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COMPUTER ALGEBRAIC HA“IPULATION FOR
THE CALCULUS OF VARIATIONS,
THE MAXIMUM PRINCIPLE, AND AUTOMATIC CONTROL

by
David R. Stoutemy r

7~ ABSTRACT

(

“’i?Thio report describes hou to use a computer algebra system
such as MACSYMA to solve variational optimization problems
analytically. For a calculus of variations problem, the user
merely provides expressions for the integrand of the functional
and any constraints. From these expressions, a program derives
the speciflic Euler-Lagrange equations together with first
Iintegrals uhen the augmented functional is free of the
independent and/or any dependent variables. Other programs may
then be used to construct families of analytical solutions to
these differential equations and to obtain the particular
solutions that satisfy given boundary conditions. - ;

For an optimal control probliem, the user provides analytical
expressions for the differential constraints that govern the
state variables. From these expressions, a program then
determines the Hamiltonian and the differential equations that
govern the auxiliary variables, together with the solutions to
any trivial auxiliary equations. Other programs may then be used
to search for analytical solutions to the remaining differential
equations and maximize the Hamiltonian.

Examples are given illustrating how computer algebra may be
used

1. to quickly and reliably derive the governing equations
for large, complicated variational problems; and

2. to analytically solve the governing equations for small,
simple variational problems that have cloeed-form anaiytical
solutions.

Keywords and Phrases: Optimization, Calculus of variations,
Maximum principle, Optimal control, Suymbolic algebraic
manipulation, MACSYMA
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1. INTRODUCTION. wa

%;- A previous report by Stoutemyer [11) describes how computer
algebra may be used to analg}ical|g determine the maxima, minima,
and saddle points of a function of several variables -- either
unconstrained or subject to equality constraints and/or

inequal ity constraints. This report descrihes hou computer
algebra may be used to derive the differential equations that
must be satisfied in order to give stationary values to a
constrained or unconstrained functional of one or more
independent variables and one or more dependerit variables. For
simple enough cases, computer algebra is also used to derive a
closed-form analytical solution to these equations.

Section 2 outlines the analytical techniques that have been
implemented. Section 3 is a discussion of the programming
considerations for the demonstration listing in Appendix 1 and
the optimization programs in Appendix 2. Section 4 summarizes
some test cases. Section 5 contains conclusions and conjectures
about other ways that computer algebra may be used for

variational optimization. These sections may be read in any

- order.
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2. MATHEMATICAL TECHNIQUES.

This section briefly states the mathematical princ.ples that
are Implemented in the programs. There is no attempt at
completeness and ~igor, which can be accomplished only in a much
lengthier presentation. The emphasis is on construction of
candidate solutions that satisfy the necessary differential

equations and poundary conditicns.

T .
Let u=1(y, Yy, +eo, y) be a function of t, continuous
1 2 n
Wwith a continuous firs. derivative almost everyuhere on

a <=t <= by and let y satisfy the following boundary conditions,

isoperimetric constraints, and differential constraints:

yla) = yla), (1)
ylb) = yib); (2)
/b
|
J = l f (t' U' g,) dt' (j = 1, 2' v 00y p): (3)
j b
/a
f (t, y, y') =0, (j = p+l, p+2, ..., A). (4)

j
We seek among these admissable y, the particular ones,

~

denoted y, that make the following functional, J , a local
0

extremum:
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/b
|
J =1 f (t, y, y") dt.
B 1 9
/a

Here a, b, n, p, 9, and J through J are given constants.
e p

An Inequality constraint, %(t. U, y') <= B, with /,1> a,

may be converted to the form of (4) by adding the square of a neu

2
dependent "slack" variable, y , to ¢ : f =&, +y =08. Note
P

J j
also that (3) Includes aigebraic constraints, whers y’ |Is

ansent.
T _ T
Denoting (f , f £) by f and (A, A, ..., A)
2 1 q 2 1 q

by )\. let the augmented integrand be the inner product

T
F(t, y, y', A) -Af,
uhere 'A through )\ are unknoun constants, and )\
e p p+l

7\ are unknoun functions of t. Also, let

q
IF OF W T

F - (--' -~y sevy _"").
y Oy W dy
1 2 n
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y' 59: bu:
1 2

where the derivatives are taker as if t, y, and y' are

independent. Then A# B and 1 is continuous, except possibly

~ ~

where y' Is discontinuous. Also, A and y satisfy the DuBois-

Reymond Int=yro-dlfferential equatlions:
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~ |

F o(t, .y, A) =1Fuy v, dr+ Kk,
y’ | y
/a

~

where K is a vector of integration constante. Wherever u'

doee not exist, It may be taken consistently as either the left

or right derivative, uhere both are presumed to exist uniquely.

~

¢ ; and A satisfy (7), then so do y and any mualtiple
of 1.; eo Without lose of geﬁeralltu. Wwe may normalize A to 1,
using any vector norm, Alternatlively, uwhen there are no
dl fferential or algebraic constraints, we may set A_ to anu

8
arbitrary nonzero constant, such as 1.

~

Wherever ' exiete, (7) may be differentliated to give the

Euler-Lagrange equations:

d ~ ~ ~ ~
o F (t oy @A) =F (4, u uL A, (8)
dt y' y

When F does not depend explicitiy on t, it can be

shoun tnat

NT ~ ~ ~N O~
g OF (4 oy w0 A s Flt, g w A + K, (9)
' ]
where K s a conetant. For many physical systems, (3) is a

statement of energy coriservation. Also, when F dces not depend

explicitiy on eoms y , (7) gives
|

~N A~

F (t, y» y'v A) =K . (18)
y' i
i



For many physical systems, (18) is a statement of the
conservation ¢i momentum or of some analagous quanti ty.
Another special case that occurs frequently in practice, is

when F is linear in some ', making the corresponding
i 5

differential equation in (8) degenerate to an algebraic equation
(more precisely, to an eguation in finite terms).

Not treated here are well-knoun generalizations to more
complicated boundary conditions, direct inclusion of a term

g fa, yla), b, ylb)l outside the integral in (S), or solutions
8

With corners. Houever, the program does direcily treat problems
Wwith derivatives up to arbitrary order m in F, in which case

(8} generalizes to

m }
jd .
ST —-F L aF (11)
j=1
Wwhere
F F dF T
e =mias ol R
F - dvy d%y d'y
FEL [ i S Yo ) Ao
dtV dtd dtd

When o is a multiple integral over an arbitrary number of
)

independent variables, t, t, ..., t, the derivative on the
1 2 r

left side of (11) generalizes to a sum over all partial

derivativis of total order j. For simplicity, the program in

Appendix 2 treats only the case With no mixed partial




derivatives, for which (11) generaiizes to:

m r }
e Y0
(-1) :;ﬂ - F o+ uF (12)
(J) '
jul el ()
vhere
JF F I AT
T N VT M i
v B(--ji) b(---j—‘) b(---}‘)
dt? dt; dt 3

The maximum principle is an approximately equivalent
aiternative to the caicuius of variations: To convert a problem
simiiar to (1) through (5) to a form suitabie for the maximum
principiet

1. Substitute an additiona' dependent variable, Yy for

every y' that occurs in f in (5}, and include corresponding
i 8 :

constrainte, Yy = Y .

i o
2. Wherever t occurs explicitly in {3), (4), or (5),
substitute another dependent variable, %8' and include the
additionai constraint %é = 1, together with the boundary
condition gp(a) = a.
3. For each instance of (3), introduce a unique dependent
variable UX' and inciude the constraint u% - fj. together uith

the boundary conditicns g’jg) = 8, gxﬁb) - J .
J

4, 1f a and b are considered fixed, introduce an
additional dependent variable, gg. together with the constraint

u; « 1, and the boundary conditions ug(a) - a, ug(b) = b.

