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ABSTRACT

an algorithm is presented for the numerical integration
of the scalar wave equation in the Fresnel approximation in
inhomogeneous media. The wave equation is reduced by a variable
transform to an equation describing the deviation from a Gaussian
reference beam. Large phase shifts are handled analytically in
combination with the longitudina. discretization using the Crank-

Wicolson scheme. This permits large step sizes. The discretiza-

tion in the two transverse dircctions is performed with the
Galerkin method, with spline functions as basis. An alternating-

direction scheme is used in inverting the implicit finite-differencc
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equations that result. An interaction of the longitudinal and
transverse discretization is described. A method of handling a

non-linear index of refraction is described, and the algorithm

is applied to the thermal lens effect.
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Although calculations of the propagation of a diffracting
light beam have been made for over a century, almost all of them
have been analytic approximations when exact procedures are not
3 appropriate. Recently faced with a problem of nonlinear propaga-
= tion to which an analytic solution seemcd impossible without
crippling assumptions, we have developed a finite difference
algorithm for the calculation of light propagation which has
. proven capable of giving accurate results with reasonable economy

of computation.

> B Reduction of the Wave [Luuation

As our starting point we take the scalar wave equation

3 "

- E- 52 E-0. (1)

i c” dt

f It has recently been shownl that the scalar equation gives correct

results for electromagnetic propagation when polarization effects
are not important. Here € is in general a function of position,

not necessarily real (i.e., absorption or stimulated emission may

1 = ' .
.0 %a% 2 20

be present), and may also depend on the light intensity.

E 4 We define £ = Eo(l + ia/k) + 8¢, where k2 = Eo wz/c and

Eo is a constant. Here o may be a function of Z, though not of

X and Y, and 8¢ may be a complex function of all coordinates, and

o also of the field strength. Then we assume a monochromatic wave

- and remove the oscillations of highest spatial frequency by use
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of the Ansatz

E = U(X,Y,2) explikZ-iwt- %‘/;dZ] X

The beam is thus assumed to be propagating mainly in the 2z -
direction. If we now assume that the convergence (or divergence)
of the beam is small, that o << k and that 8¢ is not large

enough to cause sharp deflections of a ray, we may neglect

3%y . 2 3 5U
— - the Fresnel approximation - a“, 37 and ass and we are
02

left with the equation

2 2

2ik Y 4 9-% + i—g +k%cUu=0, (2)

02 oX oY

where Ae = Ge/eo ;

For 8e = 0 the solutions of this equation are well knownz-

’

they may be written

_ 1 2 2 1 ik

: Unm = 3 Hp(X/7a) H_(Y/a) exp[-(X“+Y =5 + =) @
-, . 2a 2R
i . -1 2
_ i (m+n+ 1) tan Z/kao] ; (3)
! where
< 2\2
% ka
X 2 _ 2 2,2 _ ( o) ] ;

a”~ = a, [1 + (Z/kao) ] , R= Z[l + o , and Hm is a
S | | L
5 Hermite polynomial. The parameter a, which is the measure of

the transverse scale, shrinks or expands as the beam converges

to or diverges from the focus.
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For numerical work with this problem, it is convenient to
have a mesh that varies as the scale parameter a varies, since
the cases of practical interest are those that do not deviate too
grossly from the unperturbed case. Therefore we introduce the
variables x = X/a, y = Y/a. Since the parameter AZ/(AX)2 deter-
mines the stability and convergence of a numerical approximation
to this parabolic equation, it is convenient to introduce a new
axial variable such that this parameter automatically remains
constant as the x and y meshes vary. This 1s accomplished by
introducing z = tan.1 Z/kag and using a constant Az. It may be
noted that (Az/(Ax)2>-l is just the Fresnel number of a range
Az Wwith respect to an aperture of radius Ax. Finally it is
helpful to normalize out the rapid phase variations in the x-y
plane, and the amplitude variations that come simply from the

change of scale:
U=alB explik(x2+¥2) /2R - i tan"! z/kal]

.a;I B cos z expl i(x2 + y2) tan z - iz] . (4)

