		PHOTOGRAPH TH	HIS SHEET
53 682	DTIC ACCESSION NUMBER Takan	AL-710/39	INVENTORY
AD-A953	OTIC ACCESS	DOCUMENT IDENTIFICATION	27 Aug:41
A		Approved for	ON STATEMENT A for public released tion Unlimited
		DISTRIB	BUTION STATEMENT
TRIBUTION /	DES L AND/OR SPECIAL		OCT 2 4 1984
11	UTION STAMP		DATE ACCESSIONED
UNAI	NNOUNCED		DATE RETURNED
	84 10 2	3 300	
	DATE RECEIVED IN DT	ric	REGISTERED OR CERTIFIED NO.

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

PREVIOUS EDITION MAY BE USED UNTIL

W. A. 710/390

PROGRESS REPORT

Aigust 27, 1941

to

WATERIOWN ARSENAL, UNITED STATES ARMY

Research Investigation of Armor Plate Stants.

S-547
BATTELLE
MEMORIAL INSTITUTE

505 King Avenue COLUMBUS, O''

> Approved for a like Platter, Distribution distributed

REPRODUCED AT CONSMITTENT EXPENSE

DISTRIBUTION OF REPORTS

REPORT NO. $\frac{7/6}{390}$ DATE DISTRIBUTED $\frac{9/26/47}{4}$ NO. OF COPIES 3

Author

Lab. File

Main Office File

Chief of Ordnance - 2

Springfield Armory

Watervliet Arsenal

Rock Island Arsenal

Frankford Arsenal

Picatinny Arsenal

Aberdeen Proving Ground

Extra Copies

Other establishments requesting work.

UNCLASSIFIED

ALLILLI RESTRICTEDILLA

Contract No. W-952-Ord-1072

P. 0. 12588

(Approved)

00 160/29863-

WA 160/9400.

CONTRACTOR:

The Battelle Memorial Institute

Columbus, Ohio

ordnance Department

CONTRACT FOR:

Sponsorad Research Project

Approximately

AMOUNT: \$15,000.00

PLACE:

Watertown Arsenal, Watertown, Mass.

Payments to be made by the Finance Officer, Watertown Arsenal, Watertown, Mass.

The supplies and services to be obtained by this instrument are authorized by, are for the purpose set forth in, and are chargeable to Procurement Authority.

ORD 9670

the available balances of which are sufficient to cover the cost thereof.

This contract is authorized by the Act of July 2, 1940 (Public No. 703, 76th Congress)

UNCLASSIFIED

TRESTRICTED PROPERTY

THIS CONTRACT, entered into this 23rd/day of May, 1941, by THE United STATES OF AMERICA, hereinafter called the Government; represented by the Contracting Officer executing this contract and THE BATTELLE MEMORIAL INSTITUTE, a corporation organized and existing under the laws of the State of Ohio of the city of Columbus, in the State of Ohio, hereinafter called the Contractor, witnesseth that the parties hereto do mutually agree as follows:

Article I. Scope. The Contractor shall conduct research investigations to systematically study the effects of certain alloying elements on the ballistic properties of properly heat treated rolled homogeneous armor. A foremost consideration will be given to the substitution of nonstrategic alloying elements for nickel and chromium, elements which are respectively difficult to provide in sufficient quantities and of a highly strategic character. Primarily, the elements which will be studied in their effect upon the ballistic qualities of armor will be manganese, molybdenum, copper, silicon and vanadium.

Article II. Statement of Work. The work under the contract performed in close cooperation with Watertown Arsenal will involve:

- a. The melting and refining of small experimental heats of steel in sizes up to approximately 350 pounds containing varying percentages and proportions of the elements manganese, molybdenum, copper, silicon and vanadium.
- b. The rolling of these heats of steel into plate of a suitable size and thickness for ballistic testing.
- c. The proper heat treatment of these steels to a specified proper range of hardness so that the effect of the alloying elements in varying percentages will be discernible in the results obtained. The determination of the most suitable heat treatment for each analysis will form an important part of the investigation.
- d. The ballistic testing of the experimental plates according to the latest specifications at the Watertown Arsenal.
- e. The metallurgical examination of the ballistically tested plates by the Contractor in full cooperation with the Watertown Arsenal.
- f. The preparation and submission of a detailed report covering completely the procedures followed, the results obtained and indicating the following:

- 1. A homogeneous rolled armor analysis containing a minimum amount of strategic elements as well as a minimum total alloy content which meets the speci∞ fied ballistic requirements for armor of this type and thickness.
- 2. An analysis meeting the ballistic requirements which can be melted and refined in open hearth furnaces and rolled on mills utilized in the production of tonnage plate steel.
- 3. The most practicable and effective heat treatment which can be adapted to production methods.
- 4. The determination of the microstructural constitution of the steel which produces the highest ballistic properties.

Article III. Method of Payment.

- a. All research costs, miscellaneous supplies and expenses, except necessary special equipment and patent expenses, hereinafter set forth, shall be paid for by the consideration of two thousand dollars (\$2000.00) per month for a period of six (6) months, this period to begin on date of approval of Contract by Chief of Ordnance.
- b. The Contractor will be reimbursed for all necessary special equipment, for which prior approval by the Contracting Officer in writing has been secured, upon submission of properly certified invoices showing payments by the Contractor. The cost of such special equipment will not exceed two thousand dollars (\$2000.00).
- c. All expenses for the filing or assignment of applications for Letters Patent or any expenses in connection with the prosecution of said applications or the recording of such assignments and any expenses such as charges for staff time, travel, and other expenses incurred in connection with preparation or prosecution for Letters Patent, will be paid by the Contracting Officer, and does not constitute a part of the amount payable under this agreement, as specified in Article III—a hereof.

The Contracor further agrees that the reasonableness of all expenses incurred in connection with the prosecution of Letters Patent shall be determined by the Contracting Officer and that any dispute in connection herewith shall be governed by the Procedure outlined in Article VIII.

d. All payments will be made by the Finance Officer, Watertown Arsenal, Watertown, Massachusetts.

Article IV. Availability of Information. The Contractor agrees that all relevant information obtained through the work on the project specifically defined above shall be made available to the Contracting Officer or his designated assistants at any reasonable time during the Contractor's working hours, subject to the terms and conditions of the contract, and that he will communicate promptly without request, to the Contracting Officer, all important information which is pertinent to the project as it progresses. The Contractor further agrees to submit in writing to the Contracting Officer monthly reports, in quadruplicate, on the work herein contracted for.

Article V. Assignments of Patents. The Contractor agrees that employees assigned to the experimental work under this contract, who, during the period of this agreement, make a discovery or invention relating directly to the specifically defined subject of this project, shall promptly make such discovery known to the Contracting Officer, and upon the request and at the expense of the Contracting Officer, and through attorneys named by the Contracting Officer, make application for Letters Patent and the Contractor will assign such Letters Patent and any and all rights to such invention to the United States Government under the conditions of this agreement.

Article VI. Safeguarding Information.

- a. The Contractor agrees that he will take all reasonable precautions that the results of this research project shall be, both during the progress of work and upon its completion, kept strictly confidential and that only American citizens will at any time have access to any reports, unless exception is granted by the Secretary of War.
- b. The Contractor further agrees not to disclose the results of this research investigation without the permission of the Chief of Ordnance, U. S. Army, Washington, D. C.

Article VII. Termination

- a. It is agreed that the Contracting Officer may terminate this agreement at any time after four (4) months from the date of the contract, by giving the Contractor sixty (60) days! notice in writing of his intention to cancel.
- b. Upon such termination the Contractor shall forthwith deliver to the Government, F.O.B. Contractor's plant, all articles and equipment purchased and paid for under the terms of this Contract, and all information which has been developed or discovered up to the time of termination of this Contract.
- c. There shall be determined by an audit conducted by or for the Contracting Officer, the total net amount of expenditures made and/or incurred by the Contractor in accordance with the terms of this Contract, and for which he has not been reimbursed; and also the cost of cancelling any commitments for the purchase of materials or special equipment under the terms of this Contract.
- d. The Contractor shall be reimbursed to the extent of the amount determined under Paragraph c. of this Article, and upon the making of said payments, all obligations of the Government to make further payments or to carry out other undertakings hereunder shall cease.

Article VIII. Disputes. All disputes concerning questions of fact arising under this Contract shall be decided by the Contracting Officer, subject to written appeal by the Contractor within thirty (30) days from the decision of the Contracting Officer to the Chief of Ordnance, U. S. Army, whose decision shall be final and conclusive upon the parties hereto. In the meantime, the Contractor shall diligently proceed with performance,

Article IX. Approval Required. This Contract shall not become a binding and valid instrument until approved by the Chief of Ordnance, U. S. Army, or his duly authorized representative.

Article X. Officials not to Benefit. No member of or delegate to Congress or resident commissioner shall be admitted to any share or part of this Contract or to any benefit that may arise therefrom, but this provision shall not be construed to extend to this Contract if made with a corporation for its general benefit.

Article XI. Covenant against Contingent Fees. The Contractor warrants that he has not employed any person to solicit or secure this contract upon any agreement for a commission, percentage, brokerage, or contingent fee.

Breach of this warranty shall give the Government the right to annul the Contract, or, in its discretion, to deduct from the Contract price or consideration, the amount of such commission, percentage, brokerage, or contingent fees. This warranty shall not apply to commission payable by Contractors upon Contracts of sales secu. ed or made through bonna fide established commercial or selling agencies maintained by the Contractor for the purpose of securing business.

