it
took 384 us for a disturbance to travel that length, thus the memory cycle
time was 384 ps. The clock rate was 1 Megacycle so that the tank could

hold 384 pulses or bits of information. Each number was ULl bits long

I-.22

N R AR L L)
n 0-’.3.‘ %& P N, ﬂ:.h ' a Ve)‘\s.m..a

P 2 e T

-
el

R [y w . - ool T ; I b PR 1y I, il - BT ‘3 g g - e — B - N
P e M X W e T 2 7 Raar o 4Rl S L il S S Bg AR Pl o PRG-I LI U PSSR s L I v Sl G R S T R SR Sl Bl e S e RS ARG O g

.

S5
p %,

T

R S —
AN

|3

[

| e]
«

Ee

']

T
L_‘._*.a

e

E.

TR]

s

~
3

Sl

<

o o

LA

Gl 3

T
WA

..r

i - d 3 i i . “ ~ TR ~ . ? i calic)
; - . e N 2 x ~ A & = WA L - . S A A e eaue Tk T a® e T ante, -
sl S S PR A At St 3 et L I e AR R I R o A L

followed by 4 "blank" pulses so that a tank stored 8 numbers. The total

EDVAC memory was 128 tanks and could store 1024 numbers.

A wire recorder acted as a secondary store with a capacity of

20,000 numbers. As with EDSAC, a memory hierarchy existed with a smaller,

£
: faster tank memory to be traded off against a larger, slower wire memory.
Q Numbers were transferred from the wire memory to tank memory in blocks of
~ 50 to 100 so as not to slow the arithmetic and logic unit.

\ EDVAC used a four-address instruction format. The address field
7 of an instruction, instead of denoting a single address, denoted four
< locations: the first two locations signified the addresses of the two

. operands to be used in a binary operation (a binary operation is an opera~
i tion such as addition, subtraction that involves the use of two operands),

the third address indicated where the result was to be stored and the
f
5 fourth address pointed to the location where the next instruction to be
executed was stored. The fourth address has proved to be superfluous if

: the computer has a fest and branch capability and otherwise executes its
{: instructions in sequence. (Assuming that the instructions are stored in a
- memory where the time to fetch an instruction is not dependent on where in
l_i the memory it is stored--this type of memory is sometimes called "random-
t} access".) EDVAC pointed the way to a three-address scheme whereby the
- instructions were executed in sequence and the three addresses were used
‘Ei in the same way as the first three addresses described sbove.

f A three-address scheme can be very powerful if the programs

5 involve many three-step operations such as A= B + C. However, the trend
e

i

I-23

.....

T -» -' ‘ ' \
SRR T AN My N SN P A D, LR CCR ISP O G L 1 LULER TN (1 (O LR G AT SUG CREUR O

‘g.

e .8 a® pve
g
oty

s

Ay

e e e
o b A,

2 AR

Co To e

il S T Tl

L N

R\ B

lv".'v“

A S T

y N [g Ll g
¥ - - LJ LS - - . - R LT o et -
; e AR e on v Rl Y T B I S 34 B a0 S e 2 o MLy W g S By L, A A e N . L e B A 7 L B HE o MO LN S i O Wit A L) 8 -

was to grow away from a three-address scheme which was more useful in
scientific problems than commercial ones (as well as being more costly
than a one-address scheme) and eventually settled into the familiar

one-address scheme we have on most current generation machines.

Here is another example of the applications problems creating
systems problems concerning the shaping of the design of the machine.
It would not be useful to design a two-address machine if there were no
problems that could be solved with that kind of instruction format.

The repertoire of instructions has also evolved under the demands of
the problems to be solved. Character handling instructions would not

have been implemented so soon and so fully if all problems had been

scientific.