With these changes in dependent and independent variables, the

approximate wave equation becomes

2 2
21 B , 4°B + 3"B i (2-x2-y2+k2a2A€)B
2 N2
9z 9% oy
_ 5: 9B _ 4 + F _
= 2i T (LxLx ¥ LyLy)B G B 0 . (5)
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Here the ladder operator Lx = % + X, its adjoint Lx =" e %,
and G = -kzaer. It will be recognized that, aside from the

term in 4e, this is just the time-dependent Schrodinger equation
for the two-dimensional simple harmonic oscillator, with the zero-
point energy subtracted out, and the variable z corresponding to

time. The complete range of z from - % to g corresponds to one

half-period of the oscillator.

Another grouping of terms is possible and in some practical

cases preferable. The choice L; = 3% and G' = x2 + y2 12 = kzazAa

leads to numerical advantages for large values of |x| or |y|. The
general discussion that follows does not depend on which of these
choices is made.

It is still possible to simplify Eq. (5) for numerical work,

by recognizing that the term containing G can be removed analytically.

For this purpose we introduce the new variable
z
D = B exp (i/Z/G dz') = B exp(il) , (6)

which is a unitary transformation if G is real. The lower limit
of integration will be specified later. We shall also discuss
later the problems that arise when G depends on B. The variable
change Eq.(6) can be of considerable practical importance, re-
ducing the number of longitudinal steps by as much as an order of
magnitude.

Then the equation finally becomes

oD 0

2iF'HD= (7)

4




where the operator H is given by

- v 30 + 1‘+ -y
H = exp(il") (LxLx + uyLy) exp(-1T) . (8)

It is Eq. (7) that we approximate by finite differences.
Some workers have considered it desirable to choose another
set of transverse variables so that the transverse boundaries arce

at a finite distance. We do not believe this is desirable,

because the maximum step size in z is limited by the smallest

physical mesh spacing, while the accuracy of discretization is
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limited by the largest physical mesh spacing in regions containing
an appreciable fraction of the energy flux. We may however point

out that if such a change is made, a simultaneous change should

SR

i SR

be made in the dependent variable, in such a way that the trans-

3 verse differential operator remains in Sturm-Liouville form. Then
E’ the standard difference approximation will be a Hermitian operator,
? which is important for our numerical method as outlined below.

|

E II. Numerical Method

F Thé choice of a numerical method is of central importance,

ﬁ for practical recasons, and we shall therefore discuss this gques-

tion in somec detail. It is generally considered that complicated

problems in partial differential equations are most readily approx-
imated by finite difference equations, and this is the approach
that we have used. We shall consider first the discretization in

the longitudinal direction, then that in the transverse direction;
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and finally we shall discuss methods of solving the resulting

set of difference equations.

e
F

l. Longitudinal Discretization

1 >
SR SN AP EY )

We start by considering discrete coordinates in

: = + / ] .
2 zn+l 2 Azn, where the uzn need not all be the same To

n

advance in z we use the Crank-Nicolson algorithm:

D(n+1) 1 - iAan/4 (n)

D

. - (9)
1l + 1Aan/4

or

R A 2
i
.'.‘.‘-'.-4

(n+1)

; (1 + iaz fi/4) D (1 - isz_fi/4) ptn) (10)

i “l~ 'l- ]

Here D is still considered to be a continuous variable in the

B

transverse directions. If H is an explicit function of z, some
intermediate H must be used, as will be discussed later. The

Crank-Nicolson approximation has a truncation error that is

2 e 2
2 Sl S

O(Az3). Goldberg et al3 have used this algorithm in the analogous
i case of the time-dependent Schrddinger equation. They point out
;‘ that if H is hermitian (which it will be in our case if G is real)
the algorithm is unitary, i.e., the inner product (D,D) is
conserved.* This corresponds to conservation of energy flux in
our case, and to conservation of probability in the Schrddinger

case.

o 4'.(. a1

e 4,

a * *
. The inner product is defined as (f,q) j[f g dx dy.