Article XII. Title to equipment. The Title to all equipment purchased in connection with this research and paid for by the United States Government in accordance with the terms of Article III-b shall vest in the United States Government, and after completion of this Contract, all such equipment purchased by the Contractor shall be delivered f. o. b. Contractor's plant in the same condition as when purchased, ordinary wear and tear, or destruction by an Act of God or public enemy excepted.

Article XIII. Assignment of Contractor's Claims. (a) Claims for moneys due or to become due to the Contractor from the Government arising out of this contract may be assigned to any bank, trust company or other financing institution, including any Federal lending agency; and any such assignment may cover all or any part of any claim or claims arising or to arise out of this contract and may be made to any one or more such institutions or to any one party as agent or trustee for two or more such institutions participating in the financing of this contract. Any claims so assigned may be subject to further assignment; and any bond, promissory note or other evidence of indebtedness secured by any such assignment may be rediscounted, hypothecated as collateral for a loan or credit, or sold with or without recourse. In the event of the assignment or reassignment of any claim for moneys due or to become due under this contract the assignee thereof shall file in quadruplicate, written notice of the assignment, together with one true copy of the instrument of assignment with (a) the General Accounting Office of the Government, (b) the Contracting Officer or the Secretary of War (c) the surety or sureties upon the bond or bonds, if any, in connection with such contract, and (d) with the Finance Officer of the U.S. Army at Watertown Arsenal, Watertown, Mass., who is hereby designated to make all payments under this contract. In no event shall copies of any plans, specifications or other similar documents marked "SECRET", "CONFIDENTIAL", or "RESTRICTED". be furnished to any assignee of any claim arising under this contract or to any other person not otherwise entitled to receive the same.

(b) Payments to any assignee of any claim assigned pursuant to the provisions of paragraph (a) above shall not be subject to reduction or set-off, nor shall any of such payments be subject to reduction or set-off for any indebtedness of the assignor to the United States arising independently of this contract.

Article XIV. Eight Hour Law - No laborer or mechanic doing any part of the work contemplated by this contract, in the employ of the contractor or any subcontractor contracting for any part of said work contemplated, shall be required or permitted to work more than eight hours in any one calendar day upon wuch work at the site thereof, except upon the condition that compensation is paid to such laborer or mechanic in accordance with the provisions of this article. The wages of every laborer and mechanic employed by the contractor or any subcontractor engaged in the performance of this contract shall be computed on a basic day rate of eight hours per day and work in excess of eight hours per day is permitted only upon the condition that every such laborer and mechanic shall be compensated for all hours worked in excess of eight hours per day at not less than one and one-half times the basic rate of pay. For each violation of the requirements of this article a penalty of five dollars shall be imposed upon the contractor for each laborer or mechanic for every calendar day in which such employee is required or permitted to labor more than eight hours upon said work without receiving compensation computed in accordance with this article, and all penalties thus imposed shall be withheld for the use and benefit of the Government: Provided: that this stipulation shall be subject in all respects to the exceptions and provisions of U. S. Code, title 40, sections 321, 324, 325, and 326, relating to hours of labor, as in part modified by the provisions of Section 5 (b) of Public Act No. 671, 76th Congress, approved June 28, 1940, and Section 303 of Public Act No. 781, 76th Congress, approved September 9, 1940, relating to compensation for overtime.

Article XV. Property Records. The Property Officer, Watertown Arsenal, Watertown, Mass., is designated as the officer to maintain the necessary property records in connection with this contract as contemplated by Army Regulation 35-6520.

IN WITNESS WHEREOF, the parties hereto have executed this Contract as of the day and year first above written.

THE UNITED STATES OF AMERICA

BY (Sgd.) R. W. CASE
R. W. CASE
Brigadier General, U. S. Army,
Contracting

THE BATTELLE MEMORIAL INSTITUTE

BY (Sgd.) CLYDE E. WILLIAMS
Director

Two Witnesses:

(Sgd.) B. D. THOMAS

(Sgd.) E. E. SLOWTER

Certificate as to Corporate Principal

I, (Signed) G. S. FENTON, certify that I am

Secretary of the corporation named as contractor herein; that

CLYDE E. WILLIAMS who signed this contract on behalf of the contractor,

was then DIRECTOR of said corporation; that said contract was duly

signed for and in behalf of said corporation by authority of its

governing body, and is within the scope of its corporate powers.

(Signed) G. S. FENTON (Corporate)
(Seal)

(Seal)
BATTELLE
MEMORIAL
INSTITUTE
COLUMBUS, OHIO

BATTELLE MEMORIAL INSTITUTE

INDUSTRIAL AND SCIENTIFIC RESEARCH

COLUMBUS, OHIO

Sept. 19, 1941

Colonel S. B. Ritchie Watertown Arsenal Watertown, Massachusetts

Dear Colonel Ritchie:

Three copies of the report on the investigation of armor plate steels are enclosed.

Experimental work so far completed includes the making of 20 heats from the list of 40 prepared at Watertown. The steels have been rolled into 1/2 inch plates and coupons have been put through a variety of tests as follows:

- 1. Critical points for each steel have been determined and these have been correlated with compositions.
- 2. An examination for undissolved carbides has been made on the steels in the quenched condition.
- 3. All of the steels have been rated for cleanliness by both the S.A.E. and Chevrolet methods.
- 4. Preliminary drawing treatments have been given to find what temperatures and times are required to bring all of the steels within the specified hardness range.
 - 5. Tests have been made to determine grain growth characteristics.

The preliminary work has been completed and the large plates are being quenched and drawn. When this work is finished, the plates will be shipped to you for testing and we shall start the melting on the second series.

Any comments on the work described in this report which you may care to make will be appreciated.

Yours very truly,

C. H. Lorig.

CHL: DW Enc. (3)

PROGRESS REPORT

on

RESEARCH INVESTIGATION OF ARMOR PLATE STEELS

to

WATERTOWN ARSENAL, UNITED STATES ARMY

by

M. L. Samuels and C. H. Lorig

BATTELLE MEMORIAL INSTITUTE - August 27, 1941

TABLE OF CONTENTS

					Page
FOREWORD	•	r		•	1
SUMMARY OF RESULTS		•	•	•	3
EXPERIMENTAL WORK	•	•	•	•	6
Preparation of Plates	٠	•		•	6
Dilatometric Critical Point Determinations		•	•	•	11
Preliminary Heat Treatment	•	•	•	•	13
Construction of Quenching Fixture	•	•	•	•	13
Microscopic Examination of Finished Plates	•	•	•	•	17
A. Inspection for Undissolved Carbides	•		•	•	17
B. Inspection for Cleanliness	•	•	и	•	17
C. Austenitic Grain Size Inspection .	•	•	•	•	19
DISCUSSION OF RESULTS	•	•	•	•	19
FIMILD FUDY					21

PROGRESS REFORT

on

RESEARCH INVESTIGATION OF ARMOR PLATE STEELS

to

WATERTOWN ARSEMAL, UNITED STATES ARMY

from

BATTELLE MEMORIAL INSTITUTE

03

M. L. Samuels and C. H. Lorig
August 27, 1941

FUREWORD

An outline for a research investigation of armor plate steels was drawn up by Dr. Hoyt, of Battelle Memorial Institute, and Messra. Ritchie, Reed, and Mathews of Watertown Arsenal.

A primary purpose of this investigation is to develop a light armor plate that can be made in the open hearth furnace and rolled on a high production mill and which can be processed in less time than is now consumed. Another primary object is the substitution of less strategic metals, in whole or in part, for more strategic metals in armor plate cteel.

The program for accomplishing these objectives consists in mak' jup experimental heats of steel by methods which approximate open hearth heats in quality rather than electric furnace heats and by processing them to bring out their best ballistic properties for the specified hardness level. The compositions of the experimental heats will include, in varying amounts, the more conventional alloying elements —

nickel, chromium, vanedium and molybdonum, as well as the less strategic elements - mangenese, silicon, copper, etc.

heats meets present ballistic specifications, it may reasonably be expected that open hearth steel is of adequate quality since considerable experience has been accumulated in correlating laboratory or experimental heats with commercial steel. It must be kept in mind, however, that these correlations have never before included ballistic behavior. The ballistic tests of these steels should also indicate the possibilities of substituting one element for another without sacrifice of quality. If one or more of the "substitute" compositions is found to meet the ballistic specifications, that will be evidence that less strategic metals can be substituted for the more strategic alloy elements that are now used. The present report covers that portion of this work that was completed in August.

Upon the completion of the preliminary program, the most promising compositions will be studied for the most suitable heat treatment for homogeneous plate and flame hardening will be studied as a possible substitute for the present method of case hardening. During this stage of the work, larger heats will be made and tested ballistically at different thicknesses and in different conditions of heat treatment.

An another objective, this work should provide a better conception of the metallurgical requirements of armor plate. Upon this basis it may be hoped that information leading to the development of a plate with better ballistic properties will be obtained, or at least that plate of satisfactory ballistic properties will be more readily and uniformly obtained in the production.

To review briefly, the first or preliminary stage of this

experimental program consists in making, heat treating, and testing about forty different steel compositions. The first twenty plates have been made and studied in the laboratory and will be heat treated and ready for testing at Watertown Arsenal very soon. The remainder of the preliminary heats will be started at once for the completion of this part of the program. The second, or final stage will be started as soon as the implications of the preliminary survey are clear.

and of the theory of substituting one element for another may best be deferred until the ballistic tests have been completed. However, it may be assumed that a major requirement of the alloy addition is that of slowing down the transformation on cooling so that full as-quenched hardness can be secured in the heavier sections and with more moderate quenching. This principle is illustrated by Fig. 1. The higher the nickel, the slower the cooling rate to produce full hardness. Less strategic metals which accomplish this effect are included in the present program.

