UNCLASSIFIED

AD NUMBER

ADA954579

CLASSIFICATION CHANGES

TO:

UNCLASSIFIED

FROM:

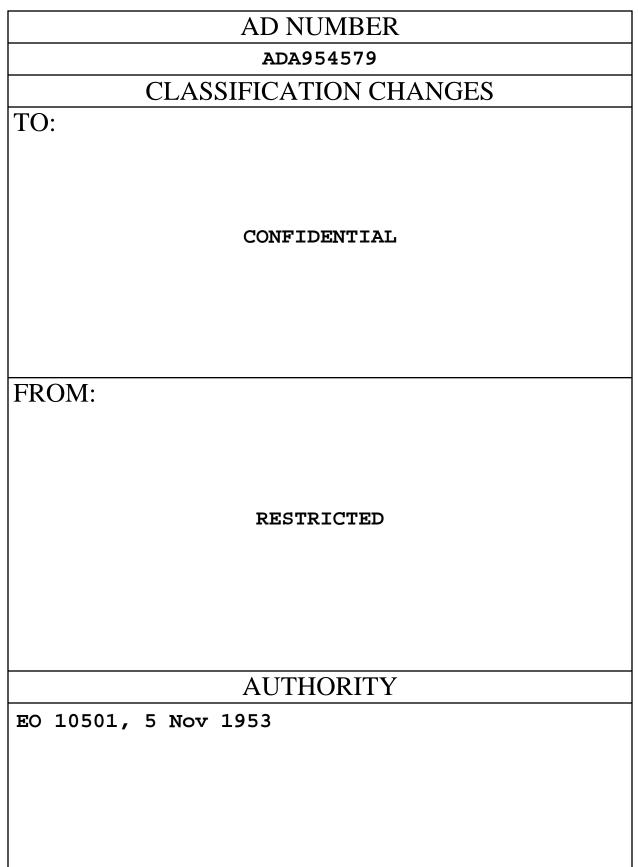
CONFIDENTIAL

LIMITATION CHANGES

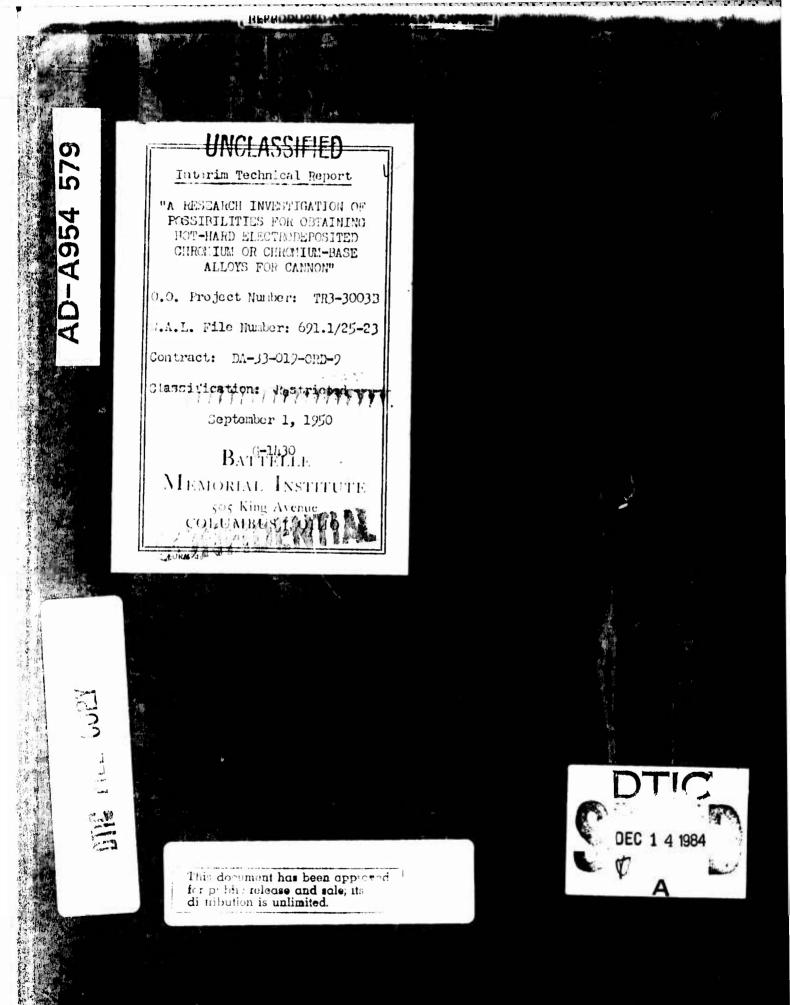
TO:

Approved for public release; distribution is unlimited. Document partially illegible.

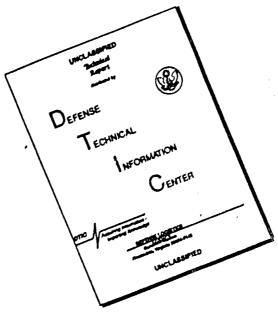
FROM:


Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 01 SEP 1950. Other requests shall be referred to Army Chief of Ordnance, Washington, DC 20310. Document partially illegible.

AUTHORITY


14 dec 1984 per document marking; 14 dec 1984 per document marking

THIS PAGE IS UNCLASSIFIED


UNCLASSIFIED

THIS PAGE IS UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Contractor: Battelle Memorial Institute

Agency: Office, Chief of Ordnance, ORDTR - Cannon

Ordnance District: Cleveland, Ohio

Contract Number: DA-33-019-ORD-9 W. A. L. File No. 691.1/25-23

INTERIM TECHNICAL REPOR

0.0. Project Number: TR3-3003B

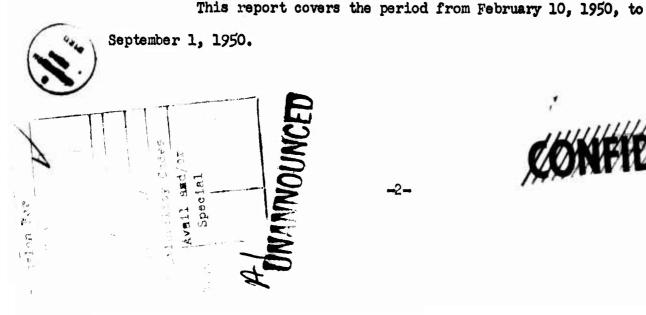
Priority: War Department 2B

<u>Title of Project</u>: "A Research Investigation of Possibilities for Obtaining Hot-Hard Electrodeposited Chromium or Chromium-Base Alloys for Cannon."

<u>Authors</u>: J. Edwin Bride, Cloyd A. Snavely, and Charles L. Faust <u>Object</u>: To investigate possibilities for an erosion-resistant chromium or chromium-alloy electroplate for lining gun tubes.

Summary: The 94 per cent chromium - 6 per cent iron alloy plate 0.003 inch thick has been successfully applied to the bore surface of 12-inch sections of 40-mm. gun tubes. Though adhesion was generally good, as indicated by resistance to peeling upon sawing, there was some indication, by metallographic examination, of need for further improvement. Attaining good adhesion is no problem when plating flat panels. So, the

-1-


internal moving-anode system will be studied further. The process for alloy plating the bore surface has been simplified by modification, eliminating the porous diaphragm that was previously

Conclusions

Changes now being studied in the anode system are expected to be successful for showing the technique to be used in applying the 94 chromium - 6 iron alloy plate to full-length 40-mm. gun tubes. As soon as the method is ready, full-length 40-mm. tubes will be plated elsewhere and used in firing tests.

Since plating can now be done without a diaphragm, prospects are much better for applying the 94 chromium - 6 iron alloy plate to the caliber-.60 erosion-gage weapon. Tests with it could give preliminary evaluation of the new alloy plate.

