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FOREWORD 

V 

This document: contains a description oi a computerized 

strategic war game as developed by funding provided by the 

Martin Marietta Corporation ana the United States Government, 

The document represents work performed during various contracts 

since 1966.  This continuously updated compilation of work done 

under several contract:;, is maintained as new work is performed 

because it provides the most convenient "one-source" document 

for all the various users of A KM. 

During the previous twelve months work lias been conducted 

in several areas relating to this document.  Fundamental modifications 

accomp;ished this year in AFM are described in Chapters IV-L, M, 

T and U. 
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I.  INTRODUCTION 

'j*\s 

During the past several years strategic systems analysts at the Martin 

Marietta Corporation nave been developing a family of system evaluation 

methodologies and applying those methodologies to a wide /ariety of prob- 

lems. These developments have resulted in the arsenal exchange model to 

be described in this paper. The key feature of that model, namely the 

capability to analyze various forms of weapon exchanges between two oppo- 

nents, is a product of the developed realisation that adequate analyses 

must include the two opponents - two arsenals fact of life. 

For example, comparison of the relative strengths of two countries 

must be based on the total resources of each and, of equal importance, on 

their objectives in using those resources. The outcome of an exchange 

is a strong function of which side strikes first and which targets he 

attacks. On the other hand, the outcome is also a function of the total 

target complex to be attacked and the capability of existing systems to 

attain all desired objectives on those targets. Thus, any comparison of 

opponents depends upon a complex interaction between existing arsenal 

characteristics, each opponent's objectives and potential target character- 

istics. 

Development oT  a computerized war game model can take a wide variety 

of forms. The model described in this report is of the expected ^alue 

type.  This approach was chosen because it was felt that a simulation 

model would be self-defeating in the sense that computation time might 

Dreclude analysis of a /ariety of scenarios, arsenals, target character- 

istics and objectives«  Of equal importance was the feeling that ttie 

outcome of an exchange is most dependent upon strategies, objectives, 

&\^i^^ '•".'* *'*  ■'*.'> ÄV-*£-*"-£! '^,J^'j*^JL^J?m^^J£-l*-£m.,'j.^J 



and the nature of all resources engaging in the duel. The nature of simu- 

lations can often make analysis of such factors difficult to implement. 

Such considerations led to a model which uses descriptions of the 

systems and information possessed by two opponents, their objectives in 

the exchange and the industrial resources each is attempting to protect. 

With these inputs the model conducts the exchanges and provides resource 

management in such a way that each opponent maximizes the level of his 

objectives he attains as constrained by his resources and the behavior 

of his opponent. The model is distinguished by its ability to: 

1) Analyze different types and levels of exchanges. 

2) Accept a variety of forms of strike objectives. 

3) Include in the analysis impacts of uncertainties in each 

side's knowledge about his opponent. 

k)    Output measures of the utility of all systems taking part in 

the exchanges. 

To aid in the readers' understanding of the model and its capabil- 

ities, the presentation is in four distinct phases. Presented first is 

a section describing the general concepts involved in the model. This 

acquaints the reader with several key thoughts which are important to 

understanding of the model. This section is followed by a hypothetical, 

but fairly representative, set of examples of different types of analyses 

and results which can be obtained. Next, several mathematical problems 

which turned out to be the key hurdles to be overcome in implementing 

the basic concepts are discussed. Finally, there is a section de- 

-Jnj scribing the method of actually using and interpreting the model. 

This section describes the complete set of input parameters and the 

vW 

fc?k ■*"'*-" ^    *■ laha^j  -■  -   -    '-    ^- j tu ■■■ -1- - *-     '■,?—.%..»..-,•..*-    '. ..*._'. , %,-..•«.     \. ■'..". JJa_^V^-^V_   .   .*■-..    -j-.-iJtJ'-A.'-.'t.   ..*..'. _V .'t'.'.'A'- 



method for manipulating those parameters to obtain any given type of 

result. 
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IT.  THE MODEL 

A.   BASIC ASSUMPTIONS 

Two primary assumptions inherent in the logic of the model are that 

1) A real exchange can be approximated as a sequence of strikes 

alternating between the opponents, and that 

2) All targets can be grouped into force, other military or value 

categories.  (For convenience of presentation all non-force, 

military targets will be considered as belonging to the value 

target list.) 

It is recognized that in a real exchange one side could be striking at 

his opponent while his opponent was striking at him.  As the model was in 

its early stages of development, however, it was felt that a model 

utilizing a definite sequence of strikes would be of considerable aid in \^» 

analyzing arsenal exchanges and possibly could be expanded later to allow 

for such overlapping strikes. 

The major problems in a sequential strike model revolve around the 

choice of appropriate targets for the weapons allocated in any given 

strike.  This problem of force management, or the classical weapon-tc- 

target allocation problem, can be solved mathematically if it is possible 

to place relative values on all targets.  Unfortunately the value of an 

ICBM site relative to a city is not at all obvious.  Our approach to 

solving the force target vs. value target values made the second major 

assumption necessary. 

In the division of all targets into two categories the classical 

definitions are utilized.  A force target is defined to be a point, or 

area which possesses a force which can retaliate against you if it 

survived.  A value target is one which represents in some measurable 

I^ih^iA&fcLfc^iki^ 



../.* fray a portion of the  ii.austrial capacity,  or non-retaliatory military 

capacity of ycur opponent. These definitions allow a potential target to 

be viewed as one which represents an immediate threat to yourself or one 

which represents a longer term, potential threat. 

Given this target classification system it is possible to proceed 

to a system of relative values for all targets, given that certain forms 

of strike objectives can be stated. For example, an acceptable objective 

is one expressed in the form of a relative desirability of minimizing 

damage to yourself (damage limitation) comoared to achieving damage 

against your opponents' industrial and non-retaliatory military capability 

(assured destruction). 

B.  A BASIC SCENARIO 

To clarify these concepts of sequential strikes, strike objectives 

'Bp       and the two special classes of targets, consider a simple exchange which 

is a massive first strike with retaliation.  In this exchange, RED 

prepares the maximum possible portion of his force for a strike on 

BLUE. After the strike, BLUE takes whatever survivors he has left and 

retaliates with them.  (In reality several strikes of diminishing size 

can occur but for our purposes it will be best tc consider only the 

first strike by each side.) 

Such an idealized exchange can be viewed in diagram form as repre- 

sented in Figure 1.  In that figure, the circles represent the two 

target categories for each side, F for force and V for value targets. 

The arrows represent a flow of weapons to the opponents' targets. 

\< 
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RED HUFE 

FIGURE 1:  MASSIVE FIRST STRIKE WITH RETALIATION 

The final result of sucn a two-move exchange is some damage done to 

the value targets, V and Vn,  of each side. The damage done to the forces, 
R B 

F_ of BLUE are reflected in a reduction in the damage which could have 
D 

occurred to V . 

In setting up the first rtrike RED would have to choose between attack- 

ing force and value targets by stating his relative preference for damage 

limitation and assured destruction. RED must then utilize that preference 

in combination with an analysis of the individual targets of BLUE to 

allocate each of his weapons to some target. 

In RED's weapon-to-target allocation he would have to consider the 

fact that not all targets are identical. They vary in their vulnera- 

bilities, tue value targets have variable industrial capacities and the 

force targets have variable retaliation potentialities.  In addition, 

RED will have a mixed arsenal with weapons of varying capabilities. 

.y/J/v-^OSr.'ÄVvlvly^ •■^•Z^'ZvlV->:J^VJ^\ 
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The necessary ingredients for this allocation are a description of 

the capability of overy weapon, e.g. CEP, reliability, yield, and the 

vulnerability of every target, e.g. area, hardness, defense level.  In 

addition, uhe relative industrial capacity, or value, of every value 

target must be specified. Normally these values are based on relative 

populations, manufacturing value added to the economy by that city, or 

some similar measure. 

A basic methodology, which is described in Section IV, was developed 

for this weapon-to-target allocation problem for the general mixed 

arsenal to mixed target system case.  The methodology is based on a 

paper by Everett   in which a generalized Lagrange multiplier technique 

is described. The resultant program can optimally allocate up to 25 

types of weapons against up to 50 classes of targets in 10 to 60 seconds 

on a third generation computer.  In this program all weapons of Identical 

characteristics are grouped into types, e.g. all Minuteman II would be 

a type, and targets of identical, or very similar, characteristics are 

grouped into classes, e.g# all cities of 50,000 to 100,000 might be a 

class. This grouping causes very little loss ir accu-acy and considerably 

shortens computation time. 

A natural by-prcduct of the Lagrange mult..      technique is an out- 

put of the marginal utility, or effectiveness of every system taking part 

in the exchange.  For example, if RED has 5 type I of weapons, the Lagrange 

multipliers indicate how much the damage levels could be changed by RED 

if he possessed one more of any one of the types. 

(1)  Everett, H., "Generalized Lagrange Multiplier Method for Solving 
Problems of Optimum Allocation of Resources." Operations Research. 
Vol. II, pp 399-417, 1963. 



C*  WEAPON HELATIW, VALUES 

Before RED car: allocate hib weapons, it is also necessary for him 

to determine relative /alues for BLUE's forces. Those values must be 

chosen so that the   spon allocation by RED will achieve tue maximum 

measure of the game to RED under the assumption that BLUE utilizes 

all of his surviving forces to maximize damage to RED's value targets. 

To understand now strike ob.iecti.es can lead to relative values ror 

force targei. consider Figure 2. 
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FIGURE POSSIBLE STRATEGIES FOR RED 

In that fi.^ure a family of constant, preference contours is suowr 

These contours are one way of statin/, sow RED views potential inter- 

changes between less surviving value of his own to obtain Lnr 'eased 

damage to BLUE. 
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On any one contour it is hypothesized that RED is indifferent to the 

various situations represented.  For example, if one point on one  contour 

is $2$ damage to RED and 70% to BLUE while another point on the same 

contour represents 65$ to RED and ohfy  to BLUE it means that both situations 

are equally acceptable to RED.  However, another contour, generally 

assumed to be up and to the left on Figure 2 would represent a separate 

set of situations which are all more desirable to RED. 

A key characteristic of any contour is its slope at a riven point. 

The slope indicates, for that region, the acceptable exchange rate 

between additional damage to RED and additional damage to BLUE.  If the 

slopes, or value exchange ratio, of all the contours were one it would 

simply say that RED would be indifferent to accepting 1$ more damage in 

exchange for 1$ increased, damage to BLUE. 

Also indicated is t^e envelope of the maximum possible assured 

destruction level for achievable damage limitation levels« The exact 

location of this curve is a function of all the characteristics of the 

arsenals and targets and the allocations of those arsenals. The tangent 

point between that curve and one member of the preference contours is 

the best attainable result for RED given a fixed arsenal and given the 

stated preference contours. 

The problem is to perform all resource management in such a manner 

that the specific strategies required to arrive at the tangent point are 

determined. One approach to this problem is to develop a number of 

points on  the max A.D. envelope one point at a time.  Given enough 

points on the curve, any set of preference contours can be matched to 

the total curve to arrive at the desired solution, or tangency point. 

^^gia^^ - 
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Development of any s.'n^le point on the Max A.D. envelope can be obtained 

by assuming some slope, K of interest and u;-in,; the relative values Vov 

force targets as the mechanism for obtaining the desired strategies that. 

will achieve the poin". on ',.;;■• envelope with that slope. 

in this process, which is described in more detail in Section IV, 

initial estimates for relative /allies Tor BLUE's forces are made.  Given 

those values, that set of weapon-to-tar*et allocations which maximizes 

the sum of the value destroyed on all targets (force and .alue) is found. 

This results in certain surviving weapons for BLUE which he can use to 

maximize value destroyed on RED. 

YCLQ  La;;rari/se multiplier method is used in the allocation of BLUE's 

survivors so that the marginal utility of each of his weapon types is 

available.  A logical next set of estimates for a relative value for 

BLUE's forces can be shown to be those marginal utilities multiplied by 

K. The K weitfhtinj'; factor is the direct tie to the slope of the 

preference contours. 

This specific choice for a weapon relative value can be visualized 

as the expected reduction in RED's payoff If BLUE has one more °'.r/iving 

weapon. Thus, when a new attempt is made by RED to optimize his attack, 

the choice between attacking force or value targets can be based on the 

expected increase in RED's payoff if he can reduce BLUE's surviving 

weapons.  The optimum balance between force and value attacks, as biased 

by In? [.reference ratio K, is that Level where additional counterforce 

attacks results in Less RED value saved than the additional BLUE value 

which could be destroyed by the same weapons.  Any individual RED 

weapon will attack a value target if the BLUE /alue it can destroy is 

-c~* 
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more than K times the value which could be saved if a BLUE force target 

was attacked. 

Experience has shown that judicious use of the original value 

estimate set and cycling through the improved estimates for the marginal 

utility of BLUE's weapons will result in optimal, or near optimal force 

management. Mathematical proof that global optima are not overlooked 

occasionally is not available. 

D.  OTHER EXCHANGE TYPES 

The model is designed to handle a number of other exchange types. 

For example, RED might desire to attack only counterforce targets in a 

first strike while maintaining a reserve force to deter BLUE from con- 

tinuing the exchange. In this type of exchange RED must not only 

allocate we°^ is-to-targets but must also decide which weapons to hold 

in reserve. 

The conflict in this strategy is that it would be desirable to use 

a high portion of the force in a first strike in an attempt to seriously 

weaken BLUE's forces but it is also desirable to maintain an adequate 

reserve level. Assuming that BLUE's exact response could never be pre- 

dicted, that response which imposes the maximum requirements on tje 

reserve force can be assumed for the purpose of resolving the conflict. 

It is desirable then to choose that reserve force for RED which presents 

the maximum possible deterrence to BLUE against retaliating against RED's 

value targets. Thus, for the purpose of choosing the best reserve, the 

nature of the exchange after his first strike is assumed by RED to be 

as diagrammed in Figure 3« 

sx-:^vv/^-^^ 
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RED BLUE 

FIGURE 3:  COUNTERPORCE FIRST STRIKE 

>. 

Given that RED assumes the exchange might turn out as indicated In 

Figure 3> it is necessary to determine, for RED, that reserve force which 

maximizes the value of trie game as measured by iiis preferences. The 

same techniques as were described previously are used in making all 

weapon-to-target allocations, and setting /aiues on weapons.  In this 

case both BLUE and RED must determine such values.  (The optimum reserve 

force is determined by a method which is unimportant to the current 

discussion so it is only described in detail In Section IV.) 

After RED has chosen a reserve and carried out a strike, BLUE can 

retaliate as indicated in P'igure 3 or  with a pure counterforce strike of 

his own.  In the latter case BLUE would then have to choose a reserve 

force.  Reversal of the roles indicated in Figure 3 would then occur and 

BLUE would use a similar logic in picking his reserve force. The model 

has the capability to analyze any number of such counterforce strikes. 

At each stage the optimum reserve is chosen based on  the assumption 

tnat the next retaliation might be against both force and value targets. 

An aaditional type of exchange the model can consider is described 

in Figure ';. 
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RED BLUE 

FIGURE k:     FIRST STRIKE WITH A RESIDUAL 

This exchange is a more realistic version of that in Figure 1 in 

the cense that residual weapons possessed by RED are allowed to exist and 

be targeted. 

The major problem in this scenario is planning the countervalue 

portion of RED's first strike in such a way that he destroys a maximum 

amount of BLUE industrial value with the combination of his first and 

second strikes on BLUE value targets. Tiie methodology for accomplishing 

this aspect of this .-.cenario is described in Section IV. 

E.  IMPACT OF UNCERTAINTIES 

The sequential strike concept can be utilized to go considerably 

beyond the simple exchanges just discussed.  For exampls, the flexibility 

exists to analyze the impact of uncertainties.  In essence, when one 

opponent is setting up a strike h3 must base that strike on his current 

information concerning his status, the status of his opponent and an 

estimate of how his opponent might retaliate.  Once that strike has been 

launched, the play in the duel passes to his opponent and tue opponent 

has the same task facing him.  In addition, if the stride was set up 

">>*     based on only partially correct information, or assumptions, there can 

.1 »w V \- » - .  ".- V - V \« V  V V " V \- V \-  -  V 7> *.- W V V W"" ""*> * - - • -\»"-«% % ►"' •"• •'" ."- ."> 



14 

be a difference between the intended and actual effect of the strike. 

This concept that a strike is set up based on an estimated situation, 

but that the actual effect can be different than the intended effect gives 

the power to the sequential strike method. For example, assume that all 

elements engaging in an exchange are continually described by three 

different descriptions which cover: 

1) Actual characteristics and status of forces and targets, 

2) Characteristics and status of forces and targets as estimated by 

the owner of those elements, and 

3) Characteristics and status of forces and targets as estimated by 

the opponent of the actual owner of those elements. 

For an example of the three types of characteristic , consider a hypothetical 

ICBM that RED might possess. It might have an actual CEP of 1 n.mi., 

reliability of .75 and yield of 7-6 MT. But, since no testing program is 

perfect, RED's estimate of those characteristics might be .6, .00 and 7*0. 

At the same time, BLUE might be basing his estima* '  minimum intelligence 

data and think the characteristics are .6, ,85 anu 

Use of the sequential nature of the program to allow analysis of un- 

certainties has been implemented in some detail. The procedures use the above 

described three sets of characteristics for each opponent. The utilization 

of these three independent sets of parameters then is as follows. 

In the previously described types of exchanges, RED's first strike 

would be based on his estimate of his own situation and his estimate of 

what BLUE's situation is. Then, before BLUE responds a computation is 

made, by the model, of the actual damage RED's strike did to BLUE 

utilizing the actual characteristics, which neither side might know. 

-feVj-.V^j''-/.' ■>'-..»VJ*'-»'? »\/-L«'■.»>■«'.•■,*? jk/ijtJ'^j^^ '-/"».a''.»^ 



15 

BLUE's response would then be- based on his estimate of the situation and 

his actual surviving resources. The sequence of strikes can continue, always 

basing weapon-to-taryet allocations on estimated characteristics and 

basing responses on actual damage done to the opponent and on the 

opponent's estimate of the current situation. 

In order Lo diagram such a case assume that each opponent knows his 

own status perfectly and that the scenario to be studied is like that 

in Figure 3« The sequence can be visualized as in Figure % 

RED BLUE 

B 
ACTUAL 

FIGURE COUIvTERFORCE STRIKE USING ESTIMATES 

In Figure $  the squares indicate actual characteristics and the circles 

estimated characteristics.  It shows RED setting up a first strike based 

on an estimate for F . The wavy line then indicates that the strike will 

have some effect on Fg actual.  BLUE then would set up a retaliation based 

on estimates. Note, especially that BLUE would have to estimate RED's 

reserve.  Finally, RED performs his second strike based on his actual sur- 

vivors from BLUE's attack and nis estimate of V~.  At the completion of 

k;&;;y:y^-:vN-:;:^^ . 



such a sequence there wilJ be Home actual df age levels accepted by each ••• 

^j        side. The question is - how would those differ if either side had a 

.'/,        better estimate of his opponent? 

By Uv,ili?Jnc; Lhe three different sets of descriptions for all elements 

B        in the model it is possible to study almost any conceivable topic con- 

•1*'        cerned with optimum force management.  For trample, some items are as 

>'/        follows: 

I! l) What is it worth to know your own weapon characteristics perfectly? 

!•/. 2)    What impact does it make to not know the exact characteristics of 

»}S your opponents weapons? 

H 3) What is the penalty for not realizing that your opponent has an 

W effective A3W system? 

C\ k)    What is a system capable of detecting the vacated bases (empty 

fj holes) of your opponent worth? VT* 

5) What is the effect of the objectives of each opponent not being 

diametrically opposed? 

W By appropriate control of the three basic sets of data it is possible to 

!v        investigate the case of launching at an opponent and having him vacating 

*?j bases while your weapons are in-flight.  It is also possible to investigate 

H        the effect of numerous small exchanges rather than a few massive ones 

with each opponent's viewpoints and objectives changing during the strikes. 

JS5        The only limitation is that all objectives be relatable in some way to 

P|        a relative preference between damage limitation and assured destruction. 
A, 
W F.  CHOICE OF PREFERENCE CONTOURS 

A A key element of this model is the set of preference contours for 

r~»        each opponent. Unfortunately, a universally acceptable set of  contours ^_ 

f jj "■-•"■ 

A        is not available now and likely never will be. To overcome this problem 



a number of concepts have been considered before arriving at the one 

normally used and to be described in tnis paper. 

Considerable logic for choosing various contour families is possible 

but most of them involve tvo key thoughts. First, each opponent tends 

to want to minimize damage to himself, but given obvious limits on  that 

it is reasonable to maximize the difference between the damage to his 

opponent and the damage to himself.  Second, there is usually a realiza- 

tion that once an opponent is destroyed to some reasonaole level it is 

rather foolish to continue destruction on  him since he is already an 

ineffective power. 

Combining these two concepts leads to the contour family depicted 

in Figure 6. 

Shown in Figure 6 is a set of parallel contours with a distinct 

change from a slope value of one to an infinite slope at some fixed level 

of damage to BLUE for any level of damage to RED.  In effect, this set 

of contours results in maximizing the arithmetic difference between the 

damage levels of two opponents with some upper limit placed on the 

allowed damage to your opponent. 

Lv^friylY^;:^^ 
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FIGURE 6:  PREFERENCE CONTOURS 
*& 

Application of such a set of contours develops weapon allocations that 

are very rational.  It has been found that use of a max desired assured 

destruction level eliminates the situations where both sides get destroyed 

to an extremely high level. Also, the final solution does not appear to 

be /ery sensitive to the unity slope assumption. Generally the max A.D. 

curve is rather steep so that use of other slopes, e.g. 2 does not shift 

the tangent point ver\ much vertically. 

Indicated on Figure 6 c.re two max A.D. envelopes.  If envelope A 

existed, the optimum point would occur at the point on the envelope with 

slope equal to one.  If B existed, tiie optimum point would occur at the 

point on the en.elope with damage to BLUE equal to the maximum desired by 

RED. Given any set of initial arsenals the model can determine such 

optimum solutions in one run. 

' - v" SVVILY jXvlvlv 
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Of course, if this simplified contour family is not, acceptable, tin 

program can be used to develop the max £.1). envelope a ooint at a time 

so that any contour family can be matched tu the envelope.  In essence, 

the true capability of the program is reflected in the fact that it 

can perform the force management function so tnat for any attainable 

damage to an opponent a minimum damage occurs to yourself. 

ZsX^&±\^\^%^^^^^^^ 
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III.  TYPICAL MODEL APPLICATIONS 

To demonstrate the form ol typical results o- ained from the model a 

number of topics will be Investigated concerning hypothetical PEL and BLUE 

opponents. The arsenals or" each and all characteristics necessary to the 

running of the model are described in Tables I & II. The industrial 

target complexes are described in Tables III & IV. The target /alues 

in Tables III & IV are arbitrary but they do pa.. üllel those which could 

be based on rein.live population or some typical measure of .ralue.  In 

addition, it will be assumed that each side launches l,)0$ of all bombers 

on warning. Also, that trie availability numbers, which are the fraction 

of tne force considered to be ready for launch, include such items as the 

on-station fraction for submarines.  It will be assumed that all bombers 

have a probability o?  o of penetrating perimeter defenses of his opponent. 

(Mere sophisticated bomber and missile defense assumptions could be made 

but they would r.ot add significantly to the understanding of the concept 

of tiie model. ) 

TABLE 1:  RED ARSENAL CHARACTERISTICS 

SYSTEM TYPE NUMBER 

I ICBM 
200 PSI 
BASE 

Ö0O 

IT ICBM 
100 PSI 
BASE 

200 

III 3LBM 
20 SUBS 

200 

IV B0M3ER 
20 BASES 

200 

RELIABILITY    AVAILABILITY    CEP    PAYL0AD 

•y -7 .5     5. MT 

.ö .6 

.6 

• 9 

i. 

i. 

2% 

.25   10. 

i ^^-VJy^iiJ^A^v:/>, j-Av'^'a ^^L^Ü&A . ^:jr:*l\<'j-^*~£-Ä.'£*-<*j.'*£2&mAMj';s-''^ '1*JLULUL±\ JVV. 
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TABLE 2:  BUTE ARSENAL CHARACTERISTICS 

SYSTEM TYPE NUMBER RELIABILITY AVAILABILITY CEP PAYLOAD 

A ICBM 
500 PSI 
BASE 

650 •9 .8 0.4 2. MT 

B ICBM 
100 PSI 
BASE 

250 .8 •7 0.6 10. MT 

C SLBM 
30 SUBS 

300 .8 O 1.0 2. MT 

D BOMBER 
40 BASES 

400 • 95 .8 .25 10. MT 

TABLE 3: RED INDUSTRIAL CHARACTERISTICS 

>IUMBER VALUE CUMULATIVE 
J\SS IN CLASS OF EACH 

MEMBER 
VALUE AREA 

1 1 14.0 14 300 Sq. N. Mi 

2 3 8.0 38 171 

3 9 5.0 83 107 

4 27 3.0 164 64 

5 81 2.0 326 ^3 

6 243 1.2 618 26 

7 b3o .71 1000 IS 

TOTAL 900 

l&£i^£iL^^ L_* -i _'JLV *.*»- *•-*>./>■»* * j. 
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TABLE 4:     BLUE  INDUSTRIAL CHARACTERISTICS 

NUMBER VAIUE CUMULATIVE 
ASS n  CLASS OK EACH 

MEMBER 
VALUE AREA 

1 1 24,0 24 1000 Sq. I :. Mi 

2 '1 18.0 DO 430 

3 4 12.0 108 290 

1+ 8 9.0 160 216 

5 lo 6.0 276 144 

6 12 4.0 404 96 

7 64 2.5 564 60 

8 128 1.5 756 3b 

y 244 1.0 1000 24 

TOTAL   500 

A.  ASSURED DESTRUCTION VS. DAMAGE LIMITATION 

For the given arsenals the exchange type depicted in Figure 1 was 

analyzed. The resultant max assured destruction envelope is given in Figure 

7.  Several noints should be noted concerning this result.  First, note 

the relatively rapid rine in BLUE dajnage as RED's damage level increases. 

This has been found to be verv typical v/hen missile defense does not 

exist.  Second, the intercept at a RED damage level of S4^> represents 

the damage which BLUE can do even if RED attacks pure counterforce. 

Third, the strategy which results if RED desires to maximize the differ- 

ence between BLUE and RED damage achieves 87»3$ damage on BLUE and 70.8$ 

damage on RED. 

fe^jüik/a^xa^^ v.*. 
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FIGURE 7:  ASSURED DESTRUCTION vs. DAMAGE LIMITATION 
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If RED dcoirc.i   to maximize tue difference without exceeding 70$ 

damage  to BLUE  r,he - u'*■! r.-r;■" .-; I.tuor: tion of his available weapons are ru 

shown  in Table   •.    The   firiaL  result of  tnese  allocations,   after BLUE 

optimally allocate^.-  his  expected   survivors   is  "JOp dame re   to BLUE and 

62.8$ damage tu RED. 

TABIiE  v:     EXAMPLE OF RED WEAPON ALLOCATIONS 

BUTE TARGET TCTA 
CATEGORY mm 

WPN TYPE A 650 

B 2 so 

C 30 

D no 

CITY TYPE 1 1 

EXPECTED        NUMBER 
ER      SURVIVORS      ATTACKED 

NUMBER OF RED WEAPONS PER TARGET 

WPN  I       WPN II       WPN III       WPK   TV 

16 

*.'.' 
>'.' 

•/-' 

w 

12U 

1+1.23 

}0.0 

L.75 

.03 

.07 

.42 

J+2 

L.87 

4.'/L 

12.76 

31.01 

L7L>. 90 

71 

250 

0 

ko 

1 

2 

'I 

Ö 

l6 

lb 

lb 

3o 

2S 

1 

12o 

60 

40 

1 

1 

0 

0 

0 

Ü 

0 

0 

0 

0 

0 

0 

2 

1 

I 

1 

0 

0 

0 

0 

0 

10 

5 

3 

3 

2 

0 

2 

0 

0 

0 

0 

0 

0 

u 

0 

0 

2 

0 

ü 

0 

0 

Ü 

0 

0 

0 

0 

Ü 

0 

0 

1 

0 

0 

0 

0 

0 

Ü 

0 

0 

0 

'! 

0 

3 

0 

?. 

0 

0 

0 

2fcM»£ü&£&^^ 



*.y-        RED allocated almost exactly one-half of hjs available, non-bonher war- 

heads to the counterforce role.  In this illocation all bomb- rs wore arbi- 

trarily restricted from tue counterforce role because of the problor-i or' 

strike timing• 

B.  SYSTEM COMPARISONS 

To demonstrate the problems associated with performing sysLem evalua- 

tions without a two-sided, game the results oC  this case were compared with 

an alternate approach.  Included in Table 6 are the results of that com- 

parison. 

The various measures of effectiveness cnosen for '- D  weapons are 

those suggested by weapons effects theory and alternates which play down 

tne effect of CEF or yield. The alternates were chosen .since it might be 

suspected that in certain targets those characteristics would nave a 

^"^    lesser effect. 

Also included is the weapon relative value as obtained from this model. 

They are based on the Lag ange multipliers obtained when the RED weapons 

were optimally allocated. The multipliers represent trie marginal utility 

of each weapon so they do describe the true effectiveness of the next 

additional weapon of each type. 

TABLE 6:  COMPARISON OF MEASURES OF EFFECTIVENESS 

WEAPON    RELATIVE SYSTEM VALUE FOR GIVEN MEASURE 0\^  EFFECTIVETTOS* 
TYPE -      p/-a      '-' /? 1 /'-{ j / •' 

LAGRAIIGE     R.Y2-3  £;_£__   R-*~'   R-Y     H.Y '    R^Y 
MTLTIPLIERS  CRp?    CE1 CEP     CK1 

I 1. 1.      L.       1.      L.       L.      1. 

II 1.26        .65    L.'jO     2.60   \.'->z .76    2.22 

•jr?.     [II     .6n      .08    ,ir;     .3(3   .:?    .;:)-;    .o1' 

LV      .H-i     3.17   \.'/j :vj .r,<    i.2'> 

* R  ..--:-K-- r^li-ft," Lit;/ Y  .:--^vu    ■/i-.• L-J 
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It can he seen that none of  the simple measures duplicate the multi- 

plier result. The reason n.o one measure is adequate is that different 

weapons would be optimally allocated against different targets so that 

no single weapons effect parameter i.s equally dominant In all cases. 

For example, in this case additional weapons of Type I would be 

used in a counterforce role against a hardened target wh*»re CEP Ls im- 

portant while additional weapons of Type III would be user! against a 

value target where CEP is much less important. This use would release 

some other weapon for use against a force target. Thus, purchase of 

one weapon can feasibly affect the use of many other weapons. 

Of equal interest is the case where BLUE is doing a system com- 

parison.  His problem is like that of RED but compounded by the necessity 

to estimate the survivability of his weapons.  In this case, Table S 

indicates additional weapons of Types A and C would not be attacked but 

those of Types B & D likely would be.  If a different RED arsenal was 

to be assumed, these conclusions could be changed.  In any case, the 

probability of survival of any additional weapon can be determined by use 

of the exchange model. 

Table 7 describes the set of relative values for all BLUE weapons. 

Included is a set based on the multipliers alone and 8 set which factors 

in survivability as indicated by the model.  Note how the values of 

Systems B & D degrade when survivability is included.  As RED increases 

his arsenals, those values do change.  For example, if RED increases his 

numbers of Type I from HOO to 2000, the relative values are as shown. 

As the 2000 level is approached, the submarine-based missiles begin to 

dominate because of their assumed Invulnerability. 
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TABLE 7:     BLUE SYSTEM VALUES 

WEAPON 
TYPE MULTIP 

MULTIPLIERS 
BOO 

A 1.00 1.00 

B 1.2b .78 

C • 95 • 95 

D .57 A7 

MULTIPLIERS      SURVIVABILITY  AT SIVEK RED  FORCE LEVEL 

L200 

.1 .00 

.70 

Ai 

LbOO 

1.00 

.70 

2000 

1.00 

.66 

1.26 

T? 

C. OTHER SCENARIOS 

As examples of the model application to another scenario, a case similar 

to that described by Figure 3 was analyzed. The only difference is that a 

BLUE first strike was assumed. 

In the BLUE pure counterforce first strike, the preferred strategy 

for BLUE was 220 weapons of Type A allocated one to each of RED's Types 

II and IV. The final damage levels resulting were 83.6$ to BLUE and 62.7$ 

to RED. As an example of an alternate strategy for BLUE, he could allo- 

cate 49O weapons of Type A, which results in a damage level of 73$ to 

BLUE and ky/o  to RED. Notice that this latter strategy does not achieve 

as large a difference between RED and BLUE damage as the preferred 

strategy does. 

D. ANALYSIS OF UNCERTAINTIES 

One of the most vital questions in a model of this type is that of 

uncertainties in assumptions.  In a broader sense, this can be equated 

to the effect of uncertainties, which will always exist, in estimating 

the current situation of yourself and your opponent. 

1 .*- t.-_a h v-. r »»--*-*■--* - »■- ■* 
._'<u'-*.fO 
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Some topics of this nature have been investigated to demonstrate 

the application of this model to such questions.  Among those to be dis- 

cussed here are the following: 

1) Is it better to underestimate or overestimate capabilities? 

2) Is Information concerning your opponent's characteristics worth 

as much as information concerning yourself? 

3) What is the relative payoff between additional offense and 

better information? 

This analysis will be based on the hypothetical arsenals, but the general 

form of the conclusions is believed to be valid elsewhere. 

As an example of the underestimate/overestimate question, the 

reliability of RED weapons was investigated. The assumed scenario is 

like Figure 1. The assumed objective for RED is to maximize the differ- 

ence in damage levels but not to exceed 70$ damage on BLUE. The cases 

considered are described in Table 8. 

TABLE 8:  EFFECT OF ERRORS IN RELIABILITY ESTIMATES 

fcM 

CASE 

ACTUAL 
RELIABILITIES 
FOR WEAPONS 
I,II,III,IV* 

RELIABILITIES 
AS ESTIMATED 

BY RED 

FINAL DAMAGE 
LEVELS 

BLUE     RED GAME VALUE 

I • 9,.0,.8, .4S .9,.8,.8,,45 70$ 62.&H 7.2 

II .9,.8,.8,.k5 .7, .6, .6, .25 83.2$ 13.1$ -3.7 

III .7,.6,.6,.25 .7,.6,.6,,25 70$ 7^.3* -4.3 

IV .7,.6,.6,.25 .9, .8, .8,^5 bo.fy 66.3* -I5.7 

♦Bomber reliability includes the probability of penetration of perimeter 
defenses. 

The effect of poor reliability estimates is very dramatic.  For 

example, in comparing cases III and IV, the difference is caused purely 

IA\^/^V^0V>^^^ -Vy; 
,£^J^*:.»^ 
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by RED's not knowing his own reliability.  In Case III, lie knows they are 

low and allocates accordingly.  In Case IV, lie thinks they arc high and 

consequently mis-allocates but the damage is accrued according to his 

actual reliability.  The net effect is about 20$ less damage to BLUE 

and 8$ less damage to RED.  In terms of the stated RED criteria, Case 

III has a value of '{0  - "(k.3 - -4.3 while Case IV nas a value of '>0.o - 

66.3 - -15»7• Thus, the error caused a large drop in the criteria. 

The effect of an underestimate can be observed in Cases I and II. 

Again, all differences are due to mis-allocation of weapons resulting 

because RED's knowledge of his own reliability was net perfect. The 

interesting thing is that an underestimate tends to result in excessive 

damage to both sides while the overestimate tends to reduce damage to 

both sides. 

If the value of the game is computed according to "maximize the differ- 

ence but no value is achieved for damage exceeding 70$ to BLUE," Case IV 

is the worst situation. But the true loss due to an underestimate is the 

difference between Cases I and II while the loss due to an overestimate 

is the difference between Cases III and IV. Thus, the underestimate 

caused a change of 10.9 units while the overestimate caused a change of 

11.I* units. The two losses are so close that it raises a question as 

to the advisability of planning an actual strike using all conservative 

estimates. An additional factor is that this analysis indicates that 

overestimates might tend to reduce damage levels. 

Comparison of Cases II and III raises a very interesting point. 

They show that, if no value is accorded excess damage to BLUE, thinking 

your reliability is low (Case II) when it is high produces only slightly 

better results than when it actually is low (Case III), 

^d^^ii.^ 
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A case was also run where RED overestimated his own yield by about 

33$. The net results were damage levels of o2.3% to RED and b2%  to 

BLUE. Compared to the perfect information case of 02.0$ and 70$, the 

big loss is in damage to r3RiL. 

To place the value of ^ood reliability information in proper 

perspective, consider the number of additional weapons which must be 

purchased to make up for the imperfect information.  In the case of 

RED underestimating his own reliability, case II, an analysis using 

additional model runs showed that it would require almost 400 additions^ 

Type I weapons to achieve the same damage level as the perfect reliability 

information case. This suggests that considerable testing expenditures 

might be warranted. 

In contrast to the results presented in Table 8, poor estimates by 

RED of BLUE force characteristics did not alter the basic results.  For 

example, an estimate by RED of a 500 psi hardness for BLUE Type II, when 

it was actually 100 psi, did not make RED allocations nonoptimum. This 

same effect holds true in the case of misestimating reliability and yield. 

Cases were run where RED misestimated BLUE reliabilities and yields by 

about the same amounts as described in Table 8.  In all cases no non- 

optimum allocations resulted. 

E.  VALUE OF INFORMATION 

An interesting circumstance is where one opponent has some bit of 

information which can aid in his resource management.  One example is 

information cor.cernin.; whether or not a weapon had a successful flight. 

Another example is the possession of information about which enemy bases 

have been vacated. 

/i 

"-•Cv/•»V'"yv "»'T^"V V V '•" W V "**V v v .• V V V v' • ,• .• v '.-  - .• *.*".- ■„- v v v ■„■"*- v .• * V ,* *,"'v     -' •" ■ * 
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The possession of BLUE empty hole information was analyzed for the 

case of RED first strike CF/CV where he has a residual force of 2yjo  (the 

scenario described by Figure k).    To obtain a basis for comparison, the 

scenario was run twice, once where? BLUE did not have e,npty hole informa- 

tion and once v/here he did h ve the information. The results indicated 

that BLUE could not use tue information to reduce his own damage below 

70$. The 2%  residual assumed for RED was not sufficiently large to 

attract BLUE weapons. This type of information has not been analyzed 

extensively enough to knov whether or not the same would be true in a 

real world arsenal. 

A case of RED first strike CF/CV where RED has flight success in- 

formation was analyzed. The net effect was a drop in RED damage from 

62.0$ to Sü.H. To calibrate the value of this information, the results 

of the run indicated that it would take approximately 280 additional 

RED Type I weapons to achieve this same reduction in damage if the in- 

formation did not exist. 

^'^vlv^/if.v*.y*j!ffcA»j\. ^^/^: «^•«V«V* .•«V?!t'rVÜ>Al>jL''j>jNA'i!*j. A-^-'VIVLV^ V- A!*V^^jf<jfw.fo ^v^^^NAiiWL' 
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IV.  KFY MATHEMATICAL ANALYSE? 

In the course of Implementing the concepts involve«, in this model, sev- 

eral key mathematical, prob 1 ems had to be solved. They Involved the develop- 

ment of: 

1) A methodology for optimum allocation of a mixed weapon force to a 

mixed set of targets. 

2) A generalized routine for producing target probability of kill for 

a given attack level of a given type of weapon. This routine must 

function for area or point targets, defended and undefended targets 

and weapons of any characteristics. 

3) A method for choosing values to place on counterforce targets so 

that the optimum allocation of weapons results In a maximization 

of larger c bjectlves, e.g. maximize the difference in industrial 

damage to your opponent and industrial damage to yourself. 

k)    A method tor choosing the optimum reserve force when the chosen 

scenario is a pure counterforce first strike. 

5) A method for optimizing a strike when there is a maximum allowed 

industrial damage to an opponent. 

6) A logical method for allocating countervalue weapons in a first, 

strike when there will be a later opportunity to fire at those 

same targets, 

7) . A representation of random area defenses for both aircraft and 

missiles. 

6) A method of analysis of an area ABM defense when the defense can 

preferentially defend his targets after he sees the offensive 

strike. 
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9)  Approximate methods of analysis for the circumstance where the 

offense and ABM defense must make plans and deployments without 

knowing their opponents plans,  (Called a pre-commit defense,) 

10) A force structuring methodology for optimal distribution of " 

budget among a specified set of offensive and defensive options, 

11) A technique lor optimal deployment of a terminal ABM interceptor 

budget to individual value targets so that the offense damage 

is minimized.  Included within the routine is the capability to 

allow for fixed investment costs and discrete battery sizes, 

12) A sub tractive ABM defense model, 

13) An analysis method for dealing with weapon retargeting limits, 

14) A method for dealing with weapon retargeting limits, 

15) A mathematical procedure for generation of hedged allocations. 

16) An allocation procedure for use against a list of rank-ordered 

targets, 

17) A weapon defense module (USD or oafeguard) option, 

18) A method for aiding bomber penetration through defense suppression 

tactics. 

19) A new method of linear programming, called generalized upper bound- 

ing, as it is used in AEM. 

„'.. ^t ■ f . i . -^A-^g ^ i 
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A.  OPTIMUM WEAPOX ALLOCATION PROCEDURE 

In a basic paper on the application of La«* range mul t i r; i nr^  to the 

optimum allocation of resources Everett (Ref. 1) indicated that the weapon 

allocation problem of interest here was a natural application of the 

technique. Following this thought, an attempt was made to arply the ren- 

eralized Lagrange multiplier method. With some extension of th»3 basic 

concept, this attempt was successful. 

To understand the specifics of the method, it wou1d be worth-while to 

first review the general problem of optirniin a1location of weapons to 

targets in a mathematical format. 

Assume that an arsenal which is to be allocated consists of I different 

types of weapons with W. units of any given type i.  Also assume that the 

target system consists of J different targets. The objective is to optimal- 

ly allocate all weapons to the targets in such a manner that the maximum 

total value is destroyed on the total target complex where any given target 

j represents a maximum value of V.. 
J 

Before weapons can be allocated to the targets, it is necessary to 

know the relationship between level of damage to a target and the number of 

weapons of all types attacking the target. One common expression of this 

relationship which holds for many types of targets is as follows: 

I 

PK ■ 1 - TT S. . lJ (A-l) 
3 I »  1J 

i - 1 

where: 

PK. = probability of kill of target j 
J 

when attacked by N.. weapons of each of I types. 

S.. = probability that target j survives one shot from a weapon 
ij 

of type i. 
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^r the moment let us assume, that this is the form of the damage function. 

(it will be shown later how other damare functions ran be used.) 

Given the above, the weapon allocation problem can be stated in 

mathematical form. Using the objective of minimizing total surviving value, 

rather than the equivalent one of maximizing total value destroyed, it is 

simply to: 

Choose a set of N.., the number of weapons c" type i attacking tareet 1, 

in such a way that the total survivint value, SV, where 

I 

r : sv = 2^j v TT s4 li 

j = 1  i-1 

is minimized and the constraints on number of weapons of each type are not 

exceeded, or 

J 

3  - 1 

N. =W. for 1 < i < I (A-?) 
lj i 

It should be noted that the N., must be integer and that the objective 
ij 

function    is non-linear. 

Dropping this  formulation for a moment,  let us  review the generalized 

Lagranb
re multiplier concept.    Everett  proved  that if X    minimizes the 

I 

function H(X) +    /,     X-   G-   M  in such  a wa-^ that G-   (X*)~B-   for 

i = 1 

1 < i < I and positive A. then X also minim: zes H(X) subject to G. (X) < 

B. for 1 < i < I. More  importantly, he point- d out that if non-negative 

multipliers A. can be found by any convenient technique such that the 
i 

desired X can be obtained the optimality conditions hold eve^ for dis- 

continuous and nondifferentiable functions, H(X) and G(X). 

IrkS^-ivlv, .v...u .^S^y^\:K<<^<<<^ir'^r:^^ii^^i^l^^^ >££ 
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Also of importance is the fact that if the functions, H(X) and G(X) 

can be expressed as sums of two, or more completely independent functions 

the above process operates on each of the independent functions with the 

only connection bcin;r the constraints on total resources, B. and the 
'     i 

multipliers,   X. .     That  is,   each   independent  objective   function,   say 

J 

H.(X)  where H(X) =     }       H.(X)  and the  associated  constraint  function, 

G. .(X),   can be  operated on in such a wav that X   .  are obtained   for a riven 

J 

X.   and  if     >      G. .   (X*.) - B.   for 1 < i < I then the  solutions X 

j - 1 

are  optimal. 

In the context of the weapon allocation problem the constraints on 

resources, the B., are obviously equivalent to W.. The ob'active function 

H(X) is equivalent to the SV of equation (A-2)  nd the H.(X) are equivalent to 
j 

TT   Nii V,   I  S. .  ^ the value surviving on target j, 

i - 1 

Expressed in words the generalized La^range multiplier method applied 

to the weapon allocation problem is as follows. Determine weapon related 

multipliers X. such that if for each target j the solution \ N. .J which 

1        M        J 

3. . 1J + >    x\ N. . (A-4) 

i - 1       i = 1 

J 

also results  in     7       N. . — W.   then the <N. . I describe an optimum allocation 

3 - 1 

of the weapons  to the targets. 

!p.'v'-/v"'v\-,'^,\-*\»v>%"*-.»'• ,.\.  .'"V'i'' '\:-.-.>v-'.,'V-,;->".>.. '..'.vw* •••* V-** 
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In order to solve the allocation problem in this way, two non-trivial 

problems must be solved.  First, a technique for 17n.nimizi.n2 equation (k-U) 

with integral N. . must be obtained. Second, a method for converging uron 
i.j 

the desired multir'iers A . must he levelored. 
i 

It has developed that ideal solutions tN .i pse problems have not been 

found but that very accertable approximate solutions are available.  Each 

of these approximations will now be presented. 

1.  Optimal Target Strategies 

Several possibilities exist in attempting to find a minimum to 

equation (A-4).  Among those considered are: 

1) Efficient enumeration of ail possibilities. 

2) Use of  the non-integral minimum to focus the enumeration 

process. 

3) Use of "pure" Integral solutions as approximate mini mums. 

A)  Use of a sequence of "knapsack" ^roblems to converge en a 

general solution. 

The last two methods w^re found to be somewhat useful with 

method (3) being by far the most practical so it is the one in current 

usage. Each of those two methods will now be described, 

a.  Optimum Pure Strategy Method 

Some consideration of the problem lea^s to the thought that 

in many cases the best integral strategy mi^ht be a "pure" 

solution vhere only one of the N.. is non-zero for a riven i. 

(This is in contrast to a ''mixed" strategy where more than 

one N. . for a given ; is non-zero.)  This initially appeared 

reasonable because it, war suspected that generally one type of 

weapon will be preferred for a given target.  In such a case 

^••I'^vV'l^V-vi^AvI^^^ 
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two,   or more,  weapon types will   attack only to  sort of "fill   in   " 

or destroy, what  it   isn't worth  firing one more wearon of the 

preferred type   for. 

If only pure  integral   strategies are  to be  considered, 

minimization of equation  (A-/J  is nuite  simrle.     It reduces  to 

finding  "I" minimums of the form 

N. . 
MIN H = V. S. ,  1J + A.   N. .     for a given i 

3 1J      l IJ 

and choosing the specific solution with the overall minimum. 

The minimum to eouation (A-5) occurs when N.. = N . ., the 

integer value for N.. such that increasing by one more unit 

N. . 
decreases V.S. . J by an amount less than A..  That is 

N*. . + 1 

(A-1?) 

N 
V. s..    1J - V. s..    1J      <  A. (A-6) 

Solving this equation for N  ..  results  in 

lcg(  A.)  - log(V.)  - lo?(l-S.,; 
N  .M   > J =^ 

ij log(S..) 
(A-7) 

But we are interested in the smallest integer which just makes 

equation (A-6) true. Therefore the N .. of interest is the next 

larger integer above the right hand value of equation (A-7). Or, 

1J 
1 + 

log( \.) - log(Vj - log(l~S. .) 
 i _i*_ -u— 

log(S..) 
(A-*) 

where: 

A  =  the largest integer contained in A 

^£^*^tä&^tä^&tä&^i'Li>~  ..-, , .,. ^:^^v<lvl;«V/j/lLV^VA^^£^"^'.,!*%^,l'LV- J'.'^l,.XV.V.VAvV^'>y.'-. • 'V 
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m 

The concept for finding an approximate solution to equation 

(k-U)   is therefore to find solutions for each i by use of eouation 

(A-Ö) and to choose the best "pure" strategy for a given target, j. 

