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ABSTRACT 

An algorithm is prcsonted for the numerical integration 

of the scalar wave equation in the Fresnel approximation in 

inhomogeneous media.  The wave equation is reduced by a variable 

transform to an equation describing the deviation from a Gaussian 

reference beam.  Large phase shifts are handled analytically in 

combination with the longitudinal discretization using the Crank- 

Nicolson scheme.  This permits large step sizes.  The discretiza- 

tion in the two transverse directions is performed with the 

Galerkin method, with spline functions as basis.  An alternating- 

direction scheme is used in inverting the implicit finite-difference 

equations that result.  An interaction of the longitudinal and 

transverse discretization is described.  A method of handling a 

non-linear index of refraction is described, and the algorithm 

is applied to the thermal lens effect. 
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Although calculations of the propagation of a diffracting 

light beam have been made for over a century, almost all of them 

have been analytic approximations when exact procedures are not 

appropriate.  Recently faced with a problem of nonlinear propaga- 

tion to which an analytic solution seemed impossible without 

crippling assumptions, we have developed a finite difference 

algorithm for the calculation of light propagation which has 

proven capable of giving accurate results with reasonable economy 

of computation. 

I.    Reduction of the Wave Equation 

As our starting point we take the scalar wave equation 

V
2
E - -I 14 = 0 • (D 

c  3t^ 

It has recently been shown that the scalar equation gives correct 

results for electromagnetic propagation when polarization effects 

are not important.  Here e is in general a function of position, 

not necessarily real (i.e., absorption or stimulated emission may 

be present), and may also depend on the light intensity. 

2      2  2 We define c = e (1 -t- ia/k) + iSc. where k  = e UJ /c  and o o 

E  is a constant.  Here a may be a function of Z, though not of 

X and Y, and 6e may be a complex function of all coordinates, and 

also of the field strength.  Then we assume a monochromatic wave 

and remove the oscillations of highest spatial frequency by use 

*»^-yi—■■wf^w^^—■" .1  ^1 i. » i, < " » 1 >. ■ L ■ . >-»" CTS ' . " ■■L l, * . - .-- ^ n «'■'•-". J
1
!, '■k * .'. - , '' . ^ . ^ .^ '»v .'-«~^'>'v~»>'-|.

,v----i-,-. .-. ,-- „-. ,-• ,-» ,-- ,*• ," 



*>""^>""■.»"*.'»"■j; *5 •!:»~*J^:s^^,^.5r^^/^^'XjK^>^j-^^^;«rs.> ^.v^T^r--». 

of the Ansatz 

E = U(X,Y,Z) exp[ikZ-iu't- jlnLdZ]   . 

The beam is thus assumed to be propagating mainly in the Z - 

direction.  If we now assume that the convergence (or divergence) 

of the beam is small, that a << k and that 5e is not large 

enough to cause sharp deflections of a ray, we may neglect 

—=• - the Fresnel approximation - a , |~ , and al§ , and we are 
az dZ 3Z 

left with the equation 

2ik 1H + i!" + l!" + k2AE u = 0 , (2) 
3Z   dX 3Y 

where Ac = 6e/c 
o 

For AE = 0 the solutions of this equation are well known ; 

they may be written 

Umn = i Hm(X/a) Hn(Y/a) exp[-(X2+Y2) (-i_ + Üi) + 
2a   2R 

i   (m +  n  +   1)   tan"1  Z/ka2]    , (3) 

where 

2\2' 

a2  =  ao   [1  +   (Z/ka2)2!   ,   R =  Z 
-fe ,   and H     is   a m 

Hermite polynomial.  The parameter a, which is the measure of 

the transverse scale, shrinks or expands as the beam converges 

to or diverges from the focus. 

