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1. FUNDAMENTALS OF LASER INDUCED
ELECTRIC BREAKDOWN

Prof. N. Bloembergen

Report Summary

A review article with the title ''Laser Induced Electric Breakdown
in Solids'' has been prepared during this period. “This paper has been
accepted for publication in the February 1974 issue of the IEEE Journal
of Quantum Eléctronics. It shows the need for further experimental
data on induced electric breakdown as a function of wavelength and
pulse duration. Consequently a reliable, high power, mode-locked
Nd-Yag laser system is being assembled to provide single diffraction
limited picosecond pulses, with frequency doubling to green and ultra-
ﬁolet wave lengths, Details of progress are reported below. Quanti-
tative work on gas breakdown by 10. 6;3:1 radiation from a@bz ,\_is also

reported. ) g
y -

NN : 0,3?( ) '




Optical Damage in Transparent Solids

A comprehensive review paper on laser induced electric break-
down in trasnparent dielectric solids has been prepared and accepted
for publication. 1 This paper was based on an invited paper delivered
at an International Laser Conference in Dresden, June 1973. The
material will also be the subject of an invited paper at the meeting of
the Optical Society of America, to be held in Washington, D. C. in
April 1974.

This review revealed a need for further quantitative data on
electric breakdown in the picosecond pulse regime, and at frequencies
higher than that of the ruby laser. Therefore a new Nd: Yag laser
system is being constructed to provide reproducible, diffraction
limited picosecond pulses. The system employs an oscillator head,
pumped by a linear flashlamp and is powered by ILC digital power
supplies, enabling pulsing up to 20 pps. Three similar Nd: Yag
amplifier heads have been constructed. Tests are presently underway
to determine the oscillator output properties. A'newly designed
cylindrical-ring-electrode Pockel's cell is used for single picosecond
pulse extraction. It is known that placing a saturable absorber mode-
locker in contact with one of the laser cavity mirror surfaces
minimizes problems of satellite pulse trains and pulse noise. A
contacted dye cell has been constructed and tested for this new system.
Considerable experience in its use has been gained while investigating
a new Kodak RQ-switch dye for 1. 06 microns, BIS-Ni. The laser system

will be refined to a well controlled state and used for new series of




picosecond pulse experiments in nonlinear spectroscopy, electron

emission, and laser-induced breakdown.

Reference:

N. Bloembergen, IEEE Journal of Quantum Electronics, QEI0,
March 1974,

Investigations of Gaseous Breakdown with TEA CO2 Lasers

Two CO2 helical TEA lasers (3000 KW) are being used to study
prebreakdown clectron plasma growth in gases at high pressures and
partial data has been taken in helium. Such plasma growth is a
fundamental limitation on the distortionless transmission of light, and
at high plasma density the medium becomes opaque, resulting in laser
induced breakdown and damage.

In this experiment, the "'afterglow'' from the breakdown of a
strong laser pulse is used as the initial electron source for a much
weaker, collinear, time-delayed, second laser pulse. The breakdown
threshold for the second laser pulse is measured as a function of the
time interval between the pulses.

Laser induced breakdown has been extensively studied--there is

the recent work in solids in this laboratory, ! as well as the numerous

studies in gases by other laboratories. & Briefly, previous work in this

ficld has set the ground work for the present experiment by demonstrating
that there are four stages to laser induced breakdown (pre-opaque initial
electron runaway and plasma growth, past-opaque absorption, and past

pulse plasma attenuation), that the mechanism for the plasma growth




stage from CO2 lasers is an electron avalanche driven by inverse

bremsstrahlung, that there are several competing clectron loss
mechanisms, and that dirt or impurities must be avoided.

In gases, production of the initial electrons is a critical problem
because there are likely to be no free electrons in the focal volume of
the lascr beam in a gas at room temperature. The striking laboratory
demonstrations of laser induced breakdown sparks in air start from
small absorbing particles in the air which provide the initial electrons
thermionically,

In this experiment, the delayed pulse from the second laser hit
the remains of the plasma caused by the breakdown of the first pulse,
and, by varying the delay, the plasma growth during the second pulse
can be studied over a wide range of initial plasma densities. Data
obtained during the present reporting period are given in the graph for
helium at 500 psi. There are several regions (1) for a strong second
pulse and dense remau2nt plasma, the gas becomes opaque before the
peak of the pulse is reached, (2) for the values along the heavy line
through the experimental points, breakdown occurs at the peak, (3) in
a small lower field and lower plasma density region bordering the
experimental points, breakdown occurs after the peak (in helium at
500 psi, there are large variations in the position of the breakdown
point ‘n the tail--measurements at lower pressures have a broader
breakdown region and have reproducible results in the tail , and (4)
there is the low field-low plasma density region in which the gas is
transparent (the gas having healed itself as far as radiation pulse at

the laser frequency is concerned). Finally, there are two familics of

L)
& g




such curves--one with pressure as a parameter and one with focal

volume as a paramc'ter. But extensions of D.C. scaling laws and
previous studies of loss mechanisms should reduce the number of
experimental runs,

With this experiment, we hope to accurately measure the
fundamental avalanche growth parameter, the rate of ionization, as a
function of pressure and laser intensity after correcting for the electron
loss mechanisms., This description would enable engineering predictions
for the maximum operation level of a CO, laser amplifier or for the
selective ampiification of a small volume of plasma altering its

properties in a controlled manner.
References:

Ls E. Yablonovitch, ''"Optical Dielectric Strength of Alkali-Halide
Crystals by Laser-Induced Breakdown,'' App. Phys. Lett. 19,
495 (1971).

D. W. Fradin, N, Bloembergen, P. Letellier, ''Dependence of
laser- 1nduced breakdown field strength on pulse duration,'' Appl.
Phys. Lett. 22, 635 (1973).

N. Bloembergen, ''Laser Induced Electric Breakdown in Solids, '
IEEE J. of Quantum Electronics, QE10, March 1974,

2. E. Yablonovitch, ''Similarity principles for laser-induced break-
down in gases, ' Appl. Phys. Lett., 23, 121 (1973).

C. De Michelis, ''Laser Induced Gas Breakdown: A Bibliographical
Review, '' IEEE J. Quantum Electron., QE-5, 188, (1969).

M. P, Hacker, D. R. Cohn, B. Lax, '"Low-press sure gas break-
down with CO, laser radiation, Appl Phys. Lett.,, 23, 392
(1973) - 50-700 torr.

)

R. T. Brown, D. C. Smith, ''Laser-induced gas breakdown in ‘
the presence of preionization,'' Appl. Phys. Lett., 22, 245 ‘
(1973) - 760 towr,
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M. C. Richardson, A. J. Alcock, '""An Interferometric Study of
CO, - Laser-Produced Sparks,'' IEEE J. Quantum Electron.,
QEZ9, 1139 (1973) - measure high density plasma immediately
after breakdown.




_ ELECTRON DENSITY cm 2 (AFTERGLOW OF FIRST PULSE)
b 10" 10'3 10/
' S | T ! ___ T T 1 ___ T 1

m

U™ V/c

o

'."""‘F'”""""T,'T."F?"T"'""':'T’T"T":“"""‘: . Ve L T L IE e LY
COND POLSE) -~

He 500 psi

N, h\/)
\,J/ =N
RN
2 SN
PROSONNGS
fmw/‘//r\lJ) A 2 \\N\
/\ﬁ A\\.a _/._,,.r( N
D0 .QAP

BREAKDOWN AT
o) 0

3
PEAK OF SECOND v

PULSE

| i _____ﬂ_

iOOus

Sraa e ol AL { i

.....




g}

T

T ¥ B9 P RS ¥ O ewipe gt e N S et Yl ST AT oW G S g R TR
..

II1. FRACTURE MECHANICS

Profs. B. Budiansky, J. W. Hutchinson, J. L. Sanders, Jr,

Report Summary

A report was issued [Ref. 1; a copy is attached] reviewing an approach
to the formulation of equations for elastic-plastic solids at finite strains
which lends itself to numerical analysis. Included in the reportis a
generalization-of J, flow theory (Prandtl-Reuss theory) to large strains
in a form convenient for applications. Also discussed is the application of
this approach to the analysis of necking-type instabilities,

Further work on the analysis of mixed mode crack problems has been
completed [Ref. 2; a copy is attached]. In this work the plastic stress and
strain fields at the tip of a crack are found for combined Mode I and Mode II
under plane stress conditions. The solutions provide insight into the
important, but poorly understood, problem of fracture under combined
mode loadings.

The first report [Ref. 3; a copy is attached] in a series of studies of
fully plastic crack problems has been completed. An exact solution has
been obtained for a crack in a fully plastic, infinite body undc  nti-plane
shear loading (Mode III), The solution is valid for any degree of strain
hardening ranging from linear clasticity to perfect plastic;ity. Results are
given for the dependence of the two quantities of most interest in fracture

analysis, J and the crack opening displacement, on the strain hardening

exponent and the applied stress. A related study for the plane strain

problem has been completed and will shortly be issued as a report. Work

II-1
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is continuing on the application of these solutions to engineering fracture

analysis where large scale plastic yielding occurs. It is this area of

fracture mechanics which is currently undergoing rapid development with
potential applications in many areas including reactor technology, pressure
vessels and aerospace.

The work described above is jointly supported by ARPA and the Air

Force Office of Scientific Research,

References:

1. FINITE STRAIN ANALYSIS OF ELASTIC-PLASTIC SOLIDS AND
STRUCTURES by John W. Hutchinson, published by American Society
of Mechanical Engineers in '"Numerical Solution of Nonlinear
Structural Problems, ' AMD-Vol. 6, 1973.