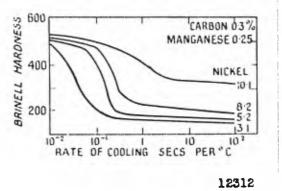


Figure 1. Effect of Nickel upon the Critical Cooling Rates.

Jones, J. A. Jr. Iron and Steel Institute, 1925. Volume
117, page 295.

SUMMARY OF RESULTS

Twenty heats have been made from the list of 40 compositions

compiled at Watertown Arsenal. Melting data, together with intended and actual analyses, are summarized in Table 1.

The ingots have been forged and rolled into 1/2-inch plates, from the ends of which coupons were removed for preliminary tests.

Critical points, including Acl, Ac3, Ar3, and Arl, were determined for each steel by the dilatometric method. The mass of data collected in making those determinations is entered in our notebook but only the curves, shown along with corresponding microstructures as Figures 4 to 23, are given in this report. Since the temperature at which the various transfermations occur is influenced, especially upon cooling, by the rate of temperature change, time-temperature curves are given in Figure 24. The relation between composition and the temperature at which the transformations occur is shown in Table II. These data were used to determine optimum quenching temperatures and they also were of some help in determining whether a given steel should be quenched in oil or in water.

Coupons from each of the plates were put through preliminary heat treatments for the purpose of determining as quenched hardness values and approximate drawing temperature-time combinations necessary to bring the final hardness within the specified range of 350 to 370 Brinell.

This work on the coupons was thought worthwhile because it will make possible the proper heat treatment of the large plates with a minimum of errors. The data showing quenching and drawing results are summarized in Table III.

Microscopical examinations were made for undissolved carbides with the steels in the as quenched condition. Some small spherical carbides were found after etching with Murakami's reagent but no chain-like or grain boundary structures were observed. Dr. Reed examined a few of

the specimens and concurred with our opinion that little trouble would be experienced from this source.

Chevrolet methods and the results are shown in Table IV. Specimens from Heats 7091, 7092, 7099, 7101 and 7103 showed long alumina stringers and should be watched for the possible effect of such inclusions on the ballistic properties. Analyses corresponding to the above heats will be repeated in order that the relation between cleanliness and ballistic properties may be determined.

Samples from Heats 7105 to 7110 inclusive were definitely cleener than most of the other heats, possibly due to the addition of V. Ti or Grainal. It is apparent from the tables, however, that cleanliness is not very definitely related to the compositions produced. This leads to the conclusion that furnace practice may be the determining factor and future melts will be made with this in mind.

Microstructures from the as rolled plates indicated that most of the steels were fine grained but a few showed abnormal grain growth. See Figures 5, 6, 8, and 9. Coupon samples from all of the steels were heated to the respective temperatures selected for quenching the large plates, held for ½ hour and cooled in air. A ferrite network around the original austenite grains showed what grain size might be expected in the quenched material. Five of the steels showed some evidence of a duplex structure but this condition is not thought to be serious.

The above summary covers all the preliminary work and, at this time, the plates are being put through the quenching and drawing treatments in preparation for ballistic tests.

EXPURIMENTAL WORK

Freparation of Plates.

The preparation of the twenty steels which are described in this report followed the practice outlined by Dr. Hoyt on his visit to the Watertown Arsenal. The steels were melted in a 16 pound high frequency induction furnace with standard ferro alloys and Armoo punchings being used to make up the charges. All heats were decidized with an aluminum addition unless otherwise specified, and were cast into a 16 pound circular ingot moid.

Tabulated molting data on this group of steels are given in Table I.

One half-inch by six-inch plates approximately 13 inches in length were cross forced and rolled from the injots in the following manner. The hot tops were removed from all injots before forging. On the first heating the injots were squared up to give a length of 7 to 8 inches. Following the squaring up operation the injots were reheated and upset to a length of approximately 6 inches. Forging, upsetting, and reheating was continued until a section 6 inches wide, 1½ to 2 inches thick, and 3 to 4 inches in length was obtained. Approximately 5 reheatings were used for this operation with a temperature of 2080° F. to 2150° F. being maintained.

The rolling procedure used in the preparation of these plates was as follows. The forged blanks were sandblasted in preparation for rolling and were reduced to 7/8 inch plates in six passes. Two reheatings were required for this operation at a temperature of 1850° F. to 1900° F. The 7/8 inch plates were sandblasted in preparation for finishing and were then reheated to 1750° F. and finished to approximately .515 inch in four passes. After hot rolling was completed the plates were given

ELTING DATA FOR THE JURIES OF LABITY HEATS. Inde in 15-12. Induction Furnace. TABLE I.

Heat	Charges	and	Acditions	c	1,0	55		Analysis	Cr	170	A	T
No.	Esterial	MtLb.	Time of Addition	ני	1							
1607	Ermco C Felin Silin Fesi	15.75 .075 .034 .069 .053	Power on 8:55 9:55 9:55 10:00	.45/.48	.30/.40	.20/.30	1.1	Intended				
7092	Armco Sikn C Fest Feth Al	15.67 .069 .068 .053	Power on 10:20	.42/.48 .46	.60/.90	.20/.30	1.1	Intended				
7093	Armoo Sikn C Fesi Fekn	15.60 .069 .062 .051 .206	Power on 10:22 11:10 11:11 11:11 11:13 11:16 Tapped 11:17	.42/.48	1.0/1.30	.20/.30	1.1	Intended	. (.			

REPRODUCED AT GOVERNMENT EXPENSE

	7 0 0 0	7095	7000	7093
FROME SET	2000 H	SPIE O	Armco Sirn C PeSi Fern	Armco Sinn C FeSi Fekn
	.054 .053 .109 .016	15.40	15,50 .069 .056 .050 .326	15.60 .069 .062 .051 .206
4: 30 4: 30 4: 30 4: 40 4: 40 4: 40 4: 40 4: 41 4: 44 4: 44	5:462 3:462 3:54 3:54 3:54 3:54 3:55 7apped 5:56 7apped 6:56 0n	Power on 2:59	2:49 2:49 2:49 2:50 2:50 2:50 2:50 2:50	Power on 10:22 11:11 11
	(-)	.32/.38 .36	*# 22 / ** ** ** ** ** ** ** ** ** ** ** ** *	.42/.48 .46
• 7 O	.50/.80	.50/.80	1.50/1.60	1.0/1.30
: :	. 20/.30	.20/.30	.20/.30	.20/.50 .21
	C11	اسو •	1 1	1 1
रः • 41	.30/3.70	.80/2.00 1.93	Intended Actual	Intended Actual
į	ŀ	1 1	Ωι	Ωι
Actuel	Intended	Intended Actual	300 th	9.5 C
	- -			

- Continued, page 8

Helting Data for the Series of Twenty Heats

Table	I - Continued.						Helting Data	Dat	for	Series	the Series of Twenty heats	неатѕ
N to	Material	17E	Addition	O	L	Si	i-pe puls		Cr	Ľo	V	i.
7097	Armeo Ni SiMn C FeSi FeWn Al	14.90 .069 .053 .050	Power on 1:50 .3 00 2:10 39 2:422 53 2:422; 2:45 16 2:55 16 2:55 16 2:56	. 32/.38 .36	.50/.80 .73	20/.30	4.96	1 1	Intended Actual		□ Marr	
709E	Armoo Ni Silin C FeSi Felin	15.305 .069 .046 .051 .206	Power on 2:50 3:20 3:20 3:20 3:41 3:50 3:41 3:50 3:44 3:50 3:44 3:44 3:44 3:44 3:44 3:44 3:44 3:4	.32/.38 .37	1.00/1.30	.20/.30 .23	1.80/2.00	1 6	intended Actual	anner en	of:	
7099	AT SELLA STUA SELLA SELL	15.26 .069 .206 .040 .045	Power on 3:47 4:15 4:28 4:30 4:30 4:31 4:34 4:34 4:34 4:34	•32/•38 •37	.00/.00 .84	.20/.50	1.30/1.60 1.52	4	.87	Intended Actual	Ã.	

REPRODUCED AT GOVERNMENT EXPENSE

7101	7100	7099
######################################	Feer Structure of the Control of the	Armoo Ni Sikh FeCr C FeSi Fekh Al
15.20 .232 .065 .069 .206 .040 .127 .047	14.51 .600 .069 .620 .021 .035 .127	15.26 .232 .069 .206 .040 .045 .127
10:20 10:45 10:45 10:46 10:46 10:48 10:48 10:50 10:52 10:52	Power 9:05 9:05 10:47 10:47 10:55 10:55 10:55 10:55	Power on 4:15 4:28 4:30 4:30 4:30 4:31 4:31 4:31 4:31 4:31 5:35
# · · · · · · · · · · · · · · · · · · ·	on.32/.38	· 32/ · 37
.60/.90 .85	.60/.90	.60/.90 .84
• 20/• 30 • 25	. 20/. 30	.20/.30
1.50/1.60	3.60/3.90	1.50/1.60
.70/.90 .89	2.40/2.60 2.60	.70/.20 .87
	4 1	i 1
.39	Intended Actual (No analysis made; specimen unnachinable)	Intended Actual
Intended Actual	anelysis lmen le)	المستعدد بن المستعدد بن الراحي الراحي

.016

3:40 3:40 3:43 7apped 3:44

- Continued, page 9

1

for the Series of Twenty leats
folting Data
10,10 0 10 10 10 10 10 10 10 10 10 10 10 10 10
able I - Continued
1-1