W e
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5. If J includes a term g [a, y(a), b, ylb)]l outside

e 8 i

-

the integral, Introduce another unique dependent variable, qq. :ﬁ

replace f with f + y_, and include the constraint y' =0 o
8 9 1 1

together with the boundary condition g”ﬁa) = g /(b-a). )
2 3y

6. Except for time-optimal problems, introduce a neu .

variable y together with the constraint y' = f . 1
8 8 %) g

7. Differentiate any of (4) that are algebraic rather than :
differential constraints, and include the algebraic form evaluated
at a or at b as a boundary condition. g:
8. Solve equations {4) simultaneously, and combine with any neu

constraints introduced by the above substitutions, to get all of L

~

the differential constraints in the form y’ = f(y). e

The dependent variables that appear in the derivatives are :{
called state variables, and the other dependent variables are :
called control or dscision variables. MWithout loss of .
generality, let u denote the vector of control variables ?;
and let x denote the vector of state variables. We may i;:
then write the differential constraints or state equations as :;

W % ok, (13)

Letting q/ denote a vector of unknoun time-dependent

auxiliary variables with the same number of components as x, the Ry

o, e .
.....
_____



Hamil tonian is defined by

T ~
HIY(t), x(), u(t)] =¥ fix, u. (14)
The auxiliary equations are defined by

\y’ =H, (15)

X

where H = QH/dx , OH/dx , ...)T. Then

x 1 2
the optimal control maximizes H with respect to u, while
satisfying the state and auxiliary differential equations
together with the boundary conditions. Moreover, the max i mum

value of H is nonnegative.

At maxima where OH/Du , 3H/d , ...) exists uniquely,
1 2

it will be zero. This necessary condition may be used to help
determine an analytical solution. Using Lagrange multipliers,
elimination, changes of variable, and/or a combinatorial
technique, this approach may be extended to the situation uhere
u 1Is subject to equality and/or inequality constraints, as
described by Stoutemyer [11].

Wit', the calculus of variations, an analytic solution
requires

1. symbolic differentiation to derive the specific governing
different al equations.

2. symbolic determination of the general closed-form

solution to these differential equations.
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3. symholic integration to evaluate integrals during
solution of the differential equations.
4., symbolic solution of simul taneous algebraic equations to

impose the boundary condltions on the general solution.

With the maximum principle, capabilities 1 and 4 are also
general ly necessary to determine the maximum of the Hami |l tonian.

Virtually all current algebra systems have built-in facilities
for capability 1, and also for &4 when the unknouns enter
linearly. Besides these, MACSYMA has built-in facilities for
capability 3 and for the nonlinear case of 4, as asscribed by
Moses [7] and Yun [15] respectively. There are also two MACSYMA
programs available for capability 2. One of these, written by
Bogen [2]1, usae Laplace transforms to solve systems of
arbitrary-order constant-coefficient | inear ordinary differential
equations. Any inhomogeneous terms are restricted to polynomial,
exponential, hyperbolic, or trigonometric functions. The other
program, written by Kuiper [5], uses a variety of techniques to
solve )linear or nonlinear first or second-order ordinary
differential equations. For a brief description of a precursor

to this program, see Moses (7).
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3. THE PROGRAM AND EXAMPLES OF ITS USE.

MACSYMA is an interactive algebraic languace uwith built-in
capabilities for a variety of symbolic mathematical operations,
including integration, differentiation, series expansion, matrix
algebra, and the solution of simultaneous r~onlinear equations.
This language is currently available at 3ome Honeyuell 6180
MULTICS installations and on the M.1.T. MATHLAB POP-18 system.
The latter system is availabls on the ARPANET computer netuorx,
which is described by Roberts and Wsssler (8].

MACSYMA has funct'on-definition and file-storage facilities,
so that a user may write and save programs that extend the
built-in capabilities. [f of general interest, such user-uritten
functions and their documentation may be placed in a pubiic
library disk file, where they are easy for others to find and

use. The variational optimization functions and demonstration

described here reside in such files.

MACSYMA automatically prompts the user with increasing
numbered labels Cl, C2, ...; and it automatically labels the
cor responding output expressions D1, D2, ... . MWhen there is
more than one output expression, the D-expression refers to a
list of automatically generated labels beginning with the letter
E.
The variational optimization file contains three functions:
The function EL generates and displays one or more labeled
equations, then returns a list of the labels. The equations are the

Euler-Lagrange equations, perhaps together uith first integrals
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corresponding to conservation of energy and/or conservation of

momentum. The former will contain a constant of integration KI(8],
whereas the latter will contain constants of integration Klil,
Wwith positive i, and will immediately follow the corresponding

Euler-Lagrange eauation. The function is used in the form

EL (F, Iy, y, «e0r yl, It , t, v, t1},
T2 n 1 2 r

where the arguments are as defined in the previous section.

The function HAM displays tuo or more labeled expressions,
then returns a list of the labels. The first expression is the
Hamittonian, and the other expressions are the auxiliary
differential equations, together with their general solutions,
AUX[i] = Cil], whenever the ith differential equation is of the
trivial form °'D(AUXLil,t) = B, as is often the case. Here t
is the independent variable and Cli] is the undetermined
integration constant for the ith differential equation. HAM is
used in tﬁe form

HAM (legn , egn , ...1),
1 2

with each eqn of the form 'D(s,t) = expression, wuhere s is
i

one of the state variables and "expression" depends upcn the
state and control variables.

The tuo differential equation solvers require their
differential equations in different formats. Consequently, the
output of either EL or HAM is in the style required by the

nonl inear equation solver O0DE2, and a function CONVERT is

provided to change the output to the form required by the
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constant-coefflcient |linear differentlal equation solver DESOLVE.
CONVERT 18 used in the form

CONVERT (legn , egn , ..., [y, y, ...1, t),
1 2 1 2

where each eqn is an equation, each y is a dependent
i

variable, and t is the independent variable. The output is the
input equation or lisi of equations, With the dependencies
explicitly indicated -- for example, 'D(S,T) uwould be replaced
with 'DB(S(T),T). For convenience, square brackets may be

omitted from one-element |ist-arguments to EL, HAM, or CONVERT.

The demonstration tn Appendix 1 Iliustrates various nays that
these functions may be used. Discussion of the optimization
aspects of the examples is included in the imbedded comments to
make the demonstration self-contained; so that discussion is not
repeated or paraphrased here. Houwever, the comments presume an
elementary knowledge of variational terminology, such as
"functional", "Euler-Lagrange equation", and “Hamiltonian". The
demonstration also presumes an elementary knowledge of MACSYMA or
easy access tc a manual. The latter assumpticn, while probably
true of anyone who succ-.z2ds In using the demonstration,  is
probably not true of the majority of those who read this report.
Consequently, this section contains supp lementary remarks about
the programming aspects of the demonstration and program.

Al though no attempt is made to describe any MACSYMA feature in

full generallty, these remarks should suffice for this

[
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presentation. A complete description of MACSYMA is given by
Bogen et. al. (3].

1. Comments, which may contain any characters except the
pair %/, and may appear anyuhere, begin with the pair of
characters /% and end with the pair of characters /.

2. Each expression iyped by the user is terminated by a
semicolon or dollar sign that is not within a comment. The
dol lar sign suppresses the printing of the D-expression, which
the user may be uninterested in seeing. The user may also
introduce label names of his oun choosing by inserting the name
followed by a colon before the rest of his input expressiion. Any
labels may be used in subsequent expressions, uWhere they;, stand
for the expressions that correspond to the labels. Thus, labels
£ill the assignment role. For convenience, the percent symbol
may be used to stand for the immediately preceding D-expression,
even if printing was suppressed by use of the dollar-sign
terminator for the the immediately preceding C-expression.
Similarly, %TH(i) may be used for the ith preceding
D-expression, with %TH(1) equivalent to %.

3. The listed computing times are in mi |l liseconds.

4. Subscripts are enclosed in square brackets, uWhereas
function arguments are enclosed in parentheses.

5. Not shour in Appendix 1, expressions labeled Cl1 through

C3 wuwere LOADFILE (OPTVAR,LISP,DSK,SHARE), LOADFILE (ODER,LISP, DS,

SHARE, and LOADFILE (DESOLN,LISP,DSK,SHARE) , used to load programs

needed by the demonstration. Also not shoun, expression Cé,




........
.....................