Report Period

DISTRIBUTION

CONFIDENTIAL

	Sent To
No. of Copies	Sent To
2	Chief of Ordnance Attn: ORDTR-Cannon Washington 25, D. C.
1	Ditto Attn: ORDTX-AR
1	" Attn: ORDTS-Machine
1	" Attn: ORDTR-Materials
1	" Attn: ORDTM-Ammunition
1	" Attn: ORDTU-Rockets
1	District Chief, Los Angeles Ordnance District, 35 North Raymond Avenue, Pasa- dena 1, California, Attn: Rockets
l	Commanding Officer Watervliet Arsenal Watervliet, New York
1	Commanding General Frankford Arsenal Philadelphia 37, Pa.
l	Commanding Officer Springfield Armory Springfield 1, Mass.
1	Commanding Officer Picatinny Arsenal Dover, New Jersey
l	Commanding Officer Rock Island Arsenal Rock Island, Illinois
	-3-

DISTRIBUTION (Continued)

	DISTRIBUTIC	N (Continued)
		CANA BARANIA
No. of Cop	ies	Sent To
1		Chief, Bureau of Ordnance
		Navy Department Washington, D. C. Attn: Re5a
-		
l		Commanding Officer Office of Maval Research
		Bellevue
		Washington 25, D. C.
l		Commandant
		Naval Gun Factory
		Washington, D. C. Attn: Plating Shop
l		Commanding Officer
		Wright Field Dayton, Ohio Attn: Materials Lab.
_		
1		National Bureau of Standards
		Washington, D. C. Attn: Electrochemical Section
,		
1		Rensselaer Polytechnic Institute Department of Metallurgy
		Troy, New York
2		District Chief
-		Cleveland Ordnance District
		Cuyshoga Abstract Building
		717 Superior Avenue, N. E. Cleveland 14, Ohio
հ		
4		Commanding Officer Watertown Arsenal
فمقد فارحيك بالمترجي		Watertown 72, Massachusetts
25	TOTAL	
•		

ILILITABLE OF CONTINUE
Page
INTRODUCTION
EXFERIMENTAL WORK
Method of Attack
Apparatus
SUMMARY OF ESSENTIAL EXPERIMENTAL OBSERVATIONS
Specimens 4662-69A to 4662-75A (Table 1) 9
Pilot-Cell Tests 4662-80A to 4662-87A (Table 1) 9
Pilot-Cell Tests 4662-95A to 5389-1B (Table 2) 11
Pilot-Cell Tests 5389-2A to 5389-17A (Table 2) 12
Pilot-Cell Tests 5389-17A to -24A (Table 2)13
Pilot-Cell Tests 5389-30A to -38A (Table 3) 14
Pilot-Cell Tests 5389-39A to -42A (Table 3) 14
Pilot-Cell Tests 5389-50A to -50B (Table 3) 15
Specimen and Short-Tube Tests 5389-51A to -52D (Table 3)
Pilot-Cell Tests 5389-52E to 5389-52G (Table 3) 16
SUMMARY OF THE BEST PLATING PROCEDURE TO DATE
Electrolyte Flow
Cathode Current Density
pH (at 145°F.)
Temperature of Bath
CONFIDENTIAL
1977 - Sec. 1977

1 A

.

.

TABLE OF CONTENTS (Continue CONFIDENTIAL
Anode Construction
Reduction of Hexavalent Chromium in Bath
Rate of Deposition
Adherence of Alloy Deposit

TECINICIED IIII

•

-4a-

INTERIM TECHNICAL REPORT

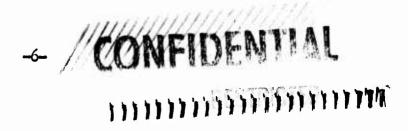
on

CONFIDENTIALIT

A RESEARCH INVESTIGATION OF POSSIBILITIES FOR OBTAINING HOT-HARD ELECTRODE POSITED CHROMIUM OR CHROMIUM-BASE ALLOYS FOR CANNON

by

J. Edwin Bride, Cloyd A. Snavely, and Charles L. Faust September 1, 1950


INTRODUCTION

The development of a process for plating chromium-iron alloy was carried out in a previous Army Ordnance contract*. A 94 per cent chromium - 6 per cent iron alloy plate exhibited hot hardness considerably superior to conventional chromium plate. In addition, the rate of deposition and current efficiency for chromium-iron alloy plating were superior. Limited tests were made on the application of the plate to the bore surfaces of tubes. However, the major portion of the work related to the development of the plating process.

The present effort relates mainly to developing the special technique required to plate the chromium-iron alloy on the bore surfaces of long tubes. The 40-mm. cannon has been selected for firing tests to

Contract W33-Ol9-ORD-6397. Results are reported in the "Final Technical Report on A Research Investigation of Possibilities for Obtaining Hot-Hard Electrodeposited Chromium or Chromium-Base Alloys for Cannon", Battelle Memorial Institute, November 15, 1949.

compare the alloy plate with conventional chromium plate guns. At the present time, the current-density requirements for the alloyplating process are too great to allow plating of an entire gun tube at one time. Therefore, a moving anode must be used, similar to the practice with conventional chromium plating. The main difficulty in applying the alloy plate inside tubes with a moving anode has appeared as peeled or poorly adherent plate at regions receiving the plate in the latter stages of the plating run.

EXFERIMENTAL WORK*

Method of Attack

A pilot-scale plating unit was constructed for plating the bore surfaces of tubes up to 18 inches long. This unit was used to test the plating process with a moving anode. Insoluble anodes were used with diaphragms, and soluble anodes were used without diaphragms. Continued difficulty with these anode systems led to development of an improved plating method, employing an insoluble moving anode without a diaphragm. This method appears very promising at the present time, though experience with it has been insufficient to allow definite conclusions.

Apparatus

The pilot-scale plating unit is shown in the photograph of Figure 1 and the schematic drawing of Figure 2. Most of the work with the unit has been on 1-1/2-inch-bore steel tubing. The tubing is prepared for plating in separate electropolishing, electrocleaning, and acid-dipping facilities, then placed in the plating unit for plating.

The apparatus illustrated in Figure 2 is for a diaphragm-type anode arrangement wherein both catholyte and anolyte are continuously

-7-

Experimental data obtained in this work are recorded in Laboratory Record Books Nos. 4662, pages 67-100; and 5389, pages 1-53.

circulated. The anode assembly is moved downward throughout the plated during the plating operation. Catholyte flows by gravity from the 16-liter catholyte reservoir into the bottom of the tube. The catholyte level inside the tube is lowered with the anode so that the finished plate is not exposed to solvent action of the catholyte. Suction tubes attached at the top of the anode assembly and passing through a signamotor pump return the catholyte to the reservoir.

The anolyte flow through the anode assembly is maintained by a sigmamotor pump which pumps anolyte out of the assembly. This produces a negative pressure inside the diaphragm. Thus, there is a tendency for catholyte to seep through the diaphragm into the anolyte, but no anolyte flows into the catholyte. When no diaphragm is used, the anolyte circulating system is simply disconnected.

The speed of lowering the anode assembly is adjusted by interchangeable pinions of various sizes in the lowering mechanism. The actual lowering is done by a motor-driven rack-and-pinion arrangement.

Figure 3 is an illustration of a diaphragm-type anode assembly. Figure 4 shows various types of anode arrangements used during the work. The arrangement on the left has a hollow lead anode inside a ceramic-tube diaphragm. This anode was water cooled. Second from the left shows a hollow magnesium anode, cut away to show the water cooling chamber. The center anode is the type detailed in Figure 3. Fourth from the left is

-8-

a solid lead anode with braided-wire current lead anode with braided-wire current lead anode in the Lucite spiders at the top and bottom served to center the anode in the tube being plated. At the right is shown the most successful anode assembly used thus far. The anode itself is a two-inch length of lead rod. The four rubber tubes serve to remove electrolyte which flows up to the top of the anode. The Lucite cylinder serves as a centering guide.

SULMARY OF ESSENTIAL EXPERIMENTAL OBSERVATIONS

The essential experimental data are recorded in Tables 1 to 3. The following discussion summarizes the pertiment aspects of groups of individual plating experiments.

Specimens 4662-69A to 4662-75A (Table 1)

These tests were performed in a 1-liter glass cell, using a 99 per cent lead - 1 per cent silver anode with a porous diaphragm. The specimens were prepared primarily for metallographic study of deposits made from the "high throwing power bath".* The tests showed that, to obtain a sound deposit, the temperature of the bath must be about 120°F. and the pH must be in the range from 1.8 to 2.0.

Pilot-Cell Tests 4662-80A to 4662-87A (Table 1)

These experiments were performed to study the effect of the variables that would be encountered in plating a steel tube of approxi-

* The "high throwing power bath" was described in the November 15, 1949, report, page 18.

mately the same diameter as a 40-mm. gun tube at the left in Figure 4. The 99 per cent lead - 1 per cent silver alloy was cast around a brass tube, the center of which was cooled with circulating tap water. A porous diaphragm was positioned around the anode to keep the anolyte from contaminating the catholyte. A small tube inserted in the space between the outside of the anode and inside of the diaphragm was attached to an aspirator. The purpose of this was to continuously draw off a small quantity of anolyte, thereby creating a negative pressure inside the diaphragm. The small amount of catholyte seeping through the diaphragm was the only assurance at this time that hexavalent chromium ion was not passing out through the diaphragm. This anode assembly was bulky and difficult to keep in repair. However, a considerable number of tests were carried out which gave valuable information relating to the type of pump to use, amount of heat transfer to be considered when operating at high current densities, rate of anode travel, and pH control. Poor adhesion of the chromium-iron alloy deposit to the tube bore surface. whether it be brass, steel, or electropolished steel, was encountered in the first series of tests with this anode. Many changes were subsequently made in anode design, cathode flow, pH control, rate of anode travel, and other plating conditions in an effort to find a solution to the adherence problem.