2, PLASTIC ANALYSIS OF MIXED MODE PLANE STRESS CRACK
PROBLEMS by J. W. Hutchinson and C. F. Shih, to be published in
Proceedings of the Tenth Anniversary Meeting of the Society of
Enginecring Science, Raleigh, North Carolina, November 1973,

3. FULL PLASTIC CRACK IN AN INFINITE BODY UNDER ANTI-

PLANE SHEAR by John C. Amazigo, submitted for publication to the
International Journal of Solids and Structures.
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FINITE,STRAIN ANALYSIS OF ELASTIC-PLASTIC SOLIDS AND STRUCTURES

John W. Hutchinson

Division of Engineering and Applied Physics
Harvard University
Cambridge, Massachusetts

ABSTRACT

A review is siven of one cpproach to the formulation of equations for
elastic-plastic solids at finite strains which leads iteelf to numerical
analysis., A generalization of Jz flow theory to large strains is given

which is in a form convenient for applications., Scveral aspects of the
analysis of necking in tension are discussed from this point of view.
f Applications of the formulation to nonlinear plate and shell theory are
4 also discussed.

INTRODUCTION

~ Most of the nonlinear theories of plates and shells are Lagrangian in

- character in that they employ as a reference configuration the undeformed °
state of the structure. In the construction of these theories it is cozmon
practice to start with a set of strain measures and strain-displacement
relations (which are usually epproximate in scme sense), to introduce
conjugate stress quantities, and to then postulate a variational principle

: of virtual work in terms of the variebles of the theory. Equilibrium

1 equations are obtained as the Euler equations of the variational primciple.
In this way the variables of the ad hoc theory are connected by exact
variational equations and one or znother of these principles is usually at
the heart of any scheme for discretizing the equations. Budiansky (1) has
emphasized the common mathematiczl structure shared by such ad hoe theories
and a particular form of the nonlinear ficld equations for thrce-dimensional
solid bodies which employs the Lzgraagien ctrain tencor and the undeformed
configuration ¢ the body as refercace. This formulation as it pertains to
elastic-plastic solids will be briefly reviewed here. A finite strain
version of J2 flow theory will be discussed which {its nicely into the

Lagrangian formulation. Some rccent results for the problem of necking of
a bar in tension will serve to illustrate the possibilities which are
opencd up by the application of numerical analysis methods to problexs
involving finite strain complicaticas. A rclatively straightforward way

To appear in a proceedings, edited by R. F. Hartung, of the ASME
Symposium on Numerical Solution of Nonlinear Structural Problems,

to be held in November 1973 in Detroit.
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to incorporate certain {inite strain aspects .70 the clastic-plastic analysis
of thin plates and shclls is also discussed.

A LAGRANGIAN FOKM OF THE FIELD EQUATIONS FOR ELASTIC-PLASTIC SOLIDS

3§ ; c . e i

. Material points are identified Ly a set of convected coordinates % .
Following the standard convention, superscripted indices denote contrazvariant

g componcents of a tensor and subscripted compinents the covariant componcents,

- Let gij and Gij be the metric tensors of the undeformed and deformed
b

F configurations and let glj and G*J be their respective inverses. Denote
3 base vectors in the undeformed body by ey and their reciprocals by

gi = gijgj . Similarly, the base vectors in the deformed body are denoted by
2 :
: =1 1 1 i3
- configuration by u = ue” =ue, where u” =g uj . T.2 Lagrangian strain
< tensor 1s

and éi = GiJE. . Denote the displacement vector from the undeformed

~

i 1 1L %
LTI AT TUR A IR R A AL o

where the corma denotes covariant differentiation with respect to the
undeformed metric.

A The exact statement of the principle of virtual work based on the
+ _undeformed configuration is (1, 2, 3)

X ij _ [
JT Gnijdv IT Guids 1 (2)
\Y S

where

1,k k
uj,i) + 5 (u ,iGuk,j.+u ,jauk,i) 1 (3)

1
) =(§ .+ 6
. ( ui’J

15 © 2
Here, dV and dS are thé voluze and surface clements of the undeformed
body, Tij are the contravarizat components of the symmetric Kirchhoff stress
defined with respect to the deformed base vectors, and T = Tigi is the
surfare traction vector per uait uncdefoxmed area, With n = nigi denoting

the unit normal to a surface element in the undeformed body, the surface
" traction T acting on this surface element in the deformed body is

(4)

X o (13 L mi i
y _ i} (t77 +17u ,m)“jsi 3

- Let g = [gijl and G = lGij' . The contravariant components of the

Cauchy stress arc given by

1/2 13

ot = (g/c) . - (5)

The su-face traction vector per unit current crea T acting on a surface
- =i

- whose current unit nrormcl is n = n.e is given by

5.3 . (6)

3
1
Q
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The incremental form of the principle of virtual vork 1is

. .ij ijok Y, - 'n‘i . S
J{T Gnij-i-'l‘ u g uk’i;oV jl GuiuS i (75
v S
and the associated equilibrium cquations are
*1j oky. 1 L
o) 4 (TPu ) (T , =0, 8
»J ks ( ok) »J ®)

constitutive relatioas for clastic-plestic colid
at finite strzin. Using the convectel rate of the contr
of the Kirchhoff stress, the rcte-constitutive rela

anevork for the classical rate-

s with smooth yield surfaces
avariant ccoponents
tion can be expressed in

Hill (4) has disrussed the genmerzl fIr

the general iorm

iy _ ijke
Y =1L Y (9a)
where

r) O - b

For stresses within the yield surface o = 0 2nd for stresses on the yield

surface

i35 <o, (10)

a=1 if mii‘ﬁi,>o and =0 4f mon.
d ij

Here, ( 1is the current tensor of elastic moduli for this choice of stress-

: o1jKkE %243 »
rate and it is ascized that 7 xd _p*) | ihe teasor of instantaneous
moduli for loading is L aad n 1is the current unit temsor normal to the
yield surface in strair-rate space. The current level of strain hardening

is determined by q and the stroin-rate is given by

| ol

. 1,° . , k k ¢
g = 3G g+, 0 30 g0t ) ()

L4
Introduce the functional of u ,

1=-]L 'ij" ijo‘k . efe |

I1=3 [{T niji-T u 'iukgj}dv [ T uicS " (12)
v S¢

where i is prescribed on  Sg and é on S and where the stress-rates

014

Ti“ are regarded to be 2 function of the strain-rates throuzh (9) and (10).
The variational principle governing the incremental boundary value problem
is (5)

61 =0 13)

for all adaissible 6ui vhich venish on S Equatioas (12) and (13)

reduce to the well-known principle for the classical snall scrain and small
rotation theory.

Thé above variztiomal cquation provides the theoretical foundation for
a variety of possible aimarical solutlon methods. Chen (6) used 2

"N i . - - -
DN S O = ¥ 4T S T W .
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. " L4 o L, - . - . «a" . e ! [ " L R e Ry -
P, WS PRGN P, Wy e e WA WOy T
- - . -
D)




N w8 R W A O T kR L e T g e e g e T [ L S P e o e i i e o B e n R e LR 2 e e iy AR -
-“.n}-'-" phg VLAY e Vel AR = o » P T T T e AT R v o

I J i 11-6

' . . Kantorovich approvimziicn method in coajunction wizh this variational
equation to analyz2 necking in a bar. lNeedlenan (7) uoed the principle as
the basis for a finite c-cmcnt nothod solution to a crgc strain nroblcm
relzted to void growih and coalescence in metals., Tuz sa e method wa s anplied
to the tcasile necking problem (8) and some results from hzs calculhtion will
be discussed in & later scetion,

-
i

Oden (9) has given an cxtensive review of the work on the development of
finite element methods for the large styain enalysiz of clactic solids.
Ribbitt, Marcal and Rice (10) Lave disccuvisced the formation of finite element
equations based on a Legrang nglan formulation for elastic-plastic solids which
is essenticlly identiczl to that reviewed above. The cholce of 2 Lagranglan
based numerical scheme as opposed to 2 Eulerien scheme, for example, is
dictated by a number of consideraticas. Since the variational functional
! (12) is bascd on the undeiormed configuration, the finite elemeat (or finite
» differencc) zrid remains fixed. YFor this rezson, the Lagrangian approach can

be atiractive if the undelermed con”iguration ic s simple one, In the
simplest finite elemcnt scheme, used by Reedleuen, the displaccreat fields
within trizngular elcmencs are taken to be lireer functions of the reference’
coordinates and thus the stirains, stresses and moduli are constant within
each element. At cach stage of the calculstion procedur: the modull rust be
updzted in a straightforward way which caa be illustreted by one possible
prescription for the moduli in the next scctica. A4As In any elestic-plastic
calculation, the loading~unloaling behuvior zssociated with an incremental
step must in general be hendled in anm iterative fashion.
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A FINITZ STRAIN GENERALIZATION OF J2 FLOW TEEORY

Small strain formulations of strain-hardening picsticity involve the

TUBEE = P g L g e o AN . e ¢ e & WLTTTEHENNRTN e v W

stress deviator sij and the J2 invariant where in Cartesian coordinates

:

1

: T, -sT 6 a 3, == (14)

S,, = -1 " an = = 85,,85,. '
ij i34 3 'pp ij 2 "¢ 1% ey

where Gij is the XKroaccker delta. It is usuelly unnzcessary to give a
precise dafinition to the stress measure in small strein formulationms and

. for the moment the precise mezaing of Tij will be left ambiguous, 1In one

ticity thsories, J2 flow theO“y, the strain-rate

of the most widzly used plastl
tresc—-rate by

. . 1s given in terms of the s

[ ] l ~ [ ] af [ ]
! where
: o =1 if Jz = sijTij >0 and J2 = (Jz)max )
: (16)

a=0 if J., <0 or J, <@

Z)max

In (15) E is Young's modulus, Vv is Poisson's ratio and £ 1is a function
of J2 which can be chosea to make (15) coincide with any monotonic

proportional loading history.