Heet	Charges	and	Additions				Analysis		,	,	F	
	Laterial	itLb.	Time of Addition	¢)	អ្ន	.c.	·ci	r L	0	.	대 더	
7102	Armoo Ni Peko C C C Fekn Fekn Al	14.78 .560 .101 .069 .252 .038 .129	Power on 11:00 11:15 11:39 11:41 11:43 11:46 11:46 11:46 11:46	. 32/. 58 . 58 . 58	.60/.90 .20/.30 .87		5.30/5.70 5.50	.95/1.10	. 60 . 60 . 60	मिनि । ।	Intended Actual	
7103	Armoo Ni FeWo Sikh PeCr C FeSi Al	15.05 .232 .076 .0695 .032 .276 .043	Power on 11:22 11:36 11:59 12:04 12:04 12:06 12:07 12:09 12:01	. 35 / . 38 . 36	1.40/1.50 1.53	.25/.50	.32/.38 1.40/1.50 .20/.30 1.30/1.60 .35 1.55 .25	75/.90	25/35	भिद्ध	Intended Actual	
7104	Armoo Ni SiEn C FeSi Felin	15.40 .252 .0695 .051 .047	Power on 12:12 12:12:12:12:13:10:1:00:1:05:1:05:1:05:1:05:1:05:1:0	.52/.58	.60/,90		.20/.30 1.30/1.60 1.52			.10/	.10/.15-Intended	

-	2
	ರಿಕ್ಷನಿಕ
	- Concluded:

	Pepaequ Turio	.10/.20	
	.10/.15-Intended	Intended	
	30/1.60 1.52		.20/.30 (Grainal - 5n/Ton)
	.52/.38 .60/.90 .20/.30 1.30/1.60 .53 .95 1.52	.20/.30	
	06,09.	1.58	.42/.48 1.4/1.5 .48 1.52
	.52/.38	.42/.48	
12:09 Tapped 12:10	Power on 12:12 12:35 12:58 1:00 1:00 1:05 1:05 1:05 1:05 1:05 1:05	Power on 1:12 1:51 1:53 1:54 1:57 Tapped 1:53	20000000000000000000000000000000000000
910.	15.40 .055 .051 .047 .127 .016	15.50 .069 .057 .276	15.51 .069 .057 .276
T.	Armoo wi Sikm C Fest Fest Fev	Armeo Sikn C Felin Si-Ti	Arreo Siya C Feyn Grainal
	7104	7105	7106

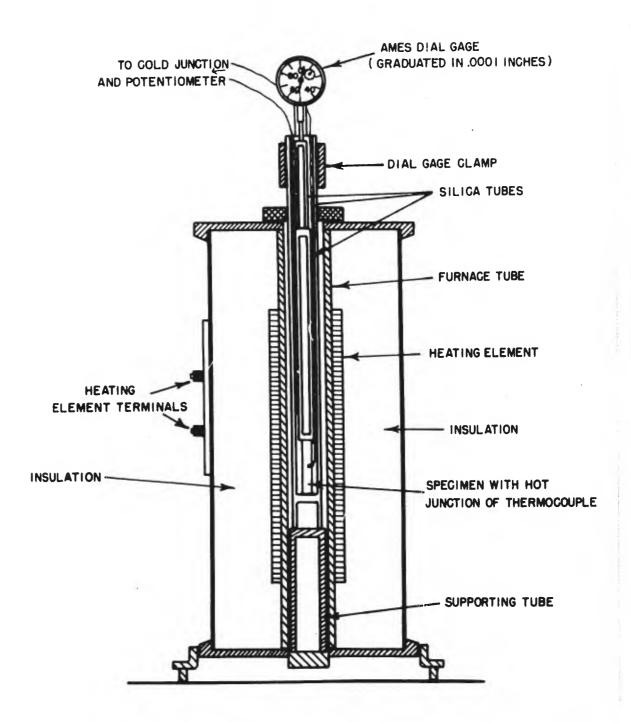
Welting Data for the Series of Pwenty Heats

Table I - Concluded.

Analysis	C Mn Si Ni Cr Mo V	.42/.48 1.4/1.6 .60/.30 .90/1.10 .10/.20 .47 1.70 .68 1.13 .13	.42/.48 1.4/1.6 .60/.80 .90/1.10 (Grainal - 57/7on) .50 1.52 .69 1.13	.42/.48 1.4/1.5 .35/.50 .90/1.10 .25/.35 .48 1.52 .50
Additions	Time of Addition	Power on 2:59 2:59 3:46 3:46 3:46 3:59 3:40 3:59 3:59 3:59 3:59 3:59 3:59 3:59 3:59	Power on 1:20 2:13 2:20 2:20 2:20 2:20 2:20 2:20 2:20 2:2	Power on 2:31 3:11 5:12 3:14 3:14 3:15 5:15 5:15 5:18
es and Add	it.	15.13 .069 .045 .252 .276 .140	15.17 .069 .252 .045 .142	15.18 .076 .069 .252 .045
Heat Charges and Addition	Material	Armco Sim C F FeV FeV	Armoo Sikn Feor C Fekn Fesi	Armco Fello Sikn Felr C Felln Fell
1, HOH	No.	7107	7103	7109

	.25/.35	.55/.45
	.90/1.10 .25/.35 1.10 .50	
	35/.50	.20/.30
	.42/.48 1.4/1.6 .35/.50 .48 1.52	.42/.48 1.4/1.6 .20/.30 .48 1.57 .24
	42/24.8	.42/.48
2:272	2:31 2:31 3:11 5:12 3:14 5:15 5:15 5:15 7:192 7:1929d	7:25 4:00 4:03 4:05,4:07 4:05 4:06 4:09 7apped
	15.18 .076 .069 .252 .045 .276	15.43 .102 .069 .047 .057 .276
	Armco SiMn FeCr C FeMn FeSi	Armco FeMo SiMn FeSi C FeLn Al
	7109	7110

6


Light skin pass through the cold rolls to reduce them to the final thickness. The finished plates ranged in thickness from .503 inch to .513 inch, with a length and width of approximately 13-1/4 inches and 6-1/8 inches respectively.

Dilatometric Critical Point Determinations.

Critical points for all of the twenty steels were determined by the dilatemetric method. Check runs on the apparatus were made with specimens of SAE 4130 steel and gave values which were in agreement with the published data on this type of material.

Specimens 3 inches in length and 2 inch in diameter were machined from test compons cup from the ends of the finished plates. A 22-gauge chromel-alumel thermocourle was placed in the side of each specimen. Temperature measurements were obtained with a Brown partable potentiometer, and deflections were measured with an Ames dial gauge graduated in 1/10,000 of an inch. An electrically heated vertical tube furnace, constructed especially for this type of work, was used for these tests. Quartz tubes were used for specimen holders and thrust bars throughout the tests. The current supply used was a 110 volt service line passed through a Variac transformer with resistance to give approximately 5 amperes. A cross-section view of the apparatus is shown on page 11a.

Dilatometric curves for each steel are shown in Figures 4 to 23 inclusive along with the as-rolled microstructure for each plate. Cooling rates for each determination are shown as time-temperature curves in Figure 24. The rate of heating was very nearly identical for all specimens so only one heating curve was plotted. This time-temperature curve is also shown in Figure 24. The effect of the various alloying elements upon the location of the critical points - heating and cooling rates being very nearly the same for all specimens-is shown by data summarized in Table II.

12174

Fig. 2. Schematic drawing showing a cross-section view of the furnace set-up for obtaining dilatometer readings.

TABLE II. RELATION BETWEEN COMPOSITION AND CRITICAL POINTS FOR HEATS 7091 TO 7110 INCLUSIVE.

Series	Heat			Co	mposi	tion			<u></u>	Crit	ical Po	oints,	°F.
201.102	No.	C	Mn	Si	Ni	Cr	Мо	V	Ti	Acl	Ac3	Ar3	Arl
Manganese	7091	•45	. 34	.20	***	==				1355	1455	1390	1285
· · · · · · · · · · · · · · · · · · ·	7092	.46	.85			no				1345	1450	1330	1250
	7093		1.17							1350	1435	1310	1215
	7094	•48	1.82	. 26						1340	1450	1190	1180
Nickel	7095	.36	.71	.19	1.93		_=			1310	1415	1270	1160
	7096	.37	.75	.25	3.41					1275	1370	1175	1040
	7097	•36	•73		4.96					1240	1340	1060	910
Mn-Ni	7098	.37	1.18	.23	1.99	an . W			***	1355	1425	980	840
Cr-Ni	7099	• 37	. 84		1.52	.87				1325	1410	1235	1185
01-11	7100		.81		3.75					1250	1460	660	500
Cr-Ni-Mo	7101 7102	.36	.85 .87		1.52 3.50	.89 1.09			~**	1330 1245	1445 1430	935 655	685 500
Mn-Cr-Ni-Mo	7103	.36	1.53	.25	$\frac{1.3}{1.6}$	•75 •90	•25 •35			1270	1460	790	590
Ni-V	7104	.33	. 83		1.52		4) -	.14		1320	1440	1300	1160
TiMn	7105	.48	1.58	.26				***	.18	1330	1425	1260	1180
Mn-Grainal	7106	.48	1.62		***			40 14		1345	1425	1225	1180
Si-Mn-Cr-V	7107	.47	1.70	.68		1.13		.18		1385	1515	1275	1245
Si-Mn-Cr-Grainal	7108	• 50	1.62	•69		1.13		•08		1375	1495	1280	1250
Mn-Cr-Mo	7109	•48	1.62			1.10	• 50			1370	1505	860	625
Mn-Mo	7110	•48	1.57	. 24			• 53			1350	1455	1000	840

Proliminary Heat Treatment.