A magnesium anode assembly (shown in Figure 4), made of Dow Pure Star magnesium bar stock of 1-inch diameter with a 1/2-inch hole drilled

-10-

in the center for circulation of cooling, anode and did not require a diaphragm. Several fairly good deposits were made in 1-1/2-inch-diameter steel tubes 6 inches long, but the chemical action of the bath on the magnesium was excessive. This caused an increased concentration of magnesium armonium sulfate in the bath which precipitated as a thin film on the inside surface of the tube. For these two reasons, mainly, the use of magnesium anodes was discontinued.

Pilot-Cell Tests 4662-954 to 5389-1B (Table 2)

These experiments were performed with a 4-inch-long lead-tube anode enclosed by a porcus diaphragm, as shown in Figure 4 and also in cross section in Figure 3. Anolyte was circulated in a closed system and cooled as required. By installing a sigmamotor pump on the outlet tube of the anode assembly, a negative pressure of from 1 to 3 inches of mercury could be maintained inside the diaphragm. This was necessary mainly for preventing hexavalent ion and oxygen, the anode products, from seeping through the diaphragm and contaminating the catholyte. Uniformly good adhesion of the alloy deposit still was not obtained with this improved anode. However, plating variables could now be controlled within close enough limits that a 12-inch section of 40-mm. gun tube was selected for several tests. The composition of the 16-liter pilot-cell bath at the start of Test 4662-95A corresponded to the "high throwing power bath".

-11-

Just prior to Test 4662-99A, the bath composition was adjusted, as shown in Table 1, to a chromium ammonium sulfate content of 500 g./l. Subsequent tests gave no improvement in plate adherence.

Pilot-Cell Tests 5389-2A to 5389-17A (Table 2)

At the start of this series of tests, the concentration of the pilot-cell bath was adjusted to the "Standard Formulation Bath"* composition plus 50 g./l. ammonium sulfate to help increase throwing power. The 12-inch section of 40-mm. gun tube was stripped and plated several times, but, in all cases, the deposit was not suitably adherent to the electropolished steel bore surface. At this time, it appeared that the catholyte was attacking the bore surface and perhaps leaving a smutty residue that interfered with good adhesion. In an effort to prevent the formation of smut, 3.0 g./l. of an organic pickling inhibitor was added to the plating solution after beaker tests showed that some protection could be expected from such an addition. Pilot-cell tests showed that a small amount of the organic inhibitor migrated to the cathode, forming a film there which caused very poor adhesion of the alloy deposit. An activated-charcoal treatment at 170°F. was used to remove the organic inhibitor from the plating solution. At the same time, ammonium persulfate was added to facilitate removal of reduced sulfur compounds in the bath by filtration.

As described in the report dated November 15, 1949.

-12.

/ CONFIDENTIAL

YILLIINTSTRAKED ITTTY

Test 5389-13A, which followed the bath treatment, was the first tube to be plated in which the alloy deposit was firmly adherent for the full length of the bore surface. This test showed that success is possible if all conditions are properly adjusted. The 12-inch section of 40-mm. gun tube used in previous tests was plated again, and this time (5389-14C) the lower half of the bore surface received a deposit with good appearance and excellent adherence. The improvement in adherence at this time could not be traced directly to any one factor, but it was suspected that the ammonium persulfate might have influenced the chemical action on the steel bore surface as the catholyte flowed up through it.

Test 5389-16A, using an 18-inch-length tube, yielded a poorly adherent plate at the top of the tube where the catholyte flow rate was known to have been slow. A higher rate of catholyte flow during the remainder of the test gave a very good appearing deposit with excellent adhesion.

Pilot-Cell Tests 5389-17A to -24A (Table 2)

In this series of tests, a running log of the rate of catholyte flow and negative pressure in the anode system indicated that poor adhesion could result from a catholyte flow below 500 ml./min. It was also shown that a break in the negative pressure on the anode assembly

TTTTTTTTTTTTTTTTTTTTTTTT

ALL DEN IN

ALLEE REAL PROPERTY

could seriously affect plating conditions and result in poor adherence. A new pump was designed and built to allow a wider range of catholyte flow under controllable conditions. The pump was designed at Battelle. However, its principle of operation is similar to that of a pump described in a recent publication*. CONFIDENTIAL

Pilot-Cell Tests 5389-30A to -38A (Table 3)

This series of tests showed that increased catholyte flow gave slightly better deposits but did not overcome the poor adhesion problem. It was noted in Tests 1389-17A to -2hA that the anode negative pressure decreased as the anode was lowered into the tube being plated. To control this variable, several plating tests were carried out (5389-34A to -38A) in which the anode was held stationary and the tube was moved slowly upward during the plating operation. A good appearing, adherent deposit was produced this way, but not until additional ammonium persulfate had been added to the pilot-cell bath.

Pilot-Cell Tests 5389-39A to -42A (Table 3)

These tests were performed with a 3/4-inch-diameter lead-tube anode 7 inches long without the usual porous diaphragm, as shown in Figure 4. extreme right. The hexavalent chromium formed as an anode product in the

-11-

ONFIDENTIAL

Glenn, E. E., Jr., and Hackerman, Norman, "Positive Displacement Pump for Corrosive Fluids", Rev. Sci. Inst., 21, 148 (1950).

COLUMN ALIALIA RESTRICTED

pilot-cell bath was indirectly reduced with 30 per cent hydrogen peroxide. The initial deposit, full length of the anode, was good in most cases, but, as soon as the anode moved down farther into the tube, the deposit blistered and peeled from the tube surface. An addition of sodium sulfite to the bath seemed to improved the adherence of the alloy plate. For this reason, the use of hydrogen peroxide to remove hexavalent chromium was temporarily discontinued in favor of reduction by sodium sulfite.

Pilot-Cell Tests 5389-50A to -50B (Table 3)

These two tests showed that the use of sodium sulfite for complete reduction of hexavalent chromium ion is not practical. A 16-liter bath normally requires only 3.2 grams Na_2SO_3 or 6.4 grams $Na_2SO_3 \cdot 7H_2O$ for successful operation, provided the analyte is kept separated from the catholyte. A one-hour plating test similar to either 5389-50A or -50B will require approximately 100 grams $Na_2SO_3 \cdot 7H_2O$ to maintain complete reduction of the hexavalent chromium ion produced at the anode to the trivalent state. It is likely that, with this method of reduction, the plating bath would soon be contaminated with excessive amounts of sulfur compounds.

Specimen and Short-Tube Tests 5389-51A to -52D (Table 3)

This series of tests was designed to isolate the variable or combination of variables that was most likely to be causing the poor ad-

-15-

N 7777 F.ELTT. 177 F.F. 77777

CONFIDENTI

/ L L L L L / / / RESTRICTF#/ /

http:///

Flat 1-inch by 6-inch panels or short 3-inch or 4-inch lengths of 1-1/2inch-diameter steel tube were used as cathodes. Results indicated that good adhesion could be expected from either an anode without a diaphragm or one with a diaphragm, provided a current density of approximately 400 amp./sq. ft. is maintained and sufficient space exists between the diaphragm and cathode to permit easy escape of gas. By using a 1/4-inch by 1/8-inch by 1-inch lead strip as a moving anode, without a diaphragm, good adherence could be duplicated on either flat panels or the short tubes.

Pilot-Cell Tests 5389-52E to 5389-52G (Table 3)

Using the information gained in the above tests, a 3/16-inch by 2-inch lead-tubing anode was substituted for the 3/4-inch by 7-inch anode on the pilot cell. A 40-mm. by 12-inch electropolished gun tube was plated at 400 amp./sq. ft. with a catholyte flow of 1700 ml./min. The deposit was blistered and peeled the full length of the tube. The tube had been thoroughly degreased, electrocleaned, and given a short hydrochloric acid dip prior to plating. Good adhesion was not attained on the first 40-mm. gun-tube section until it had been stripped and plated four times. This indicated a possible benefit from a severe etch. This was done on Test 5389-52F, and the deposit showed good adherence to the electropolished bore surface. The top and bottom "thief sections" (added

ONFIDENTIAL

lengths of tube) used in this test had a slightly larger bore that the first gun tube; consequently, the plate at the top and bottom of the gun tube
was of inferior quality. This was corrected in Test 5389-526 by using
3-inch-long sections of a 40-mm. gun tube for the top and bottom "thief".
Samples of this gun tube were given to representatives of Watertown
Arsenal and Watervliet Arsenal. The plating results were good and indicated that a successful method was near.

SUMMARY OF THE BEST PLATING PROCEDURE TO DATE

The "Standard Bath Formulation"* has been modified to give increased throwing power and less pitting. The formulation recommended at present is as follows:

Ammonium Hydroxide (28%) 60 NHLOH	ml./l.
Chromium Ammonium Sulfate	g./l.
Ferrous Ammonium Sulfate 13.5 FeSO ₄ * (NH ₄) ₂ SO ₄ • 6H ₂ O	g./1.
Magnesium Sulfate 20.0 MgSO ₄ •7H ₂ O	g./1.
Ammonium Sulfate	g./l.
Sodium Sulfite (Stock solution containing 0.005 g./ml.) 50	ml./l.