The inversion of (15) is

20a s s e e #

-

%ij L [Glh6"0+ g ]nkﬁ - Ni;-:'s i1 p;ﬁ > ol

=, Av ij k&
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: r 3 = = i S r al = > < L]
where if J, (JZ)max a=1 if ijnij >0 end a=0 if sijnij 0
Also, f and gq are coraccted by
q = £/1(1#V) +2£3,] . (18)
The expression for the moduli in the small strain formulation 45 tuus
E |1 v o
Liggg = Yigee © 1+v[§(6ikajz'*6izéjk)*'1-2v 6ij6k2-'a'sijsk£] $ S

1f a uniaxial tension curve is used to determine f and 4, , one finds
that they are given by

E .
(143 3,817 = @23)/la-5a-293,) = 5 =0

where Et is the tangzent modulus which is regarded as a function of J2

through the connection with the tens.le stress, J2 = 02/3 .

There are many possible ways to (eneralize the z2bove relation to a
finite strain forauiztion (11, 12, 13). <he one selected rfor discussion is
a special case of Hill's (4 w2l eless (9) cad (10) and has a foum
particularly suitable to a Lzgrangian apprcach. It is a slightly modified
version of a relation proposed by Budiansky (14). As in the snall strain
version the theory employs a J2 invariant of the stress to describe the yield

-
o

surface and thus doecs nct account for any Bzuschinger effect. It is also
assumcd that the strains are not so large that apprecizble elastic anisotropy
develops.

The contravarizant components of the Kirchhoff stress Tij will be used
in the formulation and a deviator stress tensor is defined accoxrding to

ij i ij L _]_.. ij kL
s T 3 G726, T (21)

where G 1s the metric teasor in the deformed system as previously
introduced so that with this definition G_.jslj =0. We take J, to be
rs

defined in terms of the stress deviator by

- ij k&

If the coordinate systea in the deformed body happeas to be Cartesian then
(21) and (22) have the scme form as (14). Since the undeformed configuration
is usad as reference the ceformed configuration vill not, in general, be
Cartesian and the gencral tensor forumulation of (21) aad (22) is necessary.

If the Cauchy stress (5) is used in forming J2 in place of the
Kirchhoff stress, the invarieat will differ from (22) by a multiplicative

factor G/g = (dV/dV)2 , where éV/av s the deformed volume per uait
undeformed volume. The volume chence in the relation oiven below arises
entirely from the elastic part oOf ¢i . etroin-rate. As long us the
hydrostatic pressure is very crall comndarcd to the elastic bulk modulus,
there is little experimentcl cvidence to point to one checice over th~ other
in the forzuiation of a yicld criterion as discussed by lee (12).

With J2 defined by (22) it con be cheowa that the rate of change of

'.\'.'_'.--'. T TSR Rl B T SR e e RSN s O - 0 R WA, O N B S R O KL P——_——
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t: J2 18 ‘

: 3, =68, Qs“'{-” . (23)

: ki . : '
BPere thc T 3 are the convravariznl components of the gyume
= s 1

of change cf the Kirchhoff oiress waleh cre reiated to &

%iJ by
b s B 1k_jle . Ik 122
: The generalization of (15) we will use is
$ 1 xkf , aof kL
nyy = FLAMICEs Vo, G )T+ CanCyn® Y (25)
with
.\ = I > 5 = \
: o =1 if JZ >0 and Jz (JZ)max
i (26)
', J s . E%
a=0 if Jz <0 oor Jz (J2)max
2 In (25) f 1is regarded as a function of J, , and E and Vv are taken to
f be fixed constantis corresponding to their volues in the undeforzed state.
: The second part of (25) is regarded as the plastic strain-rate; and since
Gijsij = 0 , the plastic volume change 1s zero.
In the absence of plastic deformation (25) is a hypo-elastic relacior
in that the relatien ecanot be intcozated to give the strains in terms of the
stresses. Curiously, though, 1t 1is nossible to write the work done by the
stresses per unit original volume in teims of the stresscs (and the deformed
metric tensor) as ;
ij _. 3.  Loqo ij\2
J't dnij = 22[(1+v)J2-,- 3(1 Zv)(cij'r Y . (27)
0 ~
The inversion of (25) is
4 #iy _ E ki, v giigkhyn o E o _1j kA
5 & 1+v[c Eal =0 LR ]”kl T 1tv g S My, (28)
p with
: kRe
3 = > an =
N a=1 1if s Ny >0 nd J2 (J2)max
(29)
" w=0 if s%h, <0 or J, < (3
k2 2 2'nax
i The szme relation (18) holds b..tween £ and q as in the saall strain
: formulation. Using (24) the roce~constiturive relation can be cast into the
: form (9) involving %i and appropriate to the nresent formulation, i.c.,
= %ij B Ligkﬁﬁ . (30)
q k&
1i ) ) -
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The instantancous nodull are
13k _ . keij _ E N kei® 4 ileik 11 k% o _1j k2|
L L 1+v|-(G )+ o—— 1 zv G -C q s s

with a obeying (29).

If data from a uniaxial stress-strain curve is used to determine f and
q one finds by specizlizing (25) to pure tension that, instcad of (20),

~1/2 rIZ

:

i : ; i

| . _ _;_[cik_fﬂ. oikit gl gk, GjZTxk] (31)
i

!

:

| s | 2 G
1+ J,£) = (9-23,)/[q-5(1-2v)J,] = [EJ

+—(1-2\))] . (32)

The tensile data in this equation is censidercé to be kncwn as a function of
the true stress ¢ . In simple tension J2 = (G/g)6213 . The tangent modulus

Bc is now defined 2s E = do/de , where € 1is the logarithmic, or matural,

tensile strain. The instantaneous contraction ratio is defined to be
V= -dezlde , Where ) is the logaritinic strain transverse to the tensile

) . direction. For an elactically incompressible material, vV = V = 1/2 and
G/g = 1 so that (32) reduces to the small strain expression (20) with the
proper interpretation of Et .

As has been discussed by nany authers, two conditions are required for
the small strain relation to provide zn zccurate approxinmation to a full
finite strain version. For the purpose of discussion choose a Cartesian
systen in the vndeformed boedy. If the strains are suificieatly small the

. distinction between the deformed znd undeformed metric temsors in (31) can
be igrored. Secondly, if the strosses are smell ecmpared to the inmstantaneous
I moduli then the second set of bracketed terms im (31) can be neglected
compared to the first, In zddition, {32) becomes (20), and the rate-
' ‘constitutive relation beccmes indistinguisheble from the small strain versiom,

- T e

The above relation is due escentially to Budiansky (14). His original
i suggestion is ideaticzl in all respects except that the contravariant [

components of the Cauchy stress (5) Gij are ucad everyvwhere in place of the

contravariant coﬂponcnts of Xirchhoif stress TiJ in eguations (21) threcugh
(31). 1In particular Ty the ceviator ccuponeants (21) zve 4orﬂed from the Cauchy
stress coumponents &nd JZ is besed oa t*c ¢ deviator components. Similarly,

. )

%13 +13 . TR

and T are repleced in (24) by G and 0¥ , vhich are the
Jaumann and convected rates, recjectively, of the coatrzvariant components
of the Cauchy stress. Ia this alternmative formulztion aquations (21) through
(31) remain unchanged althouzh (27) is now interpreted as the stress work per
unit deformed volume,

P e

One feature waich is particularly at:iractive about this second form
- is that, instead of (32}, f uhd arz ziven by the formulas for the
classical small straia version (20) . E. is the tangeat modulus oif

D

the true stress-rnatuvcl

8 ve in wifoxial tensiem. The one drawback
of the version formulated 1

-
the fora of the Cauchy stress is that when

oi'
the moculi are couverted to the fora (9) involwing T J , the moduli do not
4 13k k2i : " : &g
satisfy the symmetzy L™3°7 = L *J  rocuived for the weriational principle
(13) to hold. This can be noted dircetly using the relation

L e i

i
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; : 4 . (Glg)ll2 - Tijckz'u . (23)

For elasticaliy incomprescible colids the two vercions are obviously
identical, Numerically thce differcnce between the two formulations will be
inconsequential as long as the pressure is smell ccmpared to the bulk modulus.

APPLICATIONS TO NECKING ANALYSIS

In the an:lysis of neck~1~ in tension it is essential to use a bona fide
finite stroin Jormulation, Uiz cbove formulation of ... ficld equaticas has
been used in the cualysis of two wuparcte zsnects of necking of a solid
circular cylindrical bar in temsioa (5, 8, 15).

First consider 2 bar whose ends are subject to a prescribed unifomn
srelative axial displacemont in such a way that the ends remain free of
tangential traction zzd the laze:al surface is traoction=-free. For these
ideal boundary ccnditions, the vaifoin state of uvaiznial teasion is an exact
solution at all values of the recletive end displacezent, Necking will start
as a bifurcation from the uniZcru stzste., Bifurcation first becomes possible
at the value of the elonga ation waere there first exists a nonzero
displacement-rate field ui suca that

I{Lijkz"i Mg + i'&k.iﬁk.j}dv =0, (34)
v

where the moduli L are given by (31) with a =1, Here the strain-rate
, is given by (11) aad the axial conponent of the cigenmodal displacemeat-rate
| must vanish on the ends of the specimen.

