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Optical Damage in Transparent Solids 

A comprehensive review paper on laser induced electric break- 

down in trasnparent dielectric solids has been prepared and accepted 

for publication. 1    This paper was based on an invited paper delivered 

at an International Laser Conference in Dresden,  June 1973.    The 

material will also be the subject of an invited paper at the meeting of 

the Optical Society of America,   to be held in Washington,   D.   C.   in 

April 1974. 

This review revealed a need for further quantitative data on 

electric breakdown in the picosecond pulse regime,  and at frequencies 

higher than that of the ruby laser.    Therefore a new Nd: Yag laser 

system is being constructed to provide reproducible,   diffraction 

limited picosecond pulses.    The system employs an oscillator head, 

pumped by a linear flashlamp and is powered by ILC digital power 

supplies,   enabling pulsing up to 20 pps.    Three similar Nd: Yag 

amplifier heads have been constructed.    Tests are presently underway 

to determine the oscillator output properties.    A newly designed 

cylindrical-ring-electrode Pockel's cell is used for single picosecond 

pulse extraction.    It is known that placing a saturable absorber mode- 

locker in contact with one of the laser cavity mirror surfaces 

minimizes problems of satellite pulse trains and pulse noise.    A 

contacted dye cell has been constructed and tested for this new system. 

Considerable experience in its ur-e has been gained while investigating 

a new Kodak Q-switch dye for 1. 06 microns,   BIS-Ni.    The laser system 

will be refined to a well controlled state and used for new series of 
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picosecond pulse experiments in nonlinear spectroscopy,   electron 

emission,   and las er-induced breakdown. 

Reference: 

1. N.   Bloembergcn,  IEEE Journal of Quantum Electronics,   QE10, 
March 1974. 

Investigations of Gaseous Breakdown with TEA CO., Lasers 

Two C02 helical TEA lasers (3000 KW) are being used to study 

prebreakdown electron plasma growth in gases at high pressures and 

partial data has been taken in helium.    Such plasma growth is a 

fundamental limitation on the distortionless transmission of light,   and 

at high plasma density the medium becomes opaque,   resulting in laser 

induced breakdown and damage. 

In this experiment,  the "afterglow" from the breakdown of a 

strong laser pulse is used as the initial electron source for a much 

weaker,   collinear,  time-delayed,   second laser pulse.     The breakdown 

threshold for the second laser pulse is measured as a function of the 

time interval between the pulses. 

Laser induced breakdown has been extensively studied--there is 

the recent work in solids in this laboratory,     as well as the numerous 
2 

studies in gases by other laboratories.       Briefly,   previous work in this 

field has set the ground work for the present experiment by demonstrating 

that there are four stages to lasej  induced breakdown (pre-opaque initial 

electron runaway and plasma growth,   past-opaque absorption,   and past 

pulse plasma attenuation),   that the mechanism for the plasma growth 

v /•>>^,->>:. •>>>>>: 
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stage from CO? lasers is an electron avalanche driven by inverse 

breinsStrahlung,  that there are several competing electron loss 

mechanisms,  and that dirt or impurities must be avoided. 

In gases,  production of the initial electrons is a critical problem 

because there are likely to be no free electrons in the focal volume of 

the laser beam in a gas at room temperature.    The striking laboratory 

demo.-istrations of laser induced breakdown sparks in air start from 

small absorbing particles in the air which provide the initial electrons 

thermionically. 

In this experiment,  the delayed pulse from the second laser hit 

the remains of the plasma caused by the breakdown of the first pulse, 

and,   by varying the delay,   the plasma growth during the second pulse 

can be studied over a wide range of initial plasma densities.    Data 

obtained during the present reporting period are given in the graph for 

helium at 500 psi.    There are several regions (1) for a strong second 

pulse and dense r«mft&3St plasma,   the gas becomes opaque before the 

peak of the pulse is reached,   (2) for the values along the heavy line 

through the experimental points,   breakdown occurs at the peak,   (3) in 

a small lower field and lower plasma density region bordering the 

experimental points,   breakdown occurs after the peak (in helium at 

500 psi,   there are large variations in the position of the breakdown 

point rn the tail--measurements at lower pressures have a broader 

breakdown region and have reproducible- results in the tail ,   and (4) 

there is the low field-low plasma density region in which the gas is 

transparent (the gas having healed itself as far as radiation pulse at 

the laser frequency is concerned).     Finally,   there are two families of 
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such curves- -one with pressure as a parameter and one with focal 

volume as a paraim'er.     But extensions of D. C.   scaling laws and 

previous studies of loss mechanisms should reduce the number of 

experimental runs. 

With this experiment,  we hope to accurately measure the 

fundamental avalanche growth parameter,  the rate of ionization,   as a 

function of pressure and laser intensity after correcting for the electron 

loss mechanisms.    This description would enable engineering predictions 

for the maximum operation level of a CO^ laser amplifier or for the 

selective amplification of a small volume of plasma altering its 

properties in a controlled manner. 

References: 

1. E. Yablonovitch, "Optical Dielectric Strength of Alkali-Halide 
Crystals by Laser-Induced Breakdown, " App. Phys. Lett. 19, 
495 (1971). 

D.   W.   Fradin,  N.   Bloembergen,   P.   Letellier,   "Dependence of 
laser-induced breakdown field strength on pulse duration, "   Appl. 
Phys.   Lett.   22,   635 (1973). 

N.   Bloembergen,   "Laser Inducea Electric Breakdown in Solids, " 
IEEE J.   of Quantum Electronics,  QE10,  March 1974. 

2. E.   Yablonovitch,   "Similarity principles for laser-induced break- 
down in gases, " Appl.   Phys.   Lett.,  23,   121(1973). 

C.   De Michelis,   "Laser Induced Gas Breakdown:   A Bibliographical 
Review, '   IEEE J.   Quantum Electron. ,  QE-5,   188,   (1969). 

M.   P.   Hacker,   D.   R.   Cohn,   B.   Lax,   "Low-prcsr.ure gas break- 
down with CO? laser radiation, " Appl.   Phys.   Lei I;. ,   23,   392 
(1973) - 50-7(10 torr. 

R.   T.   Brown,   D.   C.   Smith,   ''Laser-indaced gas breakdown in 
the presence of preionization, " Appl.   Phys.   Lett. ,   22,   245 
(1973) - 760 torr. 
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M.   C.   Richardson,  A.   J.   Alcock,   ''An Interferometric Study of 
CO? - Laser-Produced Sparks, " IEEE J.   Quantum Electron. , 
QE-9,   1139 (1973) - measure high density plasma immediately 
after breakdown. 
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II.    FRACTURE   MECHANICS 

Profs.   B.   Budiansky,   J.   W.   Hutchinson,   J.   L.   Sanders,   Jr. 

Report Summary 

A report was issued [Ref.   1;   a copy is attached] reviewing an approach 

to the formulation of equations for elastic-plastic solids at finite strains 

which lends itself to numerical analysis.    Included in the report is a 

generalization of   J2   flow theory (Prandtl-Reuss theory) to large strains 

in a form convenient for applications.    Also discussed is the application of 

this approach to the analysis of necking-typo instabilities. 

Further work on the analysis of mixed mode crack problems has been 

completed [Ref.   2;   a copy is attached].    In this work the plastic stress and 

strain fields at the tip of a crack are found for combined Mode I and Mode II 

under plane f ^ress conditions.    The solutions provide insight into the 

important,   but poorly understood,   problem of fracture under combined 

mode loadings. 

The first report [Ref.   3;  a copy is attached] in a series of studies of 

fully plastic crack problems has been completed.    An exact solution has 

been obtained for a crack in a fully plastic,   infinite body undc        nti-plane 

shear loading (Mode III).    The solution is valid for any degree of strain 

hardening ranging from linear elasticity to perfect plasticity.    Results are 

given for the dependence of the two quantities of most interest in fracture 

analysis,   J   and the crack opening displacement,   on the strain hardening 

exponent and the applied stress.    A related study for the plane strain 

problem has been completed and will shortly be issued as a report.    Work 

II-1 
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is continuing on the application of these solutions to engineering fracture 

analysis where large scale plastic yielding occurs.    It is this area of 

fracture mechanics which is currently undergoing rapid development with 

potential applications in many areas including reactor technology,   pressure 

vessels and aerospace. 

The work described above is jointly supported by ARPA and the Air 

Force Office of Scientific Research. 

References: 

1. FINITE   STRAIN   ANALYSIS   OF   ELASTIC-PLASTIC   SOLIDS   AND 
STRUCTURES   by John W.   Hutchinson,   published by American Society 
of Mechanical Engineers in "Numerical Solution of Nonlinear 
Structural Problems, " AMD-Vol.   6,   1973. 

2. PLASTIC   ANALYSIS OF   MIXED   MODE   PLANE   STRESS   CRACK 
PROBLEMS   by J.   W.   Hutchinson and C.   F.   Shih,  to be published in 
Proceedings of the Tenth Anniversary Meeting of the Society of 
Engineering Science,   Raleigh,   North Carolina,  November 1973. 

3. FULL   PLASTIC   CRACK   IN   AN   INFINITE   BODY   UNDER   ANTI- 
PLANE   SHEAR   by John C.  Amazigo,   submitted for publication to the 
International Journal of Solids and Structures. 
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to incorporate certain finite strain aspeetS l»»fO the olastic-plaütic analysis 
of thin plates and ßhölll is also discusced. 