If such strategies are found for every target for a given set of 

J 

X. and if the totals of /       N. . meet the constraints, an 

i = i 

approximate allocation optimum will be attained. 

The obvious question is—how approximate is the answer 

obtained by use of "pure" strategies9 The resuH is exact if it 

is desired to fire only one type of weapon at any single target. 

In the more general ea^e, though, an approximation does exist and 

there is no general answer to the question. 

\s  the ^osl  direct method of determining the degree of 

approximation for any individual case, Everett's "Epsilon Theorem" 

is useful.  That theorem (Ref. l) states that the error involved 

in using an approximate minimization of the Lagranrian (equation 

(A-4)) is no larger than the difference between the value of 

the absolute minimum and the value of the Lagrangian for the 

strategy used. 

It is not possible to find the value of the Lagrangian at 

the minimum but a lower bound can be obtained.  One obvious bound 

is the value of the Lagrangian if the N. . are allowed to be non-- 

integer.  However, this bound can be tightened somewhat by the 

following logic. 

The first point is that we are looking for a bound on the 

value of the Lagrangian for the best "mixed" strategy. This 

_." ... ".-/,•">**.♦ -" •"<"' YV *- v -*.• *'•* \ . . v .T^ v v'v v\ \ ' '+'' "V>S" v vS»" ■v"'% 
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automat!rally says that -ore than opp of the N.. must he non- 

zero.  Secondly, it is true that if non-integer W.. are allowed 

there is one weapon which wi1] achieve as low, or lower a 

Lagrangian in a pure strategy as any mixed str? o<=>£y.  This best 

non-inteper wearon is the one where the value 
[lo*(S. .*" 

for that weapon is larger than that for any other weapon.  If 

this is the ca^e, it can be shown that the best mixed strategy 

in integers cannot have a lower Laerangian than the value when 

one of the weapons has N.. = 1 and the best non-integer wearon. 

as defined above is allowed to be optimally chosen.  To prove 

this, consider the following. 

N 
In general, if the function VS" + AN is minimized in non- 

integers, the optimal N can be found by differentiation.  Thus 

^[VSN +AN1 = VSN log(S) + A 
N L       J dN 

Setting this equal to zero and solving for N results in 

(A-0 

* m    log(A) - log(V) - log [- log(S)] 

log(S) 
(A-10) 

AT 

This relationship substituted into (VS + A N) results in a value 

for the Lagrangian of 

•MP 

LG = 
log(S 

+    A 1OP(X)  - IOP(V)   -  log [- 1or(S)1 
1OP(S) 

(A-ll) 

This  function now can he applied  to a general  mixed  strategy. 

For example,  the value of the Lagrar.gian   for a given   set  of N. ,   is 

\<C.-VA ^f^^^^R:^l^^ 



expressed  as    I S. 
■j 

i - 1      ' i = 1 
•a' =V;  ft   V^+'E    XiNiJ (A-i?) 

But  if all  the N. .  except  for the w°aron with max. 
1J 

- lcWS. .) 

are some prescribed value then the value of the N. . for that "best" 
1 1 

non-integer weapon can be found by use of eouation (A-10).  Calling 

the weapon which has the max. 

eouation (A-10) with 

I 

-lofKs..) 

x. 
i 

weapon m, the use of 

V = V. TT 
i = 1 

S. . 
N. . 
ij (A-13) 

l ^ m 

results  in obtaining an optimum N     ,  for whatever the  other N.. 
-' nj ij 

value? are.  If all these N.. are substituted into equation (A-l?), 
1J 

it yields 

^,-r 

- X  + X  log( X 
m    m |  °  m [log( XJ - log [v. Jf S. . "«] - lo. [- loftS^)]] 

L.G. = 

i = 1 

i *: m 

log(S .) 5V nnj 

-I- z 
i - 1 

\ jt  m 

X N 

or, equivaler.tly 

'^'Afrj^^yisjiA^^ ;\% v":■ ..-,. ^. 
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-   X     +   X    |1OR( X   )   - los(V.)-  los [- lo«(S   ,)]] 
_ _ m    m L m j J- '  mj JJ 

loe(S   .) 

» 

EX   N. . 

i = 1 

i ^ m 

log(S.J    + 
 LL_ 
log(S   .) 

"    mj 

EX.N.. (A-15) 

i = 1 

But,  the first terrr. in equation  (A-15)   is simrly the value of the 

Lagrangian if weapon m is allowed to be non-inteeer and it is a 

pure strategy.    Also,   since 

- log(S   .)      - log(S..) 1OK(S..). 
 2Ü- > LL   we  can say that X.   >   X rr-^- 

X X, ,T      l    m lop(S_J 
m m.l 

Thus, eauation (A-15) will be at a minimum when N.. = 0 for i ^ m 

since the second two terms consist of 

I 

i = 1   L 
- x   lo4si^ 

mj J 

(A-16) 

i* m 

which results in a larger Lagrangian for any non-zero N... 
ij 

* 
It should be noted that if N . had turned out negative 

it is possible to show that the strategy which minimizes the 

Lagrangian has all N.., including N ., equal to zero. 

The above shows that the minimum Lagrangian occurs when the 

best non-integer weapon exists in a pure strategy. The best mixed 

strategy must (by equations (A-15) and (A-16)) have a La^ran^ian 

.it least as large as L .G. = L.G.* + j X - X  l0g(SCj 
P  

m Ws  J 
m.i 

(*-17) 

*» *\i 

\k^'<^M^^^S^^^^:^^ «"- •*■ »> »^ «"» ■% •"- . v ."« «% ."" - 
L JL...A-! ■»._ . «L.«« -* •*. ••"-". •' •V"L-W"1--*1'^ "-w"-wV."^."*■v**v"L"i 
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where 

L.G.    = value of best non-integer La^ran^ian   in a 

pure   strategy 

p  - weapon which  has a minimum vilue  ror 

X. -x   i0*(V 
l m 

log(S   .) J   m/i 

p/m 

This relationship can be effectively used to find a low^r bound 

on the best mixed strategy Lagrangian and thus, by use of the 

Epsilon Theorem, a bound on the error involved in usinp pure, 

rather than mixed strategies. 

This error bound has been computed for countless tyrical and 

realistic cases with the result that no error ever exceeded 1% 

and the majority were far less than this value. Thus, there is 

reasonable assurance that the use of pure strategies is not 

causing a large error.  Of course, this error estimating procedure 

can be used on any given case, 

b.  Knapsack Method 

The true minimum of equation (A-4) can be attained by use of 

a sequence of "knapsack" problems as follows. First, consider 

i      if 
the sub-problem of minimizing V.  ! j S. .    "  to the constraint 

I 

7        A . N. .  < L. .    This  p. jbl efr is eauivalent to minimizing 

i = 1 

—• ^5 
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log n V. 5.. 
J      I     I Lj 

i   =   1 

N. ,n 
l i 

which  equals    log  V.  +     7      N. .   lo?(S..)   (A-l°) 

i = 1 

»lern under the  same constraint.    Thus,   for a given L   this  sub-probli 

I 

is equivalent to:    mini-rize    y       A.N.    where    A.  = log(S..)     (A-19) 

i - 1 

under the constraint 7A .N. . < L, .  This is minimization of a 

linear objective function in integers and it is equivalent to the 

classical "knapsack" problem. Now, if a sequence of such problems 

are solved for various values of L, , the minimum solution to 

equation (A-4) will be one of the knapsack solutions as long as 

the correct value of L, is included in the set considered. 
k 

The required solution can be obtained in a reasonably efficient 

way if all information about equation (k-U)  is utilized. For 

example, the minimum value of equation (A-4) for integral N.. 

for a given value of L, must be equal to or greater than the 

value for non-integral N. . at the same L, . Also, the minimum 
11 k     ' 

non-integral value of equation (A-4) can be shown to be the value 

attained when all N.. = 0 for i 4  m and N . =  k.  Use of this 
ij mj  — 

m 

information allows the easy determination of a span of L. which 

must include the overall integral solution. 

If L. is allowed to take on any value, there is some value 

which results in a minimum to the Lagrangian (equation (A-O) 

when non-integral N.. are allowed. As was sh^wn in the previous 

A*IVky»vCylvIv^ 



section,   the N   .   at  the optimum point   is riven by  equation   (A-10). 

Thus,  the optimum non-integer L    mupt be ^iven by 

L .   =   I     N     .  where N     .   is defined bv equation  (A-10),  or 
k m      m j rn i 

Log( X   )  -  lor(V.)  -  log  [ - lor(S   .>] L k ~   X
m     2 _J 1 uJ (A-20) 

e 

loe(S   ,) 
mj 

where: 

L ,   = value  of the  constraint on     /        A.N.. 

i = 1 

which allows absolute minimization of the 

target Lagrangian for non-integer N... 

Now consider Figure (A-l).  That figure represents the Lagrangian 

solution space as a function of L, . Of special importance is that 

all integral solutions Me on or above the non-integral boundary. 

In addition, when weapon m takes on integral values for that 

given L, , there is an integral solution on the boundary. Also, 
K 

the lowest integral solution value for wearon m occurs when 

L. = I N* . I X   or [N* . + 11 X . (A-21) 
k   '  mj '  m     l  mj   l  m 

That is, there is a minimum integral solution for wearon m at one 

of the integers on either side of N  ..  Calling this value of 
mj 

1 M 

L, the L  value there is another value for L, , rail it L . , such 

that L , is between the two and the value of the Lagrangian at 
k 
ii i 

point L ,   on the  minimurr, envelope   is  a constant,   LG  . 
K 

ft*] 



TV-A-13 

... c
7_.._ La ? ra niy i an So] ut i 

v 
V9 

c 
•H 

c 
£ 
cr 

Hi 

t 
Kj 

E-< 

V- 
0 
<D 
p 

rH 

> 

For Integral N.. 
l." 

on 3 

c— Points On Line 
Represent Internal 
Solutions For 
Weapon m 

yinimurr Possible Laerangian 
Value If Fon-Inteeral N. , 
Are allowed 

Possible "Mixed" Solution 

0     K   K   K k  k  k 

L, ~> Constraint on >A.N. . 

FIGURE A-l LAGRANGIAN VALUE AS FUNCTION OF CONSTRAINT ON WEAPONS 

t     tt 

The span of L and L must include the best mixed strategy if 

there is one better than the best pure strategy. This is true 

because a strategy already is known, namely that represented by 

equation (A-21) which has a value of LG . Since no solution, non- 

integral, or integral outside the span ran produce a Lasrangian 

i 

lower than LG , it is not necessary to look for the best nixed 

.strategy outside the span. 

The mechanical process is then as follows.  Solve a knapsack 

problem with L, = L .  That integral solution will have a 

WV 
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I 
El i i m 

X .N. . = L,     < L, .     Set the new L.   « L        - <    , 
i   l .1        k k                                 k        K 

where 

i = 1 

^ is a small  number iesirmed to exclude the current  set of V. . 
ij 

from the solution but no others. Obtain a new solution, set 

i i i i i i  ii 

the new L, equal to the new L   - e and continue until L  < L , . 

This process will obtain the best integral solutions in the 

span and they can be compared to OL ain the minimum Lacraren an 

solution. 

The bulk of the problem with this method is an efficient 

process for finding knapsack solutions. Gomory's linear pro- 

gramming algorithm (Ref. 2) and his knapsack methods (Ref. 3) 

were both tried wit* the method of Ref. 3 being the preferred 

method. However, the additional computation time was prohibitive. 

2.  Multiplier Convergence Techniques 

Given that a method exists for minimizing the Lagrangian on each 

target the total weanons allocated to each can be summed to determine 

if, for the chosen X., the correct total weapons were allocated.  If 

the number of any type allocated does not match the possessed number, 

the whole set of X- must be changed.  In general, reducing X. causes 

more weapons to be allocated of type i but since there is a dependency 

among the X• it might also cause less weapons of another type to be 

allocated.  Thus, there is a r<=al problem in deciding how to change 

the X. to converge on the desired number of weapons allocated. 
l 

To understand the multiplier convergence method used in this 

program, consider the following.  First, the Epsilon Theorem states 

"•as* 

L^vVvv^ätew*^^ 
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*>V that if a strategy used on any target is not the one with the minimum 

Lagrangian the error involved is < the difference between the minimum 

Lagrangian and the value of the Lagrangian for the strategy chosen. 

In other words, the Lagrangian value orders the strategies in a 

preference sense.  The strategy with the minimum Lagrangian is most 

desirable, the strategy with next higher Lagrangian is next on the 

list and so on. 

Thus, for a given set of \, a list of potential strategies for 

each target, in ranked order, can be obtained. It is only necessary 

to modify the strategy selection process so the best S strategies, 

as measured by the Lagrangian are obtained and remembered for each 

target.  If S strategies are available for each target, it might be 

feasible to select from among the whole set one strategy for each 

ffj target such that all weapon constraints arc exactly met. If this 

is done, the error involved in using the non-m.inimum Lagrangian strategy 

on every ta^et can be obc^med by the Epsilca Theorem. 

Given this set of S strategics for r .,i target, how does one 

select the sub-set which minimizes the error caused by not using the 

preferred strategy? The most directly utilizabl^ process is linear 

programming. To see this, consider the following. 

Assume that strategy h for target j is described by the N, . . and 

an associated total value destroyed VD  if that strategy is used ca 

target j.  (For example, say that there are 3 weapon tyres and that 

the 4th strategy which potentially might be used on target 5 is 

N.ir = °>  k\or = 3, N, __ = 1 and that the value which will be 
415     4o     4J>5 

destroyed is V, _ = 1.07.)  Then, the strategy selection process is 



<      IV-A-16 

to choose the strategies to use such that the maximum total value 

is destroyed on the target system and all weapons are used up. 

In linear programming language this is equivalent to choosing 

values for X, . such that 
hj 

x    ) X, . • VDU .  is maximized (A-2?) 
L-«       t—d        hj    hj 

j - 1 I  = 1 

under the co.istr; ints 

J S 

A, y y L~i     A«,-y        hj       hij        i 
.1 = 1    b = 1 

N. . .< W.    1 < i i I (A-23) 

2-j 
h « 1 

X     <  1    l<j<<3 (A-2/J 

Constraint (A-2/4) essentially says that only one of the 5 strategies **& 

for each target can be chosen.  Constraint (A-23) s-Vs that the 

strategies chosen must be such that the number of we -^ons of each type 

totally chosen must not exceed the resources. The objective of course 

is to maximize total value destroyed under these constraints.  It can 

be shown that maximizing total value destroyed is equivalent to 

minimizing the er^or resulting because non-minimum Lagrangian strategies 

were used. 

Ide-'ly, there should be ano+ ^r constraint which says that each 

X,'. must equal only 0. or 1..  This is reouired because integer 
hj 

strategies must be chosen.  However, linear programs with intorrer 

constraints are notoriously difficult to solve. It was felt initially 

that the process might naturally lend to integer select\ on so t! is 
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,\ 

,.-\ L.P. formulation was used without the integer constraint.  Tt turned 

out that the majority of the time integer solutions to X, naturally 

occur. 

Part of the reason is that the N, .. arp integer and generally 
hij J 

one of the S strategies for each target will definitely be the best 

one. Fractional X, generally occur on about as many targets is there 

are weapon types so that the last few remaining weapons of a type 

can be employed even though there is not enough to completely fulfill 

the ideal strategy. 

An additional saving feature is that rather than having J 

distinctly different targets the total target complex can often be 

grouped into J different classes of targets where there are T. 

members in each class.  In that case the L.P. formulation is the 

<5jHl same as the above except equation (A-24) becomes 

S 

Z xhj-Tj I
-J-

J (A
-

2S) 

h - 1 

Thus, the X, . become numbers larger than 1 and the only fractional 

strategy is on no more than one of T. targets. Thus, there p-enerally 

won't be more than J fractional strategies out of a total of 

J 

y      T. strategies. 

3  = 1 

Use of the L.P. produces a by-product vastly more useful than 

just the selection of strategies. Henember that the physical inter- 

pretation of a X is that it represents the marginal utility of a 

resource (Ref. (1)).  This can be Qualitatively grasped by 
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consideration of the Lagrangian equation. The Lagrangian is simrly 

a balancing of two functions.  The VS term ren sents the return 

from firing M weapons while the A N product represents the ,. rice 

of buying N weapons at a price of X per weapon.  Tn turn, the price 

A must he the value of that weapon if it is used c~ some other 

target. 

It turns out that a natural by-product of an L.P. process is a 

measure of the additional payoff if any individual constraint is 

relaxed by one unit.  These multipliers, or prices as they are 

called, thus represent, in our case, the same thing as the lambdas 

involved in the La^rangian. 

Thus, at the completion of an L.P. run with any g,van set of 

strategies one of the results is a set of multipliers which form 

the best possible estimate for a new set of X . which can be used 
l 

to generate a new set of strategies and  so on until the   X .   have & * i 

converged. 

Recently Brooks & Geoffrion (Ref. /J have also pointed out this 

same concept of using L.P. to find the Lagrange Multipliers. They 

have a simple proof that the method will lead to a convergence on 

optimal X .. 
1 

Our experience over the past three ye-jrs has indicated several 

procedures which are required to make the process work for this case. 

First, as Ref. (S) indicates, convergence will occur only if the 

specific set of strategies chosen at one stage of the process are 

retained in the next set of strategies analyzed.  Second, the set 

of strategies used in any given phase should include not only the 
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strategies in the last phase but also more than one  new strategy for 

each target class. 

This use of more than one new strategy for each target at each 

phase is necessary to achieve reasonably rapid convergence to an 

optimum set of A,.  Use of several new strategies at each phase 

allow enough new alternate choices to enter in to definitely imrrove 

the estimate for A . from one phase to the next. 

Another valid question is the choice of a set of A . to start 

the process and the procedure to follow when the L.P. produces some 

A . = 0.  (Which will occur whenever all weapons of a oven type 

cannot be allocated.) Experience has shown that any starting A . 

will allow convergence as long as sufficient strategies are 

initially inserted into the L.P. process.  However, the better the 

starting A . the more rapid the convergence.  If A, = 0 do occur, 

experience has shown that a satisfactory process is to arbitrarily 

set tne new A . = . 5 x (previous A,), '-'his causes ve-.pon i to 

ap ?ar in more strategies ar.l, ultimately to cause a non-zero A . 

to develop. 

One technique that has be ,-n found to be useful in developing 

excellent starting A . is to ase an upper bound theorem that has not 

previously been published.  Since this theorem has other uses in its 

own right it will now be ^«rived and its possible applications 

indicated. 

The basic Lagrangian solution results in an X which minimizes 

I 

the function H(X) + \j \.  G.(X) over all allowed values for X. 

i = 1 

k.* i"wTlftft \tLfh", .*ji J* «Vjt""j.ix"ii JJ» * J   Jl * jflijL ^- isl* £m ft'm n\ £*. 1 k if « fl ft 11 iJt.**V% t fa 
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I I 

In other words H(X~") + V   X* G.(X~) < K(X) + Y^  X! G.(X)  (A-26) 

i == 1 i = l 

where X is allowed to take on any value in the spare over  which the 

function H(X) is to be minimized. 

Of specific interest to our problem is the value of the I.a^ran^ian 

when X denotes the special condition that 
a 

G.(X ) = 0 for i f  a (A-27) 
l a 

and 

3a(V - Ca ^-^ 

where: 

C = the level of resource tyre a such that 
a * 

H(X ) = H(X ) when all other resources are at a ^*% 

zero level (G.(X ) = 0). 
i a 

In other words, the La^ran^ian takes on the special value 

H(X ) + X C when X describes a special condition on resources such 
a a     a h 

that there is some level, C , of resource tyre "a" which can reduce 
'a' 

the payoff K(X) to the same level as the mixed level of resources. 

In this circumstance for X = X ecuation (A-26) becomes 
a 

I 

H(X*) + y^  X* G.(X*)< H(X*) + X* C (A-po) 
/   i        li a a 

i = 1 

or 
I 

E X  G.(x') 
i « 1 i i 

X*  >   (A-30) 
a        C 

^' »-' ^-" *-"■ •-'■ *-'- :-''*-'-..-'-—'- lA.»-*"».. V' 'S'J,   .' V**»-' -V' »J*. .--' jj -.:, l'. -- • l.nVrtA.'.i*. sJ «-*. O O •*-* ^-"'.'  *J!  *J^«. -V« 
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GD 

It  is possible to  find other similar solutions  for the remaining 

variables,   i.e., 
I 

A* 
Ttiw* i = i 

>    g  (A-D 
J 

But the solution X is defined to be the one such that G.(X ) — B. 
l       l 

where B. is the level of resources of the original minimization 

problem.  If equation (A-31) is multiplied by B. and then summed 
J 

for l<j<I,   the  result becomes 

j = i        j -1 «■ i -i 

B. 
J- (A-??) 
j 

this becomes 

I 

2  ^<1 (A-3-) 
0 = 1  J 

which represents the upper bound Theorem. 

To see how this is useful as an upoer bound Theorem, consider 

what led up to equation (A-33)« A mixed set of resources, denoted by 

B. were to be allocated in such a way as to minimize some payoff, 
J 

H(X).  In addition, each of the resources were to be substitutable 

in the sense that there is some level of each resource, C, such that 
J 

if all other resources levels were zero the same payoff as for the 

mixed set would result.  Finally, equation (A-33) says that the 

B./C. ratios relate in a special way. 
J    J 

Consider the minimization payoff H(X)  as a  function of the  1 evel 

of resources  of one type alone.     Generallv this   function  is  c~rcivp,, 

^v-'.s^v^vv^v'^>v;^^.v^^AA/,^^^/o\v c -/ -.- SWIVAVWW.NTA V-V-V-V-V.-. '. .%-> ^ *>..> <> • ■ 
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x 
JE 

o 
S? 

that  is 

H[0Z    + (1-/3) Z ] < ßH(z  ) + (1-/8)  H(Z  ) (A-?/.) 

where 

0 </3< 1 

and 

Z,, Z ^ are any two  levels  of resources of one type. 

Thus,   if for example there are three types  of resources,  tyrical 

functions might appear as in Figure (A-2). 

H  (X) 

*$ 

Level of Each Resource ^  X. 

FIGURE A-2 FAYOFF AS A FUNCTION OF THE LEVEI OF INDIVIDUAL RESOURCES *-> 

?fa?l^Lv£->/^^ *V *"* ^ "VA tf 
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Since these functions are concave, therp is so-re payoff level H (X) 

which represents the upper possible payoff sucu that 

-7 * 1 (A-35) 
i = 1 

where: 

C. = Level of resource tyre i to attain payoff H (X). 

t 

Thus, H (X) represents an upper bound to the payoff which the mixed 

CSP 

resources < B. > can attain. Any higher H(X) must achieve a j i \ 1 

i = 1 C. 
l 

and thus not meet the conditions of eauation (A—33)• 

i 

The interesting thing is that H (X) has turned out to be very 

close to the actual H(X ) in the majority of weapon allocation 

problems to which this theorem has been applied. Of equal interest 

is that equation (A-33) can be used to obtain excellent starting X.- 

The starting \ . can be obtained simply by notiner that X 
l a 

represents the A payoff if all B. (i ^ a) are held fixed and the 

level of resource type a is increased by one unit. Usinf? the upper 

bound theorem, it is possible to find the difference between two 

upper bounds, one at each level of resource type a and use this 

difference as an approximation to X • 
a 

Assuming a small change in the upper bound, it can be shown that 

x 
l/c 

a  _. 
- 1 

2 
C ^S 
a a 

i - i cr.s. 
i 4  a 

(A-?6) 

•iOOvttto}^^.-^ 
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where: 

B.. C. = previous definitions 

S. - Minus the slope of the "resource tyre i only" payoff 

function (as 'escribed in Figure (\-2)  at the location 

where X. = C.. 
l   l 

The upper bound Theorem has the potential of beinf? useful in many 

resource allocation problems where it is convenient to determine how 

to allocate one type of resource and expedient to usr an estimated 

payoff rather than allocating the true mixed resources. 

.A. 

^fjjVv^^AV^A^^^A^/NXvAv •^\\\v^;-\v^»«vvv'-^ 
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B.   DEVELOPMENT OF VARIOUS DAMAGE FUNCTIONS 

The preceding discussion on weapon allocations has largely assumed that 

the damage to a target when attacked by a number of weapons of one tyre is 

described by the function 

NN 

or 

PK * 1 - (1-P) 

.N 

(B-l) 

(B-2) PK = 1 - S 

where: 

P - probability of the target being killed by a single shot 

from a given weapon. 

This function represents reasonably well the destruction of a noint 

target but is deficient for area or defended targets.  Thus, it is necessary 

to consider the meaning of other functional types, how they affect the 

allocation problem and to describe an efficient method for ^evelopine 

damage functions for ail cases of interest. 

In general, damage functions will take on. of the three generalized 

forms represented in Figure B-l. 

n 

o   ^ 
* (/} 

H <D 
rH O 
•H 

0) 
<*-t   hr 
o   U 

cd 
>, £-< 
-P 
•H    «M 
rH      O 
•H 
X) C 

CTJ O 
jD -H 
O -P 
U V 

OH ctJ u 

1.0 

Number of Attacking Weapons 

FIGURE B-l TYPICAL HAKAOE FUNCTIONS 
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The point target is represented by a function of the eauation (B-?) tyre. 

The area target has a linear portion which results from attacking an 

area in such a way that the nuclear effects of one weapon are independent 

of the effects from another weap n. Eventually no  weapons can be im- 

pacted without overhapping the effect of another \ eapon and the linear 

damage function becomes cor.rave downward.  In the case of a defended 

target, there is generally some level of attack such that below that 

roint only the "leakage" ;hrcugh the defense results in damage while 

above that point a satura„±v_n, or exhaustion occurs and damage accrues 

quite rapidly. 

Given that such damage functions represent the general categories, 

it is important to realize how such functions react with the Laerange 

multiplier method of weapon allocation.  Everett points out (Ref. (1)) 

the most important consideration, namely that the method cannot be ^^? 

guaranteed in conjunction with non-convex functions such qs are represented 

by the defended target function. 

The multipliers essentially equate to the partial derivatives of 

the payoff function at a point and, as a conseouence, it is impossible 

to determine unique A. in a region where a plane tangent to the payoff 

intersects the payoff function at some other point. The derivation of 

this necessary condition follows from the statement of the La.^rangian. 

As has been stated previously, an optima] solution, X is one such 

I I 

ti. , H(X*) + V* A*'G.(X*) < H(X) + Y^  A-^fX) (B-3) 

i = 1 i = 1 

for any allowed value of X. 

üüHLÜ£ZdLLlL&i&^ 
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v 

\\'J 

This is equivalent to 

H(X)> H(X*) + 2  Xl[üi(X*) " 'VX)] (P-0 
i = 1 

But, the right hand side of equation (B-4) is nothing more than the equation 

for an "I" dimensional rlane of slopes A. passing through the roint 
l 

H(X ) when X r- X .  Thus, if equation (B-3) can be satisfied, there must 

be no X which results in a payoff less than that lescribed by a plane 

tangent at X . In a region where the payoff H(X) is a non-convex func ion 

of G.(X), it is not possible to use tv;e Lagrange method to find an X 

which leads to a G.(X ) = B. while minimizing H(X) since there is no .'.. 

which satisfies equation (B-3) in such a region. 

x 
33 

X# 

Slope = X 

G(X) 

FIGURE  B-2    A tfON-CONVEX  PAYOFF FUNCTION 
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For example, consider Figure (B-2) which demonstrates a rayoff 

function, H(X), as lependent upon only one tyre of resource, G(X).  In 

the region where A,<G(X)<A« the function is non-convex and a plane 

tangent to the function, e.g. at k   ,   intersects the H(X) function at 

some o her G(X).  If A were set equal to the slore, A , and the 

multiplier method used, the solution obtained would he the one which 

satisfies equation (3-3) and it is at G(X) = A., since that tangent 
U 

docs not intersect the payoff at any other resource level. 

This limitation concerning the defended target damage function is 

not as serious as might be thought. Consider the problem of allocating 

weapons to a target where the damage function is non-convex.  As is 

represented in Figure b-3, there is some number of weapons, N , which 

ideally should be the minimum allocation if the target is attacked at all, 

X» 

OH 

C 
o 
•H 

o 
C 

P«H 

n 

Number of Weapons  Allocated  - N 

FIGURE B-3      NON-CONVEX HAM Al?:  FUNCTION 
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The reason is simply that the average payoff per weapon allocated is less 

than the maximum possible if N < N .  (The N value is that one represented 

by the tangent point of a line from the origin to +he damage function. 

This tangent line determines the allocation which results in the maximum 

attainable average payoff per weapon.) 

If the attacker has any choice, he will attack at least to the N 

level, if he attacks at all.  Thus, the precise shape of the function 

for N<N is unimportant as long as N is still the roint of tan^ency. 

More specifically, the same allocation would result for any payoff 

function PK (N) such that 

N 

and 

PK (N)< EL . PK(N') for N< N 
N 

PK'(N) = PK(N) for N > N* 

(B-5) 

:B-6) 

In other words, as long as the new function PK (N) has a rayoff equal to 

or less than the convex approximation to PK(N). 

Following this line of reasoning that says an optimized attack will 

avoid non-convex payoff regions as far as possible leads one to the idea 

of using only convex payoff function approximations. If any given payoff 

function is non-convex and a convex representation is used, errors will 

result only for those targets where an allocation of N < N is chosen. 

In turn, this will occur only for the one target of a class where there 

is not enough weapons available to achieve the more preferred N >  N 

allocation. 

Accordingly, the method used in this program is to determine the 

exact non-convex payoff function for a defended target and to then 
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optimally allocate on the best convex approximation to that function.  If 

■a- 
all resultant allocations have N > N , n-v error results.  In the rare 

instance where N< N , it is possible to perform hand computations to 

indicate the level of errors resulting. 

Under the above reasoning, a generalized - .am-vge function has the 

shape represented in Figure B-/+. 

be 

Diminishing Return Region 

Tangent Point On Exact 
Damage Function 

T     N 

A(jarons Ailoc-ited - N 

FIGURE B-4 C2NER1L TARGET DAMAGE FUNCTION 

Represented is a damage function composed of two regions.  First is a 

region where each additional weapon result- in a constant delta payoff. 

This is followed by a region uhere the return from one additional wearon 

is less than the last weapon. 

Such a generalized function can be represented by a two parameter 

(T & F) family as follows: 

(B-7) PK(N) = -, • PK(N*) for K<  N* 
N 

PK(N) = FK(N) for N > N (B-8) 

*^[£^\\.£<2/*ir2f±<^^ 
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and 

PK(N) = 1-(1-P)N~T (R-9) 

where 

N = Foint of tangency o?  a line from the origin to 

the FK(N) function. 

T = A Translation Parameter 

P = A Non-Linear Fitting Parameter 

This representation has the special advantage that for point ta~~^ts 

the translation parameter (T) becomes 0. and PK(N) results in the correct 

function.  Also, for area targets, the linear portion can be fit exactly 

while the diminishing return region can usually be approximated quite well 

by a l-(l-P) type of function. 

In this section, the methodology for obtaining the correct values 

of T & P is described. The methodology includes all t>pes of targets, 

point, area and defended, for all possible combinations of conditions, 

such as hardness, area, weapon yield, CEP, defense level, etc.  Involved 

in the methodology are basic program subroutines called COMPK and FIT. 

1.  Perfectly Reliable Weapons Vs. Undefended Target Damage Function 

For perfectly reliable weapons against undefended targets, Rand 

Research Memorandum ^RM-27/+3 ("Mobile System Survival Against a 

Ballistic Salvo - The Effects of Position Uncertainty and Other 

Parameters") gives the "expected coverage" of a circular target by 

W (= 1,2,3,•••) optimally patterned weapons. A "cookie cutter" 

type of damage is used - that is, nach weapon type is assumed to have 

an associated lethal radius (depending upon the weapon yield and the 
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hardness of the target) which determines a circle centered at the 

point of impact.  Total iestruction of any portion o" the target 

lying therein, is assumed.  Expected coverage for a mint target 

is the probability thai at Least one lethal circle ..ill contain 

the point.  For an area target, it is the expected fraction of 

the circular target area which will be included in at least one 

lethai circle.  ('the term "kill probability" — notation, PK — 

is used here instead of expecu3d coverage.) 

Data taken from the Rand report tends to craph in one of the ff. 

fashions: 

^c 

w 
u, 

1.0 

i 

1   1 
.8 

.6 

.2 
/ - — 

—j - - 
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 U-    - 

1 

i 
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k 

.8   

S       .6 
^ >     .4 

.2 

j-    ^ 
| 

 *» 
12   3   4    5    6? 

w 
12    3    4    5    6   7 

W 

where,   fur a  particular weapon an"1   target   (abbreviated  as wpn and 

tgt  hereafter),   the  precise  shape  of the  curve  is dependent  only 

upon the lethal   radius-to-CEF ratio  and the  lethal  area-to-tp-t  area 

ratio.     If there   is   a  linear portion   (as   in the second   sketch), 

its  slope  is  equal   lo  the  lethal,  area-to-tpt area  ratio. 

Data like  that   in   the  first  sketch   is  closely approximated 

by the mathematical  form 

PK(W)   ■■ 1   ■ (l-p)W, :B-IO) 

where 

*tf» 

0<p<l. 

'■I'ITI LA .'jCrJ*r-<4?j&--, •^_^^i^r^-!^.r^-^r%a 'Jk'^'^^^'j^^ -' '^':^:jL!'^ji^j^'Jk!^"rj»"'"_k "j«.^>*hjiV-A *_/*?.*'•_». ''^'-^'KJT'-^'-^ • V-V-•>..*• 
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The non-linear data  in the second  sketch   follows 

PK(W)  - 1  -  (l-p)W~T, (ß-11) 

where 

0<p<l and T>0. 

The linear ^ata behaves as was described above.  If a denotes the 

slope of the linear portion and WT the point of tanpeney between the 

line and the curve, then all of the occurring cases may be ^escribed 

by the set of equations 

PK(W) = 

aW for W<W , and 

1 - (l-p)W T for W>WT, 

(B-12) 

where 

0<p<l and T>0. 

The approach used in the development of COMPK was to first 

define the kill probability functions for perfectly reliable wpns 

against undefended tgts, and then introduce reliability and defense 

effects.  The former was resolved in accordance with the ff. 

procedure: 

a) Graphs like the sketches shown above were produced from 

the Rand rerort data for a ran^e of values of the lethal radius- 

to-CEP and lethal area-to-tgt area ratios. 

b) For each curve, the plotted data was input to a corr.ruter 

program which produced approximating T and p values according 

to equations (B-12). 

c) The fitted curves were evaluated and checked for agreement 

with the input data points. 

J^^^SliVV.VoV^-^ ^L'^Cä/IV'1^'1' AjX"iAx"ii"Lz?\Sjif2?*i«-1& ^A-AIJZ'I*^:*^, ! • ,''• 
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d) It was then necessary to relate the T and p parameters to 

the two ratios mentioned above which influence the share of 

the ?v  curve. This was done through a series of fairlv com- 
ix. 

plicated curve fitting technioues, specifically tailored to 

insure that the functions produced would have correct 

properties and asymptotes. The resulting equations were 

evaluated over the initial range of values of the ratios, 

each time producing values for T and p which in turn, 

specified a unicue curve of the form (B-12).  This curve 

was then checked for consistency with the original Rand data. 

e) Although wpn CEP's and tgt areas constitute a nortion of 

the input data for AEM, the lethal radius of a wpn-tgt pair 

does not. A study of the problem of computing lethal radii 

produced a pair of equations dependent upon wnn yield and trrt 

hardness, one equation applying to tgts whose hardness is 

below 48 psi, the other for harder tgts. 

The process described in a) through e) above made Dossible a 

determination of the kill probability function for perfectly reliable 

wpns which are optimally patterned against undefended tgts. The 

Based upon data contained in DIA document #PC550,/l-?-6° (1 September 

1963) entitled "Physical Vulnerability Handbook—Nuclear Wearons." 
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significant variables are wpn CEP and yield, and tgt area and hard- 

ness.  Complete details of the process ire eiven in Appendix A. 

2.  Effect of Unreliable Weapons 

The introduction of reliability into the V    eauations was done 

in an elementary manner.  If the Parameter T in eauations (B-12) is 

zero, the trt is small in comparison to the lethal area of the 

attacking wpn — effectively a point tgt.  In this case, the inter- 

pretation of the parameter £ is that it is the single-shot proba- 

bility of kill, since 

PK(1) = ^ - (1-p)1 

- 1 - 1 + p 

= P. 

However, in the less-than-perfect reliability case, the true single- 

shot PK is given by the product of the in-flight reliability (R) 

times the probability of terminal kill (p), since both of these 

events must occur for the wpn to perform effectively. Thus the 

indicated modification for an unreliable weapon is to define a 

new parameter (p = R.p) which is then used in equations (B-12) 

in place of p as the single-shot kill probability. 

For an area tgt (T>0), the linear portion of the PK curve 

reflects the attacker's ability to target his weapons far enough 

apart to insure no overlap in the corresponding lethal circles. 

If the wpn reliability is not perfect, however, there is a definite 

probability that some of these circles will be missing.  Thus the 

correct modification to the Linear portion in the unreliable case is 

PR(W) = R.a.W 

—that is, define a new slope (a = R.a) ror  the liner part. 

&£&ti^^ 
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In order to insure compatibility as T—»0 between the point and 

area tgt methodologies, and in the absence of a clearly defined 

rationale, the parameter p is also modified in the unreliable wrn — 

area tgt rase in the -rime fashion as above (i.e. p = R.p),   A new 

t t 

translation (T ) and point of tanken'*y (W_ ) may then be solved for 

directly, as a function of  the transformed slope (a ) ind r : 

l_ln !  = ,-  | 
:  L -In (1-P ) J 

In (1-p') 
! 

a 

T 

for a < - In (1-p) 

otherwise 

1 

T + 
L -In (1-p ) J 

In (1-p') 
for a <- In (1-p ) *& 

T 

and W  = 

0 otherwise 
% 

The resulting curve, although it is only approximately correct in the 

area tgt case beyor.d the tangent point, produces P„ values which 

may be checked    »rding to the more detailed theory 4esrribed ^elow 

(by letting ehe defense effectiveness approach zero). This com- 

parison has been performed several times with the result that the 

approximate values have not differed by more than 3^ from the exact. 

(/* sample is found in Appendix B.) The main reason for continuing 

to use the approximate method is that considerable saving of 

computer time is real ized. 

3•  Effect of Reliability and Defense 

The deve 1 opment of a capab Llit-j for mode 11 i nc a na ti on ' s 

Ka&fc^^flfli&ri^^ 
i -JL*_A mU m f^M'^a" 
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defensive strength  and  accurately  describing   the   impact   ->f  I.hat- 

defense  on  the  outcome  of  i   strategic war t une   is mult i-fao ted 

a   task  as  the  actual   iefense  procurement.     Slnct    the  offense   \  is 

the last move  insofar as  wpn  allocation   v.id  attack   timing   : ?   con- 

cerned,   the  defense must   be  as  versatile  is  risible   in  or^er  to 

be  capable  of dealing with  the  myriad   forms  which a sophisticated 

offensive threat may assume.     Area vs.   terminal  vs.   perimeter 

defenses,   ICBM vs    bomber   defenses,   and   civil   defense are  some  of 

trie   identifiable component.s  of a  versatile  national   defense   in 

the nuclear ase. 

Subroutine  COMPK deals with   terminal    iefenses  only  —  ABM, 

primarily,  but with some AAA  capability.     It  is  assumed   hhqt an 

attack by a ballistic missile on an  ABM-defended  tet may be 

characterized within the  score of  the  ff.  descriptors: 

a«      Attacking Wpn 

1) Reliability 

2) CEP  (n.mi.) 

3) Yield   (MT) 

4) Number of decoys :er whd 

b. Target 

1) Area (n.mi. ) 

2) Hardness Cnsi^ 

c. Defense 

1) Number of  AMM'i 

2) Probability    >f   Acquisition 

3) Probability  of Discrimination 

U)     Single-shot  Probability   of   Int* rce it: or. 

iA.tmAd.1 ._ • ^A ._•  ^' K.* 4.1 ._» ^-  -_- >^<W1 ,_', i.' *Ji •_". -_\ O^^^t     - -~'-.i. ^-w_^ bi %. ■ *. i, t %i ^~ v \r, m u -w •_■%.' v.-yfSAj'kL. 
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d.  Tactical Options '-*,>" 

(The tactical situations possible will be described in 

detail later.) 

One of  the first things done in the program is to reduce the input 

number of AMM's to an effective number reserved for whds: 

Let N  = input no. of AMM's 

N„ = effective no. of AMM's 
hi 

d — decoys/whd 

p_ = prob, of discrimination 

UF0 = undiscriminated objects/whd 

It is assumed that 

UF0 = 1 + (l-pD)d 

that is, that the probability of discrimination applies to decoys only.       ^«^ 

Then 

gives the expected number of AMM's available for whds. 

For each of W attacking whds, the ff. outcomes are assumed 

possible: 

a) unreliable 

b) reliable, ,;ot acquired 

c) reliable, acquired, not intercepted 

d) reliable, acquired, intercepted 

unless the defense has been exhausted or destroyed, in which case 

the possible outcomes reduce to 

a) unreliable, or .-\ - 

b) reliable. 

^v£&-X%:%£AV^ 
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These events form the basis for the detailed methodology referred 

to previously, since it is possible to enumerate those combinations 

of the basic events which contribute t^ t.frt destruction, comrute 

their probabilities of occurrence, and compute the expected target 

iamage resulting given their occurrence.  In this way, an over- 

all expected damage, FK (W), is pro^u^e'i for a iriven value of W. 

(The accuracy of this methodology is degraded by a 

yet unresolved problem - namely, to iefine the 

expected tgt damage when c> whds, for example, are 

optimally patterned and 3 penetrate.  At the present 

time, C0MPK assumes that the expected iama^e is the 

same as that which would obtain if the 3 penetrators 

were optimally patterned.  This assumption results 

in a slight overestimate of the true expected ~!amaqe 

in those cases where the optimal aim points do not 

all coincide at the center of the t?t. 

However, there is in operation a separate IBM 

1130 version of C0MPK which facilitates - with a 

minimum of repro^ramming - the study of other, non- 

optimum damage functions.  So far, no acceptable 

alternative to the damage computation used in C0MPK 

has been found.) 

Currently, a choice of three tactical situations is possible 

via the input (integer) variable ND0C.  If ND0C - 0, the program 

re?aris the attack as occurring sequenti a"1 ly Ln time.  It is 

t'\/s^<.*%^\^\ce.*:v^t'.v. iv :*.v !•'_<•' .--1 -1 :•!■; .!■; 0:0-:Cvl^w^£:£-:^^^^^ ^v-.v-.vL- 1££&JL ....,- .^-.^...'.- 
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assumed that the defense is eliminated by the first penetrating 

whd, the only factors preventing succeeding whds from accumulating 

further damage being their unreliability or the fact that total tfft 

damage has already been achieved.  It is further assumed that the 

defense is unaware of the extent of the attack. 

In addition, if ND0C > 0, the defense has decided to assign 

a constant number (namely, ND0C) of its N_ available AMM's to each 

visible whd until defense destruction or exhaustion occurs. 

If ND0C - 0, it is assumed that the defense chooses its 

successive AMM assignments according to the Prim-Read doctrine 

described in Appendix C, until the N_, AMM's are depleted or the 
hi 

defense has been killed. 

The tactical situation is quite different if *!T)0C < 0 is 

specified.  In this case, the program assumes that the attack 

is in the form of a simultaneous salvo of W whds, where the 

defense does know the extent of the attack, and cannot be killed. 

It is further assumed that the defense allocates all of its N_ 

AMM's uniformly (insofar as is possible in integers) to counter 

the attack.  This situation giv^s the defense all of the 

advantages, since it can't he killed and does the best job of 

allocating its AMM's. 

If the real situation is that the defense's command and 

Control system can be overloaded by achieving simultaneous arrival 

in the tgt zone - that is, if the defense can only handle a limited 

number of AMM intercepts simultaneously - then the input number of 

AMM's (N) should be reduced accordingly when MD0C < 0 is input. 

*^? 
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4.  The Computational Procedures For Various Tactical Situations 

a.  Sequential Strike   e 

Let P (I)   =  probability that the N  penetration 
n 

occurs on the I  shot (I ■ N,N+1,...,W). 

PN1(K,W) *  probability of exactly K penetrators 

in W warheads (K = 1,2, . ..,N-1). 

D(I,W)   ■  expected damage given that W warheads 

are fired and the N  penetration occurs 

on the I  shot, i.e., expected damage 

accrued by penetrators N through (W-N). 

D1(K,W)  =  expected damage accrued by penetrators 

1 through (N-l). 

The main calculation is then governed by the equation: 

W N-l 

PK*(W)  -  ^  Pn
(I) * D(I'W) +  S  PN1(K,W) • D1(K,W) (B-13) 

I = N K *= 1 

The P (I) values are obtained by accumulating the probabilities of 

occurrence of those combinations of basic events which lead to *-he 

N  penetration on the I1    shot. The D(I,W) and D1(K,W) values 

are computed from weapon reliability and equations (B-12), making 

use of the optimum damage assumption described earlier.  In 

order that the N  penetrating warhead kills the terminal de- 

fenses, we must have the following scheme: 

^ZrJtä&lS^^ ^":*•?■■ '^:!.-L- lVir^l^^>l^^v^C^ 
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T-l Shofs Ith Shot 

I - L - h L .-i ,th 

unreliable reliable penetrators penetrator 

warheads acquired 

and intercepted 

warheads 

nnn- pe 

That is to say, there will be some penetrators and some non-penel:ra- 

tors, but we must have N-l penetrators in 1-1 shots and the N 

penetrator on the I  shot. 

We define p.. - to be the probability of N-l penetrators in 
N-1 

1-1 shots. This probability, of course, acts according to the bi- 

nomial distribution. Therefore, 

1-1 

rN-l 
.N-l, 

N-l  /n      vI-N  . . 
p       (1 - p  )   , where p   is rpen    N   rpen rpen 

the probability of penetration for a single warhead. 

We now define L to be the number of reliable, acquired, and 

intercepted warheads in 1-1 shots.  Because the probability of 

several independent events all occurring is 

p(AOA2n...  Un)  = p(A1)     p(A2)    P<Vf We have 

Pb    *    P(L) 

L . 

]J  i. pA (i - a - p/y 

Vf** 

fliU^ .-*'-±?JL\+*** /•■^",^"^V-^-j."---»',->V-fc ".CL*^2L±L±2JLLJL!L± '-» '.A'^-^'^^.WV.A*'-». ".j^:^m'^;^"r += **«V^^JLA:^?-~JL.'a'M\">JTJT»>.U\' \\k.\ JW 
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where: 

P  = probability of acquisition 

P  s. probability of interception 

m, £ the interceptor assignment 

The remaining I-L-N non-penetrators are unreliable. If we define, 

p  - p(I-L-N), we have 

(1-R) 
I-L-N 

Thus,  combining all of these  factors,  we have  for p  ,   the proba- 

bility of the N      penetrator on the I      shot,   the  following: 

ttii Pn(D 

MIN 

E 
L - 0 

MIN 

Pa   '   Pb   '  PN-1   •   Ppen 

MIN r L   _ / m 

£   <IV-L-K|RVTTV        Pl  ' 
L •= 0 

L  / 

T 
j - 1 

I - 1\ 

P    (1 - P  )     • p pen      'pen7       *pen 
N - 1/ J 

where: 

MIN - min I  I - N, NWUDX \ 

For those sequential strike cases with a constant assignment doc- 

trine (ND0C ^ 1) 

NWUDX 
NE 
ND0C 

In the Prim-Read case (ND0C - 0}, define m. = # of interceptors 

assigned to the j  reliable and acquired warhead. 
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j 

NWUDX 
Here, NWUDX is the largest integei such that  ,   m4^ Ni?» 

where the m 's are determined as in Appendix C. 

The second sum in equation (B-13) consists of the damage 

accrued by penetrators 1 through (N-l) and the probability of 

.xactly one penetrator the probability of exactly two penetra- 

tors, ..., up to tht> probability of exactly (N-l) penetratcrs. 