The average operation times for EDVAC were:

Addition/Subtraction 864 us
Multiplication 2.9 ms
Division 2.9 ms

EDVAC appears to have the unhappy distinction of being the first
computer to experience large time delays in fabrication even though the
proposed design was well within the technical resources available at that
time. EDVAC design was started in 1945, but was not considered to be a
working machine until 1952. M. V. Wilkes attributes the problems to the

much faster clock rate used in EDVAC which necessitated higher quality

circuitry that could handle pulses of shorter duration without degradation.

I-24

O N T e T

AP PR S AL

O T PP N '.h\{.j

NPt M . S L TS 6 O S

T 1 S TR0 GRS S i o R A i T 8 e e T o 305 P St S Ui 31y il 0 e S ey i i Wi Sy, iy B § S G0

It appears that there is a principle of natural selection that

applies to the evolution of computers. Computers are designed to respond

to the needs of the environment. If the environment changes too rapidly,

some classes of computers may be subject to the fate of the dinosaur.
More important, the environment is not a closed system outside of the
computer; the computer, as it responds to its environment becomes a part
of the environment, and creates new problems to be solved. Machines are
then created to solve these problems. We create tools to solve problems

that our tools have created.

C. Unconventional Digital Computer Organizations

1. Sumary

After EDVAC, in the early 1950's, the deluge began. Hundreds,
then thousands of computers were manufactured; still, they were generally
organized on Von Neumann's concepts. The conventional or Von Neumann
organization is shown and described in Figure I-3. Memories became
cheaper and faster, and the concept of archival storage was evolved;
Control and Arithmetic and Logic Units became more sophisticated; I/0
devices expanded from typewriters to magnetic tape units, disks, drum and
remote terminals. But the four basic components of a conventional com-
puter (Control Unit, Arithmetic and Logic Unit, Memory and I/0) were all

present in one form or another.

The turning away from the conventional organization came in the

middle 1960's when the law of diminishing returns began to take effect in

<

s e T T R Bt - o .y, 2 S -
-_'!..\ .\:_‘- ~ '\- \; 1'\‘-. o .-!’.'- ARy, . e \-- oy, » *_ 4":-':_-' ~‘:._‘ --':.\ »‘.‘!..\'«.:-".h:, ot Ha®

s
,,

v'a @
P T

2o

it)
L P S 8

g 7 R

8
C S

=

. a - o - LG S GT G CIC R AT TLIEN I AT P S DR ST TR L LI
L — T T N e e A T e T e T T A A T TR T T a T A by T 0 P S A WA . ot
n A '.'r\'-*-'\. AR S R S B 2R S T N g . » 3 oL

CONTROL UNIT
(cu)

ARITHMETIC AND
INPUT/OUTPUT LOGIC UNIT
(170) (ALV)

L

MEMORY

Figure I-3. Functional Relations within & Conventional Computer

The Control Unit (CU) has the function of fetching instructions
which are stored in Memory, decoC .ng or interpreting these instructions,
and finally generating the microsequences of electronic pulses which cause
the instruction to be performed. The performance of the instruction mey
entail the use or "driving" of one of the three other components. The CU
may also contain a small amount of mewory called registers that can be
accessed faster than the main Memory. The ALU contains the electronic
circuitry necessary to perform arithmetic and logical operations. The ALU
may also contain register storage. Memory is the medium by which informa-
tion (instructions or data) is stored. The I/0 accepts information which
is input to or output from Memory. The I/0 hardware may also teke care of
converting the information from one coding scheme to another.

The CU and ALU taken together are sometimes called a CFU or
Central Processing Unit.

I-26

T E L N B, L i Gy e Ral i, Wi S, S E

S
Lol
wala®

£r

d
=

!

Ev—.v‘-
3

{1}

o

&

L e W

25 B

%

RS

ad

'{‘ .

o=

&

s
P .

R e Ted T Tt e S Thagl R}
R 2 ¢

the effort to increase the operational speed of a computer. Up until this
point the approach was simply to speed up the operation of the electronic
circuitry which comprised the four major functional components. (See

Figure I-3.)