Following the completion of the critical point determinations, preliminary heat treating data were obtained on coupons cut from the finished plates. Proper hardening temperatures and quenching media were determined by the trial and error method and approximate drawing temperatures were determined by elimination.

Table III.

Construction of Quenching Fixture.

In order to obtain uniformity of quench and sufficiently high hardness a quenching fixture was designed for use in the heat treatment of the finished plates. The fixture consists of 2 spray heads, approximately 13 inches in length and 6-1/2 inches in width, attached to a coolant supply line by means of a swing joint and the necessary pipe fittings. Each appray head contained fifty two-1/2 inch holes spaced at equal distances over the area of the spray head face. A Grane three-way, stop-cock is installed in the coolant supply line so as to by pass the coolant during the time necessary to insert the heated plate into the holder on the quenching fixture. After the plate is in position the entire fixture is dropped into the quenching bath and the stop-cock is automatically opened to permit the quenching medium to flow over the surface of the plate.

The coolant is delivered to the fixture, by means of a centrifugal pump mounted on the side of the quenching tank, at a rate of approximately 210 gallons per minute.

A photograph of the quenching tank and fixture is shown in Figure 3.

12224

Fig. 3. Quenching Tank and Fixture.

TABLE INT. RESPONSE OF THE STEELS TO P Specimens Represent Coupons Cut from

	Preliminary Quenching Treatment *			Orinoll Hardness After First Quenching and Drawi										
		011 Quench 1550°F	Oil : Quenoh-C	Juonch	Draw 800°F ½ hr	Draw No.2	Draw No.3	Draw No.4	llo.5	No.6	Ho.7	No.8	No.9	No
7091		agu adh ga adh	1500° (181)**	1500° (302)	235				*********					•
7092	(567)	(415)	1475° (207)	1600° (411)	331	-		- No continue of the continue of the						
7093	(601)	(514)	1475° (269)	1475° (404)	293									3)
7094	(640)	(555)	1475° (477)		408	500° hur 429	600° 2hr 444	600° lähr 441		750° 2hr 368	regionaly agencial is a	experimental descriptions.		
7095	(539)	(505)	1450° (429)	177 FE	331		8 - 100-100 Auditoria	vide-auto-romanento mili		avalle, y sigh kindik skripte visibe	e de annique de la company			
7096	(534)	(514)	1400° (495)	gang and	358				- sk continued to the collection	-44 + 40 + 40h - 40 + 100			distances one way war-	- The public and
7097	(550)	(534)	1400° (477)		331				uudu oo oo oo oo oo		- the signality this dis-	page represents a m		
7098	(561)	(514)	1475° (411)		321									
7099	(567)	(534)	1450° (453)	teat only	401	500° % hr 415	ੈ hr 415	600° 1½hr 409	1 1 hr 415	2hr 401	2hr 412	2hr 398	1 hr 383	
7100	(555)	(534)	1500° (453)	Des des	408	500° Žhr	hr	lähr	650° 1¾hr		750° 2hr	850° 2hr	900° 2hr	
7101	(555)	(514)	1500° (404)	que ma	381	hr 385	600° ghr 398	13hr 368						
7102	(567)	(555)	1475° (514)	der har	415	600° Zhr 401	600° ghr 423	1월hr 420	1½hr 420	2hr 430	2 hr 417	· 1hhr 423	413	2) 39
7103	(590)	ingo 446	1500°		314	200°	\$115 \$115	800 151:	650	678 : 272 415	780° Chr 404	l h		
710	(889)	(495)				,								
710	5 (627)	(555)		1475	316	3								1

REPRODUCED AT GOVERNMENT EXPENSE

THE STEELS TO PRELIMINARY HEAT TREATMENTS.
Coupons Cut from the Half-Inch Plates.

and Drawing Troatment			ell Ho						ment
Draw Draw Draw Draw Draw Draw Mo.8 No.9 No.10 No.11 No.12 No.13	Quench	Quench							
	°F	°F'				-			
napusipusipusipusipusipusipusipus val ka kakka pysiki ak ka ka ka ka ka ka ka ka abada abada abada abada abada	ک مشخب واستال بر ین د کشیر وارس	1650°							aaraada waayinaa uuqomaaniyaadii 48 + 4y eeb oli
			启hr] 454	448	412	388	378		
		1550° 555	600°	600° 12hr		700° 2hr	750° 12hr		
			448	444	395	388	347		
									- was a subject of the subject of th
	1475 495		600°	<u>2</u> 111.					
and the second of the second o			388	$\overline{3}73$	366	675°	6960		
	1400		ihr Zhr	lghr	2hr	hr	l2hr		
	534		420	420 600°	375 650°	379	363	union de la militar discondina	
	1400		khr	lghr	2hr				
	555		423 600	415 600°	368 650	675°	750	-	See 3rd
		1475 544	ਹੈ 12 12 12 12 12 12 13 13 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	15hr 417	l為hr 415		2hr 313		treatment below
750° 800° 800° 650° 850° 2hr 1 hr 1 hr 2hr 12hr	nagen op reide i de enhañ de e							,	
398 383 380 378 366								1	
850° 900° 2hr 2hr									
			-	650"					region agricultura de la contracta de 1914 de la color
	1550 489			1 hr 417		l hr			
800° 850° 900° 950° 1000° 12hr 2hr 2hr 12hr		Mirel mis designi der der					-	,	
423 412 393 393 963			-	un, ge e goerskenstere	er bestiendern stem Gro. T	uuger keu deerber d			nagamuna sanga administrativi kontiko e kiri-kiri - di
800° 800° 850° 900° 950° 1 hr 1 hr 1 hr 1 hr									
404 401 388 338 366	The company of the later of the	والمراجع والمستعددة والمستعددة والمستعددة والمستعددة والمستعددة والمستعددة والمستعددة والمستعددة والمستعددة وا	en alfalfalfalfall	p- 41110-4-10 11			annagen approximent de sed		
		1575 543	850 14hr 317					•	See 3rd treatment below
geographic de la	1500	+- 	-			700°			
	578		hr 467	1ghr 461	2hr 409	2hr 393	2hr 363		

Table	111	-	Cant	ů	mine	١.
1 21 1 1 1 1	1 (1		41.	, L	4 1 2 4 7 7 2	(4

Heat	Prolim Juone Trea	ching		Brinell Hardness AFTLE First Quenching and Drawing T										
No.			Oil Quench	Mater Quench *F				Draw lio-4						
7106	(627)	(567)	1475° (411)	dense dictip	375			650° Shr 441	2hr	800° 1 hr 363	annik varrikeri da sala	e dysagoù del lagsado		North Amelica
7107	(627)	(510)	1550 (422)	tog pag	394	thr 438	1hr 448	451	14hr 448	2hr 415	2hr 415	2hr 393	350° 1 hr 383	1 F 390
7108	(627)	(614)	1550 (415)		401	500° hr 444	hr 448	12hr 451	650° 14hr 444	2hr 415	2hr 420	800° 2hr 420	850° 2hr 398	900 2hr 361
7109	(601)	(614)	1550° (514)	en se	461	600° ਨੇਮਾ 495	600° ghr 485	1½hr 495	485	2hr 477	800° 2hr 432	850° 2hr 420	900° 2hr 412	2hr 398
7110	(627)	(567)	1500 (465)		394	500° 1 6 hr 415	600° ਨੂੰਸਾ 415	600° 1½hr 404	650 1늹hr 429	675° 2hr 406	700° 2hr 395	750° 2hr 401	800° 2hr 388	850 Shr 390
7104 Erd Trea	tment													
	tment							no den aer Treatassa	-				Jan spor-Massakrissikir-d	
7098 3rd Treat	tment					_					1	,	,	

* Hardness values in parentheses are converted Rockwell C readings.

** Compositions:

Chemical Analysis									
Heat No.	C	lân	Ni	Cr	Mo	٧	Ti	Heat llo.	
7091	•45	•34						7101	
7092	.46	.85						7102	
7093	•46	1.17						7103	
7094	.48	1.82						71.04	
7095	-36	•71	1.93					7105	
7096	.37	.75	3.41					7106	
7097	.36	.73	4.96					7107	
7098	• 37	1.18	1.99					7108	
7099	.37	.84	1.52	.87				7109	
7100	.52/.48	.81	3.75	2.60				7110	