%

Ll et




The Schrodinger analogy suggests that other conservation
laws are obeved by the exact solution, and should be obeyed by
a good approximate solution. In the Schr6dinger case these a::
the laws of motion for energy and momentum; they correspond in
our case to energy density and beam deflection. We distinguish
between energy flux and energy density; when the index of refrac-
tion is not a constant, the integrated encergy density is not a
constant ¢f the motion, but rather varies with the variation of
light velocity in such a way that the flux, which is the product
of velocity and energy density, is conserved. (In the Schrodinager
case this corresponds to motion in a time-dependent potential.)

To be exact, the law of motion for the integrated energy density
is

oH

T D) (11)

d =
a_z' (DrHD) = (Dr

The Crank-Nicolsfon algorithm leads to the following approx-

imation to this equation of motion:

(2,000 Gz, vz ) - (piz)), H(z) Diz)) =

(btzp,q) tH(z ) - B bz ) + (Dlz,), (A -

H(z )] D(zn))-

This will be a good approximation if H is chosen to be some average

of H(zn) and H(zn+l). There are two obvious choices:
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H = 5 [H(zn+l) + H(zn)] and H = H(zn + Azn/2). Either is satis

factory, but we take the latter for reasons that will appear
later.
Similarly, the law of motion for the integrated (transverse)

momentum is
_.d 1 — l - .
T i (D,VD) = 5 (D, [VH HV]D).

The corresponding law, derived from equation (10) by multiplying

both sides by iV(D(n)+D(n+l') and taking the real part, is

('™, vy = 82 (5, (v7 - FVID)

(n+1) yp (n*+1), Lz
2

if(p ’

1

where D = 5 (D(n)

+ D(n+l)

). This is clearly a satisfactory form.
The usefulness of conservation laws in designing difference

schemes has been emphasized by Morton4, and some results on a

scheme essentially the same as ours for equations of Schrédinger

type have been derived by Kreiss.5

It is known that conservation
of energy flux is by itself sufficient to guarantee stability

(and therefore convergence), in this case. This is because the
conservation of the positive definite quantity (D,D) automatically
limits the excursions of |D|. The importance of the law of motion
of energy density which involves the positive definite quantity
(D,-HD) has not previously been emphasized. It is clear though

that a difference scheme that limits this quantity through a law

of motion will automatically limit the excursions of |VD|. This




may be particularly important where changes in D are largely due
to changes in phase rather than amplitude. The momentum conser-
vation law will be »f smaller pPractical importance because the
conserved quantity is not positive definite, so that cancella-
tions can occur.

The fact that an algorithm obeys conservation laws 1s not
a4 necessary condition for stability, as is evident from the fact
that the method of Harmuth-6 does not do so; but it is a sufficient
condition, and this is all that one ordinarily requires in prac-
tice. The Crank-Nicolson algor.thm is stable for all values of
4z, while this is not *rue of the Harmuth algorithm. The limita-
tion this implies on 4z is more apparent than real, though, since

some limitation on Az is required for accuracy in any case. Both

schemes are O(Azz); the coefficient of A22 is not known a priori,

but it appears experimentally that it is usually smaller for
conservative schemes.7 The principal advantage of the Harmuth
scheme is that it is explicit, for the central difference approx-
imation.‘ Since this advantage is not retained when one uses the
more accurate spline approximations for the transverse discretiza-
tion discussed below, and since the Illarmuth method requires twice
as much storage, we have seen no reason to prefer it to the
Crank-Nicolson scheme.

For higher accuracy in the longitudinal direction, one may

use a generalized Crank-Nicolson scheme proposed by Nassif8 and
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applied by him to the diffusion equation. He points out that
the usual Crank-Nicolson scheme is simply the 1,1 Padé matrix
approximation of exp(-i zn§/2), and that the higher approxima-
tions may be found by using higher order Padé approximants.9 He
further observes that the calculation becomes computationally
practicable if the approximants are factored. For our problem
this approach would be entirely feasible as long as diagonal
(e.g., 2,2 or 3,3) approximants are used, for in this case all
the conservation laws would be satisfied. The approach would
perhaps even be more natural in our problem than in the diffusion
problem, for the factorization introduces complex numbers, which
are not originally present in the latter. We have, however, made
no attempt to apply Nassif's refinement to our problem.