Denote the true stresc znd natural strain associlated with the state at
which the maximum total load of the cylindriczl bar is attained by o and
€, » respectively. Miles (16) has proved that bifurcation cannot occur
before the maximum lczd is azttained. The axisymmetric bifurcation problem
for an incomnressible bar has been stua-»d within the context of the full
three-dineasional forzmulatioa in (13, 1, 17). Let Rm aad Lm denote the

radius and length of thc specimen when the maxinun load is attained and let
Y= “Rh/Lm » For an incompressidble meaterial characterized by (31), the true

stress and natural strain ot bifurcation, 0 and ec respectively, are
given by the expressions (15) -

: ac | }-1f2 4 )
| Oc = Gm + ll--a— -v'- cm+-i_‘;‘_f Bl ot oeee . (35a)
) n | )
f and :
'. ' dEt "1 YZ \plf
€ = ¢ - e v W s
c nt A <o . & o 192 Bl eees (3%

wvhich are asyuptoticzlly enact for small y . In these formulas = E/3
is the elastic shear modulus of the incompressible material, and (dE Idc)

denotes the derivative cf the tangent modulus of thoe true str s-natural
strain curve with respect to the true stress and evaluated at thc naximun
load. :

Ciww e m.w woTe T Wt

i An example presented in (lg) uses the Ramber;-0Oscood tensile relation
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Fig. 1 Tensile bifurcation of a solid cylindrical specimen of an

incompressible material with a Razber
relation, See (15) for an accurate plot.

mseteceee—: Exact results )
Load Hacincn Snad .Elongaéion
T £hN Fundzrental
l Solution

~/
L FSF
Bifurcation (f

Bifurcated
Solution

g-0Osgood tensile stress-strain

(Asymptotic results

| - Fundamental
e

Solution
/

/

Bifurcated Solution
for shear-free ends

;:Es cenented

to rigid grips

Elonéation

Fig. 2 Schematic of results of a nermerical
solid cylindrical bar from (8).

Reduction in cross-sectional area at neck

analysis of necking of a
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between the true stross ond nntural strain, l.e.,

n
g s 3(5?—], : (36)
Oy)

where € and O = Eey are the effective yleld strain and yield stress and
ke hardening exponcat. For this case Lgs. (35) become

o

._E b di s 4
et L® RSN (37a)
mn n

6

and

€ 2 4

R LTS aepL S (37b)

€ nc | & 192 ¢
m m .,

Figure 1 displays plots of cc/cn and ec/sm as a function of 1TR°/Lo where
whe~e Ro and Lo are the unccroraed radius and lenzth of the bar. The

dashed line curves are derived frowm the asymptotic formaulas (37) and the solid
line curves arc the exact resuitc for arbitrarily larze TIRO/Lo (whici
require some numerical cnalysis in their evaluation).

Needlemen (§) used the variational pr ""ciple of the previous section to
formulate a finite clement scheme and ppnonedé it to the necking problem. He
considered clzstically comprecsible solids and used the moduli (31) together
with an inconsequential epprexizetion in which the right-hord-side of (32)

is replaced by E_/E . The axisymmetric eigeavalue problem governing

bifurcaticn was solved using a finite element method and the post-bifurcation
calculation was carried until a poirt where the specimen had undergone
significant necking down, Figure 2 depiects the character of his solution

in a typicgql epecimen with Q /L = 4 , Bifurcetion occurs beyond the

paximum load and from that point oam the solution for the necking specimen
turns down irom the fundamental solution for the uniform specimen which
undergoes no bifurcation. The second part of the plot shows that bifurcation
marks the onset f the rapid contractica at the neck.

Included in the second plot are results f£or a calculation (8) for
another set of boundary cenditions vhere the ends of the bar are " considered
to be cemented to rigid gripe. In this case no bifurcation occurs. Instead
departure from the unifoim state occurs with the first application of load.
The maxinum load was found to ve esseatizily the same as in the other case;
but as can be scen from the plot, significant necking starts at somewhat
lower clongations, -

As menticned previously, Chen (8) uscd the same formulation together
with a Kentorovich approximatica method to study the same problem., He
consicerad the shear-rrce ond coxditicns cace and initiated necking by
introduzing a small initial cuisyimelvie imnerfection, This same technique
was used by Ocics (LL) Za his study of tenzile necking under p-une stress
and plane strein conditiens. licwever, Colcs's appreach was based on a
Eulerian formulati cad his nwmorical schene derived from a d1°crctizat10n
of the governing Farential cguations diveetly.

APPLICATIONS WO TwliN PLATE AND SHELL PROPLEM

As cmohasized in the Introductiocn, the structure of the field cquations
as developed for ihe three-diimencional solid elosely reseudbles the structure
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the equations for the mo.c videly uscd acnlincar theorict o plates and
shells, In most applicasions involving structural materials, whether the
poase is clustic or clastic-plustic, the straias ere cmall and tne

1
.

res
significant geomztric coalincarity i due to rototichns. I a first order
theory in which the straine ore aosuwed o very lincerly through the

thickness the inplenc Lograigicn strain teasor is often cypprozimated by

L I

as ™ Bug * Kog (@ =1,2; B =1,2), (38)

[0%%)
middle surfzce. 4Gne ccovdinate 2z iS5 ~casured alcag tae normal to middle
surface in the undicicrmed shells The strctching and beading strains are

expressed in terms of the displaccrents of the middie surface in directicns
normal and tangentiali to the undeforned middle surface.

where EaS and X . are ihe strecching and bending scrain tensors of the

The internal virtual work is approximated by

f. aB ! ‘aﬁ 17 J
JT énaﬁdv = Ilh °“a84'h 6E B}dA § (39)

\Y A

where dA is the element of the undeforred middle surfece. The bending
moment and resultant stress tensors are related to the Kirchhoff stress

tensor by

t/2 t/2
2]
Na“ = Taadz and 2f18 = [ Taﬂzdz " (40)

-t/2 -t/2

L PN

where t is the thickness of the undeformed shell, Tre contravariant
cormponents of the Kivchlioll siress encor into these expressions because the
Lagrengian scrain tonsor Yos Loea uscd alena with the choice of the

-

undeformed body &s the rererence coniiguration.

e - o b

Supposc the three-dinensional 1zte-cunstitutive relation is of the fom
discussed in the previous sections for the finite strain formulation, i.e.,

o1y _ (1jkRe
T =1L ey ) (41)

The assumption of approximate plane stress in 2 first order plate or shell

t i
theory requires T 4 = 0 for & =1,2 and 1336n33 -0, i.e., 133 = 0.
Thus from (41)
. 33, 3833,
= - : 42
Naq = =L "7 /L Mg (42)
The plane stress moduli Z relcting the inpleone stress-rat.s and strain-

rates, i.c.,

oc;" =Y
TD=L'J"nKY’ (43)

arc given by

£33, 33y, 33
= Lri,33L f’\/LSJBa (44)
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F*cw (40) the ra
s~-rate and stroi

(5]
ﬁ

where

aBKY
(i)

In particular, note that Zor

EaS uniforn throuzh the thie
v
between N 5

©
e

IO
>4

and A~ a5 WO

al
formulation by integrating tht

Equations (38) rouzn
for first order plate und she
the moduli L given by (21)

quantities nceded for upduting

contained in the above set of
\

If the strainz are o

instaqtunco 5 DOnull, then &5

necofsaxy to nive & precise d
buckling problemes in thin p
Typicelly, the st
instentancous mod
’7
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itueive relotions written in terms of the
uvantitics of thae picte or shell theory are

ansys SOERYS, J

h(l) r-KY ..(2> A\KY | (iS)

o 3Ky LUEKYS | 4

H(2> EK_Y v l.(3) r\K_Y (66)
t/2

. J Pl “7)
-+/2

]

the cose of a flat plate with KaB = 0 and
kness, Eq. (43) givees exactly the same relation

uid be obtaincd from the full finite strain

sough the tuickness,

(47) constituic o full compicment of equations

11 theorics includine finite strain effects. If

or come cimilar prescription are used, then the
L from oaze Increnental step to znother are

equations,

rad the stress lcvcls are low corpared to the
ciscussed prav usly tiie Jfinite strein

vy & small gt*aln formulation in which it is not
fiqd t*cﬂ to the stress measure. Most plastic
tes hells fu&l nto this catezory.
cklinv are proporticancl to the product of an
er f the thickness to 2 characteristic

4 On the other hand, in problems

:anolvinfy Lxc on of necking or bul iny, for exarmple, it may be essential
to use an appropriaze finite striun formulation even when the strains are
small, As long as the bn¢raL:a:1utic lensth ol the deformation field 1s
large comnared to the thilckncus one cen expect the first order theory to have
approximate validity. Of course, once the characteristic deformation length
becomes on the order of the talcknesz, as in the advenced stages of necking,
the first order theory is no longer cpplicable.

