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1.  INTRODUCTION. 

A previous report by Stoutemyer 111] describes how computer 

algebra may be used to analytically determine the maxima, minima, 

and saddle points of a function of several variables — either 

unconstrained or subject to equality constraints and/or 

inequality constraints. This report describes how computer 

algebra may be used to derive the differential equations that 

must be satisfied in order to give stationary values to a 

constrained or unconstrained functional of one or more 

independent variables and one or more dependent variables. For 

simple enough cases, computer algebra is also used to derive a 

closed-form analytical solution to these equations. 

Section 2 outlines the analytical techniques that have been 

implemented.  Section 3 is a discussion of the programming 

considerations for the demonstration listing in Appendix 1 and 

the optimization programs in Appendix 2. Section 4 summarizes 

some test cases.  Section 5 contains conclusions and conjectures 

about other ways that computer algebra may be used for 

variational optimization. These sections may be read in any 

order. 

■ 
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y(a) ■ y(a), 

y(b) - y(b): 

(1) 

(2) 

2.  MATHEMATICAL TECHNIQUES. 

This section briefly states the mathematical principles that 

are Implemented in the p.-ograms. There is no attempt at 

completeness and "igor, which can be accomplished only in a much 

lengthier presentation.  The emphasis is on construction of 

candidate solutions that satisfy the necessary differential 

equations and ooundary conditions. 

T 
Let  u « (y . y , ..., y )  be a function of  t, continuous 

1  2       n 

with a continuous firsv derivative almost everywhere on 

■ <■ t <■ b; and let  y satisfy the following boundary conditions, 

isoperlmetric constraints, and di fferential constraints: 

• ■ - \ 

I 

:• 

/b 
i 

J - i f (t, y, y') dt,   (j - 1, 2 p);      (3) 

j   I  J 
/a 

f (t, y, y') =0,     (j - p+l, P+2 q). (4) 

j 

Ue seek among these admissable y, the particular ones. 

denoted y, that make the following functional, J , a local 

extremum: 

■ ' - ^ - • - 
i ..■• ^ ^- ^-«--1--. •-- ^'. ^\ .• ■L'.«-■«-' ^' «-•'■ --'i-^ •-• •- -- ^ "- ■ '- '-  - " '- v *- '" '-  ■ 'v, ■> ^ . 



^^•^■^p^^^^^^^^^l J ^^^^^^^^^^*^ 

/b 
I 

J    -   I   f   (t,  y,   y')   dt. 
8       I     B 

/a 

►     . 

(5) 

Here    a,   b,   n,   p,   q,     and    J      through    J      are given constants. 
e p 

An inequality constraint, ^(t, y, y') <- 0, with ^ > q, 

may be converted to the form of (4) by adding the square of a new 

2 
dependent "slack" variable, y , to (JV  f - 4^+ y - 0. Note 

also that (3) includes algebraic conetraints, where y*  is 

aosent. 
i 

Denoting  (f , f f )  by f and  (A, A , 
0  1 q 

by A, let the augmented integrand be tne inner product 

T 
F(t. y, y'.X) - A f, (G) 

where A  through \      are unknown constants, and A   through 
0 p P+l 

\     are  unknown functions of t. Also, let 

^F ^F     >F T 
F ■ '?"i ~~» •••i r~'» 
y   dy ^y     dy 

1  2      n 

^F ^F     ^F T 

y'  ^y' V    V 
1  2      n 

where   the derivatives are  taken as   if     t,   y,   and    y'     are 

independent.     Then A j< 0    and    A   is continuous,   except  possibly 

where    y*     is discontinuous.     Also,    A   and    y    satisfy  the DuBois- 

Reymond   Intnyro-differential   equations: 

I 

■:-: 

K 
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/t 

F (t, ., y'.X) - I F (r, y, y'.X) dr+ k, (7) 

y* " y 
/a 

uhere k is a vector of integration constants. Wherever y' 

does not exist, it may be taken consistently as either the left 

or right derivative, where both are presumed to exist uniquely. 

If y and X satisfy (7), then so do y and any multiple 

of X ; so without loss of generality, we may normalize  A to 1, 

using any vector norm. Alternatively, when there are no 

differential or algebraic constraints, we may set  A   to anu 
B 

arbitrary nonzero constant, such as 1. 

Uherever y'  exists, (7) may be dirferentiated to give the 

Euler-Lagrange equationai 

- F  (t. y, y'A) - F (t. y, y'. A),        (8) 
dt y' y 

When F does not depend explicitly on t, it can be 

shown tnat 

y* F (t, y, y'. A) . F(t, y, y'. A) + k ,      (9) 

y' 0 

where k  is a constant. For many physical systems, (9) is a 

statement of energy conservation. Also, when F dees not depend 

explicitly on some y , (7) gives 
1 

F (t, y, y'A) - k . (10) 

y* 
i 

fc *. • 

.... 

TO 

i— 

•.-:■.-:•• 

■-■.v'v 
.'•vM 
r 

•--'-'--'-•'-'-• -• '->  •"->'-•-•-•-■••"-  ■  ■       '   '  ■        - -■  ■  ^      •  -•   -   •   •  ' -       -  ■  '  •   •■ . .-     -r 



".T :■_ .■ -   • •■ .■ ■ ■ ."ji"" .■ .■ .■ .« :•   •  .■ '.■ ".• ,• ,■ ■.• ," .» •." .' ■.■—.• .•'?.. V .' - . •. - . V . > - • - ■ " -■ V .' .• " ."■—^T 

For many physical systems. (18) is a statement of the 

conservation cf momentum or of some analagous quantity. 

Another special case that occurs frequently in practice, is 

when F  is linear in some y*, making the corresponding 

id 

• 

differential   equation   in     (8)   degenerate  to an algebraic  equation 

(more precisely,   to an equation   in  finite  terms). 

Not   treated here are well-known generalizations  to more 

complicated boundary conditions,   direct   inclusion of  a  term 

g   [a,   y(a),   b,   y(b)]     outside  the  integral   in   (5),   or  solutions 
0 

with corners.    However,   the program does direcJy  treat  problems 

with derivatives up   to arbitrary order    m     in    F,   in which  case 

(8)   generalizes   to 

R j 

r»     j d 
>   (-1)     — F      v 
^ dt    yU) 
j-l 

- F    . 
U 

(11) 

where 

.0) 

> V V     1 
^ dJy. d-'y 

dt dt 

dJy 
>(--.?) 

dtJ 

Uhen    J    is a multiple integral  over an arbitrary number of 
0 

independent   variables,      t   ,   t       t   ,     the  derivative  on   the 
1       2 r 

left side of (11) generalizes to a sum over all partial 

derivatives of total order j.  For simplicity, the program in 

Appendix 2 treats only the case with no mixed partial 

■ 
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derivatives,   for which   (11)  generalizes to: 

m r      j 
J      ^ d 

Z(-l) >     — F  (j)  " F    ' 
*-» dt    y/M        y 

J-l i-1 

(12) 

where 

-, 1—,   • • •» 

The maximum principle is an approximately equivalent 

alternative to the calculus of variations:  To convert a problem 
h 

similar to (1) through (5) to a form suitable for the maximum /. 

princlplet 

1. Substitute an additiona' dependent variable, y^, for ^ 

every y*  that occurs in f  In (5), and include corresponding •. 
0 

constraints, y* - y • 

! ^ 
2. Uherever t occurs explleitly in (3?, (4), or (5), C 

substitute another dependent variable, y , and include the 

additional constraint y' - 1, together with the boundary 

condi t ion    y/}(a)   ■ a« 
p 

3. For each  Instance of   (3),   introduce a unique dependent 

variable    yv,  and  Include  the constraint    y*  - f  .   together with 
y j : 

; the boundary conditions y^a) - 8, y^b) ■ J . ■; 

J 4.  If a and b are considered fixed, introduce an 

additional dependent variable, y.. together with the constraint 

y' . 1, and th« boundtry condltiont y (a) ■ a, y^(b) - b. 
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5. If    J       includes a  term    g   [a,   y(a),   b,   y(b)]     outside 
8 0 

the integral, introduce another unique dependent variable, y , 

replace  f  uith f + y , and include the constraint  y.' = 0 

0       0i ( 

together with the boundary condition y^a) - g /(b-a). 
1     0 

6. Except for time-optimal problems, introduce a new 

variable y  together with the constraint y' = f . 
0 0   0 

7. Differentiate any of (4) that are algebraic rather than 

differential constraints, and include the algebraic form evaluated 

at  a or at b as a boundary condition. 

8. Solve equations (4) simultaneously, and combine with any new 

constraints introduced by the above substitutions, to get all of 

the differential constraints in the form y' ■ f(y). 

The dependent variables that appear in the der-atives are 

called state variables, and the other dependent variables are 

called control or decision variables.  Uithout loss of 

generality, let u denote the vector of control variables 

and let  x denote the vector of state variables.  He may 

then write the differential constraints or state equations as 

x' - f(x, u). (13) 

Letting T denote a vector of unknown time-dependent 

auxiliary variables with the same number of components as  x, the 

1 . 