Electronic circuits appear to be limited in their speed of
operation by the speed of light (light travels about one foot in a
nanosecond) and many of the circuits were already operating in the nano-
second time range. So, although faster circuits could be made, the amount
of money necessary to produce an increase in speed was not justifisble in

terms of the small percertage increase of speed.

At this stage of the problem two new approaches evolved:

1) Overlap. The hardware structure of the conventional organi-
zation was modified so that two or more of the major functional components
(or subcomponents within a major component) could overlap their operations.
Overlap means that more than one operation is occurring during the same

time interval and thus total operation time is decreased.

Before operations could be overlapped, control sequences between
the components had to be de-coupled. Certainly the Control Unit could at
least be fetching the next instruction while the Arithmetic and Logic Unit

was carrying out the present one.

2) Replication. One of the four major components (or

subcomponents within a major component) could be duplicated many times.

R A A AR PR FCI € PG RN

A m Sy e e et e AP AN et N Ny e e e M e R e Wip P Y e e B A TR T WA RS P D Wl S e W S K M R Kl ® P o PN R

-, e e

e
'@v‘z’g/
o=
(Ten black boxes can produce the result of one black box in one-tenth of &
the time if the conditions are right.) The replication of I/0 devices, -
i)
Y,
for example, was a step taken very early in the evolution of digital e
computers--large installations had more than one tape drive, more than r
one card reader, more than one printer. i
E‘;‘.‘j
Since the above two philosophies do not mutually exclude each <
other, a third approach exists which consists of both of them in a L;
o
continuously variable range of proportions.
w
o
-
The overlapping philosophy was implemented largely thivizh the
S
Buffer and Pipeline mechanisms. The Pipeline mechanism breaks down an J
operation into suboperations or stages and decouples these stages from i
each other. After the stages are decoupled they can be performed e
simultaneously or, equivalently, in parallel. The Buffer mechanism allows §§
&
an operation to be decoupled into parallel operation by providing a place
"
to store information. t}
The replication philosophy is exemplified by the general Multi- ﬁi
s
processor which replicates three of the four major components (all but
3
the I/0) many times. The cost of a general Multiprocessor is, however, &3
very high and further design options were considered which would decrease .
U_._)
the cost without seriously degrading the power or efficiency of the system. -
The options consist merely of re-centralizing one of the three major ?ﬂ
)
i
ad
oy
o
i
I-28)

.;l»_

£ ‘: .- L :‘:p: ACOELAS SR

components which had been previously replicated in the general Multi-
processor--the Memory, the Arithmetic and Logic Unit or the Control Unit.
Centralizing the Control Unit gives rise to the basic organization of a
Vector or Array Processor such as ILLIAC IV. This particular option was

chosen for two main reasons:

1) Cost. A very high percentage of the cost within a digital
computer is associated with Control Unit circuitry. Replication of this
component is particularly expensive and therefore centralizing the Control
Unit saves more money than can be saved by centralizing either of the other

two components.

2) Tnere is a large class of both scientific and business prob-

lems that can be solved by a computer with one Control Unit (one instrue-

tion stream) and many Arithmetic and Logic Units. The same algorithm is
performed repetitively on many sets of different data; the data is
structured as a vector and the vector processor of ILLIAC IV operates on
the vector data. All of the components of dats structured as a vector are

processed simultaneously or in parallel.

ILLIAC IV also utilizes the Buffer and Pipeline mechanism to
overlap the execution of instructions. This allows a further increase in
operational speed as both the replication and overlap design philosophies

are aprlied simultaneously.

LR Rt 0 s A S

R i St

| gt

= ik am

e v ae o

2. Overlap Mechanisms

a. Buffer

A buffer is a mechanism which allows a process to be broken
down into subprocesses so that the execution of the subprocesses can be

overlapped.