1 4 9 2

REPRODUCED AT GOVERNMENT EXPENSE

Response of the Steels to Proliminary Heat Treatments.

~~~~	-	Draw No:10	1720000	Draw No.12	Draw No.13	Oil Quench	Mater	Draw No.1	Draw	Draw	Draw	Draw	Draw	
and the second second second	er den die ger diel Till	- Andrews	and the second s	_{real} gyang yang dan kelalan diberak	agen after Standardson	1550 547		850° 13hr 329	, ag agin, girn gir di	_{redd o} aglaegh eellen Gel		er djele blivet tjen e drevet til		See 3rd treatment below
800° 2hr 393	850° 1 hr 383	850° 1 hr 390	900° 1 hr 390	950° 1 hr 388	1000° 11hr 366	1600° 653		1000° 12hr 373						
800° 2hr 420						1600° 637	es es	825° 2hr 409	875° 1 hr 398	900° 1 hr 388		950 1 hr 370		
850° 2hr 420	900° 2hr 412	੍ਹੇਜਾ 398	950° 12hr 388	1000° 11hr 361						- One distribution distributed to the				
750° 2hr 401	800° 2hr 388	850° ghr 390	850° 1}hr 895	900° 2hr 368			1575	700	,					razonara derrara de derrara de derrara
							534	2hr 354		0				and the second s
				-		1550° 555	an eo	700 2hr 393	2hr 370					
		n aga pangan aga an aga at di nasil					1500 530	700 2hr 354						

-	licat llo.	C	ilin	N1	Cr	20	٧	Ti	
	7101	•36	.85	1.52	•89	•39			
	7108	.3B	.87	3.50	1.09	•60			
	7103	.36	1.53	1.3/1.6			2.4		
	7104	.33	.83	1.52			•14	.10/.20	
	7105		1.58					•10/ •20	
	7106		1.62		Grainal		10		
	7107		1.70		1.13		•18		
	7108	. 50	1.62		1.13	Grainal			
	7109	-48	1.62		1.10	•50			
	7110		1.57			•53			

;S+

### Microscopic Examination of Finished Plates.

## A. Inspection for Undissolved Carbides:

coupons from each plate in the quenched condition were examined microscopically for free carbide. Marakami's etch was used for purpose of identification and, in order to be sure that the reagent was working setisfactorily, two specimens of other steels which were known to contain carbide chains were etched in the same dish with the armor plate steels.

Several specimens showed tiny spherical carbides randomly distributed but not one of the twenty contained grain boundary chains.

Two specimens which exhibited the worst condition found were examined by Dr. Reed and it was his opinion that no trouble would be experienced from this source.

## B. Inspection for Cleanliness:

The series of specimens previously propared for the examination of carbides was rated for inclusion content according to the system adopted as standard by the S.A.E., Iron and Steel Division, on February 6, 1940.

Each sample was also given a general rating designated by a small letter to represent the average rating of the specimen as a whole based on the frequency and width of inclusions over 1 unit in length and also the quality of the background. (Here/is excellent, g-good, f-fair, p-poor, according to a standard series of photomicrographs.)

The ratings of this first series of specimens are listed in Table IV a.

Due to the small size of the above specimens, another series of samples approximately 1/2" X 1" in size were examined. Results on this second series are listed in Table IV b.

TABLE IV. CLEANLINESS

	#131 <u>11</u>		8 •	ra Garlinago esto da directo		er tille ritte stille skje også segre stil stille risse skje og er tille ritte stille skje også segre still stille risse skje og	
Series	Heat	S.A	.E. Rating(	1)	General	Chevrolet	S • A • l
	110 •	Longth of Longest	Avorago Length of Long Inclusions	ground		Rating (3)	Longth of Longest of
Lancanese	7091	Rot	rated	t des de arthrespe de supe ann a		. F - St. vill Finds in der redeningen destablisses des	28 ^{vdgh}
	7092		6	B+	g+(pipe)	S ₃ O ₇	6vdg
		13vdg	4	C+	f5	S305	13 ^{vdg}
	7094	7 ^{vd} g	3	В	5	S ₂ O ₅	6vdg
Nickel	7095	20vdgh	8	В-	f-	S307	7 ^{vdg}
	7096	8vdC	3	$\Lambda$ -	g (pipo)		gvdg
	7097	Seage.	6	B+	p+(pipe)	S207	13vdg
Mn-Ni	7098	gbv ₈	3	В	5-	S304	26 ^{vdgh}
Cr-Ni	7099	377dg	9	8+	<b>5</b> +	S208	17 ^{vdg}
	7100	Stage	5	3-	p+	8307	9vdg
Or-Ni-Mo	7101	36vdgh	10	B <b>-</b>	p (pipe)	S307	10 ^{vdg}
	7102	$10_{\Lambda  m q} \Omega$	4	13	1+	5 ₂ 0 ₅	Ange
Mn-Cr-Ni-No	7103	42vdr	72	B-	o (pipo)	s ₃ 0 ₈	357dgh
Ni-I	7104	19 ^{vdg}	25	В	f	s ₂ 0 ₆	27vdgh
Mn-Ti	7105	12vd	2	A=	/4 _1	$s_2 o_4$	$10^{\mathrm{vd}}$
Mn-Grainal	7106	Ange	2	3-	·	S ₂ O ₃	7vd
Si-Im-Cr-V	7107	gvdg	$\mathcal{F}^1_{\mathcal{U}}$	3+		\$204	10 ^{vdg}
Si-Un-Or-Grainal	7108	5vd	2	В	5+	S ₂ O ₃	10vdg
lin-Cr-Mo	7109	12vdg	4	В	C-	s ₂ 0 ₅	5vd
lin-lio	7110	$10^{\mathrm{vd}}$	4	B+	(_8 <del></del>	S ₂ O ₄	2 _A q2

⁽¹⁾ vd - vory divided

g - group

p - poor

A, B, C, D rates background from good to bad.

h - very wide and heavy

⁽²⁾ o - excellent g - good f - fair

TABLE IV. CLEANLINESS RATTURS.

1	Chavrolet	13 - 4	Nating	(1)	General	Chevrolet	Remarks
1	Rating (3)	Longth of	Avera-o Longth of Longs Inclusions	Back- ground	(2)	Rating (3)	Nonwy 120
	F to the dark three distriction of the distriction of	28vdgh	9	3+	ŋ+	S ₂ O ₈	u e a a e e e e e e e e e e e e e e e e
( ن	5 ₃ 0 ₇	6vdg	2	A-	er <del>th</del>		Vory clean
•	S ₃ O ₅	13vd5	435	B+	f	\$205	