- • ^ ■ - 



Hamiltonian   is defined by 

T ~ 
HWii),   x(t).   u(t)]   -Y    f(x,   u). (14) 

(15) 

The  auxiliary equations are defined by 

xf'   - H  . 
x 

T 
where H - Ohl/^x , bH/^x , ...) .  Then 

x       1      2 

the optimal control maximizes H with respect to u, while 

satisfying the state and auxiliary differential equations 

together with the boundary conditions,  floreover, the maximum 

value of H  is nonnegative. 

At maxima where  (^H/iu . ^H/^u , ...)  exists uniquely, 
1     2 

it will be zero.  This necessary condition may be used to help 

determine an analytical solution.  Using Lagrange multipliers, 

elimination, changes of variable, and/or a combinatorial 

technique, this approach may be extended to the situation where 

u  Is subject to equality and/or inequality constraints, as 

described hu Stoutemyer [ill. 

Hit", the calculus of variations, an analytic solution 

requi res 

1. symbolic differentiation to derive the specific governing 

different'al equations. 

2. symbolic determination of the general closed-form 

solution to thest! differential equations. 

• - • - > ■ * * 
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i 
3. symbolic   integration  to  evaluate   integrals during 

solution of   the differential   equations. 

4. symbolic  solution of  simultaneous algebraic equations   to 

impose  the boundary conditions on  the general   solution. 
. •. 

Uith  the maximum principle,   capabilities 1  and 4 are  also 

generally necessary  to determine  the maximum of   the Hamiltonian. 

Virtually all   current  algebra  systems have built-in   facilities 

for  capability 1,   and also  for 4 when  the unknowns enter 

linearly.     Besides  these,  flACSYMA has built-in  facilities   for 

capability 3  and  for  the nonlinear case of 4,   as asscribed by 

Moses   171   and Yun   [151   respectively.     There are also   two MACSYnA 

programs available for capability 2.    One of  these,  written by 

Bogen   [2],  uses Laplace transforms to solve systems of 

arbitrary-order constant-coefficient   linear ordinary differential 

equations.     Any   inhomogeneous   terms are restricted  to polynomial, 

exponential,   hyperbolic,   or   trigonometric   functions.     The  other 

program,   written by Kuiper   [51,   uses a variety of   techniques   to 

solve   linear or nonlinear  first  or second-order ordinary 

differential   equations.     For  a brief  description of  a precursor 

to   this  program,   see Moses   [71. 

."   v   .« -'   -•   -• : £ .•.■--.--■ ^ -'•-••    ■   '• 
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3.  THE PROGRAM AND EXAMPLES OF ITS USE. 

•... 

^ 

MACSYMA is an interactive algebraic language with built-in 

capabilities for a variety of symbolic mathematical operations, 

including integration, differentiation, series expansion, matrix 

algebra, and the solution of simultaneous -onlinear equations. 

This language is currently available at "jome Honeywell G180 

MULTICS installations and on the M.I.T. MATHLAB PDP-10 system. 

The latter system is available on the ARPANET computer network, 

which is described by Roberts and Uessler [83. 

MACSYMA has funct'on-definit ion and file-storage facilities, 

so that a user may write and save programs that extend the 

built-in capabilities.  If of general int'jrejt, such user-written 

functions and their documentation may be placed in a public 

library disk file, where they are easy for others to find and 

use.  The variational optimization functions and demonstration 

described here reside in such files. 

MACSYMA .automatically prompts the user with increasing 

numbered labels Cl, C2, ...; and it automatically labels the 

corresponding output expressions Dl, 02, ... .  When there is 

more than one output expression, the 0-expression refers to a 

list of automatically generated labels beginning with the letter 

E. 

The variational optimization file contains three functions: 

The function EL generates and displays one or more labeled 

et)uations, then returns a list of the labels.  The equations »re the 

Euler-Lagrange equations, perhaps together with first integrals 

----■•-•-'■ 
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corresponding to conservation of energy and/or conservation of 

momentum. The former will contain a constant of integration Kt0], 

whereas the latter will contain constants of integration Ktil, 

with positive  i, and will immediately follow the corresponding 

Euler-Lagrange eiuation.  The function is used in the form 

EL (F, [y , y , ...• y 1. tt , t t ]), 
12      n    1  2      P 

where the arguments are as defined in the previous section. 

The function HAM displays two or more labeled expressions, 

then returns a list of the labels.  The first expression is the 

Hamiltonian, and the other expressions are the auxiliary 

differential equations, together with their general solutions, 

AUXU] - CU], whenever the i th differential equation is of the 

trivial form 'DfAUXtil.t) - B, as is often the case.  Here  t 

is the independent variable and CU]  is the undetermined 

Integration constant for the ith differential equation.  HAM is 

used in the form 

HAM ( [eqn , eqn , ...]), 
1    2 

with each eqn of the form  'Dls.t) - expression,  where  s  is 

i 

one of the state variables and "expression" depends upcn the 

state and control variables. 

The two differential equation solvers require their 

differential equations in different formats.  Consequently, the 

output of either EL or HAM is in the style required by the 

nonlinear equation solver 0DE2, and a function CONVERT  is 

provided to change the output to the form requirPd by the 
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constant-coefficient linear differential equation solver DESOLVE. 

CONVERT  is used in the form 

CONVERT ([eqn , eqn , ...1, ty , y . ...It t), 
12        12 

where each eqn  is an equation, each y  is a dependent 

i 

variable, and t  i s the independent variable. The output is the 

input equation or I is', of equations, with the dependencies 

explicitly indicated — for example, 'DCSJ)  would be replaced 

with  ,0(8(T)IT}.  For convenience, square brackets may be 

omitted from one-element list-arguments to EL, HAM, or CONVERT. 

The demonstration In appendix 1 illustrates various ways that 

these functions may be used.  Discussion of the optimization 

aspects of the examples is included in the imbedded comments to 

make the demonstration self-contained; so that discussion is not 

repeated or paraphrased here. However, the comments presume an 

elRmentary knowledge of variational terminology, such as 

"functional", "EuIer-Lagrange equation", and "HamiItonian". The 

demonstration also presumes an elementary knowledge of MACSYMA or 

easy access tc a manual.  The latter assumption, while probably 

true of anyone who succ ids In using the demonstration, «s 

probably not true of the irajority of those who read this report. 

Consequently, this section contains supplementary remarks about 

the programming aspects of the demonstration and program. 

Although no attempt is made to describe any nACSYMA feature in 

full generality, these remarks should suffice for this 

:- 
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presentation.     A complete description of HACSYMA   i-5  given  by 

Bogen et.   al.    [31 . 

1. Comments, which may contain any characters except the 

pair */, and may appear anywhere, begin with the pair of 

characters /* and end with the pair of characters */. 

2. Each expression xyped by the user is terminated by a 

semicolon or dollar sign that is not within a comment.  The 

dollar sign suppresses the printing of the D-expression. which 

the user may be uninterested in seeing.  The user may also 

introduce label names of his own choosing by inserting the name 

followed by a colon before the rest of his input express! ion.  Any 

labels may be used in subsequent expressions, where the., stand 

for the expressions that correspond to the labels.  Thus, labels 

fill the assignment role.  For convenience, the percent symbol 

may be used to stand for the immediately preceding D-expression, 

even if printing was suppressed by use of the dollar-sign 

terminator for the the immediately preceding C-expression. 

Similarly, %TH(i) may be used for the Ith preceding 

D-expression, with %TH(1)  equivalent to X. 

3. The listed computing times are in milliseconds. 

4. Subscripts are enclosed in square brackets, whereas 

function arguments are enclosed in parentheses. 

5. Not showr in Appendix 1, expressions labeled Cl  through 

C3 were LÜADF1LE{0PTVAR,LISP,DSK,SHARE), LOADFILE (ODER,LISP,DS\, 

SHARE, and LOADFILE(DES0LN,LISP,DSK,SHARE), used to load programs 

needed by the demonstration.  Also not shown, exp ession C4, 

'j-'- »"•>"' •'" ■"■ •'" ■'■ •'" •"■ •"■ -"■ •' •''"-"■V'>"*'-'-'.-"."-.■•'. - 
- ' - »'..•. 
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^RITEFILECDoK.SHARE), wa3 used to write al! of the tjbsequent y^y. 

output onto a disK file so that after insert ii-.g form-feed symbols, 

it could be printed later on a Xerox printer, improving the 

appearance of the reproduction. 

6.  BATCH  in C5  is used to read and execute the 

demonstration file.  In practice, a user would probably use the 

optimization functions interactively nstead, but thlc batch file 

al'ows the unaided user to witness a flawless demonstration, free 

of the inevitable typographical errors that mar an interactive 

I i st i ng. 

7. DEPENDENCIES(Y(X)), in C8, establishes that Y depend', 

upon X so that D(Y,X) will not evaluate to zero in the 

subsequent statement. The single-quote before D in CB 

prevented the evaluation of the derivative at that point. 