!1
14 i
WRI TEFILE (D3K,SHARE) , was used to urite al! of the subsequent 5}5&1
output onto a disk file so that aftsr inserting form-feed symbols, igé&i
it could be printed later on a Xerox printer, improving the t?&if
appearance of the reproduction. ?f
6. BATCH in C5 is used to read and execute the ?3{{ 
. demonstration file. In practice, a user would probably use the R,
optimization funct.ons interactively ‘nstead, but thic batch file :}ﬂj_

al'ous the unaided user to witness a flauless demonstration, free

of the inevitable typographical errors that mar an interactive

listing. e
7. DEPENDENCIES(Y(X)), in C8, establishes that Y depends '
upon X so that D(Y,X) will not evaluate to zero in the Ei'i
subsequent statement. The single-quote before D in C6 E?;;;
prevented the evaluation of the derivative at that point. E%{'E'
e -
8. %TH(2) 2] in C9 refers to the second element in the bﬁ;?
second preceeding D-expression. In an interactive situation, it e
would be easier to use E7, but the specific label numbers are ;ké}a
impractical to predict for a batch file, which could be loaded ;Qﬁ:.
beginning at a point other than CS. 5;{%
9. EXPAND in C1B causes the square roots to be combined. ZE
18. SOLVE, in Cll, solves the equation which is the first Q?QEP
argument for the subexpression which is the second argument. 3:
11. ODE2 in C13, from the file ODER LISP, solves the ??
first or second order ordinary differential equation which is the ;;FI’
first argument, where the second argument is the dependent e

variable and the third argument is the independent variable.

................
...........
..................
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12. SUBST, in Cl4, substitutes the left side of its first

argument for the right side of its first argument, in the second

argument.

13, In C19, EXP denotes the exponential function, LHS
denotes the ;eft—hand gsice of an equation, and RhS denotes the
right-hand side of an equation.

14. IC in C32Z, from the file ODER LISP, imposes the
initial conditions indicated by its last three arguments on the
general solution given by its first argument. The zonstants of
integration in the general solution must be named K1 and KZ2.
As seen in C34, the "initial" conditions may be imposed at
either end of the interval. Not demonstrated here.\zh analagous
function BC imposes 2-point boundary conditions, and an
analagous function INITIALl imposes an initial condition on the
general solution to a first-order differential equation with a
constant of integration C.

15. €39 illustrates hou statements may be grouped in
parentheses, separated by commas. ATVALUE imposes the initial
condition glven by ite third ergument on its first argument, at
the value of the independent variable indicated by its second
argument.

16. DESOLVE in C4B8, from the file DESOLN LISP, solves the
list of arbitrary-order simultaneous constant-coefficient linear
ordinary differential equations given by its first argument, for
the list of dependent variables given by its second argument.
When there is only one differential equation, square brackets may

be omitted from borh list arguments.




17. In CB7, SOLVE is used to solve the simul taneous

equations given by the list which is its first argument. When

there are more variables than equations, a list of the unknouns

must be included as a second argument.

The remainder of this section is concerned with the
definition of the variational optimization functions in Appendix
2, which may be skipped by the reader interested only in using
the functions or only in learning what they can accomplish.
Appendix 2 and the follouing remarks are included for programming
enthusiasts and for reference in case anyone uishes to modify the
definitions or translate them into another algebraic manipulation
language.

1. In C5, the operator := defines the funct on HAM to
be the value of the block that follous it. In the absence of a RETURN
statement, the value 2f a block is the value of the last expression
enclosed in parentheses following the word BLOCK. Expressions
within a block are separated by commas, and they
do not automatically cause output.

2. Enclosing variables in a list at the beginning of a block

declares them local, so that they are distinct from any variables

N I S

@i

With the same names that happen to exlst outcide the block.

&

0
)
(]

3. The LISTP function is TRUE if its argument is a list,

P
1

and FALSE otheruise. Its use here permite the convenience of

omitting brackets from a one-element |ist argument.
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4, The PART function permits isolation of any term,
factor, operator, etc. in a function. First it is used to

isolate the second argument of the DIFF function on the left

side of the first differen:ial equation. Later it is used to
isolate the first arguments of the DIFF function. il

5. As used here, the LENGTH function returns the number of -
expressions in its |ist argument.

6. Similar to ALGOL, the FOR prefix iteratively executes
the expression following the word DO.

7. The ENDCONS function appends its first argument to the
end of the list which is its second argument.

8. In C6, PRED is used as an argument of the EV function
to force the first argument to evaluate to TRUE or TALSE.

Otheruise, "LT = 1" would be interpreted as an equation.

9. DERIVDEGREE returns the degree of the derivative of the
second argument with respect to the third argument in the Iy
expression which is the first argument.

18. Substituting elements of the array DD for the derivatives
. revents the appea. ance of the dependent variables in these

derivatives from causing their participation in the partial

derivatives with respect to the dependent variables. This T

X

. e,
.

S

technique al!so permits a direct test of explicit dependence upon

the independent and dependent variables, so that first integrals

may be constructed when appropriate.
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4. TEST RESULTS.

Regarding computer analytic variational optimization, the
questions of interest are: MWithin the available memory space and
a reasonable amount of computing time,

1. what are the most complicated problems for which the
programs EL or HAM can derive the Euler-Lagrange or auxiliary
differential equations; and

2. of these, what are the most complicated problems for which

ODE? or DESOLVE can solve thzse equations?

Standard uel|-knoun computer programs and test cases are
widely available for the optimization of a mul tivariate function,
put this situation is not yet true for the optimization of
functionals. Consequently, a modest |iterature search uas
conducted to find suitable test cases. The following three cases

were the most complicated found:

The first case, by Stuiver [12] is concerned with transient
one-dimensional compressible gas flouw. A, B, and C are knoun
constants; Y is the dependent variable; T is the time; and X
is the position along tra flow axis. Here is an excerpt from

the program listing:

v

EL ((A="D(Y, T)="D(Y, X} 222/ 2) vesBie (X+T4C) wewe2, Y, [T, X1);



D N T

Oy 2
(--)

0 2 DY DX oy B -1
(E13) == (- B X + T+ ' == (= === = == + A) )
DX DX 2 o7
Dy 2
(--)
D 2 DX DY B -1
$ - (B X+T+0 (= - ==+ A) ) = 8
ot 2 o7
TIME= 1697 MSEC.
(013) (E13]
Expansion of the derivatives reguired another 914 milliseconds.

Professor Stuiver reports that it required considerably longer
than (1697 + 914) milliseconds to derive and check this result
by hand. No attempt was made to derive an analytic solution to
this partial differential equation.