	S ₂ O ₅	6vdg	2	À	~	S ₂ O ₄	
	S307	7vdg	3];	B+	5-	s ₂ 0 ₅	
c)	S ₂ 0 ₄	8 <b>n</b> gg	4	В	f+(pipe)	S ₈ O ₅	
e )	3207	13vdg	3	A-	ſ	S ₂ 0 ₅	
	S304	26 ^{vdgh}	5	3	p+	s ₂ 0 ₈	Many large inclusions.
	S208	17 ^{vdg}	5	A-	ſ-	5206	
	8307	9vgE	3	B+	î+	S205	
9)	S307	10vdg	5	5+	<b>1</b> +	\$ ₂ 0 ₅	
	S205	yvág	3	C	i	3 ₂ 0 ₅	
o)	5 ₃ 0 ₈	35vd/jh	5]	3+	þ	s ₂ 0 ₈	Several large inclusions
	B-20 ₆	27vdgh	G _N	C+	p	s ₃ 0 ₈	Many large inclusions
	\$204	long	3	Α-	η <b></b>	5204	Very clean; 2 inclusions
	3 ₂ 0 ₃	Jrg	3	C+	f'	S304	
	\$ ₂ 0 ₄	10 ^{vdg}	2	C+	ſ-	\$205	Bad oxide spots in background
	S ₂ O ₃	10vdg	3	3+	f+	S204	Fairly clean
	S ₂ O ₅	5vd	2	Á-	5	S203	16 Short inclusions
	S204	5vdg	3	B+	g	s ₂ 0 ₃	13 short inclusions

excellent good fair poor

⁽³⁾ S - sulphides and inclusions elengated on relling. 0 - oxides and inclusions not elengated on relling.

Both sets of specimens were rated by the Chevrolet Method and the results are listed in the corresponding tables.

#### C. Austenitic Grain Size Inspection:

An examination of the microstructures from the as rolled plates indicated that some of the steels were not particularly fine grained.

specimens from all melts were then heated to the respective quenching temperatures which had been determined for each particular steel, held for 1/2 hour and cooled in air. Examination of the etched samples clearly revealed the grain size due to the formation of a ferrite network around the original sustenite grains. The following steels showed a duplex structure with some grains being abnormally large.

Heat No.	C	Mn	Ni
7091	.45	. 34	************
7092	.46	.85	-
7093	.46	1.17	
7095	. 36	.71	1.93
7104	. Lig	1.58	*****

#### DISCUSSION OF RESULTS

Complete analyses were not run on all heats but results which were run show that most of the steels are within specifications, or are so little out as to cause no concern. Results on the molybdenum steels showed the greatest variation from the specified range. The following tabulation shows those heats which were out of the specification range, how much they are off, and what elements are out of line.

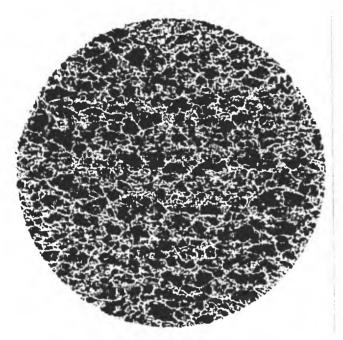
#### Chemical Analysis

Heat Number		ЯС	滑加	<b>%si</b>	%С r	AMO
7094	Intended Actual		1.5/1.8			
7095	Intended Actual			.20/.30 .19		
7101	Intended actual					.20/.30 .39
7102	Intended Actual					·35/·45 ·60
7106	Intended Actual		1.4/1.6			
7107	Intended Actual		1.4/1.6		.90/1.10 1.13	•
7108	Intended Actual	.42/.48 .50	1.4/1.6		.90/1.10	
71.09	Intended Actual		1.4/1.6			.25/.35 .50
7110	Intended Actual				,	•35/•45 •53

The occurrence of an excessive amount of alumina inclusions in some melts, and a tendency toward abnormal grain growth at 1600° F., and below, in others, raises a question as to melting practice. Since no slag was used it is possible that the FeO content of the melts was not uniform from one heat to another and, hence, the addition of aluminum could fail to produce grain size control in some melts and form alumina inclusions of microscopic size in others. Some of these heats are to be repeated and more thought will be given to the melting practice. It may be found advisable in making the larger heats proposed for the second series to pour off a 5 pound ingot separately from the first few heats, roll this

into plate and test the steel for cleanliness and grain growth characteristics before the larger ingots are forged.

In the course of other microscopical examinations, some surface decarburication was noticed. This condition was traced back to the as rolled material and subsequent reheating, even in a lead bath, did not cause enough diffusion to completely climinate the low carbon layer. A new lot of neutral heat treating selt has been obtained and the large plates will be cleaned by sandblasting and heated for the quenching operation in the neutral salt bath.

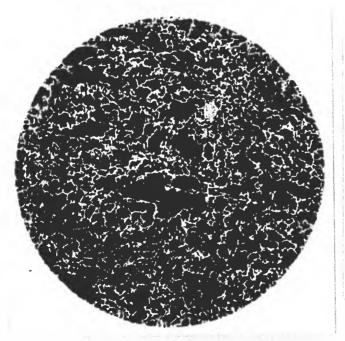

#### FUTURE WORK

The large plates representing the heats listed in this report are being quenched and drawn at present. After these plates have been brought within specified hardness range, they will be shipped to Watertown for ballistic testing and the new melting series will be started. Large ingots are to be made so that more coupon material will be available for the necessary preliminary testing. It is also proposed that the plates be finished thick enough to permit machining both surfaces before the final quenching treatment so as to completely eliminate decarburization.

Definite plans for the changes in the melting practice have not yet been made but the matter will be discussed before the next series of melts is started.

Data from which this report was written are recorded in B.M.I. notebook number 799, pages 3 to 55, inclusive.

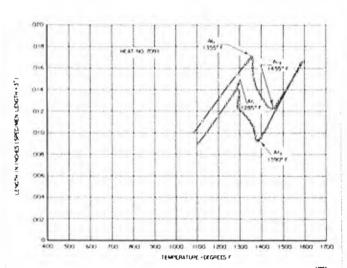
ML3-CHL: DW 9/18/41

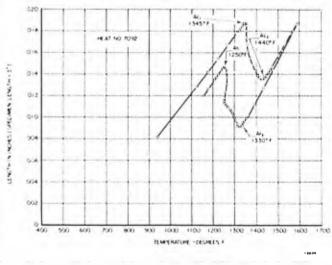



11975

Fig. 4. Heat No. 7091 - Microstructure of the as-rolled plate. X100