8. %TH(2)t2]  in C9 refers to the second element in the 

second preceeding D-expression.  In an interactive situation, it 

would be easier to use E7, but the specific label numbers are 

impractical to predict for a batch file, which could be loaded 

beginning at a point other than C5. 

9. EXPAND  in C10 causes the square roots to be combined. 

10. SOLVE, in CU, solves the equation which is the first 

argument for the subexpression which is the second argument. 

11. 0DE2  in C13, from the file ODER LISP, solves the 

first or second order ordinary differential equation which is the 

first argument, where the second argument is the dependent 

variable and the third argument is the independent variable. 

■£:■> 
■ ■. -. 

» 

k 
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12. SUBST, in C14, substitutes the left side of its first 

argument for the right side of its first argument, in the second 

argument. 

13. In C19, EXP denotes the exponential function, LHS 

denotes the left-hand side of an equation, and RKS denotes the 

right-hand side of an equation. 

14. IC  in C32, from the file ODER LISP, imposes the 

initial conditions indicated by its last three arguments on the 

general solution given by its first argument. The constants of 

integration in the general solution must be named Kl  and K2. 

As seen in C34, the "initial" conditions may be imposed at 

either end of the interval.  Not demonstrated here, an analagous 

function BC  imposes 2-point boundary conditions, and an 

analagous function INITIALI  imposes an initial condition on the 

general solution to a first-order differential equation with a 

constant of integration C. 

15.  C39  illustrates hou statements may be grouped in 

parentheses, separated by commas. ATVALUE imposes the initial 

condition given by its third argument on its first argument, at 

the value of the independent variable indicated by its second 

argument. 

IG.  DESOLVE  in C4e, from the file DESOLN LISP, solves the 

list of arbitrary-order simultaneous constant-coefficient linear 

ordinary differential equations given by its first argument, for 

the list of dependent variables given by its second argument. 

Uhen there is only one differential equation, square brackets may 

be omitted from bo h list arguments. 

• 

>•. ■. 
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2. Enclosing variables in a Mat at the beginning of a block 

declares them local, so that they are distinct from any variables 

with the same names that happen to exist outfide the block. 

3. The LISTP function is TRUE if its argument is a list, 

and FALSE otheruise. Its use here permits the convenience of 

omitting brackets from a one-element list argument. 

>:■' 

17.  In CG7, SOLVE is used to solve the simultaneous 

equations given by the list which is its first argument. Uhen ,-•->: 

there are more variables than equations, a list of the unknowns -^ 

■ 

must be included as a second argument. 

The remainder of this section is concerned with the f^-- 

definition of the variational optimization functions in Appendix .v 

2, which may be skipped by the reader interested only in using 

the functions or only in learning what they can accomplish. 

Appendix 2 and the following remarks are included for programming 

enthusiasts and for reference in case anyone wishes to modify the 

definitions or translate them into another algebraic manipulation 

language. 

it     In C5, the operator :- defines the funct jn HAN to 

be the value of the block that follows it.  In the absence of a RETURN 

statement, the value of a block is the value of the last expression 

enclosed in parentheses following the word BLOCK.  Expressions 

within a block are separated by commas, and they 

do not automatically cause output. 

•- 
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4. The PART  function permits isolation of any term, 

factor, operator, etc. in a function.  First it is used to 

isolate the second argument o* the DIFF  function on the left 

side of the first differenrial equation.  Later it is used to 

isolate the first arguments of the DIFF  function. 

5. As used here, the LENGTH  function returns the number of 

,' ' - V 

- 
•. . ■ 

■. 

• 

• V* 

.-••:-; 

v. 

expressions in its list argument. 

G.  Similar to ALGOL, the FOR prefix iteratively executes 

the expression following the word DO. 

7. The ENDCONS function appends its first argument to the v'.-.-jv 

.V-V" 
end of the list which is its second argument. v-v\ 

•'.' V- 
■""-' '- 

8. In CG, FRED  is used as an argument of the EV  function p^ 

to force the first argument to evaluate to TRUE or rALSE. >;l-".v 

Otherwise, "LT - 1" would be interpreted as an equation. 

9. DERIVDEGREE returns the degree of the derivative of the 

second argument with respect to the third argument in the 

expression which is the first argument. 

10. Substituting elements of the array DD for the derivatives 

. revents the appea. ance of the dependent variables in these 

derivatives from causing their participation in the partial 

derivatives with respect to the dependent variables.  This 

technique a"so permits a direct test of explicit dependence upon 

the independent and dependent variables, so that first integrals 

may be constructed when appropriate. 

v ■.' 

Sv ••;• 
.■ 0 

• •■. 

•:•••: *•*." 

iv 

•"- ""- '■ '"- "'"- ''- '"- ''••■■'■■■.• •^, «-•■•- >- ■»-' ^' «-' ■»-' •-' <-'. O ■■ -' «-^ «- ■ O 1-' ^-•'. --'i --' •-' •-" --" --' --" --" ■>■'■ 
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4.  TEST RESULTS. 

Regarding computer analytic variational optimization, the 

questions of interest are:  Uithin the available memory space and 

a reasonable amount of computing time, 

1. what are the most complicated problems for which the 

programs EL or HAM can derive the Euler-Lagrange or auxiliary 

differential equations; and 

2. of these, what are the most complicated problems for which 

0DE2 or DESOLVE can solve these equations? 

i 

Standard well-known computer programs and test cases are 

widely available for the optimization of a multivariate function, 

but this situation is not yet true for the optimization of 

functionals.  Consequently, a modest literature search was 

conducted to find suitable test cases.  The following three cases 

were the most complicated found: 

The first case, by Stuiver [12] is concerned with transient 

one-dimensional compressible gas flow.  A, B, and C are known 

constants;  Y  is the dependent variable;  T  is the time; and  X 

is the position along tta flow axis.  Here is an excerpt from 

the program Iisting: 

EL((A-,D(Y,T)-'D(Y,X)vnv2/2)vnvBvf(X+T-iC)vov2, Y, [T,X]); 

--■-•-•'---•-■'-'--'-•-■'-•-•---I- ■ - - - • * - ■ •-'-•-■---•-•--•--'-•-■'-•- 
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OY 2 
(—) 

D                                    2 DY           DX          DY B -  1 
(E13)   —   (- B  (X + T + f^    -  I ♦A) ) 

DX DX 2 DT 

DY 2 

□ 2 DX DY B -  1 
+ __   (_ B (X + T + C)     ( + A) )   =  B 

DT 2 DT 
TIME-  1G97 nSEC. 
(D13) K131 

Expansion of   the derivatives required another 914 milliseconds. 

Professor Stuiver reports   that   it  required considerably   longer 

than     (1B97 + 914)   milliseconds  to derive  and check   this  result 

by hand.     No attempt  uas made  to derive an analytic solution  to 

this partial  differential  equation. 

The  second case,   by Payne   tl0]   is an optimal   spacecraft  reentry 

problem.     J     is  the   functional   to be minimized,   Xtll      through     X t5] 

are  state variables,  U     is  the control   variable,   and  the    Ks    are 

known constants.     The   list of  state equations   is: 

:^N 

•. 

• 

DU.   T)   - X    K7 + X . 
5 4 

D(X  ,   T)   - - X    SINKX ), 
1 2 3 

D(X  ,   T) 
2 

t 
•. -. 

• ■:■•■ 

. 

SIN(X  )  K2 
3 

X    KG 
2 2        1 2 

X    K10 K5    %E (K13 SIN   IUJ   + K12) 
2 

K3 

. -w -v 

» 

-     - ■•--■-•■ •   •   ■  •   ■ 
'     ^-■^— -^-w^^-l^—-l«JL^-   -- -,    ■. 
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'.. 

-•.■-■■ 

• _ - 
■ - 

■.•-■ 

D(X , T) 
3 ;:•' 

X KG 
4   1 

X K18 Kll K5 %E    COS(U) SIN(U)  C0S(X ) K2 
2 
 +  
K3 X 

2 

X C0S(X ) 
2     3 

Kl + X 
1 

X KB 
1 

3 2 
D(X , T) - X K4 K5 %E 

4      2 

D(X . T) 
5 

2 X KG 
4   2  2     1        2   4       2   2 

- X K18 K5 XE K7 (K13 SIN (U) + Kll COS (U) 
2 

2 2      2   2 
SIN (U) + 2 K12 K13 SIN (U) + K12 )/K3 . 

The output of HAM occupied about three pages, computed ,< 

in about G seconds.  A complete closed-form solution is hopeless; 

so none was attempted. 

The third case, by Miele tGI , is concerned with optimal 

nonsteady flight over a spherical earth in a great-circle plane. -V 

The physical significance of the numtrous variables is unimportant rr 

here, where the purpose is merely to generate an impressively messy y. 