A LACIASGZAM TOM OF THE FIELD EQUATIONS FOR ELASTIC-PLASIIC SOLIDS 

Material points are identified by a set of convected coordinates v.     . 
Following the standard convention, superscripted indices denote contravariant 
components of a tensor and subscripted couponcnts the covariant components. 
Let g   and G.. be the metric tensors of the undeformed and deformed 

conficurations and let c^ and c" be their respective inverses. Denote 
base vectors in the undeforncd body by c^ and their reciprocals by 

e1 ■ g^c .  Similarly, the base vectors in the deformed body are denoted by 
j 

e  and e1 ° G^e . Denote the displacement vector from the undeformed 
-i      -     "2 
confisura 
tensor is 

,-i J      i   i i   ii 
configuration by u = u.e ■= u ei where u = C Ju . lit Lagrangian strain 

»iJ"i»ij-»tj>-J<ui.j+0i.i>+iuk.i,i'.3 • 

where the conma denotes covariant differentiation with respect to the 
undeformed metric. 

The exact statement of the principle of virtual work based on the 
undeformed configuration is (1, 2^ 3) 

(1) 

T^ör^.dV - JT^u.dS , (2) 

where 

6n,. ■ «(«u. . + 6u ,) + ~(uk 6u  +uk 6u^ ) . 
xj  2  1,2 j,i   /   ,1 ^t2 »J  ^t1 

(3) 

Here, dV and dS arc the volume and surface elements of the undeformed 

body, T1"' are the contravariant components of the symmetric Kirchhoff stress 

defined with respect to the  deformed base vectors, and T = T (^ is the 

surface traction vector per unit undeformed area.   With n ■ n^  denoting 

the unit normal to a surface element in the undeformed body, the surface 
traction T acting on this surface element in the deformed body is 

T ■ (T^+t^tt1 )n4e. . (A) 
,m j-i 

Cauchy stress are given by 

Let g ■ |g..i and G = 1G..| . The contravariant components of the 

o1^ - (8/C)1/2Tij . ■  (5) 

The sv face traction vector per unit current area T acting on a surface 

whose current unit normal is n =• n aJ" is given by 

5-OiJ5,e4 . . (O 

K^O.«  ■>-'»-<-' '-^-^ ^ V ^^ 1- --W ■-- 1. '- •- r-  -■•- V •-  -  ---------- V  - ■- •-  ■- v '. .  -^ •-'•'>'-'-' •"•■'''*''"-"''"■ -'-''-" 



The incremental fom of  the principle of virtual VOtk is 

V 

(7) 

and the associated equilibriun-. equations are 

^^^V.i-^Va-0- (8) 

Hill  (4) has ai-u.s3d the general .r^orh ^^U.^ rate^^ 

constitutive relations fo« ^Mtin^"* "jtfw contravariant exponents 

the general for« 

^   = L    \l 

where 

F„r stresses within the yield sutface . - 0 end for stresses on the yield 

surface 

cl  if  n^iO  end  a = 0  if  .% « 0 .      OM 

„.ra. * is the current tensor of oles.ie noduli for this ehoiee of stress- 
* ~ . ... ,. «1JW .»W^   iha tensor of instantaneous 

rate and it is assumed that J ' t ^±t  tensor nonEal t0 the 
^fASÄI«^»^ The ef rent level of strain hardenin, 

is determined by q and the stram-rate is &**  by 

e 

Introduce the functional of u , 

i.4 i^.ds . a2> 

ST 

•  '      ,w «« fi  -nd u on S  and where the stress-rates 
where T is prescribed on S, .nd u on 
^  are regarded to be a ^-^on o the s a n-^^^ro.^^) 
The variational principle govetnlna »o incr«B«nw* 
is (5) 

£or all adaissihle 60, «hich vanish on Su . Rations (12) and (13) 

reduce to the well-.nl prtnclpl. for the cUssical suall strain and s.all 

rotation theory. 
^■^,- -v- -be theoretical foundation for 

. varl^r^lf S^r^i^uä. Chen (,) used a 

■.•• V ■•'.•"," V -"••"■-"»■■■■.'•■.• ■-.■''.'-.'■'."■■.'■.-■-••■'•.•■• '• •'■'."'■.'''■.■'•."'".""s'•.■•.'•.■••"/-'^',■•'.■•^."•'.^■'."•'.'-.■JiJJj■• .">".■■ ^•. 
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• K.-intorovlch approxlattioa r.cthod in conjunction WicU this varlctional 
equation to onalyso n^ckir.c, in o bar.  Koodlc^an O) »—-^ the principle as 
the basis for a finite decent r.._Uhod solution to a larj-.c Strsin problem 
related to void p/.-o'-'th and coaleucenca in BOtalOt  Tha sa.T.e r.üthod was applied 
to the tenaile necking problcr.i (3_) and coma results froa this calculation will 
be discussed in a later section. 

Oden (9) has given an extensive review of the v.ork on the development of 
finite eler.-.cr.t methods for the lar^c Strain analysis of clactic solids. 
Kibbitt, Marcal and Rice (10) have discu..sed the formation of finite element 
equations based on a Larrar^ian formulation for elastic-plastic solids which 
is essentially identical to that reviewed above.  The choice of a Laßrangian 
based numerical scheme as opposed to ■ Eulerian scheme, for example, is 
dictated by a number of considcraticas.  Since the variational functional 
(12) is based on the undeformed configuration, the finite element (or finite 

. difference) grid remains fixed. For this reason, the Lagrangian approach can 
be attractive if the undoformed configuration is a simple one. In the 
simplest finite element scheme, used by Needleman, the displacement fields 
within triangular slecents are takan to be linear functions of the reference 
coordinates and thus the strair.s, stresses and moduli are constant within 
each element. At each stage of the calculation procedure: the moduli must be 
updated in a Straightforward W«y which can be illustrated by one possible 
prescription for the moduli in the next section. As la any elastic-plastic 
calculation, the loading-unloaäing behavior associated with an incremental 
step oust in general be handled in an iterative fashion. 

A Flh'ITE 8TSAX8 GENERALr.ZATlON 0? J2 FLOH THEORY 

Small strain formulations of strain-hardening plasticity involve the 
stress deviator s., and the J- invariant where in Cartesian coordinates 

ij 2 

s.x.^T. --^T 6..  and  J,, = •=■ s s  , (U) 
ij   ij  3 pp ij        2.2 ij ij 

where 6,.  is the Kronecker delta.  It is usually unnecessary to give a 
Ij 

precise definition to the stress measure in small strain formulations ana 
for the moment the precise meaning of T.. will be left ambiguous. In one 

of the most widaly used plasticity theories, J2 flow theory, the strain-rate 
• is given in terms of the stress-rate by 

af 
nil ■ ¥ ^>«lkV ^xA^U + ¥ V2 • (15) 

where 

« - I  if J2 = S^T^ > 0  and J2 - (J,,)^    ) 

a - 0  if J2 < 0  or  J2 < (J2)max ) 

(16) 

In (15)  E is Young's modulus, v is Poisson's ratio and f is a function 
of J« which can be'chosen to make (15) coincide with any uonotonic 

proportional loading history. 

The inversion of (15) Is 

x4i -■^^•>^o + ^6Hfiv'']^i "iiv~r>irk/kc • (17) 
ij       1-iv     ik J~    1-2V     ij   K*     -^^       J-^v q     13   fc»  IM        , 

v   *-    '.    "     *     '.   ".     .    *.   --   ".   "-   '.   ".   '-■     *   '-   *■-   *.'   .' '.'  '.' ",' *•' ".'   »' "y* %' *«' "•" '»"" '-'  '." *-' '-* "-' *k"  •-* •■»*' •-' *."' O • *■• '. • """• -"• ""• " «. "v*"«! •-*.-. ' - ■•* •• ••.*. •■-•"-•-'.-*"*-'•     • *•     "'"-•"•»     p    * "^   _•     -     - * •   J*    ••"••»•"■.■-••.»»•••■►■to*. ■■'_--•»•*» 
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where  if    J2  =   (J2)i:ax    ex = 1    if    i^ > 0    and    a = 0    if    s^n^  < 0   . 

Also,     f     and    q     are  cornectcd by 

q  =  f/r(l+v)+2fJ2]   . 

The expression for the moduli in the small strain formulation 4s t.ius 

(18) 

LUij " Lijk£ " 1+v ?<4ttV**«v*T^<ii*«-*,«vl •    a9) 

If a unlaxial tension curve is used to determine f and q. , one finds 

that they are given by 

E 
ll*\ J2f]-1  = (q-2J2)/[q-^(l-2v)J2] = T , (20) 

where E  is the tan-ent modulus vhich is rosarded as a function of J2 
t 2,- 

through the connection with the tensJle stress, J2 = o /J . 

There ar" Ml» possible ways to :;aneralize the above relation to a 
finite strain formulation (11. 12, 13). The one selected for discussion is 
a special case of Hill's (4) C--.'"ral cla3S (9) and (10) and has a «0» 
particularly suitable to a Lap.rangian .apprcach. It is a slightly modified 
version of a relation proposed by Budiansky (U). As in the snail strain 
version the theory employs a J2 invariant of the stress to describe tne yield 

surface and thus docs not account for any Bauschinger effect. It is also 
assumed that the strains are not so large that appreciable elastic amsotropy 

develops. 

The contravariant components of the Kirchhoff stress T   will be used 
in the formulation and a deviator stress tensor is defined according to 

^ - 4 G^G, 0T
U (21) ,3-3 ■ T 3" "U 

where G is the metric tensor in the deformed system as previously 

introduced so that with this definition G s1:3 = 0 . We take J2 to be 

defined in terms of the stress deviator by 

2  2 Ik jx 

If the coordinate system in tha dcfo-:ed body happens to be Cartesian then 
(21) and (22) have the sa^e foto as (14).  Since the umdeformed configuration 
is Mod as reference the deformed configuration will not, in general, be 
CarMsian and the general tensor formulation of (21) amd (22) is necessary. 