S
e
¢ a o
ter than the thickness,
set i 2
o
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PLASTIC ANALYSIS OF MIXED MODE PLANE
*
STRESS CRACK PROBLEMS

J. W. Hutchinson and C. F. Shih
Harvard University, Cambridge, Massachusetts 02138

ABSTRACT

s Two parameters are identified for characterizing the
deformation in the plastic zone near the tip of a crack when
mixed mode conditions prevail. Details of the near-tip stress
and strain distributions are presented for hardening materials
in which a diffuse plastic zone occurs under plane stress
conditions. For small scale yielding the two near-tip
parameters are related to the two elastic stress intensity
factors for combined Mode I and Mode II.

2R A e

PLASTIC STRESS AND STRAIN FIELDS FOR MIXED MODE CRACK PROBLEMS

Solutions to two dimensional crack problems in the plane
for isotropic elasticity are characterized by the near-tip
stress distribution

-1/ I1

_ 2 I
Gij = (27r) [KIoij(O)d-KIIcij(O)] " (1)
where r and 0 are planar polar coordindtes such that 6 =0
directly ahead of the crack. The B-variation of the Mode I
contribution to the stresses is symmetric with respect to the
crack tip while the Mode II contribution is antisymmetric.

Mode I and II elastic stress intensity factors, KI and KII 5

constitute a two parameter characterization of the elastic
near-tip field.

For two dimensional crack problems in which the material
is modeled by a deformation theory of plasticity and in which
the equilibrium equations ard strain-displacement relations
are taken to be linear, it can be shown that the strain energy
density must vary like 1/r as the crack tip is approached
[1, 2, 3]. Suppose a power hardening relation is assumed
between the plastic strains and stresses so that in simple
tension for '"large'" strains

& = a(o/oo)"“lo/E ) (2)

This work was supported in part by the Air Force Office of
Scientific Research under Grant AFOSR-73-2476, in part by the
Advanced Research Projects Agency under Contract DAHCL5-73-G-16,
and by the Division of kngineering and Applied Physics,

Harvard University.
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Here Co is a reference stress which can be identified with

the tensile yield stress if convenient, E is Young's modulus,
n is the hardening exronent and o is a material constant.
In this case the dominant singularity fields are of the form

o] ~

11 r—l/(n+1) 5ij(6) F r—n/(n+1) Ei.(E) S ¢ ))

and EE ¢ |4
1] J

Details of these fields have been given for the pure modes in
[1, 2, 3]. The O-variations aij and Eij depend implicitly

on n and, in contrast to linearly elastic problems, depend
in a significant way on whether plane stress or plane strain
pertains.

The mixed mode crack tip fields for linear elasticity (1)
are simply the superposition of the Mode I and Mode II
1 contributions. The plasticity problem is inherently nonlinear
! so that a representation such as (1) cannot be used. As a
5 measure of the relative amounts of Mode I and Mode II at the

crack tip we introduce a near-tip mixity parameter MP
defined by

Pl i Sa ) 0
i r>0 Gre(r,6=0) ¥ '

s g8 & 8 A A M

With this choi-e MP ranges from MP==0 for pure Mode II to

MP==1 for pure Mode I.
The simplest deformaticn theory, J2 deformation theory,

has been used to generalize (2) to multiaxial states of stress.
It is convenient to introduce the effective stress Oe where

0‘2 =3s..s../2 and s,,=0,,-0_ &8, ./3 . The near-tip fields
e ij 1] ij i pp 1]

can be represented in the form

(6,400,] = ok = D 18,005,501 -

(5)
SO P o Byn _-n/(n+l) <P
e eij-(aoo/n)(hu) 3 eij(e,MP) .

The plastic stress intensity factor K§ can be thought of as

the amplitude of the dominant singularity; the subscript M is
attached to emphasize that, in general, it applies to mixed mode
situations. This amplitude is given definite meaning by
normalizing the maximum value of 5e to be unity where
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62=3§ 8../2 and s,.=0G..-0 68 ./3 . Tor a given value of
e " ij ij ij iy pp 13
n aad for either plane stress or plane strain conditions, the

0
i A

functions aij ) 5c and Eij are completely specified by the

, P .
mixity parameter M . Details of these functions have been
given for the case of plane strain in [4]; plane stress results
will be discussed below.

Once the hardening expcoent n  is specified, Kﬁ and MP
completely characterize the near-tip field. 1In place of the
combination (Kﬁ L MP) it may be more convenient to introduce
the path independent J integral [5] and to use the equivalent

pair (J , MP) . The three parameters are connected by [1]

v 2, P, P.ntl
3= (e/mr o)™, ()

where In is a numerical constant determined from the

singularity analysis which depends on n and MP . Plane
strain values of In where given in [4] and plane stress

values will be given below. In the puie mode cases MP is
5 known and thus J (or equivalently K;) is a single parameter

L measuring the intensity of deformation in the near-tip field.
3 But in the general mixed mode situation a pair of parameters
is needed for a complete characterization. '

- PLANE STRESS NEAR-TIP FIELDS

Figure 1 gives the O-variations of the stresses and strains
in (5) for a relatively low strain hardening material with
n=13 . Pure Mode I and pure Mode II are included along with
two intermediate cases. The plane stress formulation used here
is the same as employed in the Mode I study in [1]. It does not
take into account the nonlinear geometric cffect arising from
sheet thinning. This, together with the assumption of a’
hardening material, leads to a diffusc plastic zone as opposed
to the slender necking zone represented hy the Dugdale model.
Numerical methods used to calculate these quantities are
discussed in [4] and in more detail in [6].

0 e
o_o_o_4_A, I,

*
The angle 6 at which the maximum amplitude of the
tensile component 000 is attained is plotted as a function of

MP for the entire range of n in Fig. 2a. (The curve for
n=® is from the perfect plasticity solution given in [6].)
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Fig. 2 (a) Angular pcsition of maximum tensile stress 6* (in
degrees) as a function of the near-tip mixity
parameter. (b) Ratio of the amplitude of the maximum
tensile stress in mixed mode to that in Mode I for
identical values of J .

The value of this maximum stress is 'nrmalized by the
corresponding Mode I value, O (0 0) , at the same r and

same value of J . This ratlo is shown as a function of M?
in Fig. 2b. Analogous curves for plane strain in [4] indicate
a significant fall-off in the maximum tensile stress amplitude
away from Mode I which is absent in plane stress.

Values of In , which enter into (6), are given in the

form of curves in Fig. 3.
SMALI. SCALE YIELDING

In the small scale yielding limit, when, roughly speaking,
the plastic zoue is small compared to the crack length and all
other relevant geometric lengths, J can be expressced in terms
of the elastic stress intensity factors according to (for plane
stress [5])

J"(K +x DIE . N

However it is not possible to obtain an analytic formula for

MP in terms of the elastic stress intensity factors. A full
numerical analysis, such as that described in [4], must be
employed to obtain this second rclation. A convenient measure
of the mixity for the elastic singularity solution (1) is
given by the definition

1‘.' ._~ .n ..- .;-‘ Lo h* " 0 -~ % CHR S G N A G AT G LU S T IO N T PG TR IO )
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-1|1im (8 =0} , ;K

1
— w S EAn e , (8)
r>0 Ore(L,G =0) m KHI

(For a crack in an infinite sheet making an angle B8 (in

M = %-tan

radians) to a far pure tension field, Me==26/ﬁ .} Either
pair, (KI . KII) or (J, Me) , completely spécifies the

near-tip fiecld of the elastic mi.ted mode solution.
The results of the numerical analysis of the small scale
yielding problem are shown in Fig. 4a in the form of plots of

. e 9
MP as a function of M~ for various n . The curve labeled
n =% was obtained by extrapolation. The functional relation

between MP and M® in plane stress small scale yielding is
independent of Poisscn's ratio and the amplitude of the
singularity. It does depend implicitly on other shape details
of the uniaxial stress-strain curve in addition to n . The
results of Fig. 4 were obtained using the tensile relativn

n
= < d = >

C/Co 0/0o for ¢ <o an e:/s:o (o/oo) for o O, s

where €°==0°/E . As in [4], spot checks using other tensile

curves give essentially the same results shown in Fig. 4 and it
s concluded that n is the essential parameter. The
corresponding relationship for plane strain from [4] is shown
in Fig. 4b.
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Fig. 4 Near-tip mixity MP as a function of Mé for small

scale yielding. (a) plane stress, (b) plane strain
for v=0.3 frum [4].

The results of Fig. 2 may be reexpressed in terms of M°®

using the connection between MP and M® . Thus, Fig. 5a
shows the effect of the hardening exponent on the critical angle

6* as a function of the elastic mixity parameter for small
scale yielding in plane stress. The curves for plane strain
from [4]) are shown in Fig. 5b along with some experimental data
on fracture initiation angles from [7, 8]. According to the
plasticity analysis, a fairly wide range of fracture initiation
3 angles about the elastic prediction (n=1) should be expected
. depending on the hardening exponent and on whether the plane

X stress or plane strain condition is approached.

Plastic zones for small scale yielding in plane stress ar

shown in Fig. 6 for four values of mixity. These zones were

: calculated using the powar hardening law for uniaxial tension
3 stated above. Mode I zoues have been given earlier in [9] and
; are similar to those shown in Fig. 6 for M= 1 s except that

v the present zones extend somewhat further ahead of the crack.

It is felt that the present calculations are more accurate than
those reported in [9].
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Fully Plastic Crack in an Infinite

Boay Undexr Znti-plane S! car
by

John C. Amazigo
Department of Mathematics
Rensseluer Polytechnic Institute
Troy, New York 12181

ABSTRMAC'Y

The problem of a semi-infinite body with an edge crack sub-
jected to far out-of-plane shear is solved by a transformction to
a hodograph plane and the Wiener-Hopf technique. The material

stress—-strain behavior is governed by a pure pewer hardening recla-

tion and the results are valid for both deformation theory and flow

theory of plasticity. Results are presented for crack opening dis-

placement, path independent J integral, and crack tip singularities

for all finite values of the power hardening paramectiler.