■-'-•- 

■ •' - -" -* -' - 
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DRAG(H. V, L) - COS(EPS) THRUST(H, V, ALPHA) 
+  

n 

2 
V COS(GAMMA)  G R COS(GAMMA) 

D (GAMMA, T)  +  
R + H 2 

(R + H) V 

L + SIN(EPS) THRUST(H, V, ALPHA) 
  + 2 OMEGA COS(PHI), 

M V 

D(M. T) + BET(H, V, ALPHA), 

2 
THRUST(H,   V,   ALPHA)   - TSI   , 

2 
- THRUST(H,  V,  ALPHA)  + THRUSTMAX(H,  V)  - ETA , 

A(X,   H,   V,  GAMMA,  M,  L,   ALPHA,  EPS), 

B(X,   H,   V,   GAMMA,   M,   L,   ALPHA,   EPS). 

• 

set of formulas that no one but a masochist could prefer to derive 

by hand.  The following nine expressions are constrained to equal zero: 

R V COS(GAMMA) 
D(X, T)  , 

R + H 

D(H, T) - V SIN(GAMMA), 

2 
G R SIN(GAMMA) 
  + 0(V, T) 

2 
(R + H) r "." 

^' ■"■■*-*'*'' *  ..■.•»■•.'**>•*-*•■«-.•..• ^ •.'-•-.•.'.-.»--."■■ '-^ ' •  .« - »■ fc ■■.-■.■• ..'r -■-•.• ^ ■. p ."-,.'■ -V ..'"» -'-^'M -"*-'«.'» '« ',..',.•>  • , -, -.'-■'-,.-.' -J 
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The problem is to minimize an arbitrary function of the two 

end states, subject to ! ese constraints. Using Lagrange multipliers, 

the output of EL occupied about five pages, computed in 

about 28 seconds.  Here too, a complete closed-form solution is 

hopeless, so none was attempted. However, the computer did reveal 

two mistakes in the published results-:  the dot time-derivative 

operator was missing or the left side o* two equations.  Although 

these ommiasions were undoubtedly typesetting rather than derivational 

errors, they do illustrate an advantage of direct photo-reproduction 

of computer-generated analytical formulas. 

None of these three cases taxed the memory capacity or required 

an undue amount of computation time; so it would be desirable to 

have more complicated examples.  Artificial examples could be 

constructed, and they have the advantage of permitting a more 

systematic pvploration of the range of feasible problems. 

However, unless carefully constructed, they havt the disadvantage 

of being non-repreaentative of real applications. Suggestions for 

large real or artificial examples are welcome. 

! 

V 

K 

.■-/-/- .■- -• . . • .-V- 
_• _ ■ • - -  _» 
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Regarding question 2 at the oeginning of this sRction, the 

progr.'"ns can successfully solve differential equations at least 

as complicated as those in Append;»' 1.  To develop the examples 

there, it required some experimentation to find simple enough 

coefficienta and boundary conditions to make DESOLVE work.  The 

denominator of the Laplace transform must factor into linear and 

quadratic factors with integer coefficients, which is unlikely 

when the order or number of equations exceeds 2.  However, the 

cubic and quart ic formulas are built-into MACSYtIA; so the domain 

of the inverse Laplace transform step could easily be extended. 

MACSYMA also has iterative numerical routines for for finding tne 

zeros of a polynomial to arbitrary accuracy, so at the expense of 

slightly inexact numerical coefficients in an analytical formula, 

the domain could be extended even further. 

In contrast, an 0DE2 demonstration file suggests that this 

function is capnole of solving somewhat more complicated problems 

than those in Appendix 1.  However, closed-form analytic 

solutions rarely ex:st for interesting variational problems more 

complicated than those in Appendix 1.  Even a perfect ordinary 

differential equation solver, capable of finding all existing 

closed-form solutions, would be able to solve only a small 

percentage of the interesting variational problems. 

Consequently, no further tests were made for question 2. 

However, here too, suggestions for suitable examples are welcome. 

^ 

• 

' '    ' • • . • - »-   • ■"■ '-" ^- •--"- ^ '- ■-- '- '-. "-  '- '- '-  •■ •-•-■- •.-■V •— ^.v"'- <-' ^". «-' «^ «--. t---»-'.«-I ..•..._•.■. 
- ■ - -  - - ■ . ^ ■ -. ' ■- ^ ^ . 



L      I      I      I       I.    I      l.lij|_^^^"^^^^^^ll   II   I.   •   H.   •     ■HI.    1     I      I.    I      ■, l^l^l^5 l^lH^ll,«!,!. I_l  I,  ll.II  ■ I IJ.I^^fP^l^ Mi   .     1    .!     .'.'■.y'.l 

* 

•: 

24 

5.     CONCLUSIONS AND CONJECTURES. 

Computer algebra   is clearly helpful   for avoiding   the   tedium 

and  blunders associated with hand derivation of   the necessary a) 

differential   equations  for   large variational   problems.      It   is 

also  somewhat  helpful   for deriving closed-form analytical 

solutions when  they exist. 

Stoutemyer   till   describes how a  similar program  for 

optimization of a multivariate  function proved  to be useful   as  an 

instructional   tool   for an optimization course.  Analytical 

treatment  of nontrivia    problems   increased  the students' 

understanding of  the theoretical   foundations,  while nicely 

complementing numerical   experiments.     Perhaps  the same will   prove 

true   for   the variational   optimization programs. 

The  examples  in Appendix 1  suggest  other ways  that  computer 

algebra may be used  for variational   optimization.  For example, 

other  necessary and sufficient conditions such as  the 

Legendre-Clebsch,   the Jacobi,   the Ueierstrass,   and  the 

Ueierstrass-Erdmann conditions could be  tested automatically. 

Computer  algebra could also be used   for a direct  verification  of 

an  optimum,   using techniques  illustrated by Young   [13,14]. 

Perhaps computer algebra together with artificial-intelligence 

theorem-pi oving  techniques could eventually be used   to  automate 

existence  and uniqueness proofs.   Until   then,   these   important 

questions must be answered by a  separate non-computer  proof   or   by 

an  appeal   to physical   considerations. 

m 

v -.• •.• -.• - -. .- s« v ■ . --v- -v-v-v- ■". •   ".-■.-   . -v .-• .-A v-v ".-.-.■-.■•".■.■-■.■.••". •' •".•■.•■".■-".'•■.-■.-.•".-■.-'.■  -V '. 
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For the calculus of variations, equation (7) has the ^-. 

advantage of admitting a larger class of solutions than (8), and 

a genera I-purpose program for analytically solving 

integro-differentia! equations may succeed in instances where the 

existing ordinary differential equation solvers fail for (7). 

Uork has begun on such an integral equation solver, and hopefully 

a subsequent report will describe its successful completion. 

There are also a number of ways that computer algebra could 

be combined with numerical methods for variational optimization: 

1.  The output of the functions which analytically gi , -rate 

the differential equations could be used as the input expressions 

for a standard numerical ordinary differential equation solver. 

The numerical routine could be written in the algebraic language, 

or it could be written in a language such as FORTRAN.  There are 

facilities for generating MACSYMA output in a form suitable for £,• 

direct inclusion in a FORTRAN subprogram, with common »M» 

Bubexpreasione computed separately to avoid redundant : • 

calculations. ■'•-; 

Not demonstrated in Appendix 1, the  ODER  files contains ^ 

routines for generating analytical series solutions by Ricard •;;,■ 

iteration or Taylor series.  Combined with a stepwise solution, 
■ 

as described by Barton and others [11 for a different computer ^7 

algebra language, this comprises one of the most efficient ^ 

methods for solving initial-value problems.  Moreover, combined ;>. 

with a numerical routine for finding the zeros of a function, any r-: 
• *_ 

•t.". ^' *_' -.' '.' •-** *.'-..''.' '-' ^ ^ - -l^'-*-* ^-" *- '.^*- > * » *.A-* fc *. ^ '' ^ V« " > •.». T, ». t». T ■- v» i * . ^ - . - - r . 1 **■«■■ ^ •■.*-» '- '■-****•■*■■---"»•--• ^ '« * ^ '« ' 



ii| . i, 'y*  I   ■ | ill ■_! mi  ■_! ■_! ■_! • M   ' _.  '^ ' .  "_1  II ' J "if  ij l'.   •■»■■■■•■•«■•■■•t"«"l."I"l"i"l"l"l"l" l'«-!  "•' " 1  'I "' 1 " . " I i I " • > 

2G 

•-.■-," 

•-•■. 

numerical initial-value routine may be used for 2-point boundary 

value problems, as described by Roberts and Shipman [91. 

MACSYMA also has built-in facilities for Poisson series 

manipulation, which may be used to construct analytical 

perturbation-series app-oxi mat ions.  This technique is widely 

used in celestial mechanics, as described by Jefferys t41, 

2. The domain of the differential equation solver DESOLVE 

could be greatly increased by changes described in the previous 

section or by using various approximations of either the Laplace 

transform or the inverse transform. 