If the Cauchy stress (5) is XX-JCQ  in forming J2 in place of the 

Kirchhoff stress, the invariant will differ from (22) ty a multiplicative 

factor G/g ■ (dV/dV)2 , where dV/dV is the deformed volume per unit 
undeformed volume. The VOluBMS chaasa in the relation -iven bexrv arises 
entirely from the elastic part OX thj 6train-r«te. As long ~s the 
hydrostatic prcssuro is  very .mail cocparcd to the elastic bulk ^^ulus 
there in little experiman^l evidence to point to one choice ovei th- other 
in the formulation of a yield criterion as discussed by :.ce (1^). 

With J2 defined by (22) it car. bo shewn that the rate of change of 
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2 . „      ki*ij (23) 
J2 ■ GikGJ^    '       * 

PJ     arc the «mttavaril^  co.oon,  ,t.  «-1   tl-. :....   t-ic .(-.--;-   rale 

:hanßc cf th 
ij 

»fL^L ^.H^^^rii^r^ich ^ MU^ to th« couvccted rate 

(24) 

of change cf the Kirchhoff 

t4i by 

The generalization of (15) we will use is 

i M ifki .L Sir a Ä (25) 

with 

» - 1  if  ^ 1 0  and  J2 0 (J2)nax 
(26) 

a - 0  if  J9 5 
0  or  J2 < (J2)n^ 2 

r T   o-^ F md v are taken to 
In (25)  f is resarded as a function of J2 , and E UM 

0 s1^ = 0 . the plastic volume change is zero, 
ij 

In 
in that 
stresses 
stresses 
metric tensor) as 

T^dn.. =^[(l+V)J2vi(l-2v)(GijT
ij)2] . (27) 

0 

The inversion of  (25)  is 

*44        v     ii- i1      v    «li^Wil 5   2. c^q^n (28) 
fJ-^C    C     +I^VC    C     ]:cJl"l:W^S     S    V 

with 

a = l     if     sUnu > 0     and     J2 = (J2)max 

a - 0      if      sk£fk.  <  0       or      J2 <   (J2)nax 

(29) 

^N   .       i   J t^J     nnri  -vironriate to the nrcscnt formulation,  i.e., form  (9)   involvinc    t        and ftppropn«fc« 

•ij       ,ijk4« (30) 

14   .« 
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Fig. 3 Tensile bifurcation of a solid cylindrical s^eclinen of an 
inconpressiblc naterinl with a ll^bcrg-0s2ood tensile stress-straio 
relation. Sec (15)  for an accurate plot.  (Asymptotic results 
—— ; Exact results  ) 

Load 
Maximum Load Elongation 

Fundsccntal 
Solution 

Fundamental 
Solution 

Bifurcated 
Solution 

noa 0n Reduction in cross-sectional area at neck 

Pig. 2 Schematic of results of a numerical analysis of neckin3 of a 
solid cylindrical bar from (8). 
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I between  the  true litres^  ^ind n..turr.l  Etrr.m,   i.e., 

i . #. ♦ If,?-]" . (36) 
S    0y    noy' 

I where C      and 0 = Ee  ere the effect!/e yield ct.rain end yield stress and 
y    y  y 

n is the hardening exponent«  For this case Erj. (35) become 

O J 2  A   ) 
1 Y . Y   '4 

in nl 

and 
r 2  A e       i 

— = 1 +  
e      ns 
m       in 

r. jf  
6  192 o 

(37b) 

Ficure 1 displays plots of a /a  and c /c  as a function of TTR/L  where a       I^I cn      cm oo 
whe-e R  and L  are the unclefor.ued radius and length of the bar. The 

o      o 
dashed line curves are darivee froir. the uyaptotie fox»ul88 (37) and the solid 
line curves are the enact resultc for arbitrarily larje *B.o/L0 (which 
require some numerical analysis in their evaluation). 

Needlenan (&) used the variational prl.-.ciple of the previous section to 
formulate a finite eleaent schema and applied it to the Reeking problem. He 
considered clastically ccmpras'jible solids and used the moduli (31) t^sether 
with an inconsequential approxicetlOQ in Mhleh the risht-hard-sidc of (32) 
is replaced by E^/Z  . Tne axisymmetric eigenvalue problem govarning 

bifurcation was solved using a finite element mathod and the post-bifurcation 
calculation was carried until a poir t where the specimen had undergone 
significant necking down. I'igura 2 dapicis the character of his solution 
in a typical specimen with R /L ■ 4 . Bifurcation occurs beyond the 

naximum load and from that point on the solution for the necking specimen 
turns down from the fundanantal solution for the uniform specimen which 
undergoes no bifurcation. The sscond part of the plot shows that bifurcation 
marks the onset of the rapid contraction at the neck. 

Included in the second plot are results fnr a calculation (8) for 
another set of boundary conditions where the ends of the bar are considered 
to be cemented to rigid grips.  In this cace no bifurcation occurs.  Instead 
departure from the uniform state occurs with the first application of load. 
The nuximum load was found to be essentially the sama as in the other case; 
but as can be seen from the plot, significant necking starts at somewhat 
lower elongations. 

As mentioned previously, Chen (6_) used the sams formulation together 
with a Kantorovich appro::inaticn method to study the same problem. He 
considered the sJstar-fraa ^.-.d co.-.diticns c:;cc and initiated necking by 
introducins a small Initial cxieynsetrlc imperfection. This same technique 
was ujed by Ojias (IS) in his ßtudy of tensile necking under plane stress 
and plane strain ccaditicnc. Ucwevet, u.iao's epprosch was based on a 
Euleriaa formuiaticn and his numerical SChtae derived from a discretization 
of the governing differential cquetionfl directly. 

APPLICATIONS TO THDJ PLATE AT.D SHELL PROBLEMS 

As enphneiscd in the Introduction, the Btruccure of the field equations 
as developed for ehe three-diaensional solid closely resembles the structure 
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of ch« Mttatiflac for the no.c ifidaly used ooftlinoat theorloa of plptcs j:nd 
shell.,    m most applicariona Evolving structurnl Mtorlals. »Aeth« the 
response  is clitic or claOtiC-pUstiC,   tho BtraiaS  are  (»all  ana  tnc 
significant 5aoaatrlc uaalincarlty It  due to rotcticr.s.    In a f^st order 
theory in which the strain.-, are ooeuaed to v^-y Xinoarly threußh the 
thickness  the inplane Lastaaßlai strain tensor la oftien apptOKlMUd by 

V» D Ea3 + zKa3 (a ' 1'2  ; ß = ^   ' ^ 

where    E .    and    K fl    are tho •tretchiag aad bendxr- ocrain tensors of the 

middle surface.    Ac coordlnato    I    is aooittnd alor/j the norr.al to r„iadle 
surface in the undafomad shell.    The stretching ar.d beading strains are 
caressed in terns of the dlaplaeement. of the »iddlo surface in directions 
normal and taftgontlal  to the ur.deforrned middle surface. 

The internal virtual work is approximated by 

JT^dV^flAK^.^oE^dA. (39) 
V A 

where dA is the element of the undeiormed middle surface. The bending 
moment and resultant stress tensors are related to the Kircnhoff stress 

tensor by 

Na£ 

t/2 t/2 

f      Taßdz      and     M03 - T^zdz  . m 

-t/2 -t/2 

where t is the thickness of the undefcrmed shell. The contravariant 
components of the Kirchhoff stress ar.tor into these expressions because the 
Laeransian strain uensor has keen uwd alcn^ with the cnoice of the 
undeformed body as the reference configuration. 

Supnose the three-ckimensicnal .are-c.nstitutiye relation is of the fom 
discussed in the previous sections tot  the finite strain formulation, i.e., 

The assumption of approximate plane stress in a fir.« order plate or shell 

theory requires n^ ■ 0 for a = 1,2 and T3j6n33 ■ 0 , i.e., T - 0 . 

Thus from (41) 

/TaS33/73333.; (A2) 

•Of  plane stress moduli L reUting the inplcne stress-raf.s and strain- 

rates, i.e., 

•06 . Ki&CYi (A3) 

are given by 

joBiCY , LcßW _  ^03^33^^3333 > (A4) 
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TtOt»  (^0)   the rr.lo-cc.-.GtitiULive  r«l&tidr.fl witton  in  tcrr.n  of  the 
ctrcGs-rate and strain-rate cjuantitics of the plate or shell  theory are 

h      h(i) 8
KY 

+ 'i(2) kicr (,5) 

H    H(2) ^KT '  (3) Vf l    ' 

where 

t/2 

^ . j  S^Y,4-ldl . (47) 
-<--/2 

In particular, note that for the case of a flat plate with K,, ■ 0 and 

E - ualfota through the thickness, Eq. (45) jives exactly the sane relation 

between Na>J and E ^ as would bu obtained fron the full finite strain 
a,:. 

fomulation by integrating through the thickness. 