The 6"   -ed damage is described by (B-14b). The probability PN1 

is cai :ulated as follows: 

W -  K 

PN1(K,W)     = , \f I   (1 -  R)W"^b   .  RL ?A
l 

L ;ou + V»   L / 

\\    i-a-vmj'   -RK l- 

\& 

j-i v 

PA (1 -  fx> i 

PA + 

Assuming that penetrators accumulate damage according to equa- 

tions (B-12), the calculation of expected damage from W warheads 

th       *-1 
\i where the I is the N*"w to penetrate, is governed by the equations: 

■*.w 
D(I,W)      -       > RL  (l.R)W">L PK(L+ N) 1 

L 

and 

D1(K,W)   -  PK(K) (B-14b) 

l£^£ätäü£jti.-ÜT£ ^£^£J^ 
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& 

where L = random variable denoting the number of additional 

penfttrators (after the N ) 

R = reliability 

and  P (L+N), P„(K) are determined according to (B-12). 
K        K 

Defense parameters do not appear in this expression since it is 

assumed that the I  warhead eliminates the defense. 

To avoid the indicated summation in (B-14a), two cases are 

distinguished. If W < 1 in equations (B-12), then (B-14a) may 

be shown to be exactly equivalent to 

D(I,W) - 1 - (l-p)N"T(l-Rp)W"1 (B-15) 

where p and T are the parameters appearing in equations (B- 12) . 

If W   1, equation (B-14a) is rewritten as 

W-I  / 

Y* i     \ RL (I-R)W_I"L pKa: - ■ m 
P-    'w-l' 

+ X  ' L   RL (1'R)W"I"LrVL+N)-PK(L)' 

and approximated in this form. 

The first summation is the expected damage due to W-I war- 

heads, each with reliability R.  This may be approximately computed 

via the short-cut method discussed in the "Reliability" section 

(above) and exemplified in Appendix B. 

The second sum can be viewed as the average value of a func- 

tion of a random variable (I.), and approximated by the function 

of the average value (of L).  The function here is 

^;:^^--::\--;^---:-->\\-:<v:^-:v-:s\ [iü:^:-;:^^ -   - 
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ta)   ■  PK(L+N)-PK(L) 

■,-» .*. 

art«!   t :•„■   aveiage   v.il ue   < 

B(L)        (W-I)R. 

Thus,   ..•., 

1    Is   vH ^en  by 

era11 approximation  (for W   > 1)   is: 

D(I,W) «  PK    (W-I)  +  f |E(I)J 

where P„  la the kill probability function resulting when the 

parameters of (B-12) are modified by R (in accordance with the 

short-cut logic.) 

Therefor«, for W > 1: 

D(I,W)- PK  (W-I) + PKfNf(W-I)RJ - PK((W-I)R"].     (b-16) 

(The IBM 1130 version of COMPK computes D(I,W) in the W > 1 case 

by the more precise equation (B-15).  A comparison of the results 

is £ive:i below.) 

b•  Simultaneous Strike Case 

As nenttoned previously, the simultaneous strike case is 

characterized by an unkillable defense which allocates its inter- 

ceptors uniformly (insofar as is possible in integers) to the 

visible portion of the attack. 

Notation: 

N ■ (integer) effective number of defenders 
E 

W  = number of attacking warheads ( = 1,2,3,...) 

J  - random variable denoting the number of reliable 

warheads (0< J< W) 

K - random variable denoting the number of reliable and 

acflu i red wn\ heads (0 <. R« J ) 

*«& 

'v.- 'rfrf.<<±ttiS4J!stU:iJt^ ,, ^ /./,v 



IV-B-22 

■N 

ßy 

t. V 

V« 

N 

m,, — minimum number of defenders assigned to any visible 
K 

warhead 

.? 
m.,+1 = maximum number of defenders assigned to any vision« 

warhead 

nv = number of reliable and acquired warheads  to which 
is. 

exactly IL.  intercept cm hive been  assigned 
r. 

Nv - number of reliable and  acquired warheads to which 

exactly 3L.+1   interceoi* or   have been assigned K 

= h ~ K   * "K 

(Then nK = K - NR) 

PI = single-shot  intercept probability 

"Jy p    = penetration probability for a reliable and  acquired 

warhead to which ITL, interceptors  have been assigned 

I 
,%j P = penetration probability for a reliable and acquired 

warhead tc which nut-1 intercep+crs h-^ve been assigned 

- (1-PT)  
K 

Ml 
3 n    - random variable denoting  the  number of penetrating 

warheads  of  the n„ to which  nu  interceptors  were 

; asoirned  (04n4nv) 

k-V •/ O «.T.JV «JWMXflVLMiMJU^'X^^ ^j 
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N    = random variable denoting  the  number of penetrating 

warheads  of  the K    to whicl   riu+l  intercertcrs were 
K K 

assigned  (04^Nr) K 

J-K+n+N = totals number of penetrating warheads 

R = reliability of each attacking warhead 

p = probability of acquisition 

P - kill probability (expected damage) function defined in 
K. 

equations (B-12). 

The detailed expression for the overall expected damage in the 

simultaneous strike- case is then given by: 

rK (w) = 
w / 

J - 0 N 

vr 
RJ (1-R)W-J 

Ä0 PA  (1-PA) 

K  /n, 

El 
n = 0 

r > -.      < n -n 
P  (1-p) K 

K   /N. 

s . ' \T -  ^^T -N 

NT = 0 

• Fv (J-K+n+N) 

where the values p.F.n« and V.    of the two innermost sums ire 

(p_l Ö) 

11"- -V A i-% ..% J ■ . JV-S _J. _". .%__;--*• _*• _» JS »J «\A^V^:..';J,';^,A,J.:^:^:/.".5; j '^,"^ ,*.a \« *A/jtHinfV 
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dependent on the  index  K,   in  accordance with their defining 

equati oris   ir   g i ven above. 

Equation  (B-13)   is  highly combinatorial  in the sense   that 

computation tine  increases  astronomically with  increasing W. 

However,   it  has  been programmed   for both the  IRK   1130 and  the 

CDC  6400  for  reasonable  values  of W.     (The  1130  version  of 

C0MPK  uses   (B-18)  with the restriction W425.) 

Bv reolacim? Pv(j-K+n+N)  in (B-18) bv J-K+n+N,  the 

expression becomes the expected number of penetrators  (Btf) 

given W warheads  fired,   rather than expected damage.     A 

tedious  derivation then shows that the expression  for PW 

reduces  to: 

PW(W)  = WR(l-p  ) + irO (RpA)R(l-RpA) W-K (B-rO %2P" 

where,   Tor PT< 1: 

C(0) = 0 

C(K)  - [Kd+n^pj)  - NEPj] (1-Pj) 

and.   for py = 1 : 

C(K) = 

0 (K4N-) 

K-N 
E (K>Nt 

Also,   if R = p    - 1,   equation  (B-19)   rurther reduces  to 

PW(W) - c(w) 

where C  is as given above. 

(B-20) 

k^&^£^^ 
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The apparent interpretation of CfK) is that it. is the 

exrected number of reliable and acquired ren^trators piven K 

reliable and acquired warheads. 

Since FW(W) is computationally feasible f^r  lar<*e W, fhe 

approach taken in the AEM version of C0MPK is to 4efine an 

approximate, constant probability of penetration (PP) ro^ each 

of the W attackin/? warheads, according to the equation 

ppoo - aöö. f P-oi ") U 

and then compute overall expected damage using the approximate 

expression 

P„ (W) to I = 0 Xi/ 

W-I [pp(w) j [I-PP(W)]"'
1
 • PK(I)   (p-p?) 

Thus, the pertinent computations in the simultaneous strike c?ise 

are given in equations (B~19), \Z-2l)t and (B-22), A comparison 

is given below with equation (B-18) P (w) values. 

5.  Obtaining T & P Parameters From Damage Functions 

In all defense cases, after several Pv   (W) values have been 

generated and stored, a further computational step is necessary 

in order to present the results in usable form to the AF^C main 

program. 

In general, the effect of defense on the \-    function is like 

that shown in the sketch below. 

-t.'^J-'*^. 
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1* 

,< 

Ui 
W ^r 

& y 

£e 
*  JT -r^ 

i ^t 
r- 

i ^^ 

w 

. ..' 

That is, the offense's kill probability is lowered significantly for 

low values of W, but this effect diminishes for higher values due 

to the increasing chance of defense exhaustion and leakage. This 

tends to introduce a concave region into the Pv function which, 

without defense, is convex.  However, as was discussed previously, 

the central wpn-to-tgt allocation problem is solved (in AEM) 

through the use of Lagrange multipliers, an optimization process 

which is inherently limited to convex functions. Thus, the final 

computational step is to provide a convex approximation to the 

stored P.. (W) values. This is done in subroutine FIT, which pro- 

duces new values for the parameters T and JD of equations (?), 

which, in turn, specify a convex function approximating F„ (W). 

The final fit is a two-phase process.  In the first phase, 

those P„ (W) values which will he fit by the non-linear form 

NW-T 

n 

PK(W) = 1 - (l-p)' 

are identified.  In the second, least squares estimates of the 

parameters of (B-23) are obtained for the selected ?„  (r\T) values. 

(B-??) 

\^.^ü< ^^C^^^^^^ Jt^^L*- m     r*   V. V, , 
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If NW values   of P    (W)  h^ve been  computed  and   stored   (i.e.,   ror 

W = 1,     .,NW),   the  program  first locates  the   Larpest value of 

A
T
 (-W      )   having the property; max ■ 

K       max     ->     K „ ,,   .,      , .„. 
-Q    >  —y         for ali  fc = 1,...,NW. 

max 

If W        = 1,   all  NW points  are  fit  in phase  2. max 

If W       > 1.  the  program restricts  attention to those W<W max ' max 
i 

and selects the largest of these (= W ) with the property: 

PKV-KL) - FKV) > PK*(Wfl) - PK*(W) 

for all W < W 
max. 

a, 
In this case, the phase 2 points are chosen to be the [W,P (W)J 

i 

pairs for W = W ,...,NW. 

To derive the phase 2 least squares estimates, define 

y = 1 - ox'T (B-2/,) 

as the function of interest.  (Equation (B-23) is of this form.) 

Given n observations, (x., y.), the sum of squares function to 

be minimized is 

s=D[yr(i-qVT)]?. 
i 

For sicflicity,  the  subscripts will  not be  carried   in the derivation, 

so that 

i^ii^-lvLvlvIv^Iv:^ 
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s = £[y-(i-qx-T)r 

dS 
dq 

x-Tx/    „.x  x-T-1 
- 2L(y-lV)(x-T)q 

0. 

fi:(x-T)qX~T(y-.HqX"T)  =0 

x-T,     ,._x-T> 
Exqx-T(y-lV-T)=TEqX-T(y-l+qX-r) 

^ = ?E(y-l+qX-T)qX-T(-lnq) 
di 

- 0, 

.   . 2^q       (y-l+q       )  - 0 

^ 

and   l]xqX     (y-l+qX"  ) = 0, 

Define 

yi   = Wj 

Thus 

x-T,   x-T V»    X-T/   X-T      ' v n 
L,<\     (q     -y ) = ° 

.   v     x~Tr   X~T     ' ,  - n and   2-rxq       (q       -y   j - 0. 

\x<Ütä&^^ 
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Lx /  x    T  ' v      - q   (q  -q y   )  = 0 

and   2-»xq  (q  -q y   )  - 0. 

V   2x TV   x 
Z-»q      = q   zLrQ y (B-2C) 

2x        T ^   „x   ' 
xq       = q1   ^xq y 

Xx? S(QX)2,   Ex(qX) 
Z^q y Z^xq y 

*? 

E^Ex^. 
2-fQ v        2-rf 

o. 
'q y xq y 

At this point,  the Newton-Raphson iterative scheme   (Appendix A,   eqn.   35) 

is used to  solve 

where 

F(q)  = 0 

F(q)  = A_£ 
B       D 

(B-?6) 

xN2 A=     E(qX) 

B =    EQV 

C-    Ex(qX) x,2 

D-    E xq y 

» -'J -"' -» -*-.?_* '_• *_•.'_- LAJ *tj.?A'* *****'*. A«f-f'.V.V.JT.*\JmJmJ?%!CiLfiJ\%Ä*/j&*±\^?<\\mj* 
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The derivative of F with respect to q is 

F  (q)  = __ BA'-AB'    DC'-CD' 

ET D 

where 

A    -   L^q 
x    x-1 

XQ 

xN2 '5>*fi 
2C 
q 

B' -L:   X-- »xq      y 

lr    x ' = -2.xq y 

D 
5 

■      y.   x   x-i 
C    =   Z^2xq xq 

_ 2v   2,  x^2 

U 

_ 2r   2,  Xw = -Lx  (q  ) 

= i2 
q 

D' = £x xxq      y 

_ IV   2 x   ' - -Z^x q y 

V 
q 

^LA>i>^>'^'*>wj»yv^>^Nft"AkVi 
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F  (q)  - 
q "       q 

,?u c • - 

K'(«) = i 2BC - AD  - ?DU -  CV 
,2 D' 

(R-27) 

«r 

where A,B,C,D,U and  V are as defined  above.    The  iteration equation 

is  then 

F(qJ 

F   (qK) 
(B-28) 

usirit?   (B-26)  and  (B-27),   and,  ucon  convergence,  equation  (B-2S) yields 

the expression for T: 

In   |   Lq2X]   - T(ln q) +  In   [ EqXy'] 

In A = T  (In q) + In B 

T = In A - In B 
In o (B-29) 

P 

m 
If 

The final results of this process are estimates for the parameter 

T and JD (= 1 - q) of equation (B-23), whi^n then uniquely determine the 

equation (B-12) kill probability function used in AExM. 

Examples 

Firures B-5 and B~6 give examples of the defended t^rpet com- 

putations. Figure B-5 depicts the F (W) values produced for various 

tactical situations (identified by ND0C values). The solid curves 

aäiy^j^Smk^i^^^^^^^^!,^^  -. ^V^Y^^r^i^^ 
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present the IBM 1130 result?, while the dotted curves are those " V • 

obtained by the approximate methods of C'$MPK.  (In most cir^?t 

the two coincide to within plotting accuracy and only the solid 

curves are shown.) Figure B-6 Rives the convex arcroximations 

resulting from the COMFK FR (Wj values. 

The input data used were: 

Reliability = .9 

CEF = .5 n.mi. 

Yield = 1 MT 

No. of Decoys ■ 2 

Hardness == 7 psi 

Area = 50 n.mi. 

Probability of Acquisition = .9 

Probability of Discrimination = .^75 ^Ü? 

Probability of Interception = .9 

Number of AMK's =15 

ND0C = variaole 

In all cases, the following intermediate computations resulted: 

Lethal Radius = 3.151S9 n.mi. 

LR/CEP = 6.3037S 

(L/D )2 = .62419 

T ^ .42907 

P = .01974 

wT^ 1.01841 

Initial values for the eauation (B-12) 
parameters (perfect reliability, no 
defense assumed.) 

a = .62420 

NP = 12.00000 E 

£&L^^^ 
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Specific  case   results: 

a. 

o. 

ND0C = -1: 

W - 8 

NW - 20 

T = 5.68832 

p - .21002 

WT - 11.15739 

Final  values  Tor the  eouation  (n-12) 
parameters  (resulting 

plotted  in Figure 3-6. 

a =  .064% 

ND0C = 0: 

NWUDX - 11 

Prim-Read  Assignment  (Modified Method,  Arpendix C) 

nl = 2*   n2 = ■*■  = nll  = lf  n12 ~ "*"  = ° 

w = "1 

NW = ■  17 

T = 1.14227 

P = ,17982 

wT = ■ 4.19536 

a = .10822 

ND0C = 1: 

NWUDX - 12 

w* = 1 

NW = 18 

T =  .c2651 

p -  .17380 

wT - 2.71191 

a =  .12579 

I£&£J*£±£Ä£A£MZ .»«\A ^_:*i^ J&üL^LZv^-^vlvL^>v^%^-.^^v^-i-^"-^^^^ /->^->y^->" 
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d.  ND0C * 2: 

NWUDX = 6 

w' - 7 

NW = 13 

T = 5,76818 

P = .54026 

WT s 8,36053 

6 S ,10366 

6.  Bomber Kill Probabilities 

A straightforward adaptation of all aspects of the above methodology 

is used to determine bomber kill probabilities in AEM, with number of 

SAM1s input as the number of defenders.  In this case, the assumption 

of optimum damage for penetrators is more realistic than in the missile 

case, since a certain amount of in-flight retargeting might be possible. 

However,  there  is  a basic drawback. 

The basic unit penetrating (or not penetrating) iß considered 

to be a bomb (or standoff weapon) rather than a bomber. Contrary to 

reality, it is this unit which the program regards as being reliable 

(or not), etc.  (This same difficulty is encountered in MlRV-ed 

missile cases.) The effect of this faulty conceptualization on the 

* 
*V 00 values is unknown, but believed small. 

ii^ä£^L£iL^^ 
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c•       FORCE TARGET VALUES 

Before describing a method  fci    letermir  ric   ''-:•;'•■ t i: ■*• *   values,   ;* 

would  bo valuable to  review the  requirement   r ?    :\:c    '.*■■-• ••.     *,-   was    ■■' ■ 

cussed  in Section  I,   the  reouirement   is  to   level or    i  trorn? w ir   will 

maximize the objective  function of    ;ne  opponent en£a»T'nr   • •■ -!'• v' or p. i. • • 

in some  given scenario.     This   tern- "objective   function"   ran  obviously 

take many  forms  but  in this program  it   is  visualized   is  a  fanv'lv  of 

preference  contours  which  describe  one  opponent's   relative  preference 

for reducing  Ms  own damage  (damage  limitation)  when compared  to   idi-vir? 

more damage  on  his  opponent  (assured   destruction). 

These  preference  contours  cannot  be  built   into  the model   but,   in- 

stead  can be  represented in the  form of an equivalent objective  of 

maximizing: 

VD0 - K   •   VD. (C-l) 

where: 

VDp - industrial value destroyed or,  the side hitting second 

V*D, = industrial value destroyed on the side hittinp first 

K - side 1 relative preference for damage limitation 

compared t o as sured 1estrac 11 on. 

This objective function can be used in conjunction with any net of r^o^'^^rrp 

contours in a manner now to be described. 

The key to use of preference contours is the ability to kjrive the 

maximum A.D. envelope shown on Figure (2).  The maximum A.D. envelope indi- 

cates the maximum attainable assured destruction for an attainable level 

of damage limitation.  The location of this function in the A.n. vs. D.I. 

&fcvvXv^v:».*:^/jw^ 
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fN „1 

plane is determined by such i.tems as the resources of each pile an1 the 

manageme' . of those resources. 

If a method exists to maximize the above objective function for any 

given situation, the result must be that Doint on the maximum A.D. 

envelope with slope K.  This is proven very easily is follows: 

Consider Fitrure C-"1 , wh ich s - visualization of thp VD vs. VD 

function. 

VD, -Max. A.D. Envelope 

c\ 
p > 

VD, 

VD, 

**& 

FIGURE C-l ASSURED DESTRUCTION (VD?) VS. DAMAGE LIMITATION (VD^ FUNCTION 

Now, at the achievement of a solution where VTL - K • VD- has been 

maximized the solution VD,, VD« must lie on the envelope. This ™ust be 

true because for any value of VB, any companion VD which does not lie 

on the envelope could not be the one such that VD - K • VD, is 

maximized. 

Additionally, the VD,, VD„ pair must be at the unique point on the 

envelope with slope K.  This is true because the maximum of VD - K • VD, 

means 

its 

Lji\^L^v»aV\«j!^«r^^^ i-«Jd—Jij^\_^^z.".„V.:/-3k"-V"JL/wV^*l^^ 
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** 

# *- 
VD2 - K • \,rD1 > VD? - K • VD., (C-2) 

or 

VD2 < VD + K [ VD, - VD1] (C-3) 

As in the general Lagrangian, the right side of equation (C-3) 'escribes 

a linear function of slope K passing through the point VD, . VD_ when 
1 *   2 

VD, = VD'. Since VD- is < this function for any other value of VD,, the 

a        •)■< 
VD, , VD„ solution must lie on the max. A.D. envelope at the point where 

the tangent has a slope of K.  (It is important to note that the above 

must only be true if the max. A.D. envelope is convex so that the uniaue 

tangent point does exist). 

Since maximizing VD^ - K • VD , results in one point on the max A.D. 

envelope it is possible to obtain multiple solutions for various K values 

so the complete envelope can be obtained in a numerical approximation 

form. Thus, given that a program can be developed to maximize the above 

simple function that same program is useful for any preference contoi rs 

of interest. The development of a generally useful program resolves down 

to the problem of obtaining one which will max. [ VD« - K • VD,]. 

Of the many schemes which might be used to maxiTize the delta damage, 

the one chosen for this model is the one that exploits the availability 

of a linear value scale oriented weapon allocation procedure.  In Part A 

of this chapter such a method was described.  That method can be used to 

optimally allocate weapons to a set of targets where each target is 

represented by a constant value, V. returned if that target is destroyed. 

To see how such an allocation procedure mirht he used to maximize 

delta damage consider again the scenario of Fi.^ur^ 1.  As RFD is setting 
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up his strike he know? what values will be iestroyed r^r  ^ach BLUE industrial 

target he iestrv   These value? are an inrut to the program and -<;rht be 

based on populatioi , MVA, in ins trial floor spare or any other VTIUP svstnm. 

However, RED does n 't possess any similar values for BLUE wearons.  InstcH 

he knows that he wan's to maximize the lelta damaee. 

Also, RED realizes that if he did place values on BLUE weapons th« not 

effect is a control  ver the allocation procedure.  That ^s, hiph vilups 

on BLUE weapons compa;     the values on BLUE industry results in hieh 

counterforce attacks w!  . result in reduced damage to RED industry when 

BLUE retaliates. When the !    -eapon values are low, the oprosit" «effect 

occurs. 

Following the above line of reasoning, it appears reasonable to 

suspect that there might he some special set of values V\ to jlace on PLUE 

weapons such that the allocation procedure is indirectly led to an attack 

allocation which maximizes delta damage.  If such a set of values exists, 

it would be necessary to develop an efficient procedure for finding them. 

In summary, the nacure o[  bhe procedure utilized in this program for 

the above is as follows: 

STEP 1:  Choose an arbiti iry set  of values for RED to rl^ce on 

BLUE weapuiis. 

STEP 2: Optimally allocate RED weapons to all BLUE targets. 

STEP 3:  Compute expected BLUE surviving weapons. 

STEP U'     Optimally allocate expected BLUE survivors to all RED 

targets. 

STEP 5:  Make a new set of BLUE weapon values equal, to K tim^s 

the weapon multiplier values resulting rrom STEr U  ind 

return to STEP ?.  Stop VJ\ en the value scales converge. 

X?? 

s 
V„!m-*»-?* J^ A. *_■*-£_'-«-"-* .'•* *.A '_IL '.i,'.' /^- "_"..' -C *^L_V "«.*v.'-fc.' ■m*J^J^L*m*J'j>->  «T "«.- '."--"_•' "-"•. "*-* "<• *J" . 
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It   can be  shown  that   this procedure   ic  (njarantpe^   t  •   find  it     east   q   In 

optimum in  t:i€ ma;.,   delta   lama^  function but  '• .riobal   rr-»y:n-!.>r   rq-not 

be guaranteed.     However,   considerable  experience wi * I    tb*3  rr-'vedur«   bar 

led  to  the   development   of sub-sters  in  the  procedure whir!   r*i* iri**   tb^ 

possibility of overlooking global  maxima. 

To see that  local   optima are  guaranteed,   consider  'he  rr^edun    a1 

STEF 5  just  after BLUE surviving weapons  have been  allocated.     STEr  c; 

chooses  a value  for BLUE weapon target  ,'  to be V,  ": K   •   A     where  i 

identifies  the  BLUE weapon tyre  based  at target   j.     Then,  when  the 

procedure  returns  to STEF 2,   RED's  objective   in  the weapon  allocation 

procedure  is  to maximize the  sum of value  destroyed  or,  force  targets 

plus the  value destroyed on  industrial   targets,  or 

** 
MAX H = 

~B r R 

J = i 

1.1 

1-1 

+  VD B 
ff!-' ) 

where: 

VTL = BLUE industrial value destroyed 

F„ = number of BLUE \ japon targets 

V. - value of each weapon target 

I  = number of different tyres of RED weanonj 

However, this is equivalent to the following: 

h 
MAX H =2 VJ Nk " "hi*  nB 

k = 1 

c-< 

^.•^^;V^-V^%V^A;J^ 
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where: 

N, = total number of BLUE weapons of type k 

NS = number of survivors of BLUE tyre k w^sror.s 

I = total number of tyres of BLUE weapons 

This equivalence is obtained simply by grouping all F_ BLUE weapon targets 

into I distinct types and summing up the total survivors as follows 

■,-« 

NS, -S>TK 
.1 = 1   i = 1 

N. . 
lj 

(C-6) 

where: 

X - 1 if j identifies a target of type K 

X = 0 otherwise 

But, STEP 5 chose as a weapon value for BLUE weapons the amount 
<**' 

vk = K* K (C-7) 

where: 

X, = weapon A of the last time BLUE allocated his survivors. 

Substitution of (C-7) into (C-5) yields the equivalent RED objective of 

r-        L 

max E K x* [NK-NSK] N.   - NS,    ^   + VDn k k I B 
k - 1 

(C-A) 

which  is  the  same as 

max VDB-K • £ v NSk + Vp 

k = 1 

(C-9) 

ti_^_k_5fc. L^lri.
,!».iJIl,"iJL <- V       ,fc.-V-V^ v.   .   *•..■ -N .s.  *■ Lt.*.». . ».TJU fcJI «J *. ■ « 
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where: 

'H 

Vp =  K E v;* 
k - 1 

At STEP  2 this  objective function would  be maxirrizt-'  and  some NS,   would 
k 

* 
result.  It will now be shown that the value destroyed on RED hv the NS. 

k 

must be such that the delta damage from the last chase to this phase rust 

not have diminished. In other words, that 

VD* - K -VD* > VDg - K • VDjj (C-10) 

First, note that the solution VDD and NSV maximize equation (C-9), or 

k = 1 k = 1 

VDB - K • E X'IKsk+ \ - TOB - K • E xk Ksk+ -v    (c-n) 

for any other combination of VD_ and NS,   attainable.    More specifically 

for the VDn and NS,    combination  resulting from the last  set  of  force 

values.     Thus 

h h 
VDB -*• E xkNsk * VDB-K ■ E xk< (c-i?) 

k - 1 k = 1 

where: 

* denotes the new solution resulting  from the K •   A,   values 

f  denotes the  last  solution 

However,   at the completion of STEP U usinp the previous  set of values, 

there  was some accomplished value destroyed by the then  existent  number of 

I 

* //v v/'^x - ;-v v ^ CJ±^ 
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•J BLUE  survivors.     Since  those  survivors  were allocated   bv  the  La^rarrrian 

Q method,   it.  can be said  that 

i VR - 7DR +   Z     Xk  <   *   VR " ^R +   E     Xk  *sk «^ 
I k   -   1 k = 1 

where: 

Vn = total  RED    ndustrial  value 

I 
•r

m4 NS,   ~ iiumbj.-    f   bi/JE weapons  surviving RED's attack on last 

f% L deration 
/«• t 
« VDr      RED value  destroyed  by BLUE'S  survivors 
i- ■ 

A,   - optimal   set  of   \. 
VJ K r k 

■g This equates to 

:jj VD;;    : ' x; »;    VÜR - ^J  \J mk (c-u) 
I k - J k - 1 

!". it can b< aaid Lhai equation (C-14) would hold even when VD_ and NS. take 

'«V on the values oi NS, and V'0T, which are point? to result from the n^xt 

jK iteration.  This means tha" 

>i Z xkNSk^ VDR"VDI+ Z xkNSk (c-lf) 

9 k • * 1 k -■ 1 

> Substitution of (C-15) into (C-12) is possible without changing the 

$ I ■s B 

Si ineauality sine«?  the    /        X,   MS,   on the  ripht side of eouation  (C-12) 
fi i—j k      k 

V. 
V, 

%* 
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is preceded b\ a negative and a number > than )   A». NS. is replacing L 
that, term. Doing so yields 

«W 

VDB 
k = 1 

XIK VrDr - K 
B 

VD ZA,'   NS* 

k ==  L 

(C-   '  i 

This  reduces to  the desired  form which says that  the new solution is   >   the 

previous  solution,  or 

VD* - K • VD* > VDI - K  •  VD* 
2 au it 

;c-i?) 

The above proof very simply says that use of the A, from BLUE's 
K 

allocation  as a basis for weapon target values  in RED's  allocation is 

guaranteed to not result  in a  iegradation to the  overall objective   func- 

tion.    However,   it does not say that another solution which  achieves a 

hi ig her payoff doesn't exist. 

As  in many other mathematical optimization problems,   there is always 

the thought that  the  convergence to a global   optimum can be partially 

guaranteed oy  solving a lc ,al  optimization     «■   .   *>rr  several   times with 

different starting points.     If all of the, , ;s  converge to the  same 

solution,  there  is some  confidence that a gloh  1   optimum was   found. 

In  this  case such a procedure has been   found to work v^ry well.     Tn 

fact,  only one solution is  generally found  if the  starting value scales 

for use  in STEP 1 are appropriately chosen.     Experience   Indicated   that   if 

a non-global  optimum is  found  the  most  common error  is  j.hat. hli1?,  r:>r''-e 

targets  were not attacked  heav:ly enough.     It  has  turned  out  'hat   if the 

starting BLUE weapon values  are  chosen to be very  high  co~par< 1   to  RUT! 

industrial values   (say a   10   to   1  ratio)   the  process  will   converge   to  a 

gj&jafc&^ä^^ VL'V J*. La* I 
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near global maximum in one series of steps through the process, 

a.  Defense Effect on Force Values 

Before leaving this U nie • t' weapon value scales, it would be 

appropriate I  iiscuss one special case which Ls important.  In certain 

instances, e.g. when attacking a bember fleet, attack on a target not 

only reduces the .surviving force by some amount but rlso reduces 

slightly the effectiveness of the other survivors.  In such a case 

the api ' >priate value is not exactly K * X .• 

For ■ xample, if a bomber fleet lias to penetrate an area defense, 

the average rdbability of penetration of one member of the fleet might 

well depend upon the total number of bombers in the fleet. That is a 

fleet of  W bombers might have a probability of penetration of P while 

W = W - X bombers would have a probability of penetration P (P .  In 

such a case destruction of one bomber does not reduce the capability 
i 

3f the surviving force by K ' X. but it does reduce it by 
l 

V. K    K j X.  -|- MU0 (C-18) 

Where: 

V| - approximate value saved If one less weapon of type i 

survives 

X. s value saved because one weapon of type i does not attack 

a target 

MU0 = marginal value saved because one less weapon interacts 

with the area defense and all the other weapons which 

do survive nave a probability of penetration lower 

than what they would have if the weapon was not destroyed 

C^>*/^jf»*r^£i^%jfO"iU?t^cVcuV^ tim t'*jL*£m '"«C »/«•.•.•-* ■■V.'.V.'.V«.'- -*• ■'■.'■/'-» *^a,,?^,*^.J 
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«» 

MUJD ■■ r::-uv:;tna! impnct of having > n« loss bjeol encountered 

by 4 - let'en: < 

Of intere; I here !  the MU0 • .mponent  t' ^qsati ; (C-U ).  11 P 

the factor thai alluv; r' r specific : ruolderati n ■ f the dilution effect 

present in random area defenses. 

in Section G, random missile and area defences are presented and 

the basic equations discussed.  Fhose equations relate the bomber (or 

missile) probability of penetration I  the totaJ number of bombers 

(missiles) in trio attack.  Thus, the dilution factor is directly com- 

putable. 

Deri/ed In Section G is the method tor computing the marginal 

impact of having one more defender.  This marginal impact is shown to 

he equal to 

MUI E     J '   ' 
.1 = 1 

snr  L ^PJ (C-19) 

Where: 

MUI = marginal value of having one mere interceptor 

J = target subscript 

T = total number of targets 

VD. = value destroyed on target j under the existing 

allocation 

P = appropriate weapon probability of penetration 

D = total number of defenders 

By use of this relationship and equations (C.r-8), or (G-ll), and (G-9), 

MUI can bo computed. 

^^;-^^^aa*j^^:v^^^ üiü 
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Using the sam< equat ; ;..-, ii u, possible to dem titrate oha! ':.■ 

marginal value I  I :e ! fense ;' having m ! ess bject al tack Lng, MU0, 

equates to MUI as £'< 1' w.': 

MIT0 - MUT  ~ (C-2u) 

Where: 

SM = ' tal number of reliable, acquired and und!scrimnated 

objects presented to the defense 

Thus, it is possible tc use the random defense marginal utility, MUI, 

in a given strike (like the second strike in Figure u) to provide a 

basis for the MU0 term In C-l8.  This then leads to a value to place 

on the force target in strike one such that the attack which maximizes 

the delta will result. 

The two components of equation (C-l8) allow for the fact that 

destruction of a weapon causes degradation of the total force effective- 

ness due to a dependency on the total number of survivors and for the 

fact that not only has the force been degraded but there is also one 

less member in the force, 

In general, the ■   y   instances where this form of a value is used is 

in the random defense environment.  If it is used, however, the con- 

vergence proof., cl-o still hold, 

h.   Secondary J>< Lfca  nnage Criteria 

In some special c  es it is necessary to have a capability for using 

a secondary criteria for si ose situations when maximizing delta damage 

leads to allocations which . e only marginally better than other potential 

allocations,  in such o  , the use of a secondary criteria is desirable 

fcr use to help choose fro among alternate strategies generated in the 

a 1 toca ti.on p roc es s . 
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This event usually occurs when arsenals are used which have very 

high assured destruction capabilities.  In such cases, the delta damage 

computed may fluctuate due to small numerical differences in the strategy 

sets selected and the resulting force values computed,  For these eases, 

the optimal delta damage normally sought by AEM loses some of its meaning 

since the expected delta damage is scarcely controlled by the initiator. 

In such a circumstance it would be desirable to improve the consis- 

tency of case results as opposed to improving the delta damage optimality. 

This consistency can be obtained by means of a secondary criteria which 

is queried if the delta damage is within a specified range of the maxi- 

mum found. The best answer is assumed to be that answer which has the 

best solution in terms of the secondary criteria that is within a specific- 

range of the maximum delta damage found.  Note that the secondary criteria 

is not an allocation objective and is therefore not maximized by the 

allocation process.  Rather, the results which incidentally produces the 

best result in the secondary criteria is preferred as long as the delta 

damage penalty is within a specified tolerance. 

Th^re are several candidate criteria to be considered. For instance, 

an attack plan which achieves the highest UMT target damage may be 

preferred if the delta damage is not drastically affected. There are many 

criteria of this type which could be formulated which state a preference 

between attack plans which result in nearly equivalent damage.  However, 

these preferences could be directly controlled by use of hedges which 

would include these preferences during the plai: generation.  Since this 

development is a post-attack evaluation, to choose between competing attach 

plans, we are more concerned with a reasonable criteria for a more general 

case. 

S&££££^^ 
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There are several causes of delta damage instability. Non-linearities 

in survivability effects, retargeting effects, and random defense effects 

frequently prevent the best delta damage from being found.  In addition, 

if both arsana Is can accomplish very high damage levels independent of 

the level of any counter force attack, the resulting delta damage is 

reasonably insensitive to the allocation.  In an extreme case, there is 

no real benefit in even performing a counter force strike if the opponent 

can still achieve virtually 100 percent damage in his retaliation. In 

all these cases it seems prudent to prefer a heavier counter force attack. 

This is true if one assumes the retaliation may have an increased uncer- 

tainty in achieving the best expected damage if weapon survivability is 

relatively low. Note that ASM consideres only prompt nuclear effects 

and assumes command and control as being reasonably independent by weapon 

type. If all operational factors could be considered, it is likely 

that a counter force attack is in reality more destructive than is cur- 

rently modeled in AEM. 

In addition, delta damage may be the same at more than one level of 

civilian damage, e.g., if delta damage is 10, the damage levels could be 

50-40 or 100-90.  in this case the lower damage levels seem more desirable 

since the retaliation is more sensitive to the attack plan and the implied 

uncertainty of the retaliator capability to accomplish the best plan is 

increased. 

It was felt that for competing attack plans which result in reason- 

ably close expected delta damages, preference should be given to the plan 

**r* 

ii&i^ü^^ 
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having the greater counter force attack. The question then becomes one 

of d~fining a greater counter force attack. Several options are open: 

the secondary criteria could be the lowest non-force damage by the ini­

tiator, which implies the highest force attack; or the fewest number of 

retaliating warheads; or the fewest surviving bases after the first strike, 

etc. Any of these could have been selected. However, most inconsistencies 

have appeared in the attack on ICBM silos. Since the secondary criteria 

is not maximized but is used to fmprove consistencies over a range of 

force options, this was the selected secondary criteria model, i.e., the 

attack plan incidentally generated which results in an expected delta 

d .. ge no leas than a specified IIIIIOU1lt leas than the beat ODe generated 

which results in the fewett survivips IGIK's 1e the preferred plan. 

!be -.aunt of delta d .. p which is allowed to be lost to acbiave 

th11 secODdary criteria ll 1pecified by input u follov1: 

IIPJ.'OL • the .uta. penalty in delta d-p to be allowed while 

couiderina the aecODdary criteria of fwut lurri.vtng 

IC. wupoas. 

Lat us conaider a case which baa the following expected re.ult•~ 

IteratiOD Delta n-u Sutyivina ICIH! 
1 -106 120 

2 20 375 

3 (lest Delta) 32 300 

4 27 290 

5 31 314 
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If RErtOL is less than 5, iteration number 3 would be the preferred 

attack plan since it has the best delta damage (and fewer surviving ICBM 

than iteration five). If REPTOL is greater than five, iteration number 4 

would be the preferred attack plan since there are fewer surviving ICBM'a 

aDd the delta damage is within RIPTOL of the best delta damage. 

!his criteria thus for.a a stateable bias toward the heavier counter 

fo~e attacka. Whether minimizing the surviving ICBH'a within a specified 

ranse of the best delta damage provide• sufficient consiatency will only 

be dete~ed by aualytic utility of AEK. 

• 4 I \IJ t·~ 41 "J: lj - ft '. .. f ...... --...-....-..... ~ .................. ~ 
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D. COUNTERVALUE DAMAGE CONSTRAINTS 

Even though this program can be used to gener~te optimum strategies 

tor any set ot preference contours (by use of the K factor in the rlelta 

damage tunction) there is a strong requirement to be able to finrt ~ 

optimum solution in one run on the computer without making ~lti~le 

runs tor various values or K. The best current solution to this need 

is the one described in Section I. Namely, the use of K = 1 plus a 

maximum allowed inrlustrial value ~estroyed on your op~nent. 

As diagrammed in Figure (6), this objective has a solution which 

occurs in one ot two places on the max. A.D. envelope. If the location 

on the envelope with slope • 1. occurs at an a!sured 1estruction level 

leas than the max. allowed level the desired solution is at the unity 

slope location. However, it the unity slope location is above the max. 

desired A.D. the desired solution is at that location where the A.D. • 

.ax. allowed A.D. 

It hae been poesible to aodit7 the basic weapon allocation •nd val~• 

ecale deter&ination process described preYiously so that the desired one 

ot the two poseible solution locations is ~etermined in one com~ter run. 

Th1e is actieYed b7 ap~ropriate use ~r the flexibility or the linear 

propua uud to opt1all7 allocate weapons. 

No~, the objective or the progra~ is te maximiz• 1elt• ~am&Pe 

(VD8 - I • VD1) w1 thin constraints on weapon Arvt tart:et quant 1 ti.~s. The 

aboYe desired lt.itation on countervalue 1estrurtion e•r. ~e vt~weA ~~ 

another constraint like 

(0-l) 

tllhere: 

VDL • max. desired ~estruet!on on Ril~ in1ustrial v~lue. --~ ..x. 

IV-0-1 
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This constraint will not interfere with the solution if the unit7 

slope condition is for a vn8 ~ VD8 max. and it will locate that point 

with the minimum possible VD1 at VD8 • VD8 max. if the second location 

tor the unity slope occurs. Very otten this second condition is the one 

that holds and the program then tinds those strategies which achieve 

a desired A.D. in such a waJ that R!D has a minimum loss. In the 

context ot the current concepts about A.D. and D.L. this is a ver,y 

compatible statement about the possible objectives ot a countr,r. 

As simple as this constraint is, it does interfere with the ODtimum 

~i iteration process in the L.P. it the solution to be obtain~~ is at 

VDg • VD8 max. To realize how t~is interrerenee oeeurs, let us review 

the ~ iteration process. 

Beainning with 1011te set or ~i' a set or preferred stratedes are 

found tor each target. The L.P. then chooses !1'0111 amo"-' those str•tedll 

the aet which maximizes total value ~estro,red. As a bJ-product, the L.P. 

also produces a new set ot .A1 which should allow determination or an ••en 

better set or strate1ies. 

At 1n1 step in this iteration the currentl7 most preterred stratee7 

* N1J tor tl.rget j is the one with 

ITI N;J ~ 
llin. H • 'J s1J + £,., 

i • 1 1 • 1 
(!l-2) 

'fhia sped tic atrateu vill iiiJ)rov• t.he answer (Ret. (I..) an-' ( 15)) only 1t 

the tollowins condition holds 



• 

where: 

vj = value or target j 

H i = minimum solution to equation (D-2) m n. 

Aj z target ~obtained from the last L.P. 

The new item in equation (D-3) is the target A. Remember that the weapon 

~·~ obtained tram the L.P. represent the amount or value destroyed which 

would be lost it the 1!h weapon constraint was tightened by one unit. 

Similarly, there are target ~ 's which represent the value "'estroyed which 
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would be lost it the target J constraint was tightened by one unit. With­

in these detini tiona ot A 1 and A j it is easy to underst vtd equation (0-3). 

Firat, consider equation (D-2). The first term indicates the value 

surviving on target j it attacked by the strate17 { N:j} . But, those 

weapons in the at tack 1111t be re1110ved ti'OIII 10111 other tarcet ant! value 

delti'OJtcl .. t decrease on thoee tarsets. The ~ 
1 

essentiallr rePrtJeent 

this uount. ot value dnti"O)"ed ..,hen up tor each weapon or t::rPt 1 ttinrttcl 

tro. ea.. other taZORet. (The "1"7 definition or A1 dictates that this 

be tNe.) Thus, equation (D-2), when llinillised, represents the !!!! value 

au.rvivinc in the !:~ ta!'let c011r:lex it tarset .1 wu to be attacked b7 

atrateg { rc;j} . 
However, it t.arpt J 1a t.o be attacked by this new atrateg { •:j} 

the wapone att.ackins that t.arset in the lut L. P. IIUat be diverted 

elawhlre. In doiftl so there will. be a net. lo11 1n value 'ieatroJed, 'Mhich 

Thia new strateu tor ta..,; .. t J will be an brroYftlnt oYer tt-e rrenoua 

solution unlJ it the new~ to attack tarset j reaulta in a net. increaae 

in valu~ dlltro,rtd. That ia, it 

. 
• 
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I 
~ 

b 
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1 = 1 

I N 
Or, it the value ~estroyed on target j (Vj - Vj n Sij ij} excee'is tt:e 

i = 1 

I 

loaa ~ because weapons were shifted rrom other tar~et~ to this 

1 .. 1 

one plus the loss ( ~j) because weapons currently attaekin« this tar~et 

had to go elsewhere. 

With this visualization or the L.P. iteration process, it ia r.o~sible 

to unconr the proble• uaociated with the damage constraint (VD8 ~ VD8 max.) 

It the above proceaa is beinl applied to a countervalue ta~et, the 

question about a liven ltrateg { Nij} beins an improYement (u :tescrl~d by e 
equation (D-3)) ~mat be expan1ed. It the dua"e conatrllint ta not beins 

•t, then q illproYed atrateg can -.ter into the solution. Hownr, 

it the dallas• constraint 1a exact.lJ Mt, the new atratev !lUst "o more 

than ••t the condition ot equation (D-3) because no increuett ,.elta 

daaase ia allowed on the Yalue tarseta. 

The pneral L. P. Yerdon or equation (D-)) haa a tol'll (Ret. (I&)) 

u tollowa& 

• 
Ptl) ~ L 

1 • 1 

P(X) • ptJOtt tro. atratecJ I 

I 

E
1 

• constraint i .ultirlier rroe the last t.r. 

(D-5) 

• • ~ - .; ~ • ; • - .... ;o, • 6 ........... .-. ... ----.-. ... ~~ .. ;;....,.~~,._,.~ .. -~~~~_.-,_.~-~,ioZ ....... ,. .w-z: •.• •. ~•••·•--•'.•'·..,•._' 
. - -- - ~--........................... -.---. ......... t 
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In the case ~ust described P(X) is Vj - Vj Si,i l :tn1 tt;e ~i -'\r"! U:~; 

~1 when 1 ~ iS I and ~j when 1 = j. The p; i (X) = N i j when 1 ~ i 5 I 'l.n1 

g1 (X) '"" 1 when i • j since the strategy apr! ies to only one t.'\!"Pet. 

In the case when there is a dama!e constr~tnt, thP.re i~ one a~~i-

tional component or equation (D-5), namely when 1 = k where k i~entifiP~ 

the damage conatraint. When 1 • k, the c1(X) mut~~t equal P(X) slnC'e t.l't.'\t 

is the amount ot the d..a(e conatr~int used up by strate~y X. 
t I 

Nov, 'What ia .\1 when 1 - k"! The definition or Ak is the Stl\l"',i~rti 

one ot 11 the value 1eetro7ea ;·4!duction it constraint k h ti~ht.eneri by 
t 

one unit." Thua .\k will equal aero it in the hat t.P. the rhun&PP. ccn· 

et.raint was not Mt. In such a eaae, equation (D-5) redueea to e':luation 
t 

(D-)). It in the laet L.P. the d~e eo':'l'traint w11s ut, .\k will have 

a tinite, positive walue and equation (D-3) takes on the new ro~ or 

I 

L 
wheroa 

Ak • d...,e eonet.raint lubda 

(!beN 11 U obYioua ph,Jaical interpretation ot l<nJ&t.ions (')-~) n~ ('0-6) 

llke the one tor equaUone (!>-)) arri (0-4).) 

N s 1.~ 
ij 

I 

L 
i • 1 

• " ~ I ~ - --

TV-0-5 

I 
I 
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!xeept tor the (1 - ~k) multinlier of VJ in this equation it is thP. !'&me, 

ettectively, as equation (D-3). This indicates that when strBte~ies are 

being develo~d tor countervalue targets the optimum str~te~y is one 

that minimizes the lagrangian, H, tor that tarv,et with an errectiv~ value 

This result identities the ettect ot addin, a damaPe constraint to 

the L.P. iteration process. Thft impact is a ver,r sli~ht ~itication ot 

the ba1ic process to the extent that the LawranRtan tor the count~rvalue 

* t&r&~t ... should be llinillized tor an errective value V j • V j (1 - .,\k) 

rather than tor a value ot Vj. Civen this modification, the process te 

!Uaranteed to converre to optiJD&l allocatione. 

Ot equal iiiiPOrtance h the thou~ht that al1110et any t7re or constraint 

could t>. added to the L. P. and the lambda eonverpnce would occur u 

lone u the appropriate proee11 ehan,:e was itientitied b7 the above ~~ethod. 

Other exaaplea ot such an appl1cat.1on will be deaeribed in eon~unetion 

witt. the deecri~ion ot optimiztnc a reserve torce selection and opt1m1a1n, 

a tint. at.rike countorv&lue etrike when it ta known t.hat a later atrike 

on the , ... tarceta will o~cur. 

. . . ..... -- ... 
.... ,~ ... · ... ' , . ...,._,. 
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E. 9PTIMUM RES~RV~ FORCE CHOICE 

In one of t,he ha~>.i.c scel'larios that can be ana.lyze<:i by u!Oe of thi" 

:nodel. (Figure 3), the side hitting first attacks only countP-rforce while 

m~intainin~ ! reserve fnr future strikes. The preferre~ r~servP force is 

df:s1gnaLed to be tnat one which results in maximum ".el ta ':lamaP"e if the 

retc:Ll i;ttlon is l'lgainst both force and value tarr(ets as .1i::u~rammeci in F1!!ure 3. 