We may now specify the lower limit to the integral in Eq.
(6) . This limit we take to be at the half-way point zﬁ + Azn/2,
so that in effect ve make the variable change Eq. (6) anew at
every step in z. This leads to [ = 0 at the halfway point, and
thus from Eq. (8) H = LiL + L;Ly. It is evident that with this
choice H is always Hermitian, and the algorithm will always be
stable even if G is not real, i.e., if absorption or stimulated
emission are present.

We may then rewrite Eg. (10) in terms of the variable B,

which is the one used in actual computation:

(n+1) (n)

(1+iAznﬁ74) exp(il ,,) B = (1-iAzni/4) exp(il ) B (12)

+

10

.......




n+l

z
f G dz. (12a)
+

z /2

A
n
o1
where | = = G dz ,
n 2

zn+Azn/z

N

N

2. Transverse Discretization

So far we have considered B and D to be continuous
functions of x and y. We now proceed to impose a mesh in the
x-y plane, with mesh lines at x = X;r ¥ = yj. But instead of

making the usual central-difference approximation for the deriva-

tives at the mesh points, we approximate D by spline functions:

I)z[);iLj Dij wi(x)wj(y) : (13)

The spline basis functions wi(x) are defined by

wi(x) =0 if xgxi_l or xei+l
wo(x) = 1. (14)
The behavior in the intervals Xy 1Sx<x and xl<x<x +1 may be

chosen in any convenient way, but ouly two choices are of interest

to us here. The simplest choice specifies that

2
_§7 wi(x) = 0 except at mesh points. (15)
dx

This leads to the so-called roof function or chapeau function, the
linear spline basis function, which corresponds in one dimension
to simple straight-line interpolation between mesh points. It is

suitable when all regions cof the plane are to be treated equally.

......................
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But our coordinate transformation has led to an equation which,
to speak in Schrodinger language, has a central potential. This
leads to fields that decrease rapidly at large distances, as 1is
evident from the cigenfunctions of Eq. (3); for fields that do.
not do so the Fresnel approximation is not valid. 1In this situa-

10,11

tion the so-called L-spline basis functions are more appro-

priate:

+
L L, wi(x) = 0 for X not a mesh point. (16)

These functions are very sinilar to the chapeau function for

small |x|, but have increasing curvature for increasing |x|, and
thus can approximate a rapidly decreasing function more accurately.
In fact they can reproduce exactly a Gaussian centered at the
origin. Examples of these L-spline basis functions are shown in

Fig. 1. For a finite number of mesh points the end segments (with

either choice) are treated somewhat differently:

wal(x) 0 for -m$XSXl

= <n
waN(x) 0 for xNSx_

These conditions lead to the formr

2
- . -_— <y
wl(x) = exp K for _X_hl

wN(x) exp P for x, SxSw

N

which automatically satisfy the boundary conditions at infinityv.
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. At this point we should say a little more about spline

X functions, since they are not well known outside the applied

>
-

% mathnematics community. Polynomial spline functions were intro-

LTy

duced by Schoenberglz, and have been extensively used for inter-
x polation and approximation, with cubic splines being favored.

- Although a number of books have appeared dealing with spline

L functions and spline approximationl3’l4’15, these have been

~ written in the language of functional analysis and are not

/% addressed to the general technical reader. Furthermore, except

k. for the articles of Jerome and Varga in Ref. 14 and of Schultz

g in Ref. 15, they hardly touch on the use of splines in the solution
,3 of partial differential equations. The most important results

% for our purposes are that pclynomial spline approximations using

polynomials of degree (2m-1) will converge to a given function

with an error (in some norm) that is O(hzm), where h is the

mesh spacing, if the function satisfies certain continuity condi-

; tions; and that this form of approximation is particularly suited
to approximating functions that are rapidly changing. Thus these