Carbon ----- .45% Silicon ---- .20 Manganese ---- .34


Dilatometric curve is shown at right.



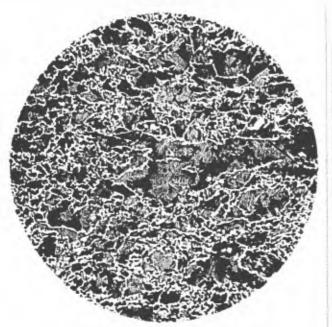


11976

Fig. 5. Heat No. 7092 - Microstructure of the as-rolled plate. X100

Carbon ----- .46% Silicon ---- .24 Manganese ---- .85







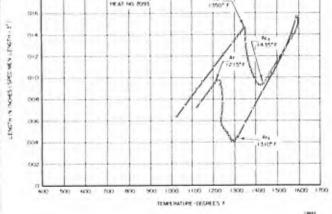
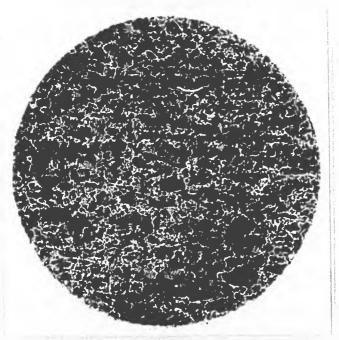
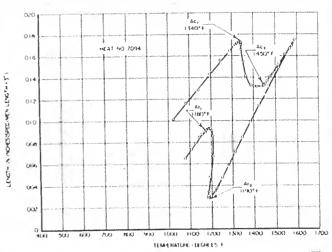
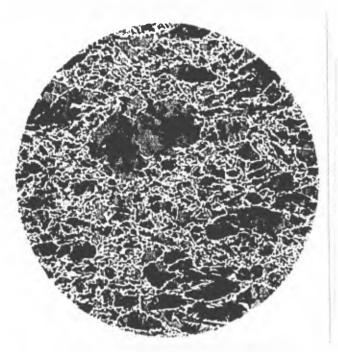





Fig. 6. Heat No. 7093 - Microstructure of the as-rolled plate. X100

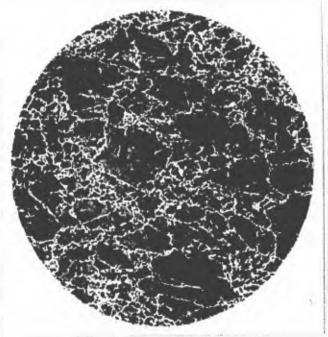
Carbon ----- .46% Silicon ----- .21 Manganese -----1.17






11974

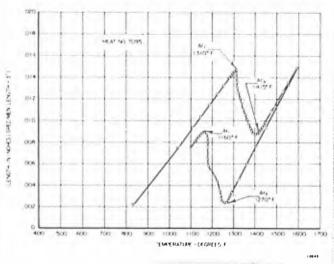
Fig. 7. Heat No. 7094 - Microstructure of the as-rolled plate. X100

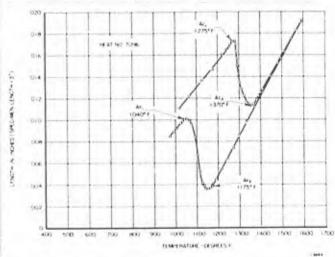

Carbon ---- .48% Silicon--- .26 Manganese---- 1.82



11973

Fig. 8. Heat No. 7095 - Microstructure of the as-rolled plate. X100


Carbon	. 36%
Silicon	.19
Manganese	.71
Nickel	1.93



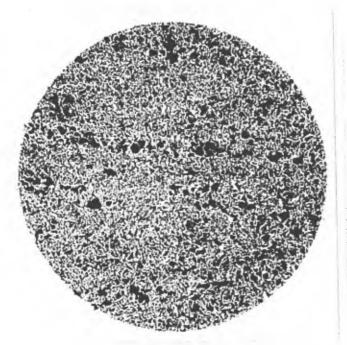
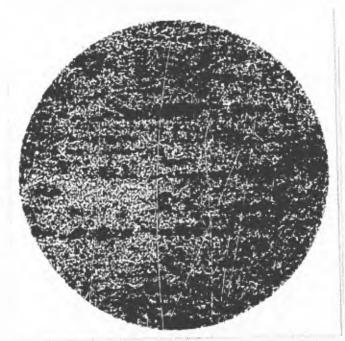


11972

Fig. 9. Heat No. 7096 - Microstructure of the as-rolled plate. X100

che	as-rolled plat	0.
Car	bon	. 37%
Si	licon	. 25
Mai	nganese	.75
	Wal	

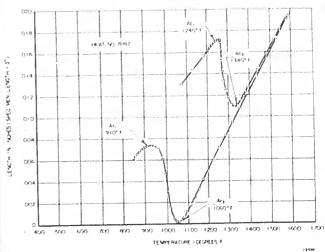


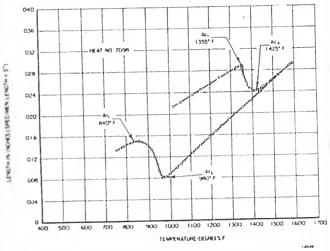





11978

Fig. 10. Heat No. 7097 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.36% Silicon ----- 0.20-0.30 Manganese --- 0.73 Nickel ----- 4.8 -5.2



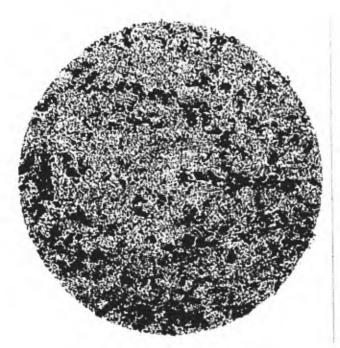


11979

Fig. 11. Heat No. 7098 - Microstructure of the as-rolled plate. X100

Carbon ---- 0.37% Silicon ---- 0.23 Manganese --- 1.18 Nickel ----- 1.8-2.0

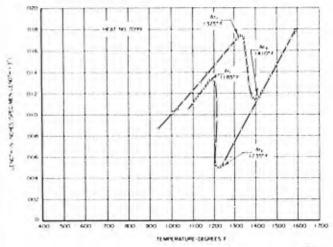


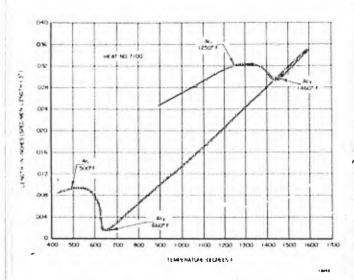


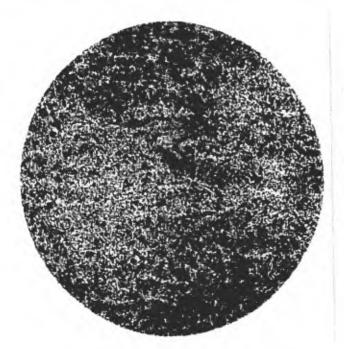


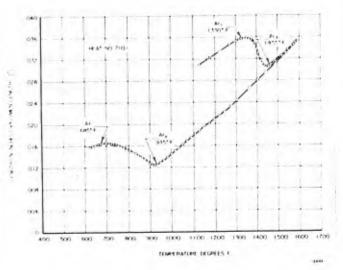
11980

Fig. 12. Heat No. 7099 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.37% Silicon ----- 20-.30 Manganese ---- 0.84 Nickel ----- 1.3-1.6 Chromium ----- 70-.90





11981


Fig. 13. Heat No. 7100 - Microstructure of the as-rolled plate. X100

the as-rolled plate.		X100
Carbon	. 32-	. 38%
Silicon	.20-	. 30
Manganese	•60-	.90
Nickel	3.6 -	3.9
Chromium	2.4 -	2.6



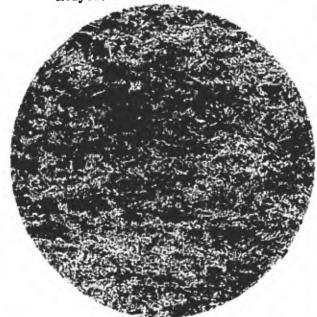


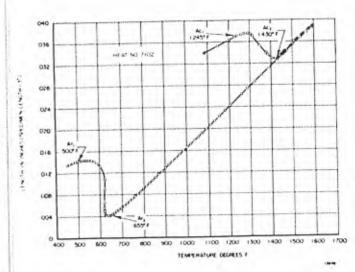




11982

Fig. 14. Heat No. 7101 - Microstructure of the as-rolled plate. X100 Carbon ----- 0.36%

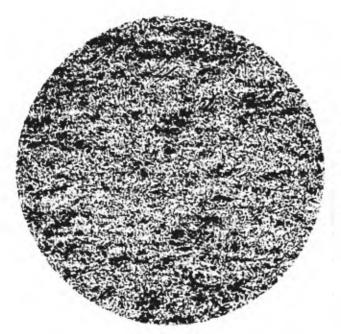

Silicon ----- 0.25


Manganose ---- 0.85

Nickel ----- 1.3-1.6

Chromium ----- 70-.90

Chromium ---- .70-.90 Molybdenum --- .20-.30






11983

Fig. 15. Heat No. 7102 - Microstructure

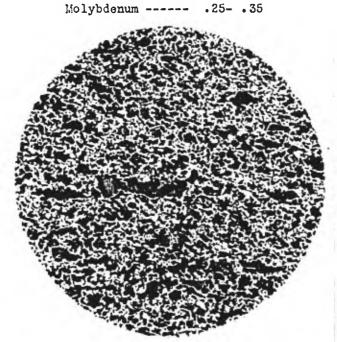
of the as-rolled plate. X100
Carbon ----- 0.38%
Silicon ---- 20-.30
Manganese ---- 0.87
Nickel ----- 3.3 -3.7
Chromium ---- 90-1.10
Molybdenum ---- .35-.45

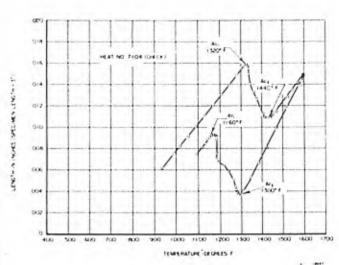




11984

Fig. 16. Heat No. 7103 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.36%


Silicon ----- 0.25

Manganese ---- 1.53

Nickel ----- 1.3 -1.6

Chromium ----- .75- .90

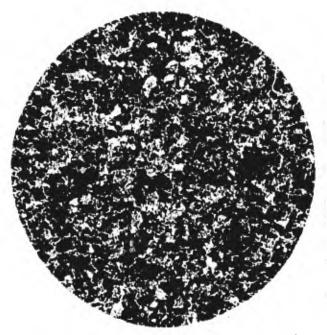


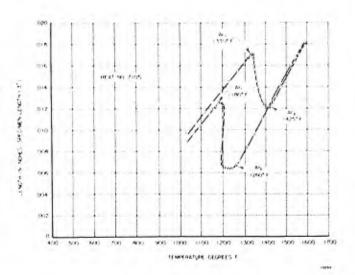


11985

在10.000 A 10.000 A 1

Fig. 17. Heat No. 7104 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.33%


Silicon ----- .20 - .30

Manganese ---- 0.83

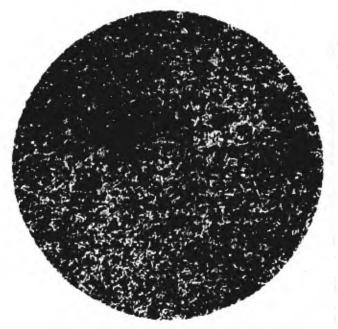
Nickel ----- 1.3 - 1.6

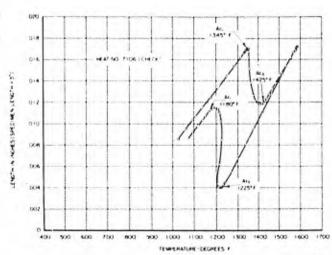
Vanadium ----- .10 - .15





11986


Fig. 18. Heat No. 7105 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.48%

Silicon ---- 0.26

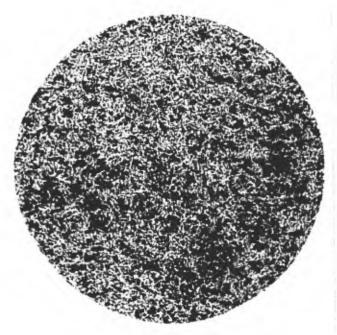
Manganese ---- 1.58

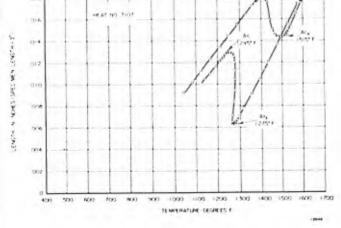
Titanium ---- .10-.20





11987


Fig. 19. Heat No. 7106 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.48%

Silicon ----- .20-.30

Manganese ----- 1.62

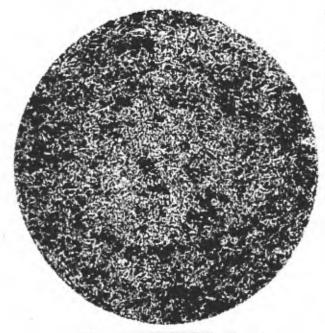
Deoxidized with Grainal





11988

Fig. 20. Heat No. 7107 - Microstructure of the as-rolled plate. X100


Carbon ----- 0.47%

Silicon ---- 0.68

Manganese ---- 1.70

Chromium ---- 90-1.10

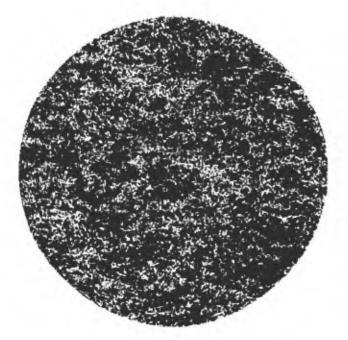
Vanadium ---- 10- .20

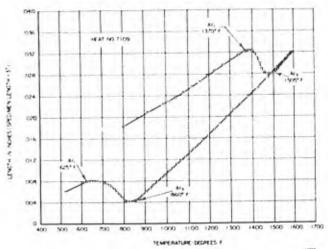


**建设设计划的设置数据** 

11989

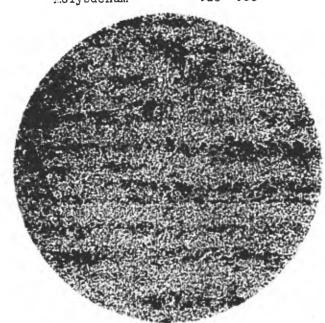
Fig. 21. Heat No. 7108 - Microstructure of the as-rolled plate. X100

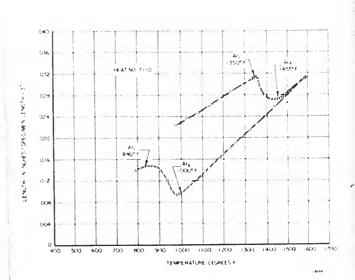

Carbon ------ 0.50%


Silicon ----- 0.69

Manganese ----- 1.62

Chromium ----- .90-1.10


Deoxidized with Grainal






11990

Fig. 22. Heat No. 7109 - Microstructure of the as-rolled plate. X100 Carbon ----- 0.48% Silicon ----- 35-.50 Manganese ---- 1.62 Chromium ----- 90-1.10 Molybdenum ---- 25- .35





11991

Fig. 23.	Heat No. 7110 -	Microst	ucture
	as-rolled plate.		X100
	rbon		
Si	licon	0.24	
Max	nganese	1.57	
	lyhdenum		

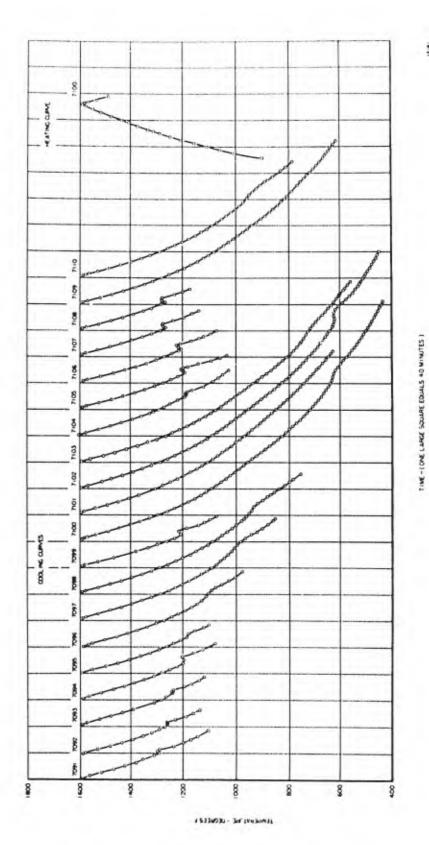



Fig. 24. Time-temperature curves for each dilatometric determination shown in Figures 4 to 23.