Several different techniljues have been utilized in the reserve force 

choice methodology, however only the current, and best methorl will be 

r:iescribed. The methcd utilizes the basic L.P. process plus the by-products 

of the multiplier method to determine the optimum reserve in very few 

iterations by the ppogram. 

Consider RED's allocation problem in his first strike counterforce. 

The alloeat.i.on process he uses must determine the ootimum division of the 

complete force into those weapons which are to be used in the fjrst strike 

and those weapon~ which are to be pl~ced into reserve. Additionally, the 

weapons being fired in the first strike must have specific t.rtrgeto assiP:ned 

to them. These divisions and allocations must he such that the maximum 

delta damage results. 

Once RED has dec:i.rled upon a first strike allocation BLUE then cq,n 

ut iUze his survivors to minimize the delta damage that RRD is trying to 

maximize. Thus, the pure counterforce scenario of Figure 3 cAn be visuAl-

ized as a firnt strike by RED followe~ by a scenario like that of Figure 1 

except wHh BLUE hitting first. Viewed in this way, it '..:n.n be seen that 

after HED has hit first it is necess.'J.ry to go through a fort'e v-a1ue scale 

iteration proce8s for BUffi so that his attempt to minimize the ~elt~ 

ctnmnge ie raprcncnted. 
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After BLUE's ort:l.mization process is comrleted, it he comes arrrorrlnte 

to ask how RED might affect the outcome by strikinv differently in hh 

first strike. If a different RED allocation wh icb noes increase thP 

delta damage can be determined, it would then be necessar;r to give BLU!;: 

another opportunity to re-optimize the delta damage as much ns he can. 

By appropriate use of such a sequence of fictitious plays, it is possible 

to finally arrive at a point where RED cannot ':letermine a metho·1 for 

improving the delta damage and a max-min solution exists. 

Consider the use of BLUE weapon lambdas as a basis for the values to 

place on BLUE 1 s forces. It was--- shown in Part C that use of the wearon 

lambdas does result in convergence to at le~st a local optimum in the 

delta damage so it would be suspected that for thG weapons RED uses in 

his first strike the values placed on BLUE forces cou1d be derived in 

exactly the same manner. 

To verify this, consider RED's overall problem of optimizin~ his 

first strike in two distinct steps. Assume, first that RED has ~er.ided 

which weapons should go into reserve. Given this situation, his only 

problem is to optimally allocate the first strike weapons. 
I 

Given that RED places a value of AB on BLUE forces, his objective is 

to use his first strike weapons to: 

max (E-1) 

where: 

FB = number of BLUE weapon targets 

IR = number of typ~s of R'!!:D w~apone 

I 

As ""' lambda or whatever type of weanon the j t.h P.".lW. 
j 

weapon is 

' . . . . . . . ... . . -



However, this is equivalent to 

'V--..T 

max AB \\ ' H (:<" ■ '! 

where: 

I    = number of different  tyres  of BTUE w-arons 

N,   - total  number of  BLUE wearons  of tvre k 
k 

K;S, ■•- number of survivors of weapon tyre k 
K 

}oliowing the same  pattern  as   in equations   (C-B)   to   (C-12),   this  can b< 

shown to be the  equivalent  of 

h 
E x\ K -< E ABk Ns

k 
(rr-')) 

k = 1 k - 1 

where: 

* denotes the current solution 

1 denotes the previous solution 

However, assuming that BLUE is using a Lagransrian allocation which has 

found a global minimum to V"D - K • V^D, the result of his last allocation 

was such that 

combining  (E-3)  and   {E-U)   result  in 

VDB - K  -  VDR + NS,    <   VD" - K  •  VD0 + 
k      k B R J> NS. 

k 
(E-/J 

VD"  - K   '   VD*   >  V'D'   - K   *  VD* 
a ft ti IT 

,'TT^f. 1 

which snows  that use of  the   An  for   iterative  BLUF *e  values   Ices   res1 II 
B 

in at  least a local  ortima. 

-: •\'-r/-'.v.' •.'■•/-•."-*»'•".V.%'-"-,."-\'-v-'-V ."■•-"••■ .•^»IV'.v-.v: 
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To understand  the method  for changing RED's  reserve aft^r he has 

optimized  his  attack  for a current reserve,   consiier the   marginal   effect 

of changing one weapon  from the  first  strike to  reserve. 

For the  current  reserve the weapon has  a  value   TS us^d   in the-'   first. 
j 

strike. This value is eauivalent to An , the lambda or that wearon in ftm 

the   first   strike.     Also,   if the wearon  was   placed   in   riic;ervp  an^   survived, 

it would  have a  value  in ptrrVs  second  strike.     This  value  is  equivalent 
ii 

to AL  the lambda of that wearon in the seconi strike, 
run 

However, the weapon must survive BLUE's attack before it can accumu- 

late any value in RED's 2nd strike«  The probability that it does survive 

depends upon the nature of BLUE's utilization of the extra weapons that 

survive because RED has one less attacker in his first strike.  It also 

depends upon BLUE's treatment of RED targets if he knew RED had placed 

one more weapon in reserve. 

This complex interaction results in some net marginal value of the 

new weapon placed in reserve.  The final net value takes on iifferent 

ferns depending upon the nature of BLUE's knowledge about RED's action. 

Assume that BLUE has a launch detection or empty-hole ietection 

system.  Then if RED fires one less weapon BLUE will a'd one target to 

his counterforce system.  The net value RED will achieve because he creates 

a new target can be determined by computing a Lasrranpian for this new targets 

By the Lagrangian it can be said that 

AV = mil 

T 
B 

xl  IT s. - + T x' 
km  i     im       l-~ä        Bi 

N. 
i m 

(E-6) 

■'^.'. A..*,;. '-* .V. '^L :.-r...'w-J«' V -V-V- ^-A .f,\%^^r.t"m..fiA.r"m. ;*»-•_ »~* ^" A. ,H.. l" V^V"-'V\%'-^ .AtL'* J*» A >.V .'ai.v.i '\ M. &*JL^LM ^J^A^AJA V. 1 ■^kuSa «C_« 
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where: 

■A V  ..ot value to K?*JD for the weapon placed in r^s^rve 

A    value of the RED wearer placed in reserve 
Km 

X, .   -   weapon X öf PIl'E weaeon type i 
Bi 

5.  - probability of survival of a target of tvoe m when 
i m 

attacked by one weapon of tyre i 

The final net contribution to the ielta da*nage of this new RED reserve 

weapon must be the difference between the rain by the reserve weapon 

and the loss because there is one less first strike weapon. Thus, the 

net benefit, AV o£  one more reserve weapon in this case becomes 

km 

t 

This is only approximate because the An. involved in AV are marginal 

values which can change for slight changes in the target structure.  It 

i 

is also approximate because AD. might be at such a point that it could 
rti 

change for a small change in RED's attack level.  mr;e degree of approxima- 

tion is probably very small for a one unit change in the reserve level. 

If BLUE does not nave ar emcty-hole detection system, he might have 

a bomb i'.-pact system which counts the number of each type of RED weapons 

impacting en hum.  In such a case, BLUE do?s not change the number of 

targets in his system but instead modifies the value, placed on each 

target by the probability that s weapon is still at tae h"j'-e. This 

value applies to all bases of n  given type. 

In this case, BLUE would possibly change his way of attacking the 

RED targets.  The net effect can )ga1-n be obt**i ne-*1 by using the Lagrangian. 

tttt «■■lli ,.,.^-A,.'. ».I ..J^-M.!?..*.,^ m." j B.AA^a^3t.«*H»,'!k Aä JJA wjL^-iLjta, JVL!ifcL2k —VC»"..V. At\..m\In,.Ctm", *w\ ^* a.'. ~ 
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Before the extra weapon was*placed   into  reserve,   U:P not   surviving  vlue 

of all  weapons  of a  river:   tyre was  friven  bv 

1        m 

where: 

Min 
\   ^    N    / i-m *   J        Bi   'im 
X m '    i = 1 i   ■    1 

M    = total  number of RED weapons of a  eriven  tyre 
m 

N__ = current  number of weapons   in  reserve   for that  tvre 
RR 

After placing one  rr.ore weapon   in  reserve,  the   -hove becomes 

(T7_S) 

2        m 
Mi 11 n x (N      + 1) V  RR ' 

Rm      \T 

im 

] m ■L x; P <:    'im 
i = 1 

(E-9) 

Thus,   in  this  case,   the approximate  total  net  benefit  of adding  a wear-on 

into  reserve  becomes 

*# 

AV«AV2    -   AV:-ARm (E-10) 

Generally the optimum solutions to equations   (E-8)  and   (E-9) will   he 

identical  since  for any  reasonable values   for N    ani N--   it would  be true  that 
m RR 

X"    NRfi ~x''   ^ + 1} 

Rm      N Rir.      ^ 
m m 

and  the  optimum integer attack strategy 

will  not  change. 

AV « PS 

In such  a  • Lse  (E-10)   reduces  to 

Rm R 
x: - x, 

Rm (E-ll) 

»'-'''•-'■'• A>- ^~ ^.Vt^/.-^ *-'-^ W.C.iJ Vr^i]^<j:Vvoj^''^^^^^ 
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PS 

b N   . 
S. im 

Rm 
i = 1 

srz> 

= probability  of survival   of  in   sveraee 

target  of  type m wüft  th     current   reserve  level. 

For the purpose of discussion,  assume  that this  last  circumstance  is 

the  case.     Then it  will be appropriate to  place  a wearer, in  reserve  any 

time AV»   is   >   0.    Or,  if 

PS        -A > A F-1 p) 
Rm Rm        Rm 

Equation (E-12) essentially is an indication of the slore of the ray- 

off (delta damage) in the reserve force spare. If  the relationship of 

eauation (E-12) is true, it simply says that a small increase in the 

reserve lOrce should increase the delta damage in RED's favor.  If 

PSD  • A  < A (E-l-5) 
Rm    Rm    Rm K     "   J 

if simply says that a small decrease in the reserve force should be de- 

sirable.  When PST,  * A   = A   for all values of  Mm" the r^?er\rc'   force 
Rm    Rm    Rm 

must be at a local optimum. 

One obvious use of equations (E-12) and (E-13) is in the method of 

steepest ascents.  That is, they can be used to determine which weapons 

would change the delta damage the fastest, a step could he taken in that 

direction and a convergence to 3 new set of A,., , PS_  ind A  ont.n'ned. 
Rm   Rm      T-!n 

This process was attempted but found to be unacceptable because >*' the 

^*.dirj.^>I^^>^M^\*V^\**,^\*\fc.:'^ 
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difficulty  in choosing a  ?ter size.     Too  small   a  change   in rpperv^  rorce 

numbers  caused  plow convergence while  lar^e  chanres  caused   instabil Hy 

in  the solution. 

A satisfactory Tetiod   currently  in use  is  one which   internally 

chooses   a  step  size.    This method  is based  on  the  idea  that  FFD's   first 

strike  objective  can be stated  to  be  to maximize  the  surr of the  value 

destroyed  on  BLUE   forces   plus   *n  estimated   /alue   ~Jestreyed   on  BLUE value 

targets  by  I is  reserve  force.     In mathematical   form,   this  is  equivalent  to 

B 
I 

R 

max £ xi 
k - 1 

\ - NSk 
-+ Z PSL • A       N 

Rm    RRm >u) 
m - 1 

where: 

N^r» ~ number of RED tyre m weapons placed in reserve 
RRm 

"   \ " 
FSD™ ' A  = best estimate of value destroyed bv each RED Rm    Rm 

reserve weapon 

If this is chosen as RED's first strike objective, it will cause the selec- 

tion of that reserve force choice which comes the closest to a case where 

II .1! v  I 

PS„  ' A_ - A  .  (It is not alwavs possible to achieve this eoualitv 
Rm    Rm    Rm 

for each weapon tyre because of the integer constraints.) 

In tiiis objective RED would allocate all his weapons, rather than 

only trie first strike weapons assumed to he allocated for the objective 

of equation (E-2).  The concent of allocation here thus includes alloca- 

tion of weapons to targets and allocation of weapons to a r°serve block. 

In equation (E-l/J any weapon can be allocated r,o reserve at an estimated 

it      n 

payoff of P3T  • A _ or '. r. can be allocated to a first strike.  If 
rtm    Rm 

■ „"* 

.^..ft.1 A. w,A4l^!^Jllfi^j!L^.,J,tC^lW^JV^W^*^ij»- Lm.^.M.^.t^.-J^it^i.m^Mji'u ■ ..'»..'i.. £mJ\*mJ&*.a&*.  ■*•*■' -'■- -" - -? ~* -' . «f ■ , .»' ..% .'* . .,:. _, '__ v
v,_ h

-;__.__ _ ,,_.,,.1 ,!_,"- A. ■»" -*- -" *->*- -' '■-*■ -» '-- "-* .*-.;.--'.. 
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allocated   in  a   first   strike,   + r:e  ravo'T   is   in  t -rms  .if   ->  reduced   VS. . 
k 

The optimum balance i s the me where =*Hitional weapon^ rlaced in reserve 

bring less payoff than the same weapon fired i** fh^ first strike. 

Considerable experience wit) this method Kqs shown that convergence 

to the correct: general reserve force magnitude usually does occur. 

However, in constrast to the value scale convergence techniques, it is 

not possible to prove finite convergence to a local optimum. 

To understand why finite convergence is not guaranteed, consider 

the following.  First, note that after RED's allocation of his previous 

reserve force by the Lagrangian method the following can he stated. 

VDB-  L    XR, fW~TOB-   L    XR    NRS,. (E"1C) 
, . m 

m - 1 m = 1 

where: 

N._ = RED reserve force survivors of type m 
RSm   

With N__ = PSn  • N^r.  and the assumption that PS^ does not change we can say 
RSm    R^   RRm Rm * 

h 
£ y. n .      -}; I     .   y # I 

Rm FSR, (NRRm ' W " VDB " "E (E~l6> 
m = 1 

ii        ir 

which indicates that use of Xn  • PS^ leads to an overestimate of the 
Rm Rm —  

t *- i 

change  in BLUE damage,  VD_ to VDR,   when a reserve   is  chanced   from Wpp« to 

-:: si 

I\L _ .  Possible chancres in FS~ make the estimate even Tore ortiTistic 
RRm Rm 

since increases in the reserve generally reduces ?Sr   . 17 Rm 

By a similar use of equation (E-iJ, it can he shown that use of \^ 

as a value estimate for BIL'E forces leads to an underestimate in the 

'Sjtiiä&^L^^^ '^•--■--• -'- ^^: 
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effect of changing the first strike weapon allocation. But, eauation 

(E-/+) applies to a static RED situation and not one where BI.LTS's 

targets are changing.  This changing of BLUE targets ran he shown to cause 

overestimates to occur. Thus, use of this combined objective function 

has a mixture of ortimistic and conservative factors.  Th>^ net '>pf^rt 

being that there :s no way to guarantee that the ortimistic estimate 

of the value of changing the reserve doesn't ovprshadow the conservatism 

in the counterforce strike payoff chancre estimate. 

The method is somewhat self-correcting in the sense that ftoinp fron1 

one reserve to another results in new estimates for the three parameters 

of interest.  These new values t^nd to correct mistakes made in the 

previous choice.  For example, if too lqr[Te a reserve force is made, 

n       it 

both PS„  and A^ tend to dror somewhat which causes the r^xt reserve 
Rm      Rm 

choice to be somewhat smaller and, thus to corr» ct the error. 

implementation of this concept is rather straightforward.  Tn 

essence, placing a weapon in re?:f>rve   is another potential strategy in- 

volving usrj of that weapon. This n w tyre of "strat^py" involves use 

of only one weapon of tvpe "m" at a rayoff of FST)  • A _ .  In addition, 
Rm Rm 

this  strategy does  not   involve any  "tarpet"  so  it H
OPS  not  enter   into 

\;x 

km mmJkm ■'>' ■ A H\ il V_ ^ «^V_ .v.,...,:.... .... -^ ...*-'.'^.JV ..** -Mi-'.dwV-".» -i WW« ^ .» - * *'\ >in 
<\< 

-a," a , .,f «- *" m ' -« "-' "-* "-!• ' -* "-H "-* *-/» "■* 
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any  target   constraints  like  the  strntepi^s   inv^Ivlne use   >p  ri  w-^r^n   in 

the   first   strike. 

Thus,   a  typical  RED   first  strike   linear  pro-am  'it   any   rhasf     n 

the  process  contains  strategies  which  are   candidates   for   r-mnt   v-''   r  c 

strikes  plus  these  special   strategies  which  re preset   tr<    -ay--"0  rnr 

placing weapons   in  reserve.     The   lambda  conv^v^nce   process  or« -at03 

as usual. 

A special  case  of  the  above   is   one  where RED   ^esires  no more  than 

a  specified damage  to BLUE   (VD   ).     In  such   a   case   tre  preferred   res   "VP 
B 

is that one which maximizes delta 'am a re under the Tax. VD_ constraint. 

Since all damage to BLUE is done by RED reserve weapons, this amounts 

to the placement of a constraint on the size of th*^ RED rsserv°.  Tnis 

can be achieved by adding the following constraint to the 1st, strike I !\ 

m = 1 m = 1 

where: 

* denotes new reserve  choice 

'   denotes  last reserve  result 

VD-, = max.  allowed damage to BLUE 
B max. 

i 

If VDn < VDn     after the last reserve fo ,. choice, this con- 
B     B max. 

straint allows only enough additional weapons to Y'-corrv  ro^erve  surf that 

the desired damage is exaetlv met.  If VD^ > VD_    . 't w; 11 indicate 
E     B max . 

that weapons must be removed fron '!- reserve. 

It is interesting to not- that t! is constraint is us°d to advantage 

-ver when there is no specified limit on BLUE iama^e.  In sue!' q ^ase 

^fcii^'^iiliitiii ^"h I  I i I I 'r i tin i> > V "■ I *■ '-  '-* "*-' *-' '- '■ '- ' *■ " -"■'"«-' . *■ i - ■ •»«.•«■'.•-■>- 1 M £m.\*\,m,  '.,* ,.'. iiiW«*!.!. .^«.■LA—J^..^,-laL.'mi, ■*■/> '.t ' A  *..r. • J2J 



IV-E-12 

\n      is sot equal to the total >f all BLUE industrial value.  Then 
3 max. 

the above constraint ten-Is to reduce the possibility that an overly 

larcre reserve force is ever chosen and, thus helps eliminate extreme 

swings in the reserve force choices. 

This discussion has been coniuctei as if the estimated net benefit 

o^  ont rr re reserve weapon is riven by equation (E-12).  However, the 

method is exactly the same for rayoTs as indicated by eauntions 

(E-7) and (E-lj). The only change is to use the arrropriate «T7 in 

It v  II 

i lace of FS,,  ■ A_  in the process ^ust. described. 
Rm    Rm 

It should also be noted that tv is method conceivably coih'd be used 

for rarii convergence to a region near an ortivil reserve ror^e. Then 

another rr.etr od could ce used to refine the solution.  However, this hao 

not appeared necessary on the few cases to ^nt*-  where complete convergence 

did not occur. 

A variant of the above method has also been tried and found to add 

some degree of stability to the process.  In this variant the estimates 

it        11 

for PS_  and  \ n  ^re separated and dealt with on an individual basis. Km        R:n 

This separation occurs as follows. 

First, remember that the "strategies" that went into the Tl were on 

ehe basis of one reserve weapon type "M" always attaining a payoff 

I! " 

of PS_     •     X       .     This   linear  payoff  estimate   falls  apart   for   Large   changes 
Km     Km •■-     " 

in reserve force and a better approach is to insert real strateties for 

the reserve weapons on the third strike targets.  That is, indicate how 

many reserve weapons will achieve what level of damage on which third 

strike target. 

iJL—»■.•■^-■•-. :.-r .••..■• jj J» '-t..  •.:....•.. W- .•... J    j-.. ,- . 
:■ -\   \ ". ■•-  ■- v -- v . V \ . •« *. *. • *- ». \ -v V.V v « *. V % •« v v • ' -' 
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i lie Si ■    s t r.i L O)   n .1    t. 

SIT.M Og ios     I Of    t. ll C     I  1 1*S 

i lu    i ese rve   wo ;\po\\  mus i 

iv ! :; i onsh i \>  ho i L! S ; 

iputed    I <" i    uisii   !   <!..-!     ins!        tki     Liif 

;trik<    t. Ti't'is   arc   c iputed.      liowevtr,   since 

srvive     bo   second   strike   at tack ,   the   lolLowins 

r, 

Jm 
Rm 

PS 
Rm 

(I:-IH) 

where: 

W       =   number  of  weapons   going  to   .1   given   t;nr ;et   in 
Jm 

strike    L 

W  = number of weapons which must be placed in 
Rm 

reserve in order to have W„  weapons available 
Jm 

for the third strike stragety. 

1L is W  that is inserLed into the specific third strike strategy. 

The net effect if this vari.au. is that true strategies are generated 

in the First strike LP for all first and third strike targets.  However, 

the number o\   weapons which must be held in reserve for each Individual 

third strikt- strategy ;s computed by the use of (E-18).  Thus, depending 

11 

upon the value for PS  , a given third strike strategy might use up 
Rm 

considerably more reserve weapons than another strategy which uses a 

different weapon with a different survival probability. 

This approach removes the linearity assumptions inherent in use of 

it 

the  \ „ .  It does not reduce the problem oi correctly estimating PS, 
Rm 

however.  Estimate of that factor thus is the key issue in this optimal, 

reserve force methodology. 

iUA*Mnh*»*iMlfc«-* ■ ' « 
1L.1 *_' »JT 
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F •   MU ITT-STRIKE \\K\YC\  AI.uJC ATI^-Jo 

Demons to ted it: Figure [■/'   ;" aroth^r srecial  renario wH-t ^ar u n 

analyzed by use of tbis model.  Tb, ic- scenario win JpilmH to -VMow 

analysis of the special case where RED attacked both counterforce and 

countervalue in a first strike but BLUE launches q retaliation beror^ 

ail RED weapons are Launched.  Tb, 1 s allows both sides tc attack counter- 

force one time.  In this cose, the program ioes not optimize a reserve 

for RED (since it obviously would be a zero reserve).  Instead, there 

is a specified RED remainder whijh BLUE can attempt to destroy by 

counterforce attack. 

This scenario is a generalized version of  the basic scenario 

(Fieure 1).  If the remainder is specified to equal zero, the basic 

scenario is the result.  However, this scenario contains an ingredient 

not existing in the simrler one. 

As RED is setting up his first strike, he must allocate some weapons 

against BLUE industry.  It would be optimum for RED if he could conduct 

the 1st strike countervalue attack in such a way that the survivors from 

his remainder are allowed to perfectly augment his first strike.  That 

is, RED should allocate so that the total damage accumulated by both 

countervalue strikes is maximized.  If RED ignores th* existence of 

his remainder, the first strike might be conducted in such a way that 

the remainder survivors couldn't accomplish much. 

There are obvious luestionr about RED ev^r being capable of pre- 

dicting bis own survivors.  Before such questions are investigated, it 

is necessary to develop a methodology ror RED to use in allocating bis 

1st strike assuming he knew exactly what his survivors would be. Given 

this methodology trie non-perfect information case can then re analyzed. 

^J^^^^J^^^^UÜk^^^A^ *\' i^a^alai^L^fll^»^^ -■- - .-..-■--- 
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One  point of view about RED's allocation  problem  IF  thM   he must 

decile which  countervaiue  targets  to  label   first strike tarr^ts and wr ich 

to  label  second strike  targets.     This   is  a  concert  very similar  to  the 

one described   in Fart E where  RED  had  to  label   his  wo qpens   as  first  or 

second  strike weapons. 

Virwei   in this way RED's  problem becomes  one  of sele, cir.p. a   rirst 

strike  objective which  somehow allocates  wearons  to  tarp^ts   ird   targets  to 

a  first or second  strike  category.     (Given  the  allocation  is   achieved 

BLUE will  minimize  the  lelta damage to   the  bect   of his  ability by optimum 

use of i.is  survivors.)    The  Problem  is  to  select an objective which  leads 

to a progressively  improved decision about which  targets  to  set aside 

for attack  by RED's  second  strike. 

Jne  obvious  limitation  of this  target allocation  concert  is  that 

RED  first  and   second  strike wearons never attack  the  same  target.     A 

target  is  either attacked   in  the  first  or  the second  strike or  is not 

attacked  a-  all.     This   limitation  is   felt  to  oe  reasonable an^ no  ePrort 

has been made  to avoid  it.     Some  comparisons  have been made with  the 

alternate  an:roach of allowing mixed attacks  and no  significant  improve- 

ment  in total   value  destroyed  was  observed. 

It  can be shown,   in a  manner similar to  the one of Part E,   th'*t  if 

RED  chooses a specific   set  of targets  to he  reserved   for his  second  strike 

the use of  lambda value  scales  do lead   to  ortimization  of the  delta  iamare, 

The basic  Droblem  is  to show  that  there   is  an  objective   function which 

will   lead   to a  target  labeling which  causes  overall   maximization  ^r  ^l.r 

delta  damage. 

The  similarity  of this   problem  to   the  optimum  r^erve   for^e  rrohlem 

extends   into  the  choice  of an ob^ectiv?   fun^ion   and   the  look  of a 

t'nVuVtV*«^». »'■'»,.'l  .i »'..v. '^ ,'*.', ^m^\^:m,\im\.%t',li^ 1   _   A    .J>.i.l.ll..'.k.' 
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m 

convergence assurance.     As   in  the   reserve  force  problem,   consider  the 

information available to Tike  -\   decision ^bout  the  advis^bi li tv of a 

small  change   in a  ^iventarget allocation.     The  basic   information   includes 
i 

an estimate of the weapon lambdas   for BLUE  survivors, A_. ,   ani   ~\r  estimate 

of RED survivors  from BLUE's  retaliation.     Use of ir :s   information  c-m be 

utilized  by making the  first  strike objective 

maximize    VDßF + VD^ + VD^ (F-l) 

where: 

VDQ„ = estimated value lestroyed on BLUE forces 
DP 

VDRV1 - value lestroyed on RED's first strike on BLUE 

value targets 

VDDUO = estimated value destroyed on RED's 2nd strike on 

BLUE value targets 

Each of the above terms are equivalent to 

£ ™BT*2^     AB1  (NBi^SBi) (F-2) 
i = 1 

where: 

N„. Ä total number of targets containing BLUE tvre i weapons 
Bi 

N3Q. = number of surviving targets with BLUE type i weapons 
Bi 

E VDn„, =  >   V. (N. - NJ FK. (?-->) 

1 

^t 8,,..»,-. ^Ja. 
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where: 

V. - value of BLUE value target tyre j 
j 

N.  = total number of BLUE targets of type j 

N. = number of BLUE targets of tyre j set aside by 
j 

RED for his 2nd strike 

FK . = average probability of kill of BLUE targets of  tyre j 

as attacked by RED in his first strike 

VD 
BV2 E 

.i - 1 

V. (NJ PK" 
J  «J   J 

(F-/.) 

where: 

FK. = average probability of kill of BLUE targets of tyre j 
«j 

as attacked by RED in his second strike. 

Using this objective results in 

1) A choice of which targets should be reserved for RED's second strike. 

2) Allocation of RED first strike weapons to counterforce and allowed 

countervalue targets. 

j)    Allocation of RED's estimated second strike weapons to specific 

targets. 

This  results   in a balance such that placing another tarret  in the second 

strike category  (N.   increased by  one)  his  less  pay-off than reserving that 
J 

target  for the  first  strike.     In  RED's  first strike,   he will choose a 
it 

specific allocation  of his weapons   and a specific  set of values   for N. 

such  that  the  objective  function   is maximized.     The allocation  of his 

weapons  affects  the  NS„.   factor  in VDn. and  the  FK .  factor in VD_.M. 
til til J DV1 

sV^Vr^"-*^-"'-^^"'-^"^"-^ •-I.':.« '-A.'.f.^j'.-r.v ;*-.;.— 
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As in the reserve force method, it is not possible to guarantee con- 

tinuous improvement in the delta damage from step f, step.  However, 

experience his shown that convergence rarely ioesn't occur.  In those 

instances when convergence loesn't occur, the oscillation in ielta damage 

has been \>>~:ry  small (a percent or two, 31 mos t). 

Implementation of the above concept is very straightforward.  In 

the first strike of the scenario, the countervalue and counterforce targets 

are all represented.  The number of attacking weapons is the actual number 

Ox   RED first strike weapons.  Additionally, there is inserted into the L.P. 

an additional set of constraints to represent the estimated number of RED 

attackers of each RED weapon type in his second strike on BLUE value 

targets. These weapons are constrained to attack countervalue only. 

The net result of optimization of this tyre of L.P. is a maximization 

of equation (F-l).  After completion of the first strike, BLUE then pro- 

ceeds to optimize his attack with his survivors (NSn).  After BL'IE 
D 

optimizes his attack a new estimate of RED attackers in his second strike 

is obtained and the process is repeated.  After some iterations, the 

estimate of RED survivors does not change and the process stops. 

If RED has a damage limitation on BLUE, sich a. constraint can be in- 

serted into the first strike L.P. in the same manner as previously described 

for other cases.  No interference with the convergence process occurs. 

Mote that the above process allows RED to set his first strike based 

on what he believes his remainder survivors will be.  The result when he 

misestimates the number of survivors can be obtained by use of the 

standard misestimate features in the model.  Trat is, RED will misestimate 

his survivors because he misestimates BLUE's attack clan, some weapon 

S-.£j.:.J. -^.■-..-^..'■^■»-.^.'^, •,"«,.«/«, 1«. •'.'■^'n v". «V* *V«V..VL *VICJV^»^VI^A/V\J^IA,JAI1^^ ^ t ■-'* -V-** H*J~±^1S.—._ 
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characteristics  or some other  lata.     The impact   of that misestimate  is 

partially  reflected  in RED's  first strike  plan being non-ortimum nnd the 

degree of non-optimality can be determined by use  of the misestimate 

option discussed  in Section  I. 

Basically,   the  process   is as  follows.     ,7KD sets ur his   first   strike 

based  on  his best estimate of his  survivors.    The prorr^m  "locks"   in  that 

plan.     It  then  proceeds to  comrute  the  real  RED survivors  and allocates 

them  in  the nest way  possible  consistent with  RED's   level   of retargeting 

capability.     The  result  is  some damage by RED's   forces but not  the ortimum 

level. 

^? .'«...Vkl.'. J!f-.';,.i.^..^, A JA J\ .,'■  ■l.vJi.J»^ -.. Jia ^..:..'.r .'i.'tJj^VA.'i Oh 
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G'   RANDOM AREA DEFSRSES - BOMBER AND MISSILE 

In this model area defenses are designated to be those defenses active 

between the launch phase of weapon flight and the exposure of the weapon 

to terminal defenses.  It is assumed in this representation that unreliable 

missiles fail during the launch phase so that only reliable missiles con- 

front the defense. Aircraft are assumed to be either unavailable or able 

to attempt penetration of the perimeter defenses.  The reliability factor 

applier to the bomb or Air-to-Surface Missile (ASM) at the time of arming 

which is assumed to occur just prior to encountering terminal defenses. 

These assumptions are presented pictorally in Figure G-l. 

In general, area defenses affect offensive forces by either a reduc- 

tion in numbers of weapons that can impact on all (or a subset) of targets 

or an Increased uncertainty that a particular weapon will reach its target. 

This section describes the currently programmed random bomber and missile 

defenses in terms most like the latter of these two effects. 

Bomber defenses included in the model are perimeter (manned Interceptor) 

defenses sensitive to number of bombers attempting penetration and result- 

ing in uncertainty of a bomber arriving at the arming phase of its attack. 

Random area missile defenses are non-killable defenses which attempt 

intercept against incoming RV's and decoys chosen at random, without regard 

to RV destination or sequence of fire. The effect is an increase in the 

uncertainty that a particular weapon will arrive in the target area. 

All area defenses considered are "whole country" in coverage, i.e., 

no target lies outside the influence of the area defense if such defense 

is present. 

'~'^,'.S*.'J..*M'?. .'.* /«■.«".-■»'■•-*.'.•...» .*-f j-r..y .;•.«. v '-:-.'M?.'^~ .•-*«• '■./»'Ji'.V-» ^'.VI^.L'.^VW «u\\.\ \,
VA".NA\'/I"."II"A''A\"!I"A^ -'««.V-^^V 
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1.  Bomber Area Defense 

a.  General 

Jhe probability of strategic penetration encompasses a 

massive number of events and their associated probability. 

In designing a model to reflect the most prominent of these 

events and still allow minimum computational requirements 

must necessarily be a compromise rfhich, hopefully, does not 

overly offend the arsenal exchange analyst. It may be of benefit 

to elaborate on the events conridered in most penetration 

analyses, if for no other reason than to gain an appreciation 

of the scope of the problem. 

The threats to an airbreathing petietrator ari not only 

varied, but relatively cheap and therefore numerous, have high 

cumulative effectiveness (dependent on penetrator aids), may be 

reuseable (dependent on time), ana possess at least some degree 

of autonomy. The spectrum of threats varies from supersonic 

(hypersonic?) manned interceptors armed with air-to-air missiles 

to literally hand-thrown rocks. 

There are three major threats: manned aircraft, surface-to- 

air missiles, and anti-aircraft artillery (AAA), generally con- 

sidered in penetration studies.  Although AAA is frequently 

ignored, it is reasonably effective against low level penetrators 

if in sufficient quantity (e.gc, North Vietnam). The problem 

of massing along a]1 suspected penetration corridors prohibits 

inclusion of AAA as a major threat in our study. The probability 

Stf 

' ***■* y^V«V» »-l m!^\m.'\mJ\^r'''J" ■*.' O» KA^IC^F- ^V^VjV\-V_ VV/iJVV»V . '„"*'. 



of random encounters with AAA while at Low altitude, par- 

ticular^ -Mic in the vicinity of military installations 

may be quite high, but it lb assumed that careful planning 

of flight pathr minimizes the .likelihood of these conditions 

ana is therefore ignored. 

The most versatile defender is still the manned interceptor. 

It can operate effectively with little command and control, 

although early warning, real-time data processing, and target 

vectoring enhance the inherent capability many fold. Armament 

generally consists of guided or unguided air-to-air missiles 

with fire control systems having varied range and altitude 

capabilities, or cannons which are manually or electronically 

fired.  The effectiveness of the manned interceptor is dependent 

on such parameters as probability of detection, identification, 

and conversion  to the target, evasive action by the target, 

armament of the interceptor, and armament effectiveness. The 

number of intercepts possible during penetration is dependent 

on the number of available interceptors, number of passes an 

interceptor can make during a sortie, number of passes per 

intercept, and number of sorties an interceptor can make during 

the battle. 

The other defense of concern in this analysis is the sur- 

face-to-air missile (SAM). Although SAM's may be deployed as 

perimeter defenses and Sv ttered throughout any penetration 

corridor, it was assumed that these defenses could be evaded or 

m    .. ^ ...ti".,«.'*/ W." ■•«'-•■ Jx ^>M"A »"A-M "^t .'-fc/^ *«1.V , ■'  I*- JLJ. fl a^.j.;—*». i .^ ^*m , mm ^.a,— _a i 
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made ineffective except during the terminal attack. The modeling 

of SAM defenses in a terminal mode is described in Chapter IV - 

Section B. 

Additional considerations included in detailed penetration 

studies include the probability of clobber (flying into the ground 

during low altitude penetration) and crew safety during attack 

(i.e., displacement from nuclear blasts of the bombers weapons). 

Effective terrain avoidance radar and aerodynamic indifference to 

gust loading preclude probability of clobber as a major consideration. 

The advent of stand-off ASM's preclude the constraints of crew safety. 

Since these developments, if not current, are being heartily pursued, 

these additional bomber characteristic constraints have been ignored. 

b. Bomber Area Defense Model 

The model for inclusion of a manned interceptor perimeter defense 

is an extreme aggregation of the events discussed above. Stated simply, 

a bomber either was or was not subjected to the perimeter defenses 

and if so, either survived the encounter or did not, i.e., 

I 
B 

Pp = (1 - PE) + PE (1 - PA±) (o-i) 

where: P  ■ probability of bomber penetration 

p  * probability of encountering perimeter defenses 

P  ■ probability of bomer kill by an interceptor pass 

I  s total expected interceptor passes available 

B  s total number of bombers presented to the defense. 

l*-~- A.*. O. «■*.. *..1<.' <L-' K.t.1 '■• ^^JwCi'-rft}**0v""w>*V'^'"n"" «"" * * «NVv^ .""V-YV-* ,V»V»"/«V*V*". ' ►"• V-V-V- .*• ,VV^ "• -'• V- .*• ."-"»"•'»^V**»'* "-V-V* 
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Since Pig, F^r, and I are input data, o discussion of these 

parameters is desirable. 

The probau :   . f encountering the perimeter defense (PF) 

includes the probability a particular aircraft was pcquired by the 

defense either through early warning or local observations^ the 

probability ohat communications are adequate to inform the interceptor 

base or airborne interceptors, the probability that the command and 

control is adequate to vector a sortie against this penetratcr, the 

probability that an interceptor is available for the sorcie (includes 

POL, armament, reliability of critical components, geography, and combat 

range/time specifications), and the probability of successful vectoring 

of the interceptor so that the pcnctratcr is acquired by the fire 

control system inside the interceptor conversion barriers. Because 

penetration requires a finite time that may be large with respect to 

any of the above activities, x„ represents the cumulative probability 

of being within at least one conversion cone of an interceptor, 

PfiT or  pass lethality is an aggregate containing weighed 

effectiveness of all armaments that may be used which includes 

weapon reliability, warhead configuration, ana round-to-round disper- 

sion or CEP, aspect angle of convergence, fire control accuracy and 

reliability, lethal area of the target (a function of the aircraft, 

warhead, and aspect angle), and evasive or defensive action by the 

penetrator. 

The number of expected passes available to the defense (i) is 

the product of number of aircraft, aircraft availability number of 

passes per sortie, and expected number of sorties during penetration. 

*.■••:? 
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Obviously, the expected number of  intercepts (or passes) against a 

particulr^ penetrator varies with exposure (penetration time), flight 

plan (geography of interceptor bases in relation to penetrator path), 

and flight profile (Hi-Low-Hi, Low-Low, etc.). 

The model assume? no penalty bo the acquired penetrators in 

terms of anticipated defense level as P£ varies; i.e., i/B and PAI 

are not functions of P • This assumption precludes the possibility 
E 

of an "optimum" P„ and dictates a linearly decreasing Pp as PE varies 

from zero to one. 

The probability of "losing" a target after an unsuccessful pass 

or the inability of the next attacker to acquire the target should 

all passes be unsuccessful is not included in the model. The 

variables PE and I are not affected by previous ICBM strike nor by 

any stand-off ASM capability employed as a defense suppression missile 

(DSM). 

With the assumption that in-flight communications are minimal, 

the net effect of a kill by the perimeter defense is the uncertainty 

that a particular bomber (bomb) will reach its programmed destination. 

Since this behavior is similar to the effect of bomb reli   ity, 

Pp is modeled as a reliability modifier, i.e., R* = Pp . R. The 

resultant reliability, R*, is used in computing the expected kill of 

a particular target. 

Certain cases must be carefully analyzed to insure the assump- 

tions of this model do not mislead the user. For instance, when the 

bomber force on a side is of considerable strength and the perimeter 

defense is effective, large variation in the probability of penetration 

-t^.^.j.-k.^.t.- .! -.«-^"k. ■»*•. „ * w .«M .» - ,• - • j. :_j, ,'jt. *._«. '-tt V- \* f-rfj_t-,.'j! .'.>-. ">.? *-»» .'-« ' j '.;• y \'_'W_"«*_'V-''rfr_ V_"».>T_',»'..'V_*y ' 



derived hert nay occur iepen <vt c n he previous attack against 

bombers. This variation may ".;>,< between bomber icminance of 

value target destruction tc bomber subordinance to every ICBM type. 

The optimum is most likely at neither extreme.  It is possible that 

the model assumptions for this vase would indicate the lower extreme 

as the optimum.  Sensitivities tc *"he assumptions by varying inputs 

to the model may then be desirable. 

It is realized that the degree of aggregation in this model is 

extreme.  However, most alternate methods are incompatible with the 

Arsenal Exchange Model in computational efficiency. At the current 

time ic is planned that future activities will include investigations 

of results from comprehensive studies to determine whether additional 

parameters should be introduced. Comparative analysis with more 

sophisticated models has not been performed and therefore, we have 

no current way to measure the accuracy of the model until such 

comparative analyses are made. 

Attempts to optimize future arsenals may include balancing the 

ICBM/Bomber forces to enhance the capabilities of each and to force 

continued development of two or more types of defense by the 

opposition. This model is not necessarily appropriate for such 

investigations and will be re-evaluated when that capability exists 

(see Section TV-J). 

c. Effects of Area Bomber Defense Moael On Value Scales 

The variable B in equation (G-l) (number of bombers) is computed 

as number of bombers of all types off-on-warning plus available 

survivors of any previous attack.  Therefore, lowering B by a previous 

*AlrtL.^lALatLA\ m V V ■ V\ *J ,Vi h \ Sm', *;-:,., --■■" vit', ■. a. >,,■/■ >i -w^Lu ,.?«;., ^laJAl^l yf ^ -* *£jSA^*l*l^»£äß££±£&k£*£^l^^^ 
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attack lowers Pp for the retaliating bombers. This subtle beriefH 

may be thought of as a second value for attacking bomber bases, i.e., 

destroyed bombers do no damage end a reduction in the bomuer force 

enhances the defense, decreasing the value of each bomber in the 

retaliating bomber force. Chapter IV, Section C contains a discussion 

of the method used in analyzing the impact of this factor on the 

value placed on a bomber base when it is a target. 

This ability to relate defense capability to weapon value and 

thereby, to ICBM attacks on these weapons could not be achieved by 

an inputed reliability modifier. For this reason, it is felt that 

this bomber penetration model is a logical first step toward the real 

impact of bomber penetration capabilities. 

Random Area ABM 

a.  Rational 

The initial attempt at modeling area ABM effects was similar 

in scope to the area bomber defense discussed above. The primary 

assumptions are the offense estimates the number of RV's that will be 

killed by the defense, but has no control over which particular ones, 

and the defense attrits RV's without benefit of deducing destination, 

but rather by random choice. The option of the offense tc suppress 

the defense by direct attack was not modeled. 

This defense may be thought of as "medium capability" lying 

between offensive dominance over the defense (terminal or subtractive) 

and defensive dominance over the offensive (preferential). However, 

exact determination of random defense capability with respect to 

\^.^m^^^mm.tnnu,:An,a^nAm^mm,,:»«\mir,'i\",i'd:Jm\d\<m;  V.:.r..»V-V. :,I:V-V^.."JLV''-».V .y.-'y'y' V^J^jC>?>f'lv""^V>x!>^'C\V>jr'.,l-'*.' ijfcÜÜi' -' -' 
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optimally deployed terminal and preferential has not been performed. 

This model has sufficed, as an initial ABM area defense representation, 

but multiple strike scenarios make implementation of this type of 

defense difficult.  Therefore, it is a limited program capability. 

These model limits will be discussed in sub-paragraph d. 

b.  The Random ABM Model 

The effect of this type of area defense is essentially the same 

as a reliability degradation.  As r.oted in Figure G-l, weapon 

reliability fo. missiles is assumed to be determined prior to 

possible acquisition by area defenders.  Pragmatically, this reduces 

the attack as viewed by the defense, and increases the uncertainty 

of safe arrival in the allocation planning done by the offense. 

The model states penetration may occur in any of three ways: 

. The RV is not "acquired" by the defense, i.e., no attempt 

is made to intercept. 

The RV is acquired but there are no remaining interceptors, 

The RV is acquired and an unsuccessful intercept attempt 

is made. 

Ste  i mathematically: 

PD * (1. - P ) * P  (1 - D/Sj + P  D/Sny (1. - Pj1     (G-2) 
P        a    a       N    a    N      i 

Where: 

P z Probability of acquisition 
a 

D = Defense intercept cwpebility 

S * Total number of reliable, acquired, and undiscriminated 
objects presented to V     defense. 

P = Probability one interceptor kills the RV 

I : Number of inte*-, eptors fired per intercept attempt 

• '*> '■ • ■ ■■■■"--'.--»■•" ■•.«*- «A. •* >-- ' .-.'..' i.• .• fc* .* -• .' .* LA', • • 
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The connotation of acquisition in these discussions is not 

exclusively the act of "seeing" an incoming weapon (which may be 

assumed to always happen), but, includes all factors other than 

exhaustion which preclude intercept attempts. Such factors as time 

delays, nuclear blackout, queues in the fire control systems, and 

launcher availability contribute to lack of "acquisition," 

Defense intercept capability is the smaller of; (a) the total 

number of interceptors (D) divided by interceptors per intercept 

attempt (I) or; (b) the total objects at the defense, as defined by 

SIT below. 

D=MIN  {£,   SN) (G-3) 

SN " ?  Pa  '  R  '  SW • 
NW 

(1. +  (1. -  P„)   •   d) (0J0 

Where: 

* 
N  = Number of missile weapon type3 

R  = Reliability of the weapon 

Su = Number of available, surviving RV's fired 

P  = Probability of detecting that an incoming 
object is a dec^y 

d  s Number of decoys per RV 

Given the probability of penetration, Pp, as computed from the 

above relationships, it is utilized as a direct modifier of the RV 

reliability.  This "effective" reliability is then used in the 

appropriate damage computations«. 
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For f    : • ,:umst n.ce where D exceeds S , this model has be« 
i N 

generalized.  This genet all zati on allows distribution of  l_he 

excess interceptors ^v^i tlu: i ,]ects CS ,) in units equal to 7 . 
N 

That is, one..:-. each object has '^P.LM allocated I interceptors, 

it is assumed that another pass through, the objects is made 

with each one string another I Interceptors, etc. until the 

excess ch-tenders are allocated. 

'ru^  effect is that equation (G-2) becomes: 

P = (i  _ p ) + p  (i _ JL_ + IE)  * E
1 

P        a    a     S -I 

+ P  (D/(S -I) - IE) (1. - PT")
1  * E1 

a     N I* 

where: 

IE  = Largest integer in D/(S -I) 

TV 
(1 - Px) 

V-*»"."»"A --y -"• .'«.A'.-•...". c.. .."^ .-"x ..-/. v".."i^"i ..•'» .,•- /. ^ ". t i ~. \ •- .•..._•■..... 
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c. Effects of Random ABM On Value Scales 

AR with the perimeter bomber defense, the probability of 

penetration is dependent on the total number of weapons fired.  The 

similarity indicates the need for value scale modification in this 

case also. The Chapter IV-C discussion is appropriate for this 

situation. 

d. Limitations of the Random Area Defense Model 

The major limitation in using this model is related to its 

dependence on knowing in advance the number of incoming objects (SN) 

on a given strike. For tnose scenarios allowing a choice of defending 

against more than one strike, the number of attacking weapons in 

each strike can be a floating variable. For example; if an optimum 

reserve force is to be chosen, (see Figure 3) the first and third 

strikes may experience considerable variation in force size and 

composition as various levels of reserve are analyzed. A CV/CF first 

strike with a CV third strike (See Figure k)  also has a variable number 

of objects per target since value targets may be attacked either in 

the first or third strike and the attacker can be splitting his attack 

between counterforce and countervalue attacks. 

An additional problem exists in that a CF first strike scenario 

involves the offense making a decision about how large the first 

sti.l>e should be with the decision dependent upon the effectiveness 

of his weapons in that strike, however, he cannot say how effective 

his weapons are until he decides how large his attack will be.  In 

addition, because of the form of the probability of penetration model,, 

there is a non-convex nature to the weapon effectiveness as a function 

--  • :  • • . 8 i ■ - ' - - *-•-»-- a - * »■ ^■Vr»^»^ l"«A". ;:.,:'- 
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of the total force size, which emphasizes the offensive problem of 

predicting individual weapon effectiveness. 

For example, the break point at D « 3N in the confutation of Pp 

causes a change in computation from a linear to an exponential type 

of damage function. This break is reflected in value destroyed as a 

function of attack level. 

A hypothetical plot presenting this problem may enhance under- 

standing. 