: functions can be used as basis functions in a Ritz or Galerkin

; calculation, since the requirement on such basis functions is
essentially that they be capable of forming a approximating

} . sequence that converges to the desired functic

: We apply the Galerkin method to Eq. (10):
. 1 ~(n+1 _ ) v e woaI=(N)
) Gwi(x)wj(y), [1+1LGH/4] p'n )) = (wi(x)wj(y), [1-1¢an/4]D n )

(19)

14




for all i,j. This is equivalent to a Ritz vdriational procedurec
if H is self-adjoint, but is also applicable to more general
cases.T It may be rewritten in matrix form in the following way.
Define the matrices Cx’ Hx as having the elements

+
(Cx) ik e (wi’tﬂk) ’ (Hx)lk . (wi 'LXLka) - (L "‘I IL \Y )

Then if the vector D is defined as having the components Dij’

cquation (19) becomes, in matrix form,

lAzn ~(n+1)

[CXQCY & y) (CXGHy + H ®C )] D

= [C_OC N (cen + 1 oec)] o™
Xy i Xy

where the symbol ® denotes the direct product.
Provided that H 1s Hermitian the conservation laws for
energy flux and energy density are preserved by Eg. (19), in the

matrix form

~(n)

+(n+1) J(n+l) _ Z+(n)
D =D (c.ec,) D

(CXGCy) D

~(n)

+(n+J) 1 (n+1) o(n+1) _S+(n) o (n) g -

bt (n+1) (H(n+l) {5 p(ntl) o+ (n) (& o(n)) [(n)

[

'Our procedure is essentially that of reference 11, and has
much in common with the finite element methodl® and the work of
Pose.l? The use of splinc functions in conjunction with the
Galerkin method has the great advantage for numerical work that
the matrices to be inverted are sparse.
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¢ with the matrix H( ) u“md”( Ve ”x( )GCY » and so on.
- The law of rotien 7or momoentum is no® similarly preserved
S in general. Defining an x-morentns -atrix
il : "

P ). S1f W, —w, dx = (D, .

( x)lk 1w Tk ( £ wi °
‘ 1
L~
1 . . . - 5 3 . . . .
SO one can derive an ognation of rmetion that involqes the sSvrmetriaed
. . - B g : &
matrix P T 5 (9, C.+ C.P ;¢ ¢ and the commutateo: P =

S 2 Zo o Y “a
. 1 .
. P G =C P )@
. 2 KM TxTx 52
- “+(n+1 “(n+] t(n nj

)P (n+1) 0 (n) | D(
. XS xS
: ilz =+ - . . =, ‘+(n+1 .(n +{n (n+1)
b, —— D (P & - " )oeC D+D( ')L D()-—D‘)P D( ),
- 2 XX X X ¥ xa xa
; ; = . I piin ~(n+1 . ;
: where D = 5 (D ) + D(‘ )). The terms containinc an, which
all
f represent a deviation from the desired form, vanish if one uses
-.i
linear splines for the w.. They do act vanish if one usecs I.-
X Splines, but they are small. Bocaus tihe momentias law oy ot
X deal with the conscrvation - | Bortbe b e fihikre g BRELEy , Fe uo
s not believe this defect is »f praciica: sportance.
. 3. Discretization Inrcractions
- The effect of using the apvroach eutlinod above instead
: of simply substituting ti. contral-dificrence approximation for
kY
A the second derivatives may be illuctrated by consticring a simpler
|
b example. The equation
<
L |
b 16
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would be approximated, using the central-difference scheme, by

(1 = 20 g%, pl®

i .2 b(n+l) :

. ‘ (I - = 5%)

( > (21)

. 1. . ;2 _
Here the matrix operator 5° is defined by (¢ D).l = 1+l -2D. +Dl 1

I is the unit matrix and n = Az/2h2. With the Galerkin method

and linear splines, the analogous approximation is

in ¢2) pln*l) _ (o 4 12 02y p(n) (22)

A8

O
»

(c -

L1

where the operator C I + % 4%, This comparatively small change

makes a considerable improvement in the accuracy of the integra- '

oAt S

tion without any addition to the computation time. We remark in

passing that it is not equivalent to fourth-order accuracy in the

x-direction, which would be achieved by the choice C' = I + w3 :°.