3. Even when al I of the yUverning diffaren I ial equations 

cannot be completely solved »r.dlytical ly, computer algebra 

may be of use in reducirg part of the solution to quadratures *rrr; 

and/or solving some of the equations and eliminating the 

corresponding variables from the remaining equations. 

.•.■-•. 

■ 

* 
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(C5) BATCH(OPTVAR, DEHO. DSK.STOUTE); 

(CG) /* This macsyma batch file illustrates how to use the f'mctions 
in OPTVAR > or OPTVAR LISP to help solve classical variational or 
otstiinal control problems.  These functions use the catcului of 
variations and Potryagin* s naximum-Principle to derive the governing 
differential and algebraic equations; and this demonstration also 
shows hou the governing equations may be solved using the built-in 
SOLVE function and/or the functions in the SHARE files 
ODER LISP, and OESOLN LISP.  For more details, see the corresponding 
SHARE text files OPTVAR USAGE, ODER USAGE, or OESOLN USAGE. 

.V1 . •Vv 

OX OV 2       0 
SQRTK —)  + 1) 

OX 

OV 
QIV) — 

0 OX OY 2      0 
(E7)  SQRT(( —)  + 1) (— Q(Y)) 

OX     DY 2 OX       DY 
SORTU —) + 1) 

OX 
TIME- 801 MSEC. 
(07) (EG, E7] 

<■,. ''i •". ■"". • - -'«-'- •'. *"■ ■"• ■"- -'• ■'"•. -"«■■'<'"- ■ - ■'- ■ • •■ • - 
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APPENOIX 1. •■•■•-"■ 
. ■ . ■ 

. ■.■ 

• 

» 
■ The illustrative examples here are intentionally elementary. 

For a more thorough discussion of the mathematical principles 
demonstrated here, and for results with more difficult examples, see 
the the ALOHA project technical report by Oavid Stoutemyer, 
"Computer algebraic manipulation for the calculus of variations, 
the maxi rum principle, and automatic control". University 
of Hawai i, 1974. 

Many cI assiLa I variational problems are analagous to special cases of 
choosing a path which minimizes the transit time through a region for 
which the speed is a function of position.  There are applications in, 
optics, acoustics, hydrodynamics, and routing of aircraft or ships. 
In the two-dimensional case, assuniing the path may be represented by a 
single-valued function, Y(X), the transit time between Y(A) and Y(B) 
is given by the integral of Q(X, YhvSQRT (l + 'OW.Xhv^) , from X=A to 
X=B, where 0 is an alias for DIFF and Q(X,Y) is the reciprocal of 
the speed, and where we have used the fact that 'DIarclength.X) = 
SQRTd+'DIY.Xh'n^). For simplicity, assume 0 independent of X. We may 
use the function EL, previously loaded by LOADFILE(OPTVAR,LISP,DSK, 
SHARE), to derive the associated Euler-Lagrange equation together L\v] 
with an associated energy and/or momentum integral if they exist: ft/ '.'/','. 

EL(Q(Y)vfSQRT(l + ,0(Y.X)Vov2), Y, X); 

DY 2 ^7 
Q(Y) (—) :-■: 

OY 2 ox •.■:••• 
(EG) Q(Y) SQRT(( —) +1)  < 

-■ ■• 
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(C8) /* To expand the Euler-Lagrange equation: »/ 

DEPENDENCIES(f(X))« 
TIME- 5 MSEC. 

(C9) XTH(21 [21, EVAL, D; 
TIME= 24G MSEC. 

2 2 
D Y DY 2 D Y 

Q(Y) —      Q(Y) ( —)  — 
2 DX    2 

DX DX        DY 2      D 
(D9)   = S0RT(( —)  + 1) (— Q(Y)) 

DY 2        DY 2    3/2       DX       DY 
SQRT(( —)  + 1)   (( —) + 1) 

DX DX 

(C10) Av The routines in the SHARE file ODE LISP, previously loaded, 
may solve an expanded first or second order quasi-linear ordinary 
differential equations; so the equation must be linear in its highest- 
order derivative.  The Euler-Lagrange equation is always of this form, 
but when given a second-order equation, the DDE solver often returns 
with a first-order equation which we must quasi-linearize before 
proceeding; so it 1s usually most efficient to take advantage of a 
first integral when one exists, even though it requires a certain 
amount of manipulation.  The SOLVE function is currently somewhat weak 
with fractional powers; so we must massage the above energy integral 
before solving for 'D^X): »/ 

%TH(3)[1] • SQRTaf'0(V,X)**2), EXPAND, ZiVAL; 
TinE= 211 MSEC. 

DY 2 
(DIB) Q(Y) - K SQRT(( —)  + 1) 

0     DX 

(Cll)   SOLVEC/i/iaÖ],   'DCY.X)); 
SOLUTION fe 

2 2 fc: 
SQRT(Q  (Y)   - K    ) j>: 

DY 0 

• *_• ■ 

(Ell) — -   
DX K 

0 

2 2 
SQRT(Q   (Y)   - K     ) 

DY 0 
(E12) 

DX K 
0 

TIME-  ibbl  MSEC. 
(012) [EU,  E12] 

. ^" ■■'-»-'-•-'-■-'»-*»-'■»-'»-''' ^ '-'''--'—''* ^ '-•■•■'-.'-''' ■ *'-'- "'^'- '*» •''- *-". ^'. ■■■'.-.. ^'- *'. •'. •-'- •". •".-'. ■•'- '*.«.' -.'. o. 
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IC13) 0DE2(EV(%[21,EVAL), Y, X); 

TinE= 10722 MSEC. 

(D13) 

/ 

[        1 
X - K  (1 ( ) DY) 

0 ]      2      2 
/ SQRKQ (Y) - K ) 

0 

K 
0 

(C15)   %,INTEGRATE: 
TIME- 4881  MSEC. 

12 12 
SQRT(- + K    ) LOGISO'iTC- + K     )   - K  ) 

Y        0 Y 0 0 

r-... 

1 

{C14) /■,'(  Ue must specify Q(Y) to proceed further.  Q(Y)=1 is associat- 
cl with the Euclidian shortest path (a straight line). Q(YUSQRT{Y) is 

I 
- 

associated with the stationary Jacobian-action path of a projectile (a 
parabola), Q(Y)-Y Is associated with the minimum-surface 
body of revolution (a hyperbolic cosine), and Q(Y) =1/SQRT(Y) 
is associated with the minimum-time path of a falling body, starting ^ 
at Y-0, measured down, (a cycloid).  Uf these, the cycloid presents .-..;. 
the most difficult integration.  In fact, I have never seen ;".-.-'-; 
the integration for this case performed directly except by macsyma: */        -■".•-•".;. 

SUBST(Q(Y)=1/SQRT(Y). X)   t ':"■'.£ 
TIME» 124 MSEC. r^" 

(D15) - (X - K  ( +  
0   2 12    4 3 
K(-+K)-K 2K 
0  Y   0    0 0 

1 2 
LOG (SORT (- J- !<  ) + K ) 

Y   0     0 
 ))/K = C 

3 0 
2 K 

0 

(C16) /* This equation may be simplified by combining the l.OGs and 
clearing some fractions, but it is transcendental in Y; so there is no 
hope for a closed-form represen*3t ion for Y(X).  For completeness we 
should try the other alternative for 'D(Y,X), but it turns out to 
lead to the same resuK. 

Most authors solve this problem by introducing the change of variable 
,D(Y,X)-TAN(T), useful also for other Q(Y), which leads to the para- 
metric representation: Y-K [0]*COS(T)>v*2, X-C+K [0hv(T+SIN (ThvCOS (T)). 
Solving the former for T and substituting into the latter gives the 
representation equivalent to that found directly by macsyma. 

L-vV--\ v". •■:.•. -.' ■■ -."-.' ■. v -.  ■' ■- ■• •■■ >-• --• •-' ■■.^- t- ^-.-^.--.---.■^■. \.--.v.i. :.L.-.v.i.r»t.-.v.-- -.r.-^-.t-. 
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' 

- * - 

•..-. 
^'Z-' 

•  .-.'.• 

Some straightforward investigatien reveals that C  is the 
initial value of X,  but the equation is transcendental in K[91 . so 
K[0] cannot be determined analytically.  However, it may be 
determined to arbitrary numerical accuracy by an iterative algorithm 
such as that described in the SHARE file ZEROIN USAGE. 

To prove thc>t the above solution is a strong global minimum, we must 
prove that such a minimum exists and that no 
other answer gives a smaller value to the functional.  This may 
be done by the direct approach of Caratheodory, or by 
checking the classical Ueierstrass, Ueierstrass-Erdman, Legendre, and 
Jacob1 necessary and sufficient conditions.  Computer algebra 
can aesist these investigations, but they are beyond 
the scope of this demonstration.  Instead, to keep the demonstration 
brief, we will now consider other kinds of problems. 