The "Standard Bath Formulation" was described in the November 15, 1949, report, page 10.

"itmminitit

0.125 BRASTRICTON The recommended procedure of making up the bath still follows the detailed instructions previously reported**.

CONFIDENTIAL

In the plating of steel tubes of 1.5-inch inside diameter, it is recommended that plating variables be maintained within the following limits: 1 to 2 liters/min. Electrolyte Flow Cathode Current Density 375 to 400 amp./sq. ft. рН (at 145°F.) 1.4 to 1.7140° to 150°F. Temperature of Bath

Anode Construction

Duponol L

3/16- to 1/2-inch copper rod, 2 to 7 inches long, coated with 0.015-inch thickness of 90 per cent Pb - 10 per cent Sn electroplate. Reduction of Hexavalent Chromium in Bath

Reduction of hexavalent chromium is accomplished indirectly by oxidizing the Cr+6 to perchromate with 30 per cent hydrogen peroxide. On standing, the perchromate decomposes to form Cr+3.

Rate of Deposition

A flat steel cathode, inserted in a Lucite "picture-frame" fixture with 1 square inch of the cathode exposed, will receive 94 per cent Cr -6 per cent Fe alloy deposit at a rate of approximately 0.010 inch per hour when a cathode current density of 400 amp./sq.ft. is applied in a still

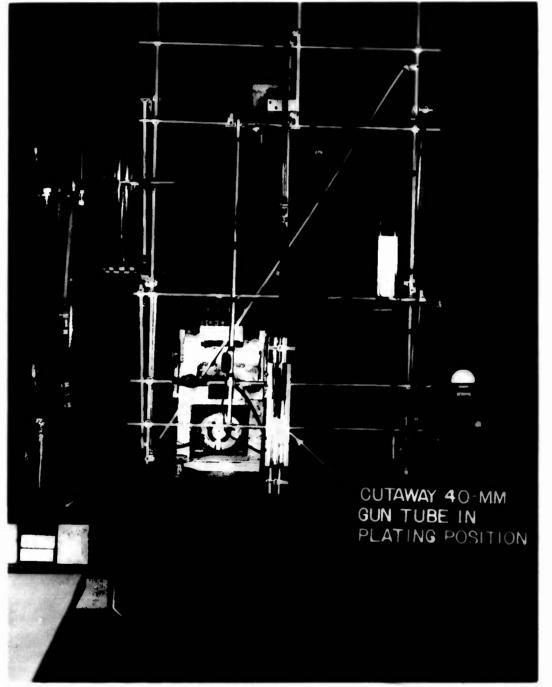
TYTE RESIDENT DITTE

Surface active agent manufactured by E. I. du Pont de Nemours & Co., Wilmington, Delaware.

^{**} op. cit.

plating operation. A comparable rate of deposition has not been obtained in tube plating up to this time. Tests are in progress to show the effect of catholyte flow on rate of deposition of the alloy.

Adherence of Alloy Deposit


The adherence of the alloy deposit on flat cathodes of brass, low-carbon steel, or stainless steel has been generally very good and easy to obtain by using customary precleaning treatments.

In tube plating with a moving anode, the initial deposit of approximately the same length as the anode has shown good adherence to the steel bore surface. As the anode coves down the inside of the tube, the adherence is less satisfactory thus far. This situation will receive further study.

JEB:CAS:CLF/JH October 10, 1950

- FIGURE 1. PHOTOGRAPH OF PILOT UNIT FOR PLATING GUN-TUBE SECTIONS.
- FIGURE 2. SCHEMATIC DRAWING OF PILOT-SCALE PLATING UNIT.
- FIGURE 3. INSOLUBLE-ANODE ASSEMBLY WITH DIAPHRAGM.
- FIGURE 4. VARIOUS TYPES OF ANODE ASSEMBLIES USED IN PLATING TESTS.
- TABLE 1. DETAILS OF PLATING TESTS.
- TABLE 2. DETAILS OF PLATING TESTS.
- TABLE 3. DETAILS OF PLATING TESTS.

X3217

72726

1111 RESTRICTION

Figure 1. Photograph of pilot unit for plating gun-tube sections.

-2-

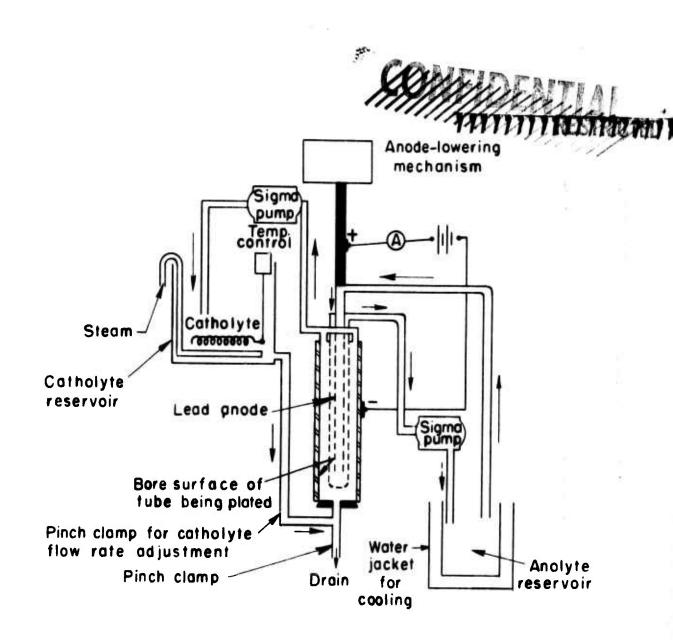
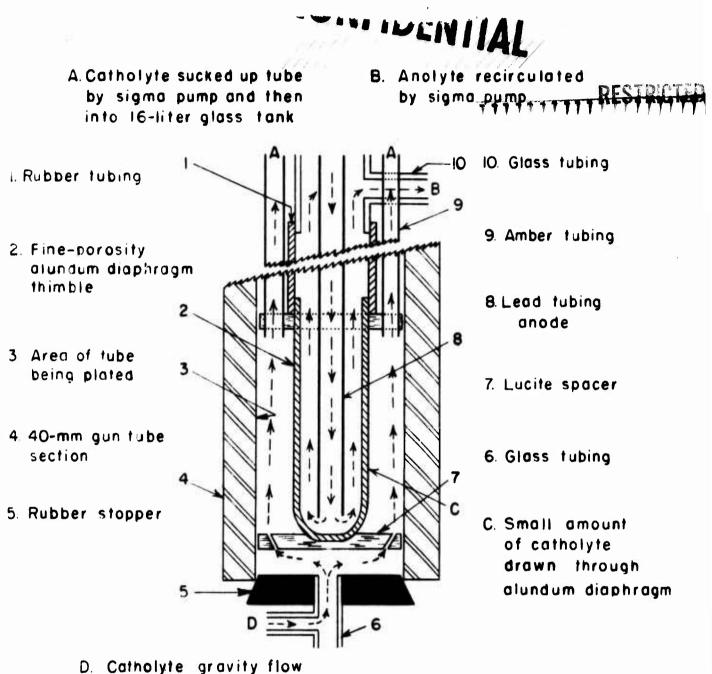



FIGURE 2. SCHEMATIC DRAWING OF PILOT-SCALE PLATING UNIT

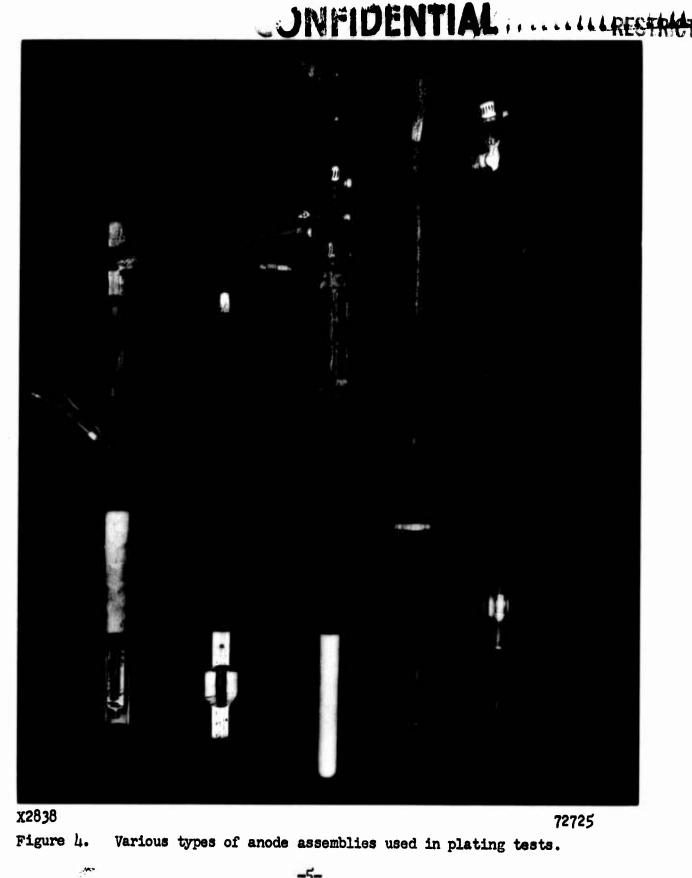

D. Catholyte gravity flow from 16-liter cell

FIGURE 3. INSOLUBLE ANODE ASSEMBLY WITH DIAPHRAGM

0-16404

IIII RESTRICTINITY II.