This latter choice would presumably converge more rapidly for

small mesh sizes, but is less accurate for larger mesh sizes. An

X analogy to this is the difference between Taylor-series approxima-

i
_ N

tion and Chebyshev-economized approximation; for a given numbecr
of terms the former is more accurate near the origin, but the

latter has 2 smaller maximum error over a wide range.

PAl e

The advantage of Eq. (22) over Eg. (21) may be illustrated

by considering the propagation of the function elkx, which 1s an
eigenfunction for both the differential and the various finite-

difference ecquations. 'The exact solution to the differential

LA
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equation gives a phase change ¢c = - .n,(kh)2 for propagation
through a distance ..z. For the finite difference schemes k
assumes only discrete values, with a maximum kh = 7, corresponding
to the Nyquist frequency.

The corresponding phase change ¢ for equation (21) can be
cd

found by observing that

5% exp(ikx;) = ) exp(ikx,) with \ = -4 sin? K
so that
7 _ 1 + il‘g,'\,/z
explideg) = T=1mi/7

This leads to the result

N -1
¢cd = 2 tan (nx/2) .

A.similar calculation using equation (22) yields
_ -1 ni/2
¢sp = 2 tan (i + X 6)

and the fourth-order choice C' leads to
- -1 n\/2_

Thé differences ¢c - ¢cd' ¢c - ¢4, and ¢c - ¢sp are plotted
in Fig. 2 for n = 0.4. 1In order to show the effect of a change

of n, in Fig. 3 we plot 2(':;c - ¢cd)' 2(¢>c - ¢4), and 2(¢c = ¢sp)
for n = 0.2. These curves thus correspond to the same advance in
2 as the curves of Fig. 2. 1In both cases it is clear that ¢s is
a better approximation than ¢cd or ¢4 at high spatial frequencies.
It is also clear that for intermediate frequencies n = 0.4 is a

better choice than n = 0.2, while the opposite is true at high

18
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freguencies. In elthier case, the implication is that Eg. (22) '

[ e

can be used with considerably larger values of h than Eq. (21).

4

4

‘l -

Since the compu:ing time 1is approximately proportional to h

this is an important consideration.

& ' We may also define the corresponding quantity for the

@ " Harmuth method6

¢H=t sin-l(nk).

In Fig. 3 we also plot 2(&:C - Y,). The Harmuth method is unstable

i

'.Jl .l " .'

for n > 0.25 and the phase shift is therefore not included in |

¥ Tl

Fig. 2.

4. Practical Considerations

Direct inversion of the matrix Eq. (20) would be very

time-consuming. Instead we use the alternating-direction approx-

- imationt8/19 the following form:
idz idz " (n+1) idz iAz “(n)
. + == —= = - —_ e

(Cx 2 HX)Q(Cy + 2 Hy) D (Cy 7 Hy)Q(Cx ) Hx)D
- (23)
‘H Since all the matrices in this equation are tridiagonal, and
: furthermore are diagonally dominant, the standard algorithm20 for
é Gaussian elimination is available and is numerically stable.

*

- Although the interaction between longitudinal and transverse
o mesh sizes is considered in the usual stability analyses of )
x finite-difference schemes, we are not aware of any general dis-
y cussion in the literature of the influence of this interaction
A on the relative "fidelity" of such schemes. 4
b

20

]
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Although the numerical scheme of Eq. (23) is stable for all n

a small value of n (< 0.5) is necessary in order to insure a
reasonably accuratc calculation of phase change, as we have seen
in Section II.3. This is equivalent to the requirement that Az
be less than one quarter of the Rayleigh range of a disc of
radius h.

The use of the alternating-direction approximation in the
form of Eq. (23) means that somewhat different conservation laws
are obeyed, but in practical cases it turns out that the differ-
ences are small.