INTRODUCTION

The path independent J integral derived independently by
Eshelby [1) and Rice [2,3] is generally recognized as a useful para-
meter that characterizes the near crack tip field due to stationary
cracks in elastic media. Mcre recent studies have demonstrated that
this integral provides not only an accurate characterization of the
crack tip elastic-plastic field but also a good clastic-plastic
fracture criterion. Noteworthy among these studies are the analytic
and experimental results of Begley and Landes [4,5] in which they

proposce Rice's J inteyral as a failure criterion. Bucci et. al. [6]

e [!ﬁx ..
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and Rice et. al. [7] have proposcd estimation procedures for J.
These procedures involve the use of plastically adjusted linecar
elastic results in conjunction with limit load analysis. Also pro-

posed is the estimation of J from experimentally obtained single

B T R R

load vs. point load displacement results.

In this paper, ve solve analytically the probiem of a crack
in an infinite body subjected to remotely applied anti-plane shear.
The material stress-strain relation is governed by a power hardening
law [8] - that is the normalized strain is equal to the normalized
stress raised to some power. The results are therefore valid for
fully plastic materials. Under the loading cdnsideréd the stress
history is proportional everywhere for monoto.ically increased load-

ing and consequently the analysis is valid for both deformation

« o BRW . ¢« & o o U TgEEeITr ol T TV RS v

theory and flow theory of plasticity. Results are »resented for J
and crack opening for the full range of the power hardening para-
meter that is from elagtic to rigid-plastic materials.. The problem
for a finite strip under shear loading is under investigation, how-
ever, we note that the plane strain tensile loading of a strip has
been solved by Goldman and Hutchinson [9] by the use of finite

element method.

1. TFundamental Equations and the Hodograph Plane

We consider the semi-infinite body occupying the region x>-a,
E -ocy, z<» (see Figure 1) with an =2ige crack of depth a represented
geometrically by -a<x<o, y = 0. The body is subjected to remotely

applied shearing stress 1,. By symmetry this problem is ecquivalent

- - - - . - - . -
LN T

------

B — e
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to the problem of the infinite body with a crack of width 2a sub-
jected to the same remote loading. The only nonvanishing displace-
ment. component is the z component w(x,y). Consequently, the non-
vanishing strain components are T, = ow/3x and sz = 9w/3y. TFor
small deformation and isotropic material, the corresponding stresses
Vew and Tyz are the only nonzero stress components. If we introduce

: Yy = sz, Ty ® Teg and Ty = TYZ then the

compatibility and equilibrium equations reduce respectively to

the notatiou T = Vi

3y, /3y = Byy/ax, (1)
and ' )
BTX/BX + BTy/ay = 0, (2)
We consider a pure power hardening relation between the prin-

cipal stress and strain given by
n
/v, = ale/t )", (3)

where o is a nondimensional constint, y, and 1, are reference prin-
cipal strain and stresc .espectively, and n is the power hardening

paramecter. The principal stress and strain are

T = (sz 4 Tyz)l/zr y = (sz + sz)l/z. (4)

It is clear that because of the relation (3) the governing
equation for w is also nonlinear, however, the problem can bz re-
duced to a linear problem by the hodograph transformation. In this
transformation the roles of the dependent variables (Yx’ yy) and

independent variables (x,y) are interchanged using implicit function

theory. The transformation maps the physical plane in Figure 1 onto
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the strain or hodograph plane shown in Figure 2. The hodograph
transformation was used by Rice [10] to obtain a perturbation
solution for the same problem for elastic-plastic materials. De-
taile of the subsequent derivation are contained in this reference.
Neuber [11] used a stress hcdograph plane to analyze the double-
notched problemn,

The application of this transformation to the compatability

and equilibrium equations gives

ox/dy

y dy/ 8y, (5)

and .
ax/31, = 8y/31y = 0 : (6)
Equation (5) implies the existence of a scalar potential function

¥ such that

X = V. (7)
where % is the position vector and VY is the gradient operator with
respect to the strain vector ; = (ygxs Yy)° Further use of implicit
function thecry to relate differentiation with respect to 1y, Ty
to differentiation with respect to vy, Yy using (3) leads to the
following linear partial differential equation

32y 22y  n-1 3%y 22y 32y
+ + ‘Y?- + 27 Y, w—m—— + ¥ 2 e 4 = 0 (8)
ettt [ 5t e s

One boundary condition is that x = -a on AB and DE in Figure 1 and
this corresponds to

dy/9y,, = —a for

= 0, 0<Yy<Ym (9)

Tx
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where vy, is the corresponding remotely applied strain. The other
boundary condition is that y = 0%, -a<x<0 on BC and DC and this
leads to

aw/ayy =0 for = 0. (10)

Ty
It is convenient to introduce the nondimensional quantities
P = Y/ Yor ¥ = V/aYe (11)
and a polar coordinate system (p,¢) such that
Yi/Yo = =p sin ¢,
and (12)

Yy/Yo = P COS ¢.

The differential equation (8) and boundary conditions (9) and (10)

become
n¥,pp + '1'-' Y0 + ']; VYedpd = 0, >0, - E—<¢<E—' (13)
P pz Y ’ 2 9
Y,¢ =0, ¢ = i%‘ ¢ p>0 ) (14)
Y6 = op, ¢ = 0% , 0<p<l (15)

where a comma subscript denotes partial derivative with respect to

subsequent subscript(s).

2. Wiener-Hopf Problem

The problem consisting of equations (13)-(15) can be analyzed
by a method which as noted in [12] was developed by Carleman but
is generally referred to as the Wiener-Hopf technique. In order

to apply integral transform we need the behavior of ¥ as p-+0 and

preo,
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i By using equation (12) the relation (7) can be expressecd
9
$ in complex variable form as
: | | .
. -x/a + iy/a = exp(-i¢) (v,¢/p + iy,p) (16)
i Now as y+o+, and x-»>-a
e s
sf.'f p Y,p -+ sin ¢, (17)
2 and

¥, =+ p cos ¢ as p-=o

thus, ¥ is bounded as p-o.
For p+o we seek a solution to (13) and (14) of the form

¥~ H(n,¢)pP

Substituting for ¥ in equations (13) and (14) leads to

1/2

p=[1-1/n+{(1-1/n)2 + (2K + 1)?/n} }/2 (18)

where K is an integer. Since Y must be bounded as p-+=, the maxi-
mum negative value of p must be chosen. 'This value is p=-1/n.

Thus,

-1/n

¥ > p as p-oe, : (19)

We note that this leads to precisely the same singular behavior
- n —

near the crack tip derived by Neuber [11] and Rice [10].

Now we introduce the Mellin transform ¥ of y defined by

¥(s,4) = g 05 Ly (p,4)do. (20)

By (13) this transform satisfies the equation

7:9¢ + w?(s) § =0, O<Re s<l/n (21)

3 - R -‘ ’ '} ” ‘. ' . } [ ‘ . - ‘-.. A'. ] /' “
R :.r.'\.r. il 2 e .\ah" ‘r.‘l "'-ﬁ\'ﬁ\.\"' et AR A T RN '\-rL'. -e.- .\.:.A".‘-_x il BTy
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w2 (s) = sn(s+1)-1], (22)

and Re s denotes the real part of s. The strip o<Re s<n of validity

of the transform (21) follows from the behavior of ¥ as p»0, =
given in the relations (17) and (19). The Mellin transform of (15)
is

¥,¢(s,0) = E%T + u(s), Re s >-1 (23)

where u is the transform of

(o} o<p<l '
u(p) ={ﬁ (24)
' v,9(p,0) p>1 .

For ¢>o0 the solution of (21) and (23) is

cos{uw(s) (¢-m1/2)]

¥(s,¢) = [ + T(s)] o<Re s<l/n (25)

s+1 w(s) sin n/2w(s)’
and for ¢<o,
Y(s,=¢) = - ¥(s,¢).
Define
g(s) = ¥(s,0") - ¥(s,07) (26)
where ¥(s,o%) = 1lim ¥(s,¢) for e€>0. Substituting this defini-

e*0
tion into equation (25) gives

% g(s) = [g%f + u(s)lp(s), o<Re s<l/n (27)
where -1
P(s) = w "(s) csc % u(s) cos [w(s) (¢~ 51, (28)

We note that since ¥ must be continuous across the line ¢= o,
p>1 the inverse transform g(p)ofg(s) must vanish for p>1 hence

like u(p),g(p) is a half-known function. Furthermore, since u(p)-
-1l/n
b /

as p»» and g(p) is bounded as p-»o then u(s) is analytic for
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Re s < 1/n and g(s) is analytic for Re s >o. Let us denote func-
tions that are analytic in the left half plane Re s< 1/n by a sub-
script - and iet a subscript + denote functions that are analytic

for Re s > o. With this notation equation (27) becomes

N

g, (s) = l(gy), + u_(s)lp(s), o<Re s<l/n (29)

Equation (29) is now in the standard form for the application of

the Wiener-Hopf technique (see for example [12], [13]).

3. Solution of the Wiener-Hopf Equation

—

The technique requires that p(s) be decomposed into the quo-

tient
p(s) = N_(n,s)/Dy(n,s) (30)

where N_(n,s) has no poles or zeros for Re s<l/n and L,(n,s) has
no poles or zeros for Re s>o. It is noteworthy that although w(s)
has branch points p(s) does not. The decomposition is readily
aécomplished by expressing the trigonometric functions 'in (28) in
infinite product series.