1111111111RESTRUILD

REPRODUCED AT GOVERNMENT EXPENSE

, 23M

TABLE 1. DETAILS OF 1	PLATING TESTS	
-----------------------	---------------	--

記述に

派に北京に三大学

Test No.	Bath No.	Time (Hours)	Cathode Material	Cathode C. D. (Amp./Sq.Ft.)	рH	
		Bath	Composition: 300 g./l. Cr2(S (NH4)2 ^{SO} 4. 150	04)3(NH4)2504.2	24H20,	5.0 g./1. Fe
4 662-6 91	691	2 -1/2	Brass strip, 1 sq.in. plated	144	2.3	Pb-1% Ag wit
-74 A	Ħ	11	Ditto	11	1.8	
-75A	11	3	. n	11	2.0	
an dan dan baran sa kataka kata		Bath	Composition: 700 g./l. Cr ₂ (S Na ₂ SO ₃ . 16-lit	0/)3(NH/)2SO4.2	24H20,	13.5 g./1. 7
4662 -8 0A	801		Steel tube, 1-1/2" I.D.	300	1.0	Pb-1% Ag wit
-80 B	17		Ditto	in .	1.0	Magnesium an
-800	11		Brass strip, 1 sq.in. plated	n	1.0	Pb-1% Ag wit
-80D	n		Ditto	11	1.6	
-814	ft	-	Steel tube, 2-3/4" I.D.	N	1.5	Cooled Pb-1\$
-824	11		Ditto	350	1.5	Water-cooled
-854	11		n	W	1.5	
87A	19		Ħ	M	1.5	
· · • · · ·						- Aller -
			-6-			8 T
			1012-			sto.

	REPRODUCED AT GOVERNMENT EXPENSE							
		• •						
CONFIDENTIAL								
Type Anode	Description of Deposits							
Ω ₄ (NH ₄) ₂ SO ₄ •6H ₂ O, 10 g./	/1. MgS04.7H20, 0.1 g./1. Na2S03, 50 g./1.							
diaphragm	Cross section shows nodular deposit	Temp. 108-110°F.						
Ditto	Sound structure at 250X	Temp. raised to 118°F.						
п	Ditto	Shows that "high throwing power bath" must be opera- ted at 118-120°F. and at pH 1.8-2.0 to get sound structure						
SO4(NH4)2SO4.6H2O, 70 g.	./1. (NH4)2504, 10 g./1. NgS04.XH20, 0.32 g./1	L.						
diaphragn	Poor deposit, blistered							
Re	Ditte							
diaphragm	*	1-1. bath from 16-180A bath						
Ditto	Good appearing deposit	16-1. bath adjusted to 1.5 pH						
1	Thin, center portion blistered	Filtering of eathelyte caused flow to be retarde						
agnesium anode 4" long	Top and bottom good plats, center blistered	Filter removed, tube cool on 0.D. by water spray						
Di tto	7" of tube plated, 3 small spots blistered	Spray mechanism for tube improved						
n	Plate badly peeled	More precaution used in cleaning tube, but magnesium ammonium sulfat deposited on tube						
	CONI							

-2012

Ζ.

REPRODUCED AT OOVERNMENT EXPENSE

TABLE 2. DETAILS OF PLATING TESTS

Test No.	Bath No.	Time (Hours)	Cathode Material	Cathode Current Density (Amp./Sq.Ft.)	Catholyte Flow (Ml./Min.)		11
	94A	Bath Co Anolyte	mposition: 300 g./1. $Cr_2(SO_1)_3(N)$ stock Solution: 50 g./1. $(NH_4)_2$	H _L) ₂ SO _L •24H ₂ O SO _L with suff	5.0 g./1. lcient H ₂ SO	FeSO 4 add	4(ed
4662 -95 1	19		Steel tube, 1-1/2" I.D.x12" long	275		1.6	t. t
-95B	n		Ditte	11		1.5	
-97A	19	1-1/2	n	315		1.6	1
)7B	11	11	10	155	فيت	1.6	
		Additic	ons to Bath 94A to Make Fellowing 500 g./1. Cr2(SO4)3(N		8.3 g./1.	FeSO	∡ ()
-99A	Π	1-1/2	Steel tube, 1-1/2" I.D.x12" long	255		1.3	1
-100A	11	11	Ditto	11	40.000	1.3	٠
5389 -1 A	Ħ	1	n	315		1.7	1
-1B	n	11	17	250	_	1.7	
		Additio	ns to Bath to Make the Following 700 g./1. Cr2(SO4)3(N	Composition: H ₄)2·24H ₂ 0, 13	.5 g./1.	so ₄ (1	NH4
-2 A	17		40-mm. gun-tube section 12" long	400		1.0	1
			-7-				

193

1

		8-00 00 00 00 00 9 1	newseenen en RE	PRODUCED AT GOVERNMENT EXPENSE	alabahakak wila kus		REFERENCE
-	•			HODGED AT GOVERIMEENT EXPENSE		And an annual state	* ¹ ***
		, ,	المناهد، معملیات الاریسی مراجع مراجع می مراجع الارسی مراجع می مراجع الارسی				
Dathode Durrent Density	<u>Catholyte</u> Flow	Cond	litions Temp.		Anol yt e Nega tive P res sure	Anolyte Temp.	
./Jq.Ft.)	(M1./Min.)	Iki		Type Anode	(Inch of Hg)		Descr
SO ₄ •24H ₂ O, with suffi	5.0 g./1. icient H ₂ SO	Fest 4 add) ₄ (MI ₄) ₂ ied to r	2504.6H20, 10 g./1. Mg504.XH20, 50 make pH 1.5 at 120°F.	g./1. (NH ₄)2S	04, 1.0 (g./1. N
275		1.6	128	4" long lead tube with disphrage	Slight	136	Good one s
17		1.5	19	Ditto	None	Ħ	Depos as Te
315	-1 =1	1.6	130	n	Slight	130	Nonoc tered
155	unit met	1.6	II	11	H1	-	Very a fer
position: DpSO4·24H20,	, 8.3 g./1.	FeS()4(NH ⁴);	2504.6H20, 10 g./1. MgS04.XH20, 50	g./1. (NH ₄)2 ^S	0 ₄ , 1.12	g./1.
255		1.3	• •			140	Depoi spoti
• 4 4 4 11 11		1.3	· 17	Ditto	"	æ	Depoi
315		1.7	140	11	81	148	Good for plat
250	-	1.7	TT	11	n	H	Depo
position:	5 r./1. F	eso/((NH ,) 2S(04°6H20, 10 g./1. MgS04°XH20, 50 g.	/1. (NH ₁)990,	. 1.12 g	./1. N
400		1.0	150	4" long lend take with displaying		180	Depa blis peel
						•	, bee t
• • • • • • • • • • • • • • • • • • •			6				
				103			
				273			