When Ae is a given function of space the computation of T
for each step presents no difficulties. But when Ae depends on
B the problem is not so easy. Fortunately in most problems
concerned with monochromatic radiation (as opposed to harmonic
generation, for example), the dependence is on IB[Z. .Since the
variables D and B differ only by a phase change, a knowledge of
D(n+1) is sufficient to permit the calculation of Ae(n+1).

we make the approximations

In the inteagrations leading to an evaluation of the T's,
Eq. (l2a), the z-variation of G is assumed to be only due to

the variation of a(z), which in nonlinear cases also appears

in Ae.

21
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Although our approximations for F(n) and F(n+l) have truncation
errors that are O(Azz), the symmetry of Eq. (12) leads to a

truncation error in the overall process that is only O(Az3).

Tt

We have used both linear splines and L-splines as basis

e functions, both with the end conditions of Eag. (18). Although

. in principle the L-spline functions are more appropriate, in
practice we have found little difference in the resuits. In
cases where Ae = 0, so that one can compare with analytic expres-
sions, the L-splines are more accurate, but we have considered

that the differences are not usually enough to warrant the extra

. effort.

IITI. Application to the Thermal Lens Effect

The method of integration described in the previous sections
b has been used to calculate the propagation of a beam in an ab-
: sorbing medium in a transverse wind.

For this physical situation, which is discussed in some
detail by Wallace and Camac,21 the dielectric constant can be
written
; e/eo =1+ ia/k + Ge/eo ;

- where the absorption of energy leads to

r-ELlf
QE = 3T pcp v . I(XyY) dx.

Here o is the absorption coefficient, T the temperature, v the

velocity of the wind in the x-direction, and I the flux density.

a'a's B #_F
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An example of the calculations using the experimental con-

ditions of Kleiman and U'ueil22 is presented in Figs. 4 and 5,

which show intensity contours calculated for the same physical

parameters, and with the same mesh, by the central-difference

approximation and the Galerkin method, with spline functions as

"- basis. That the spline calculation (Fig. 5) is the more accurate

is shown by a comparison with the results when the mesh is

refined. The results of the central-difference calculation then

change in such a way that they approach more closely the spline

calculation. The results of the spline calculation with a finer

mesh are shown in Fig. 6. Although both methods presumably con-
verge quadratically to the same result, it is clear that the use

of splines gives a mcre accurate calculation for a given mesh
-4

spacing. Since the computing time goes approximately as h ,

this gain is of considerable practical importance.
Other worker523’24’25’26 have used a variety of schemes to
calculate the thermal lens effect by integrating the wave equa-

tion. On the basis of preliminary reports we believe our method

is far more economical for a given accuracy.

IV. Conclusions

As the example shows, our method works quite success fully.
We have applied it to many cases of interest. But it should be
pointed out that if the wavefront is severely distorted from the

reference wavefront, the resulting phase difference, even if it
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Fig. 4. Contour plot of intensity after passing through thermally blooming
medium with an absorption path of 3 m. Contour spacing 2 dB. Beam power
70 W, diameter 7 mm, absorption coefficient 6 x 10~ cm-1, wavelength
10.6 um. Transverse mesh spacing h = 0.25. Central difference approxi-
mation. Maximum intensity is 114.4 W/cm2. Number of z-steps is 16.
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Maximum intensity 48.6 W/cm2.
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Same as Fig. 5, mesh spacing h = 0,15, spline approximation.

minutes of computing time on an IBM 360-67,
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be a smooth function of the transverse coordinates, will lead to
rapid fluctuations of B in the x-y plane, and therefore will

require a refined mesh. This regquirement is particularly severe

.i.l;l'l"‘il;

at short wavelengths. For such a problem it is likely that (real)

E amplitude and phase (instead of the complex amplitude) are the

Bty

y most suitable variables, but it is not so easy to find a stable

-~

. numerical method for the solution cf the resulting nonlinear

1 equations. For less severe cases the present method seems good

i enough, though some economy in time might be achieved by combining
: Nassif's refinement of the Fadé approximant with third-order

XN Hermite L-splines. The experience of Ref. 11 suggests, though,
"y that this economy would be achieved only in cases where high

accuracy was required.
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