^ 
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For numerical work with this problem, it is convenient to 

have a mesh that varies as the scale parameter a varies, since 

the cases of practical interest are those that do not deviate too 

grossly from the unperturbed case.  Therefore we introduce the 
2 

variables x = X/a, y = Y/a.  Since the parameter AZ/(AX)  deter- 

mines the stability and convergence of a numerical approximation 

to this parabolic equation, it is convenient to introduce a new 

axial variable such that this parameter automatically remains 

constant as the x and y meshes vary.  This is accomplished by 

-1    2 introducing z = tan  Z/ka" and using a constant Az.  It may be 

noted that (Az/(Ax) )       is just the Fresnel number of a range 

Az with respect to an aperture of radius Ax.  Finally it is 

helpful to normalize out the rapid phase variations in the x-y 

plane, and the amplitude variations t-hat come simply from the 

change of scale: 

U = a"1 B exp[ik{X2+Y2)/2R - i tan"1 Z/ka2] 

-1 2    2 a  B COG z exp[ i(x + y ) tan z - iz] . (4) 

With these changes in dependent and independent variables, the 

approximate wave equation becomes 

_. 3B . D2B , 32B . ,-  2 2^ 2   2,   ,n 2i — + —=• + —=• + (2-x -y +k a A£)B 
9z   3x    By 

= 21 || - (L+L  + L+L )B - G  B = 0 . öz xx  y y (5) 

/• .'• t>i>V' 
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Here the ladder operator Lv = ^ + x, its adjoint L+ = - ^ + x, 
X   dX x     3x 

2 2 
and G = -k a Ae.  It will be recognized that, aside from the 

term in ae, this is just the time-dependent Schrödinger equation 

for the two-dimensional simple harmonic oscillator, with the zero- 

point energy subtracted out, and the variable z corresponding to 

time.  The complete range of z from - j to j  corresponds to one 

half-period of the oscillator. 

Another grouping of terms is possible and in some practical 

cases preferable.  The choice L'   = ~  and G' = x2 + y2 - 2 - k2a2A£ 
X   dX 

leads to numerical advantages for large values of |x| or |y|.  The 

general discussion that follows does not depend on which of these 

choices is made. 

It is still possible to simplify Eq. (5) for numerical work, 

by recognizing that the term containing G can be removed analytically 

For this purpose we introduce the new variable 

D = B exp {i/2j G dz')   = B exp(ir) , (6) 

which is a unitary transformation if G is real.  The lower limit 

of integration will be specified later.  We shall also discuss 

later the problems that arise when G depends on B.  The variable 

change Eq.(6) can be of considerable practical importance, re- 

ducing the number of longitudinal steps by as much as an order of 

magnitude. 

Then the equation finally becomes 

2i ^ - HD = 0 (7) 
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where  the  operator H   Is  given by 

H  =  expdD    (L^L     +  K+,L  )   exp{-ir)    . (8) xx        y y 

It is Eq. (7) that we approximate by finite differences. 

Some workers have considered it desirable to choose another 

set of transverse variables so that the transverse boundaries are 

at a finite distance.  We do not believe this is desirable, 

because the maximum step size in z is limited by the smallest 

physical mesh spacing, while the accuracy of discretization is 

limited by the largest physical mesh spacing in regions containing 

an appreciable fraction of the energy flux.  We may however point 

out that if such a change is made, a simultaneous change should 

be made in the dependent variable, in such a way that the trans- 

verse differential operator remains in Sturm-Liouville form.  Then 

the standard difference approximation will be a Hermitian operator, 

which is important for our numerical method as outlined below. 

II.  Humerical Method 

The choice of a numerical method is of central importance, 

for practical reasons, and wo shall therefore discuss this ques- 

tion in some detail.  It is generally considered that complicated 

problems in partial differential equations are most readily approx- 

imated by finite difference equations, and this is the approach 

that we have used.  We shall consider first the discretization in 

the longitudinal direction, then that in the transverse direction; 

Ufa • , - •• » ^ «.« c." . " v - . ^ . - . « . . . . . .' V .■ ,• ... ■ .   • •.f',' N S - "• V ,'• , • . • , • , > . • /-JO ">s - "> V V -• V f   ,' V V'«• -f V, 



and finally we shall discuss methods of solving the resulting 

set of difference equations. 