 Slight 136 Good adherence except one small spot diameter steel tube None " Deposit not as good as Test -954 Probably due to slight positive anolyte pressure Slight 130 Noncontinuous, blisterer of in spots " - Very good except for a few small areas 3./1. (NH₄)₂SO₄, 1.12 g./1. Na₂SO₃·7H₂O. 16-liter volume. 	
Anolyte Nogative Anolyte Tressure Temp. (Inch of Hg) (°F.) Description of Depesit Remarks Pg./l. (HH4)2504, 1.0 g./l. Na2503.7H20. 16-liter-volume bath. Slight 136 Good adherence except one small spot diamoter steel tube None "Deposit not as good as Test -954 Tive anolyte pressure Slight 130 Noncontinuous, blistered in spots - " - Very good except for a few small areas Approximately 6" length of a few spots No ecoling of steel tube for last partion plated " Deposit blistered Bath filtered after this	ł
Nogitive Anolyto Pressure Temp. (Inch of Hg) (°F.) Description of Deposit Remarks 9 g./l. (NH4)2S04, 1.0 g./l. Ne2S03.7H20. 16-liter-volume bath. 136 Good adherence except one small spot Best test so far with 1-1/2" diameter steel tube None " Deposit not as good as Test -954 Best test so far with 1-1/2" diameter steel tube None " Deposit not as good as Test -954 tive anolyte pressure Slight 130 Noncontinuous, blis- tered in spots " - Very good except for a few small areas tube plated 0 g./l. (NH4)2S04, 1.12 g./l. Na2S03.7H20. 16-liter volume. 130 Deposit peeled in goots '''''''''''''''''''''''''''''''''''	
one small spot diameter steel tube None " Deposit not as good as Test -954 Probably due to slight posi- tive analyte pressure Slight 130 Noncontinuous, blis- tered in spots " Very good except for a few small areas Approximately 6" length of tube plated 9 g./1. (NH4)2S04, 1.12 g./1. Na2S03.7H20. 16-liter volume. 14 Slight 140 Peposit slightly better than -99A 32 g. Na2S03.7H20 added to 16-1. bath " U43 Good adhesion except for last portion plated No ecoling of steel tube	
None " Deposit not as good as Test -954 Probably due to slight posi- tive anolyte pressure Slight 130 Noncontinuous, blis- tered in spote " Very good except for a few small areas Approximately 6" length of tube plated 0 3./1. (NH ₄) ₂ SO ₄ , 1.12 g./1. Na ₂ SO ₃ •7H ₂ O. 16-liter volume. " " Deposit peeled in spots Cooling water on tube varied " " Deposit slightly better than -99A 32 g. Na ₂ SO ₃ •7H ₂ O added to 16-1. bath " 143 Good adhesian except for last portion plated No ecoling of steel tube	and the second
<pre>as Test -95A tive anolyte pressure Slight 130 Noncontinuous, blis- tered in spots " Very good except for Approximately 6" length of a few small areas tube plated 0 3./1. (NH₄)₂SO₄, 1.12 g./1. Na₂SO₃•7H₂O. 16-liter volume. Slight 140 Deposit peeled in goots varied " " Deposit slightly 32 g. Na₂SO₃•7H₂O added to better than -99A 16-l. bath " 143 Good adhesion except for last portion plated " " Deposit blistered Bath filtered after this</pre>	
<pre>tered in spots " Very good except for a few small areas tube plated 0 3./1. (NH4)2S04, 1.12 g./1. Na2S03.7H20. 16-liter volume. " Slight 140 Deposit peeled in spots varied " " Deposit slightly 32 g. Na2S03.7H20 added to better than -99A 16-l. bath " 148 Good adhesion except for last portion plated " " Deposit blistered Bath filtered after this</pre>	
a few small areas tube plated 0 3./1. (NH ₄) ₂ SO ₄ , 1.12 g./1. Na ₂ SO ₃ •7H ₂ O. 16-liter volume. Slight 140 Deposit peeled in gots varied " " Deposit slightly 32 g. Na ₂ SO ₃ •7H ₂ O added to better than -99A 16-1. bath " 143 Good adhesion except for last portion plated " " Deposit blistered Bath filtered after this	·
a Slight 140 Deposit peeled in spots Cooling water on tube varied " " Deposit slightly better than -99A 32 g. Na2S03*7H20 added to 16-1. bath " 148 Good adhesion except for last portion plated No scoling of steel tube " " Deposit blistered Bath filtered after this	
spots varied " Deposit slightly better than -99A 32 g. Na2S03.7H20 added to 16-1. bath " 148 Good adhesion except for last portion plated No cooling of steel tube " Deposit blistered Bath filtered after this	
better than -99A 16-1. bath " 148 Good adhesion except No scoling of steel tube for last portion plated " " Deposit blistered Bath filtered after this	
for last portion plated " " Deposit blistered Bath filtered after this	
	• •
5./1. (NH4)2S04, 1.12 g./1. Na2S03.7H20. 16-liter volume.	
Positive 180 Deposit badly Removal of gas from anolyte blistered and peeled causing build-up of positive pressure	120 Start
CONFIDENTIAL	
TITEL RESTRICTED TELEVINY	
303	

REPRODUCED AT GOVERNMENT EXPENSE

•

.

•

۰.

TABLE 2. CONTINUED

Test No.	Bath No.	Ti me (Hour s)	Cathode Material	Cathede Current Density (Amp./Sq.Ft.)	Catholyte Flow (Ml./Min.)
5 38 9-2B	941	-	40-mm. gun-tube section 12" lon	g 31 5	
-34	11		Ditto). 59 -	-
		Bath Add	itions: 3.0 g./1. Kleanright In	hibitor added (to Bath 944
-10 A	11		Tube, 1-1/2" I.D.x12" long	400	
-10B -10C -10C	12 33 47	1/2 	Ditto " 40-mm.xl2" gun-tube section atment: Heated to 170°F. 1 g./2	315 400 n	
		Dawi XI	No. 12 Whatman filter pe inhibitor added prior to	aper. Specific	gravity a
-134	19		Steel tube, 1-1/2" I.D.x12" long	g 400	-
-138			Ditte		_
-144	11		. n	320	-

-78-

193

		HI PRODUCED AT GOVERN	MENT EXPENSE			
						-1
	1		mark to p	S		
<u>yta C</u> n.) pH	Temp. (°F.)	Type Anode	Anolyte Negative Pressure (Inch of Hg)	Anolyte Temp. (°F.)	Description of Deposit	
1.3	1 5 0	4" long lead tube with diaphrage	Slight	140	Deposit badly peeled	Same Test for
1.3 2/A.	n	Ditto	· 18	n	Ditto	
1.3	-	11			Very poor adhesion	Large on st asset oss curre
1.3	-	11			Ditto	
1.3	-27-50	u .			17	
1.3		11			n	Same 5389
		mmonium persulfate stirred in. Le .22 with temperature lousted to 14				
1.6	143	4" long lead tube with diaphragm		-	Very good deposit with only slight blistering	
1.6	n	Ditto		-	Deposit better than -134	Desi chan in e crea
1.6	n	n	-	-	Blistered spots where anode stopped	Anode Slaat start

CONFI 11111 Hes

		REPRODUCED AT	T GOVERNMENT EXPENSE	
Acolyte Segative Frossure Luch of Hg)	Anolyte Temp. (°F.)	Description of Deposit		
511ght	140	Deposit badly peeled	Same gun-tube liner as for Test -2A. Stripped in HCl for -2B and -3A.	and a comparable for a
SC Fut	n	Ditto	·	
		Very poor adhesion	Larger diameter tubing used on suction side of anode assembly to carry away ex- cessive gas caused by high current density	
		Ditto		
allan suus		17		the second s
		13	Same tube used as in Test 5389-2A	
land at 170 This trea	°F. for 2 atment us	4 hours. Bath filtered ed to remove the organic	through s	
		Very good deposit with only slight blistering	Poor adhesion thought to be caused by Incite spacer on lower portion of disphragm	
		Deposit better than -13A	Design of anode spacer changed so that turbulence in catholyte flow was de- creased.	
	-	Blistered spots where anode stopped	Anode moved up and down manually inside tube to give glash plate. Then anode started at top and lowered mechanically.	
		<u>co</u> iiiii	NFIDENTIAL Mestaleted 11111111	
	r i			

- 113

1

TABLE 2. CONTINUED

Test No.	Bath No.	Tost (Hours)	Gathede Material	Cathodo Current Density (Amp./Sq.Ft.)	Catholyte Flow (M1./Min.)	
5389-14B	941	1	Steel tube, 1-1/2" I.D.x12" 1	ong 320		1.6
-140	n	ago 1970	40-mm.x12" gun-tube section	400		1.6
		Bath Add	lition: 10 g./1. ammonium persu	ulfate.		
-16 A	18	1-1/2	Steel tube, 1-1/2" I.D.x18" 10	ong 320		1.7
-17 A	11	1-1/2	Ditto	11		1.7
-234	n	Start 1/4 1/2	11 17 19	" H 1 50320	525 490 550	
-238	11	Start 1/4	11 17	30 0 #	620	=
-230	11	Start 1/2	. .	32 0 #	635 "	-
		3/4	92	400	590	
-23D	17	Start 1/4	19	36 0 H	490 320	1.7
		1/2		W		
		1/2 3/4	11		490 580 570	-
		1		390 360	580	
		1-1/4 1-1/2		98 0 N	570	2.1

-70-

			an a			and the same and the	
t iolyt : "low ./film.)		tions Temp. (°F.)	Type Anode	Anolyte Negative Pressure (Inch of Hg)	Anolyte Temp. (°F.)	Description of Deposit	19
g el auto	1.6	143	4" long load tube with diaphragm			Top and bottom good, middle area blistered	
	1.6	143	Ditto	-		Lower half very good, top half poor	Sı 1
4.319 8 00	1.7	11	n	-	80-120	Top 2" blistered, rest of tube very good	C
	1.7	17	Ħ	-	fT	Blistered deposit all the way down tube	1 8 n 1
\$25		H.	17:	-2.0	115		
1.90	-	11	π	-1.8	100		
50		IT	20	-0.8 to -1.5	120	Poor adherence, de- posit blistered	L h
		146	N	-1.6	-		
620		n	12	-1.6	115	Ditto	
635		н	16	-1.9	118		
0 00 11		п	39	-1.9	110		F
590		11	Ħ	-1.4	n	Poor adherence of deposit of steel	1
	1.7	120	11	-1.9	120		
320.		11	n	-1.8	11		I
24.1×14		n	n	-1.8			I
490	-	Л	11	-1.8	17		
ň 80		n		-1.8	11		
570		11	1. 98 (1)	-1.8	11		
11	2.1	ft.	17	-1.8	1	Deposit nonadherent	