Let us use an analogy to demonstrate what a buffer is and why we

would like to use one:

Suppose you are mowing your front lawn and you have a bag
attached to your mower to collect the grass clippings. Each time this
bag fills up, you must stop the mower, detach the bag, and walk aroun® to
the back of your house where the trash barrels are. Ycu must then empty
the bag of accumulated clippings into the trash barrel, walk back to your

mower, attach the %ag, and continue mowing.

After scme time you come to the realization that you are spending
a lot of your time detaching the bag, walking to the trash barrels, empty-
ing the bag, walking back and re-attaching the bag. You remember that
you also own a large wheelbarrow that could hold many bag-loads of grass
clippings. You now recognize the option of placing the wheelbarrow on
the front lawn, and when the grass bag becomes full, you could walk over
to the nearby wheelbarrow and empty the bag into the wheelbarrow. When
the wheelbarrow became full, then you would have to push it to the trash
barrels behind the house, empty the wheelbarrow, and push the wheelbarrow

back to the froant lawn.

I-30

,.
el

A 3

,‘,
i &3

.

e

e
o i

D

e’y

%

Ot

———
o
e e,

Ct)

-
5
.

e |

Very naturally the question arises: How many bag-loads must

the wheelbarrow be able to hold to Justify its use? Fortunately, this

s
L I %
(S B by

problem is very easily solved. Let us look at the times associated with

T

gg each method.
G Method 1: No wheelberrow used
[
= Tl = Time to detach bag from mower
Eﬁ T2 = Mime to walk from iower to trash barrel
o T3 = Time to empty bag into trash barrel
) E: Th = T2 = Time to walk back from trash barrel to mower
} Fi T5 = Tl = Time to attach bag to mower
Gt
ﬁ_ Method 2: Wheelbarrow is used as a Buffer
: T6 = Tl = Time to detach bag from mower
;; T7 = Time to walk from mower to wheelbarrow
!l T8 = T3 = Time to empty bag into wheelbarrow
: p T9 = T7 = Time to walk from wheelbarrow to mower
t: T, = T, = Time to attach bag to mower
" T11 = Time to push wheelbarrow to trash barrel
i ;: T12 = Time to empty wheelbarrow into trash barrel
9 = 113 = 'I‘l1 = Time to push wheelbarrow from trash barrel to front lawn

(Even though the wheelbarrow or bag is lighter on the walk back from the

e
e

2

trash barrel, we are assuming it will teke the same time as the walk to

the trash barrel since grass clippings are very, very light. We also

-
L IFD
| O Y

: -_ equate the time to attach a grass catcher bag and the time to detach it--

T ".""‘ ‘:: _f. >
L]
[}
(93]
v}

»
4
1]

LI Y P L S PR VR S AR S SR Ny
O S S S O TP R CE T e T N T

|_}:}

[~)

based on actual experience.) Finally, in order to relate all the times Eﬂ
(Tl through T13) to each other we assume that the wheelbarrow holds N

bag-loads. Therefore, repeating Method 1 N times is equivalent (in terms Eﬂ

of area of lawn mowed) to performing Method 2 once.

The question then becomes: When is

;
E~
!
)
E
4
t
(
?v
]
;L
]
'

_ [N
‘Total time for Method 1 > Total time for Method 2%
= D
A
LS
or for what value of N is
;‘:
a
(2 1Y
N(Tl+ To+ T3+ T, + Tl)_>_N(T1+T7+ T3+T7+Tl) *T L, + T, + T .
M
8

which reduces to

2T, + T
N o> 11 12

I.".J
= ¥l
2(T2 T7) 7

We can see from the diagram below that T2 > T7 and assuming T11 = T2 - T.,

R A I

T7 i T]
|

1~ -2 -

Mower Wheelbarrow Trash barrel

we therefore arrive at

[

I-32 |

e W B NAR ¢ =
LA S L NG T s T e g RN
Fﬁ.“::.J LSS SIS ERIESTN "' ".r u'mg“:.'?' “3" " ek "_z".;' w) '_n"" \l\}"_f‘ '\..\._\.'?- TR .A:_.‘:-_L Q.Tz_;‘. ' - !._ __.\. ;L ._ .*. e j

P

so that in order for Method 2 to be feasible, the wheelbarrow must hold

N bag-loads where

T12

2Tl1

N>1+

We now see that the size of our buffer wheelbarrow depends only on Tll

and T12 or viewed somewhat differently, that the larger N is (the bigger

the wheelbarrow we have) the less we have to worry about the effect of

Iil and T12.