The second case, by Payne [18] is an optimal spacecraft reentry
problem. J is the functional to be minimized, X[11 through XI[5]
are state variables, U is the control variable, and the Ks are

Known constants. The list of state equations is:

0(J, T) = X K7 + X,
5 4

DX, T = - X SINKX),
1 2 3

DX , M
2

X K6
2 2 1 2
X K18 K5 %E (K13 SIN tJ) + K12)
2

= SIN(X ) K2 = =- cmmmmmmmmmmmmmmmmmmmmmm oo o ,
3 K3

-~y
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DX, T) .
¥ "
X K6 =4
4 1 & ':;
X K10 K11 K5 %E CoS (W) SINW) COS(X ) K2 S
2 3
B = em oem om am om o o o o o e e e e e e e e e e 4 e ———
K3 X
2
X COS(X) &
2 3
Kl + X
1
X K6 ;
1 [
3 2 &
D(X , T) = X K& K5 % ; “
4 2 -
DX, T :
5 !
2 X K6 S
4 2 2 1 2 4 2 2 b
= X K18 K5 %E K7 (K13 SIN (U) + K11 COS (V) ﬁji
2 s
2 2 2 2 2
i SIN (U) + 2 K12 K13 SIN (U) + K12 )/K3 . i
5 ” -
The output of HAM occupied about three pages, computed &,
in about 6 seconds. A complete closed-form solution is hopeless; :
- 80 none Wwas attempted. —
] "1
The third case, by Miele [6], is concerned with optimal :
; nonsteady flight over a spherical earth in a great-circle plane. ;
g The physical significance of the numerous variables is unimportant - 4
-..‘ .."
¥ here, where the purpose is merely to generate an impressively messy :bﬁ
\ fi:
1
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set of formulas that no one but a masochist could prefer to derive

by hand. The following nine expressions are constrained to equal zero:

R v COS{(GAMMA)
DX, T) = commmmmmmmmeme ,
R+H

D(H, T) - V SIN(GAMMA),

2
G R SIN(GAMMA)

V COS(GAMMA) G R COS(GAMMA)

D(GAMMA, T) - ————mmmmmeme 4 —mmmmemm e
R+ H 2

L + SIN(EPS) THRUST(H, V, ALPHA)
e e e + 2 OMEGA COS (PHI),
MV

D(M, T) + BET(H, V, ALPHA),

2
THRUST (H, V, ALPHA) - TSI,

2
- THRUST(H, V, ALPHA) + THRUSTMAX(H, V) - ETA ,

A(X, H, V, GAMMA, M, L, ALPHA, EPS),

B(X, H, V, GAMMA, M, L, ALPHA, EPS).

1 SR
1 ,- ‘.

-
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The problem is to minimize an arb.trary function of the tuwo
end states, subject to i ese constraints. Using Lagrange multipliers,
the output of EL occupied about five pages, computed in
about 28 seconds. Here too, a complete closed-form solution is
hopeless, so none wWas attempted. However, the computer did reveal

tuo mistakes in the published results: the dot time-derivative

operator was missing or the left side of tuwo equations. Although
these ommissions were undoubtedly typesetting rather than derivational

errors, they do illustrate an advantage of direct photo-reproduction

of computer-generated analytical formulas.

None cf these three cases taxed the memory capacity or required
an undue amount of computation time; so it would be desirable to
have more complicated examples. Artificial examples could be
constructud, and they have the advantage of permitting a more
systematic evploration of the range of feasible problems.
lHowever, unless carefully constructed, they have the disadvantage
of being non-representative of real applications. Suggestions for

large real or artificial examples are welcome.




g b

2
il

23

Regarding question 2 at the neginning of this section, the
programs can successful ly solve differential equations at least
as complicated as those in Appendix 1. To develop the examples
there, it required some experimentation to find simple enough
coefficients and boundary conditions to make DESOLVE work. The
denominator of the Laplace transform must factor into |inear and
quadratic factors with irteger coefficients, which is unlikely
when the order or number of equations exceeds 2. Houwever, the
cubic and quartic formulas are built-into MACSYMA; so the domain
of the inverse Laplace transform step could easily be extended.
MACSYMA also has iterative numerical routines for for finding ‘ne
zeros of a polynomial to arbitrary accuracy, so at the expense of
slightly inexact numerical cpefficients in an analytical formula,
the domain could be extended even further,

In contrast, an O0ODE2 demonstration file suggests that this
function s capable of solving somewhat more complicated problems
than those in Appendix 1. Houever, closed-form analytic
solutions rarely exist for interesting variational problems more
complicated than those in Appendix 1. Even a perfect ordinary
differential equation solver, capable of finding all existing
closed-form solutions, would be able to solve only a small
percentage of the interesting variational problems.

Consequently, no further tests were made for question 2.

However, here too, suggestions for suitable examples are welcome.

«

. .
-----
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5. CONCLUSIONS AND CONJECTURES.

!

v
1
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. Computer algebra is clearly helpful for avoiding the tedium \:
' and blunders associated with nand derivation of the necessary :—:_
differential equations for large variational problems. [t is f:.;-‘
also somewhat helpful for deriving closed-form analytical

. solutions when they exist. '

Stoutemyer [11] describee how a similar program for -,
optimization of a multivariate function proved to be useful as an .

5 instiructional tool for an optimization course. Analytical \.

: treatment of nontrivia problems increased the students’ ’.:.:
f understanding of the tteoretical foundations, while nicely "

complementing numerical experiments. Perhaps the same ui Il prove L1

4 true for the variational optimization programs. b 1
The examples in Appendix 1 suggest other ways that computer L
L algebra may be used for variational optimization. For example, ‘-
other necessary and sufficient conditions such as the e

Legendre-Clebsch, the Jacobi, the Weierstrass, and the ‘
k Weierstrass-Erdmann conditions could be tested automatically. :1..
',: Computer algebra could also be used for a direct verification of e
- an optimum, using techniques illustrated by Young [13,141. \1
er g
Perhaps computer algebra together uith artificial-intelligence :
: theorem-pi oving techniques could eventual |y be used to automate FFS
:_: existence and uniqueness proofs. Until then, these important \3
! questions must be ansuered by a separate non-computer proof or by r”i
5 an appeal to physical considerations. _;:.j:
&
. B
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For the calculus of variations, equation (7) has the
advantage of admitting a larger class of solutions than (8), and
a general-purpose program for analytically solving
integro-differentia! equations may succeed in instances where the
existing ordinary differential equation solvers fail for (7).
Work has begun on such an integral equation solver, and hopeful |y

a subsequent report will describe its successful completion.

There are also a number of ways that computer algebra could
be combined with numerical methods for variational optimization:

1. The output of the functions which analytically gur zrate
the differential equations could be used as the input expressions
for a standard numerical ordinary differential equation solver.
The numerical routine could be written in the algebraic language,
or it could be written in a language such as FORTRAN. There are
facilities for generating MACSYMA output in a form suitable for
direct inclusion in a FORTRAN subprogram, with common
subexpressions computed separately to avoid redundant

calculations.

Not demonstrated in Appendix 1, the ODER files contains é7%
routines for generating analytical series solutions by Picard EE%
iteration or Taylor series. Combined with a stepuise solution, E;ﬁ
as described by Barton and others [1] for a different computer ;~;
algebra language, this comprises one of the most efficient gzg
methods for solving initial-value problems. Moreover, combined Eia

-
Wwith a numerical routine for finding the zerys of a function, any ;Té

........ SFage an . SE TEE S % -
=5 R B & Ao W e i e o o
PRI Y o R

L) - - [ o . R g . -
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numerical initial-value routine may be used for 2-point boundary
value problems, as described by Roberts and Shipman (39].

MACSYMA also has built-in facilities for Poisson series
manipulation, which may be used to construct analytical
perturbation-series approximations. This technique is widely
used in celestial mechanics, as described by Jefferys [4].

2. The domain of the differential equation solver DESOLVE
could be greatly increased by changes described in the previous
section or by using various approximations of either the Laplace
transform or the inverse transform.

3. Even uhen all of the guverning differential equations
cannot be completely solved 2nalytically, computer algebra
may be of use in reducirg part of the solution to quadratures
and/or solving some of the equations and eliminating the

corresponding variables from the remaining equations.
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APPENDIX 1.

(CS) BATCH(OPTVAR, DEMD, DSK,STOUTE);

(C6) /v This macsyma batch file illustrates hou to use the fiunctions
in OPTVAR > or OPTVAR LISP to help solve classical variational or
optimal control problems, These functions use the calculus of
variations and Poatryagin's Maximum-Principle to derive the governing
differential and algebraic equations; and this demonstration also
shows hoiws the governing equations may be solved using the built-in
SOLVE function and/or the functions in the SHARE files

ODER LISP, and DESOLN LISP. For more details, see the corresponding
SHARE text files OPTVAR USAGE, ODER USAGE, or DESOLN USAGE.

The illustrative examples here are intentionally elementary.