Equations (38) through (47) constitute a full conplencnt of equations 
for first order plate and shell theories including finite strain effects. If 
the noduli L    given by (31) or scne einilar prescription are used, then the 
quantities needed for updating L fron one increnental step to another are 
contained in the above set of equations. 

i 

If the strains are Kftsll end the stress levels are low coxpared to the 
instantaneous no-uli, then as ciscusscd previoucly -i^e finite strain 
fomulation can be replaced by a snail strain forr.ulaticn in which it is not 
necessary to give a precise definition to the stress neasure. Most plastic 
buckling problens In thin plates and shells fall into this category. 
Typically, the stresses at buckling are proporticnal to the product of an 
instantanaous nodules and ec::.e ratio of the thickness to a characteristic 
length nuch greater Chan the thickness.  On the other hand, in problens 
Involving the onset of necking or bulging, for exanplc, it may be essential 
to use an appropriate finite str: ^n fomulation even when the strains are 
snail.  As long as the characteristic length of the defornation field Is 
large conpared to the thickness one can expect the first order theory to have 
approximate validity.  Of course, once the characteristic defornation length 
becones on the order of the thickness, as in the advanced stages of necking, 
the first order theory is no longer applicable. 

ACiC':CV.rLED^M2NTS 

This work was supported in part by the Air Force Office cf Scientific 
Reseirch under Grant Al7OSa-73-247ö, in part by the Advanced Research Projects 
Agency under Contract DÄHC 15-73-^-16, and by the Division of Engineering 
and Applied Physics, Harvard University. 

REFERENCES 

1. Eudiansky. ^,, "Re-.v.arks on Theories of Solid and Structural Mechanics", 
Prohlv. -, of Kyerceyagnlca end Ci-ntinui::: Machanlc», SIAM, Philadelphia, 

1969, pp. 77-83. 

2. Eolotln, V. V., Konconservativc P^oblcsas of tha Theory of Elastic 
Stability, English translation edited by Hornnsnn, G., Macniiian, New 
YoiR, 1963. 

'•*»*»*j*m^* ••**,•**. ••*»•**»'* --" L • .•-•*"--•• ■•.■.".•-■J-■•-■•• ■ «^ • * - - * • «^ • - -  «-•*■»■ MV* ' ä • ■ • • • • * JT* J S_M 



11-15 

3. Crocn, A. E. and Zcnt&, V'., "MOO re. I i c n 1 irA ■•: 31' e." t y, 2nd Ed., Oxford 
University rrc:j3, Oxl'orc, i96o. 

4. 11:111, R., "On the Classic&l Coistitufciva Relitiona for Blastie-Plastle 
Solids", ^CCnt Propre.;': in Ar-.1.i::d ■ ■■.xh-i^icr;, the 7olke Odqvist Volume, 
Alsqvist cn^ '..'ikjeix, Stodüiol^i 1^67, pp. 241--^A(j. 

5. Hill, R., "Bifurcation end CaiqtMnosi in Konlincar Mechanics of Continua", 
tb'j MusUhelijhvili Volu;.c, SL'II, I'hilacelphia, 1961, pp. 155-164, 

6. Chen, W. II., "Hacking of ■ 5ar", International Jgwwal of Solids and 
Structures, Vol. 7, 1971, pp. 635-717. 

7. Needlenan, A., "Void Growth in an Elastic-Plastic llediura", Journal of 
Applied Mechanics, Vol. 39, 1972, pp. 964-970. 

8. Kcedleman, A., "A Numerical Study of Seeking in Circular Cylindrical 
Bars", Journal of the Kcchanics and Fhyaics ox Solids, Vol. 20, 1972, 
pp. 111-127. 

9. Oden, J. T., Finite Elegants of Ncr.llnea" Ccntinua, McGravz-Kill, New 
York, 1972. 

10. Eibbitt, K. D., üarcal, P. V. and R;'-ce5 J. R., "A Finite Element 
Formulation for Problems of Large Strain and Large Displacement", 
Into.maticnal Journal of Solldg and Structures, Vol. 6, 1270, pp. 1069- 
1086. 

11. Green, A. E. and Kaghdi, P. M«, "A General Theory of an Elastic-Plastic 
Continuum", Archive for Rational Mechanics and Analysis, Vol. 18, 1965, 
pp. 251-231. 

12. Lee, E. II., "Elastic-Plastic Deformation at Finite Strains", Journal of 
Applied Mechanics, Vol. 36, 1969, pp. 1-6. 

13. VJiilis, J. R., "Seme Constitutive Equations Applicable to Problems of 
Lar-e Dynamic Plastic Reformations", Journal of the Mechanics and Physics 
of Solids, Vol. 17, 1969, pp. 359. 

14. Budiansky, B., (unpublished work) see References 6, 7, or 8. 

15. Hutchinson, J. W. and Miles, J. P., "Bifurcation Analysis of the Onset 
of Kecking in an Elastic-Plastic Cylinder under Uniaxial Tension", to be 
published in Journal of tha Hechanlcg a^d Phvglca of Solids, Vol. 21, 
1973. 

16. Miles, J. P., "Bifurcation in Pltstic Elou under Uniaxial Tension", 
Journal oc" cho Mechanics ::.:vf-  Physica of Solids, Vol. 19, 1971, 
pp. 89-lö"2. 

17. Cheng, S. Y., Ariaratr.am, S. T. and Dubey, R. N'., "Axisymmetric 
Bifurcation la an hl_s^ia-?l...--ic Cylinder under A::ial Load and Lateral 
Hydrostatic Pressure", Cu — erlv ov  A.-.pli;ä M::th.:m.atics, Vol. 29, 1971, 
pp. 41-51. 

18. Osias, J. R., finite Dafotxation of Elasto-Piastic Solids", NASA 
Contractor Report CR-2199, March 1973. 





. ■ . • V" - - . ■ . - . v.^*..^. "J- .V".^.- _-^.- "> .v _« Jf ^T " ^" m'.-r. ' . ' r^. ~ -.r.r-w-, •-. »-7^-s-T' 

11-: 7 

Here C  LS  a reference stress which can be identified with 
o 

the tensile yield stress if convenient, E is Young's modulus, 
n is the hardening exponent and a is a material constant. 
In this case the dominant singularity fields are of the form 

a     - r-1/(n+1) 944m      and  C
P. . r-n/(n+1) i!.(6) . (3) 

ij iJ 1J :LJ 

Details of these fields have been given for the pure modes in 
p 

[1, 2, 3]. The O-variations 8L,  and e   depend implicitly 

on n and, in contrast to linearly elastic problems, depend 
in a signlfi.ant way on whether plane stress or plane strain 
pertains. 

The mixed mode crack tip fields i;or linear elasticity (1) 
are simply the superposition of the Mode I and Mode II 
contributions. The plasticity problem is inherently nonlinear 
so that a representation such as (1) cannot be used. As a 
measure of the relative amounts of Mode I and Mode II at the 

,P 
crack tip we introduce a near-tip mixity parameter n 
defined by 

»P  2 .. -1 
M = — tan 

llm aO0(r'e!sO) 

r->0 a  Q(r,0 = O) rt) 
(4) 

P P 
With this choi-.e M  ranges from M =0 for pure Mode II to 
p 

M = 1 for pure Mode I. 
The simplest deformation theory, J« deformation theory, 

has been used to generalize (**) to multiaxial states of stress. 
It Is convenient to introduce the effective stress 0^    where 

a2=3R s ./2 and s. . = a., . ~ O 6../3 . The near-tip fields 
e   ij ij        iJ  iJ  PP iJ 

can be represented in the form 

^.i - vS r"l/(,rfl) v^'V9^1 
(5) 

ij     O    H Ij 

p 
The plastic stress intensity factor CL can be thought of as 

the amplitude of the dominant singularity; the subscript M is 
attached to emphasize that, in general, it applies to mixed mode 
situations.  This amplitude is given definite meaning by 
normalizing the maximum value of Ö  to be unity where 

■"' - ' -*•-'••-•■---  - -  ■  .«.-'■ ^ .' .'-.■.■  J-.'r.  ."■ - • ■  . ■ .•• -- .■ .>.•-.'• .•-.  -■ . ■ .  ..•.'-.• .-.•.•- . 
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9 •     ^     -, 
a =3s,,s../2 and s.,-a..-a Ö../3 .  For a given value of 
e   ij ij        1J  IJ  PP ij 

n a.ul for either plane stress or plane strain conditions, the 
„p 

functions ö. . , ö  and c,, are completely specified by the 
ij   e      ij 

p 
mixity parameter M . Details of these functlonG have been 
given for the case of plane strain in [4)j plane stress results 
will be discussed below. 

Once the hardening expc.-'cnt n is specified, 1C, and M 

completely characterize the near-tip field.  In place of the 
P   P 

combination  (IC , H ) it may be more convenient to introduce 

the path independent J integral [5] and to use the equivalent 
p 

pair (J , M ) .  The three parameters »re connected by [1] 

J = (aa2/E)I (MP)(K.P,)n"hl , (6) 
on     n 

where I  is a numerical constant determined from the 
n p 

singularity analysis which depends on n and M . Plane 
strain values of I  where given in [i] and plane stress 

values will be given below. In the pui e mode cases n      is 

known and thus J (or equivalcntly \)   is a  single parameter 

measuring the intensity of deformation in the near-tip field. 
But in the general mixed mode situation a pair of parameters 
is needed for a complete characterization. 

PLANE STRESS NEAR-TIP FIELDS 

Figure 1 gives the 0-variations of the stresses and strains 
in (5) for a relatively low strain hardening material with 
n=13 .  Pure Mode I and pure Mode II are included along with 
two intermediate cases. The plane stress formulation used here 
is the same as employed in the Mode I study in [1]. It does not 
take into account- the nonlinear geometric effect arising from 
sheet thinning.  This, together with the assumption of a ' 
hardening material, leads to a diffuse plastic zone as opposed 
to the slender necking zone represented by the Dugdale model. 
Numerical method? used to calculate these quantities are 
discussed in [4] and in more detail in [6]. 