VALUE 
DESTROYED 

^ 

ATTACK LEVEL 

The solid line represents maximum value destroyed (i.e., the 

value destroyed if the attack level is of the optimum composition 

and allocation) while the dots represent the value destroyed by a 

non-optimum force allocation of the same magnitude. Determination 

of the optimal allocation for the total target structure is obtained 

by cellular optimization as discussed in Section TV-A. 

The inclusion of random defenses modifies this curve as follows: 

>  L.S 

.•f<>V«V 
1)11 i * .,;.-.. * 
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VALUE 
DESTROYED 

•- ATTACK LEVEL 

*7 

The function Is now non-convex over a portion of the possible 

attack- (It mast be remembered that the curve is hypothetical in 

that each point on the curve is an optimized arsenal allocation. 

It should also be noted that these functions have as many dimensions 

as the number of weapon types.) 

The slope of the function in any dimension is approximated by 

the appropriate weapon lambda. However, this approximation is 

dependent on the convexity of the objective function, which is not 

guaranteed when random defenses are present. This implies a 

dependence between the "optimized" cells, i.e., the optimum lagra: igian 

for a cell is dependent on the number and composition of ether 

cellular strategies chosen. 

This can be stated directly if a cellular Lagraagian for an 

individual target is examined: 

■» r r ^,,'w' i ■? ".In ■'■-'.. .*■■'■ >"- ■". >» - »*■ »i* 
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K * V • (1 - RP)  -  >, K 

where: 

H = the Lagrangian value 

V = value of the target 

R = the degradation in kill certainty due to the 
action of the random defense = Pp 

P = probability of kill by a single RV of normal 
reliability 

N s number of weapons fired 

X » Legrangian cost 

But R (■ Pp) by equation (G-2) is dependent on S^, which by 

equation (G-k)  is dependent on the total number of RV's and decoys 

allocated. Only if S„ is constant can the optimum Lagrangian for each 

target be computed — and only if the optimum Lagrangisns are avail- 

able can S« be established. 

Since F is peculiar in that computation is either linear or 

exponential, an additional problem i3 exposed. If either were always 

true, iteration ~ules could be implemented (e.g., lambda modification) 

that would allow conversion. Estimations of compositions of  forces 

needed to exceed the D « S_ breakpoint may be computed but are them- 
N 

selves a large Ret of vectors having as many elements as wer.pon types 

and implementation in the Lagrangian or linear program is not generally 

feasible. 

It is felt that these problems could be resolved, perhaps by non- 

linear progr warning techniques. However» the concept of random defense 

seems very approximate and it was  suspected that e.  more logical and 

|- ■ f, ■ m m m ■ 
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fruitful approach would be to look at other reasonable area defense 

doctrires. An understanding of the impact of the defense doctrine 

could be obtained by modeling a subtractive defense (if the defense 

is really that indiscriminate) or precommit (if the defense is 

really that much in control). 

Therefore, the capability remains for a side suffering one 

attack during the game to possess random area defenses. It is not 

anticipated that any further level of effort will be devoted to 

modeling multiple strike capability for random defenses. If com- 

patible defenses are desired for a variety of scenarios, then this 

defense doctrine should not be used. 

<3P e.  Defense Marginal Utility 

In several uses of this program, e..g., optimal budget alloca- 

tions (Section j) and force target values (Section C), it is 

necessary to know what one more unit of defense is worth in terms 

of less value destroyed on the defender. This section derives 

the method used to determine such a defense marginal utility. 

In general uhe value destroyed on a given target is expressed 

"by the relationship of equation (G~c))u     (See Section B.) 

[,-,-,-] /D = v | i. - i -     j 

Where: 

V = value of the target 

V = number of attacking warheads (^T) 

p,T - damage function parameters 

C^^v/-^-^^•^•^>•"^>><■^^v.^>^^^^'>^•»>^'^v•^^>^^'y■:^^^^^•••^• yv ^•'\-'v--%ss:» •-:-'->• v"v'\'"\'<\^\''^-'^»>y\»'v'\-vv\^^"o-,-.-'-j 
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A. weapon re! lab? ' ity varies, such a result  froai rr-'.idom area 

defences, the p and   Parameters of the damage function are 

m« lifted In quit    'omplex manner.  In general, as reliability 

is reduced, the effect i  ?  lower the p parameter and increase 

the '" parameter. As a result, i.t i.- possible t( approximate 

equation (G-5J as follows: 

YD » V 

Where: 

t   1.1 
i - (i - pp • P ] (G-6) 

p ,T = damage function parameters with probability 

of penetration equal to 1 

F   = probability of penetration as defined by 

equation (G-2) 

If the number :i'  defenders was to change by one unit, the 

delta change in the value destroyed on that target can be 

approximated by: 

DVD d\r 
Tr. 

7D 
"3TT 

) 

(0-7) 

Where: 

DVD = delta in the value destroyed on this target 

because one more interceptor is present in the 

area defense 

By use of equations (0-6) and (G-2), the two components of 

(G-7) can ^f' developed as follows: 

-i 
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V
PL
W
""J *   L       p t] 

(W - -7T - 1) 
P P P 

* 
: v In  (1 - Ppp ) 

■ (w - f) 
1 • ppp ] 

(1 - Pj)1 - 1. ] (n-9) 

These equations apply under the assumption that a slight change 

in total interceptors will not cause the allocations to change. 

(That is, W remains constant on the target.) Additionally, it 

is assumed that D/'l < S.,.  That is, the offense dominates the 

total attack,  (if this latter assumption is not true, a minor 

modification to the process is necessary.) 

Given the above relationships, the total marginal utility 

of a defender can be obtained by computing DVD for every target 

being attacked ani  sum over all such targets0 This then will 

accumulate the small delta effects caused by a unit change in 

the number of interceptors« This is the process used in Lhe 

program to compute the defense marginal utility.  The relation- 

ship resulting is as follows: 

Mill = 

1 = 1    P   \      / 

(C-10) 

Where: 

Mil = marginal utility < F one more interceptor 

T = total number of targets 

.] = target subr.cr i p' 

ii^---±:- V•^^^^^'•/^\^^"-^^^^N■^^V-^^^^/VJi^V/v^%>^^vV\N*\'^*^^\•\^^,v •""-■<"•«'- •"• •■ 
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In •.      , equation ^-:') has VPP found to lead to 

accurate predictions oi j)Vb wiici sii'.hl: changes in. reliability occur. 

However .     i s a! ••■ scb ih  . ' - . measur i ng l ae inter- 

act ion >'i uirvji i ;>robabi litv and target capacitv.  (Sec Chapter 

IV'-O.)  ii- thi  Latter circumstance the reliability ol a given 

weapon mi ;lit change rather corns i der ably and the basis for (G-8) i;ots 

to be a i i tr ' ■■ <       "is. 

A better (.i.o..e stable) cotnput.it ion procedure to replace (G-8) 

when larger reliability deltas exist Is   the following: 

dvi).    r l   r  AP 

a?; - H *„♦ sj •l-^J (G-Jl) 

wuere: 

*w - weapor lambda for the weapon type attacking 

target. 

W. - number of weapons attacking target j. 

A . - target type j target lambda. 

,\ ?    '-:  de 11a eha11se in weapon re 1 iabi 1 ity. 
P 

R - basic weapon reliability for the weapon 

attacking target j. 

This relationship can be used in (G-10). 

The Logic behind this approximation is as follow.*-.  First, 

weapon Lambdas have been found to be rather stable in behavior 

and they usually have a value? which is proportional to weapon 

reliability.  Second, the value destroyed in a given strategy 

can be expressed as: 

Hit.* 

r:*^*£&^ - •'• -v'v »'^»"«\- 
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VD = W X  + > (G-12) 

where the symbols have the same meaning as in  (Oil).  Normally, 

VD is not quite proportional to the reliability change, whereas 

the average between W A  and VI) is close to being proportional. 
w 

These fa^ts led to an experiment which utilized (G-il) as an 

approximation and that experiment revealed that ehe aoproximation 

of the vThole was more accurate than the (C-8) method.  Thus, ic 

is the one in current usage. 

f.  Extension to Forward Area Defenses 

In addition to the normal random area missile defense assumed 

to operate over a country, there is a capability to alle for 

forward defenses which represent additional "barriers that the 

missiles must pass through.  There are twe such forward deployed 

defenses allowed: AABMJS (Airborne Anti-Ballistic Missile) and 

SABMIS (Shipborne Anti-Ballistic Missile) defenses. 

In this program these defenses are of the random type with 

the main distinction being tnat AABMJS is assi.iL.ed to be ased 

exclusively against SLBM's and SABMIS is used exclusively for 

ICBM defense.  In either case, their effect is to reduce the 

number of objects arriving at the normal area defense, or at 

the terminal defenses. 
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Heea.'se tr.ese >■ iV^.r-ef can 'tike hOi.^]! very early i: t tie 

missile* !;:.:.'  phase, tre^e ;  a ;T v-sit-n :'r .it-:- r • 

the missile pr'-.r I  ■ • mplefce disoerr-ion ■ •;" all warheads  r 

dec ...• carried b, the missile.  The factor Is allowed f-r by 

replacemeni of eqn;ati n { [---}  with the following: 

V' 5  F* ' R ' ^ ' [' + ri-"'[W:^ ' ] 
A
W 

4 WIIFC ' d (1 - Pd) 

oi-11 

l] 

Where: 

WHPC - Number of warheads carried by each missile 

PDWF = Decimal fraction of objects deployed prior 

to defense kill 

NL, = Number of missiles of type W in the attack. 

There is no other modification of the basic random defense 

methodology. 

The probability of penetration for the forward-based 

defenses is utilized as a direct modifier of the RV reliability. 

Thus, it will impact on all c image computations, and upon the 

number of objects arriving at any national area defense. 

>Jfi^^£{S&&Zi *-",V^V,^V^Ä*J' ■ - • ■*- I *- 
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H.   Pk^FKRttVTlAL DEFENSE 

Within the context of this program the concept of preferential defense 

is used to denote the situation where the defense his the list move in the 

offense-defense interaction. That is, when preferential defense exists, 

the sequence of events is as follows. 

First, the offense sets un his strike plan usin<T an estimate of the 

number of interceptors the defense has and knowing that the defense will 

choose to iefend the targets which allows hin to sav? the maximum value. 

Then, the offense launches the attack and the defender inspects the total 

attack and decides which specific weapons he should defend against in order 

to minimize total Hamate to himself. 

Within this concept two problems are of major importance.  First, the 

offense n^st develop a plan for his stmike which will leave nirn with a 

maximum value destroyed after the defense has acted. Second, there must 

be some allowance for a leaky defense.  That is, a defense which 

cannot do precisely what his optimum is. 

This section -escribes the met!ods used in this program to address 

each of these problems.  The process is under some revision, mainly to 

reduce ru . i.?i:r time, hue the fundamental concept is that which will be 

iescribed. 

1 •  Optimal Offense Stratr-rjps 

A common characteristic of the offense-defense interaction 

problem is that, ideally, the first move should he made so that the 

last move opponent has a spectrum of possibilities which all hav« 

a constant return to him.  For example, 'n the termini! defense 

P-l"'-''- JSLMOIAL dm ''■ -'--."--aJLy •-^"- .''■■-. ■ .."' ■'« - '  ."'• .'• 
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problem,   the   iel   ri'*'r  si   •:'■'     pre HO   \ ii'   interceptor?  PO the  offense 

has   a  return  p'-r  weayon  on  ericl    tar^-t < po«v3   constant   value.     T) :e 

ieTen^e  shouli   not   rut    interceptors   on    t   * ■ r^M ,   if   possible,   w! ile 

some  Dther  t irret   ; s  ?t i i 1   brin^in^ a  hi^h°r  return  per we .iron   to 

the offense 

In  the   eise  of   preferential    iefense,   the  offense  should  attack 

each  tarffe^    ' n  such   1 way  thai   wh'?n  the defense   u:   lookin~   f<">r  a  rlace 

tj  put  his   interceptors   he sees   q   constant   return   for  each   interceptor. 

To  further understand  this  concent,   consider F"   ure H-3,   which   is 

representative   of the  rerfect attacker  -'.rid  perfect   interceptor  problem- 

L 
VSF„ 1.0 ■- w 

^ ct.: 
(e C; 

h-i u 

[x! ^ 
K-l ^ < 

PQ 

CO +J| 

o n 
w 

p H 
s ►< 
x; en 

1 

-| V5P3 

L. 

NOTE: 

TOTAL DEFENDERS, D  - 10 

TOTAL ATTACKERS = 19 

TOTAL TARGETS - 7 

D„ 

L 
VSF. 

.-, VSP( 5 
VSF 6 

4-—i ( 1~.—t 

Di    5 

-♦—*—-»- H ß 1    t 
a,        Lo 

■»■   « i • » ♦- 

7STL 

D. 4   15 S  °6   D7 
INTERCEPTOR NUMBER 

FIGURE F-!  DEFENSE VIEW OF HIS OPTIONS 

Figure K-l is the result of the lefens° inspection of all offensive 

strategies and orierinr therr in teen,.' of the value sqved r^r inter- 

ceptor fir1 i if a specific attack on a target is intercepted.  Tn 

this figure, the Iefense found on" offensive strategy which would 

require D1 interceptor^ to nullify the attack at a return of 7°0 

.   • '* s'1 ,V .*" ."• »'« »"• 1 -' fc. 
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per interceptor• The second best s .• u. \ry would require D,, - D-| 

interceptors at a return of VSP per Interceptor, etc. Tno figure 

is a staircase with each step representing trie defense potenti.31 at 

each of his seven targets Tor the speciiied offensive attack on each 

target. 

If the defense has DT interceptors, the use of a function like 

that of Figure ti-1 will indicate to the defense how to allocate nis 

interceptors.  Since the offense can also look at his strateg. 

from the defense point of view, if he knows D[p, he can determine if 

better strategies exist for himself. 

In the case of Figure H-.i, there likely is a better set of 

strategies.  For example, if the offense took one attacker from 

.—-» strategy 7 and added it to strategy 1, he would be better off as long 

as that extra attacker in strategy 1 did not reauce VSP-, below VSP^. 

The logic is as follows.  The attacker gives up VSP-7 units value 

destroyed when he switches to strategy 1, but if the new VSP, is 

still greater than the value of the defense's last interceptor, 

VSPn, the defense will remove a defender from strategy 3 and add it 

to the new strategy 1.  The effect is a net gain to the offense 01' 

VSP, - VSP7. 

If the offensive strategies all present an essentially constant 

return to the defender for his Dm interceptors, the offense nas owe. 

oT  the necessary conditions for an optimum set o!.' strategies.  In 

sum a case, the offense should carefully analyse his options because 

he might, gain nothing by switching attackers from one target, to another, 

'.'// The ba~ .r.   probier, is to de/oUu a method which will lean tue 

cffer.se to such a special set of stra'egies.  'Tie soiutic. method 

1:1 ),n;s program 1 s as L '■ i I ows . 

. \.-.- .-. ■ ■/ 1  -. •■ . >. •- 
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As described in Chapter IV - Section A, this program uses a 

Lagrangian process to optimally a. locate weapons to targets.  Ir  .is 

process, the bulk of the offensive problem is centered around the 

determination of an optima] Larrangian strategy, target by tarfret. 

In brief, given a current yet of weapon lambdas, the best strategy 

is to find that set .)f integer N. . such that the following function 

is minimized. 

1 M       I 
T-T N- •     V"^ 

H = V. I  I 3. . LJ +  >  A.N. .                   (H-l) 
J '  ' ij       £-j      l ij 

i - 1 i - 1 

The integer constraint is implied since it enters by virtue of the 

fact that integer N. . ire the only ones allowed. 

In this preferential defense problem, it is possible to develop 

optimal offense strata" ies through the use1 of another implied constraint 

in the above process.  Since the offense desires to develop strategies 

which m et the special constant return condition, he can consider 

only those integer N. . which retu:  the defense a pay-off < a constant 

vaiue. Then, he will develop a set of strategies which maximize 

value destroyed under the condition that no  strategy shall allow a 

defense pay-off over some specified amount. 

Due to the convex nature of the tyrical target damape function, 

there will b*3 a rrnnimuir level of attack allowed if this maximum 

lefense pay-off condition is inserted.  Consider the fcllowing typical 

damage function at some target.. 

■U .*- ,,\ m   ■   n.'a .Vi.'f  *> i i i ■ i r . 
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n 
>- 
c 
cr: 
EH 
en 
p 
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ATTACK  LEVEL 

r^r 

In the case of perfect attackers arrl defenders, the averse ,4ef?ns<* 

pay-off for an^ attack level is simrly P„/N. Since the F function 

is convex, the average return oer defender will exceed K if N<N 

.and it will be less than K if N > N . Thus, if the offense wants 

strategies of lefense return <K, he should allow only strategies 

with N>N*. 

But, which amount of pay-off per intercertor shall the offense 

allow? The answer is that he should find one such that the defense 

return pay-off function looks basically like that represented in 

Figure H-2. 

o 
w K- > w 

W H 

> a: 
a. 

INTER(-FPTO::: NUMBER 

FIGURE H-2  IDEAL OFFENSE CONDITION 
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In this cse, the offense has constrained himself only to the ie^ree 

that the defense has approximately a constant return for his D  ;nter- 

ceptors. 

It is possible for the offense to constrain himself too little, 

or too -mich. For  example, if the offense solves a l^rre number of 

offensive strategy sets for various constrained pay-orf levels, the 

situation of Figure H-3 will exist. 

NOTE: 

FIXED D„ 

VALUE DESTROYED IF OFFENSE 
IGNORES EXISTENCE OF DEFENSE 

PLAT, 

ARBITRARY OFFENSE CONSTRAINED PAY-OF7 LEVEL - FLAT 

FIGURE H-3  EFFECT 0?  IKE OFFENSE SELF-CONSTRAINT 
ON DEFENSE FAY-OFF 

There it; some constraint üevel, FLAT.., which causes strategies to 

occur which result in a defense situation like that of Figure F«-?. 

Other levels lead to defense options like those below, 

*•*»* 

■akfci -'•-'- - ' ■ -'" -** -"" ■O" -'* L-*" -'> -"-■ -'» -'» -*" -"' -'» ■'"-'•   '<■   '- ■ •- V '■ - '-' ,-' -- 
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FLAT > FLAT 
1 

Tl L 
—i  

«r> 

Either of these cases results in less final pay-off to the attacker. 

The ideal of Figure H-2 is impossible to achieve in all cases 

because of integer effects.  It is rene-ally true that the offense 

can only achieve a set of strategies which have an approximately 

constant return to the defense.  How this imparts on the process will 

be discussed further into the section. 

This PLAT concept can be viewed simply as an artificial device 

with no interpretation of the final PLAT,.  In such a case, simrie 

numerical search of the FLAT variable in order to develop FLAT., 

would be the strongest possibility. 

There is an alternate point of view, however, which interpret.0" 

the offense constraint level of FLAT to he a defense Lat'ra.ire 

multiplier,  In this interpretation, FLAT takes on a little more 

significance, and utility. 

On* impact of this interpretation vs in visualization of the 

Lagrangian minimizing function-  If •:,:<> defense is assumed to h-ive 

a marginal utility of PLAT, the Lagrangian function for a snecific 

target would didgram as follows, 

'.,• V "•" / «* V •"« «'.*".« -V. ' '." ■*/ *." "..' * 
- * LS ■'■■■    ■'----  ■--»-.-  -  ■  - -  - S -      *  » • i. i. • ■ i >: .!.',!«..>■ 
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t<; 

C5 

< 

SLOPE - A - PLAT 

VALUE OF TARGE! 

N\ M, 

UNDEFENDED TARGET LAGRANGIAN 

NUMBER OF ATTACKERS 

There  are  two distinct  regions  in this  figure.     Out  to an attack  level 

of N,,  the average  return to each def&nder exceeds FLAT so he will 

defend the target.     Assuming no Leakage, the Lagrangian function 

increases at a rate of A -  PLAT,    Tlis represents the  ielta pay-off 

to  the defender since the  attacker used  one  weapon  but did  not 

achieve any   '   maze.     After an  attack  level  of N1 ,   the  return   is no 

longer lar^o enough to  the defense to defend the target so ths 

defense drops  completely out of the ricture.    The lagrangian function 

then  coincides  with the no-defense  function. 

If the  target  truly was  undefended,   the optimal attack  level 

would  be at NL.     But,   the  presence of the  preferential  defense  causes 

an  attack   level   of  N,   in order  to minimize  the  Laeraneian. 

Continuing this   idea of FLAT being a defense multiplier,   after 

the offense optimizes  his  attack   for the given FLAT,   it will  be an 

Xs? 

■ vv'.'/v". VvV.-v'- -■ -■.••■^v.-/v.v:v:xv:-.»:v\ 
•    '   --*.      '   -       •       ■'      -       •-<■'■        L *   .    ■   .   :  .       -       4 -1       i ■ •       ■      I      I . 
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optimal strategy for the offense.  Like the use of weapon lambdas, 

this ii.;ti corresponds to some level of defense unknown until the 

total offense attack is set. It  the total defense level, which is 

counted by finding all strate*ies leading to a defense pay-off > PLAT, 

is not the amount desired, FLAT must be modified. 

With either interpretation, there must be developed a rarid 

process for converging upon the optimal level for PLAT if fixed 

defense resources must be analyzed. The computational success of 

the whole concert depends urcn that nrocess. 

a.  The PLAT Convergence Process 

The first attempt at a method for determining an optimum 

FLAT for the offense involved usage of a Fibonacci search process. 

Since the offensive pay-off as a function oT  FLAT (Figure H-3) 

is basically a unimodal function, such a process should work. 

However, there are considerable small local optima, caused by 

integer effects, in the function of Figure H-3.  This means 

Lhat the search process can be misdirected and the approach 

was dropped. 

The alternative of simuly usinr a numerical stepping pro- 

cedure across a selected span for PLAT was felt to be too time- 

consuming.  Each choice of PLAT involves a new offensive 

optimization so one must, avoid large numbers of PLAT iterations. 

Trie current method is acceptable in running time and there 

is a good chance that it can be improved eve^ further.  Basically, 

it us<?s a maximum amount of information in predict!nr a new 

estimate for FLAT, P i ven the offensive solution !'or some current, 

•M\W-M MA IS -*» M% .-•». •» A >.••.-. v. u ■ -. -^ --»>-- "..-■ - i •.»   • .» .- ■• .- .- ■• ■* i >■• ." .' i—i—:•—i  » •—>—=—-=—=- 
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non-ori 'T':"   PLAT.     Tl ; s   information  r^volvps  arounl   r.he  set 

of necessary  conditions  for an offense optimum. 

T> aid   in understanding of  the  process,   consider the 

following   figure. 

O 
Sä 
C 

E-< 

w 
N    - FIRST INTEGER STRATEGY 

a      WITH  PAY-OFF <  PLAT 
a 

N = NON-INTEGER STRATEGY 
FOR PAY-OFF = PLATL 

b 

a b 

NUMBER OF ATTACKERS A3 MEASURED IN 
INTERCEPTJR3 REQUIRED TO NULLIFY THE ATTACK 

Assume that a current PLAT = FLAT was used to allocate weapons a 

to this  target.    Without  knowing the  precise  shape of the 

function between \T     and  N, ,   an estimate  for the non-integer 
a b  '— 

number of attackers  to achieve a PLAT = PLAT,    is  as   follows: b 

N    „   N      LPLAT    -A) 
b a      PLAT,   -A; 

b 
(H-?) 

Where: 

M No.  of attackers  to achieve defense ray-off 

PLAT <  PLAT 

Non-int--':T"r attackers   reouirH   for  PLAT, 

r^^-^Vr.y^ 
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A - Estimated average slope )f the damage 

function bet we er N and M, 
.1     b 

PLAT = Average pay-o'T per iefender when the attack 

is exactly it  N 
a 

PLAT, = Next iesired defense nay-off 
b 

It is important to note here that in all discussions in this 

section the number of attackers is measured in units of inter- 

cepts required to defend against the attack. For example, if 

the attackers and interceptors are perfect but the attacker carries 

decoys, the attack would be measured in intercepts required to 

nullify the attack.  This would be equal to (1 + d) times the 

number of attackers, where d = number of perfect decoy   " RV, 

If a new arbitrary PLAT is chosen, all strategies which are 

returning a defense pav-off > FLAT, must have additional attackers. 
' c b 

An estimate of the number of attacking objects required can be 

obtained by use of equation (h-2). The total becomes 

M 

£ 
m «• 1 

D (FLAIL- A ) 
J2-_ 5 iL (H_3) 

(PLAT,- A ) 
b   m' 

Where: 

M = last ordered  strategy wi.th defense  nay-off 

> PLAT, 
b 

D    ~ current defense  level   required  to nullify 
m 

strategy  m 

r«l^V.*^:"^nV^^iV'^-'V,"^,"^.,"o"^'V"^."'--,'o VVN.'^'.^*.?-.*'.^'.'.-. .-^. -.'*•>^JLLAS^JSJL^ZJA—--■ S-.-'tS'. -   '. --- •■ *"* * 1. - -, -. -. •'* •'-. •LM&iij*m. *» -'. -\. -». 
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rt\ ■■-  subscript to identify a strategy   as ordered 

by  the defense according  to  his  ray-off 

per  Interceptor. 

I-LAT,   = new PLAT b 

KLAT    - actual  defense pay-off at strategy m 
m ' 

But, D (FLAT ) also represents the extra value saved bv de- 

lending agains- strategy- m. Thus equation (U-3) can be re- 

written to yield: 

M 
VS - A  D 

m    mm £ FIATK - S (H"^ 
b    m 

<r.,':^< 

m = 1 

Where: 

VS = value saved by the defense if strategy m 
m 

is defended against. 

in order to use this equation, some assumptions must now be made 

about A .  This parameter obviously varies from target to tar et 
m 

but some bounds on its value can be obtained. 

Before going into the usage of the above relationship, it 

is necessary to emphasize the point that it was based on an 

estimate of the non-integer number of attackers to attain a 

desired defense pay-off.  This means that, at best, use of it 

should te considered as a guide to the selection of new FLAT 

Levels. 

If the rurrent FLAT is a ionr way fron- the optimum, the non- 

Lnteger estimate is adequate.  As one approaches the optimum, 

integer effects begin to dominate and an alternate method must 

be used. 

b^ii^i:Zv:^^ 
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Several Drospeets for usat?e of the relationship exist. 

First, we know that  Ar^o siP'-.e the value destroyed on a target 

is asymptotically approaching the value of the target. Thus, 

we can say: 

M 

b 
m = 1 

Use of this equation leads to a useful lower bound estimate on 

PLAT\ as follows: 
b 

Assume that the current PLAT > PLAT,. This means that 
a     1 

PLAT,. < PLAT nnd, as a consequence, that there is some minimum 
b     a   ' ' 

number of strategies M such that 

M 

P* = DT and PLAT* , 4=   PLAT' =  >   VS^        (H-6) 
T       M + 1      b     /   ^ m 

m = 1  

DT 

PLAT, = lower bound estimate of PLAT, 
b 

In ether words, if the first M strategies all are to yield a pay- 

off per interceptor of FLAT *  ,, the estimated total interceptors 

required would equal D_.  Dus, PLAt ^ PLAT,/' , - and we have 
I b      M + 1 

a candidate for a new PLAT.  Also, this identifies which 

strategies likely would be the ones for the offense to act 

upon. 

On the other hand, an estimate for the next defense ray- 

off to ailow FLAT, could be the same as the average return rer 
b 

intercer.tor in the last set of offensive strategies.  Use of 

;lrl^^^,->'^i»Y..v ^.^^-^^^^^^^^-s^^.^"^• vw.wf - - -  



Lii.it. average value cuunot hurt the de tense but possibly could 

help the ottense.  Thus, we can estimate thai 

PLAT 
(VAIHh   SAVhl)   \\\   üLFl'NhL)  
< TOTAL   NUMHKR   0:    INTEKCKPTORS) 

Pi.AT.        upper   bound   e * t "niai »■   ■.>!   PLAT. 

Jne   interesting sue  light   >n   the   integer effort   is   that   use 

of this  FIAT  can  hurt the   lefense,   an;   heir  the offense,   when the 

offense  ro-os   to the   integer  str'-it^y which  br'.r.gs   ray-offs   .Hist 

less  than  tr.is  "st^.hie.     In other  circumstances,   the estimate 

can  lead   to  an  offense mistake  because of the   integer effect. 

One additional   estimate  for FLAT,    can he obtained  bv 
b 

assuming that D    is approximated by the  lowest,  defense  rav-off 
m 

off-red  by  the offense  in the last  set  of strategies.     (VSPn 
i 

in Figure H-l.)     An  indicator that  this  is  true  comes  about 

because tie offense   is using a Lagrangian process  but he didn't 

add  another attacker to  the strategies   chosen by  the defense. 

This means  that his  pay-off there must  have  been  lower than the 

pay-off he could  pet  by  creating  a new strategy. 

Use of that   estimate  in equation   (H-Z+)  results   in 

** 

PLAT E 
m - 1 

VS    - FLAT     *   D 
m m 

+    FLAT (H-?; 

Wh " re : 

i LAT minimum   iefense ray-o**f  r°r defender 

in   Last strategy set 

--■- smallest  number   ',+'  ordered   strategies 

k'    4 
: vr. 
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*7 

To demonstrate the nature of these estimates, consider Figure 

H-l.  In that example, there ar? seven strateries ?^r  the defense 

to operate on.  In the notation just used, the three estimates 

just discussed are as follows: 

Lower Estimate:    (Using H-6) 

M = 2       PLATU - ■L=^~ P'U = .83 
b     lu 

PLAT* . = TLAT0 = .80 
M 1" 1       j> 

Estimate is FLAT,, > .83 
b ~ 

Upper Estimate: 

FIAT < 3-3 ±  5.0 ±  1.6 m 

Mid Estimate:      (Using H-7) 

PLAT  = .2    M   =2 

^ . LI^^M + >2 

- .87 

Several different ways of asinp.  these estimates is possible. 

One effective way is to use the upper estimate but always to 

choose the integer strategy that results in a defense pay-off 

just under the estimate.  Tnis process sterns to converge in 

the mooc stable fashion. Ihe next best, sometimes ' ister, 

method is to use the mid estimate and to take the integer 

strategy which comes the closest to it.  At the present time, 

■. ■__,. ■*.,. ~j- •„« ",* *,- ',•<"/' "«■' VL •',*<".,'.'V',j''. '" ■""• "'•> *""• iW« '•". • »~" •*. ■"• • "• •'- ■'• •' 
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additional experimentation is bein? coniueted to ietermine the 

best method overall. 

As one arpro.-vhcs the final FLAT,, all of these estimates 

t'jr. i to converge and the precise way one hanll^s the integer 

effects seems to he the final factor in acr.ieving a- optimum. 

This ingredient enters in is follows. 

As the or.timal (TL*T  ) is arpronched from a level of FLAT 
i 

which  is  too  r Lgh,   tr     offense develops  strategies  which   present 

the de-'        • with n arly  a  constant  pay-off  on  each of several 

strateg.es.    When this  occurs,  all of the  above  estimates  look 

essentially alike,  but  with  small diff-    ?rces. 

The  small   differences  occur because of the interer er^ect. 

First,  with a mixed  wearer  force, each  strategy  car   involve 

different weapons to  integer levels.     Secondly,  the target  proups 

are  of different  types   and   the  net effec;   is   the staircase  func- 

tion discussed  previously.     In  this   eise,   the differences  between 

Strategies  can  le  small   but  they do  exist. 

At this  point,   there  is  a question as  to  the best manner to 

handle the  integer effect.     For example,   say  a  new PLAT is 

»btained  by use of the  previously   ^escribed  urper estimate. 

Since  strategies  must Ive   Integer weapons,   this   eyqct  F'LAT 

can-.iot  be attained  or. ea  i     trategy.     If one  always  chooses  an 

Integer such  that the pay-off   is  just  less  than thi-  FLAT, 

there   is  a slight,   but  perceptible  l^werin^  of  the  average 

defense  pay-off.     As  a   result,   the  next  estimate  f\ r  FLAT will 

be slightly  lower than  the  previous  one,   *tc.     In  this  way, 

IWWVJ'V.'^\'
,
.'

,
AV-V-.I.V}

I
.

,
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the process can slowly lead to low^r and lower PLAT's ind the 

optimal FLAT will be passed. 

As the FLAT pets progressively smaller, another effect 

begins to appear.  Namely, there are more strategies having a 

constant defense pay-off than the defense can defend agninst. 

For example, the defense might have 100 interceptors, but there 

are enough strategies for him to nlace 300 interceptors, all 

at a constant pay-off. 

This raises an interesting question.  Should the offense 

ever deliberately lower the defense pay-off even when he must 

lower it on more strategies than the defense can defend a^inst? 

In other words, is it a sufficient condition for offense optimality 

wpj? when he produces a set of constant defense pay-offs or is it only 

a necessary condition? 

The answer to the above set of questions is that the constant 

pay-off objective is only a necessary condition. This is obvious 

from the fact that the offense cm impose a very small PLAT on 

himself with the net effect that he everresponds to the defense 

and provides the defense with a constant return par interceptor 

on far more targets than the defense can defend.  In doing so, 

he allows many tirgets to PO  unattacked and penalizes himself 

in value '^estrojed. 

Quite obviously, there if-, some connection between the 

defense level and the proper level of MAT.  One necessary 

relationship between the two comes about as follows.  At any 

**-•*' gi^en PLAT, there is \  set r,>f strategies which were impacted 

,1w fjn I'A'IV ,'JuLdJId vV* .'.«lA-jtVA.  •»-.,/■•.* "* ..".•/: r'r .'r.Jr ■.'."«/» ^>. ..'• .•-/•..>.'..■.'.' .'.- ..-..■ .• .'• .W« ^y _'«. ..'• .*>.'>'• *- . 



upon by the FLAT in th.it the Meal no 'efense Larringian st rateev 

was not allowed.  If al j of those strat-Tn es were to he modified 

to fit another FLAT (either ; ■.•■•.';• r or lower), we ran USP eouation 

\\\-/)  to estimat.*» the n.'3w total number of attacker? in those 

strategies.  This results in 

*E     £ (FLA-, - A j 'fl  ■ 
u 

Where: 

A,, - total number of attackers currently included 

In strategies controlled by FLAT. 

AT = average defense rav-o'T in the above strategies rT A <r» — 

V i 

FLAT, = next defense oav-off 
b '   ' 

A = average slope in  the  iamare  functions  involved 

i v.   I fie a hove  st rat epd es. 

A_ « new total attackers   if FLAT  is  chanffH  to FL'<Tn 

In the  case  where the  optimal  MAT  has   ü-'-en   passed,   the   above  A„ 

will   t ••■•    '*. DT,   the  total   defenders.     If the attacker has  some 

plac*3 else  to  use  his  attackers,   he would   like  to   imros*1  a new 

iLAT on  himself so  he  can balance the renefit  to himself  and  not 

overly   resiond   to  the defense. 

If ne allocs  [LAT  to   .     to  FLAT     und   tr e  .*..  -till   is    >   D  , 

he  can  estimate   the   impact   on   the  defense  ray-off  to  be 

ADf   -    D^     (FLAT,   -  FLAT; (K-9) 
1 u 

Where: 

AL!   - Total   refpn-.-  value  change   "  *   a  riven  FLAT ~'\ 

f':.':r!;'"  when   i.h:'   !efer;s-~  -till   ^ets   n   instant 

rotu rn   i •■;•   '. n*   rce; ' or. 
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Meanwhile, the defense now has either released .«ome attackers 

for use elsewhere (if PLAT, > FLAT), ~)r  brought in more attark°rs 
b 

(if FLAT < PLAT).     Hi:; delta pay-off then must  be: 

AGP « (A-. - Al)    F (h-,0) 
r.r Cl o 

Where: 

AOP - offense delta pay-off 

P    =■ offense estimate of nis marginal utility :.ier 
o 

attacker 

The offense would like to find such a place that the A DP ■- A AT. 

Then he estimates that no further adjustment in PLAT should be 

necessary. Equating the two equations results in 

A  p 

PLAT, M -2—S + A (11-11) 

One can use  this  relationship to make a  check  at any t;-'.e to 

determine if the  optimal PLAT has  been pissed.     At the comrletion 

of any  step in the FLAT convergence  process the offense   can 

look at his strategies  to estimate the parameters  in the re]a- 

tionship ana  decide which direction to po on PJ.AT. 

Experience has demonstrated that use of the relationships 

in this  section do  provide a very  rood  method   for  isolating a 

near-optimum FAT.     The upper estimate  operates very weld   in 

cutiing FIAT down if  It  is  too laree,  whii^ that of enuation 

(H-ll)  indicate?   proper  increases   in FLAT  if it  is too small, 

However-,   in trie  regi •,**  of an  ontiiral   FLAT,   ther^   is  nn 

current  way  to  convoke  on   the  final   prer-is^ value  oth^^ 1van 
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slowl;/ 3te ■. Lno FLAT across a small sran ini simply watcvintr 

tl e total offense net ray-off,  fhe best approach is to start 

with a high FLAT, use the hiprh estimate to continually cut it 

down -Had '-i3 the ortiitial FLAT i? approached, the estimate changes 

automatically plow down appropriately. Meanwhile equation (H-ll) 

is used tc keep a check en the process to make sure the optimal 

PLAT has not been passed. 

One cannot just stop at a decrease in offense pay-o^f becaus* 

of the local optima caused by the integer effect. 

Using this process ooviously does not guarantee precisely 

optimal offense strategies but the accuracy has been acceptable. 

When ail of these estimate procedures point toward a certain 

MAT level, it is felt that adequate results do occur. No 

precise error computations are possible but one confidence 

generating factor is that when offense and defense parameters 

are varied, the ofTense pay-off valuer riot very smoothly.  If 

poor local optima were being obtained, this situation would not 

e x i s t. 

0n*= option not considered to late is that of relaxin? the 

'nteger weapon constraint just to heir convergence to a correct 

stirting region for FLAT.  The reason tv*is has not beer i°ne is 

that In the computationally similar weapon allocation rrocess 

relaxation :;f the integer constraint ioes noi mat irially aid 

in the final w-aron  con r,jrrence croblem.  Thus, "Tie would 

suspect that the final convergence, which must allow for 

Integers, would stili ro i  difficult computational problem. 

\\it..iMV^"\*M^^V«:.Vrihrfrt.^^-^""-*';-rV-r '-' '-* -'•-"-"— 's"-^ 'J^-t>.'-»■ •>. .:J.."^ -•-■» •■- „rJt£_\£—0>^Vr.r..ViJ>^V^^Vi/jv:v.-.-' .*_* 'JL'-'-J-A* 
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Going back to the Lagrangian view of FIAT, it Is obvious 

that for a given change in FLAT there are discontinuties in the 

defense versus FLAT function.  That is, if one riots FLAT versus 

the defenses reauired to nullify all strategies where the ray- 

off essentially equals PLAT, there are instances where an c change 

in FLAT results in a iar^e chansre in the equivalent defense level. 

If the defense level of interest is in this region of discon- 

tinutiy, a special procedure must be developed to ^elve down 

into the discontinuity.  (Reference (1) contains a discussion of 

this "gap" problem.)  If a specific defense level is to be 

exactly optimized, a special rrocedure for delving deeper into 

the strate^ies is sometimes necessary in the case where the 

PLAT variable loes not have a unique correlation with a given 

defense level* Such a rrocedure has not yet beer leemed necessary. 

2.  Impact of Imperfect Defenses 

It is lesirable to be able to analyze the impact of imperfect 

def ises so the preceding concepts were analyzed to develor such a 

capability.  As in the other ABF routines, this capability should 

in°i;He the traditional rarameters of: 

P - Probability that the defence does not have the opportunity 

to fire at a riven object. 

P_ - Probability thai the defense does intercept an object 

with one shot. 

P = Probability that -\   iecoy is discriminated. 

EXO • Murnber of area -ecoys per RV, 

ACGDE = Fixed number of intercertor- to fire -it each undis- 

criminated, but acquired object. 

R \v -w on "r i ' 'it': ! i t,y. 

iliL.*l "OL'M A "■-■--<- > "'"' -**»r-*"--'*. **■-' »'* £&?^i---LX.-.-:l£^M+*A*»<m j.m A * £+& fci hA AM. h,fr*LuL*n.       .. A -. .    VA^J 
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Within \\ ' >'.-•   parameters there are several ar voroaches that could 

be taken. For reasons of simplicity and compatibility, the one 

selected here is thai of an expected value model.  This node] com- 

putes the probability that an averare RV will arrive at nrri renetrate 

the defense -uil tr.e expected number of interceptors launched for 

each, RV fired, if the defense iefends against a Riven strategy. 

Built into t\<-  model is the assumption that the defense leaves 

constant the number of interceptors fired at each object.  Also, there 

is the assumption that, the defense fires at every  acquired, undis- 

criminated object at, each target he decides to defend against. 

In the expected value sense, tne probability that any piven RV 

arrives at the target and penetrates the defense is the following: 

R* -- R ["(1 - PA) + FA (1 - Fi)
AC^El (H-l?) 

This  simply  computes all the appropriate event  probabilities to identify 

reliable penetrators. 

Meanwhile,   the  defense  expects  to   fire  ar average  of RINT inter- 

ceptors at  each   launched  RV,   where: 

HINT  - ACfeE  *   1      *   R        1  +  (I  -  FD)   '  EXO (H-l3) 

Tnis  in simply  r>.tsed  on  the  expected number of reliable,  but undis- 

criminated   objects arriving  -it the  a~ea defense. 

Within  the above  relationships,   one  can visualise  the   innaet  of 

an  imperfect   lefense.     Consider  the   following  fiacre. 

"«;•' 
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NUMBER OF ATTACKERS, MEASURED IN EQUIVALENT INTERCEPTORS 

FIGURE H-/*  DAMAGE FUNCTION FOR AN UNDEFENDED 
OR DEFENDED TARGET 

Two damage curves are demonstrated. They represent damage as 

a function of attackers for the target in a defended and undefended 

mode. The damage to the target if it is defended is due to the 

leakage because of the imperfect defense.  It is commuted by assuming 

that the effective weapon reliability is modified from R to R if 

the defense decides to defend that specific target. 

The pay-off to the defense for any specific attack level must 

be the difference between the two functions at that attack level. 

Such a delta function appears as fallows. 

SLOPE - PLAT 

FIGURE H-t> 

ATTACK LEVEL 

DEFENSE FAY-OFF VERSUS ATTACK LEVEL 

«rJy.V.'1 •" ' &2£*JALAHJU1A^£JL^ LMZM ?J* liL&ii2läJlMkkjL^j^l^a3Lak *'.*. win. **ii Lüi JM M.'.H.V'V UV*-.:«"J IJJW ^J. - i - I M I » Km I , II C r. ,V   JLIML* r". ■ - i'- fl".  * i 
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For any specific attack level, say N, the defense can comrute his 

ave:  e pay-off per defender.  In the above figure, this is repre- 

sented by FLAT. 

It is apparent that this representation of an imperfect defense 

meshes very well with the perfect defense model. Both finally come 

down to each strategy bein?" measured in terns of the averse defense 

pay-off if the strategy is defended against and the expected number 

of defenders required in the defense against that strategy. 

In accordance with this similarity, the offense here uses the 

same mechanism to develop an optimal set of strategies.  He estimates 

the defense parameters plus the number of defenders and proceeds to 

comrute a FLAT which will provide the defense with a constant return 

per interceptor. 

In this case, the offense must use the delta function to determine 

which attack level is necessary to limit the defense pay-off.  Once a 

FLAT is chosen the offense uses the same process to optimize his attack 

for that FLAT. 

In development of a process for converging to an optimal PLAT, 

several facts are worthy of discussion. 

First, note tnat the estimating procedure previously described 

generally involved estimating the change of attackers for a desired 

change in FLAT.  The various estimates followed from dirferent estimates 

of the slope of the defense pay-off /ersus attack level function. 

In that case, the defense function always had a positive slope. 

However, in this case, the slope is positive or negative trending 

upon the attack region one is in and the degree of leakage. Since 

*•«•- 

-•-*--'» -'■■..■'*■.-?- -'»-.**-"..-'--....'. -j .J«._'a JA ,_'., -A.. ~.t .-"».-'■---> ~-,-V - . .*i!-. 

w- 



. • 

• ....... ' . 

those estimates were bar;ed on only a positive slope, they wi 11 all 

be hieh estimates if a negative slope is in existence. 

If the initia::. (!Stimate is high, the previously rlescribed 

stepping procedure will operate. It possibly will converue slowly, 

but it will function. 

Experience with the s arne stepping procedure for PLAT in perfect 

and imperfect defenses has shown that one procedure is adequate. 

However, at the present time-;- additional analyses areoein~ conriucted 

to determine if an effective procedure can be obtained for sp~edin~ 

up the process in the leaky defense case. Until, and if one is 

developed, the described procedure will be used. 



IV-I-1 

•ar^s 

PRE-CüMMITTSD AREA DEFENSES 

1.  General 

If the defense chooses to lefend a target with a certain level 

of defense a fraction of the time and is allowed the option of 

changing this level without exrosin* the change to the offense, the 

resultant is a distribution of defensive possibilities facinq the 

offense.  If it is also assumed that for each defensive level (D) 

there corresponds an optimum attack strategy (A), the distribution 

in defense level [p(DJ] forces a distribution in attack strategy 

[p(A)J to produce the maximum expected damage fr >m the entire 

offensive attack. This defensive doctrine and the associated defense/ 

offense distributions which minimize the maximum expected damage 

achievable by the offense is called Pre-commit. 

Initial work done by R. J. Galiano (Reference 6) on perfect 

attackers and perfect defenders indicated Pre-commit is roughly mid- 

way between preferential and subtractive defenses. His definitions 

of equivalence with who moves last may enhance conceptual under- 

standing. 

TABLE 1-1 RELATION BETWEEN DEFENSE DOCTRINES 

DEFENSE DOCTRINE LAST REALLOCATION 
- - 1 » 

ATTACK (A) CONFRONTED BY 
(WHO MOVES LAST) (AT A TARGET) 

SUBTRACTIVE (TERM.) OFFENSE D DEFENDERS 

PRE-COMMIT SIMULTANEOUS D DEFENDERS WITH PROBA-  1 
BILITY  P(D)  0<D<x    | 

PREFERENTIAL DEFENSE A DEFENDERS OR ZERO 
DEFENDERS 

Lfl&&ti&a^£2Ä^ 



Approach -." -j. tiie Problem 

Neither a comprehensive model MT a genera.1 approximation is 

currently or.or,- ■ .e i as an Arsenai Exchange Model (AJ5K) capability. 

;,,he current capability is limited tc the offense dominant condition* 

The work presented here is to be viewed as background support for 

anticipated expansion of the capability to all situations.  Paragraph 

3 presents the status and direction of current work in this area. 

'!wc approaches nave been explored:  a) min-rnax solution of a 

constrained game and b) analytic evaluation of uniform defense dis- 

tributions.  In addition, some equivalence with optimum terminal 

and imperfect, preferential lei rise has been noted, 

a.  The Game Theoretic Approach 

oero- Turn, 'Two- Per son Tames 

The uncertainty in resource allocation by offense and 

defense and the defense objective of minimizing the maximum 

offensive pay-off is explicitly stated mathematically as a zero- 

sum, two-person game.  The following discussion on trie theory 

of zero-sum games (provided by A. U.   Lilver, Martin Marietta 

Korporation) is a usefuJ back/ground for understanding how 

pre-commit defenses can be viewed as such a game. 

7.ere-Sum, Two-Person 'lames are by lefinition games 

with only twu participants (persons, teams, firms or nations] 

in which one participant wins what the other "osei. A 

fundamental concept in game theory is that of a "strategy.1' 

A 'strategy' is a complete enumeration of ail. actions each 

competitor will adopt for every contingency that might 

arise, whether the contingency be one of change or one created 

„.,- 
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by the moves of  the opposinr players.  However, a strategy should 

not be interpreted too naively. The reason i  riay^r does not 

change a strategy during the course >f a ^me :s not that the 

strategy h-is committed him to a predetermined sequence of moves 

he must make regardless of  what his opponent does but rather 

that it enables him to make a move in any circumstance that may 

arise.  At this point, our attention is restricted t >  two tyres 

of strategy.  A "pure" strategy is a decision, sn advance of all 

plays, always to choose a particular course of action.  A l?rrixed" 

strategy is i  rule to choose a course of action, in idvince ~* 

all plays, in accordance with some particular probability dis- 

tribution. 