If we now enlist another person to help us by emptying the
wheelbarrow when it gets full and bringing it back in time to receive the
next bag-load, this will reduce the tctal time of Method 2 by making

Tll = T12 = 0 since these subprocesses are being performed simultaneously

with the other subprocess times.

Method 2 over Method 1 becomes: For what N is:
+
N(TJ + T, T3 + T, + Tl) 2N(Tl + T7 * T+ T, + Tl)
Using the same reasoning as before we see that
21\1('.1'2 - T,T) >0

This relation holds true for all N since T2 >>T7. Therefore, this scheme

of having a helper who runs the wheelbarrow is g better way to mow a lawn

than by yourself. oOne may have guessed that fact intuitively; however, it

is not always clear how & process can be broken down into autonomously

performed subprocesses as it is with this particular analogy.

Y R e Y

“a --h".\'“rﬂ} » " '.-..- ¥
':'n.t'--t'-'&‘n N TS

Now the question of what size N Justifics

WOPIF AP i A WOV w8 T n

Y v

WEN . DR

=
A

K O

*
-0

|

|

-

. s
]

(]

AT YT Y
- -
f i e Dy

T Yo

i T
Trley
oy el

This analogy, although simple-minded, does illustrate what a ¥}

3

bulfer is and how it works: If a process consists of a series of sub- <

processes and this process takes "too long" from beginning to end, we can

W4 KT X T F s
]

speed up the process time by dividing the total process into at least two ﬁ'i

LR &

subprocesses each of which control themselves autonomously. Between the

b ol B o el
. Bty

o two subprocesses we place a buffer so that the output from subprocess 1 Ej
P goes into the buffer and the input to subprocess 2 comes from the buffer. ™
E Since the two subprocesses operate autonomously they speed up total process v
3’::: time by overlapping (in time) their performance. The buffer acts as a :1
?: decoupler of control between subprocess 1 and subprocess 2 and a place to
:- save things which must be passed between the subprocesses. E
» '
ﬁ It may usually turn out in practice that one process occurs at ;E-:J
E.‘_ one rate of speed while another occurs at a greatly different rate of
N
E.j_*' speed. In this case, the processes already existed as separate and g
. distinect, and the placing of a buffer between them is necessary only to g
::*S insure that the high speed process is not held up by the low speed one. :
3

e The placing of a buffer between the processes again decreases the total

,..f
» 'l
% 5
.

P]

p process time by overlapping operations. (See Figure I-k.)

L W s ¥ VP
LU 2
o . Y

Suppose, for example that subprocesses Pl’ P2 and P3 occur at a

Ep.g“,. very fast rate and that Ph and P5 occur slowly. A buffer could be placed
E“: between them as shown in the lower part of Figure I-4 and the P1P2P3

E_: process would not be held up vaiting on P) and P..

o

E 3 Buffers may have another effect on autonomous processes. They

-'.‘:: not only speed up the rate at which information flows through the -fi

two-process system, they may smooth out the rate of information flow.
Without the buffer, one process must wait on another and the outputs of
the first process appear and then must wait a varisble time until accepted
by the second process. This results in a "jerky" flow of information
through the system. The buffer acts to accept outputs from the first
process as soon as they are generated and will save these outputs until the

second process is ready to accept them.