The angle 9  at which the maximum amplitude of the 
tensile component ofl0 is attained is plotted as a function of 

M  for the entire range of n in Fig. 2a.  (The curve for 
n=00 is from the perfect plcsticity solution given in [6].) 

^■-•--^^^"•^•'-•"•-•-•'-'-•-'-•-•-•-•-•-•-'-•-•-•-•-•-•-'-'-•-•-'-^-•-'-•-■'•-•■•' - - - 
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(0) (b) 

Fig. 2  (a) Angular pcsition of maximum tensile stress Ö  (in 
degrees) as a function of the near-tip inixity 
parameter.  (b) Ratio of the amplitude of the maximum 
tensile stress in mixed mode to that in .Mode I for 
Identical values of J . 

The value of this maximum stress is '-irmalized by the 
corresponding Mode I value, ao„(0 = 0) , at the same r and 

same value of J .  This ratio is shown ns a function of W 
in Fig. 2b. Analogous curves for plane strain in [41 indicate 
a significant fall-off in the .naximum tensile stress amplitude 
away from Mode I which is absent in plane stress. 

Values of 1  , which enter into (6). are given in the 
n 

form of curves in Fig. 3. 

SMALL SCALE YIELDING 

In the small scale yielding limit, when, roughly speaking, 
the plastic zone is small compared to the crack length and all 
other relevant geometric lengths, J can be expressed in terms 
of the elastic stress intensity factors according to (for plane 
stress [5]) 

J - (Kj+K^/E . (7) 

However it is not possible to obtain an analytic formula for 

W     in terms of the elastic stress intensity factors. A full 
numerical analysis, such as that described in [A], must be 
employed to obtain this second relation. A convenient measure 
of the mixity for the elastic singularity solution (1) is 
given by the definition 

- - -  -- ■' -' '" - - ■ - - 
■; - . v -• . . . -. 
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ol 1—1 

n^co 

J L I L 
01  23456789 1.0 

F-l". Values of I (M ) . 
n 

M = — tan 
lim g96(r>Ö =0) 

r-^O öre(r,ö=0) 
2   -1 
r tan 

K, 

K 
III 

(8) 

(For a crack in an infinite sheet making an angle ß (in 

radians) to a far pure tension field, M ^ 23/IT .)  Either 
e 

pair, (K , K )  or  (J , M ) , completely specifies the 

near-tip field of the elastic ini.-ed mode solution. 
The results of the numerical analysis of the small scale 

yielding problem are shown in Fig. Aa in the form of plots of 

M  as a function of M  for various n . The curve labeled 
n=00 was obtained by extrapolation. The functional relation 

between K     and M  in plane stress small scale yielding is 
independent of Poisson's ratio and the amplitude of the 
singularity.  It does depend implicitly on other shape details 
of the uniaxial stress-strain curve in addition to n . The 
results of Fig. 4 were obtained using the tensile relation 

c/e =o/a     for a < a  and e/c ■ (a/a )n for a > a , 
o   o      - o       o    o o 

where e =a /E . As in [41, spot cheeks using other tensile o   o » *»  1 o 

curves give essentially the same results shown in Fig. 4 and it 
is  concluded that n is the essential parameter.  The 
corresponding relationship for plane strain from [4] is shown 
In Fig. 4b. 

■ ^ ■ ^ i^ ...k ..» ■_ 
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Fig. 4 Near-tip mixity M  as a function of Me for small 
scale yielding.  (a) plane stress, (b) plane strain 
for v= 0.3 ttau  [4]. 

The results of Fig. 2 may be rcexpresscd in terms of Me 

P      e 
using the connection between M  and M .  Thus, Fig. 5a 
shows the effect of the hardening exponent on the critical angle 

6  as a function of the elastic mixity parameter for small 
scale yielding in plane stress. The curves for plane strain 
from [4] arc shown in Fig. 5b along with some experimental data 
on fracture initiation angles fron [7, 3]. According to the 
plasticity analysis, a fairly wide range of fracture initiation 
angles about the elastic prediction  (n= 1)  should be expected 
depending on the hardening exponent and on whether the plane 
stress or plane strain condition is approached. 

Plastic zones for small scale yielding in plane stress ar 
shown in Fig. 6 for four values of mixity. These zones were 
calculated using the powar hardening law for uniaxial tension 
stated above. Mode I zo ics have been given earlier in [9] anci 

are similar to those shown in Fig. 6 for Me= 1 , except that 
the present zones extend somewhat further ahead of the crack. 
It is felt that the present calculations are more accurate than 
those reported in [9]. 
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(b) 

Fig. 5 6  (In degrees) as a function of M  for small scale 
yielding.  (a) plane stress, (b) plane strain. 

Fig. 6 Blastic-plMtlc boundaries for small seile yielding 
in plane stress. 
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ABSTRACT 

The problem of a semi-infinite body v/ith an edge crack sub- 

jected to far out-of-plane shear is solved by a transformi. tion to 

a hodograph plane and the Wiener-Ilopf technique.  The material 

stress-strain behavior is governed by a pure power hardening rela- 

tion and the results are valid for both deformation theory and flow 

theory of plasticity.  Results are presented for crack opening dis- 

placement, path independent J integral, and crack tip singularities 

for all finite values of the power hardening parameter. 

INTRODUCTION 

The path independent J integral derived independently by 

Eshelby [1] and Rice [2,3] is generally recognized as a useful para- 

meter that characterizes the near crack tip field due to stationary 

cracks in elastic media.  More recent studies have demonstrated that 

this integral provides not only an accurate characterization of the 

crack tip elastic-plastic field but also a good elastic-plastic 

fracture criterion.  tJoteworthy among these studies are the analytic 

and experimental results of Beglcy and Landes [4,5] in which they 

propose Rice's J integral as a failure criterion.  Bucci et. al. [fij 

. .>:^».>:•■■:■/.^.V:.M^. ,v.v 
. J- ^! i_ , 
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and Rice ct, al^.    [7] have proposed estimation proeedurcs for J. 

These procedures involve the use of plastically adjusted linear 

elastic results in conjunction with limit load analysis. Also pro- 

posed is the estimation of J from experimentally obtained single 

load vs. point load displacement results. 

In this paper, v;e solve analytically the problem of a crack 

in an infinite body subjected to remotely applied anti-plane shear. 

The material stress-strain relation is governed by a power hardening 

lav; [8] - that is the normalized strain is equal to the normalized 

stress raised to some power.  The results are therefore valid for 

fully plastic materials.  Under the loading considered the stress 

history is proportional everywhere for monoto. ically increased load- 

ing and consequently the analysis is valid for both deformation 

theory and flow theory of plasticity.  Results are presented for J 

and crack opening for the full range of the power hardening para- 

meter that is from elastic to rigid-plastic materials.  The problem 

for a finite strip under shear loading is under investigation, how- 

ever, we note that the plane strain tensile loading of a strip has 

been solved by Goldman and Hutchinson [9] by the use of finite 

element method. 
• 

1.  Fundamental Equations and the Hodoaraph Plane 

We consider the semi-infinite body occupying the region x^-a, 

-«><yf z<" (see Figure 1) v/ith an elge crack of depth a represented 

geometrically by -a<x<o/ y = 0.  The body is subjected to remotely 

applied shearing stress xm.     By symmetry this problem is equivalent 
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to the problem of the infinite body with a crack of width 2a sub- 

jected to the same remote loading.  The only nonvanishing displace- 

ment component is the z component w(x,y).  Consequently, the non- 

vanishing strain components are y       ■ 8w/3x and y   = 8w/3y.  For 

small deformation and Isotropie material, the corresponding stresses 

T   and T   are the only nonzero stress components.  If we introduce 
xz     yz J 

the nPt*t.loji YX - YX2, Yy = Yyz, TX = TXZ, and Ty - Tyz then the 

compatibility and equilibrium equations reduce respectively to 

and 

aYx/ay ■ it«/«*, 

aTx/^x  +   9Ty/3y  -   0. 

(1) 

(2) 

VJe consider a pure power hardening relation between the prin- 

cipal stress and strain given by 

Y/Y0 = a{T/To)
n, (3) 

where a is a nondimensional constant, Y0 and T0 are reference prin- 

cipal strain and stress respectively, and n is the power hardening 

parameter.  The principal stress and strain are 

= (TX
Z
 + xy2)

1/2,  Y ■ (Yx
2 + Yy2)172 

It is clear that because of the relation (3) the governing 

equation for w is also nonlinear, however, the problem can bo re- 

duced to a linear problem by the hodograph transformation.  In this 

transformation the roles of the dependent variables {YX# YV) and 

independent, variables (x,y) are interchanged using implicit function 

theory.  The transformation maps the physical plane in Figure 1 onto 

• .^V-,11- .■-.■•.'•."•.•■>".•. .-..•« •.•■." v C v s" v •." •-■.. •,' -.' v . -,■ • - v -.- v^- • • • • • • - - v- • •' - • - - • -". •' •■»-• V ".• 
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the strain or hodograph plane shown in Figure 2.  The hodograph 

transformation was used by Rice [10] to obtain a perturbation 

solution for the same probloir. for elastic-plastic materials.  De- 

tail? of the subsequent derivation are contained in this reference. 

Neubcr [11] used a stress hodograph plane to analyze the double- 

notched problem. 