273

		BI PRODUCED A	NT GOVERNMENT EXPENSE	THE THE COLUMN STREET, SHE AND AND ADDRESS STOLEN IN THE
>	>		ANCINENTIAL.	
nolyto Stativo	Anolyte	11AN	ATTRESTITUTE TILLI	1
reasuro ich of Hg)	Tomp. (°F.)	Description of Deposit	Remarks	
		Top and bottom good, middle area blistered		e services and splittering of a
		Lower half very good, top half poor	Same gun-tube section used in Test 5389-100	
	80 -120	Top 2" blistered, rest of tube very good	Catholyte flow very slow at start of test. Might account for blistering	
	11	Blistered dep osit all the way down tube	16-liter bath raised 6" to get increased gravity flow necessary when using 18" long tubes.	
-2.0 -1.8 .: to -1.5	115 100 120	Poor adherence, de- posit blistered	Leak in an olyte circuit hose	
-1.6 -1.6	115	Ditto	Ditto	
-1.9	118		Pinhole in anolyte tube	
1.4	11	Poor adherence of deposit of steel	repaired. Test stopped	
-1.9 -1.8	120 "		Leak in anolyte circuit repaired	
-1.8 -1.8	12			
-1.8 -1.8	11 11			
-1.8		Deposit nonadherent		

n bar ban Ben Alla bila ban ban ban ban bila bela bila bila	REPRODUCED AT GOVERNMENT EX	PENSE	All and a second second second second	dan Asminist Asmitik Aike din Asmitik
B oomedia (1999) 				· · · · ·
Catholyte Conditions Flow Temp. (Ml./Min.) pH (°F.)	Type Anode	Ano lyte Negative Pressure (Inch of Hg)	Ano lyte Temp. (°F.)	Description of
530 1.5 146 520 — " 330 — " 400 — "	4" long lead tube with diaphragm Ditto " "	-1.85 -1.80 -1.4	120 .'30 118 "	Top of tube go bottom nonadhe
1.1. 2.1.2. 0.7.7.				
		·		

بريته بالعي را

. . . .

17-1 <mark>919-1919</mark>		a dese dia je e		BRUTIAL
tat i i maan shi daanii Qola - A		an a		IDENTIAL
	Anolyte Negative Pressure	Ano lyt e Temp.	11/1 MYCAN	RESTRICTLUITIT
19 we findsteining with same by Balance and	(Inch of Hg)	(°F.)	Description of Deposit	Remarks
laphragn	-1.85 -1.80	120 130		
	-1.4	118 "	Top of tube good, bottom nonadherent	Catholyte flow greater than 500 ml./min. apparently new essary for good adhesion of deposit to tube. Capacity of Sigmamotor pump insuf- ficient to accomplish this
		etan ere ere de		
			7 7 7 7 7 7 7 6	
				STRICTEDITITI
			/////X2005	DENTIAL

2


TABLE 3. DETAILS OF PLATING TESTS

.....

Test No.	Bath No.	Time (Hours)	Cathe	de Matorial	Cathode Current Density (Amp./Sq.Ft.)	<u>Catholyt</u> Flow) (Ml./Min.
	Bath	I Treatment	t and Additio	and 2 g./1 liters of	lume of Bath 944 : . ammonium persuli new bath of the for gS04 '7H20, 0.15 g wered to 140°F.	fate added a
5389 -30 A	94A	1/2	Steel tube,	1-1/2" I.D.x18"	long 400	900
-30 B	Ħ	1-1/2	Ditto	•	11	100 0
-31 A	n	3	11		n	. 11
-321	IJ	2 -1/2	U		320	900
-34A	n	1/4 1/4	11 13		90 97	0 11
-35 A	a -	1-1/2	n		320	1000
-3 7A	19	1-1/2	n		Π	1100
	Bath	Additions	: 10 g./1.	ammonium persuli	late.	
-384	19	1-1/2	Steel tube, :	1-1/2" I.D.x18"	long "	1000

-8-1 03 3

	1		REPRODUCED AT GOVERNMENT E	EXPENSE	an alamin an annual (an 14 million an an t-an airstean an annaich an an Annaich an an Annaich an Annaich an an
				Charles and the second s	*
				Y 10	ANEIDI
				111	man
atholyte			-	****	11 MARINE
Flow (Min.)		Temp. (°F.)		Description of Deposit	Rem
e added and	d stirr osition Bath f	red int n was a filtere	ig been used up as anolyte in precento the 10-liter bath. Temperature added: 700 g./l. $Cr_2(SO_4)_3(NH_4)_2^{\circ}$ red through No. 12 paper. Specific	e of bath raised to 170°F. 24H ₂ 0, 13.5 g./1. FeSO, (N	. To this, 6 MH_{1} , SO_{1} , $6H_{2}O_{2}$.
900	1.4	140	4" lead tube with diaphragm	Initial deposit good	Failure of Si hose stopped
1000	1.4	78	Ditto	Good appearing, ad- herent deposit	Deposit shows from above tr
11	1.4	n		Top good, middle badly blistered, bottom showed fair adhesion	Tube plated f then double p
900		11	. 11	Very good plate at top, blistered at bottom	, Anode travel
T 7 13		17 11	97 	Very good deposit	Anede station Tube drained Plate first d takes into so posit on inve very geod.
1000			17	Tube badly blistered	Anode held st raised at rat
1100			11	Deposit good at start. Progressively worse as test continued.	Tube given se Anode hold st raised same a
1000	1,6		"	•	Anode station raised. Ammon treatment appa ble for good a

REPRODUCED AT GOVERNMENT EXPENSE 1 ZANEIDENTENK. Description of Deposit Remarks in preceding tests. 2 g./1. activated charcoal parature of bath raised to 170°F. To this, 6 3(NH₂)2*24H₂O, 13.5 g./1. FeSO₂(NH₂)2SO₂*6H₂O, Stocific gravity adjusted to 1.26. Temperature W Acht Sty Sugar Wish Initial deposit good Failure of Sigmamotor-pump agm. hose stopped test Deposit showed improvement Good appearing, adherent deposit from above treatment Top good, middle Tube plated full length, Part of the second second second badly blistered, then double plated bottom showed fair adhesion Vory good plate at top, Anode travel 4.6 in./hr. blistered at bottom Anede stationary during test Very good deposit Tube drained and inverted. Plate first deposited was taken into solution. Deposit on inverted section very good. Tube badly blistered Anode held stationary. Tube raised at rate of 1 in./6 min. Deposit good at start. Tube given severe HCl etch. Anode Meld stationary. Tube Progressively worse as raised same as for Test -35A. test continued. Good appearing, ad-Anode stationary. Tube herent deposit raised. Annonium persulfate treatment apparently responsible for good adhesion.

TABLE 3. CONTINUED

4

.

.

Test No.	Bath No.	Time (Hours)	Cathode Material	Cathode Current Density (Amp./Sq.Ft.)	Catholyta Flow (ML./Min.)
5389 -39	94A	1	Steel tube, 1-1/2" I.D.x18" long	30 0	1700
-40A	Ħ	11	Ditto	n	N
-414	н	1-1/2		m	
-42A	n	1		•	
-44A	59	1/4		•	•
-44 C	11	1/2	R		Ħ
-504	n	1	N	π	2000
50 B	D	1	N	280	
-51A	W	1/4	1" x 6" x 0.012" steel strip	300	500

-**8**-1073

	a series and a series of the s	and a second sec
· .		
REPRODUCED AT	GOVERNMENT	EXPENSE

and a second

*9

~ *

					and the second design of the s
thode urrent ensity /Sq.Ft.)	Catholyte Flow (Ml./Min.)		tions Temp. (T.)	Type Anode	Description of Deposit
900	1700			Lead tube, 3/4" diam.x7". No diaphragm used.	Tep 8" of deposit good, rest blistered
n	n		142	Ditto	Ditto
n	11		10	11	-10
14	n	*****		10	Top 8" fair deposit blistered
۲.	11		n	4" lead tube with diaphragm	Deposit blistered in usual area right after bottom of anode moved to a lower position in steel tube
13	11		"	Ditto	Good deposit with good in adhesion
п	2000			Lead tube, 3/4" diam.x7". No diaphragm used.	Blistered spot on tube 1 corresponded to the fi electrical connection b 6" from top of tube
.⊘ 8 0	Ħ	_		12	Blistered area 9" from A top of tube correspond- ing to the electrical connection 9" from top
300	500	1.6	143	$1/4^{n} \ge 1/8^{n} \ge 2^{n}$ lead strip with diaphragm. Incite spacer at bottom.	Blistered area on A eathode corresponding to area adjacent to A lower tip of anode d
				2013	KO

2010

r

۰

Description of Deposit

Remarks

Top 8" of deposit good, rest blistered

Ditto

5 g./l. amonium persulfate added to bath at the strategies of a set of the state of the state of the

Top 8" fair deposit blistered

Deposit blistered in usual area right after bottom of anode moved to a lover position in steel tube

Good deposit with good adhesion

Blistered spot on tube corresponded to the electrical connection 6" from top of tube

14.1

Blistered area 9" from top of tube corresponding to the electrical connection 9" from top

Blistered area on cathode corresponding to area adjacent to lower tip of anode At end of test, 5.0 g. Na₂SO₃[•] 7H₂O added to bath and circulated in catholyte system for 15 min.