Now, as given in [12],

o«

. 2
L ouls) = l | (a8

cos = XY
Lo 1 R

Unless otherwise specified k ranges over all positive integers for

all subsequent product series. An explicit separation of the terms

leading to zeros in the respective half planes Re s>o and Re s<1/n

gives (31)

cos & w(s) = (¥1. =8 Yexp(a E)-TT(a s=-Y~ Jexp (-a 5),
z Y TT Y2k-1"92k-18 2k-1 2k-157"7 2k-1 2k-1

---------------------------------
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where

S = s+(n-1)/2n , a_ = w2 (32)
and

+

v_=nl%(/m-1 5 (-2 4 a? /n1 /23 /2m.

The exponential products are introduced to render each series in
(31) uniformly convergent [14]). Use has been made of the asymp-

totic behavior of Y @S moe; namely,

£ o _n-11 -2
o * t (1 - 5755 * O(m 7)]. (33)

Thus, the desired decomposition of p(s) is accomplished by setting

N_(n,s) = B(n,s)'TTYY;k_l—aZk_ls)exp(a2k_1§)/]T(Y;k—a2ks)exp(a2k§)
(34)

and

D+(n,s) = nns(s+1—1/n)B(n,S)1‘r(a2ks_Y;k)exp(_a2k§)/

21T(a2k—lS—Y2k—l)exP(_a2k—l§)

where B(n,s) is an arbitrary function which will be chosen so that
N. and D, have algebraic behavior as |s |»* in the appropriate half-

planes. he substitution of the quotient (30) for p(s) in (29) gives

% g+(S) D+(n,S) = (E%L'+N_(n,s) 4+ G(s)N_(n,s), o<Re s<1l/n.

Now the first term on the right hand side of this equation can
straightforwardly be decomposed into a sum. One such decomposition

-leads to
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g,(s) D (n,s) - N_(n,-1)/(s+l) = [N_(n,s) - N_(n,-1)]}/

N}

(35)
(s+1) + u_(s)N.(n,s), o<Re s<l/n.

Since the left hand side of equation (35) is analytic, in the
'right balf plane Re s>o and the right hand side is analytic in the
left hand plane Re s<l/n and these are equal on a strip o<Re s<1l/n
each must be an analytic continuation of the other. Thus, each .
side represents the same entire function E(s), say.
In order to determine E(s) we need the asymptotic behavior
of the functions u.i), §+(s), N_(n,s), and D+(n,s) as [s|e.
Consider the asymptotic behavior of N_(n,s) as |s|-»e,
Re s<l/n. We compare the behavior of N.(n,s)/B(n,s) as |s|+w with

that of

M(s) = TT(l-azk_lE)exp(aZk_lE)/TT(l—ﬁZkE)exp(—azkg) (36)

How

N_ (n,s) Yox-1"%2k-15 l l Yo "2k S
b l-a -3 l-a.., s

B(n,s)M(s) 2k-1 2k

=TT+ ey q ()1 TTIL + By (s)) (37)

where Bm = (YZk_l—l + (n—l)a2k_l/2n)/(l—a2k_ls). Thus for Re s<l/n

and as a consequence of (33) |6m(s)| <(constant)m—2' Hence each
.series in (37) converges uniformly and since lim Bm(s) = 0 then
S+
lim N_ (n [ S) ) -
g50 B, ell(s) = 1 for Re s<l/n.
S0 0 T, SE O B A o o O Y AR, 5O S On L SR OWE SO OIS0 ey S aCI Dl O O e L DAL U SER R B e Mo RCS R AR v s
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But M(s) is expressible in terms of gamma functions with well-known

asymptotic behavior. Thus

N-(n,s) ~ (—Trs/.'Z)l/2 nl/4 2§/hB(n,s) as |s|»w, Re s<l/n

Consequently, the proper choice of B(n,s) is

B(n,s) = 2-'5’/;1 ! (38)

and

N_(n,s) ~ (-ns/2)1/2 p1/4 ,(n=1)/2/n

as |s|-= (39)
] Similarly,

Dy(n,s) ~ (1r/2)l/2 n3/4 53/2 2(n-l)/2/ﬁ as |s|+w,Re s>o0 (40)

Now we consider the asymptotic beh:vior of H_(é) and §4(s).
This behavior is dominated by the nature of u(p) and g(p) as p»li.
This necessitates the study of ¥ in the neighborhood of p=1l. In-
troduce the new variables £ and n defined by

_— - = ;
£ =n"""Y, /Yo + N —Yy/Ym 1 _ (41)

The partial differential equation (8) and boundary conditions (9)

become
D 3 ¥l o o sl [E2¥,__ + 2E(n+l)¥,  + (n+l)2¥__)=0 (42)
32 UL PRI T £¢ £n nn
n
and
: =0t = -1
W,E(E 0=,n) = (43)

It is convenient to introduce polar coordinates (rl,s) through the
reiations

E=-1r, sin B
. (44)

ry cos B

=
|

—. .- .' ‘.-. .- '. .-~ '-' .- .'. ~‘ -l - .: .- 5 ‘.h‘
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For behavior of ¥ in the neighborhood of p=1 (i.e. r;=0), an

appropriate expansion of Y is
2
¥(ry,B) = g B %+ gy(m)ry + 02 ¥P) (45)
whercecupon substitution into (42) and equating power of ry the
following differential equations are obtained for gyr 9yt
+ g0 =0 - (46)
91 7 791
gz g gz =0

where prime denotes differentiation with respect to the argument.

" The corresponding boundary conditions are

9, (¢m) =0
(47)
gl (w) = _n—l/Z
BT
The solutions to the boundary value problems are
g, = 0151n(a/2)
g, = n-l/2 sin a
where ¢y is an arbitrary constant. Thus as rl+0
¥ n clrl/zsin o/2 + n"1/2ginq (48)

From this result and the relations (44), (41) and (12) it follows

Ehat u(p) ~ (constant)(p-l)"l/2 as p» it
and
g(p) ~ (constant)(l—p)l/2 as p>17.
Hence by Watson's lemma (12]
u_(s) »(—s)l/‘ as |s|»«, Re s<l/n (49)
and
g+(s) > g~ 3/2 as |°|>m, Re s3>0, (50)
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Now from the asymptotic rclations (49), (50), (39), and (40)
we conclude that the entire function E(s) is bounded as |s|+e,
and hence by Liouville's theorem it must be a constant K(n), say.
Thus, from (35)

F(n,s)

1 =
' 571 ¥ 9-(8) = ETN_ () (1)
where

F(n,s) = N_(n,-1) + (s+1l)K(n) (52)

Substituting the result (51) in equation (25) and invoking the

inversion formula for the Mellin transform gives

ctio
¥(p, ¢) = 5ot o ° £in,s)coslu(e) WT/2 g5 occea/n
r 211 (s+l)N_(n,s)w(s)51n7w(s)
C-iw . (53)

We now apply the theory of residues tc the evaluations of this
integral. The integrand has simple poles for n¥l,» at s=0,

-1/2 -1/2

-1+1/n, -1, 2mY;mn and (2m-l)y;m_ln

lemma, for p>l we close the contour by a large semicircle in the
half plane Re s>0 along which the integrand is small. Similarly,

for p<l the contour is appropriately closed in the half plane

Re s<o. It follows from residue theorem that

, m=1,2,.... By Jordan's
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2F (n,0) NS 2nrF(n,-14+1/n) 1-1/n
7 (n-1)N_(n,o0) n(n-l)N_(n,-l+l/n)p

+ psing¢

e F(n,by)
Y ¥ L m(LibN_(n,bg)e’ (by) T ey e
W(Qf“’) = g s m
(54)
/ncn = Sl -
P 2 F(n,Cm)JZE(sz-azkcm)exp(aZka) .5
' p Mgin(2k+1)4¢,
m=1 1/2 1 + - »
n (1+Cm)!ﬁf(YZk_l-azk_lcm)emp(a2k_lCm)
<sm
where
= 2 22
C, = (2m—l)y;m_ln l/“, G ® €, * {n-1)/2n, and
b = 2my;n_l/2, and y: are given by equation (32).

There remains only the unknown K(n) contained in the expression for
F(n,s). This constant is determined by imposing thc condition (17).

For Wp to be bounded as p*o F(n,-1+1/n) must vanish; hence

K(n) = -nN_(n,~-1) (55)

and consequently,
F(n,s) = N_{(n,-1) [1-n(s+1)] (56)

The combination of equations (54) and (16) provides a complete

solution to the problemn.