1.  Longitudinal Discretization 

We start by considering discrete coordinates in 

2:  zn+1 = zn + Azn, where the Az need not all be the same.  To 

advance in z we use the Crank-Nicolson algorithm: 

. .,.   1 - iAz H/4  . , 
D(n+1) =  n_l_ D(n) (9) 

1 + iAz H/4 n ' 

or 

(1 + iAznH/4) D(n+1) = (1 - iAznH/4) D(n) . (10) 

Here D is still considered to be a continuous variable in the 

transverse directions.  If H is an explicit function of z,  some 

intermediate H must be used, as will be discussed later. The 

Crank-Nicolson approximation has a truncation error that is 

0(Az ).  Goldberg et al have used this algorithm in the analogous 

case of the time-dependent Schrödinger equation.  They point out 

that if H is Hermitian (which it will be in our case if G is real) 

the algorithm is unitary, i.e., the inner product (D,D) is 
* 

conserved.  This corresponds to conservation of energy flux in 

our case, and to conservation of probability in the Schrödinger 

case. 

"5  r * 
The inner product is defined as (f^)   If     q dx dy, 
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The Schrödinger analogy suggests that other conservation 

laws are obeyed by the exact solution, and should be obeyed by 

a good approximate solution.  In the Schrödinger case these a. ^ 

the laws of motion for energy and momentum; they correspond in 

our case to energy density and beam deflection.  We distinguish 

between energy flux and energy density; when the index of refrac- 

tion is not a constant, the integrated energy density is not a 

constant of the motion, but rather varies with the variation of 

light velocity in such a way that the flux, which is the product 

of velocity and energy density, is conserved.  (In the Schrödinger 

case this corresponds to motion in a time-dependent potential.) 

To be exact, the law of motion for the integrated energy density 

is 

gl (D,HD) = (D, || D) (11) 

The Crank-Nicolpon algorithm leads to the following approx- 

imation to this equation of motion: 

(D(Zn+1), H(zn+1) D(zn+1)) - (D(zn), H(zn) D(zn)) = 

(D(zn+1), [H(zn+1) - H] D(zn+1)) + (D(zn), [H - 

H(2J] D(z )) . n     n / 

This will be a good approximation if H is chosen to be some average 

of H(z ) and II(z _,,).  There are two obvious choices: n        n+i 
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H = I  ^^n+l5   + "^n51   and H = H(zn + Az
n/

2) •     Either is satis- 

factory,  but we  take  the   latter  for reasons  that will  appear 

later. 

Similarly,   the   law of motion  for the  integrated   (transverse) 

momentum is 

g| i   (D,VD)   =   |   (D,    (VH   -   HV]D). 

The  corresponding  law,   derived  from equation   (10)   by multiplying 

both sides by  iV(D(n)+D(n+1M   and taking  the  real  part,   is 

i[{D(n+:L),   VD(n+1))    -   (D(n),   VD(n))]   =   ^f   (D,    [VH-ilVlD) 

where D » j (D(n) + D(n+1)).  This is clearly a satisfactory form. 

The usefulness of conservation laws in designing difference 

schemes has been emphasized by Morton , and some results on a 

scheme essentially the same as ours for equations of Schrödinger 

type have been derived by Kreiss.   It is known that conservation 

of energy flux is by itself sufficient to guarantee stability 

(and therefore convergence), in this case.  This is because the 

conservation of the positive definite quantity (D,D) automatically 

limits the excursions of |D|.  The importance of the law of motion 

of energy density which involves the positive definite quantity 

(D,-HD) has not previously been emphasized.  It is clear though 

that a difference scheme that limits this quantity through a law 

of motion will automatically limit the excursions of IVDI.  This 



may be particularly important where changes in D are largely due 

to changes in phase rather than amplitude.  The momentum conser- 

vation law will be of smaller practical importance because the 

conserved quantity is not positive definite, so that cancella- 

tions can occur. 