In attempting to obtain an optimal st.Tateg;- for each 

competitor, the criterion of cptimality used will be the "max-min" 

criterion (Reference ?)- Rougnly, this criterion may b° visualized 

as follows.  A player lists each of his potential (mixed or pure) 

strategies together with the worst, outcome, from his point of 

view, that can result from combinations of his competitors' 

potential strategies. He chooses the strategy that corresponds 

to the best of these worst possible outcomes. 

By definition, the game has a solution if the players 

maintain their initial strategies as givi -'  them the maximum 

expected gain after repeated plays.  The value of a solvable 

game to a player is his expected pain in one rl<\y  of the game, 

with both players utilizing their stable optimal strategies. 

~ ^.±2~*.2-l A^MJ-J^.%^AA,*.JMJ& *^-+^L^± m*ii-. rt^jtLjtiiufl ■,«?..,<>'—«L^'w-^v ,FU\, JS ,,_r,...i..,.^. ^ 
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A ßame is defined to be a triplet | X, Y, K \ , where 

X denotes the space of strategies for Flayer A, Y signifies the 

space of strategies )f Flayer B and K is a real valued function 

of X and Y. The following assunrntions are made: 

(a) X is a convex, closed, bounded set ir. Euclidean 

n-space. 

(b) Y is a convex, closed, bounded set in Euclidean 

m-spaee. 

(c) The pay-off, K, is a convex linear function of 

each variable separately. 

Thus, the pay-off for arbitrary Tixed strategies X 

and Y is given  by the expression: 

m     n 
\$* 

-=i  i«i 

Obviously,  certain special strategies,   consisting of 

verfJX points of X,  are denoted by 

«,  = (0,   ...0,  1, 0,   ...0)   (i = 1,   ...n) (1-2) 

where i occurs in the i—— component. These are Player A'3 

pure strategies. Similarly, 

3. = (0, ...0, 1, 0, ...0) (; = 1, ...ra) (1-3) 

are Player 3's pure strategies. Since 

K(«., ß.)  ■■=  a. . - A(a. , ß.) (1-0 

n :r\^^'^-'^^'^---^s-.^:^*^:^:£l:ji J^ATA^LLA^   ;-»I^,^£i^L^--^^\t^ 
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then the i, j element )f the matrix array "A" expresses the era in 

to Player A when Player A utilizes the pure strategy a.   and 

Player B employs the pure strategy ß.. 

Suppose that Player B is compelled to announce to 

Player A what strategy he is goin^ to use and that he states 

y .  Then, Player A, seeking to maximize his ray-off, will 

obviously choose his strategy as x so that 
°" o 

K(x , yQ) - max K(x, VQ) (1-5) 
x 

Then, the best thine that Player B can do under these circumstances 

would be to announce y such that 
o 

max K(x, y ) = min max K(x, y) = v (1-6) 
x y  x 

where v    car. be interpreted as the most chat Flayer A can achieve 

if Player B employs strategy y . 

Suppose now th^t player A has to announce his strategy 

x .  Since Player B is sure to choose y such that 
o o 

K(xQ, yQ) = min K(XQ, y) (1-7) 

y 

Player A can best protect himself by choosine x such that 

min K(x , y) = max min K(x, y) = *2 (I-p) 
y *  y 

where  v^  can  be   interpreted   qs the  most  Flayer A  can guarantee 

himself independent of  flayer B's  choice  of  strategy. 

-.•-.'■ >.' -. • 'j.-j -.' -/-.-•_.% '\ •:, -. > •.'..«•■ V'A'.'/.V.',.,-;.' v>.v^ laV^u&W - *'• *'■ ~* JVV* LV..Y .\'.*.'-\,\l -.*. v 



V  '   Neumann   h;.  established   that   p~>r a matrix  -"i-re 

l'    =   «-'    -i'    (see  He f' rence  r,').     The  following  proof   ievclops   f he 

simple   criterion  to   ieterr.jne  when  »•.   '"  fn  'ind  roints   up  t FT 

meaning of  "optimal"  strategies. 

If  there  exist x   <•  X,   y   «•  Y   -md  a  real   number v   such  that o o 

K(x  , y)>   v   ,   for all y*Y 

and 

K(x, y   )< v    ,  for all x«X 

then v^   = min max  K(x,  y)  = v  = max  nin K(x,  y)  = v - (1-9) 
y       x x      y 

and   conversely.     Proof: 

(a.)    Since K(x   ,  y) > »> for all y,   it  follows that 

min  K(x  ,   y)>  v    and  max min  K(x,  y)> v    . 
y x    y 

Similarly, max K(x, y )< v    and min max K(x, y)< ^ 
x y  x 

Thus, max min K(x, y) > min max K(x, y)       (T-10) 
x  y y  x 

But min max K(x, y) > max min K(x, y) 
y  x x  y 

Therefore, min max K(x, y) = max min K(x, y).  (T-ll) 
y  x x  y 



(b)  Conversely, cnoose y such that 
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max K(x, y ) = min max K(x, y) = v 
x y  x 

(1-12) 

and choose x such that 
o 

min K(x , y) - max min K(x, y) = v 
y x  y 

Then K(x, y )< v   and K(x , y)> v    . (1-1?) 

This completes the proof. 

Thus, the "optimal" strategy indicates that Flayer A can 

guarantee himself the value v0 — v f  and by judicious play, Player B 

can prevent Player A from achieving more than v    = v Unless 

Player A has additional information about Player Bfs mo^e of 

behavior, Player A should play so as to achieve v .     If he departs 

from the course cf action that assures him the value v , his 

ultimate yield might be less than v . Thus, it is in this sense 

that the common value u   is called the "value" of the game to 

Player A.  Conversely -1/ is the value to Player B. 

Formulation and Play of the Pre-commit Game 

Lagrangian multipliers were used to resolve the globular 

problem of multiple target and weapon types on a cellular basis 

.(see Reference 8). Use of this technique allows the following 

strategy f3rmulation. 

Ä1 

•/-VL*«V»'AVr.V.-'V'.V.'..«."'JL'>-i ,S:^ji'^~£*A^*£^^*jC2?mJm^>'mJ?JL!{±fiJS ^N/JOIV, %.'.<\ •v"-Jv'L\. LVJS 



IV-I-8 

H(i,j)  - VD (l,j) -A i  + m (I-U! 

where:     H(i,j)    =    The  Lapranpian  value   if i 
weapons are allocated  against 
a  target   4efen led  by  having 
j defenders. 

VD(i,j)    =    The  resultant  value iestroyed. 

A =    La^raneian cost per wearon. 

/•' -     Lagrangian cost per iefender. 

These  pay-orfs are  structured  in matrix   form as   follows: 

\\* 

DEFENSE STRATEGIC                                                      j 

V>          X               .... j Nd 

F 

N 
S 
I 
V 
E 

3 
r 

J 
1 > 

s 

• 

i HO,;'' 

M 
a 

FIGURE 1-1  GENERAL GAME MATRIX 

'„"■*■,.•. «•■V.'.'JV-''»."^ ^J>»*J'«r_V"'-L*jL..j!iAfc„"-!i.^-tr.-a f.^f ■?.*.!» r «■■ AV »*!L^ - —i ~A -i J^ -j• ^- _.-- — * - J 
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Ä 

Where N and N, ienotes the limits of the game kernel, 
a     d * 

i.e., any row R representing an attack strategv greater than N 
a 

is dorriinated (each terrr. jess than) by the first row in the kernel, 

and any column C representing a defensive strategy greater than 

N, is dominated (each term greater than) bv the first column of 
a 

the kernel. 

The following examrle illustrates a typical fame formula- 

tion and typical results. 

The resultant rame matrix for perfect defenders protecting 

a target of value one against an attack by weapons havine a single 

shot probability of kill of .5 is presented in Fi*mre 1-2. This 

matrix is venerated by the following Lagrangian form: 

H(i,j) = 

i  */*- i #X ;i< j 

V(l - PKSS)
1"J - i 'X + J > ; i>j 

and uses Lagrangian cost of A =  .2,   /JL = .001. 

re. 

DEFENSIVE STRATEGIES 

0 12                  3 L 5 

CO 
U3 0 0 .001              .002             .103 .004 .005 

W 1 .30 -.199           -.198           -.197 -.196 -.195 
OS 

rn 2 .35 .101           -.398           -.397 -.396 -.395 
W 
M 
CO 

3 .275 .151           -.098           -.597 -.596 -.595 

w 
ffc< 

o 
4 

5 

.1375 

-.0312 

.026           -.048           -.297 

-.061/,         -.123           -.2/47 

-.796 

-.496 

-.795 

-.995 

FIGURE T-2  SAMPLE GAME MATRIX 

■T*j»>.*\\/y v^'^a^^^^J.'A'J^ 
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Note  that   the   r-ixtl   row strategy   i,     5  attack^rr'     I p   ]<e';s 

than  the   f. rst   row   ,n  every   term.     Therefore,   it  will   never enter 

the solution.     Likewise  all   subsequent  attack  strategies   ( > 5) 

will  be  dominated  bv  the  first  row.     Since the defense   !s  perfect, 

the  defense will  never exceed  the maximurr attack.     Hence,   it   is 

sufficient  to  solve  the  eame  when  N,  '= N    = S   (zero  through   four 
d   a 

attackers anJ defenders). 

Two methods of  computing the min-max solutions or these 

pay-off matrices have been developed, namely, Brown'^ method 

of fictitious play and a simplex algorithm. 

Brawn's method (see Reference 9) is an iterative rrocess 

which involves the normalization of cumulative history vectors for 

both players.  The came may be terminated at the end of any 

iteration cycle5 and the bounding values computed.  The following 

table presents the results :f trie preceding came as a function 

jf the number of iterations: 

TABLE 1-2  EFFECTS OF NUMBER OF ITERATIONS ON GAME SOLUTIONS 

r. 

NUMBER OF 
ITERATIONS 

GAME VALUE 
BOUNDS 

UPPER/LOWER 

GAME 
VALUE 
DELTA 

MEAN 
ATTACK 

£P(A) ' A 

MEAN 
DEFENSE 

£P(D) ' D 

10 .025/-.05 .03 .3 oc 

100 .OH/,/.012 .0024 .09 1.44 

1000 .0126/.0119 . 3008 .09 L.266 

10000 .01214/. 0113/» .0003 .0893 1.2U8 

.012 * — .09 * 1.2 * 

* LINEAR PROGRAM SOLUTION 

JB&^Q^lÜikydku^iii t   ».«. .K£M" ^'.fJ" .vW^V^ ."A »"<■«'• * '-* *~* '^ft.V   -'   'SJ«"-V- t'. A-. V» /"«fl'.." < ' ■•_'. <b* -.' «-'■ S.*. 
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The error after ten thousand iterations is less than 1 

percent in this example. The running time varied roughly linearly 

with number of iterations but with the sauare of the number of 

strategies.  As larger rames were considered, this technique 

proved t:>o burdensome. 

The equivalence between eame theory and linear programming 

was investigated as a m°ans to preclude convergence problems.  The 

algorithm presented in Danzig (see Reference S) was adapted.  The 

last row in the above table is the linear Program solution to that 

game.  Additional comparisons were performed to confirm identical 

solutions. 

Usage of Results 

It should be remembered that each game corresponds to 

one "strategy" as thought of in the Arsenal Exchange Model. Direct 

implementation would thus entail cellular solution for each weapon/ 

target combination and development of some techniques to allow 

proper convergence of the associated lambdas and mu. Such changes 

would require major reprogramming and would of necessity grossly 

increase running time. Therefore, much effort has been devoted 

to capitalizing on the insight rained from these games to allow 

reasonably accurate approximations that are compatible with the 

current model.  A brief discussion of these efforts follows to 

establish a basis for the analytic approach. 

Results of some initial investigations pave some hope 

of approximating the distributions of offensive and defensive 

strategies from known variables.  However, no general hypothesis 

could be resolved. With increases experience, fame results continued 
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to ieny the existence of such an hyr-th-   . '.':>■   following 

examples (Table 1-3) might better explain 1 t • sequences.  Three 

examples are shown.  The first is from i >imj !»• case, the second 

and third are more representative of the t.-irpM value? and kil] 

functions used in the Arsenal Exchange Model. 

The similarity between lambda an ;  defense str^tepy 

frequency (and mu and attack strategy frequency) in case 1 is 

apparently misleading.  Observe the non-constant probabilities in 

cases 2 and 3«  Prediction of such variations s^er impossible to 

date.  Prediction of the beginning an 1 ending of the distributions 

has proved equally difficu.lt. 

Analysis of mean level of effort as a function nf lambda 

and mu is more promising in form.  Figure 1-3 illustrates the 

variation with respect to mu.  Similar curves describe the variation 

with respect to lambda with transposed behavior of attack and 

defense levels.  The form is easily stated as:  a linear increase 

in attack level until mu obtains some critical level (not always 

at mu = Iambus), then decays exronentially to the ontimum 

Lagrangian level if there wa3 no defense; and a constant level 

of defense until mu obtains some critical level (not nerpss^ri 1 y 

the same mu at the attack break point), then exponentially 

decaying to zero. 

There may be relationships that allow prediction of 

these components.  But, great difficulty was experienced in con- 

structing general functions tc predict:  1; the slope of attack 

level increase in its linear regier, 2,     the level of defense when 

constant, 3)  the critical values of mu which denot« *>* chqnpe 

jSr\«Lvl:Zv2wC^^^^ 



TABLE 1-3  STRATEGY DISTRIBUTIONS 
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*7 

CASE 1 2 3 

TARGET VALUE 1. 3. 1.4 
PKSS .5 .179 .39 

PK TRANSLATION 0 3.1 2.23 
X .2 .2 .04 
M .15 .15 .07 

LEVEL 
OF ATTACK  DEFENSE ATTACK  DEFENSE ATTACK DEFENSE 
EFFORT 

0 .4      ,4 ,2S            .86 0 .6 

1 .15     .2 .08     0 0 0 

2 .15    .2 0      0 0 0 

3 .3     .2 0      0 0 0 

4 0      0 0      0 0 0 

5 0      0 0 0 

6 0      0 0 0 

7 0      .002 .215 .041 

8 0      .102 .061 .058 

9 .64    .036 .057 .0^5 

10 0      0 .039 .022 

11 .014 .028 

12 .022 .040 

13 .034 .066 

H .036 .092 

15 .031 .064 

16 .025 .006 

17 0 0 

18 0 .075 

19 .135 .006 

20 .196 0 

21 0 0 

•^•^JL^'IIVä^-^ 
J±^- 
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E 

w o 
ft«*-- 

5B 
B aS 

OPTIMUM ATTACK LEVEL 
iF THERE lb NG DEFENSE 

TARGET 1) 

FIGURE  1-5    VARIATION CF MEAN   LEVEL OF EFFl KT VS. /Li 

«*JJ»J>JM'«J^ ^VVWVJV ..W^- ,"->"• »"SVV^ ■> »■"• -.'• ■• *ym
ms~\- • ~ \> W *-■ \- V V V V *.« V ".- V V V ".- *.* 
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in functions, and U)   the exponential rath Leading to the asymptote. 

It is possible that a more rigorous attempt will be made to re- 

solve these difficulties. 

The difficulty experienced in predicting frame results 

made direct approximation by analytic functions unsupnortable. 

However, some results ar^ used as supporting rationale in the 

analytic approach.  Additionally, thes» games have b^en invaluable 

in assessing the applicability of the results of the analytic 

model as well as the arproximation of rre-committM defenses 

by optimally deployed terminal and imperfect preferential dp enses. 

b.  Analytic Methods 

The game theoretic solution applies to a single target and 

weapon type where weapon and defense resource constraints are 

expressed as Lagrangian cost. The technique for inclusion of 

additional basic capabilities of the Arsenal Exchange Model (e.g., 

multiple wear on types, damage limitation constraints, optimum 

budget expenditures) is not now known.  The impact of these 

considerations can therefore not be determined directly.  There- 

fore, an analytic approach compatible with the cellular concept 

used in the Arsenal Exchange Model which approximates rTame 

solutions has been developed. 

Although the optimum (min-max) solution is obtained by game 

theory, if frequency functions arp arbitrarily chosen for both 

the offense and defense and the min-max of these functions can 

be obtained by calculus, the iefinit;on of pre-commit has not 

been violated.  It is just that an arbitrary set of frequency 

iflaua ■ V«*I^AM>*J&JI*wI«>l>^>^VfcSA\ /• V a '»L^^^MI^^^Z^:^^^^:.^:^:]/:^';"!., . '/.V ■■ „'-V^ 
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functions :. s not an optimal pre-comrr.it. 

It can be demonstrated that the precise frequencies *°nerated 

by the r i:r.e solution are not necessari Iv critical.  Table ]-i 

contains these i i stributions for the sanrle p;ame presented in 

Figure 1-2 ind Table 1-2. The variations in the lefense strategy 

distribution are quite pronounced whil»* the aver^r^ <?arr^ value 

is rather stable, beinp within ten percent after 100 iterations. 

It was concluded from a variety of sach Investigations that 

the ?ame value (and therefore, value iestroyed) could be 

approximated with: reasonably arbitrary strategy distribut!ons. 

TABLE I-/4  EFFECTS OF NUMBER OF ITERATIONS 
ON STRATEGY DISTRIBUTIONS 

NUMBER OF 
ITERATIONS 

AVERAGE 
GAME 
VALUE 

DEFE 

0 

NJSE DI 

1 

3TR1BUT1 

2 3 

10 .015 .1 0 .2 .7 

100 .0132 .39 .01 .37 .23 

1000 .0123 .293 .36 .135 .212 

10000 .01187 .393 .191 .22L .192 

LINEAR 
PROGRAM 

.012 .L .2 .2 .2 

 ,  i 

Additional substantiation that the iefense frequency *? stable 

for diverse kill functions comes from analyses of the two perfect 

kill functions pictured below. This analysis showed the result 

of rniform lefense distributions between zero and twice the mean 

attack minus the translation, i.e., P(D) - K, 0<D<2A-T. 

^kOvCv^CVt '.A -.?"£.> '^Ukl* i IIJL:^ .'.A, '^i r^^.'^.\»y^ '.-..'-£ Li .-'•*■ 1* •-A'J."*^»..' *ii •■'* .^ -'*■.V.A ,.'t L-A-^-it-i»^ -*-'«. -S 
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FUNCTION (1) 
(NO TRANSLATION; 

'«I.' 

ATTACK LEVEL 

FUNCTION (?) 
(TRANSLATION - T.' 

' K 
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ATTACK I EVEL 

The probability of no defense, F(D =0), is expressed as 

1 - D/A.  (If D > Ä, P(D = 0) = 0. ind F(A = 0) ■ 1 - A7D.) 

These conclusions are supported by algebraic derivation in 

References 6 and 10. 

The following overlay of a typical AEM damage function 

represents an approximation bv the perfect kill function tyre (2). 

PK 4 

' ATTACK LEVEL 

The apparent lack of sensitivity to precise strategy dis- 

tributions and the existence of algebraic simplicity for these 

.diverse looking, perfect kill functions resulted in the 

suzeestion that assumption of a uniform, zero to twice mean 

offensive attack level, defense distribution in the analytic 

model might be reasonable. 

>&£^%^jü^aüv^j .-"-T^'-V jfe »-*'-«-• +„t:,M,t"Ä>* i Am--" " I id  -■■■-• '■"■■ ■ i » * ^ * >..' --r- ■* if ■ '■ r * ■' »A >»i ■' 
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Another simplification result,:-   if the following  relationship 

is  assumed. 

Define  the  net  value  destroyed  ( v )   as 

v  - P(A)   '  F(D)   '  VD  (A,D (1-15) 

Assume there exist  in soir.e new region R„ a vector P(D*)  = 

v = V 

where the sum , J]F* (n) - i. such that P*(0), .... P*(D) , , 

, P*(n) ' VD a'D) (1-16) 

Since VD (A,D) decreases as D increases, it is necessary that 

VD(A,0)> v  . Tbi • assumption allows min-max analysis by considerations 

of P*(D) only, i.e., the result of randon selections on the oart 

of ihe offense and defense may be investigated by considering a 

random variation in defense selection alone. 

The Analytic Model 

An analytical pre-commit doctrine based on the above 

lopic when perfect defenders oppose perfectly reliable wearons and 

both may choose continuous (non-integer) strategies has been 

developed. The probability of killine the target considers the 

total number of defenders at a target class and the fact that 

all targets in this class are not defended, i.e., 

PK(M)  = P(D = 0)  FK/M + P(D>0)   l    ?(n)  PK/(H-»)   ^     (I"17) 

'K(M) 

FK/M 

F(D) 

= Probability of  kill  with m  firings where 
defense  is  present. 

- Original   probability   of  kil'   with  m   r,rinps 
(no  defense). 

- Probability of defense  level   r),   where F(D) 
is defined bv the uniform  iefense  distribution. 
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*- 
such that 04D < 22. 

'    S 

where D is a possible number of  defenders at a target 

D is number of defenders it the class 

S is number of  defended targets in a class. 

Since FCO) is continuous, the probability P(D = D ) for 

every D~ > 0 is equal to zero. 

But by limits 

Limit    F(D < D<D    + A )  = Limit  (D    + ±  - D  ) —^    = o o A-*0 A-*o 2D 

S 5 Limit A—y = —r    dD 
^-*o     2D~       2D" 

(1-18) 

Therefore: 

NT-S M 
V„, 

'K(M) "     NT <M   +    Nl      I      b    PK(K-D)^D    <"« 

where S  of 1 targets  are defended. 

Figure  1-4 illustrates  the original damage function which  is defined 

as: 

K/M 

r v M^To 

M-T 
i   -   (i-P)       ;  M>T 

NOTE:     P    = 1 -  (1-P) 
T -T 

o 

(1-20) 

*.!■<■• L.: .„■, ._y ._\ tj.A.'.i.'. ■_•. O y,' v.-, o «_•, *.• »A..: .- •. . .cv:^^^ . -*.. wr . -? . -a ' 



IV-I-20 

K M 

F  

ATTACK LEVEL 

FIGURE 1-4  TYPICAL KILL FUNCTION 

The net effect of the addition of defense is a flattening 

of this function. Assuming the existence of a tangent roint on the 

new functic.i (P„/M\), it is the objective of the defense to minimize 

the maximum pay-off per attacking weapon (i.e., minimize th*3 slope 

to the tanrent point on the new function P»/«-, since the defense 
IHM; 

is assumed ignorant of the precise attack level to be suffered). 

That is, we are looking for that attack level M (M > T ) 
ooo 

dfK(M) V0) 
such  that      N   .\ '     = —rr -.   which  is  the tangent  point  of  the 

«3 M      M   * 
o 

new function.  It is assumed that M will be reached without 
o 

possible exhaustion of defense resources at a tarpet since S is 

2D 
continuous in the region and Limit —r- - °° . Thus eouation 

S —°   b 

(1-19) becomes: 

^VMI-Jr^".'.,■-..'." «*•.„'•■>*-.. • ■  - >'-^V .'  *"'-':,   ■ * ' ,-   .V .>->.'■ V*»> „ • >"• m    ■   -'--•«' A    ' M'* ■/•■■■'- k'* m'   ■'• »"- -*' .*-■■'•-'  -*' .'"  .■> ***  LN -'- -'- .*- .A .% -% ,/» JL_1. j 
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.N .'    ". .-» 

M 
NT-S 

1 - (1-F) 
-V-T 

2D"\' 

1
OL  r 

/ 
TL   "o 

V 

f   l - (1-P)0-T do (1-21) 

X 

and completing the integration, 

'««■¥ (I-QM"T,+ä ' $ -i) 
+ 

IV. 
M - 

~M-T 
Q      +P -1  o 

In Q (1-2?) 

i VJT where        Q = 1-P. 

By noting the tangent point (P ,  T  )  also  comprises the maximum 

i P> 'M) value    ---*-: 

in 

T -T 

A__ ik£JL    ° 
T, 

T -T 
(1-P)     °      In  (1-P) + 

T -T 
(1-P)    °      -1    . 

T 2 
o 

= 0 

-P 

°r'    To ~ (1-Pj    InQ (I-?3) 

hi&Ai^ 
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Equation (1-22) is rewritten to facilitate manipulations: 

M"'    T 2D Nm 

where a   is defined by the integral to be 

F 2-2F +2 M-T 

NÖTE:    a    = area under original  P„  function to an  attack level 

M.     Derivation of the optimum defended subset  (S    .)   i.e.,   that h opt     ' 

S which minimizes ^K/y\  is accomplished by di rferentiation: 

F= ÜKJM] ,. (1-Q
M-T) + _2|_a  . 

8 S T      2D Nm 

3opt - ^  > s- (I-26) 

Which minimized equation (1-24) if and only if 

*£ = ^W    = -£L_ ^ 0 
^b   6S^      D Nm 

By the derivation of ot y   it has been defined as the area under the 

damage function from zero to M attack level, which is always ">.   0. 

Therefore, the defended subset S   in equation (1-26) minimizes 
' opt 

equation   (1-24). 

1 :JLi~\ '-' *-' O, *J. Q »^' 
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Replacing S by its optimum value, equation (l-?4) becomes: 

PK(M) =^-Q 

s 

M»T> 
1 - (1 - Q   )  D 

2 NT« 
(1-27) 

If jr- > M, it is assumed that S * N_ (all targets are defended) and 

equation (1-24) becomes: 

PK(M), --V 
3      2D 

(1-2?) 

Since the defended fraction of the tareet class (S) is predetermined, 

equation (1-17) must be modified to allow attacks exceeding -^- ; 

cl* 

* 

*N  =  P„      „  P„ /.. +  P. 
K(M; M 2EO '  D = 0 R/M   D >0 

S 
/ 

2D_ 
S 

F(D) W-2D*dD (1-29 

since,  M-2D_    attackers are always  "safe"  from the defense. 

Assuming M >T    = initial  target point  (1-29)  becomes 

PK(«;«>2DV (1-N?   (i-^-T)+4- 
"o" T 2D NL 

# 
a (1-30) 

* 

-- / 

2D_ 
'S 

F(D)  PK/M+D-2D*    dD 

.vV-V-»Y 

The simnle analytic approximations  sought by this analysis 

were now obviously not  simple.     Consideration of additional  encum- 

brances such as multiple weapon types  suggested  a  few more  complex 

analysis would be necessary before a usable analytic model was 

developed.    Therefore,   only  the  rases where no  initial   translation 

in the  kill  function existed will   be discussed  in  the  remainder 

of this  section. 
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If T - 0,    becomes: 

?D 

a - J       [  1 - Q    3   Dj ID 

2?_ 
s 

Q 
K - 2D* 

Q   3 
In Q    In Q 

(1-31) 

The nodel reoresented by these eauations accepts input 

of number of defenders (per class), number of targets in the class, 

and damage function of an attacking weapon if no defense is employed. 

Equations (1-27)  and (1-28) are used to find the tangent point of 

the function PK/Uv . This function is the resulting damage function 

if the defense could predict the exact attack 1 vel ani picked the 

optimal subset of targets, 5 ..to defend.  The value of S 
* '     opt' opt 

at this point is then computed by equation (1-26), locked in, and 

anew function PvfxI\ is com'     isin.T equations (1-24) and 
K(M)S = K 

(1-30).     The  final   function   represents  the expected  damage as a 

function  of attack level  when  the defense  has  chosen to defend 

a subset  of  his targets which  is optimal   for the attack  level 

which would bring the attacker a maximum return  per attacker. 

The equivalence  of  this model with  the alrebraic  ieriva- 

tion   (References  6 and  10)   for perfect  weapons  and  perfect defenders 

has  been computed  to  insure the desired  compatibility.     The 

corresponding  notation need   in these  rfjfc?rences   is   included   to 

facilitate rapid  acceptance by a suspicious   reader: 

^-.v~*- - • -*» -*» -*- -'«   ■ *w •* - ■   ■'" •"* ■ • -"• •*" .*"•-'" /•"-*-,*-" V H«\*-'^\^ M>"Ä%V. j^'Ivrv"^/'%\%\,%,'^*'«"'1*'o*^ 
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Notat:ons: 

^K(M)    =    ^    =    pay-off  function 
s 

n~" 
—    - D = average defense level rer target 

M    = N = expected attack level 

S/N-  = S = probability that a target is defended, 

For perfect weapons, P ,= 1., Q = 0., T = P - 0. 

Therefore the area under the function («) is l.'N, or from 

equation (1-25) 

. (Qj2-2,(0.)+2.  . M     (0) 
" 2.(l-0.)ln(0.) + M Tn'ToT 

and since Limit ■:—7-7T - 0 
x-o    ln(x) 

Equation (1-27)  becomes 

p - H - l D        - i      _£ PK(M)s -      -      "  2M NT    - 1 -    - 

Equation (1-26) when divided by N_ becomes: 

S * 
opt D     D 

NT     
So - NTM   - 

and equation (1-28)   reduces to: 

NT v 
PK(M)    - H = -^   M    =    L 

s 2D ^u 

ä:vi:vlv>:ÄvA\0^>:v: ^aü^ilv^JS^KÄi»!!^^* 
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Compar : son of An: y t i c and Game Theor»■ ti c Results 

A typical comparison of f^amc results with, the analytical 

model is presented ir. Figure [-5.  It will be noted t-hat the 

analytic mode] is apparently better for the defense if A'o* is low. 

However, the came results considered integer points only while 

the analytic model uses continuous offense and defense strategies. 

The impact of continuous versus discrete interpretation ss presented 

in Table 1-5 by allowing small discrete stepp in the strategies 

inserted into the ^ame. 

VALUE 
DESTROYED 

ANALYTIC MODEL 

-GAME RESULTS 

I 

FIGURE 1-5      COMPARISON OF  ANALYTIC 
AND GAME  THEORETIC 
RESULTS 

<!■/>. V*'AV'V^ ^ '/'A*. _VLAL-}I ^*^3 
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m 

m 
L*-»V 

*M nr 

•. .■ 

TABLE 1-5  EFFECT OF INTEGER STRATEGIES ASSUMPTION 

GAME SOLUTIONS ANALYTIC ** 
SOLUTION 

CASE *   DISCRETE      AVERAGE    AVERAGE    RESULTANT 
STRATEGY      ATTACK     DEFENSE     VALUE 
INTERVAL                          DESTROYED 

VALUE 
DESTROYED 

1.0        1.35       1.2        .27 

1      0.25      1.678     1.2626    .^356 

0.20      1.7523    1.2636    .3505 

.278 

.3361 

.3507 

1.0        .75      .75      .1875 

2       0.1        1.07       .8169     .26747 

.1952 

.26757 

*   Both cases are for perfect defenders having Lagrangian cost = .15 

defending a target of value 1. against an attack having a single shot 

kill of .5. The Lagrangian costs for the attacking wearons ( X) is 

.2 in case 1 and .25 in case 2. 

**  The analytic solutions were obtained by defending a target by the 

average defense resulting from the game solution and computing the 

damage as if the attack level were the average attack from the 

game solution. 

This evaluation demonstates thr- basic inaccuracy of the 

continuous assumption.  It is of interest to note that in all 

of the above calculations the average attack produced by the 

game was less than the tangent ^oint described by the analytic 

model, i.e., evaluation of damage was done on the linear rise 

at 

L^-V'^V.V;.>,V './•.- '^^:^".:J^^.V..V-.:.I.'J.•..•.. •^.:.^...w \\:^.\»\> A*-» ^"^.'•-.'--»''•-O.-.- H«>-■'■*■> /*■ 
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to the  tar.rent   ; >int   )f  the   ; motion  P„/u\ •     The  po- sible 
K(M)g _ K 

relation to  the   Linear behavior   :f  the came  solutions   in  certain 

regions  (see  Figure  1-3)  has  rot  bren deterrined. 

Additionally,   a  iiscrete analytical  approach ha?  not 

been attempted.    This  is  largely due to the  combinational   com- 

plexity inherent  in this  technique.     This  complexity appears 

even more burdensome when  it  is   realized  that  the  analytic model 

does not  consider weapon  reliability nor defense  leakage which 

are   additional  combinational  encumbrances. 

The results  are generally  in pood agreement with fame 

theory and   future efforts to express  frame results  analytically 

would most likely be  fruitful.     However,   caution  is   required 

in that the effort expended  in this area  should not be out  of 

proportion  to  the projected utility of  the eni   result.     The 

current  forecast  of  this utility  suTeests ar   adequate approach 

would  be the development and  implementation of approximations 

to the  game  tneoretic  results   in  terms  of ■iamare  and  resource 

expenditure.    Questionable  results  from  such  approximations 

could  be  challenged  by appropriate analysis  usin? game matrices. 

It is anticipated  that  such approximations  as  are developed 

will  require  periodic  review as  they are utilized  which  may 

necessitate further efforts  to resolve  pre-commit defenses 

analyti cally. 

Approximations   for Exponential   Kill   Functions 

Analyses   >f a   Large numher of rases using this  ^odel 

suggested  a general   approximation  for those  rases  having  no 

•^,^.-^%^A:v:v:\^:v:^ 
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initial PK translation, namely, there exists -i translation (T) 

in conjunction with the original rK such that the -\r^i   defined 

by the resultant tangent point (F , T ) equalled twice the 

average defense per target, i.e.: 

o    NT  '  Lo    S   ' • •  o lo   ™     MT (1-3?) 

and since from equation (1-23) 

- P 
T  - 
o 

(1-P ) In Q 
o 

it  is  possible to compute an approximate P    at i   2 tangent roint 

with use of fixed  parameters  and no extensive mathematical  rrocess. 

In Q D    + ^ D ' In   Q - 2N    D    In Q 

NT 
(1-33) 

The following equivalences with the slope to the tangent noint (a) 

were also noted. 

a - 

FK(Mo) _  PK(Mo) _ (1^M-T}y  _g_2 

M Mo  - 2NT 2D*Nn 

The above relationships can be shown by demonstration, however, a 

mathematical proof is not now available. 

The final curves of Pw v     when an initial tr^ns- 
K(M)S _ K 

lation was present were difficult to fit bw the standard PK-with-a- 

translation format.  It is s^. pected that a rroper fitting 

analysis might produce simil-:' approximations« 

.\. .■..V^V.'^. .%:. JA ,. 'A-J ■/■ ■•'.-•. *.V.V. 



c.   Approxima* ing Pre-co.Tirr.it By Using Optimum Terminal Defenses 

An effort to equate pre-commit defenses with currently 

programmed defense models was conducted to investigate any 

qualities unique to pre-commit defenses and to test the feasi- 

bility of approximating pre-commit by manipulation of the input 

of existing defense models.  The above approximations allowed a 

direct comparison of trw analytical pre-commit model with ortimum 

terminal defenses. 

Two models were developed for this comparison.  The first 

model allows determination of an optimum terminal deployment 

(continuous) given a number of interceptors and the second 

involved the usa.^e of the above approximations. 

Optimum Continuous Allocations of Perfect Terminal 

Defenders 

Optimum allocation of perfect defenders   (D)  among  I 

sets  of targets  having N.   numbers  of value V.   is achievea when f  l l 

any attack by weapons having a damage function P., T. against 

these targets obtains pay-off < a constant value per attacker 

anc all defenders are used.  This is accomplished by deriving 

the minimum/maximum average pay-off (i.e., the tangent point 

of the darnare function on each target and making the slope 

constant 1^r)r  each target).  Since perfect defenders result in 

a linear increase in translation, resolution of the minimum 

slope tangent to each damage function as illustrated below 

produces the desired effect. 

^Jfcufljjy^^jfiy&^L^ifcA•.'»'■;"-,'-,'—"-'•'■^t^f-."w. V-^y.O-v-'^J^'-^-^^A-/-:^^^ 
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._% 

TARGET 1 

V.PV. 
l Ki 

ATTACK LEVEL 

ORIGINAL DAMAGE FUNCTIONS 

l hi 

*. ATTACK LEVEL 

DAMAGE FUNCTION AFTER DISTRIBUTION OF DEFENDERS 

where: D, N, + D0 N0 = D 

When optimal deployment is attained, the slope to the tangent 

points (A) is a constant for each target, i.e., 

A = 
V. 
l 

M. 
l 

M. - T. - D. 

1 - (1 - P.)  X   l   X = K (1-35) 

Where M.   is the attack  level at the  tangent coint  on target  i. 
l 

Letting q.   - 1  -  F. 
l l 

M.- T.   - D. 
V.   q.     1       1 2  - V.   - A M. 
li li 

(I-?6) 

.'^J,.^J *-a-v.-'-^^---•J'.^.r^i."-I."-« ■ _-  _r 'J : +LA LA ".g V .*>-.--» "-- '.r .*j- "^ *»-\ ".«■./ v ' JL?*JJ^JL!**L."t«!rji.'JL"^"^JL'-I"> rjf 
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M.   - T.   •- D. 
V     g - Valut    surviving   -it  the  tangent   mint 

i     i 

AM. Value  destroy^   sit  the  tangent  roint. 

T. 

D 

= The original   translation   in  the  kill 
functi on. 
Number of  iefenders at target   i. 

Removal   of value allows  the normal   computation of the tan pent  noint 

by   equating    the  slope of  this  damaee  function  to the  si ore  of 

the individual  kill  functions. 

M.   = (T.   + D.)  + 
11 i 

In (a.)   -  In  (-In q.) 

In  q . (1-37) 

(See Equation  (13)  Appendix A) 

a, = 
V.  the scope of the kill function on target i 
l 

or 

D. --i + 
In a.   In (-In q.) 

i  a.   In q.    In q. 
l      Mi      *i 

Is, q, 
- T.    (1-^) 

This expression is summed to eaual the number of defenders. 

Let C 
Z~d    i  In q. 

In (-In q ) 
+ —1 — - T. 

In q.        l 
i ni 

(since  those terms  are  not affected  by  changes  in the defense.) 

D = -E»i a. 
i 

In  a. 
 1 

In  q. 
+    C (1-39: 

Repl =ic mp a .   by rr~ 1    i V. 
l 

D = 
/-J    i 

V. In   A   -   In  V 

i 
In q. li 

(T-40) 

-^v-^ vi> hi .v.*..'—••.■-:-•■ \>^.^'^0■V^J^^.V*"^^.^T■^/o^^V^■^^^^".V^V^V^\A..^,'^-•'•«. -'. ^^.< 
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1       Y^ T--IN- ln   V- 

A   "     11 fcjln q. Z-^    i     In q. 

Let Cx     £ M.   V. 

C2 -2 N./ln q. 

CQ = c'  +V N.   In V./ln q. 
3 Z-f   l l l 

i 

equation (1-41) becomes 

-  c 
D = f-  - C2 ln A + C3 (1-4?) 

Newton-Raphson iteration was employed to find the value for A that 

optimally distributes the interceptors using the following enuations: 

F(A) - j±    - C2  ln A + C3 - D 

F'(A) m  <F(A? . _.fl _ S 
' W    <J A      A2     A A 

Upon convergence, the D. were computed by equation (1-38)• 

Optimal Allocations of Pre-commit Defenders (Using; 

Approximations) 

Th'2 allocation of defenders to a number of target classes 

while using a pre-commit doctrine is a two-stage operation. The 

number of defenders to commit to a class (D. - N.  D.) and the 
l   l   l 

number of targets in each class (consirtin^ of N. targets) to be 

defended to any specified level (D) must be established.  If 

there are D total defenders to be allocated (2-L n- N, = D), 

iaLij.'■.'. ^".V^V^.-?». \ ,-.*V. „vV.. .•-. -» .*!-%"-•«.•. ,«.-•* .'t .:«■ _.\.^.--^%.. > J* -. . ■ A.V.N »j -"--.-'w* -'» ~'« -V -".» -'» -'- -» -^.-*. ..'* .'.- J» -"V -'.- -'- -'■« .*« -^ 



the  process  should minimize the maximum accrued  damage suffered 

by any attack.     The approximati ons  to  the  analytic model   dis- 

cussed above  allow a si;:r0e  calculation of the  effect on the 

damage function  if D.   is  known.     The approximation used   (equation 

1-33)  state?   that  the damage  incurred when  the  most  efficient 

use   is made of attackinr weapons   (i.e.,   at P    which   is the damage 

at the  tanrent  point on the   resultant P.. ,.,% curve)   may 
ft {K,) s-constant 

be  found   oy solution of the  following quaHiatic: 

In  q.   D*.        WD*
2
 In2 o.   -  2  N.   D!   In q. 

'                     l       l     , 1   l i li l 
r        -      ~      + 

o N. KT. 
l l 

The following model assumes the minimum damage will 

occur when for every target i, the slope to the tanpent point 

t   i 

(P , T ) times the value of the target (V.) is equal, 
o'  o' 1        ' 

P        P 
0. o . 

V.  —7- = V. —^ for every i, J 
1    IM J    m 

o.        o. 
1 J 

and exactly D defenders are used. 

Using the relationship stated in equation (1-23) and defining 

C to be the slope of the value destroyed function to the tangent 

point, the problem is to find that CR such that 

CD = V. (F  - 1) In q.   (for every i.) (I-A/J 
ft   1   o. 1 

1 

and  exactly D defenders are  required. 

•*-''-'»"-"«"-*>--N--^.~liV»*»>-'•--*:*--^"^.M":^'rVV^V^>Vv/\jt>^>^r^"rV\*\>.'"V«.* -_«-•- .•_-..-v\/./-..^,-. 
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Substituting equation (1-33) into equation (1-44) and solving 

for the resultant C; 

C = V. In q. 
l    l 

In q. Di + y Dt ln^q. - 2 N? D. In q. 

N. 
l 

- 1. (1-45) 

It should be noted that 

^T Ni Di <  D  implies OCj (1-46) 

and V N. D. > D  implies C<C^ 

i 

Equation (1-45) is rewritten to allow the solution of individual D.. 

*      | 5 1     C N. 
D.  1^1-2N./Ü.  Inq. - —±- 

L J   V In a. 

N. 

In o. 
l 

(1-47) 

The following approximation was made to remove the square root: 

v 1 - X = 1 - | -t 

Using equation (1-48), equation (1-47) becomes: 

(1-4*) 

C N. 2 N. 
D.    »    N.  D.  = -~    + - 3L 
l             l    i      V.   In q. In a. 

l           l i 
(1-49) 

Z°l -   £r=i r* V.   In" q. 
li i 

^    N. 

*■■*  In q. 
(1-50) 

The solution was  obtained  by  step-wise  iteration. 

fcfr>'->'-S**'-^'-'*-'i-'*-^-~*'-^ 
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" -mp-'i native   Analysis 

Since  this  is an  approximation model,   comparisons  with 

the results  of  the analytic  pre-commit mode]   were made.    The 

error was   found  tc  be  almost  non-existent. 

A  comparison between  the  above models   (rre-commit us in? 

approximations  and optimal   terminal)   is presented  in Table 1-6. 

This  eise   is   comprised  of  four target  classes  which may be 

attacked  by a sinele weapon  tyre  resulting  in a simple exponential 

damage  function.     The translation  shift due to terminal   iefenses 

is  the  same  as  the  number of terminal  defenders  qt  a target.     The 

average number of  pre-commit  defenders  per target   and  the  resultant 

kill function translation  are  also  presented.     The  last  column  is 

the optimum spreading of 146 translation units  to establish  the 

error in the  equal  damage  slope calculations used   in the rre- 

commit arrroximations.- 

TABLE  1-6 

COMPARISON OF OPTIMUM TERMINAL   AND PRE-COMKIT DEFENSES 

TGT 
CLASS 

NUMBER 
IN 

TOT 
VALUE 

P 
x KSS 

NO. OF TERMIN 
OFFENDERS PER 

\L AVERAGE 
NO. OF 

RESUITANT 
TRANSLATION 

EQUIV. TERM. 
DEFENDERS 

CLASS TARGET 
(2= 100) 

PRE-COMMIT 
DEFENDERS 
PER TGT 

FROM PRE- 
CPMMIT 
vom 

TO APPROX. 
PRE-COMKIT 
(L  * 146) 

!      1 2 10 .2 13.28 11.359 17.3674 17.8685 

2 5 5 .3 5.7255 5.008 7.°10? 7.910^ 

0 
J 10 3 .4 1,0308 2.90 33 4.3000 4.?96£ 

u 50 1 .5 . ?mu .444 . CS3# .r548 

La 8>,U1.RJ --   s.  •.   v  *.. 
^—>■» —* -,: t ---.►-' 
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Cumulation of the resultant pre-commit translations 

yields 145.9783 units of displacement.  Therefore, the worth of a 

pre-commit defender in this case relative to ortimum terminal 

defenses is 1.46:1. The slope to the value destroyed at the 

tangent point is .322 for pre-commit and .391 for ortimum terminal 

giving a .825:1 advantage to pre-commit on maximum damage per 

offensive v/eanon. 

The advantage of pre-commit over optimal terminal 

could not be resolved into a singular ratio by this analysis ^ven 

though only one attacking weapon type was evaluated at a time. 

However, the analysis indicates there may be some equivalence in 

the more general cases, perhaps including such mathematical 

anomalies as multiple attacking weapon types. 

The compatibility of these results leads to a comparison 

between optimum terminal deployment and the game theoretic solu- 

tion. Table I-7a shows a target structure and pertinent parameters. 

The results of the game analysis for three separate levels of 

defense resources are presented in Tables b, c, and d.  Iterations 

on the number of optimally deployed terminal defenders to yield 

the same total damage (if the mean attack produced by the rr^me 

matrices were employed against each target) were conducted and are 

also presented in these tables. 

TABLE I-7a  COMPARISON OF OPTIMUM TERMINAL DEFENSES 
AMD GAMS THEORETIC SOLUTIONS 

TARGET 
CLASS 

NUMBER IN 
THE CLASS 

VALUE 
OF EACH 

PROBABT" 
p 
KSS 

LITY OF KILL  j 

TRANSLATION 

1 1 H. .09 15.72 

2 2 6.2 .12 8.1    ! 

3 3-75 3. .179 7,1 

"'■'■» •* '^Jt-mZi\ld f**.^JL*..,{m. £*.£*£-•£* ^sJk^jJli^ äJ'^-'^i'-tM.'^tJ'* ^  ■.'*»** .'■>'• .."' ..'"^.'•-» '. « V •-' ',■ '.•',' V_V_V _'..-_• JVV» -V/WW. '■'.«*. .V« •"«_' V'V*' 
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TABLE I-7b 

CASE 1:  100 ATTACKERS, SO PRE-CCMKIT DEFENDERS 

GAME RESULTS OPTIMUM TERMINAL  E rjUIVALSNT 
( A = .150215;M - .146) (EVALUATED AT GAME MEAN  ATTACK) 

RATIO: 
TARGET MEAN MEAN VALUE EOUIVAIENT VALUE TERMINAL 
CLASS ATTACK DEFENSE DESTROYED TERMINAL DESTR"VED TO 

PER TARGET INTERCETTORS F^P TARGET PRE-COMMIT 

1 41.32 24.22 6.537 40.1286 6.55 1.59 

2 15.39 7.32 2.4352 10.7648 2.4^97 1.47 

3 7.41 2.97 1.1725 4.0910 1.1746 1.375 

TOTALS 9Q.89 50.00 15.805 77.00 15.834 1.54 

TABLE I-7c 

CASE 2:  100 ATTACKERS, 100 PRE-COKKIT DEFENDERS 

TARGET 
CLASS 

GAME RESULTS 
( \= .10985;M= .065) 

MEAN            MEAN           VALUE 
ATTACK         DEFENSE    DESTROYED 

PER TARGET 

OFTIMUM TERMINAL EQUIVALENT 
(EVALUATED AT GAME MEAN ATTACK) 

EQUIVALENT             VALUE 
TERMINAL                DESTROYED 
INTERCEPTORS        PER TARGET 

RATIO: 
TERMINAL 

TO 
PRE-COMMIT 

1 

2 

3 

rp   -rpM c 

36.46         43.38         4.005 

16.865        15-498        1.8526 

7.796         6.82475      .8564 

99.42          99.97        10.922 

75.6314                 4.007 

25.2791                   1.8*535 

10.6161                     .8568 

166                   10.927 

1.745 

1.63 

i.??S 

1.66 

:;;o.-:^y:v:ft:v:\:y^^ 
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TABLE I-7d 

CASE 3:  100 ATTACKERS, 150 PRE-COMMIT DEFENDERS 

GAME RESULTS OPTIMUM TERMINAL EQUIVALENT 
1 

u = .0846; /x = = .0388 (EVALUATED AT GAME WEAN ATTACK) 
RATIO:    I 

TARGET MEAN MEAN VALUE EQUIVALENT VALUE TERMINAL  | 
i CUSS ATTACK DEFENSE DESTROYED TERMINAL DESTROYED TO 

PER TARGET INTERCEPTORS PER TARGET PRE-COMMIT 

i   i 37.45 62.34 3.168 111.2235 ^.169 1.7*5   ! 