4. J Integral and Crack Opening Displacement

We compute here the path independent J integral [2] given by
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J = S[Wdy - %; ds]) ) (57)
r

where T is any simple contour in the xy-plane, W is the strain
energy density, T is the stress vector acting on the outer side

of I' and U is the displacement vector. For the mode of loading

considered here (57) can be reduced to

n/2
1+1/n 52
i L 2+1/n S ¥ sin¢ds. (58)
- i/n P 3 o
(ay,) -u/2
Now from (54)
¥y - Q(n)p-l/n sin ¢ as pre : (59)
where |
. n3/22"_(n,-1) TT (v}, ~spas) exp (n+1) /4K /) i)
Q(n) = = e -
n+1l 1 -
‘* (72k+1-T521TT7ﬁ)eXP((n+1)/2(2k+1)/;)

Aithough the asymptotic result (59) is valid for all n¥ », its

region of validity decrcases as n increcases since other terms in

(54) become increasingly significant in comparison to (59).
Substitution of (59) into equation (58) and performing the

elementary manipulation gives

J = - at uY,0(n) (n+1)/2n ' ' (61)

The climination of 1, using (3) gives the equivalent result

J = ’aToYoﬁ-l/n(Ym/Yo)(n+l)/nQ(n)(n+1)/2n (62)

J is computed by evaluating the infinite product series using

double precision arithmetic. The results which are accurate to
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five significant figures are exhibited in Table I and presented

graphically in Figure 3. Although we were unable to prove the

following behavior of J,

J N (n/2)3/2 n1/2

R as n-w

nevertheless because of the importance of such a formula we pre-

sent it here and compare it graphically with the exact value in

(63)

Figure 3.
Table 1

e | i

, =Ll/n Yo n+ Yeo

n ToYoll \Yo) 3 aYogYo)

1.0 1.5708 2,0000

1.5 1.9389 2.3338

2.0 2.2709 2.6444

3.0 2.8638 3.2090

5.0 3.8654 4.1748

10.0 5.7878 6.0445

20.0 8.5240 8.7267

30.0 13.865 14.008

50.0 19.802 19.915

100.0 63.182 63.370

The crack opening displacement § is defined by

§ = w(x=—a,y=o+) - w(x=-a,y=0"). ‘ (64)

W=

. VY¢ - ¢y + const

using (54) and (11) leads to

From yy, = 3w/3x%, yy=aw/ay and the relation (7) it follows that

which i a Legendre transformation.

(65)

Substituting for ¢ in (65)

......................
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6 _ 4N_(n,-1)
T wN-(n,o0) ‘ (66)

Yoo
a
Y°(Yo)
This expression was evaluated numerically and the results are given
in Table 1 and displayed in figure 4. As for the J integral the

behavior of § as n +» is represented by the unproven formula

5 % (n/2)/ 201/ (67)

In figure 5 the dependence of J/[royoa(é/ayo)egl] on n is given.

Thus, a knowledge of the power hardening paramcter n and the crack
opening displacemznt is sufficient for the determination of J
integral. Such a relaticn may prove very useful in l;ght of the
recent experimental and analytic eétimation procedurcs [4,6,7]) for
J. |

The stress, strain, and displacement fields in the neighborhood
of.thc crack can be calculated in terms of J using the asymptotic
result (59). Let (r,8) be polar coordinates centcred ut the crack

tip in the physical xy-plane (see Figure 1) then

Y n 3
Xz —m -sin ¢
0 +
gy Y- LI . (66)
yz cos ¢
and -1
Ww = ax(g—}l-ég-—)—)n+l sin ¢
n
where 3 2 FIT ;

K = ( -...)
-1/n,Yo\n+l 7
oY .2 e

N . n-1 _. . sin 2¢
.29 = 0 + arc sin (H?T sin 0), h(e) = gl

The expression for the stress is omitted since it is readily ob-
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tained by using (3). The nature of the chavior in (66) was noted
by Hilton and Hutchinson [15)}. Here, however, the near crack tip
fields are expressed in terms of Rice's J integral.For n=1 the

results (62), (65), and (67) reduce to the well-known results for

elastic material; namely,

i J = nroyoéa-l(ym/Yo)z/z, 6 = 2ay,(ye/Y,)
and |
T X A -
( XZ\= __Ll_i.i_z. (El“ /21 witn Kyqp = to(ra) /2,
Tyz (27r) cos 68/2
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1II. SUPERCONDUCTIVITY RESEARCH--LAYERED MATERIALS

Profs. M. Tinkham, M. R. Beasley

Report Summary

Research at Harvard into the properties of superconducting layered
compounds ic aimed at understanding the nature of the superconductivity
in this important new class of materials. In order to establish the nature
and strength of the superconducting coupling between individual metallic
layers and to understand the high field superconductivity of these materials,
we have measured the superconducting upper critical fields of certain
layered compounds, These compounds can also have organic molecules
intercalated between layers. A sensitive, orientable AC-susceptibility
apparatus has been designed and built to make these measurements in low
fields; a high field instrument is presently under construction. Our results
for intercalated TaS, for a series of organic molecules, confirm for the
first time that the anisotropy of magnetic properties increases markedly

with increasing layer spacing.
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Superconducting layered compounds, such as NbSe, and TaSZ,
comprise a newly discovered class of superconductors, in which the
spacing between the individual metallic layers can be increased from 3 A
up to 50 ?& by intercalation of organic molecules (e. g. TaS.2 (pyridine)l/z).
Although much progress has been made in determining how the super-
conducting transition temperatures of these compounds depend on layer
material, alloy composition, and especially layer spacing, comparatively
little is known about the more general superconducting properties, such |
as the upper critical magnetic field, HcZ‘ The HC2 values represent the
maximum field up to which superconductivity persists, and in these
materials can be extremely high, and hence of considerable interest.
Measurements of HC2 provide significant information on the effect of
layer separation on interlayer coupling, as well as information on
intrinsic material parameters of the metallic layers.

We are currently measuring the upper critical fields of TaS.2
intercalated with a series of different organic molecules with various
layer spacings, and TanSel_X and its intercalated compounds. These
materials can have extremely high HC2 values (~200 kGauss at T=0)
with strong anisotropy for different field orientations. To study these
critical fields, we have developed a sensitive, orientable instrument to
measure HC2 by means of an AC susceptibility measurement. To date
we have completed measurements in low fields (to 15 kGauss) for three
intercalates of TaSZ. In addition, an instrument capable of expanding
these measurements to high fields (130 kGauss) has been designed for a
high-field magnet here at Harvard, and is presently being constructed.

It is expected that deviations at high fields from extrapolations based on
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our measurements at low fields will provide additional important
information about these materials. The high-field behavior has been
investigated theoretically in a collaborative effort between R. Klemm
and Professors Beasley and Luther.1

Results to date for low fields include those for TaSZ(collidine)l/6
[3 R additional space between layers due to the collidine],
TaSZ(pyridine)l/2 [6 X], and TaSZ(aniline)3/4 [12 .?\] . We find that as the
space between layers increases from 3 X to 12 .?\., the superconducting
coupling between metal layers becomes weaker, and the anisotropy in-
creases markedly, These initial results for this series of compounds
are confirmation of the expectation that very high-field superconductivity,
of highly anisotropic two-dimensional character wil.l result for the largest
layer spacing between layers. Such conclusions could not be drawn from
an investigation which did not study a specific series of compounds, even if
many varied materials were studied.

We intend in the immediate future to extend these measurements to
high fields and to numerous other superconducting layered compounds and
organic intercalates. Hopefully, such a systemati~ study will enable us to
establish a coherent picture of the superconducting magnetic properties of

these compounds.

Reference;

1. R. A. Klemm, M. R, Beasley, and A. Luther, to be published.




Superconductors with Strong Flux-Pinning Characteristics

The objective of this research project is the production of a class of
superconducting materials capable of carrying large currents without
dissipation in the presence of high magnetic fields. Such superconductors
must have a high density of pinning sites which prevent the movement of
magnetic flux through the material. Voids are among the best pinning
sites known. To be effective, they must be small enough to be present in
great numbers but large enough to constitute significant energy barriers
for flux lines.. The minimum diameter of an effective flux-pinning void
is approximately the superconducting coherence length which is typically
50 to 100 Angstroms (about 10-8 meter) for high-field superconductors.

The question we faced was how to produce a bulk superconductor
containing a high density of such tiny holes. Our solution was to form the
material by compacting a very finely divided powder to less than 1007
density. This powder had to be a superconductor prior to compacting or
had to be convertible to a superconductor during the subsequent sintering
of the compact.

To date we have completed the development of a process utilizing
spray-drying to make a finely divided amorphous powder containing
niobium, chlorine, oxygen, carbon, and hydrogen. We heat this inter-
mediate product to 700°C. in ammonia to form niobium nitride or to 850°C.
in methane and hydrogen to form niobium carbide. Fineiy divided niobium
pentoxide, dioxide, and monoxide can also be made at selected temperatures
by using hydrogen alone as the reducing agent. By modifying the starting

materials and the chemical treatment which follows spray-drying, a

variety of finely divided compounds, clements, and alloys of interest to the
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physicist and metallurgist can be produced. At the moment we are
principally interested in niobium nitride,

We have learned to control the many parameters of the process so
that batches of crystallites with mean sizes as small as 150 Angstroms can
be made, and we have developed compacting techniques which can form
these powders into long, thin rods with smccth surfaces, We have also
sintered these rods into strong superconducting materials which have
crystal structures favorable to high transition temperatures and which
show evidence of good internal contact in spite of their desirable degree
of porosity.

To prepare these samples, we have constructed a furnace system
with a large adjoining glove box in which the processes necessary to convert
the spray-dried powder into a sintered pellet can be carried out in an inert
atmosphere to protect the finely divided materials from contamination. We
have also built the low temperature equipment necessary to measure the
superconducting transition temperatures and the magnetization curves from
which flux-pinning characteristics can be inferred. )

Our next task will be to adjust the metallurgical and chemical
properties of the rods to optimize their superconducting properties.
Specific attention will be given to the maximization of the superconducting
transition temperature by the control of stoichiometry and to the maximiﬁzation
of the current carrying capacity by the control of mean dene;ity.

It is our hope that these experiments will enable an evaluation of the
efficacy of vcid-impregnated bulk materials as high-field, high-current

superconductors.