Stationary values of a functional may be subject to 
algebraic or differential constraints of the form F(X,Y (X) ,'D (Y, X))=0 
and/or isoperimetric constraints of the form 
INTECRATE{!"{X.Y(X),'0(Y,X)).X,A,B) = J, where J is a given constant. 
Sometimes it is possible to eliminate one or more constraints, 
substituting them into the functional ..'nd any remaining constraints; 
but if not, we may use Lagrange multipliers.  For example, suppose ue 
wish to determine the curve that a string of given length assumes 
to minimize its potential energy.  The potential energy is 
INTEGRATE(YvfSQRT(l + 'D(Y,Xhw«2), X, A, B), whereas the length is g 
lNTEGRATE(SQRT(l + 'D(Y,X)vnv2), X, A, B); so lettng MULT be the ^ 
Lagrange multiplier, our augmented functional is of the form that we ,-,; 
have been studying, with Q(Y)-Y+MULT.  Consequently, we may simply 
substitute this in the general integral that we found before: */ | 

SUBST(Q(Y)=Y+nULT, %TH(3))« 
TIME- 117 MSEC. K; 

(C17) Av Type NONZERO;  in response to the question generated by 
the following statement: ■>'</ % 

■••>"■-■ 

•/., INTEGRATE; 
IS K  ZERO OR NONZERO? v 

0 •-; 

NONZERO; t 
TIME= 1338 MSEC. V. 

2 
(Y + MULT)       Y + MULT 

X - K L0G(SQRT( 1) + ) 
0 2 < 

K 0 
0 

(017)        = c 
K 
0 

S>: 
■■•■:■: -..v.-. 
L-, 

H-..- - ^ 
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(C18)   .'it To obtain Y as a  function of X:   */ 

(%vK[e]+X)/K[0]; 
TIME- 92 MSEC. 

2 K  + K    C 
(Y + MULT) Y + MULT 0 

(D18) L0G(SQRT( D + >  
2 K K 

K 0 0 
0 

(C19)   EXP(LHSm)-EXP(RHSm); 
TIME- 28 MSEC. 

X + K    C 
0 

•"• -" 

S       W ■* W 

r 

2 K 
(Y + MULT) Y + MULT 0 

(0191 SQRT(  1)  +  «E 
2 K 

K 0 
0 

(C20)   SOLVE mvtK[0]-Y-MULT)vnv2,   Y); 
SOLUTION 

X 2 X X 
 C               — + 2 C — + C 

K K K 
0 0 0 

XE (K    XE - 2 %E MULT + K  ) 
0 0 

(£20) Y    
2 

TIME- 7851 MSEC. 
(D20) tE20) 

(C21)  %,EVAL,EXPAND,RATPRODEXPAND;TRUE j 
TIME- 17 MSEC. 

X X 
 C — + C 

K K 
0 0 

K    XE K    « 
0 0 

(D2i) Y + NULT 
2 2 

(C22)   />v Ue may rewrite  the above expression as:  */ 

Kt0]vfCOSH(X/K[01+C)   -MULT  « "; 
TIME-  2457 MSEC. S 

I 

■ - - 

V 
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(C23)   />v We  may  substitute  this   into   the   integral   constraint   to  get   1 
equation relating  the constant K [0]   and C   to  the given   length L:   */ 

SQRT(i4CHX,X)**2)| 
TIME- 9G MSEC. 

2 X 
(D23) SQRTISINH   (— + C)   + 1) 

K 
0 

The  functional  may  include derivatives of higher  than first 
order.     For example,   including  the  smalI-deflection energy  of   bending, 
shear,   and  an elastic  foundation,   the elastic energy of   a  nonuniform 
beam with   loading    U(X)     is  the   integral   of   the  following   function:   »/ 

A(X)**0<y.X.2)ft*2 + B(X)**0(Y(X)**2 + C(X)*Y**2 + UCXhvYS 
TIME- 97 MSEC. 

(C2G)   Av To obtain  the Euler-Lagrange equation:   »/ 

EL«,   Y,   X); 

2 2 
D       DY  D D Y 

(E2G)       — 2 B(X) 2 A(X) — = 2 CIX) Y + UI(X) 
DX      DX    2 2 

DX DX 
TIME- 918 MSEC. 
(026) tE261 

(C27) /* If shear and foundation energy are negligible, as is often 
the case, we may solve this differential equation, for specific A(X) 
and U(X), by two successive applications of 0DE2. For example: */ 

■-.,. 

'TV v d 

:•>:-, 

I   - 
:■>:- 

■ .- ■.' 

(C24)   /* This  is simply C0SK(X/K [0]+C),   so:  Vr/ 

L  =   INTEGRATE(COSH(X/K[0]+C),   X,   A,  B): » 

TIME=  1787 MSEC. 
KC + B KC + A 

0 0 
(D24) L - K    SINH( )   - K    SINH( ) 

0 K 0 K 
0 0 

(C25)   /* Given A,   B,   Y(A),   and Y(B),   we may substitute   into   the >N 
general   solution   to get   two more relations among K [0] ,   C  and MULT, ^.V 
but   the   three equations are  transcendental;   so a numerical 
solution   is generally necessary. 

For  completeness,   we should also   investigate  the case of  KI0]=0,   which 
yields   the  solution    Y-0;   but   for brevity,   we will   omit   that   analysis. 

V. 

t 

fci   I   '  ^"      •--'   i-     «'-»'•.-'  ^'  «-'^     ^.      ^' -■-■'-.      ■      .---■»•-■■■-•» ^. .-'.■.-"■■■-•.■.■--.-'.•■■ \.- -.-.'. -v .-. r -■.•.-.  r'. >.  ■'     »-'    .      ■'       '    w      _■ 
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%[!].   EVAL.A(X)-X.  B{X).0,  C(X)-0,  W(XM,   'DIY.X.Z)-DY28 

TIME- 33G MSEC. 

(C28)   DEPENDENCIES(DY2(X))t 
TIME= 4 MSEC. 

(C29)   EV(%TH(2),D,EVAL); 
TIME»  159 MSEC. 

2 
D DY2 DDY2 

{D29) - 2 X - 4  1 
2 DX 

DX 

CC381   0DE2(%.   DY2,   X); 

YOU HAVE RUN OUT OF LIST SPACE. 
DC  YOU UANT MORE? 
TYPE ALL;   NONE;   OK;   A LEVEL-NO.   OR THE NAME OF A SPACE. 

l| 
TIME- 372a MSEC. 

X      K2      Kl 

(D30) DY2 -    - - +   
4X2 

(C31)   0DE2(SUBST([K1=K3.K2-K4,0Y2='D(Y.X,2)].%).   Y,   X); 
TIME- 1959 MSEC. 

3       2 
K4 X (24 - 24 LOG(X)) + X + 6 K3 X 

(031)    Y -  + K2 X + Kl 
24 

(C32) Av Now let's impose the boundary conditions Y-,D(Y,>;)-0 at X-l, 
Y=0, ,D(Y,X)-1 at X-2! »/ 

IC(%, X-l, Y-0. 'D{Y,X)-0); 
TIME- 1G04 MSEC. 

3       2 
K4 X (24 - 24 LOG(X)) + X + G K3 X   (4 K3 + 1) X 

(D33) [Y -  + 1  
24 8 

12 K4 - 3 K3 - 1 
+ 1 

12 

(C34) IC(SUBST([K3.Kl.K4-K2],FIRSTaU. X-2, Y-0. 'D(Y,X)=1); 

TIME- 30G8 MSEC. 

•---. 

■;•-.■• 

■'/■': 

■•'■'.' 

. \  •''.  -. '■ •- .•• ,"• . • . • . • - . - • • • " . - 
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2 
49 X (24 - 24 LOG(X))   3  B (110 L0G(2) - 57) X 
 + X   

72 LOG(2) - 48 18 LOG(2) - 12 
(D35) [Y -   

24 

4 (110 L0G(2) - 57) 
(1 ) X 

18 LOG(2) - 12 

i -- . 

'.-- 

8 

588       3 (110 L0G(2) - 57) 
 + 1 

72 LOG(2) - 48    18 LOG(2) - 12 
+ ] 

12 

(C36) Av as another specific beam example: »v/ 

%TH(8),EVAL, A(X)=1,B(X)-2,C(X)-1,U(X)-18 
TIME- 2G8 MSEC. 

(C37)   SUKDl 
TIME-  179 MSEC. 

2 4 
0 Y 0 Y 

(D37) 4 2 — - 2 Y + 1 
2 4 

OX OX 

(C38) Av We cannot treat this as 2 successive second-order equations, 
but the function DESOLVE in the SHARE file DESOLN, already loaded, is 
applicable to some linear arbitrary-order constant coefficient 
equations.  First we must convert the equation so that the dependency 
of  Y  is explicitly indicated: */ 

CONVERT(%, Y. X); 
TIME= 215 MSEC. 