The application of this transformation to the compatability 

and equilibrium equations gives 

and 

ax/aYy ■ 9y/8Yx (5) 

ax/3Tv = 8y/9Tw =0 ■ (6) x        y 

Equation (5) implies the existence of a scalar potential function 

i|i such that 

x = VYt(* (7) 

where x is the position vector and V  is the gradient operator with 

respect to the strain vector y  =   (YX, Yy)•  Further use of implicit 

function theory to relate differentiation with respect to TX, ty 

to differentiation with respect to Yx' Yy using (3) leads to the 

following linear partial differential equation 

ill +   *2* + nzl 
aV    äYy

2     Y 

32^ D
2
I|J       ,  3.2i 

\  SYX
2
    

X
 
y 3VYy  7 ^7J 

One boundary condition is that x = -a on AB and DE in Figure 1 and 

this corresponds to 

»♦/»YjC ■ -a  for  YX - 0, 0<Yy<Yro (9) 

•_■.». 
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where ym  is the corresponding remotely applied strain.  The other 

boundary condition is that y = 0+, -a<x<0 on BC and DC and this 

leads to 

»♦/»Yy "  0        f0r     Yy =  0.                          (1°) 

It is convenient to introduce the nondimensional quantities 

P - Y/Y«, f - */*ymt                                           (ID 

and a polar coordinate system (p,^) such that 

YX/Y« = -P sin 4, 

and                                                   (12) 
- 

Yy/Y» = P COS (f. 

The differential equation (8) and boundary conditions (9) and (10) 
• 

P                   become 

nf,pp + i f,p  +  -2f»44 ■ 0, p>o, - f<*<j                                    (13) 

.         •  V,<j>  = 0,             4. = + J , p>0                   (14) 
! 

¥,$  = p,             (J. = Qi , 0<p<l                  (15) 

where a comma subscript denotes partial derivative with respect to 

1        subsequent subscript(s). 
>■ 

-■        2.  Wiener-Hopf Problem 
•           — ■ ■■,- ■ 

»* 
>•             The problem consisting of equations (13)-(15) can be analyzed 
1 

K.» T. rrt^i+-V>/^/^ t.rl-v ■! ,-•>■>  30 y-<r\i-r*ri     -in  fl^l  ».ra o. rinw&l r\innr\    Viv .""a Y"l r>Tna n iTllt" 

is generally referred to as the Wiener-Hopf technique.  In order 

to apply integral transform we need the behavior of f as p->o and 

^•-•T--^^^''-"^ - •  ■ ' •  •  •»"•'••"■■■••  « * . * H • « ■ - k ^ »  - , ■  »  •  N % *■  *  • •. 
- .--■—»-•-»-■-» -«-.-»-.-.-« -«-._»-■-«-J*. 



-  'J.  *  ^1 

11-30 

By using equeition (12) the relation (7) can be expresced 

in complex variable form as 

-x/a + iy/a = exp(-i^) (#f4/p + i+tP) U€) 

Now as y-*o+,   and x->-a 

V,p     *     sin if, (17) 

and 

¥,!}> ->■ p cos (j)  as p->o 

thus, 4' is bounded as p-+o. 

For p-»-" we seek a solution to (13) and (14) of the form 

f "v ll(n,(}))p
p. 

Substituting for f in equations (13) and (14) leads to 

p - [1 - 1/n +{(l-l/n)?- + (2K + l)2/n}1/2)/2     (18) 

where K is an integer.  Since t must be bounded as p-*-», the maxi- 

mum negative value of p must be chosen.  This value is p=-l/n. 

Thus, 

f ♦ p"1/"  as  p-M», (19) 

Ke note that this leads to precisely the same singular behavior 

n   
Y -> (x2 + y2)' 2TF+i) 

near the crack tip derived by Neuber [11] and Rice [10]. 

Now we introduce the Mellin transform 4" of f defined by 

T<s,<|.) = C  ps"1'((p,4.)dp. (20) 
•'o 

By (13) this transform satisfies the equation 

ftH  + w2 (s) 7=0,  0<Re s<l/n (21) 
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v;herc 
w
2(s) = s[n(s+l)-l), (22) 

and Re s denotes the real part of s.  The strip o<Re s<n of validity 

of the transform (21) follows from the behavior of 4' as p-K), « 

given in the relations (17) and (19) .  The Mellin transform of (15) 

is 

J,${s,o)   -  —rr- + u(s) ,   Re s >-l (23) s+x 

where u is the transform of 

o<p <1 

p>l 
U(p) mi 

*♦#♦(PlO] 
(24) 

For ())>o the solution of (21) and (23) is 

?(..♦) - isk* sen nil'iil^V^H' 0<Re s<1/n (25, 

and for $<o, 

?(s/-(}>) = - ?(•,♦) . 

Define 

g(s) - ?(s,o+) - ?(s;o") (26) 

where ,r(«,o+) = lim H'(E,£)  for e>o.  Substituting this defini- 
v>o 

tion into equation (25) gives 

j g(s) - l^- + ü(s)]p(s) ,  o<Re s<l/n (27) 

where , 
P(s) - to  (s) esc ^ u(s) cos [*(•){*-%))* (28) 

We note that since f muot be continuous across the line (j)= o, 

P>1 the inverse transform g(p)ofg(s) must vanish for p>l hence 

like u(p),g(p) is a half-known function.  Furthermore, since u(p)- 

p" /'n as p-»» and g(p) is bounded as p->o then ü(s) is analytic for 
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Re s < 1/n and cj(s) is analytic for Re s >o.  Lot us denote func- 

tions that are analytic in the left half plane Re s< 1/n by a sub- 

script - and let a subscript 4 denote functions that are analytic 

for Re s > o.  With this notation equation (2*7) becomes 

kv+is)   m   [{-iy). +Ü (s)]p(s), o<Re s<l/n       (29) 

Equation (29) is now in the standard form for the application of 

the Wiener-Hopf technique (see for example [12], [13]). 

3.  Solution of the Wiener-Hopf Equation 

The technique requires that p(s) be decomposed into the quo- 

tient 
p(s) - N_(n/s)/D+(nfs) (30) 

where N_(n,s) has no poles or zeros for Re s<l/n and L+(n,s) has 

no poles or zeros for Re s>o.  It is noteworthy that although w(s) 

has branch points p(s) does not.  The decomposition is readily 

accomplished by expressing the trigonometric functions in (28) in 

infinite product series. 

Now, as given in [12], 

»   t s    "PT M   £(s) i cos ^ w(s) = I   I I1'i2k-I)2    ' 
k = i     {2k-1)- 

Unless otherwise specified k ranges over all positive integers for 

all subsequent product series.  An explicit separation of the terms 

leading to zeros in the respective half planes Re s>o and Re s<l/n 

gives (3!) 

cos ^ »(8) =TT^2k-ra2k-ls)GXp(a2k-li)-TT(a2k-ls-Y"2k-l)eXp(-a2k-lS) 

^- *>■ ^ "j"" •■■"•*■■'"•■•■-'■■■■•'•■•"■"■'- ~ ■"•'-■-"•■-"""•"•■-■•"-■•■••-••••■"- ' ■•-•••.••• «■ • -■" "■ • ■ ■" ■-^<-' ^- ■ v.*. «w'. •v". ■v'^-^.' n.'. ^-'. 'J  ■^' ^^ O ■».' '-••, ■.' v', •-' r-" ^' ^•. •-'■ ^'. •_'. •-' ■■'' v' ^ ■.• ■.' _w_i_. ■.■.■.•.•>•.•.-. v.. A .-■.•.•..-.-..-.. t . i'. >'. ■« - ■•. 
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where 

s ■  s+(n-l)/2n   ,   »^ -  n1/2/mr (32) 

and 

r    = n1/2{l/n-l  +   [(1-1/n)2   +   4i^/n] 1/2}/2m. m 

The  exponential  products   are   introduced  to  render  each  series  in 
i 

(31) uniformly convergent [14] •  Use has been made of the asymp- 

totic behavior of y  as m->"; namely, 

rj;-* U-OTr|*o(»-2)j. <"' 

Thus, the desired decomposition of p(s) is accomplished by setting 

N_(n/s) = B(n,s) 'n"(Y2k_1-
a2k-ls) exp (a2k-lF)/lT^2k"a2ks) exp (a2k^) 

(34) 

and 

D+(n/s) = Trns(s+l-l/n)B(n,s) JJ(a2ks-Y2k)exp(-a2ks)/ 

2Tr(a2k_1B-Y2k_1)e>:p(-a2k_;L^) 

whore B(n,s) is an arbitrary function which will be chosen so that 

N_ and D+ have algebraic behavior as |s |-Mi in the appropriate half- 

planes.  The substitution of the quotient (30) for p(s) in (29) gives 

jg+(») D+(n,s) = t^'+N-tn^) + ^s)N_(n,s), o<Re s<l/n. 

Now the first term on the right hand side of this equation can 

straightforwardly be decomposed into a sum.  One such decomposition 

leads to 

» » .•» .■ .^ 

- -.-.•...'..-.,.-.,. , 



11-34 

• 

iy+(s) D+(n,s) - N_ (n ,-1) / (sH-1) = [N_(n,s) - N_(n,-1)]/ 

(35) 
(s+1) + u_(G)N„(n,s),   o<Re s<l/n. 

Since tha left hand side of equation (35) is analytic, in the 

right half plane Re s>o and the right hand side is analytic in the 

left hand plane Re s<l/n and these are equal on a strip o<Re s<l/n 

each must be an analytic continuation of the other.  Thus, each 

side represents the same entire function E(s), say. 

In order to determine E(s) we need the asymptotic behavior 

of the functions u_(s) , g+(s), N_(n,s), and D (n,s) as |s|->-a>. 