Use of 30% H₂O₂ for indirect reduction of hexavalent chromium ion temporarily discontinued in favor of reduction by sodium sulfite

100 g. Ma2S03 7H20 required to continuously reduce the hexavalent chromium formed

Approximately the same quantity of Na₂SO₃ 7H₂O required for continuous reduction of hexavalent chromium. Use of sedium sulfite discontinued.

Apparatus used was small-scale arrangement of pilot cell. Anode travel approx. 1"/6 min. downward into 1-1/2" diam. Lucite tube. Cathelyte flow by gravity into bottom of cell. Removed by signa pump.

TABLE 3. CONTINUED

Test No.	Bath No.	Time (Hours)	Cathode Material	Cathode Current Density (Amp./Sq.Ft.)	Catholyte Flow (ML./Min.)
5389-51B	94A	1/4	1" x 6" x 0.012" steel strip	490	90 0
-510	n	1/4	Ditte	Π	•
- 51D	17	1/4	n	n	11
-51 E	я	1-1/2	Steel tube, 1-1/2" I.D.x18" long	, п	1700
-52 A	11	1/4	1" x 6" x 0.012" steel strip	300	900
-52 B	N	1/4	Ditto	400	1
-520	Π	1/4	Steel tube, 1-1/2" I.D.x3" long	300	•
-5 2D	rı	1/4	Steel tube, 1-1/2" I.D.x4" long	×	•
-52 E	Π	2	40-m. x 12" gun tube	400	1700

-*****-1 7 3

11				11
		77	-	-
Lim	1	11	7.4	

12

				Condi	Gatholyte
Rem	Description of Deposit	Type Anode	Temp. (°F.)	pH	Flow Min.)
Use of higher density redu	Adherence of deposit at critical area improved	1/4" x 1/8" x 2" lead strip with diaphragn. Lucite spacer at bottom.	143	1.6	500
	Deposit improved. Very good with exception of a few small pits.	Lucite spacer removed	11	1.6	13
0.5 g./1. Duy agent added ting.	Very good appearing de- posit. Small pits eliminated.	Ditto	n	1.6	11
Results from tests could p applied to p same results	Initial deposit full length of anode good. Blistered as anode started to travel downward.	4" lead tube with diaphraga	n	1.6	1700
Note short-la more area for	Good appearing deposit	1/4" x 1/8" x 1/2" lead strip, no diaphragm	11	1.6	500
D:	Ditto	1/4" x 1/8" x 1" lead strip, no diaphragm	n	1.6	11
Small-scale (steel tube i small scale (pasels.	×	Ditto	19	1.6	11
D	11		Ħ	1.6	17
Gun tube ele given a light etch. Deposi- examination, and given a i diluted HC1.	Blistered deposit full length of tube	3/16" x 2" lead tubing	142 '	1.4	1700

CONFIDE

293

. .

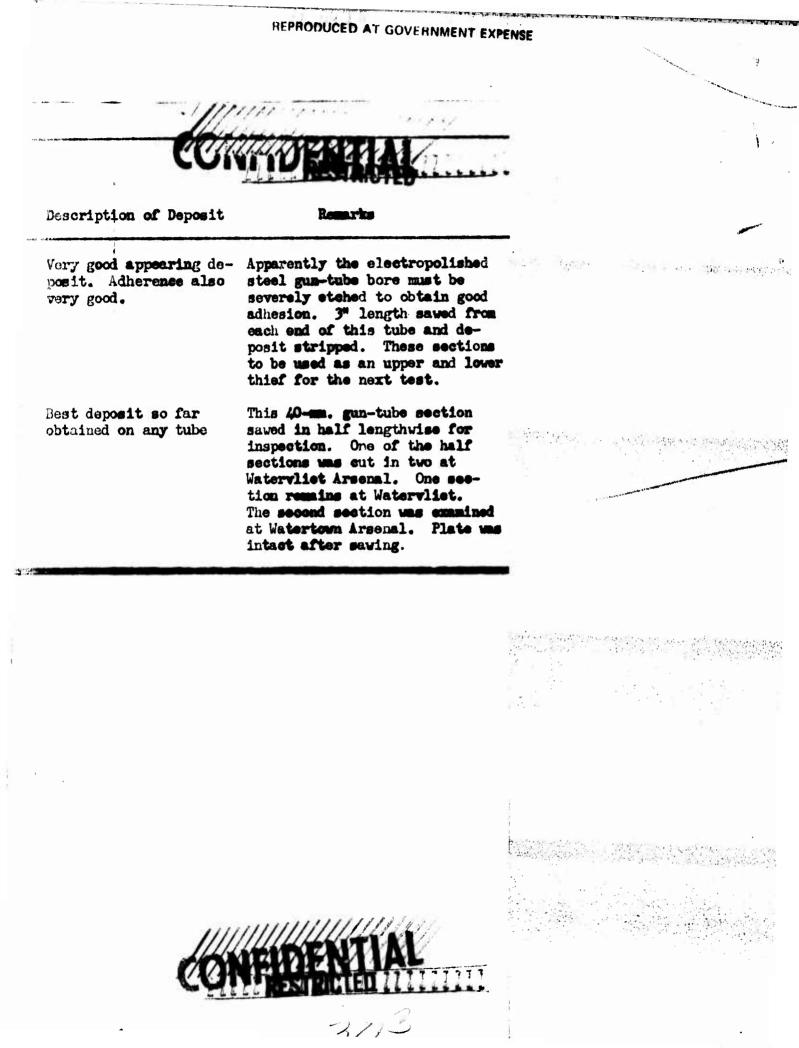
	REPRODUCED AT GOVERNMENT EXPENSE	
ĊĊ	TIMESTRICTED	
Description of Deposit	Remarks	
Adherence of deposit at critical area improved	Use of higher cathode current density reduced blistered area	an digeneration and an
Deposit improved. Very good with exception of a few small pits.	-	
Very good appearing de- posit. Small pits eliminated.	0.5 g./l. Duponol M.E. wetting agent added to eliminate pit- ting.	n de ser anne ann
Initial deposit full length of anode good. Blistered as anode started to travel downward.	Results from above small-scale tests could not be directly applied to pilot cell with same results.	
Good appearing deposit	Note short-length anode. Also more area for gassing	
Ditto	Ditto	
n	Small-scale test in 1-1/2" diam. steel tube in agreement with small scale tests using flat panels.	
v	Ditto	
Blistered deposit full length of tube	Gun tube electrocleaned and then given a light hydrochloric acid etch. Deposit stripped after examination. Tube punice scrubbed and given a 2-min. etch in un- diluted HG1.	
	RESTRICTED MANA	

CONFIDENTIAL

•

TABLE 3. CONTINUED

Test No. Bath	Time h No. (Hours)	Cathode Material	Ourrent Density (Amp./Sq.Ft.)	<u>Catholy</u> Flow (M/Mn)
5389-5 2F 9/	41. 2	40-mm. x 12" gun tube	40 0	1700


-52G " 2-1/2 Ditto

Ϋ́ε

-80-

193

		™ •.			REPRODUCE	D AT GOVER	INMENT EXPENSE			+ 5° +
	lə t y	Catholyt	e Car	dition	<u>8</u>				con	
	7 Pt.)	Flow (Ml./Min)	pH	Temp. (•F.)		Type An	ode	Description of	Deperit	
		1700	1.4	142	3/16" x 2"	lead tubi:	ng ·	Very good appea posit. Adheren very good.	ring de- ee alse	Appai stoal sevel adher each posit to be this
	A Constraint of the second	17	1.4			Ditto		Best deposit so obtained on any	far tube	This save insp soct Vistor tion The inter
「「「「いい」」	(1) Segui une une				аран на траниција на траниција на селото на селото Постоја на селото на с					
apprendict and in the second										
an state state										
1						•				
1										,,,,,,
							2023		co	
				le		12		J		њ I