2 4 
0 0 

(D38) 4 (— Y(X)) - 2 (— Y(X)) = 2 Y(X) + 1 
2 4 

DX DX 

(C39)   Av DESOLVE requires all   boundary conditions  to be at     X=0, 
and   it   works best   if   they are  specified berore calling  the   function. 
However,   we  may  overcome  this  restriction,   as   illustrated  by 
the   following example,   where   the beam has  zero  slope and deflection  at 
both  ends:   >v/ 

(ATVALUE(Y(X),X-0,0),  ATVALUE(,D(Y(X) ,X) ,X-0.0), 
ATVALUE(,D(Y(X),X,2),X-0,K1),   ATVALUE(,D(Y(X),X,3),X-0,K2)) « 

TIME- 78 MSEC. 

•:. ■>. ■■.■:.  ". ■:. ■•- . - .'- ?■ -.--      -•_ .;, v. v- t'- ■, - -'- i". •"- -•- - - .'-.-'■ ^-«•- .'_."- ^•- •'_ «•- -- .'- ."^ -•- ."- .'- ^. .'...'■. .'-.•_ .•_ .'-.:-.^- i^. <.;■■ .'.^ ^ >'. »•-.'.. ^-,: 
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(048) DES0LVE(%TH(2), Y(X)); 

TIME- 2857 MSEC. 
- X - X 

(2 K2 - 2 Kl + 1) X %E     (K2 + 1) %E 
(048) Y(X) +  

8 4 

X X 
(2 K2 + 2 Kl - 1) X '/iE   (K2 - 1) %E 1 

2 8 4 

(C41) IC(SUBST(Y(X)-Y.%), X=l, Y=0> 
,D(Y.X)=0); 

TIME- 7259 MSEC. 
2 2 

2   {%£    -2  XE - 1)  2 (%E - 2 TiE + 1)        - X 
( + + 1) X XE 

2 2 
2 %E + 4 %E - 2    %E + 2 %E - 1 

(042) tY -   
8 

XE  - 2 %E +1 - y 
( + 1) %E 

2 
XE + 2 %E - 1 

2 2 
2 (%E - 2 XE - 1) 2 (%E - 2 %E + 1)        > 

( +  1) X 7.E 
2 2 

2 %E +4 XE - 2    %E + 2 %E - I 

• * • - - - _ • 

• 

■-■. 

■.■' 

8 

XE - 2 XE ♦ 1     X 
( i) XE 

2 
%E + 2 %E - 1        1 

-] 

(C43) /« He may also treat problems with more than one dependent 
variable.  For example, the charge, Q, and displacement from 
equilibrium, Y, of a simple electromagnetic loudspeaker, with M, K, 
L, S, E(T), and T denoting mass, spring constant, inductance, electro- 
magnetic work coefficient, voltage, and time, respectively, are given 
by the stationary value of the integral of the function 
in the first argument of EL below.  (ref. S.H. Crandall, C.C. Karnop, 
E.F. Kurtz Jr., & D.C. Pridmore-Brown, "Dynamics of Mechanical and 
Electromechanical Systems", McGraw-Hill). ■>'</ 

r 
-• -• • • ^••.•^•^■:/- .'.:*' .\.>"i.>^--^'-^-^ •^'- .••^••Vv.,:..".-/-..>-.,-.^.J-;-»
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EL((n*,D(Y,T)ft*2 - K*Y**2 + L«'0(QfT)**2)/2 + Svf'D(Q,T)vfY + E(T).vQ. 
[Y, Ql. T); 

I . 

(E43) 

(E44) 

TIME= 4291 MSEC. 
(D44) 

D   DY  DQ 
__ n — = — S - K Y 
DT  DT  DT 

D        DQ 
— (S Y + L --) 
DT        DT 

[E43, E44] 

E(T) 

m 
• 

(C45) /* Ue may simplify these equations by replacing 'D(Q,T) uith 
the current, I; and we may introduce linear mechanical resistance B 
and linear electrical resistance R as follows: ft/ 

%,  EVAL, '0(0,TNI. Sftl-Sftl-Bft'DtY.T), E(T)-E(T)-R*It 
TIME- 471 MSEC. 

D   DY      DY D 
(D45)  [— M — = - B K Y + I S, — (S Y + I L) - E(T) - I R] 

DT  DT      DT DT 

(C4B) /ft DESOLVE also works for some systems of arbitrary-order 
constant-coefficient equations; so let's try it with the following 
parameter values, excitat ion E(T), and initial conditions: ft/ 

SUBST(tM-.2,K=l,B-l,S-l,L-l,E(T)-SlN(T),R-l], X)i 
TIME- 483 MSEC. 

(C47) CONVERT(%, [V.Il, T)t 
TIME- 4B1 MSEC. 

(C48) (ATVALUE(Y(T),T-0,B), ATVALUEU (T) ,T-M), ATVALUE('D(Y (T), T) . T= 
B.B))t 
TIME- 52 MSEC. 

v; 

(C49) PES0LVE(%TH(2), tV(T),I(T)l)| 
TIME- 1B219 MSEC. 

SORT(3) T      SORT(3) T 
5IN( )  COS( ) 

- T/2        2 2 
(DS0) [Y(T) - XE     ( ) 

SQRT(3) 3 

2 SIN(T) 

5 

c 
T/2 

COS(T)  8 XE 
 +  

5       15 t 

: 

•■-■-•--.■-•-■-■   •.--■-■■-■.■--. -' «-«-••-■-■-■ ■-•-•-• «-■-■' 
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(C52)   /-it Analytic solutions  to even  the simplest  cases  of   this  equa- 
tion  are  rare,   but  computer  algebraic manipulation has  been  used   to 
construct  series solutions  to such liquations. 

Many variational  optimization problems are easier  to  treat 
using Pontryagin's Maximum-Principle  than by  the calculus of  varia- 
tions.      This   is  particularly   true of  optimal   control   problems. 

As  an  elementary example,   suppose  that  we have a unit 
mass  at   ai arbitrary position X[0]   with arbitrary velocity V [0]      at 
time  T=0,   and we wish  to vary  tne  force    F,   subject   to   the  constraint 
-1   <= F  <=•  1,   such  that   the mass arrives at position X=0  with  velocity 
V=0,    in  minimum  time.     The   force equals  the rate of  change  of 
momentum;   so  the motion   is governed by  the pair of   first-order 
differential   equations;   */ 

t,D(V,T)=F, 
•DCX^UV]« 
TIME=. 24 MSEC. 

(C53) /it  Using this list as the argument to the function HAM results 
in output of the Hamiltonian followed by differential equa+ions for 
the so-called Auxiliary variables, together with their solution when- 
ever the differential equation is of the trivial form; 
*D(auMtl]ft) - 0, as is often the case; */ 

SQRTO) T      SORT(3) T 
SIN( )  C0S( ) 

- T/2 2 2        3 SIN(T) 
I(T) - %E     ( ) +   

SQRTO) 3 5 ■V-.N 

- T/2 
COS(T)  8 %E 
 + _] 

5       IB 

(C51) Av The functional may also have more than 1 independent var- 
iable.  For example, the general 2-dimensional linear elliptic partial 
differential equation is equivalent to the variational problem;^/ 

EL(A*,0(U,X)**2 + Bä'DCU.Y)**? + C#U**2 + Ev.'DdJ.X)  + Fvf'D(U,Y)   + 
G>vU,     U,   (X,Y]); 

- •■ .-'- 

D DU D DU 
(E51) —   (2 B — + F)   + —   (2 A — + E)   - 2 C U + G 

DY DY DX DX 
TIME-  11B3 MSEC. 
(DSD [ESI] 

■••.•-■ 

• 
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HAMWi 

(E53) AUX V + AUX F 
2      1 

D 
(E54) — AUX = - AUX 

DT   1      2 

D 
(E55) -- AUX = e 

DT   2 

1 

» 

e 

-*- - . 

(EBB) Aux  - c •:.>:.; 
2     2 ::-:-: 

TIME- 3A1 MSEC. 
(D5G) [E53. t54, E55. E5G] 

(C57) /»v Ue may substitute the given solution of the last 
differential equation into the one before it, then use either DESCLVE 
or 0DE2» »/ 

•/iCAl.EVAL« 
TIME» 25 MSEC. 

(C58) ODE2(EV(%TH(2) [2],%.EVAL). AUXtl], T); 
TIME- 4G4 MSEC. 
(D58) AUX - C - C T 

1      2 

(C59)   /ft Now we may substitute  the values of  the auxiliary variables 
into   the Hamiltonian:   ft/ 

%TH(3) [11,   %,   EVALI 
TIME-  125 MSEC. 

(CG8)   SUBSmTH(3),   %); 
TIME- 35 MSEC. 
(D68) C    V + F   (C - C    T) 

2 2 

(CGI) /ft According to the maximum principle, we should vary F so as to 
maximize thia expression for all values of T in the time-interva I 
of interest.  Considering the constraints on F, clearly F should be fV 
SIGN(C-Ct2]v/n.  (Ue could use the function STAR in >! 
the SHARE file ORTMIZ > or ORTMIZ LISR to determine this.) '.< 

Ue have found that every optimal control is F = l and/or F—1, with at 
most one switch between them, when T-C/C[2].  Since F  is piecewise 
constant, we may combine the two first-order equations of motion and        ^ 
uolve them as follows: ft/ 

'". 