For a more thorough discussion of the mathematical principles
demonstrated here, and for results with more difficult examples, see
the the ALOHA project technical report by David Stoutemyer,
"Computer algebraic manipulatiion for the calculus of variations,

the maxinum principle, and automatic control"”, University

of Hawaii, 1974,

Many classical variational problems are analagous to special cases of
choosing a path which minimizes the transit time through a region for
which the speed is a function of position. There are applications in,
optics, acoustics, hydrodynamics, and routing of aircraft or ships.

In the tuo-dimensional case, assuming the path may be represented by a
single-valued function, Y(X), the transit time betueen Y(A) and Y(B)
is given by the integral of Q(X,Y)«SQRT(1+°D(Y,X)wx2), from X=A to
X=B, where D is an alias for DIFF and Q(X,Y) is the reciprocal of

the speed, and uhere we have used the fact that 'Dlarclength,X) =

SART (14+'D(Y,X)vr2). For simplicity, assume O independent of X. We may
use the function EL, previously loaded by LOADFILE (OPTVAR,L1SP,0SK,
SHARE), to derive the associated Euler-Lagrange equation together

uith an associated energy and/or momentum integral if they exist: =/

EL(Q(Y)+SORT(1+'D (Y.X)u’n‘cZ) . Y. X} 0

DY 2
acy) (--)
Dy 2 DX
(EB) a(y) SQRT((--) + 1) = —coemmcemeeeee = K
OX Dy 2 0
SART((--) + 1)
DX
oy
aty) --
D DX oy 2 D
(E7) = =- memmemmememeee- = SORT((--) + 1) (-- Q(Y))
OX DY 2 OX oy
SART((--) + 1)
)
TIME= 881 MSEC.
(D7) [E6, E7]
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(C8) /% To expand the Euler-Lagrange equation: v/

DEPENDENCIES ! (X)) 8 A
TIME= 5 MSEC. SR

(C9) %TH(2) [2], EVAL, D; -
TIME= 246 MSEC. | -

2 2
DY Dy 20D Y
gy --- aty) (--) ---

2 DX 2

DX DX DY 2 D ke

(D)  ~mrmmmmmmmmmme - mecm—m e = SART((--) + 1) (-- Q(Y)) .
DY 2 DY 2 372 DX DY R
SART ((--) + 1) ((--) +1) LY

DX DX :-:fj-:;

(C18) /% The routines in the SHARE file ODE LISP, previously loaded, i :

may solve an expanded first or second order quasi-| inear ordinary
differential equations; so the equation must be linear in its highest- AR
order derivative. The Euler-Lagrange equation is always of this form, .7-:::-'_'.-
but when given a second-order equation, the ODE soiver often returns :.:-:.:-::
with a first-order equation which we must quasi-linearize before SRS
proceeding; so it Is usually most efficient to take advantage of a pPREREL
first integral when one exists, even though it requires a certain '-_—-ﬂ
amount of manipulation. The SOLVE function is currently somewhat weak t—:-:-}::
with fractional powers; so we must massage the above energy integral It
before solving for "D(Y,X): v/ :—::t-:"_-:
fan

%TH(3) [1] = SORT(1+°D(Y,X)wx2), EXPAND, CVAL; k:;}.

TIME= 211 MSEC. »

oy 2 ey
(D18) aqy) = K SORT((--) + 1) e
8 DX

(C11) SOLVE(%/K(8), °'D(Y,X));

SOLUTION R
2 2 RO
SGRT(Q (V) - K ) b
DY B i
(E11) cm e mmmemmmmmeeeeeen
X K
)
2 2
SORT(Q (Y) - K )
DY B
(E12) c m oo
DX X
| B

TIME= 1591 MSEC.
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(C13) ODE2(EV(%[21,EVAL), Y, X)3

TIME= 10722 MSEC.

/ e
[ 1 )-: N
X =K (I (memmmmmemmeeee - ) DY) faf
e ) P 2 g
/ SORT!Q (V) - K ) ’
(5]
(D13) e e e e L P b =C
K
)
(C14) /v We must specify Q(Y) to proceed further. Q(Y)=1l is associat- !_
ecd with the Euclidian shortest path (a straight line), Q(Y)=SQRT(Y) is ' ~_ﬁ
associated with the stationary Jacobian-action path of a projectile (a CRL

parabola), Q(Y)=Y is associeted with the minimum-surface
hody of revolution (a hyperbolic cosine), and Q(Y)=1/S0RT (Y)
is associated with the minimum-time path of a falling body, starting b
at Y=B, measured doun, (a cycloid). OUf these, the cycloid presents ’
the most difficult integration. In fact, 1 have never seen

the integration for this case performed directly except by macsyma: ve/

SUBST(Q(Y)=1/SQRT(Y), %) &
TIME= 124 MSEC.

(C15) %, INTEGRATE; LY
TIME= 4881 MSEC. ANE
1 2 i 2 RS
SQRT (- + K ) LOG(SOHT(- + K ) - K ) o
Yy @ Yy 8 ) £l
(D15) - (X = K (cmmmmmmmmmmmmommme PRSI E R, —
e 2 1 2 4 3 XS
K (-+K ) -K 2 K
e v @ ) 2 oS
1 2 '3
LOG(SQRT(- + K ) + K )
Yy @ 8
e )I/K =C
3 )
2 K
8

(C16) /% This equation may be simplified by combining the LOGs and
clearing some fractions, but it is transcendental in Y; so there is no
hope for a closed-form representation for Y(X). For completeness we
should try the other alterpative for *D(Y,X), but it turns out to
lead to the same resull.

Most authors solve this problem by introducing the change of variable
'D(Y,X)=TAN(T), useful also for other Q(Y), which leads to the para-
metric representation: YeK[B)«COS(T)sx2, X=C+K (@) v (T+SIN(T)«COS(T) ).
Solving the former for T and substituting into the latter gives the
representation equivalent to that found directly by macsyma.

...........................................

--------------------

......
.........................................................................
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Some straightforuard investigaticn reveals that C is the

initial value of X, but the equation is transcendental in K[8], so
K[B8] cannot be determined analytically. However, it may be
determined to arbitrary numerical accuracy by an iterative algorithm
such as that described in the SHARE file ZEROIN USAGE.

To prove that the above solution is a strong global minimum, we must
prove that such a minimum exiets and that no

other ansuer gives a smaller value to the functional. This may

be done by the direct approach of Caratheodory, or by

checking the classical Weierstrass, Weierstrass-Erdman, Legendre, and
Jacobi necessary and sufficient conditions. Computer algebra

can assist these investigations, but they are beyond

the scope of this demonstration. Instead, to Keep the demonstration
brief, we will now consider other Kinds of problems.

Stationary values of a functional may be subject to
algebraic or differentlal constraints of the form FIX,Y(X),'D(Y,X))=0
and/or isoperimetric constraints of the form
INTECRATE 4 (X, Y(X),'DI(Y,X)),X,A,B) = J, wuhere J is a given constant.
Sometimes it is possible to eliminate one or more constraints,
substituting them into the functional ond any remaining constraints;
but if not, we may use Lagrange multipli=rs. For example, suppose we
Wwish to determine the curve that a string of given length assumes

to minimize its potential energy. The potential energy is
INTEGRATE (Y+SQRT (14+°0(Y,X)vx2), X, A, B), uhereas the length is
INTEGRATE (SORT (14°D(Y,X)ve2), X, A, B); so lett'ng MULT be the
Lagrange multiplier, our augmented functional i3 of the form that ue
have been studying, with Q{Y)=Y+MULT. Consequently, we may simply
substitute this in the general integral that we found before: s/

SUBST(Q(Y) =Y+MULT, %THI(3))$
TIME= 117 MSEC.

(C17) /% Type NONZERO; in response to the question generated by
the follouwing statement: ¥/

%, INTEGRATE;
IS K ZERD OR NONZERO?