The fact that an algorithm obeys conservation laws is not 

a necessary condition for stability, as is evident from the fact 

that the method of Harmuth6 does not do so; but it is a sufficient 

condition, and this is all that one ordinarily requires in prac- 

tice.  The Crank-Nicolson algorxthm is stable for all values of 

Az, while this is not true of the Harmuth algorithm.  The limita- 

tion this implies on Lz   is more apparent than real, though, since 

some limitation on Az is required for accuracy in any case.  Both 

schemes are 0(Az2); the coefficient of Az2 is not known a priori, 

but it appears experimentally that it is usually smaller for 

conservative schemes.7 The principal advantage of the Harmuth 

scheme is that it is explicit, for the central difference approx- 

imation.  Since this advantage is not retained when one uses the 

more accurate spline approximations for the transverse discretiza- 

tion discussed below, and since tho Harmuth method requires twice 

as much storage, we have seen no reason to prefer it to the 

Crank-Nicolson scheme. 

For higher accuracy in tho longitudinal direction, one may 

use a generalized Crank-Nicolson scheme proposed by Nassif8 and 

£s*<:-:;:v>:;:vv^ 



applied by him to the diffusion equation.  He points out that 

the usual Crank-Nicolson scheme is simply the 1,1 Pade matrix 

approximation of exp(-i z H/2), and that the higher approxima- 
9 

tions may be found by using higher order Pade approximants.   He 

further observes that the calculation becomes computationally 

practicable if the approximants are factored.  For our problem 

this approach would be entirely feasible as long as diagonal 

(e.g., 2,2 or 3,3) approximants are used, for in this case all 

the conservation laws would be satisfied.  The approach would 

perhaps even be more natural in our problem than in the diffusion 

problem, for the factorization introduces complex numbers, which 

are not originally present in the latter.  We have, however, made 

no attempt to apply Nassif's refinement to our problem. 

We may now specify the lower limit to the integral in Eq. 

(6).  This limit we take to be at the half-way point z  + Az /2, J   r n n     ' 

so that in effect we make the variable change Eq. (6) anew at 

every step in z.  This leads to r = 0 at the halfway point, and 

thus from Eq. (8) H = LxLx + L L   It is evident that with this 

choice H is always Hermitian, and the algorithm will always be 

stable even if G is not real, i.e., if absorption or stimulated 

emission are present. 

We may then rewrite Eq. (10) in terms of the variable B, 

which is the one used in actual computation: 

(l+iAznH/4) exp(irn+1) B(n+1) = (l-iA^H/4) expUFJ B(n)    (12) 

in 

^•-\^V^.'l-^Nrvl-.'I^>.v.\%'XO>v-.V.^.'j^.:!.%\%C r'.'nr.'f/yj J.V.V-V J 



n n+1 

"n == 1 /G dz   ■       „+1  = I / where   r„   =  ^   / G  dz   , +1  = j J    G dz' {12a) 

z   +Az   /2 z   +Az   /2 n       n7 n       n' 

2.  Transverse Discretization 

So far we have considered B and D to be continuous 

functions of x and y.  We now proceed to impose a mesh in the 

x-y plane, with mesh lines at x = x., y = y..  But instead of 

making the usual central-difference approximation for the deriva- 

tives at the mesh points, we approximate D by spline functions: 

D «D - L      D. . w. (x)w. (y) . (13) 
■L »J 

The  spline basis   functions w.(x)   are  defined by 

wi(x)   =0     if     x^x.,     or x>x.+1 

wi(xi)   =   1   . (14) 

The behavior in the intervals x. ,<x<x. and x.<x<x.+, may be 

chosen in any convenient way, but only two choices are of interest 

to us here.  The simplest choice specifies that 

d2 
—~ w. (x) = 0  except at mesh points. (15) 
dx^  1 

This leads to the so-called roof function or chapeau function, the 

linear spline basis function, which corresponds in one dimension 

to simple straight-line interpolation between mesh points.  It is 

suitable when all regions of the plane are to be treated equally. 
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Fig.   1.    L-splines for the operator (d^/dx2 + 1 - x2), centered at various x^. 