Summing up: a buffer decouples control between a previously
sequential set of processes, transforming them into at least two parallel
or simultaneous processes; and provides a place to store information which

must be passed between the processes.

wi
R (WITHOUT BUFFER) _

INPUT OUTPUT
———=1 P, | Py | Py | Py | Pg ———u

(WITH BUFFER)
SUBPROCESS 1

BUFFER

INPUT OUTPUT 7

™| PL | P2 | P3|

SUBPROCESS glllllllllllll/l

VA

OUTPUT

TIME

Figure I-4. Froress Execution with and without Buffer

e ool . o mb
LR

Fauiadar Sy
- ¢-l"0 PR = b ol

-

4

4
v A

T S G-
- *.

v v L.

«tu’

b. Pipeline

i. Summary

A sequential process can be viewed as a black box that accepts
inputs and produces outputs with the added stipulation that the black box
cannot accept a new input until the output has been generated for the
previous input. In other words, the black box is tied up all of the time

in processing just one input.

As an example let us consider a black box (an Adder) that adds
twe numbers together. Say there are two inputs (the numbers to be added)
and one output (the result). If it takes M seconds for the Adder to perform
the operation it will teke N * M seconds to add N pairs of numbers. How-
ever, if the Adder would accept additional operands to be added while the
ones ahead were still in the box then the total time to add N pairs of
numbers would certainly decrease. We can do this if the add operation can
be broken down into independent stages; as soon as an operand passed through
the first stage, the next pair of operands could be accepted by the Adder.
This method of dividing the adder into stages and letting the stages run
independently is called a "pipeline." The total time to process N operands
is speeded up because, once all of the stages in the pipeline are full,
results appear out of the end of the pipeline in time increments equal to

the processing time of the slowest stage.

1-36

; .n._f“»:‘\‘-q;:‘*;ii-:“ ‘_h -'.‘*. .}.‘\‘. .-._{\. -\.‘: T .- .:‘p.':.;- T '..-" .\b “»- et = .'. 2 '\ T _’f{ h;-.,-..-_. _‘-‘ ..- \- _‘. e

* 3 M

e
:)..L.'

RS

3;‘3

g

{k

v

R0 |

2 -
F g P

- o
4,

L

Vs

04

»_m

."t‘ P .(<

2 |

s
o 2y
PR

“ ‘K

-

£ ,;»\ r=

{

YNNI
SR SR aORE s A

ii. Background

The pipeline mechanism can be applied to a process that is able
to be broken down into two or more stages that can operate independently;
the only dependence between stages is that the output of a previous stage
becomes the input to a succeeding stage. For example, suppose we have a
process that upon closer inspection can be viewed as being made up of
three subprocesses. If each subprocess time is Pl’ P2 and P3 then it

takes P = P, + P, + P_ units of time to transform an input to an output of

1l 2 3
the process, and consequently if we have N inputs to process then it will

take N(P1 + P, + P3) units of time to complete the job. Figure I-5 shows

2
how two inputs Il and 12 proceed through our example three-stage sequential

process. The outputs O1 and 02 are both ready after 2P units of time.

Time P1 P2 P3
Zero I, I ;F E
P1 I2 E I1 E
P, + P, I, E : I
Py +Py + Py =P 125 ,: 0,
P+ Pl E 12 E o1
P+P +P, E E I, 0
P+P) +P, + Py=2P] E 0, 0,

Figure I-5. Two Inputs Transformed to Two Outputs via
a Three-Stage Sequential Process

I-37

L
{ g
a8 5 F

b 4y
22

i o] ': ': ‘c"; '..- ':‘ *

P
0

¥

) -'- ..'. -'.

A

. Ls v
Ve 'f~ v ¢

P

'’

- F ¥
8 Bt
A

()
A

 ~‘<

Now let us apply the pipeline mechanism to our example. First
we decouple each subprocess by placing a one item "holding buffer" after
each subprocess; when a subprocess or stage has <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>