)
NONZERD;
TIME= 1338 MSEC.
2
(y + MULT) Y + MULT
X - K LOG(SORT (~-=--=="=-- -1+ - )
9 2 K
K (%
)
(017) e e —mmm o o =C
K
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(C18) /+ To obtain Y as a function of X: %/ |
(%K (8] +X) /K [0) ; i:it’
TIME= 92 MSEC. A
2 X+K C e
(Y + MULT) Y + MULT %} -
(D18) LOG (SORT (-----—====~ - 1) + ————- ) = e | S
2 K K T
K %] %} e |
° o
(C19) EXP (LHS (%)) =EXP (RHS (%) ) ¢ 4%
TIME= 28 MSEC. ]
X+K C IR
%}
2 K
(Y + MULT) Y + MULT (%
(D19) SORT (----=——=mm- - 1) 4~ = %E
2 K
K )
)
(C28) SOLVE ( (%sK (81 -Y-MULT) sex2, Y)3
SOLUTION
X 2 X X
----C ---+2C --+C
K K K
) 8 )
%E (K %E -2 % MULT + K )
8 %}
(E20!} Y @ ccmmmmmmm e mmm—m———— oo —————— -
2
TIME= 7851 MSEC.
(D20) (E20]
(C21) %,EVAL,EXPAND,RATPRODEXPAND: TRUE;
TIME= 17 MSEC.
X X
----C --+C
K K
) 0
K %E K %E
%} %}
(021) Y @ e et - MULT
2 2
(C22) /% We may reurite the above expression as: ¥/

K (@1 %COSH (X/K[814C) - MULT 8
TIME=- 2457 MSEC.

s T T ., W e e T T
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(C23) /% We may substitute this into the integral constraiint to get 1
equation relating the constant K(@) and C to the given length L: 3/

SART (14D (%, X} 12} 5
TIME= 96 MSEC.
2 X
(D23) SART(SINH (-- + C) + 1)
K
]

(C24) /v This is simply COSH(X/K(B]+C), so: »/
L = INTEGRATE(COSH(X/K(@1+C), X, A, B);

TIME= 1787 MSEC.
K C+8 K C+A
] ]
(D24) L =K SINH(--oeeu—- ) - K SINH(-eoeemm- )
] K ] K

(C25) /% Given A, B, Y(A), and Y(B), we may substitute into the
general solution to get tuo more relations among K(8), C and MULT,
but the three equations are transcendental; so a numerical
solution is generally necessary.

For completeness, we should also investigate the case of K(8)=08, which
yields the solution Y=B; but for brevity, we will omit that analysis.

The functional may include derivatives of higher than first

order., For example, including the small-deflection energy of bending,
shear, and an elastic foundation, the elastic energy of a nonuniform
beam with loading W(X) is the integral of the following function: ¥/

A(X)fc'D(Y.X.Z)u‘n’cz + B(X)u’c'D(Y.X)u’n‘cz + CX)weYyere2 + WIX)wY$S
TIME= 97 MSEC.

(C26) /v To obtain the Euler-Lagrange equation: =/

EL(%, Y, X)3

2 2
) oy ©O oYy
(E26) - 2BMX) = = === 2 A(X) == =2 CIX) Y + U(X)
DX DX 2 7
OX DX
TIME= 918 MSEC.
(D26) (E26]

(C27) /% 1§ shear and foundation energy are negligible, as is often
the case, we may solve this differential equation, for specific A(X)
and W(X), by tuo successive applications of ODE2. For example: =/

[




%11, EVAL,A(X)=X, B(X)=0, C(X)=8, W(X)=1, "D(Y,X,2)=DY28
TIME= 336 MSEC.

(C28) DEPENDENCIES(DY2(X))$
TIME= 4 MSEC.

(C29) EV(%TH(2),D,EVAL);
TIME= 159 MSEC.

2
D DY2 DDY2
(D29) O T K o b —eee = 1
2 DX
DX

(C3@) ODE2(%, DYZ, X);

YOU HAVE RUN OUT DF LIST SPACE.

DL YOU WANT MORE?

TYPE ALL; NONE: DK; A LEVEL-NO. DR THE NAME OF A SPACE.
15

TIME= 3728 MSEC.

. X K2 Kl
(030) DY2 = - - + —— - --
4 X 2

(C31) ODE2(SUBST ( [K1=K3,K2=K&,0Y2="0(Y,X,2)1,%), Y, X);
TIME= 1959 MSEC.
3 2
K& X (26 - 26 LOG(X)) + X + B K3 X
(031) Y 8 - ccmmmemmmmm e oo s + K2 X + Kl
24

(C32) /% Now let's impose the boundary conditions Y="D(Y,X)=0 at X=1,
Y=0, '0(Y,X)=1 at X=2: %/

IC(%, X=1, Y=8, 'D(Y,X)=8);
TIME= 1684 MSEC.
3 2
Ké X (26 - 26 LDG(X)) + X +B K3 X (4 K3 + 1) X
(D33) [V = = =mm=m—mmmmmmemmm—mmmmmmmmmmomomeneoo § mmidme s ozas

(C34) 1C(SUBST ((K3=K1,K4=K2] ,FIRST(%}), X=2, Y=0, 'D(Y,X)=1);
TIME= 30868 MSEC.
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= 5, 0 S8 BTN e S e L e e e e e - P le e T F R e it T Tet e s mri ¥ et e e s o Dl FO 18 e et G Y DS e W

49 X (24 - 24 LOG (X)) 3 6 (118 LOG(2) - 57) X
L e e S T S B e
72 LOG(2) - 438 18 LOG(2) - 12
(D35) [Y = = ——cmmcm——mmmmmmmmmmmmm—mmmmmmmmmmmmmemmm—mmmem e mmmm e

4 (118 LOG(2) - 57)
(1 = —mmmmmmmmmmmmmeee ) X y
18 LOG(2) - 12 Sy

(C36) /w as another specific beam example: 3/

%TH(8) ,EVAL, A(X)=1,B(X)=2,C(X)=1,U(X)=18
TIME= 268 MSEC.

(C37) %I(11,0;
TIME= 173 MSEC.

' ' 2 4
DY DY
(D37) I e S
2 4
DX DX

(C38) /w We cannot treat this as 2 successive second-order equations,
but the function DESOLVE in the SHARE file DESOLN, already loaded, is
applicable to some |insar arbltrary-order constant coefficient
equations. First we must convert the equation so that the dependency
of Y is explicitly indicated: v/

CONVERT (%, Y, X);
TIME= 215 MSEC.

2 4
D D :
(D38) 4 (——— Y(X)) =2 (———=Y(X)) = 2 Y(X) +1 % Th
2 4 e
DX DX X

(C39) /v DESOLVE requires all boundary conditions to be at X=0,

and it works best if they are specified berore calling the function.
However, we may overcome this restriction, as illustrated by k
the following example, where the beam has zero slope and deflection at |t

both ends: v/ s,
(ATVALUE (Y (X) ,X=8,8), ATVALUE ("D(Y(X),X),X=0,0), s

ATVALUE (*D(Y(X),X,2),X=8,K1), ATVALUE('D(Y(X),X,3),X=8,K2))$ 99:
TIME= 78 MSEC. et



\. . At
b

38 <
(C4@) DESOLVE (%¥TH(2), Y(X)); P
»
TIME= 2857 MSEC. o
- X - X o
(2 K2 - 2 K1 +1) X% (K2 + 1) %E 2
(068) Y(X) @ mccmemmmmemmmmmmmemm e A
8 4
X X
(2K2 +2K1 - 1) X %E (K2 - 1) %E 1 e
4 e e = e mme e —— o= - -
8 4 2 =ﬂ
2 PN
(C41) 1C(SUBST(Y(X)=Y,%), X=1, Y=8, 'D(Y,X)=0); > ]
TIME= 7259 MSEC. RN
2 z ]
2 (%E -2 % -1) 2 (%€ -2 % + 1) - X o
(commmmmmmm e 4 mmmmmmmm e + 1) X %E s
2 2 P
2% + 4 % -2 % + 2% -1 P .
(042) [Y m c——mmm oo mm— e m—mmm e R
8 -4
2 g
% -2 % +1 - ¥ i
PR + 1) % | —_—
%E + 2 %E -1 Bty
D o
4 o
il
2 2 ——
2 (4E -2% -1) 2 (Y4E - 2 % + 1) X e
QS RSP VTP - 1) X %E i
2 2 -
2% + 4 % - 2 % + 2 %E -1
+ ———————————————————————————————————————————————————————
8
2
% - 2 %4E + 1 X
(S =mm=taan - 1) %
2
% + 2 %E -1 1
D et A e S ST SRR = -]
4 2