Consider the asymptotic behavior of N_(n,s) as Isj-»-«», 

Re s<l/n.  We compare the behavior of N-(n,s)/B (n, s) as [sl^00 with 

that of 

M(s)   - T[(l-a2k_1s)exp(a2k_1s)/y[(l-.a2ks)exp(-a2ks) (36) 

Uow 

N_(n,s) 
B(n,s)M(s) 

TTY2k-l"a2k-lS     TT Y2k"a2ki 

= Tri1 + ^k-i^^Tft1 + ^2k(s)]     {37) 

where 3m = (Y2k-1~1 + (n-1)a2k_1/2n)/(l-a2k_1s).  Thus for Re s<l/n 

and as a consequence of (33) I 3 (s) | <(constant)m '    Hence each 

series in (37) converges uniformly and since lim ßm(s) = 0 then 
S>oo 

lim  N_(n,r>)       ,   ^^^ .,  .,,*/.. —7 1——r =  1   for Re s<l/n. 
s->co  B(n,s)M(s 

-'' -'•'-•■'.•'-•• - • .'•'.'•'-'? .'•.'--' -"• -•• -'- -••'.'• -'' -'' -•• -•.'-•- .'• -•• .'- -•■ .s - - -'• .•■ -•• .'■'.•. -'•'-•^"-•.'-•.'-•.".-.'^•.•^■."■•.•-•.'■■."-■.•■■U'_-«VA-.V..'---LV'-%J 
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But M{s) is cxprcsfiiblc in termn of gamma functions with well-known 

asymptotic behavior.  Thus 

N-(n,s) %   (-7TS/2)1/2 n1/4 2s/nB(n,s) as |s|->°°, Re s<l/n 

Consequently, the proper choice of B(n,s) is 

B(n,s) = 2"S,^ , (38) 

and 

N.(n,s) % (-7rs/2)1/2 n1/4 2in'1)/2^    as |s|-        (39) 

Similarly, 

D+{n,s) % (Tt/2)1/2 n3/4 s3/2 2(n-1)/2/" as \s\-><*fRe   s>o   (40) 

Now ve consider the asymptotic beh. v^ior of ü:_(S) and g+(s). 
4- 

This behavior is dominated by the nature of u(p) and g ( p) as p->-l-. 

This necessitates the study of 4' in the neighborhood of p=l.  In- 

troduce the new variables E.  and n defined by 

K  - n1/2Yx/Yro ,  »I -Yy/Y., "I .    «I) 

The partial differential equation (8) and boundary conditions (9) 

become 

_n-l        rr2ii;    j_    OP/^LT\U;    J.  /^J.1\
2 

n 

and 

n^ + f'^ + 1C2";1+1)2 
IC,f« + «^+1)fCn + f^^W0 (42) 

¥,.(5-0*^) = -i (43) 
s. /n 

It  is  convenient  to  introduce polar  coordinates   (r-^ß)   through  the 

relations 

£ = - ri   sin  3 
1 (44) 

n = ri cos   p 

k>>■^■^•'^'^■^-■^•^•-v-"I'-^v•■^.>■s■L^>■>^/^!• iv^..'v.--v- v   ^ /■-/■•!-s-'  > -v"-^^--"!-'?/■"•■•/■■/*-•/-/'^^ 
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For behavior of f in the neicjhborhood of p=l (i.e. r^=0) , an 

appropriate expansion of 4' is 

fiXltM   ■ g1(ß)r11/2 ♦ g2(P)r1 -f 0(r1
3/2)        (45) 

whereupon substitution into (42) and equating power of r, cue 

following differential equations are obtained for g-, , g«: 

91 + !<?! = 0 (46) 

g2 + g2 = 0 

v;here prime denotes differentiation with respect to the argument. 

The corresponding boundary conditions are 

g' (+TT) = 0 

g' (+71) = -n"1/2 

2  - 

(47) 

The solutions to the boundary value problems are 

g, = c1sin(a/2) 

-1/2 g2 = n '  sm a 

where c, is an arbitrary constant.  Thus as r,->0 

f %  c1r
1/2sin L./2 + n"1/'2sina (48) 

From this result and the relations (44), (41) and (12) it follows 

that     u(p) %   (constant) (p-ir1/2  as p-^ 1+ 

and 
1/2 g ( p) "v (constant) (1-p) '   as  p->l . 

Hence by Watson's lemma [12] 

ü_(s) -»-(-s)1/2  as \s\'K*,     Re s<l/n (49) 

and ^.j 
g+(s) ♦ s  '   as Is]-^, Re s>0. (50) 

.• V '■'.'s.'. *.■'>•'• •'» ■• f*' «." •.' • ' -.' •*'<' -.'•.'f-.' V'-.''-."'•.' •.'r- ""•-'"".'''■N." V^*"" "V"'- 'V-"\"'- "'■(.•"- ■'• ■"-■■ö''"<V"".V ."•'.*■■.'•■."•■. "■'."-■ "■".-■ '< '<. 
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Now from the asymptotic relations (49), (50), (39), and (40) 

we conclude that the entire function E(s) is bounded as |s|->-", 

and hence by Liouville's theorem it must be a constant K(n), say. 

Thus, from (35) 

(51) 1  , - / s       F(n,s) 
^TT + U-(S)   (s+l)N_(n,s) 

where 
F(nfs) = N_(n,-1) + (s+l)K(n) (52) 

Substituting the result (51) in equation (25) and invoking  the 

inversion formula for the Mellin transform gives 

c+i~ 
n f _s      r{n,B)009[u{B)U-v/2n   ^   0<c<1/n 

(s+l)N- (n,s) cj (s) sin2-u(s) 
C-lw (53) 

We now apply the theory of residues to the evaluations of this 

integral.  The integrand has simple poles for n+l,« at s=o, 

-1+1/n, -1, 2mY2nn~
1/2 and (2m-l)Y2m_1

n"1/2' ^=1,2,   By Jordan's 

lemma, for p>l we close the contour by a large semicircle in the 

half plane Re s>o along which the integrand is small.  Similarly, 

for p<l the contour is appropriately closed in the half plane 

Re s<o.  It follows from residue theorem that 
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 2F_(n,o)     2nF(n,-l-M/n) 1-1/n     . 
7(n-l)N_(n,o) + Ti (n-l)N_(n,-l+l/n) p     + fSin9 

^f-         F(n,bm) , 
j. i > p mcos 2mA, o<p<l 

^(P^) -^    " i (5/1) 

£- 2^"'F(n,Cm)ft(Y^-a2kCm)exp(a2kCm) 

■p t'nlsin(2k+l)(!>, 

m=1 ^/2^^T[^2K-l-a2k-lC^e^^2k--lC^ 
k=l P»* 
k-^m 

where 

Cm - (Zm-DY^-!""
172' ^ = Cm + (n-l)/2n/ and 

b  - 2«Y"n ' i and v  are given by equation (32). mm m 

There remains only the unknown K(n) contained in the expression for 

F{n;s).  This constant is determined by imposing th( condition (17) 

For Yp to be bounded as p*0 T{n,-l+l/n)   must vanish; hence 

K(n) - -nN_(n,-l) (55) 

and consequently, 

F(n,s) = N_(n,-1) [l-n(s+l)] (56) 

The combination of equations (54) and (16) provides a complete 

solution to the problem. 

4.  J Integral and Crack Opening Displacement 

We compute here the path independent J integral [2] given by 

L,^- ^-.^- ■■-.■- ._■'..-. . •■ > V-r'. i'. ■•.:•.-- •"- •". ••-•'- ■'. <--•• I'-^'-I'-I'. t'. ^-^ .•."»-. ,•- •'- i'- .--«'-.V .V .'- .• .•- .•- .-- ■'■•.•-•.''■- \\'J-'J- "^   J    -» '-a'-n --»'-» ..» '■ 
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where r is any simple contour in the xy-plane, \<1  is the strain 

energy density, I is ehe stress vector acting on the outer side 

of F and t  is the displacement vector.  For the mode of loading 

considered here (57) can be reduced to 

1+1/n        .2   \ 
a To Yoo      2+1/n   \   * sin^dij).    (58) J = " ~ TITF-np    *f     J  n (aY0) -"/2 

Now from (54) 

f -> Q(n)p~1'n sin (j)  as p->" (59) 

where 

(60) n3/22>/"N_(n,-l) TTW^-^TK) ^ (n+1)/4kv^) 
Q(n) = ~- ■  

n+1 IT <-'2k+i-r2WPT>,expt (n+1>/2 <2k+1) ^ 

Although the asymptotic result (59) is valid for all n + «-, its 

region of validity decreases as n increases since other terms in 

(54) become increasingly significant in comparison to (59). 

Substitution of (59) into equation (58) and performing the 

elementary manipulation gives 

J - - aT0OY<aQ(n) (n-<l)/2n (61) 

The elimination of T„ using (3) gives the equivalent result 

J = -aToYo«'
1/n(Y«/Yo)(n+1)/nQ(n)(n+l)/2n       (62) 

J is computed by evaluating the infinite product series using 

double precision arithmetic.  The results which are accurate to 
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five significant figures are exhibited in Table I and presented 

graphically in Figure 3.  Although we were unable to prove the 

following behavior of J, 

J * (n/a)372 n1/2 as n-v» (63) 

nevertheless because of the importance of such a formula we pre- 

sent it here and compare it graphically with the exact value in 

Figure 3. 