12 
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But our coordinate transformation has led to an equation which, 

to speak in Schrödinger language, has a central potential.  This 

leads to fields that decrease rapidly at large distances, as is 

evident from the cigenfunctions of Eq. (3); for fields that do 

not do so the Fresnel approximation is not valid.  In this situa- 

tion the so-called L-spline  '   basis functions are more appro- 

priate 

J L w.(x) = 0  for x not a mesh point. (16! 

These functions are very sindlar to the chapeau function for 

small |x|, but have increasinq curvature for increasing |x|, and 

thus can approximate a rapidly decreasing function more accurately 

In fact they can reproduce exactly a Gaussian centered at the 

origin.  Examples of these L-spline basis functions are shown in 

Fig. 1.  For a finite number of mesh points the end segments (with 

either choice) are treated somewhat differently: 

L w1(x) = 0  for -^xlx. 

L w (x) = 0  for x <*<■ 

These conditions lead to the fornr 

12    2 
w1(x) = exp 2^xi " x ^  for "r^x-xi 

1. 2    2S      ^ < < 

(17) 

(18) 

w (x) = exp -^(x., - x )  for X,<K< N ^ 2  N N 

which automatically satisfy the boundary conditions at infinity. 

13 



At this point we should say a little more about spline 

functions, since they are not well known outside the applied 

mathematics community.  Polynomial spline functions were intro- 

12 
duced by Schoenberg  , and have been extensively used for inter- 

polation and approximation, with cubic splines being favored. 

Although a number of books have appeared dealing with spline 

functions and spline approximation13,14'15, these have been 

written in the language of functional analysis and are not 

addressed to the general technical reader.  Furthermore, except 

for the articles of Jerome and Varga in Ref. 14 and of Schultz 

in Ref. 15,they hardly touch on the use of splines in the solution 

of partial differential equations.  The most important results 

for our purposes are that polynomial spline approximations using 

polynomials of degree (2m-l) will converge to a given function 

with an error (in some norm) that is 0{h2m), where h is the 

mesh spacing, if the function satisfies certain continuity condi- 

tions; and that this form of approximation is particularly suited 

to approximating functions that are rapidly changing.  Thus these 

functions can be used as basis functions in a Ritz or Galerkin 

calculation, since the requirement on such basis functions is 

essentially that they be capable of forming a  approximating 

sequence that converges to the desired functic 

We apply the Galerkin method to Eq. (10) : 

(wi(x)W.(y), [l+iZ.znH/4] D(n+1)) = (wi(x)w. (y), [ 1-i Az^/4] D(n)) 

(19) 

14 
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for all i,j.  This JS equivalent to a Ritz variational procedure 

if H is self-adjoint, but is also applicable to more general 

cases.   It may be rewritten in matrix form in the following way- 

Define the matrices C , H as having the elements xx        ^ 

(C ) ., = (w. ,w. ) , (H ) ., = (w. ,L+L w. ) = (L w. ,L w ) . x ik    i' k '   x ik    i  x x k     x i  x x 

Then if the vector D is defined as having the components D,., 

equation (19) becomes, in matrix form, 

[C 0C  +  r^ (C 011  + H 0C ) ] D*n  ' x  y    4   x  y   x  y 

= [C OC r^ (C 0H  + H 0C )] D(n)    , (20) x y    4    x  y   x  y 

where the symbol 0 denotes the direct product. 