(C43) /% We may also treat problems uWith more than one dependent
variable. For example, the charge, 0, and displacement from
equilibrium, Y, of a simple electromagnetic |oudspeaker, with M, K,

L, S, E(T), and T denoting mass, spring constant, inductance, electro-
magnetic work coefficient, voltage, and time, respectively, are given

‘ by the stationary value of the integral of the function e
in the first argument of EL below. (ref. S.H. Crandall, B.C. Karnop, (3 Ll
E.F. Kurtz Jr., & B.C. Pridmore-Broun, "Dynamics of Mechanical and i
Electromechanical Systems", McGrau-Hiltl), %/ }75—
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EL((N*'D(Y.T)*#Z - KyeYvene2 + Lﬂ'D(Q,T)
fy, Q1, T);

D Dy
(E43) -~ M- =
DT OT
D
(E44) --(SY+L
D1
TIME= 4231 MSEC.
. (D44) (E43,

(C45) /v We may simplify these equati
the current, |; and we may introduce

vwel) /2 + S*'D(Q.T)ﬂY + E(T)wO.

ba
--S-KY
oT

Da

--) = E(T)
o7

E44]

ons by replacing '0(Q,T) with
linear mechanical resistance B

and |inear electrical resistance R as follouss %/

%, EVAL, 'D(Q,T)=1, Swl=S«l-Bx'D(Y,T)
TIME= 471 MSEC.
D DY oy

DT DT oT

‘TIME= 483 MSEC.

(C47) CONVERT(%, (Y,I11, T8
TIME= 461 MSEC.

(C48) (ATVALUE(Y(T),T=0,08), ATVALUE(I
8,0))8
TIME= 52 MSEC,

(C49) DESOLVE(%TH(2), LY(T),I1(T)]);
TIME= 18219 MSEC.

..........................
...................

» E(T)=E(T)-Rxl;

D

(D45) [--M--= -B---KY+1S, --(SY+1L)=E(T) -1R]

ot

(C46) /» DESOLVE also works for some systems of arbitrary-order
constant-coefficient equations; so let's try it with the following
parameter values, excitation E(T), and initial conditions: %/

SUBST ([M=2,K=1,B=1,S=1,L=1,E(T)=SIN(T),R=1], %)$

{7),T=0,08), ATVALUE('D(Y(T),T),T=

SORT(3) T SORT(3) T
SIN(cmmmmmmmm }  COS(-mmmmmmm- )
- 12 2 2 2 SIN(T)
(0%0) [Y(T) = %E T i 2 Emm——
SORT (3) 3 5
- 1/2
COS(T) 8 %E
. W = 4+ —m—me——— 3
5 15

...................................
..................

.....

R b ay A
O

..........

- . - - - - o - s oo - . - . . - - - - - 0 - - Y » . - - S en® o *_d - - P L R I e el T A B e



——
.

4 =)
: Il
SART(3) T SORT(3) T )
SIN(-----—--- ) COS(--------- ) R
- T/2 2 2 3 SIN(T) h{in
[(T) = %E ( = mmmmmmme e & e ) 4 —emmm—-- SRR
SART (3) 3 5 Sy
e
- T1/2 o
Cos(T) 8 %E
- —————- T ]
5 15 >
(CS1) /v The functional may also have more than 1 independent var- ®
iable. For example, the general 2-dimensional linear elliptic partial i
differential equation is equivalent to the variational problem:s/
EL(A*'U(U.X)*»’(Z + Ba’c'D(U. Y)wewe2 + Collvec2 + E)‘."U(U.X) + F)’c'D(U.Y) + i
GrU, U, [X,Y)); ifﬁ_
[
D ou 0 DU SRETL.
(ES1) -~ 2B --4+F) +--(2A--+E)=2CU+GC woelny
oy oY DX DX :#f}}
TIME= 1163 MSEC. KOsy
(051) [ES1] nonin
(C52) /v Analytic solutioris to even the simplest cases of this equa- gusi'
tion are rare, but computer algebraic manipulation has been used to Rty
construct series solutions to such uquations. e
Many variational optimization problems are easier to treat i:i}i
using Pontryagin®s Maximum-Principle than by the calculus of varia- !“'
tions. This is particularly true of optima! control problems. :{x;\
As an el=mentary example, suppose that we have a unit f:iﬂjQ
mass at ay arbitrary position X[8] with arbitrary velocity V(@] at AR
time T=B, and we wish to vary the force F, subject to the constraint ORI
-1 <= F <= 1, such that the mass arrives at position X=8 with velocity Y

V=0, in minimum time. The force equals the rate of change of
momentum; so the motion is governed by the pair of first-order
differential equations: ¥/

'otv,T)=F,
'0D(X,T)=V]$
TIME= 24 MSEC.

{C53) /% Using this list as the argument to the function HAM results
in output of the Hamiltonian followed by differential equations for
the so-called Auxiliary variables, together with their solution when- s ok
ever the differential equation is of the trivial form: [}
'D(aux (i}, t) = B, as is often the case: =/ sl



ey,
#a
',

41 Ef
HAM (%) 5 o
(ES3) AUX V + AUX F i
2 1 ;nj?:
D L:' X
(ES4) —- AUX = - AUX »
DT 1 2 e
D ol
(ESS) - AUX =0 e
. DT 2 €
B
(ES6) AUX = C RSN
2 2 ;
TIME= 341 MSEC. 1
(D56) (ES3, £54, ESS, ESE) \

(CS7) /% We may substitute the given solution of the last
differential equation into the one before it, then use either DESCLVE
or ODE2: =/

. oWy
4 '..,-
ala

1 '-.' l.-"' 4
jus.“-gﬁv'
SRR

%[4) ,EVALS
TIME= 25 MSEC.

-y

(C58) ODE2(EV(%TH(2) [2),%,EVAL), AUXI(1), T);

«

TIME= 464 MSEC. :
(DS8) AUX =C-C T 1
1 2 X

b -«A‘.J

(C59) /+ Now we may substitute the values of the auxiliary variables
into the Hamiltonian: =/

e (gD a — T
AT LR T AN
Sonblr 0y g

ol ¥ Sl A e

LR oo ! e TR
W oo o AR 0t =%
AN TR A D A T

LN . PR L IR

- —_. .