1   2 16.6^7 23.70 1.408 40.1594 1.409 1.69   l 

3 

TOTALS 

7.9135 10.745 

150.04 

.6695 

34.956 

17.4^53 

257 

.6697 

84.978 

1.625 

100.4 1.71 

These examples show that while equivalence may be found, 

prediction of the proper ratio between pre-commit and the enuivalent 

number of terminal defenders is not obvious.  As an example, if a 

constant fifty percent ratio is assumed, the error in total value 

destroyed is 1.26556, 5-73*, and ^.05^ for Cases 1, 2, and 3 

respectively.  In such a case one might accept 1 to 4"£ error 

but the 8.05$ is certainly unacceptable.  It is thus obvious that 

a-iditJonal analysis would have to be done to establish proper 

rules leading to the least error assumptions and a maximum error 

computed. 

It is of particular interest to note that these com- 

parisons ignor° computation of the mean attack excert by pame 

play.  Both the analytic pre-commit and optimal terminal models 

were developed from a defensive point of view when complete 

«>ji%^%..fVjt<.vl'^y*jt>>'
%^4---j^.--^-.p>. 
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uncertainty about the attack level is assumed.  Since the major 

task of the Arsenal Exchange Model is the allocation of w^amns, 

an honest approximation of Me game attack strategy is mandatory. 

In comparisons between the analytic models and r;\nv^  solutions, 

invariably t.?.- average attack from the game solution was to 

the left of the tangent point of the final analytic kil] function. 

however, great care was taken to provide programmatic indifference 

in this linear reg'on, regardless of target class (equal value 

destroyed to tangent point).  Therefore, if the same total level 

of resource is assumed, attackin" rive or ten targets to th< 

tangent point is the same as attacking all ten to half the level 

(regardless of which five targets are attacked). Thus, it is 

unimrortant that the actual attack on each target he precisely 

predicted. 

d.   An A: proxi"nation Using Preferential Defense 

From the offensive point, nf view, the random defense level 

at a target can be represented as an additional uncertainty that 

a given RV will penetrate the defense.  In this representation, 

the degree jf uncertainty is a function of the relative probability 

that the defense ricks a specific defense level. 

At the same time, the offense knows that the defense level at 

A  target will be chosen in such a manner that the defense tends to 

match the expected attack level on that target.  Since the defense 

does not know the exact attack level, he will sometimes be high 

and sometimes low, but always in the correct range. 

iyly£ »fr^vlvi^ „.: ...,. .«>:.-,v/^v/JAvX^;.^^ ;L»-'V.'-^, v. •'.--. •\«V'V-". • • 
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This kind of thinking led to the concert of mo'elin^ * he 

effect, of pre-commit by use of an equivalent, imperfect preferential 

defense.  This representation allows for the random defense level 

at a target while offering a reasonable lopic for the offense and 

defense choices at each target. 

The preceding parts of thrs section presented evi lenee that 

the minute details of the random strategies are probably not crucial 

in the final determination of total value destroyed.  Additionally, 

an analytical model was developed around the assumption that a 

reasonable defense strategy is to pick a subset of targets to 

defend and to defend each target to a level somewhere from zero 

to twice the expected attack level. That model has been shown 

HTF t° result in a final value destroyed very close to the optimal 

which could be achieved if both offense and defense played with 

game theoretic strategies, even though this specific defense 

doctrine is not optimal for all types of target damage functions. 

Following along the same line of reasoning led to the idea of 

a preferential defense approximation *s to be described.  The 

whole concept revolving around the assumption that the defense 

correctly predicts the expected attack leT"vl en each target and 

then places a random defense level at e ... target.  The defense 

level coming from a distribution un;form from zero to twice 

the expected attack level. 

Meanwhile, the offense knows that the defense can predict the 

expected attack level but also knows that the defense level will 

still not be precisely correct.  This ?ivin<? him enourh informa- 

tion to optimally design an attack which will exploit the random 

nature of the defensive allocation. 
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I 

In Section   IV-H,   the   :o>ue   for determining optimal   offense 

and  defense stratofies was  presented.     Specifically,   this  üoric 

allowed  for an  imnerfect defense,   i.e.,   i defense which  allows 

RVs   to   penetrate  because  of non-unity  kill   probability  or because 

a  specific RV  could  not  be  fired  at.     Within the  context   of 

pre-commit,  there  is  an  additional   cause  for leakage,  namely 

when the defense has  less   interceptors  than  he need.-;  at a   Larget. 

The key  ingredient in developing optimal offense strategies 

when the preferential defense  is  imperfect  is  the delta damage 

function as  in the following fi.cure. 

f 

TARGET 
VALUE 

DESTROYED 

NO DEFENSE 

CORRECT DEFENSE LEVEL 
HUT IMPERFECT DEFENDERS 

ATTACK  LEVEL 

This  figure  demonstates  the   imract of an   imperfect Hefensrj as 

measured by the  value destroyed,   which,  is  a  function  of the 

attack level   and  the  presence,   or lack  of  a  iefense. 

In  the case  of  pre-coiimit,   the  same  ingredient  exists.     If 

a given target  is undefended,  the damage  function iL-  the normal, 

no defense  function.     If the target  is defended,  but  to a  random 

level,   the damage  is  reduced  at any p;iven attack level with the 

size  of the  reduction dependent upon the  kind of iefense 

randomization. 

i V>*J»' .It'lt^f «j .'"*-"'      J^JAL^ ■0-1.1 VC\/^V^V^ VJ^MV*JVV »V«- *!>~^f ^•'^..'--^V-j'r.^ -„'"^. w^.^w/^ij..-_\v'.-'-'. 
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Q 

4 
TARGET 
VALUE 

DESTROYED 

I  ** 

I 

For example, consider the case where 're only ciuse of 

leakage is the random defense level.  In pjch a rase, if * he 

defense har the zero to twice the expected attack level form, 

there is a probability of .5 that no penetrations will orcur 

and a probability of .5 that from zero to all attackers will 

penetrate. The above damare function then looks as follows: 

.5 V — 

IMPACT OF DEFENSE 

MAXIMUM POSSIBLE SINCE DEFENSE EXCEEDS ATTACK 
    WITH PROB. * .5 

PERFECT DEFENSE BUT 
RANDOM DEFENSE LEVEL 

ATTACK LEVEL 

This presence of a pre-commit changes the form of the defense 

impact but will not modify the methodology for choosing optimal 

defense strategies. The only chance necessary to the previously 

described leaky preferential lo^ic is to specialize the ^euations 

which compute the defense impact as a function of the attack 

level. 

The basic equations for the imperfect preferential defense 

(see Chapter IV - Section H) resulted in a delta damage relation- 

ship as follows: 

IvW^f. ̂ *i^: -rii MM I -iii 
  -t-.-i  -1 . 1 _ tL,l ■. A - t .1 d &~a .W^k 
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Where: 

VS = Value saved by the lefense Lf an attack level = 

N occurs  and if the lefense chooses to defend 

this target. 

V = Value of the target. 

F f    = Target probability of kill for attack = N ar^ 
K./I\ 

no defense. 

F .,   , = Target probability of kill for attack - K, 

where each RV has a degraded reliability because 

of the defense. 

When the defense is really a pre-commit ^efense with seme random 

defense level, this equation becomes 
*wr* 

VS = V 1 
rK/N  °  K/(N,D)  ° K/(K,D) (1-52) 

Where: 

t 

V(N,D; 

PK/(N,D) 

= Target probability of kill when tht 

defense level matches or °xcr,eds the 

ideal for the attack level. 

= 0 if the defense is perfect. 

PK/(N,D) 
Target  probability of  kill when  the 

defense  is uniformly likely to  be  from 

zero to exactly the ideal   for the attack 

level. 

'AV^MVII ^■f ~ •>*+*'1 w\.VV VUV«, ,^^\j^^"n.,*0%jnV*>O.VV'*/ljuT\* .-vWrv"1 VL-VV.' S.V.V'. V'_V\ V' I.' >-'   •■" C. i '%*-•■•* ^ ' ^ 



i 

* 

g   rsr 

M 

$ 

IV-I-45 

If one assumes that the irterceptors are perfect, but that 

an incorrect defense level was committed to the target, equation 

(1-52) can be expanded somewhat.  First, it is necessary to indicate 

an effect of the defense on the an iving objects.  Assume, for 

example, that the defense simply subtracts from the arriving 

objects.  Then, if the defense is uniformly likely to be at a 

level anywhere from zero defenders to a level of exactly N defenders, 

we can state that 

N 

K/(N,D) + /[•■ kN-T dT (1-53) 

where: 

N = number of attackers. 

Q = probability of single-shot survival. 

T = subtraction due to a defense level of T. 

(This equation is based on the assumption that the probability of 

a defense level of amount T to T + dT is equal to ——dt.) 

Solution of this equation results in 

.-r 
V. 

K/(N,D) 
1 + 

1 
InQ N   v 

(1-54) 

Note that the other terms in equation (1-52) for the perfect 

interceptor case rniount to 

k »i h:. m I * i %■ ,<■, A jt„ «a aa ULZMLA \* A. A , jf..^.  -w.^t './f...^s.   --. •>... ^- *-:.j-  "-• r . t - ". . - - 1.   . 8 . I - ■% . 
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PK/N " l   ■  QN ^^ 

and 

PK/(N,D) = °- (I"56) 

Thus, all parts of (1-52) can be computed for a given attack 

strategy simply by knowing the attack level and the single-shot 

survival probability. 

If the interceptors are not perfect, the same sort of develop- 

ment can be used to arrive at a somewhat more complex version of 
i 

these relationships.  In such a case, however, VS  can still be 

easily computed. 

Using the (1-52) relationship, the preferential defense ***•" 

approximation to pre-commit ope" 'es as follows.  The offense 

assumes that the defense can predict his attack on each target, 

but that the defense chooses his distribution from the special 

distribution of zero to twice his attack level.  The offense then 

uses the relationship to predict which targets the defense would 

choose to defend and picks an attack level for those targets so 

that a constant return ner interceptor is attained by the defense. 

At the completion of the sequence the attacker has converged on a 

üM'JVLV-V.. «\.V„ W- -V'^ '.*..-»__'-»..''.^l *^g..!j.J-f.-'^...'j?. SA^LLlJ^fc^JdlAJLllALA-^Lljl ^'J„'A ^..'^^^JL^^^'^^-X-^-^l-a.:-^:^^ AV>^._• VA *."I...'.?_^!s .'* -"» M.> -*< > 
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mean  attack  level  at each  target  and  the defense has  selected 

targets  to defend.     Also,   the total value destroyed  in  the 

presence  of a randomized  defense  is  then  available. 

The quality of the  arproximation was   investigated  by making 

comparative runs for this method  and  for identical cases  in the 

game theoretic method previously described.     The results of  these 

comparisons are presented  in Table  1-8. 

<fr 

TABLE 1-8 

COMPARISON OF GAME THEORETIC RESULTS WITH 
THE PREFERENTIAL DEFENSE APPROXIMATION 

EXPECTED EXFECTED GAME THEORETIC PREFERENTIAL 
ATTACK LEVEL DEFENSE RESULTS APPROXIMATION 

LEVEL RESULTS 

Ubk   TYPE 2 172 529 523 

427 TYFE 2 34 666 662 

92 TYPE 1 5B 382 383 

74 TYPE 1 ^ 295 286 

78 TYPE I 6 597 596 

91 TYFE 1 13 592 604 

75 TYPE 1 100 677 677 

400 TYFE 2 

400 TYPE 2 100 520 528 

*.r. -...: m. • .-,*•*.-  -i ._: L^JLAAJ:^^: 
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The target structure used was an approximation of 4 real popula- 

tion listing and the weapons were both small (Type 2) and large 

(Tyre 1) yield weapons.  (Classified data can be furnished if 

necessary.) 

As can be seen, the approximation is v^ry  ?ood (errors in 

the 1 to 2%  ranee).  However, it should be noted that all cases 

represent circumstances where the offense is dominant.  This is 

Lhe ideal circumstance for the approximation since the assumption 

about the iefense behavior is most directly arpiicable then. 

A brief investigation of the defense dominant condition 

verified the suspicion that the approximation would then degenerate. 

As the defense level comes close to matching the attack level, 

the defense should play a stronger role tut this approximation 

does not properly account for such an effect. 

In the rear future, the defense dominant condition will be 

analyzed in ^ore denth.  the assumption be"nr that the rreviously 

described approximation can be hroq^ened to adequately consider such 

circumstances. 

It is worth-wh'le noting an interesting characteristic of 

the approximation.  Inspection of the optimal offense stra+eries 

and comparison with the mean attack level on each tarpet as 

produced by pane theor?" showed a remarkable similarity.  It 

appears that + he optimal mean attack s^ratepies can Ve developed 

b* use 0f the annroximation. 

.-, useful by-product of the approach was the verification that 

the : 1 AT convergence process for imnerfect preferential defense 
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must be functioning nrooerly.  If the nrocess was not functioning, 

there rould never be the close ^atrh ^F seen in the previous table, 

3.  Status and Conclusions 

Analysis of the pre-commit defense doctrine ^as been roughly divided 

into three areas of work: 

Formulation and solution of optimum min-max fames using 

discrete integer strategies and Larrangian constraints. 

Analytic formulation of a near optimum pre-commit doctrine • « 

for continuous attack and defense strategies. 

• Applicability of other defense doctrines (i.e., optimum, 

terminal and preferential^ in approximating the effects of 

a ore-commi„ defense doctrine. 

No working model for the ore-commit defense doctrine is currently 

resolved that is completely compatible with the Arsenal Exchange Model.  The 

problems associated with each of these areas are as follows: 

Solution of !Jre-commit P^ Game Theory 

The game yields the optimum ore-commit solution and for that 

reason is the basis for determining the accurac?r of any approximation 

or assumption used to model the effect of this defense doctrine. Since 

each game solution corresponds to one contending strategy (weapon to 

target and defense to target allocation), direct implementation of 

this technirue would greatly increase computational complexity and 

program runninr time.  Additionall;/, the process for iteration on 

Lagrangian cost should this method be used has not been developed. 

Approximations to game results based on game inputs have 

not been successful.  However, such anproximations may be developed 

in the course of testing future assumptions. 

'.*.*.  !.Y.t'i/-«./.t,.V..>.V..; .. i «.- ,"«■■» LAMJ^thJ .'-fc'-^ \i .-.A •_...•..«..•'..■.»• »•.... *-' --'. ■. * «■ " I* «■ * \-%. « ' 1 * fc 1'A 
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Solution of Pre-commit  by Analytic Means 

The  analytic model   ieveloped   herein  has  shown   the weakness  of 

assuming continuous iv'V^.sive and defensive  strategies.     It  has  demonstrated 

the   insensitivitv   to precise  strategy distributions  and  has  provided 

additional   encouragement  that a near-optimum pre-commit doctrine may be 

simply  approximated.     The development of a discrete analytic model  is 

not anticipated. 

A p pr o x i ma tion o f  Pre -co mm i t,  By Developed  Defense  DWrines 

Optimum terminal defense deployment  has  beer, shown to arproximate 

the effect of a pre-commit doctrine  in the  cases analyzed.     However,   the 

equivalent  number of terminal defenders was 40  to  70>6 greater than pre- 

commit.     Resolution of this  enhancement  factor into a constant or  a 

simple  function has  not been accomplished.     Additional analysis will 

be necessary to ascertain the accuracy of using  this  technique where 

mixed weapon types  having wide variations   in  numbers and  capabilities 

are   involved. 

The equivalence with a modified,   imperfect  preferential 

defense has been analyzed.    This  approximation  is   very accurate when the 

number of defenders  is  less  than the  reliable  attack level.     Efforts 

will  be made to broaden  this approximation to allow reasonable accuracy 

when the defense  is  equal to  and  greater than  the attack.     Despite 

this  limitation,   the  current version of AEM has  programmed  a  pre-commit 

approximation of this  form.    Until  improvements,   or an alternate method 

is fojnd,   its  usage will  be  restricted  to the  offense dominant  condition. 

'^•At:'^'*"'^'M~ml*>Z*>^ '-* '-^ - 
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J.  OPTIMIZED BUDGET ALLOCATIONS - ClJRKF.lN'l1 STATUS 

At 'he present time there is a capability within the program to allocate 

a budget among a specified list of offensive and defensive options.  This 

capability is still considered to be in an R&D phase since extensive 

operating experience has not yet occurred.  However, the capability has 

checked out quite well in an extensive testing process that was conducted. 

The purpose of this section is to indicate potential applicati< ^s, describe 

the current status of the methodology and discuss any limitations of the 

process as it currently exists. 

Before delving into the mathematics of the process, it would be useful 

to discuss the requirement for such a capability and the type of applica- 

tions visualized.  In this manner, it is possible to indicate the condi- 

tions which should be met by the final product. 

1.  Potential Applications 

a.  Uncertainty Improvement Break-Even Costs 

One important application of this model is to utilize the 

uncertainty option to evaluate the impact of mis itimates in any 

of the characteristics of the resources involved n an exchange. 

Measurement of the impact of various kinds of misestimates then 

can lead to a discussion of the relative desirability of 

expenditures to reduce the uncertainties. 

It Is often useful in thic process to have available a break- 

point expenditure which represents the maximum allowed cost to 

reduce the misestimate.  This cost exists because there is an 

alternate, competing way to vercome tse misestimate.  For 

example, assume that the misestimate Involves one side's estimate 

..„.I.--:....._;.*.*. IJLMA.'J^JIJ'.J:**'* J'a.i.'A .'AjT'^i'>A-*^L.'J.i.,V^ .*. 'VL .•*> A*- AV JM. \m.^M-AH^X.: •■/ V -.' -.'. C". ^ ^% .'*»'.- *'a /?-■ "-SO-A "^."_- 
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of h:ls ovm ·..rr:apon :rcliabili ty. Ire can overcome lack of knowledge 

of his OY..'Yl reltab:Lli ty by either purchase of more weapons or by 

testing to determine the reliability more exactly. The break-

even cost for testing is therefore the cost of the additional 

veo.pons required to exactly equal the improvement in total value 

destroyed that would occur if the testing was done and better 

knowledge of how to use the weapons was available. 

An accurate break-even cost can be obtained with an optimum 

budgeting routine. First, it is necessary to determine the 

delta damage change obtained for a selected improvement in a 

given misestimate. Then, using a selected list of force options 

it should be possible to determine the force mixture which 

achleves the same delta damage change at a minimum cost, 

The ideal feature of the optimum budgetjng routine to use in 

this process would be one with the capability to specify the 

desired delta damage and have the program determine the minimum 

cost to meet the objective. Lacldng this ideal, it is possible 

to estimate the required budget, optimally distribute the budget, 

look at the obtained delta damage, make a new estimate of the 

budget, and thus eventually converge on an estimate of the exact 

budget to obtain the desired delta damage. 

b. New Weapon System Re~ui:rements and Effectiveness Evaluations 

Another common application of this program is the analysis of 

various force options--both offensive and defensive. In such an 

analysis each option can be inserted into the total arsenal and an 

individual run made to determine the benefit attained. If the 
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best expenditure of a budget involves a mixed offensive force 

or a mixture of offense and defense, this process leads to a 

considerable number of combinations. 

After a few attempts at repetitive case runs with variable 

options snd costs, it becomes obvious that a built-in optimize-

tion would be very useful. With such a capability the emphasis 

can be upon obtaining correct costs and other inputs rather than 

upon the mechanical process of making computer runs. Generally, 

threats and characteristics are very variable and the analyst 

is interested in determining result sensitivity to such variations. 

With a total budget optimization routine, it becomes practical 

to determine such sensitivities. 

c. Evaluation of Arms Control Agreements 

In the near future the emphasis on an arms cc.ntrol agreement 

might lead to constraints on the composition of a total arsenal. 

Examples of such constraints are limitations on total offensive 

throw-weight, total RVs, total megatonnage, etc. 

In such a case, it would be useful to determine the most 

effective arsenal that meets the appropriate conditions. Such 

an arsenal can be obtained by use of the optimized budgeting 

routine by appropriate definition of the "budget" fii units other 

than dollars. For example, if the agreement involves limite-

tions on the parameters listed above, each option can have a 

multi-dimensional "cost." (Namely, the throw-weight, number of 

RVs end megatonnage used up if one unit of a given option is 

selected for the arsenal.) Then the program can allocate the 



"b-ctdget" in 1311ch a way as·to maximize force effectiveness with-

in the arms control agreements. 

d. Fut;u_re Enemy Responses/Actions 

Another useful option available with possession of an optimized 

b11dgeting routtne is the analysis of enemy responses or actions 

when one side takes a certain step. For example, assume BLUE 

has several options open to him. Before selection of one option, 

it would be useful to know the direction his selection would 

drive hiA opponent. 

By playing RED's options against BLUE, where BLUE chooses a 

E;pecific option, it should be possible to gain insight into 

RED's tendency to respond by more offense, more defense, more 

countervalue attacks, etc. Thus, study of arms race directions 

is conceptually feasible. 

In this application, it would be mandatory to have the cape-

bility to select an optimum force mix for any of the scenarios 

described for this model. By having the capability for any scenario 

it would be possible to evaluate your opponent's options in each 

situation, e.g. first st~~ke or second strike. 

With the above background in potential applications, the 

basic structural modifications to the program can be discussed. 

2. The Basic Mathematical Process 

The current process for budget allocation can best be explained 

in stages that roughly equate to the sequence of developments that 

resulted in the process. This sequence was as follows: 

·"' .... . . . #, ,.I . , ' .. 



a) Development of a method for optimally allocating a 

budget to offensive options alone. 

b) Development of a metho'd for dividing a budget between 

offense and defense. 

c) Development of a method for dividing a defense budget 

between a list of defense options. 

Each of these stages involved unique problem areas of their own and 

each one built upon the concepts and processes of the previous 

stages. 

One argument for de-coupling the process into such a sequence 

of steps is that a valid result possibly ce.n be obtained even 

though each independent step is not perfectly refined. 
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Under this philosophy, it is better to separate a large problem 

into controllable sub-packages that can be operated upon independently. 

In this way each stage can be made to compensate for inaccuracies 

in data passed on by previous stages. 

The validity of this philosophy will have to be judged after 

the final product is in use. 

a. The Offensive Budget Allocation Procedure 

In Chapter IV, Section A, the basic Lagrangian process for 

optimally allocating weapons to a target structure was developed. 

Very briefly, in review, the process involves starting with a 

set of Lagrangian str~tegies for each target. All such 

strategies are inserted into a linear program which contains 

appropr:l.ate constraints on number of weapons of each type and 

number of tm.•gets of each class. The L.P. produces new Lagrange 
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multipliers to use in developing better strategies and the procesa 

cycles un t.n optimal allocations are obtajned. 

Of' interest to the problem of optimally distributing an ot'fen-

sive budget is the structure of the L.P. Each strategy is in-

sertE:"d Jnto the L.P. in the form of a column. The entries 

in the coJ.wnn indicate the value destroyed if the strategy is 

chosen, the number of weapons of each type required and the 

target to which the strategy applies. (See Figure (J-1).) 

'rhis column can be interpreted as a description of the 

"resources" expended in order to achieve the given value destroyed, 

0r value returned. In this sense, the total weapons of each type 

are resources and the total number of targets of each type are 

resources. 

Conceptually, the above interpretation leads very naturally to 

the :i.den of simple insertion of one more constraint, or "resource" 

which represents the budget. Then each strategy must include in 

its description another component, namely, the amount of the budget 

used up if that strategy is chosen. Visualization of the L.P. with 

this new constraint can be obtained in Figure (J-1). 

Fundamentally, this concept is tile essence of the offensive 

budget optimization process contained in the program. However, 

additional complexity results for mechanization of the concept 

for various scenarios. 

b. Impact On The Lagrangian Process 

Conta:l.ned in Section D is a discussion of the impact on the 

Lagrange mul.tiplier8 when a dsmge constra~n.t is inserted into 
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the L.P.     Similarly,   when R  bud(,e1   ■.-.>ns1 .ra hit,   -r constraints, 

arc1   inserted   Into the  L.P.,   it   is  r>e:?c    rn-v   f.<    reinterpret   the 

multipliers. 

Referencing equation (D-5)> it was stated that a new strategy 

will improve the answer if 

m 

P(X)  >  ]T   i'±      •  gi (X) (J-l) 
i = 1 

P%J Where: 

^ P(X) = payoff from strategy X 

g.(X) = level of constraint i called upon by 

strategy X 

i 
£.   = constraint i multiülier from the last I.P, 
l 

Use of this eouation resulted in the conclusion that a best new 

strategy must be one that minimizes 

N. 
l, 

i = 1 i = 1 

Where: 

V. = target value 

A. = weapon multipliers 

X  = damage constraint multiplier 

|fW N.. -■ weapons of type i on this strategy for target j 

| | | jJdfc | * | -** -*| - *J*..J . J!*. .'i .'« - '. - '* - *». -'« -~- - V <- *» -'<•>■ A JS» .JV.,V ^1 -'V -'M. ._ V *h -TV L."» ..N. 
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'asfd on ernation     <T-1),  the addition of a  l-uciret constraint must 

lodi fv er-uat i on     -; -? !   ho  t.h <    fo]] owi np: 

H = V (1- ^J 
N. 
ij 

1.1 
-- 1 

xi :!u L X C.N., 
m i :H 

i = 1 

(J-3) 

Where: 

C.  ~ unit "cost" of each weapon of tT-pe i 

X  = Iudret constraint lambda 
m 

The last two t'-rms can be grouped to obtain an effective we anon 

lambda of 

X. =    x.   +   x c. 
i     i    mi (J-4) 

and, since V. (1 - X ) is an effective value, equation (J-3) 

then appears like the standard Lagrangian function. 

The impact of the budget constraint is thus very direct and 

conceptually there is no problem with the convergence routines 

discussed previously.  However, it should be noted that the 

effective weapon lambda X. is not quite appropriate for use 

as a force value scale as described in Chapter IV, Section C. 

The effectiv« weapon lambda measures the cost-effectiveness 

Impact of a certain option on the budget.  However, when an 

opponent places a value on that weapon, it must be in terms of 

its ef f''ct .iveness alone,  he doesn't care if it is cost-effective, 

nly how purely effective it is against him. 

kJwV» <?S.{^.\S'\ w'^VU.-iV-V^V^VT'^V^ji^AjCfc^A.'. %.' v V VI ■."> V..V./.^.«V«^.Ljj^al^lV^Vi^^^ - 
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Thus, Lf appropriate lambdas are necessary for use as a 

value scale, they must bo developed after a specific force mix 

Is chosen.  They cat. be developed by allocating exactly the 

chosen force mix against the given target system under the 

assumption that the budget constraint is no longer in existence. 

The presence of two terms in equation (J-4) is worthy cf 

comiru at as it leads to additional understanding of the process 

being used.  The X . measures the constraining effect of the 

normal weapon constraint while the X C. measures the con- 
m i 

straining effect of the budget.  Normally the X. term would be 

assumed to equal zerc as the budget would constrain the problem, 

but in the case where a current arsenal is being augmented this 

conclusion is not valid. 

When no weapons of a gi\jn type are in existence, the Impact 

of the uormal weapon constraint is completely relaxed by inserting 

a number of weapons in the constraint column larger than that 

which the total budget could purchase.  I! wever, when ; given 

number of a certain weapon is In existence, the weapon constraint 

must equal the number in existence since no more than that 

number can be purchased without additional investment costs. 

Thus, if a current arsenal is to be augmented by any one 

jf several options, the L.P. would contain the existing numbers 

of the current arsenal and cither no constraint, or a completely 

relaxed constraint on  all i   cure options. Accordingly, the 

costs utilised would represen  >nly O&M costs for the existing 

weapons and investment plus C-.-.M f«  the future options. 



In th:is circumstance the future options would have a X 
1 

= 0 

but the (~nrrent systems would have both multiplier termfl non-

zero if tl1cy nrc in the optimum force mlxture. 

The nvailability of' a budget constraint multiplier ( Xm) is 

er:;pec:tally Jmportant since such a parameter is useful in its 

o~~ right. Basically, it indicates the marginal change in pay-

off for a uni·:J change in the budget. Thus, it is a very useful 

measure of the cc:--t-effectiveness of the total arsenal. 

c. The S"urvivabili ty Problem 

The preceding discussion is representative of the budget 

optimization problem in any situation where there is no possi-

bility of an attack on the force being purchased. An example 

of such a situation is a·"i'orce optimization for RBD (Figure 1) 

in the massive first strike scenario. 

Hm.;ever, if the b\~dget optimization is for a side i.n a 

situation where his forces will be under attack (BLUE in Figure 1), 

the additional ingredient of survivability must be considered. 

This survivability factor causes a degree of complexity which 

is very difficult to overcome. In fact, only approximate 

solutions are possible without going to a level of non-linear 

analysis which is currently unacceptable. 

Consider the problem of BLUE optimizing his forces against 

a possible counterforce attack by RED in the scenario of 

Figure 1. '.rhe obvious way for BLUE to implement the optimization 

proceso is for him to insert the appropriate budget constraint 

into the L.P. which represents his retaliatory strike on RED. 

. " 
.,. . ~ , 

e 
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If he doe^ so, this constrain!; must represent his surviving 

weapons, either directly or "by implication, for whatever force 

mix the budget constraint causes to occur. 

In other words, BLUE desires to come up with the force which 

after an attack by RED dr.es a maximum damage to ~>}F,r<  value targets. 

If this is BLUE's goal, his force optimization process must 

include an estimation of the number of survivors of each weapon 

.^pe as a function of a given total mixture. 

The problems caused by Lhis survivability factor can be 

demonstrated by a discussion of the two methods currently 

available for including it in the process. 

The "Effective" Cost Method 

The simplest method considered to date is to insert 

the budget constraint into BLUE's L.P. as previously described 

with the exception that the cost per RV of a given type has a 

modifier to include the estimated survival of that RV.  In the 

L.P. the objective is to max'mize total damage on RED value 

targets under the constraint that the BLUE weapons must not 

cost more than a certain budget.  Since BLUE is allocating 

survivors, his cost per RV must be the estimated cost per 

surviving RV, which would be: 

i 

1 C, 

Where: 

PS,   1 

i 

(J-5) 

C.  = basic cost per available BLUE RV of type i 

PS. = estimated average probability of survival of a 

type i  RV 
i 

Cj     =    effective type  i   cosi   per RV 

iiii 
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Uning this effecUve cost the L.P. will proceed to optimally 

spend the budget on the assumption that exactly PSi survivors 

will result for every RV of type i purchased. 

In this approach the survivability problem resolves 

down to the appropriate estimation of the PS
1 

parameters. The 

utility of the approach thus is a direct function of the process 

used in estimating the PSi. 

The basic version of this method of estimating the PSi 

as ctrrrently programmed is as follows: 

a) First BLUE optimizes his budget under the 

assumption that all weapons purchased will 

survive. 

b) RED then optimizes his counterforce and counter-

value attack against the force chosen in step (a). 

c) Based on the allocation of RED attackers in 

step (b), an estimation is made of the way RED 

would attack an average weapon of each BLUE type. 

d) BLUE uses the PSi estimates to come up with 

' an effective BLUE weapon cost, c
1

, and then re-

distributes his budget. The process then returns 

to step (b). 

Unfortunately, the process described in steps (a) to 

(d) is not always convergent. ·After BLUE makes an estimate 

or the PSi he may choose a mixture which causes RED to change his 

attack, which would cause the estimates of PSi to change. Quite 

often an individual PSi can go from a low level to a high level, 

etc. as the RED attack keeps changing for BLUE's varying force mix, 

1 

I 

,, 
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This tendency Lo oscillate in the PS, estimates has 

been controlled by the simple technique of weighting the new 

PS- estimate "by the history of previous estimates so that BLUE 

would tend tv change his PS.j estimate more slowly.  Quite 

obviously, this modified process is not guaranteed to converge 

either, but considerable experience with the program in this 

form has demonstrated a reasonable stability. 

Quite a number of different cases have been checked 

out by making several runs of various mixtures chosen by an 

analyst.  These runs demonstrated that an optimum, or very near 

optimum result had been arrived at. 

If one desires to determine the minimum budget to 

arrive at a specified damage level, this approach will not work 

very well.  In such a case, BLUE not only changes his force 

mix at each new estimate of the PS , but he also changes his 
i 

estimate of the budget required to meet his objective. This 

causes more /gross changes in BLUE's total force mix and as a 

result the averaging method of estimating the PS breaks down. 

Because of the limitations connected with this 

effective cost method an alternate approach was programmed. 

At the current t. ime both methods can be utilized and, since 

they are based on such different concepts, they can be used 

to substantiate any given result. 

The "Effective" Defense Method 

Experience with other areas in this program, e.g., 

determination < f the optimum reserve force (Figure 3)> has 

.% J\ .'y'.-.'   '.' •.'•.'*."•." v* »_*■» " v • - •"• • ■  ■ - '■•••" ' - "- -'- •  •"- -'- ■'-_-.'. "_■'_•'•  -' - -" - ■"-'■ ' • " ' ' •' »" «•'-■•'"■.'■- = - a-* -■■■■"*-» -*■- 



demonstrnted the extreme desirability of performing as much of 

the cpttmizat:ton process as possible within the L.P. In this 

circumstance, this would mean that an attempt should be made 

to reprerJent RED's attack on BLUE more directly within BLUE's 

budget optimization L.P. 

Following this logic, an attempt was made to analyze 

possible routes for representation of RED's attack in BLUE's 

L.P. This analysis led to the concept of an "effective" defense 

in the form described below. 

Analysis of the form of RED's attack on BLUE for a 

variety of BLUE force mixes indicated that the total level of 

RED's counterforce attack remained fairly stable. What 

changes as a function of the specific nature of BLUE's mix is 

the way RED uses his counterforce attack. (RED's use of his 

counterforce attack is oriented toward the objective of 

minimizing the effectiveness of the total surviving BLUE force.) 

Follow:l.ng the above observations, it was recognized 

that one way to conceptualize an attack by RED on BLUE's bases 

is to view it as another kind of "defense." This defense is 

one that has a form something like a preferential defense in 

that RED can le1mch at the individual BLUE weapons in a manner 

to match his own objectives. 

'I'he current version of the program does include a 

preferential defense option (See Section H) so it was decided 

that a fruitftll alternate approach to the effective cost method 

' .. . . . 
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might be an effective defense method. This representation would 

be an adaptation of the true ^efereritia] defense Logic with 

specialized inputs and controls«. 

By represenation of RED's counterforce attack as an 

equivalent defense, it is possible to analyze BLUE's budget 

optimization process in the following manner. 

BLUE sets up his optimization L.P. using the actual 

weapon costs to insert a budget constraint,  lie then optimally 

allocates his budget to buy a force mixture which is optimal 

for the given target system, _as_ defended by a preferential - 

like defense of special characteristics. This defense is 

represented by two characteristics.  First, it consists of 

X number of effective intercepts, and second, there is a set 

of specified levels of intercepts to nullify each type of RV 

possessed by BLUEo 

The number of effective intercepts represents the 

expected size of RED's ccunterforce attack while the inter- 

cepts required per RV represents the ability of RED to destroy 

a given BLUE target type.  For example, say that in a previous 

iteration for some specific BLUE force mix RED attacked by 

TNR.  of his type i weapon.  In addition, for the BLUE targets- 

he attacked there were some survivors of each BLUE target type. 

Then the appropriate equivalent defense parameters 

for such an attack would be: 

V.V."■".*■"- »'«-V'"* ■•'■-'/%' \""-"nV '. : /• V* . - I*' «"" r'.r '    ',.- '■ .' V V ,»'. 
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x = y  ^M (J.,} 

i • 1 

.;. erc . 

X  effective RED counterforce size in terms of 

equ ; val ent ' ype I weap< >ns 

T.MR.. - * '•■.I RED c unter force size of type i wea] ns 

Ap,. = RED type i weapon lambda 

I = totn] number of RED weapon types 

Measurement of RED's counterforce attack in terms of  one equivalent 

weapon type is necessary since the attack is likely mixed "but 

the defense is restricted to only one type of interceptor.  The 

weapon lambdas measure quite well the relative effectiveness of 

various weapons o they provide a very good equivalencing rela- 

tionship. 

The equivalent intercept requirements are as follows: 

h   ...    x J . .       A 
■>i        Rl E XR1 

irr.   =  ±--±  (J-7) 
DNB. W. 

?     .1 

Where: 

.!'/!'., --  number of equivalent Intercepts to destroy one 
J 

incoming RV of type j 

TM.. - total number of RED weapons of type j attacking 

target:-; of type j 

■■ ■■.■:■;•-,■•■--■-■•,--■:■-- --.•• ,r> -• • ••-.,- -V -O-Vv- 
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DNB = tota] BLUE targets of typo j destroyed in 

the attack represented by TN.. 

W. = available RV's per BLUE bane of type ,' 
J 

Equation (J-7) simply summarizes the average number of equivalent 

type 1 R^D weapons required to destroy one BLUE RV. 

If the previous BLUE force did not contain any targets 

of type j, an estimate for INT, can be obtained simply by doing 

a minimum Lagrangian proces; :n such a target to see how it 

would be attacked i.f BLUE did possess one in his arsenal* 

'"liven that this equivalent defense method is used, how 

does it represent RED's attack more precisely than the effective 

cost method? The answer is that this method represents more 

nearly the fact that RED can be saturated by targets to the 

extent that he does not attack all targets of a given type. 

For example, let's say that BLUE has two weapon types 

and that in his first force mix he bought N of type 1 and 

zero of type 2.  Then, he allowed RED to attack that mixture 

and found that he had Sj survivors of type 1 and that the 

probability of survival of a type 2 weapon, if he had bought 

one, would be PS,,. Additionally, say thet RED only attacked 

FiAn of the N-, targets with one weapon eacn and a resultant 

probability of survival for an individual target at PS . 

The effective cost modifier method would use this 

information be develop the follvwing parameters: 

^^££^ 
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Nl 
CM - ----_..;~----

l ( N NA
1

) 

Where: 

J. 
PC' 

•J 

l. 

~~ 

CM = effective cost modifiers 

(J-8) 

(J-9) 

In the same circumstance the effective defense method 

would utilize the three parameters as follows: 

v = NA
1 "' 

INT
1 = 

NAJ 1 --N - ''l l - PS1 l 

( l - PS ) . 2 

W'nere: 

N0 = expected number of attackers on each type 2 
r_ 

BLUE terget 

Ncte thet this method carries the RED attackers, NA , as a 
1 

( J-10) 

(J-ll) 

separate parameter ana also brings in the information that each 

type 2 target attracts an attack of N
2 

RED weapons. 

'J.'he net effect is that the effective defense method 

presents BLUE with more information on which to plan his budget 

optimization. Experience has shown that in the cost method the 

cost modifiers oscillate_quite easily while the d~fense parameters 

described above are slowly changing. The result being a more 

stable process in the equivalent defense representation. 
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One result of this representaMon is that BLUE can 

more realistically consider the :l.mpact of total aim points on 

his surviving force mix. Cases have been observed where BLUE 

purchased certain mixed weapon types simply because the mixture 

itself caused problems to RED that individual types might not 

cause. 

In contrast to the effective cost method, this pro-

cedure does have a reasonable chance to determine the minimum 

budget to meet a fixed objective. Such a utilization has not 

been emphasized but testing of the option resulted in a force 

procurement which very nearly met the fixed objective. 

Definitely convergence cannot be guaranteed here, however. 

d. The Retargeting Problem 

Given that the effective defense parameters are known 

the representation of RED's attack on BLUE utilizes the 

preferential defense logic described in Section H. However, 

the preferential defense is not precisely equivalent to RED's 

offensive attack because it does not give BLUE the opportunity 

of redirecting his survivors as he could if he possessed re-

targeting. 

Consider the circumstance when BLUE does not have any re-

targeting capabil:t.ty. First, BLUE doesn't know which of his 

bases will be destroyed. ___ Second, RED doe en' t know where each 

BLUE weapon is targeted. Thus, at most, each side can only 

state a probability of any given weapon actually arriving at a 

specific target. 



This probability can be approximated as 

XPAQj = 

Where: 

Number of Targets Destroyed of Type j 
Total Targets of Type j 

(J-13) 

CMj = effective cost modifier for BLUE weapon type j 

XPAQj = probability that when RED decides to intercept 

a BLUE weapon, he actually destroys one headed 

for the target he wants to defend. (Assuming 

that he knows which weapon types will attack 

each target.) 

Such a probability can be utilized in the effective defense 

method by making the defense probability of acquisition equal 

to XPAQ. In other words, represent this lack of knowledge 

about targeting as a kind of defense leakage. 

When this is done, the equivalence to the case of no re-

targeting is reasonably close. (In many cases the impact of 

retargeting possession is quite small so that an optimum 

force mix would t1~n out to be the same with or without re-

targeting. ) 

The most successful representation of a full retargeting 

capability for BLUE has been to provide BLUE with extra RED 

value targets to match his loss because of RED's preferential 

defense. That is, BLUE designs a force to attack RED with 

the equivalent defense. After the attack, an inspection of 

which target!1 RED dt!fended. is made, Then BLUE is given a new 
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opportunity to choose e f rco mix where he ha 13 extra target 

to match the loss oi targets due ti the equivalent defense. 

When the final cenvergence is reached, BLUE's forces which 

survive the equivalent defense have a number of targets to 

shoot at which exactly matches the original target structure. 

Experience with the process has shown little change in the 

force mix as this variation in targets occurs,  however, the 

total value destroyed obviously varies.  If one is interested 

in determining the exact, damage BLUE's survivors will do on 

RED, the process must he all«wed to converge.  Otherwise 

an underestimate of the value destroyed will occur. 

One prob hem with the effective defense method is its inter- 

action with a real preferential defense.  In cases where the 

side being attacked does have a preferential defense, it is 

necessary to describe two separate kinds of defense.  Currently, 

the program cannot handle such a case but work is progressing 

in the development of such a capability. 

In practice it has been found that the effective cost 

method usually provides a good solution so it is the most 

commonly used procedure.  However, in unusual cases, the 

effective defense method has been very valuable as a cross- 

checking procedure. Using one method to validate the other 

method thus has been a valuable feature of the two-method approach. 

Additionally, concepts and procedures involved in the develop- 

ment of'the defense method have been invaluable in improving 

•-'. "-'. V* »-" a ' O •- ' «-"■ <*- i*-". -•*-*"%-* *JL -v* ■< -.** v >. * K. 3 a. 3 fc .""i» -■ » -''. ■- ■ -\   ■*. •\ i*—0•" * 
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the cor;t methor'l. ~I'his factor alone has made the coFJt meth,.Jd 

rnuc h morr:: pr.'l c t teal than :L t would otherwise be. 

3. Sccnari<?~~_rLementat:ion 

All the preceding discussion emphasized the budget optimizati0n 

proceos in Lh0 :;lmple two strike scenario because it demonstrates 

U1e ~-mrv:L vu b:ll.!.ty problem most directly. In the more complex 

three ,:;tril:'2 ::cenarios (Figures ( 3) and ( 4)), the discussion 

i~; otUl vnlid if the side striking second is the one performing 

t:1e opt LmiZl\tiz>n. In the first strike option, however, there are 

~~'J!:le a de i. tiorw 1_ conGlderations. 

a. A Courrterforce First Strike 

In the ca:;e of a counterforce first strike the program per-

forme the t'11t1<:.:t:i.nn of optimally dividing the total force between 

first strike nnd the re.·Jerve. (See Section E.) This process 

L; pe~~>.-_~·::u:d ~,riUd.n the L.P. associated with the first strike 

and lt uue:: n::: part of the process estimates of the probability 

of survj_vnl of a weapon placed in reserve and. the estimated 

utility o:J.' that weapon in the third strike of the scenario. 

In thiA budget optimization process the first strike is 

the natural L.P. to insert- the budget constraint into. That 

stri~e essentially is in control of the critical optimizations 

for the side hitting first. 

Ho\l'ever, since the force mix is not known until after the 

f:Lrut ,;l;riko .13 conducted it. iB not possible to est1mnte the 

appropriate probabiLity of survival in the special circumstance 

of yo1.1r opponent poseessing a system which counts the size of 
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Thin situation arises because - t' the  technique used in 

optimizing the reserve force.  Th«3 fir »cess is one that operate^ 

on the assumption that a candidate reserve force is analyzed 

and an estimate is made of th' average probability of survival 

if i   small change is made in t.  reserve f< rce. 

If the opponent counts the size of attack on himself, he 

then determines an average probability that each base is still 

occupied and attacks accordingly.  This probability uses the 

ratio of attack size to force size so it is a function of the 

force mix-.  Cat the whole purpose of the first strike L.P. in 

the budget optimization problem is to determine the force mix. 

Thus, there is an incompatibility in that the force mix is a 

function of survivability but the best estimate of survivability 

involves knowing the force mix. 

When the first strike opponent possesses no information about 

the attack ,*n himself, or if he knows which weapons were launched 

at him, he attacks based on a constant estimate of base occupancy. 

Thus, the probability of Sujrvivebility estimate for the first 

strike does nob depend on the force mix details arid no problems 

result. 

Since tne twe extremes !n assumptions dc not cause any 

pr blems, it is felt that no effort should be made to develop 

a methodology for the case where attack level information is 

known.  If a specific case is felt to be sensitive to the 

assumption, the two extreme:; could be run and the optimum 

force mix bounded by the result. 
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Fur the effed Lve  ■• >s1   method   Lmplementai ;on of  the budget 

i 
optimization int«. I   r'irst strike is straightforward. The 

['m n >rmai budget ?on tr tut is »nsrrted with the simple exception 

/. being that two cost units :irr involved.  Kor weapons to be 

' fired In the first strike, the Hrectly input unit cost is 

\ used since they do not have to survive an attack.  The usual 

'-] survivability - modified cost is put into the L.P. for all i 
^ weapons designated to go into reserve. 

The pre.grain then buys a force mix and designates them 

either as reserve or first strike weapons.  Given that the 

i 
V reserve is known, the opponent then gets an opportunity to 

■V optimize his attack.  Then new estimates of reserve force 

>| survivability are made and the first strike is repeated, etc. 

^ At the current time the effective defense method is not 

S programmed for thi, :ituation since a few problems in the 

special process involved must be resolved. 

B ™ b.    A Counterfor^-'/Countrrvalue  Strike With A Residual 
£\ 
•\ In the first strike of this scenario the L.P. does not 

'% conduct an optimization of the residual since it is a specified 

.-". input.  However, it does determine how to optimally split the 

.-*• first strike attack between counterforce and countervalue when 

-\ there will be a final strike countervalue. 

In this circumstance the first strike L„P. contains not 

-s only the real first strike, but also the planning f the third 

"•". strike for the estimated residual survivors«,  Thus, all 

m 
:.^ necessary information to conduct the budget optimization is 

ava i 1 ab le   1 n   the  L. P. 
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Since the percent residual is specified the estimet 

attackers in the third strike is an easily computable pcr^nt 

(ignoring survivability) of the weapc^s bought for the first 

strike.  In fact, the constraints on the third strike attackers 

can be written in terms of the number of first strike weapons. 

The budgc^t constraint for this situation charges no cost 

for the residua] weapons but, instead charges any weapons 

purchased for a first strike the proportional amount to allow 

for the residual weapons.  For example, if weapon type 1 costs 

C-j and the residual is specified to be a decimal fraction of R-,, 

the budget constraint charges C /(l-R ) units for all first strike 

weapons of type 1 purchased. Then, the constraint on estimated 

third strike attackers i written as being ^ Rn times the total 

number of type 1 weapons purchased. 

By formulating the budget and weapon constraints this way 

there is correct allowance foi the specified residual to occur 

and no residual weapons can be purchased without the corre- 

sponding first strike weapons having been purchased. 

Survivability is factored into the process as follows. 

For the effective cost method, the third strike weapon constraints 

are simply modified to read ^ R. times ...he number of type 1 

weapons purchased for the fir; c strike times the estimated proba- 

bility of survival of the residual weapons„  The effective 

defense method is not currently programmed for this scenario. 

c.  Problems With Rand- m Aren Defenses 

Due b the technique used to formulate the random area 
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defense rnodeln, both bomber and missile, no budget optimization 

can be conducted against a target set possessing such defenses. 