Provided that H is Hermitian the conservation laws for 

energy flux and energy density are preserved by Eq. (19), in the 

matrix form 

D+(n+1) (C 0C ) D(n+1) = D+(n) (C 0C ) D(n) 

x y x y 

and 

^+(n+l)I
Ä

1(n+l)D(n+l)_^+(n)F'I(n)p(n) = 

D+(n+1)[H(n + 1)-rn D(n+1)+n
+(n) [iT-H(n)] D(n) 

Our procedure is essentially that of reference 11, and has 
much in common with the finite element method^ and the work of 
Rose.^-'  The use of spline functions in conjunction with the 
Galerkin method has the great advantage for numerical work that 
the matrices to be inverted are sparse. 

15 



with  the  matri ix   11^ : «H (n) il (n) 
QC      ,   and  so  on. 

y 
The   law of  motion   for  mon'entum  is   not   similarly   preserved 

in  general.     Defining  an  x-rnon-.ontu.-::  -tatrix 

(P. K^k V   V;i    —  Wl .    dx =   (P   '), , 
K ::   -; i. 

ono can derive an equation of ir.ction Lhat invol"Cs fnc 

i 
matrix P 

/nmetn; 

:-:s j   i''\.c..   f C PwyW Cw and the commutator P 

ö(P C -C P )0 c 2  x x  x x 

DMn+1)P 
xs D (n+1) _ ^(n) ^  D(n) 

xs 

2 xx P )MC x x' D + D + (n+l) 
xa D (n) _ D+(n) p  D(n

+1) 
xa 

where D = i (D(n) + D^"11).  The terms containing P. , which 

represent a deviation fron the desired form, vanish if one uses 

linear splines for the w..  They do not   vanish if ■no uso.^ !,- 

splines, but they are small.  Becaur.. t.iie moment:IL-.I law .i.-.i not 

deal with the conservation - ; t uot; i t 

not believe this defect is of practic 

3.  Discretisation Interactions 

"<^  ' :IJ r mi n;antity, wc 

;i:nrtance. 

The effect of usincf the approach outlined above instead 

of simply substituting ti.,. central-difference approximation for 

the second derivatives may be illufrtratod by consid.-rinn ^ «im^i, 

example.  The equation 

■rmc: a simpler 

IG 

> .^ .-•. 
^^^^>>::^:::v^-^::^ 



2i M+ 1^. o 

would be approximated, using the central-difference scheme, by 

d . in ,2)   D(n+1) = (I + in 62)   D(n) > (21) 

2 2 Here the matrix operator 5  is defined by (c D). = D.,,-2D.+D. ,, r J x i+l  i  i-l 
2 I is tnc unit matrix and n = A2/2h .  With the Galerkin method 

and linear splines, the analogous approximation is 

(C - in .23 ^(n+l) = (c + in i2)   D(n) ^ (22) 

1 
where the operator C   I + 7- .S".  This comparatively small change 

o 

makes a considerable improvement in the accuracy of the integra- 

tion without any addition to the computation time.  We remark in 

passing that it is not equivalent to fourth-order accuracy in the 

1  2 x-direction, which would be achieved by the choice C *  I  + vy i   . 

This latter choice would presumably converge more rapidly for 

small mesh sizes, but is less accurate for larger mesh sizes.  An 

analogy to this is the difference between Taylor-series approxima- 

tion and Chebyshev-economized approximation; for a given number 

of terms the former is more accurate near the origin, but the 

latter has i smaller maximum error over a wide range. 

The advantage of Eq. (22) over Eq. (21) may be illustrated 

by considering the propagation of the function e   , which is an 

eigenfunction for both the differential and the various finite- 

difference equations.  The.' exact solution to the differential 

te£g5£5£^ 



0.2» 

0.2» 

Fig.  2.    Phase deviations of three differencing schemes 
for T) = Az/2h2 = 0.4. 
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Fig.  3.    Phase deviations of four differencing schemes for 77 = 0. 2. 
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oquation gives a phase change 4> = - n(kh)  for propagation 

through a distance .z.  For the finite difference schemes k 

assumes only discrete values, with a maximum kh = TT , corresponding 

to the Nyquist frequency. 