%TH(3) (11, %, EVALS weie
TIME= 125 MSEC. ‘ i
(C6@) SUBST(XTH(3), %); | —-—
- TIME- 35 MSEC. 3
(D6@) C V+F(C-C T 2]

2 2

(CB1) /w According to the maximum principle, we should vary F so as to
maximize this expression for all values of T in the time-interval

of interest. Considering the constraints on F, clearly F should be wint
SIGN(C-C[21%T). (Ue could use the function STAP in Nt
the SHARE fite OPTMIZ > or OPTMIZ LISP to determine this.) N

lle have found that every optimal control is F=1 and/or F=-1, uith at

most one suwitch between them, when T=C/C[2]. Since F is piecewise A
constant, we may combine the two first-order equations of motion and Ly

uolve them as follows: wx/

.l
»*
R
§ iy =T
IR
A
-
o

- - - w2 T et s [ e TR aE g AL B2 R E NT AR R - - . . o N s | A b ae - P T e Rl -
RS A N otk Az e o e o B S R SR R R TR e s R e R g L T T e E e A T R S
b o Wi 1 7% T M WY ) SRR E e Tk _-:_- ............ L IR -“\-. il .’_ PN 2T % gt S P K ':“. FALFS £, O o S
= . " - 2 N 3% h Clas b
b oa e g e e PR PPy Ty S, i e, (T T DN TR W e AR e T T W i N T B S N T T Se Ll e Ryttt ML Dol s it o R 2 Lo m s g Sog Soal
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ODE2 (*D(X,T,2)=F, X, T);
TIME= 617 MSEC.
2
F T
(DB1) X = === + K2 T + Ki
2

(CB2) /x Now we may choose the constants of integration sc us to sat-
isfy any given boundary conditions. For example, suppose that ue
start with V=0 and X=1 at T=8. Assune we start with F=-1: 3/

IC(SUBST(F=-1,%), T=0, X=1, 'D(X,T)=0)}
TIME= 634 MSEC.
2
T
(D63) (X =1---1]
2

(CB4) /v Assuming that we terminate with F=+l: %/

IC(SUBST (F=1,%TH(2)), T=TFINAL, X=0, 'D(X,T)=0);
TIME= 3938 MSEC.
2 2 .
TFINAL T
(065) (X = —=—eem - T TFINAL + --]
2 2

(CEB) /v To determine TFINAL and the time T at which F switches
sign, we may impose the condition that the tuo solutions
must agree in position and velocity at that time: e/

SUBST (%, FIRST(%TH(2)));
TIME= 36 MSEC.

2 2 2
TFINAL T T
(be®) == - TTFINAL 4+ - =1 - --
2 2 2
(C67) SOLVE(([%, D(%,T)]);
TIME= 3590 MSEC.
(067) [CTFINAL = 2.0, T = 1.0), [TFINAL = - 2.8, T = - 1.8]]

{C6E8) /v For the first of these solutions, @ < T < TFINAL; so the
assumption that F suitches from -1 to 1 s justified. F is now
completely determined as a function of time, but to represent it with
our expression SIGN(C-C[2]%T): =/

SOLVE (SUBST (% (11, C-C(2)«T), C)}

SOLUTION

(EB8) C=C
2

TIME= 99 MSEC.

(D638) [E68]




(C69) /% As is aluays the case, one of the integration constants for
the auxiliary equations is redundant; so we may set £(2) and C to the
same arbitrary negative constant, such as -1.

It is Important to remember that so far, we have only

determirned an EXTREMAL control. To prove that it is an OPTIMAL
control, we must prove that an optimal control exists and that no
more-optimal extremal control exists. Houever, such considerations
are beyond the scope of this demonstration. e/

TIME= 161874 MSEC.
(D69) BATCH DONE
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APPENDIX 2.

(C3) /% This file contains functions and option settings for
variational optimization using the calculus of variations and

the maximum principle. For a description of its usage see the text
file OPTVAR USAGE. w»/

/% Set options to automatically print cpu time in milliseconds, force
attempted equation solution even uhen there are more variables than
unknowns, when an equation Involves logs or exponentials, or when a
coefficient matrix is singular: +«/

TIME:GRINDSWI TCH: SOLVERACCAN: SINGSOLVE: TRUES
TIME= 13 MSEC.

(C4) /% establish D as an alias for the differentiation function: ¥/

ALIAS (D,DIFF)$
TIME= 5 MSEC.

(C5) HAM(ODES) := BLOCK(
/v This function computes the Hamiltonian & the auxiliary equations v/

{T,NSV,STATEVARS, AUXVARS, ANSW, ELIST, AUXDE}, /wdeclare local varss/

IF NOT LISTP(ODES) THEN ODES: [ODES], /« 2nsure list argument ¥/

T: PART(ODES,1,1,2), /v get independent var from derivative v/

NSV: LENGTH(ODES), /% determine number of state variables =/

/% Form list of state and auxiliary variables: %/

STATEVARS: AUXVARS: ELIST: (1,

FOR 1 THRU NSV DO (STATEVARS: ENDCONS (PART(ODES,1,1.1), STATEVARS),
AUXVARS: ENDCONS(AUX (11, AUXVARS)),

ANSW: [SUM(RHS (ODESII1)%AUX(ID, I, 1, NSV)], /% form Hamiltonian ve/

/v Eorm list of auxiliary equations and any trivial solutions: %/
FOR 1 THRU NSY 00 (
AUXDE: ’DIFF(AUX(1],T) = -DIFF (ANSW (1], STATEVARS(I]],

ANSW: ENDCONS (AUXDE, ANSW),
IF RHS (AUXDE) =8 THEN ANSW:ENDCONS (AUX (11=C(I1,ANSW)),

/% Form list of E-labels uhile displaying computed results: =/
FOR ITEM IN ANSW DO ELIST: ENDCONS(FIRST(DISP(ITEM)), ELIST),
ELIST) 8

TIME= 102 MSEC.




(C6) EL(F, YLIST, TLIST) := BLOCK( /% This function computes the
Euler-Lagrange equations and any trivial first integrals: v/

(LY,LT,FSUB,ENERGYCON,ANSW,ELIST], /% declare local variables v/

IF NDOT LISTP(TLIST) THEN TLIST: (TLIST],

IF NDT LISTP(YLIST) THEN YLIST: ([YLIST],

/v compute number of independent & indepencent variables: v/
LY: LENGTH(YLIST), LT: LENGTH(TLIST), FSUB: F,

/¥ no conservation of energy if more than 1 independent var: </
ENERGYCON: EV(LT=1,PRED),
FOR I THRU LY 00 /» substitute for derivatives: v/ _
FOR J THRU LT 00 (00Cl,J): DER!VOEGREE (FSUB,YLISTII],TLIST(J]),
IF DOlI,J1 > 1 THEN ENERGYCON: FALSE,
FOR K THRU DDI(I,J]) DO
FSUB:SUBST (*DIFF(YLIST (11, TLIST[J],K)=DYDTI(I,J,K], FSUB)),
/% no conservation of energy if independent var. in integrand: s/
IF NOT FREEOF (TLISTI[1],FSUB) THEN ENERGYCON: FALSE,
ANSW: IF ENERGYCON THEN [FSUB) ELSE (), /v form list of results: =/
FOR I THRU LY 00 (FY: DIFF(FSUB,YLISTII]),
ANSW: ENDCONS (
SUM(SUM( (-1) vexe (K-1) +’DIFF (DIFF (FSUB,DYDT[1,J,K1), TLIST 1J],K),
K,1,00(1,J1), J, 1, LT) = FY, ANSW),
IF ENERGYCDN THEN ANSWI[1]: ANSWI{1) -
DIFF (FSUB,DYDTCI,1,1)) %" DIFF(YLIST (I}, TLISTI(11),
IF FY=D AND LT=1 AND DDI[I,1)=1 THEN /% momentum integral »/
ANSW: ENDCONS (DIFF (FSUB,QYDT{I,1,131)=K(1], ANSW)),
IF ENERGYCON THEN ANSW[1]: ANSWI[1]=K([0O], .

FOR I THRU LY 00 /x resubstitute original derivatives: ¥/
FOR J THRU LT DO
FOR K THRU DODI(1,J] DO
ANSW: SUBST(DYDT[1,J,K)="OIFF (YLISTII],TLIST[J],K), ANSW),

ELIST: [1, /v form iist of E-labels while displaying results: »/
FOR EQN IN ANSW 00 ELIST: ENDCONS(FIRST(OISP(TON)), ELIST),
ELIST) 8

TIME= 194 MSEC.

(C7) CONVERT(ODES, YLIST, T) := BLOCK ([ANSW],
/v This function converts output of EL or HAM to form required by
OESOLVE from the file DESOLN. ¥/
IF NDT LISTP(YLIST) THEN YLIST: ([YLIST],
ANSW: EV (ODES,EVAL), /+ if E~labels, replace with values v/
FOR YY IN YLIST DO ANSW: SUBST (YY=YY(T), ANSW),
RETURN (ANSW)) 8
TIME= 29 MSEC.