► 

iu. 
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ODEZCDCX.T.ZNF,  X,   T); 
TIME- B17 MSEC. 

2 
F T 

(D61) X -   + K2 T + Kl 
2 

(CG2) /« Now we may choose the constants of integration sr ^a to sat- 
isfy any given boundary conditions. For example, suppose that we 
start with V=0 and X-l at T-0. Assune we start with F—ll ft/ 

IC(8UB8T<F—I,«), T-0, X-l, 'DCX.D-B)» 
TIME- G34 MSEC. 

2 
T 

(DB3) [X = 1 1 
2 

(CG4) /* Assuming that we terminate with F=+l: ft/ 

IC(SUBST(F-1.%TH(2)). T-TFINAL, X-B, 'DCX.D-B); 
TIME- 3938 MSEC. 

2 2 
TF1NAL T 

(D65) [X T TFINAL + —1 
2 2 

(C67) SOLVE([%, D(%,T)]); 

I 

■■ i 

.-:>. 

'.-:■•' 

(C66) /•,'<  To determine TFINAL and the time T at which F  switches 
sign, we may impose the condition that the two solutiona 
must agree in position and velocity at that time: v*/ 

SUBST(%, FIRSmTHC?)))} - 
TIME- 3G MSEC. ".v 

2        2    2 ,->: 
TFINAL T      T v 

(D6B)  T TFINAL + — - 1  V 
2 2      2 

■.••■;■ 

TIME- 359B MSEC. h\\ 
(067)    tlTFINAL - 2.B, T - l.B], [TFINAL - - 2.B, T - - 1.911 

(C68) /« For the first of these solutions, B < T < TFINAL;  so the '.\\ 
assumption that F switches from -1  to 1  is justified.  F is now ^.' 
completely determined as a function of time, but to represent it with 
our expression SIGN(C-C [2]irfT); it/ '/. 

SOLVE(8UBST(XUl, C-CC21*T», C); r- 
S0LUT10N V- 

(E68)                      C - C -v' 
2 

TIME- 99 MSEC. 
(DBS)                        [EBB! >7 

• ' - • -> ' 
m    m m * m •» •     *     •»**     *   w     m * •     4     *     «     m m m * 
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{CG9) /-it  As is always the case, one of the integration constants for | 
the auxiliary equations is reclundants so we may set C[2] and C to the 
same arbitrary negative constant, such as -1. .-.y/! 

It is important to remember that so far, ue have only .•.;>.■' 
determined an EXTREHAL control.  To prove that it is an OPTiriAL ^vj. 
control, we must prove that an optimal control exists and that no | 
more-optimal extremal control exists.  However, such considerations 
are beyond the scope of this demonstration.  */ 

TIME- 1G1874 MSEC. Ü, 
(DG9) BATCH DONE | 

. 

-.■ %■ 

•.-■ 

. 



44 

APPENDIX 2. 

TI ME«GRINDSUITCH J SOLVERADC AN: SINGSOLVE: TRUE8 
TIME- 13 MSEC. 

{C4)   /* establish    D    as an alias  for  the differentiation  function:   */ 

ALIAS(D,DIFF)f 
TIME- 5 MSEC. 

(C5)   HAM(ODES)   := BLOCK( 
Av  This   function computes   the Hamiltonian &  the auxiliary  equations  >v/ 

[T.NSV.STATEVARS.AUXVARS.ANSU.ELIST.AUXDEl,   Avdeclare   local   vars>v/ 

IF NOT LISTP(ODES)   THEN ODES:   [ODES],   Av  jnsure   list  argument  */ 
T:   PART(ODES,1,1,2),     /* get   independent  var  from derivative */ 
NSV;   LENGTH(ODES),     /* determine number of   state variables  */ 
/»v Form   list  of  state and auxiliary variables:   */ 
STATEVARS:   AUXVARS:  ELIST:   [], 
POR   I   THRU NSV DO   (STATEVARS:   ENDCONS(PART(ODES,1,1,1),   STATEVARS) . 

AUXVARS:   ENDCONS(AUX[11,  AUXVARS)), 
ANSU:   [SUM(RHS(ODESCimAUXn],   I,   1,  NSV)],   Av  form Ham i I ton i an »/ 

/Vf Form   list  of  auxiliary equations and any  trivial   solutions:   >v/ 
FOR   I   THRU NSV DO   ( 

AUXDE:   'DIFF(AUXm,T)   - -D1FF (ANSU [1] ,   STATEVARS (11). 
ANSU:   ENDCONS(AUXDE.   ANSU), 
IF RHS(AUXDE)=0 THEN ANSU:ENDCONS(AUX[I]=C[I],ANSU)) , 

Av Form   list  of E-labe Is while displaying computed results:   */ 
FOR   ITEM  IN ANSU DO ELIST:  ENDCONS(FIRST(01SP(ITEM)),   ELIST). 

ELIST)   8 
TIME-  102 MSEC. 

(C3)   Av  This   file contains  functions and option  settings   for 
variational   optimization using  the calculus of  variations  and p« 
the  maximum principle.     For a description of   its usage  see   the text                         ^V 
file    OPTVAR USAGE.  >v/ ^ 

Av Set  options  to automatical k' print  cpu  time   in milliseconds,   force 
attempted equation solution even when  there are more variables   than 
unknowns,   when an equation   involves   logs or exponentials,   or  when  a 
coefficient  matrix   is singular:   ■>'(/ 

•    .• 

■ 

•I 
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i 

Ab 

(CG) EL(F, YLIST, TLIST) :- BLOCK( /* This function computes the 
Euler-Lagrange equations and any trivial first integrals: */ 

[LY.LT.FSUB.ENERGYCON.ANSU.ELISTl ,  /»v declare local variables^/ 

FOR I THRU LY DO Av resubstitute original derivatives: #/ 
FOR J THRU LT DO 

FOR K THRU DDLI.J] DO 
ÄNSU18UB8T(OYOTCI.J.Kl-'OIFFCVLIST[II,TLISTUl.K», ANSU), 

ELIST:[], /*  form list of E-labels while displaying results: */ 
FOR EQN IN ANSU DO ELI ST: ENDCONS(FIRST(0ISP(^QN)), ELIST) . 
ELIST) S 

TIME- 194 nSEC. 

(C7) CONVERT(ODES, YLIST, T) := BLOCK([ANSU], 
/v< This function converts output of EL or HAM to form required by 
DESOLVE  from the file DESOLN. */ 

IF NOT LISTP(YLIST) THEN YLIST: [YLIST], 
ANSUt EV(ODES,EVAL), /* if E-labels, replace with values v*/ 
FOR YY IN YLIST DO ANSU: SUBST(YY-YY(T), ANSU), 
RETURN(ANSU)) « 

TIME- 29 fISEC. 

■ . r 

IF NOT LISTP(TLIST) THEN TLIST: [TLIST], ^ 
IF NOT LISTP(YLIST) THEN YLIST: [YLIST], » 
/•/t  compute number of Independent &  independent variables: »v/ 
LY: LENGTH(YLIST), LT: LENGTH(TLIST). FSUB: F. 

Av no conservation of energy if more than 1 independent var: */ 
f ' ENERGYCON: EV(LT-1,PRED), 1 

FOR I THRU LY DO Av substitute for derivatives: >v/ 
FOR J THRU LT DO (DDII.J]: DER'VOEGREE (FSUB, YLIST [I] , TLIST [J] ) , 

IF DD[I,J] > 1 THEN ENERGYCON: FALSE, 
FOR K THRU D0[I,J] DO 

FSUB:SUBST(,DIFF(YLIST[I],TL1ST[J],K).DYDT[I,J,K], FSUB)), 
Av no conservation of energy if independent var. in integrand: »/ 
IF NOT FREEOF(TLIST [1],FSUB) THEN ENERGYCON: FALSE, 
ANSU: IF ENERGYCON THEN [FSUB] ELSE [], Av form list of results: .v/ 
FOR I THRU LY DO (FY: DIFF(FSUB, YLIST [I]), 

ANSU: ENDC0NS( 
SUri(SUn((-l)vov(K-l),v,DIFF(DIFF(FSUB,OYDT[I,J,K]),TLIST[J],K), 
K,1,DD[I,J]), J, 1, LT) - FY, ANSU), 

IF ENERGYCON THEN ANSU[11: ANSUQ] - 
DIFF (FSUB,DYDT [I, ^nivr'DIFF (YLIST [j], TLIST [1]), 

IF FY-0 AND LT-1 AND DDII,1]-1 THEN Av momentum integral */ 
ANSU: ENDC0NS(DIFF(FSUB,DYDTII,1,1])-K[I], ANSU)), 

IF ENERGYCON THEN ANSUtlll ANSU[1]=K[0], 

- ■ . 

C 
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