The corresponding phase change 0 , for equation (21) can be 

found by observing that 

6  exp(ikxi) = > exp{ikxi)  with  > = -4 sin2 ^% , 

so that 

This leads to the result 

({)cd = 2 tan"1 (nX/2) . 

A similar calculation using equation (22) yields 

and the fourth-order choice C' leads to 

4). » 2 tan -l/nA/2 

The differences ^ - ^cd, <l'c - ^4, and i - 4  are plotted 

in Fig. 2 for n = 0.4.  In order to show the effect of a change 

of n, in Fig. 3 we plot 2 (^ - f)^) , 2(4>c - ^^,   and 2 (cj) - t  ) 

for n = 0.2.  These curves thus correspond to the same advance in 

z as the curves of Fig. 2.  In both cases it is clear that i>       is 
sp 

a better approximation than '^ or ty^  at high spatial frequencies. 

It is also clear that for intermediate frequencies n = 0.4 is a 

better choice than n = 0.2, while the opposite is true at high 
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* 
frequencies.   In either case, the implication is that Eq. (22) 

can be used with considerably larger values of h than Eq. (21). 

Since the computing time is approximately proportional to h~4, 

this is an important consideration. 

We may also define the corresponding quantity for the 

Harmuth method 

ct)H= ± sin"
1(nA) . 

In Fig. 3 we also plot 2 Uc - t,^) .  The Harmuth method is unstable 

for n > 0.25 and the phase shift is therefore not included in 

Fig. 2. 

4.  Practical Considerations 

Direct inversion of the matrix Eq. (20) would be very 

time-consuming.  Instead we use the alternating-direction approx- 
18 19 

imation  '   in the following form: 

<cx + Hr V'S + T2 V D(n+1, = ,cy " ¥ Hy,a(cx " ¥ V^"1 

(23) 

Since all the matrices in this equation are tridiagonal, and 

furthermore are diagonally dominant, the standard algorithm20 for 

Gaussian elimination is available and is numerically stable. 

* 
Although the interaction between longitudinal and transverse 

mesh sizes is considered in the usual stability analyses of 
finite-difference schemes, we are not aware o4: any general dis- 
cussion in the literature of the influence of this interaction 
on the relative "fidelity" of such schemes. 
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Although the numerical scheme of Eq. (23) is stable for all n 

a small value of n(< 0.5) is necessary in order to insure a 

reasonably accurate calculation of phase change, as we have seen 

in Section II.3.  This is equivalent to the requirement that Az 

be less than one quarter of the Rayleigh range of a disc of 

radius h. 

The use of the alternating-direction approximation in the 

form of Eq. (23) means that somewhat different conservation laws 

are obeyed, but in practical cases it turns out that the differ- 

ences are small. 

When Ae is a given function of space the computation of r 

for each step presents no difficulties.  But when Ae depends on 

B the problem is not so easy.  Fortunately in most problems 

concerned with monochromatic radiation (as opposed to harmonic 

generation, for example), the dependence is on |B|
2
.  Since the 

variables D and B differ only by a phase change, a knowledge of 

D     is sufficient to permit the calculation of AE(n+1). 

we make the approximations 

In the integrations leading to an evaluation of the T's, 

Eq. (12a), the z-variation of G is assumed to be only due to 

the variation of a(z), which in nonlinear cases also appears 

in Ae. 

21 



Although our approximations for r(n) and r(n+1) have truncation 

errors that are OUz2), the symmetry of Eq. (12) leads to a 

truncation error in the overall process that is only 0(Az3). 