Table 1 

n 

1.0 

1.5 

2.0 

3.0 

5.0 

10.0 

20.0 

30.0 

50.0 

100.0 

-1/n ^-oovn+l 
ToY0acx    v—) — 

1.5708 

1.9389 

2.2709 

2.8638 

3.8654 

5.7878 

8.5240 

13.865 

19.802 

63.182 

•*><£' 
2.0000 

2.3338 

2.6444 

3.2090 

4.1748 

6.0445 

8.7267 

14.008 

19.915 

63.370 

The crack opening displacement 6 is defined by 

6 - w(x=-a,y=o+) - w(x=-a,y=o~). (64) 

From YX = 3w/9x, Yy
=:5w/3y and the relation (7) it follows that 

w = "f • VY-,JJ - f + const (65) 

which ir a Legendre transformation.  Substituting for ^ in (65) 

using (54) and (11) leads to 

"_  *-   "_ - \. ' *."' • * .•  'L « * • ' 

•Vi:^ •^•:^!:il:<'ylyv:v:v^^^ 



11-41 

0 Yo 

^'fr-y .       (66) 

This expression was evaluated numerically and the results are given 

in Table 1 and displayed in figure 4.  As for the J integral the 

behavior of 6 as n -*-» is represented by the unproven formula 

6 % (1T/2)
3/2n1/2 (67) 

n+1 In figure 5 the dependence of J/U 0y0a{&/ay0)-^-]   on  n is given, 

Thus, a knowledge of the power hardening parameter n and the crack 

opening displacement is sufficient for the determination of J 

integral.  Such a relation may prove very useful in light of the 

recent experimental and analytic estimation procedures [4,6,7] for 

J. 

The stress, strain, ana displacement fields in the neighborhood 

of the crack can be calculated in terms of J using the asymptotic 

result (59).  Let (r,e) be polar coordinates centered ^t the crack 

tip in the physical xy-plane (see Figure 1) then 

Y < , 
.ah(0) .n+1 , 

r 

and -1 
.ah (6). n+1 w = aK (—~L) sin (J) 

where , 

n  ^ sin * 
(68) 

ti     COS 4 

n 
, J 2.nTX  > 

K  " (   I -l/n.Ycovn+l'TT ' 
ToYoaa    (

YJ
1 

29 = 0 + arc sin (—^ sin 0), h(0) - f^^jpuT ' 

The expression for the stress is omitted since it is readily ob- 

."" ."• .'• k> .'• .'- ."- .■•_►"' ■.'>, ."• V- .'" «■- '«"• ."" «."' •' ■ »> » ' »' «,"".)•"" -"' •"■ •'j-''  •"* • " • " • * »^ «'" ■■"" « " » ' » ' »"" -<", • " ■ ' • " « "-- ■>">.'.S'»'.*. ".*,■.•■.■.■. 
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tained by using (3).  The nature of the behavior in (66) was noted 

by Hilton and Hutchinson [15].  Here, however, the near crack tip 

fields are expressed in terms of Rice's J integral.For n=l the 

results (62) , (65), and (67) reduce to the well-known results for 

elastic material; namely, 

,        J = iTT0>0acr (Y»/Y0)
2
/2, <5 = 2aY0 (Y«O/Y0) / 

and 
K teV 111   /-sin 0/2 1   ... t,        /  \l/2 

^7P72 ( _. /.J    Wlth Kiii :   X-Ua) 
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m.    SUPERCONDUCTIVITY   RESEARCH--LAYERED   MATERIALS 

Profs.   M.   Tinkham,  M.  R.   Beasley 

Report Summary 

Research at Harvard into the properties of superconducting layered 

compounds is aimed at understanding the nature of the superconductivity 

in this important new class of materials.    In order to establish the nature 

and strength of the superconducting coupling between individual metallic 

layers and to understand the high field superconductivity of these materials, 

we have measured the superconducting upper critical fields of certain 

layered compounds.     These compounds can also have organic molecules 

intercalated between layers.    A sensitive,   orientable AC-susceptibility 

apparatus has been designed and built to make these measurements in low 

fields;   a high field instrument is presently under construction.    Our results 

for intercalated TaS^, for a series of organic molecules,   confirm for the 

first time that the anisotropy of magnetic properties increases markedly 

with increasing layer spacing. 
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Superconducting layered compounds,   such as NbSe? and TaS-,, 

comprise a newly discovered class of superconductors,   in which the 

spacing between the individual metallic layers can be increased from 3 A 

o 
up to 50 A  by intercalation of organic molecules (e.g.   TaS-, (pyridine). /-). 

Although much progress has been made in determining how the super- 

conducting transition temperatures of these compounds depend on layer 

material,   alloy composition,   and especially layer spacing,   comparatively 

little is known about the more general superconducting properties,   such 

as the upper critical magnetic field,  H   -,•    ^"he   H  2   values represent the 

maximum field up to which superconductivity persists,   and in these 

materials can be extremely high,  and hence of considerable interest. 

Measurements of   H   ^   provide significant information on the effect of 

layer separation on interlayer coupling,  as well as information on 

intrinsic material pararneters of the metallic layers. 

We are currently measuring the upper critical fields of TaS-, 

intercalated with a series of different organic molecules with various 

layer spacings,   and   TaS Se. and its intercalated compounds.    These 

materials can have extremely high   H  ?   values (~200 kGauss at   T = 0) 

with strong anisotropy for different field orientations.    To study these 

critical fields,   we have developed a sensitive,   orientable instrument to 

measure   H  ?    by means of an AC susceptibility measurement.    To date 

we have completed measurements in low fields (to lb kGauss) for three 

intercalates of TaS?.    In addition,  an instrument capable of expanding 

these measurements to high fields (130 kGauss) has been designed for a 

high-field magnet here at Harvard,  and is presently being constructed. 

It is expected that deviations at high fields from extrapolations based on 

<■. • .■ •>>>:.vvv^v:v:-.^^ 
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our measurements at low fields will provide additional important 

information about these materials.    The high-field behavior has been 

investigated theoretically in a collaborative effort between R.   Klemm 

and Professors Beasley and Luther, 

Results to date for low fields include those for TaS^collidine^/^ 

[3 A  additional space between layers due to the collidine], 

TaS2(pyridine)1 /2 [6 A],    and   TaS^aniline)^ [12 A].    We find that as the 
o o 

space between layers increases from 3 A to   12 A,  the superconducting 

coupling between metal layers becomes weaker,   and the anisotropy in- 

creases markedly.    These initial results for this series of compounds 

are confirmation of the expectation that very high-field superconductivity, 

of highly anisotropic two-dimensional character will result for the largest 

layer spacing between layers.    Such conclusions could not be drawn from 

an investigation which did not study a specific series of compounds,  even if 

many varied materials were studied. 

We intend in the immediate future to extend these measurements to 

high fields and to numerous other superconducting layered compounds and 

organic intercalates.    Hopefully,   such a systematic study will enable us to 

establish a coherent picture of the superconducting magnetic properties of 

these compounds. 

Reference: 

1, R.  A.   Klemm,   M.   R.   Beasley,  and A.   Luther,  to be published. 
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Superconductors with Stronß Flux-Pinning Characteristics 

The objective of this research project is the production of a class of 

superconducting materials capable of carrying large currents without 

dissipation in the presence of high magnetic fields.    Such superconductors 

must have a high density of pinning sites which prevent the movement of 

magnetic flux through the material.     Voids are among the best pinning 

sites known.    To be effective,   they must be small enough to be present in 

great numbers but large enough to constitute significant energy barriers 

for flux lines.    The minimum diameter of an effective flux-pinning void 

is approximately the superconducting coherence length which is typically 
Q 

50 to 10Ü Angstroms (about 10"    meter) for high-field superconductors. 

The question we faced was how to produce a bulk superconductor 

containing a high density of such tiny holes.   Our solution was to form the 

material by compacting a very finely divided powder to less than 100^ 

density.    This powder had to be a superconductor prior to compacting or 

had to be convertible to a superconductor during the subsequent sintering 

of the compact. 

To date we have completed the development of a process utilizing 

spray-drying to make a finely divided amorphous powder containing 

niobium,   chlorine,   oxygen,   carbon,   and hydrogen.    We heat this inter- 

mediate product to 700OC.   in ammonia to form niobium nitride or to 850  C. 

in methane and hydrogen to form niobium carbide.    Finely divided niobium 

pentoxide, dioxide,   and monoxide can also be made at selected temperatures 

by using hydrogen alone as the reducing agent.    By modifying the  starting 

materials and the chemical treatment which follows spray-drying,  a 

variety of finely divided compounds,   elements,   and alloys of interest to the 
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physicist and metallurgist can be produced.    At the moment we are 

principally interested in niobium nitride. 

We have learned to control the many parameters of the process so 

that batches of crystallites with mean sizes as small as 150 Angstroms can 

be made,   and we have developed compact ng techniques which can form 

these powders into long,  thin rods with smccth surfaces.    We have also 

sintered these rods into strong superconducting materials which have 

crystal structures favorable to high transition temperatures and which 

show evidence of good internal contact in spite of their desirable degree 

of porosity. 

To prepare these samples,  we have constructed a furnace system 

with a large adjoining glove box in which the processes necessary to convert 

the spray-dried powder into a sintered pellet can be carried out in an inert 

atmosphere to protect the finely divided materials from contamination.    We 

have also built the low temperature equipment necessary to measure the 

superconducting transition temperatures and the magnetization curves from 

which flux-pinning characteristics can be inferred. 

Our next task will be to adjust the metallurgical and chemical 

properties of the rods to optimize their superconducting properties. 

Specific attention will be given to the maximization of the superconducting 

transition temperature by the control of stoichiometry and to the maximization 

of the current carrying capacity by the control of mean density. 

It is our hope that these experiments will enable an evaluation of the 

efficacy of void-impregnated bulk materials as high-field,  high-current 

superconductors. 
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