We have used both linear splines and L-splines as basis 

functions, both with the end conditions of Eq. (18).  Although 

in principle the L-spline functions are more appropriate, in 

practice we have found little difference in the results.  In 

cases where Ae = 0, so that one can compare with analytic expres- 

sions, the L-splines are more accurate, but we have considered 

that the differences are not usually enough to warrant the extra 

effort. 

III. Application to the Thermal Lens Effect 

The method of integration described in the previous sections 

has been used to calculate the propagation of a beam in an ab- 

sorbing medium in a transverse wind. 

For this physical situation, which is discussed in some 

detail by Wallace and Camac,21 the dielectric constant can be 

written 

e/E0 = 1 + ia/k + 6e/eo , 

where the absorption of energy leads to 

5e = If ^r^ / I(x'y> to. 
p 

Here a is the absorption coefficient, T the temperature, v the 

velocity of the wind in the x-direction, and I the flux density. 
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An example of the calculations using the experimental con- 

22 ditions of Kleiman and O'Ueil  is presented in Figs. 4 and 5, 

which show intensity contours calculated for the same physical 

parameters, and with the same mesh, by the central-difference 

approximation and the Galerkin method, with spline functions as 

basis.  That the spline calculation (Fig. 5) is the more accurate 

is shown by a comparison with the results when the mesh is 

refined.  The results of the central-difference calculation then 

change in such a way that they approach more closely the spline 

calculation.  The results of the spline calculation with a finer 

mesh are shown in Fig. 6.  Although both methods presumably con- 

verge quadratically to the same result, it is clear that the use 

of splines gives a more accurate calculation for a given mesh 

spacing.  Since the computing time goes approximately as h~4, 

this gain is of considerable practical importance. 

Other workers23'24'25'26 have used a variety of schemes to 

calculate the thermal lens effect by integrating the wave equa- 

tion.  On the basis of preliminary reports we believe our method 

is far more economical for a given accuracy. 

IV.  Conclusions 

As the example shows, our method works quite successfully. 

We have applied it to many cases of interest.  But it should be 

pointed out that if the wavefront is severely distorted from the 

reference wavefront, the resulting phase difference, even if it 
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1.03 

-1.03 1.03 

Fig.  4.   Contour plot of intensity after passing through thermally blooming 
medium with an absorption path of 3 m.   Contour spacina 2 dB.    Beam power 
70 W,   diameter 7 mm, absorption coefficient  6x 10"'* cm-!,   wavelength 
10. 6 urn.   Transverse mesh spacing h = 0. 25.    Central difference approxi- 
mation.   Maximum intensity is 114.4 W/cm2.    Number of z-steps is 16. 
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Fig.  5.    Same as: (':g. 4,  spline approximation. 
Maximum intensity 62.0 W/cm2. 
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Fig. 6. Same as Fig. 5, mesh spacing h = 0, 15, spline approximation. 
Maximum intensity 48. 6 W/cm2. Number of z-steps is 28. Required 6 
minutes of computing time on an IBM 360-67. 
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be   a smooth  function  of  the  transverse  coordinates,  will  lead to 

rapid  fluctuations  of B  in  the  x-y plane,   and therefore will 

require  a refined mesh.     This   requirement   is  particularly  severe 

at  short wavelengths.     For  such  a problem  it  is   likely  that   (real) 

amplitude  and phase   (instead of  the  complex  amplitude)   are  the 

most  suitable variables,   but   it   is  not  so easy  to  find a stable 

numerical method  for the  solution of the  resulting  nonlinear 

equations.     For  less  severe  cases  the present method  seems  good 

enough,   though  some economy   in   time might be  achieved by  combining 

Nassif's  refinement of  the  Fade  approximant with  third-order 

Hermite  L-splines.     The  experience  of  Ref.   11  suggests,   though, 

that  this  economy would be  achieved only  in  cases  where high 

accuracy was  required. 

11 
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