~rhe problem is simply that the random defense effectiveness is 

a function of' the total number of attackers but in the budget 

opttmization problem the total mix is a function of the 

effectiveness of each RV type. The situation typical of the 

problems with random defense as discussed in Chapter IV -

Section G thus impacts here. 

Additional effort is being made to overcome this problem. 

In certain circumstances the problem can be resolved and there 

is some hope that the total problem can be overcome. Currently, 

the impact of a random area defense would have to be approxi-

mated by an average, but constant reliability degradation. 

4. Optimum Offense - Defense Allocations 

At the present time there is an operating capability to optimally 

allocate a given budget among a list of offensive options and a list 

of defense types. That isj-the defensive chct~es are restricted 

to one option for ABM area defense, one for J . .,' ~.erminal defense, 

etc. The final result is en allocation _lf th·.· defensive budget 

among the various types of defense, but r.c r.hoice of the best 

candidate among several of one type. 

This section will present a. discu··>t.:L n of the method of formula-

tion of the offense-defense allocation problem and the associated 

methodology. 

~he prograil'med process for dividing the budget between offense 

r.:·0. .)efense builds upon the methodology for the offense allocation 

BEST AVAILABLE COPY 
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as just described. The technique rev lves around the concept of 

balancing the budget split in such a wav that the offense and 

defense marginal utilities balance. 

The process consists of iteration procedures which search for 

one way to divide up the budget so that one more unit ■ 1 budget 

on any offensive or defensive option would result in the same 

return in pay-off. When this balance point is developed, the 

budget allocation problem is assumed to have been solved.  (There 

are theoretical questions about local optima but these have not 

yet been addressed.) 

a°  The Offense-Defense Budget Split 

After considerable experience with the optimizations involved 

in this program, it has become apparent that chances for con- 

vergence are greatly enhanced whenever the L.P. contains a 

maximum amount of the optimization process.  If the L.P. can 

be provided with the bulk of the decision-making process, the 

likelihood of a convergence is simply greater. 

This logic suggests that the proper place to divide a budge-* 

between offense and defense is within an L.P.  Following such 

logic is difficult since the use of offense and defense occur 

in different strikes ana each L.P. is basically a single 

strike representation«  The connection between strikes does 

occur, however, in several instances, e.g.,, use of weapon 

lambdas for force target values, optimization of a reserve, 

multiple strike targeting and the effective defense method 

just described*  Thus, there is some hope that the L.P  :an be 
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modified to conned  ffensive and defensive expenditures within 

one L.P. 

r['here is one vei-y bvious way to connect offensive and 

defensive expenditures.  Say that BLUE is optimizing a budget 

as in Figure (l).  Ke can start with an initial offense- 

defense division, say SO'/.- to each.  Then, in RED's first 

strike BLUE can use a special defense expenditure subroutine 

to proportion his defense budget optimally between area and 

terminal, bomber and missile defenses. Assume that BLUE 

obtained a marginal estimate of the utility of his defense 

budget in terms of the value saved by the last unit of budget 

spent.  Then BLUE could use that information in his offensive 

attack by allocating budget to offense only as long as his 

marginal return to offense exceeds the marginal return to 

defense. Eventually the process could be continued until the 

two types of expenditure would be balanced in marginal utility. 

The appropriate place to insert this marginal defense 

utility is in the pay-off row of the L.P0 directly above the 

budget constraint slack variable. By inserting it at that 

location, there is a pay-off returned per unit of budget not 

expended on offense. Given the insertion is made in this way, 

the L,P. will aut matically divide the budget with budget being 

spent on offense only as long as the return per dollar exceeds 

the predicted defense budget marginal utility. 

This concept has been developed as the basis for the 

offense-defense budget splitting methodology.  r:1he methodology 

inherently assumes that there is one specific division of the 



budge ;  where the value of the last uffense dollar equals the 

value returned by the last defense doJlar. When such a cir- 

cumstance is located, it is assumed that the splitting problem 

nas been solved« 

The methodology proceeds as suggested previously.  First, 

an arbitrary split of the budget is made.  This split results 

in an estimate of the marginal utility of the defense dollars. 

Assuming that the defense marginal utility is going to remain 

constant, the next offensive L.P. for the budget optimizer is 

operated on so that dollars are spent for offense only if 

they bring more return than the estimated defense marginal 

reourn. 

Once a new candidate offense-defense budget split is 

determined, the defense budget is allocated to all defense 

types by a methodology to be described in the next section. 

After this is done the opponent of the optimizer is allowed to 

optimally attack the newly purchased offense and defense mix. 

The result of the attack is a new estimate of the survivability 

of each offensive option and a new estimate of the marginal 

utility of the defense budget. 

If the offense and defense marginal utilities balance, 

the process is stopped.  If they do not balance, a new estimate 

of the balance value is made and that estimate is used in 

the offensive L.P. to generate a new budget split. 

The process continues until the correct estimate of the 

balance point of marginaJ utilities is developed« ':'he key 

AM^JJ V-Y/^.y. V.V.V. V- V.'.'- < ■ 1.. 1« - 1 ■ 
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to the  Tv*    er.-' the  development   of a   pr oedure   for rapid   '  ",- 

vergenot:   r,    ;v;   est.Ima'e trn    marginal   utility   oalanoe   |    'nJ,(, 

The   r-r     Lern  ^an be v: ",-V :   ed   by    ■   nsideratlon     !   Kigure 

CO 
;>: 
»- ! 
t ' 
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• ; ::ISE irrxr. 

SECOND 
FRACTION 

OPTIMAL OFFENSE OFFENSE UTILITY 

FRACTION      ORIGINAL FRACTION 

■ 

F„ ..0 > r0 
pT0N OF BUDGET ON OFF* :SE 

FIGin? '•'-"'):  r-tARGI ' L UTILITIES VS. TTIE BUDGET 

The figure demonstrates an idealized interaction between offene« 

and defense marginal utilities  ' a function of the fraction 

of the budget ;pent on offense«. The goal Is to find that 

utility, M f   such tht1z  the marginal ■■ ilities of offer:;,e and 

defense are equal. 

Lndieated a the figrre is the arbiträr:' starting fraction 

• T 1 

?A  and the defense utility M that results.  Using M as an 
V 

estimate ['or M will result in a second candidate fraction, 

V? ■ 
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FA  that results in a new defence utility of M . One  could use 

M as the new estimate for the desired M .••::! determine a 

new candidate fraction, etc. 

However, the shapes of the two functions sre not always 

as smooth as diagrammed and a more sophisticated convergence 

scheme is necessary. For any give?1 cane the shapes of the 

function can be irregular and the convergence procedure has 

to "be adaptable to such irregularities. 

In order to minimize computer running time the programmed 

procedure does not develop the functions of Figure (J-2) 

directly.  Instead, the procedure involves a succession of 

x 
estimates for M "based on the history of all previous estimates 

i     ii 

Y'** and the current delta "between M and M . 

In actuality the two functions of Figure (J-2) are not 

fixed since they can fluctuate as a function of the detailed 

way a given budget split is allocated to offense and defense 

options.  Figure (J-2) can be drawn only if one offense and 

one defense type are involved. As more options exist, the 

functions are more difficult to develop. 

Because of these considerations the programmed procedure is 

the numerical, historical average procedure mentioned previously„ 

b.  Distribution of a Defense Budget 

For any given allocation of budget to defense it is necessary 

to have a sub-procedure for distributing the budget among all 

the defense tyi s.  Such a sub-procedure is the topic of this sub- 

section. 

'>3£«$A3wOtö£W^ "'■•"•-•"--'■••' •• v-V- >v ".v. -v V .  /-\••'•■•'■•>•-■ r- ^ 
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because  the     !. fense-defenoe  problem  has  been organized 

intc   sequential    '!,•'■,;,   namely: 

a) Divi niun  «      I ie bu Iget 

b) Distribution    • •/  the  defense budget 

c) Determination of  the true marginal utility of the 

distribut Lt »n  fr< m  ( b) 

d) Re-division of   the budget 

it is hopefully possible to have an approximate procedure in step 

(b) that will yield reasonable results, in step (d). 

With the problem separated into stages like this each stage 

can be made to compensate for inadequacies of other stages, and 

each stage can be designed to take advantage of certain flexi- 

bilities. 

For example, step (a) above requires only an estimate   :he 

marginal utility that will balance the budget between offense 

and defense.  (Thus, it is reduced to a one-dimensional optimiza- 

tion problem.) n'hen step (b) is given a budget and the only 

requirement in step (b) is to take the relative defense capa- 

bility of each, option into account when distributing that 

budget. 

When step (b) arrives at an end product, step (c) then 

measures the result of that product in terms that can be used 

by step (a) in deciding how much total defense budget to have. 

The only problem in step (b) is that the defense option inter- 

actions must be taken into account. 

*S*X*>J1*UA1»J%1I*.s'mVJir. tt'kVJjft.V'JjfL,IIL'^JSSJ£1JJ2JJ1-A^iia\W*Ai*\AY^VL>s' ,\ .A«^ kV-V*« OM s\fov Lvl'-'. '.* 
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Tf one conceptually takes into account the p< tential inter- 

actions of all defense types, he soon realizes that a hopeless 

mess could exist.  Theoretically, depending upon the exact 

offense purchased, the various kinds of defense could interact 

in a very complex manner so that determination of a precise 

budget distribution would be nearly impossible. 

However, if one backs off from the theoretical possibilities, 

there is a rational set of options.  First, defenses against 

bombers might not have too strong an interaction with missile 

defenses since the two weapon types are quite independent. 

In the case of area and terminal ABM, the interact.!on is 

potentially stronger, but side analyses have indicated that if 

defense leakage is absent, it is usually optimal to buy either 

terrain*1 or area defense, but not both. 

If defense leakage doe::, exist, the same analyses indicated 

that cue iefense type will be the best to spend budget on 

first and it is only as the budget climbs that a mixture ti "?n 

becomes valid. 

Such considerations led to the idea of allocating the defense 

budget by use of defense pay-off characteristic functions. 

Typical such functions are indicated in Figure (J-3)« 
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JIVEN: 

. OMITCR  AREA 

'• TXKD ATTACKING  ARSENAL 
FIXED MILITARY  TAR IETF 

DEFENSE  BUDGET 

FIGURE ('.--^):  DEFENSE PAY-OFF CHARACTERISTIC FUNCTIONS 

Each of these functions represents the industrial value 

saved as 71 function of the defense budget, when the total budget 

is spenl  tily on th< given defense type.  (Note that there is 

only '"»' tormina! defense function.  Section K discusses the 

fact ' ■  ! jrrnina.! defer:.'.'::, uf all types can be balanced in one 

process to yield the appropriate function.) 

Pne given functions exist for a specific choice of offen- 

sive :■.<•-    'or the offense budget and for a given attacking 

arsenal.  If either of '   ■■  e factors changes, the functions 

bv i ".■ ;1,." vri 11 change. 

. ■. '  ■; ■ ■ si; . '   n   '' s that as the ■ ffensive ?h ic< . 

vary, the above functions remain reasonably fixed with respect 

: ; Is, the o taJ value saved can change but i : a c j '■ . . ■ 

?(.v  ■    :  I xej : ; ;< ; speril  ; e.uuJ defense type the rat3  of pay- 

>ffs remains rens nabl,  ■ n: tant«  This assumption has been b rn^: 

ut by .; ;:s c mputational chocks but no ma"* hema tier'.! :r • f exj.o 
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V-*! 

Hlven the above assumption, LI Ls feasible to assume that 

one can use these functions to distribute the defense budget. 

by use of a marginal process.  Tnat Is, in the above example, 

spend the money first on terminal defense because   yields 

the maximum initial slope, then buy some ABM area and- finally.. 

if enough budget exists, buy some bomber area defense. 

At each step in this process the concept is to spend money 

on the defense type which maximizes the marginal return per 

dollar. At the end of the budget distribution phase each 

defense marginal return should be as nearly equal as. possible. 

The success of this type of defense allocation depends 

mainly on the assumption that budget spent on one type of 

defense does not strongly effect the relative value of budget- 

spent on another type of defense.  Tf defense expenditures 

do in fact bring independent pay-offs, then this process is 

reasonable. 

Several analyses of potential, distributions of defense 

budgets were done by a combinatorial technique and compared to 

the results from this process.  The result was a verification 

that this process did lead to optimal, or near optimal dis- 

tributions. Again, only these experimental tests are available 

to validate the process. 

Some ^°gree of validation can be developed by comparing 

the predicted marginal defense utilities at the end of step 

(b) with those that are actually computed in step (c) of fhe 

procedure described above.  This also has been done and, in 

fact, the results can be ^ ,od to obtain a qualitative feeling 

I w.'-V*-» «■/» .••-''■■i-'vAi>S^v"-J>/< ^^•■^^■■^i'^■^,• -   •      ~ 
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for the adequacy,  f bhe process,      oral, the results 

verify that t e di fributi' 11: are very reasonable. 

This concept  ' validating the process by comparis n of 

t: c "predicted" and "actual" mar filial defense utilities resulted 

in a procedure for »elf-correcting any biases in the marginal 

utility predijwion [recess.  If, it; making comparisons of the 

predicted arid actual marginal utilities, there is a significant 

difference between them, the prediction process is modified so 

it would yield an accurate prediction for the case where the 

difference was detected.  This should then improve the prediction 

process for similar cases. 

This self-correction procedure operates as follows. Assume 

that at a given step in the budget allocation process the 

defense budget was allocated to each defense type in amounts 

DP-, = terminal defense budget 

DH0 = area «BM budget 

DB^ = area 1 mber budget 

Then, the actual marginal defense utilities would be obtained 

in step (c) at this mixture. Finally, the defense pay-off 

functions (like in Figure J-3) used in the defense budget- 

split process would be modified so that the slope of each 

characteristic function at levels of DB-,, DBp, or DB- would be 

eq^al to the marginal utilities from step (c). 

In summary, the defense budget distribution proces utilizes 

the defense pay-off characteristic functions.  These functions 

represent the pay-off for defense dollars spent on individual 

•***■ 
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defense types but the assumption is that they also indicate 

the relative desirability of each defense typ** and thus are 

an ideal mechanism for the distribution process» 

5s  Result Validation 

It is obvious that this whole process is designed, to yield 

results in a reasonable length of time at the potential expense 

of a ""narantee concer " : result optimality.  accordingly, a number 

of validation proredir es are available Ln the program. 

Giv   lat a bvdget optimization run is made, a tabular summary 

of the impor+'-nt. steps in the process is printed.  In addition, the 

best- answer obtained is described in de t^.......  Use of this informa- 

tion usually will resoxre the question of doubts about the result 

valLdity. 

'ojveri that some questions do exist, there are several options 

for additional validation runs..  They are as follows: 

a) Choose several arbitrary budget distributions in the 

vicinity of the stated optimum and make normal runs 

with these choices«  If another better allocation exists, 

nne ( r" the runs should indicate the possibility. 

b) Make a restricted budget optimization where the dollars 

to offense '-.arm    ■ eed a specified amount.  This 

will drive the al*' - i '   n process into another region 

of possibilities and miphc indicate a better optimum. 

> 

' \ 
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c)  Make a »v.srricted budget optimization where the dollars 

to o* f,.'n>:,. ,n(l defense are specified, but where the 

distribution oi   the budget to individual options is made 

by the computer.  This would cause the budget allocation 

process to have a simpler problem and thus might yield 

i better solution. 

Each of these types of check-out are possible and they will 

normally resolve any questions concerning result validity. 

6 •  Insert ion of Bigses or Preferences 

Tht preceding discussion has indicated the current AEM pro- 

cedure for searching nut a "near-optimal" force mix when a candi- 

date list of force components is available to choose from.  This 

procedure has been built on the assumption that the final force 

mix should be that one which maximizes total damage, or delta damage, 

for a giver utuget . 

Such a force mix is often of theoretical interest only.  Since 

there are forces in-being and a political system which views with 

some doubt any attempt to radically alter that existing force, it 

is often true that a mathematical optimum is not an attainable 

option in the real world. 

For example, in the circumstance where the U S. has 1,000 

Minutemen of certain capabilities, it would be very difficult to 

convince anyone tnat scrapping the current Minuteman force would 

be the tir'ng to do   in order to get a 3% improvement in cost-effec- 

tiveness.  Uncertainties in cost .and other features of new systems 

could verv easily swamp such a small expected benefit. 

'iflj^Wif."*"-*«■* "-**"--'--* ^ -*- -* '-* -• *-" -**-»"-^ *j 'j '-• -^ '-• '-^ -**■*-* '-*- -* — •■ *■-• 
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However, if one could say that i new system would lead to a 

3507o improvement in cost-effectiveness, there might be some interest 

in such an idea - at least to the poini. ot tryin^ to ccpL'irm the 

35ö7o. 

Considerations like the above, and coutiüless others which 

could be presented, amount to the existence of biases toward cer- 

tain individual weapon types or biases toward certain force mixes. 

That is, certain weapons should be chosen for the force unless other 

weapons are very clearly superior to them.  Of course, the le el 

of bias might vary from circumstance to circumstance, 

Recognition of this bias ingredient to the budget allocation 

problem led to a task designed to develop techniques whereby the 

analyst could express such biases in a convenient and realistic 

manner.  The resultant techniques that were implemented into AEM 

will now be discussed. 

a.  The Variety of Bias Forms 

Some contemplation of the situations where biases do exist, 

or the situations where it would be realistic to express some 

biases, soon convinces one that no single bias factor approach 

is possible.  There are too many diverse situations where the 

type of bias to be expressed is unique to that situation« 

Accordingly, the approach ha. been to implement a variety 

of the major bias insertion procedures so that the analyst 

would have a choice of procedures when a given situation arose. 

A basic premise of the work done in this bias problem is 

that absolute biases which say - "weapon type X must be 

bought" - are not of primary interest.  It is felt that such 

/^a.'" ^t**Ul * jQ". lAk.Irt *.a "Jfc.'j». *-»?fji\j% "^J'jtJ'^Z-A "Jk \*?J< .^ '^R^T-gJ!^. 'ji.:^:^. ■*-* '-M^a.. - M. -*-i •-•- •.«...* . •-* 
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biases are of interest but there are a number of ways to insert 

such biases into tue program without adding any new features. 

For example, the  ' >Wst could make the unit cost of system 

X = zero and than subtract all real costs for N units of system 

X from the budget.  Then, by indicating that a maximum of N 

units could be purchased, all at zero cost, the final force 

mix would include the required N units of system X and the 

proper amount of real budget would be spent. 

Consideration of possible bias forms first led to the 

basic type of bias that is as follows - "weapon type X must 

be bought, unless ioing so would impose too high a degree of 

non-optimality into the final force mix."  This type of condi- 

tional bias is of interest and insertion o* such a conditional 

bias into the model was achieved. 

One key aspect to the conditional bias problem is finding 

a means to express the allowed degree of non-optimality. A 

second key aspect is that of providing a means for expression 

of variations in biases from system to system. 

The most logical expression of allowed degree of non- 

optima lity see.ns to involve the classical notions of cost- 

effectiveness.  That is, it seems natural for an analyst 

to think in terms of cost-effectiveness degradation.  In such 

terms, he could visuP1i"e a 107o, or 207o, or whatever, impact 

on the value returned for his budget expended. 

If bias factors can be related to cost-effectiveness types 

of impacts, it should at  ^ast be possible for the analyst 

- ^- -~-.-A    - +.„^ '■_'_» _\"_^_V^-^Jti»l4j»."Ä^.Jr-.-.*-^---"J"-A!."_. JLA *~*. .?._*_£. »*-'.*■ ' j* :~^", •_ "-B. _"_s__^« :—L. 
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to logically express the imount of in: lie really feels.  This 

ieluting of Li -z   ??ctor0 !T .**■""♦: r.ffrctiveness numbers forms 

the basis of forrulation of the bias expressions. 

It should first b< noted that in the circumstances of this 

budget optimization procedure if is always true that the budget 

is fixed.  Thus, the objective, is to maximize the return from 

the budget expenditure.  I" the case of constant budget, a 

degradation In cost-effectiveness is therefore equivalent to 

a degradation in pay-off or effectiveness. 

Thus, üue logical expression of the above type of bias 

toward system X might be as follows0  "Weapon type X must be 

bought, unless there is seme ether system which would result 

in at le-'-St a Y X  higher pay-off cor the same budget spent." 

Further consideration of possible situations where a bias 

would be natural leads quickly to the realization hat an 

alternate expression of bias is often toward a foi ;e mix, and 

nut necessarily toward individual systems  In cu. h a case, 

the b.«.as expression could well, sound as follows - : hoose a 

force mix composed of N. units of system 1, M unito of system 

2, N., units of system 3, etc. unless some other force i Ix would 

result iii .it least a Y J0  higher pay-off for the same, budget, 

spent." 

For example, the preferred force mix might be the existing 

arsenal. In that case the N. units of system i would be those 

in the exist in;., arsenal.  Then, Liu» analyst might desire to 

.'. .■'-- - «... e„ v _:»._:«.>.*»...:»._fr. _» -i.i, n.j ,fc ^.M^I*.J;+, •». ^.*w—i»,..;»..1*. •»', ..' .. •- «~I^^_ü-?~> .— 
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stick with ! he existing arsenal unless a force mix could be 

found (n" was at least Y 7 hotter than ihr existing one. 

Such i circumstance could be demonstrated as follows: 

A i seru 1 Opt i on 

Exist Lng Arsena1 

Alternate Force Mix 
dumber 1 

A i t ernate Force Mi x 

Number 2 

Value De strove d 

915.7 

9 72.0 

1007.3 

A 1! e r nn t e Fo rc e Mix 

Number 3 
851.4 

If such ! circumstance existed, alternate force mix number 2 

would be chosen if no  bias toward the existing arsenal was 

expressed,  However, if a bias of anything ov r 107o was ex- 

pressed, the choice would be the existing arsenal. 

Other situations could also be visualized for use of such 

a force mix bias.  For example, a bias toward a balanced force 

of ICBM, 'Ü...BM and A/C components might exist.  Tn such a case 

the analyst, could prefer a balanced mix unless an unbalanced 

one provided at least Y 7„ more damage than the balanced mix. 

Further review of bias forms revealed that another form 

that does not fit into the above categories is as follows. 

Take the situation where some degree of change to a given 

■,«r,. *.„,-.', ^.,«;M ..Ifc-.'.A'. »WM »". 1~. ft", t., s". ■> . l". l"«!*^/. i'm*m.tk,m. £m  fc.« Am. .f," ~A.        * £*Am Km <■"■* ■r- ■' 
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W arsenal is allowed, but: where, wholesale changes are not de- 

■] sirable.  In such a circumstance, Lh'> bias might: u< *., ;T- • ." *.h 1 j 

v in the form - " spend at least 80% of the budget on systems 

H X, Y, and Z." With this bias, it would be guaranteed thai 

too large a change in force posture c^xild occur. 

A variation of this type of bias would be one where certain 

JJ? numbers of specific systems must be purchased, bur where no 

!-% upper limit would be expressed.,  This might be as follows - 

"purchase at least N of system X." 

H Variations of biases where the units are not dollars, e.g., 

I-1 "buy at least X units of yield," can always be utilized in AEM 

*% simply by viewing the budget as measured in those non-dollar 

Bg   • units. 

V- In summary, the insertion of biases into AEM budget optimi- 

V' zation procedures has been approached in terms of allowing a 

U variety of bias forms.  This variety currently can be Gate- 

s'] gorized as follows: 

1)  A bias toward specific individual systems. 

Isai 2)  A bias toward a specific force mix. 

3) A control over the minimum purchase level of a 

. ' specific force mix. 

*** 4)  A control over the minimum purchase level of a 

V" specific individual system. 

-'!' b.  Implementation of Bias Forms 

r;   -^. After reviewing the variety of biases desired, each of 

the basic four forms were implemented by appropriate 

it^M?^^ ^^:J^;~^'^^^:^^L-•vVvV •- -■ . -■ -\ 
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modifications to the budget optimization process.  This imple- 

mentation Look Liu- following form. 

b . 1)  Indivi <*\ ■■■ ' System Biases 

Basically, a bias toward an individual system can be 

achieved by giving that system an LP pay-off advantage, of 

some specified amount whenever the allocation process is 

considering whether or not the system should be purchased. 

This advantage works out very nicely in the L.P. procedure 

used in the weapon allocation process. 

Consider the situation where a given strategy in- 

volves weapon type 4 and the analyst has indicated a 257, 

bias toward that system.  In the implemented procedure 

a 25% bias means that, all other things being equal, weapon 

type 4 will be given credit in the L.P. for attainment of 

25% more pay-off than would be attained by an otherwise 

identical weapon.  Thus, when the LP chooses the optimal 

strategies, the one for weapon type 4 will be chosen unless 

a strategy by another unbiased weapon type achieves at 

least 257„ more true pay-off for the same budget expenditure. 

Note that this pay-off bonus of 257, is an arti: .cial 

bonus that is used only to bias the LP toward weapon type 4. 

The true damage is that which actually can be achieved by 

the given weapon type. 

In order to demonstrate the procedure more completely, 

consider its effect on the Lagrangian minimization process. 

^. J^v->-vv^''-"V> 
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Equation (J-1) is the basic equation for deciding whether 

or not a given strategy will be chosen by the L.P.  It says 

that:  strategy X will lead to an improvement if the 

M 

LP pay-off, P(X) is greater than 2*      ^ •        ' g- (x)> 

i '= 1 

where g. (X) = level of constraint i called upon by 
i 

strategy X and S. = constraint i multiplier from the last 

LP. 

Now,   in  this  case  the   pay-off,   P(X),   is multiplied by 

an appropriate  bias   factor,   so  that   the  equivalent  of 

equation  (J-3)   turns  out   to be 

Maximize  H  =    Vj      |J        B.   -   Vj   (1  -    X R) ||      S..   1JB.     - 

i  =  1 i  =  1 

EX .   N. .     +     ^   X      C.   N. . (J-14) 
l     ij / ^      m     l     ij 

i  =  1 i  =   1 

where:  all terms as defined for (J-3) except, 

B.  =  bias multiplier if N.. ^ 0 
1 ij 

=  1.  if N.. = 0 

(Note that equation (J-3) calls for minimization of H 

while (J-14) calls for maximization.) 

In the case of a 25% bias toward weapon type 4, we 

would have B. --z   1*25 for any strategy involving that weapon 

type.  It can be seen that such a B, multiplier would 
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provid      in   idvuntage   to weapon   type  4  by  virtue  of   increasing 

the   p«iy-j»ff   for  any  sti »tegy  that  uses   that  weapon  type. 

In  summary,   a   specific  weapon  system  bias   Is   dealt 

with   in   the   ! P  by   increasing   the   LP  pay-off   for   any 

s t r •! ■ e £',y   that   utilizes   certain  weapon   types.     This   artifi- 

cial   Increase   in   the   pay-off  results   in  a  modification 

to   the  Lagrangian  search  process  as   indicated  by  equation 

(J-14). 

b•2)  Force Mix Biases 

The approach to biasing the LP toward certain force 

mixes, rather than specific weapons is similar to, but 

crucially different from the method just described.  The 

basic similarity is uhat the LP pay-off is given some 

biased incentive to select the desired mix.  The difference 

Lies in   the manner of computing and utilizing the incentive. 

Consider the case where seven weapon types exist and 

Q specific force mix of types 1 to 3 is preferred.  In 

this circumstance, the analyst would like to indicate the 

mix he prefers and some measure of his level of preference. 

If a simple multiplying factor, like B., were to be 

used, there would be no indication of t1  level of mix 

desired, only the weapon types involved in the preferred 

mix.  Suppose, however, that a give" mix was preferred 

unless it achieved AB units less pay-off rhan some other 

mix.  Then, one  could view the vale' of AR as the absolute 

level of bias toward the preferred mix.  This value of AB 

jUAifriaJLlfaA&Ä wüVtX'tL.i .^.^'Q.I , -- .... ?s. vO." •M^/.-^'-V-ViV-s>,--,/\g/^vJvCv- A - *•■.'»•-".■•- ■V.v>•:/«■''«*•'.■-:'■ • • «VW, ».• •/,-./V-l^-v- 
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units could be divided up among the preferred mix weapons 

in such a way that purchase of the preferred mix would 

result in accumulation of the AB extra incentive points. 

For example, take the case where 150 type L, 215 

type 3 and 55 type 8 were the preferred mix. Also 

suppose that ehe degree of preference was of an amount 

equal to 150 total pay-off units.  That is, Laid nix 

should be chosen unless some other mix would accrue ■it- 

least 150 more units of pay-off than the preferred mix. 

Then, it is possible to distribute the 150 incentive 

points over the preferred mix as follows: 

AK -       150 ,.. 
Ab = 150 + 215 + 55 (J~ 

=  .357 

where: Ab = incentive, or bias, per warhead in the 

preferred mix 

Addition of Ab units of bias in a strategy tor each 

of the preferred mix weapons will cause a total accumulation 

of AB units of benefit when the exact numbers of weapons in- 

volved in the mix are purchased. 

This constant bonus factor per RV can be implemented 

into the Lagrangian process very simply by recognizing 

that it is a linear term in the LP pay-off.  It thus turns 

out that the equivalent of equation (J-14) for this case is: 

■ /,V»\v.".%\ „\ '■„> .-,'/. V-V- ..AAY« - -V-V,""V-V->V*V-Y''"AY-*^
%
\"

W
",'-\'■' "*\ ■"."•" "•"•'•V'"."» •' "• "-' SY-' *• v»*-'.".'■,«'*■ ' V-Y-Y'Y»Y-V»V '• 
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N.. 
Maxitu'/,e  11  =     V. IJ EAb. N..-V. (1-Aj  I)   S. . 

i   1 1-1 

I 

i - 1 

where: 

Ah. - 
A B 

i    I 

£ N. 
] 

i - 1 

AB = total force mix preterence measure 

N. = number of RV's of type i in the preferred 

mix 

Ab. = bonus per RV allotted only if weapon type 

i is in the preferred mix 

The LP procedure is therefore very simply modified 

to augment each LP strategy by an amount of Ab. for each 

preferred RV in that strategy.  This, in turn impacts on 

the Lagrangian process as represented by equation (J-16). 

It should oe noted that this approach to bias adds 

a constant return for each preferred RV purchased while 

the method described in (b.l) added a constant proportional 

return for each preferred RV selected.  Thus, the two 

approaches differ quite significantly. 

Where would the analyst come up with the AB bias 

level input?  One approach might be as follows.  First, 



he could run a series of unbiased optimizations for various 

budget levels.  This might result in the following kind 

of plot. 
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rx 

Total 
Pay- 
Off 

budget 

This plot shows the relatioiship between budget level and 

total force pay-oft. 

Now, suppose that B1 budget units exist but that 

the optimal force for that budgec is not desirable for 

some reason or another.  Further, suppose that the analyst 

is willing to spend B bidget units inefficiently but only 

as long as the penalty is no larger tihan that resulting 

from a reduced budget of DB units.  In ether words, 

dropping the pay-off from P to P i acceptable because 

it would have about the same impact as having a budget of 

DR less units. 

This would lead to a Ab - P, - P,? and it would pro- 

vi vle some rat ione 1 e 1 or ciioosing AB. Ai1o111er ra tiona 1 

would simply be to allow AB - f P, , where f is some fraction 

. JA£Jä^.-^S. /_> - _"»r "-?_"-.- ".-&_".*.• Lfl j'mL'«'~x'*-  V " »*V V - V_ A 



it       :'iuui   hi    i      .•>!   th it   this   procedure  will   tiol 

guaranl e<    Lh-it.   Lho   precise   preferred mixture  will   be  chosen 

over    ,ny   other  mx.      ;•' 'v    e tamp i c,   consider   :i   .::ix  which 

differs   from   t no   preferred mix  only very  slightly.     Such 

o mix iiii^ht.  accrue ■»   significant   fraction  of   the AB  bonus 

points   and,   at   the   same   tJie,   gain  significant   true  damage 

advantage  by  differing  to  a   slight;   degree   from  the   pre- 

ferred mix. 

This   feature  oi   the   approach   is   not   thought   to be  a 

weakness,   '-ut.    instead can be  of   some utility   since   it  coulu 

indicate  v/huh  components  o^  the  force mix are  the most 

binding,     Foi   example,   consider  a  hypothetical   sequence 

where the bonus joints are varied, through a sequence of 'J   * 

runs.  This sequence might result in: 

FORCE MIX CHOSEN BY WEAPON TYPE 

M\ I       2      3      4      5      6 

0 150 0 0 75 400 0 

100 50 0 50 150 2 50 o 

200 0 0 125 1 75 100 10 

300 0 0 175 200 50 35 

400 0 0 200 200 25 65 

500 0 0 200 200 100 

L.:».*-*>.;:*.«vLatLa^JW-A^.:».* ^.±\'.jh'-^.~s-j>jm~M'h^Lm^.^*.i    ^^.'I.AA.'V'.-»"^«..-^'. V' -_'. ^.' v'. --K' ^'..*m^..^',.rm\^\^.^^^^^\iy'^' 
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%? 

Note that the preferred mix of weapon types 3, 4 and 

6 is gradually approached as tue bias level is increased. 

More importantly, note that weapon type 5 is very strongly 

desired in the mix and that weapon type 6 is the one that 

forces AB to the highest level in order to create the pre- 

ferred mix.  Such a sequence can be used to generate pre- 

ferred mix rankings, 

b.3)  A Minimum Acceptable. Force Mix Furclasj± 

It co»:ld happen that a bias exists toward certain 

forces but only to the degree that a large fraction, hut 

not 1007o of the budget, must be spent on those forces. 

Such a bias form was implemented by appropriate use of 

the auxiliary budget constraints currently allowed in AEM, 

AEM allows insertion of up to four budget categories 

simultaneously. These four different constraints allow 

specification of several totally different budget condi- 

tions. It is through appropriate use of such an option 

that the minimum force purchase can be imposed. 

If one views these auxiliary budget constraint as 

freely usable conditions, it is possible to conver; a con- 

straint of the form 

I 

E C. N. £ B. (j-m 
li   k 

i = 1 

where:  C. = unit cost of weapon type i 

N. = number of units of type i purchased 

B, = budget type k amount 
K. 

»V 'J"t *.*■» .'-V» >N „•> J.'wV 1% -> .VW.'-' '-' x-~ "-' *-"*-' •-" <■". • " - 



t o   ono   ui    t lu'   i orm 

E 
1    = 

c    ,   >„* <J-18> 

whore:     C. special   unit   cost   of   weapon   type 

where  G.       C.   when   tvpe   i   is   in 
i    l 

* 
the preferred mix and where C. = 0 

when is is not 

R  = minimum acceptable budget spent on 

the preferred weapon types. 

This conversion is accomplished in two steps.  First, the 

analyst must input the appropriate C. values.  Second, the 

LP must be modified to accept £ constraints in place of 

the S variety. 

This second step was recently accomplished in AEM 

so it was only necessary to appropriately modify internal 

bookkeeping procedures to exploit that option. 

Appropriate use of the option presented in (J-18) 

can allow ehe analyst the ability to control the blend of 

the force mix in terms of old versus new, existing versus 

advanced, ICBM vjrsus SLBM, etc.  For example, use of the 

four different budget constraints could guide quite nicely 

the blend of the force mix. 

b.4)  A Minimum Specific System Purchase 

It is obvious that the technique of (b.3) could be 

used to control the amount of purchase weapon by weapon 

type.  However, the existence of only four optional budget 

j^kiii^j^jL^ 
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conditions makes such an approach somewhat limited.  It 

was felt that the most ideal method would be to Implement 

the notion of hedges (See Chapter IV-P) in the context 

of budget optimizations. 

Hedges can be utilized in AEM in a variety of ways 

and appropriate use of such hedges would offer very high 

utility in expression of biases.  In this specific case, 

one hedge ol the form:  th^ number of weapons of type X 

fired at all targets must be GE N, would guarantee purchase 

of at least N units of system X. 

In addition, other hedge forms, like value destroyed 

hedges and number of targets attacked hedges are possible 

and it would be very desirable to use those hedge forms 

in this bias procedure.  Accordingly, appropriate internal 

program changes were made so that the full hedging option 

could be used with these bias options, 

c.  A Summary 

Appropriate modifications have been made to AEM so that an 

analyst using the budget optimization procedure can exert 

realistic, bias, or preference controls over the optimization 

process.  Through appropriate use of such controls, it should 

be possible for the analyst to allow for non-mathematical con- 

siderations that a normal max pay-off criteria could never con- 

sider.  A variety of options have been provided so that specific 

situations could be adapted to. 
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IJ   • 

is the 

1) 

1 ■ . . r ... i 

:' !  .. :  : 

:;, ■:-;:•..        ; ! -'!•  :0  rid !n t1 e pr "   a: d :: 

in a] 1 "ises ta  ! • : deve i ped. 

) The rr s* -igu'.fi :aa1 pr I I.en- rausin^ Factor is 'so require- 

ment *  pur^nase forces wit: pr< per MI 1 wanee t\ r their 

survival 'j '•;'•..,f attack.  It' nl,v first-strike r' r<'e:.- 

(Fi:.r.  ' *rere be purchased, convergence • nld be 

guarani  .. 

3} It" . ne is Looking for near-optimal solutions, the pre ••■ ■■ 

seems r. be very adequate«  The proper attitude It- t. 

view all results as a reasonable budget distributi n which 

p< ;sibl\  i'.uld be validated by ether processes, 

k)    Experience with the budget optimization process as 

currently programmed indicates that convergence to a:. 

: ' mum,  r sear optimum solution generally occurs and 

en ng] In :' mat ion is. available to indicate when such 

does n« .t ex 1st. 

5} There Is ■ rrentJy r.     pr raise that a routine w;ll be 

devel' ped in the Immediate future to determine the 

minimum budget t meei pre.-' e damage bjective.-., 

Phe -s  • emphasis has been cjn development of a pre ■•■■ess 

to  ptimall;. spend n ?$.iven budget. 

«Iv^^i^^ Ä^*o  „■_ 
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.•>• 

** 

6) 'Hie allocation of a defence budget i  -peel].':; * defense 

types has been solved by a logical, but approximate, 

process which assumes that the interaction between 

defense types is weak. 

Given the total picture as outlined above, it appears thai a 

final product of some utility for the applications described In 

Part (l) is available« Most of those applications can achieve con- 

siderable  neflt even if near-optimal results are achieved. Addi- 

tionally, s e relaxation of the constraint to be optimal for precise 

situations is T issible in many cases and this helps the process 

considerably. 

L>^>V^ 
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_: K.  TERMINAL ABM DEFENSE - OPTIMA] DEPLOYMENT AND UTILIZATION 

1.  The Problem 

The question of how best to employ terminal AEM interceptors is 

a resource allocation problem for the defense just as the wearon-to- 

target assignment is an allocation problem which the offense must 

solve to achieve full benefit from his resources.  Some complication 

^ is introduced, however, by the fact that the defens" acts first, 

J chronologically, in deploying an ABM system, ind because (piven the 

n. present state of the art of intelligence collection), it is probable 

that the offense will be aware of the resulcin? deployment, and will 

> reoptimize his plan in the light of that knowledge.  These considerations 

% lead to the following formulation of the defense's problem: 

*.   r_ 

Choose a D which realizes a ** 
Min < Max  P(A,D) (K-l) 
0 I  A/D        I 

where the notation  is heuristically intended to mean 

A = what  the  attacker does 

D = what the defender does 

P(A,D) = pay-off to attacker if he  selects  action  A and the 

defense  selects  action Ü. 

It  is  evident that the merit of a  particular defense  action  is measured 

by the resulting reduction  in maximum attacker pay-off. 

If the  problem is  cellular in nature -  i.e.  if  (l)  the attacker 

and  defender each divide their resources  amon^ several  "cells,'' 

(2)   the  pay-off in  one  cell   is  dependent only unon  properties of the 

cell  and the  resources  of each opponent  committed  there,   and   (3)   the 

-'■^'•^'•^^'-^•-^"*'^•^^^*-v•^*•\^•*^\'-"/■'.^".^^^^^'.^',^^*-^"-'AV-^,•,••*%*v v■ •'    ■"■ ■"• * %*"• ■*• ■"- •'■ •"- ■'• -■     ■ *■ 



th en   thi                           J   ■  «• -1 .fi ■     "     ! : ;      • •   •■■   ; ;  ■ -   :   ,-      ■♦''•?••' 

is  arpii.-i! .   ■ ■ •■     ♦' ' ;        ■ «        ; ■ t     n  : ♦ ' ?n   . 

in  tr f    r     .  . J  fc I    r 4    ♦ i?    ' n.*i i v! ^TJH '    f -irr   ' .      ' '* ••   i 
■* 

t:,e  j~-  t. irvr.»: ',...,   \T).     The   -  : i >nents   M.    ir.:1 mn-n '^'}+ ; ve 

integer num.:■■ rs -f weapons of the3 i— attackin? tyre (j 1, . . . *"\' 

(The attack it.rate^ vectors ■'. ire currentIv restricted to be "rur"" - 

i.e.,   it most,   one     ''   * he  components   is   rositive.) 

The   iofer.se  c\<   >ses  a   i, non-negative,   integer)   scalar 9.   ~ JV  ■ 

number of  terminal   interceptors  to allocate to the   j— target.    The 

ray-off  in the j—1 cell   is then 

V  ' F  (N  D ) 
K :     J     J 

where 'v*. :- value -.1* the j-^— tarcet 

and F..  (N., D. - exoected coverage at t.arret o if N. attackers 
K . i 

J " " 
and  D.   lefenders  are committed  there. 

The  overall  pay-off  is  then 

NT 

.1  ==  1 

V.   '   K     (N.,   DJ 

Defining >e2     - set    >f all   pure attack  strategies, 

W.     -   total   number   >f  w^arons of  i—  attacking  tvr.e, 
i '      ' 

and 3      - t >ta.!   number  of   Interceptors, o 

^-•-**--*-  **•-■-*•-* ' »■ U ' +JJÜULLAZJ&*  '-' '-* :*.'-.*. '-: la *^ *.it.'-a '-ff '-a» 'J- '-n '--   .i-  V_ J&A?JL±JL, >."WiJl ".A "J&*£jk£* 'J»>-I 
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«v% 

the  AEM version    of  formulation  (K-l)  of the defense  problem  is  to 

choose   {0j|Jmlj   .   .   .   >NT 

NT 

satisfying       > D.<D 

j == 1 

and minimizing G (D, , . . . , D ), where (K-P) 

max NT 

\> ■ . . • v E vj 
^€j j = i 

NT 

subject to  2_]     n±  - W-  (i = 1, . . . , NW) 

j = 1 

= maximum attacker ray-off for the specified 

\S defense allocation. 

1 
Due to the practical restrictions of computer storage and rropram 

.*> running time, it was clear that the techniques of Section IV-B could 

not be used to produce the damage functions, P  (N., D.), for every 
»a Kj   J    J 

type of weapon and target and various levels of terminal defense. 

Thus, before a solution to (K-2) could be attempted, some other 

L*-i method of describing the impact of terminal defense on the basic 

•V weapon-target damage function was necessary. This has been done 

* This formulation is not precisely compatible with the Arsenal 
Exchange Model in that target classes have been excluded from 
the discussion here. Their omission simplifies the explanation 
and notation.  Any extensions necessary to treat the rroured 
target case are straightforward and will be indicated by 
footnote. 

il^« tA^Vfo-V^^ JL&JJMLi* , ^^^^J^JM^^^J^^XSJ^'^ '/V-V-V- <.°tC» y.V; ■ /■■•rjr^. 
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„■y w' 

for the sequential strike ;ases ^.see pp. IV --'."   ff. ) only, ^so 

that it    .'i—ertiy '   ;vs<^iu'^ t i ■;! t ■ Tj T> ♦ - ,• '<=»» 1 ■vvment of 

terminal interceptor whii'h -.r ■ to r.xe us^i in the NTK/C <10 tactocal 

situation;.  -It :;■ f-lt ti »* the resultLnr i rarl.-r Irrare functions 

:ir adequate for purposes of terminal defense iei ; >yment; however, 

the more iccurate methods of Section TV-R »re us^d to comrutc estimated 

and actual iamat?e nee the derloymeat is determined. 

2.  Simriified Damage Fractions 

An effort to obtain a simrlifi^d iarr.a?e function was initiated 

by use of the method of Section 1V-B through a parametric study of 

the impact of all the lefense parameters on the °xact diTa?c function. 

i'h.is analysis demonstrated that the precise approximation oi  the 

exact damage function require.'-, a procedure so vomplex that very little 

advantage is gained from the use of the approximation. 

The rroblem, basically is that the AEM uses the two parameter 

function (T,F) to represent the damage function and the presence of 

lefense can modify both of the rarameters.  The relationship between 

a precise s<~>t of defense rarameters .and both iamare function parameters 

is so unique that very little generalization is rossible. 

Of the twr, parameters, the translation parameter, T, modification 

is the easiest to understand. 

in fact, for a perfect defense, all of the defense impact centers 

in the translation parameter since modification  f T can represent 

the situation where nothing penetrates until the defense is exhausted. 

it is only when leakage exists that the 1 Parameter is also modified. 

_.L—^.»_l-_ 
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An  -idditional  factor   Is  that  the  usare  of a simplified  damage 

function   is  visualized  to be only  for the  purpose of   leploying a 

set of  interreptoi.   and  one would  suspect that the optimal  deploy- 

ment  would  be somewhat   insensitive  to the  precise damare  function. 

Given  the   deployment,   the exact damage  function  can  then be  com- 

puted and  actual damage  then  computed. 

Such considerations   led  to the  concept of  representation  of  the 

defense   impact  TS  a T  parameter modification  only.     Such  a  repre- 

sentation will  be  exact  if the  defense   is   perfect and,   hopefully, 

will  result  in near-optimum deployments   if  it   is  not  perfect. 

In the  seouenlia.1  strike cases  (iJD0C>O),   first  penetration of 

the defense   is an  event  of  particular  interest (and  utility  in 

obtaining a T -- only arproximation)  since it  is  assumed  that the  first 

penetrating warhead  eliminates the   remaining terminal defenses.    .On 

pp.   IV-5-18 and  19,   a  fairly complicated  expression  is  riven  for the 

probability that a specific warheai   is  the  first  penetrator.     In 

view of this,   it  is  remarkable that  the expected point of first 

penetration has the following simple  form  (is may be  verified by a 

lengthy derivation): 

(K-3) W* = |   [ 1 + d1 + V? + • ' • + dl •  •  • d
K] 

where: 

R - reliability  of the  attack  weapon 

K = NVJDX  (number of warheads until  defense exhaustion) 

th 
d. - probability that the defense stops  the  j— incoming 

warhead. 

l[;:'_ .......  _ . 



CV-K-t 

I n   the  not »t i   •.     !'   , 

I I 
dj-pA | ,    .1    ,,,-J 

where  the n.'s   irv   • :, ■   .iMfrctnt   r  -».- ■• ■■*:>■•■- nt: 
J 

Example  1 

If  ND0C >0,   \: en 

(J  "   1,   •    •    •   ,   K) 

'J-PA   I/   Mi    -V J 
= constant 

»*-![= 
I - d K+l 

R (1   - d) 
(d<l) 

*i* 

mr».l a      O LXample <! 

If the  defense   ; s   perfect,   then 

Pl = i ind      n . = ND0C = 1 
J 

d. « d * 

W    - 
K 4 

R 

Example 3 

If there  is   no   lefense,   the, 

d - 0    and    W 
R 

«*j..^%.-!» .'» ^V--. .'.■»..:.   > .V.'i'.N-i .-'-'-''>*■ ^»l^JvW ?w. -.:, ;_-,.'.' «.*. «■■' » :'. -. . ".> <*, ,« .. «'. ■•:'- VLVA'JV.VJV ,V./.V'./»K.-> "A^ft *> Ox •'>**■». •_* A*\VnMY*nf«S -v« -"V -■" 
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The  sketch below shows  a tyricl   iama^c   function,   r„(n),   for 

an undefended target.     If a terminal   defense  is   Introduced which is 

assumed  to  be vulnerable  to  the first penetrating warheid,   then  a 

reasonable approximation,   P«{n), to  the real damage function   is 

obtained by requiring that 

P^ (W* + X)    =    PK  (| + X) V   X>0 

- i.e., that the ordinates of the two functions a.eree beyond their 

respective points of expected first penetration. 

EXPECTED COVERAGE 

/   I T 'Z\l: 
1 
R 

FK(n) 

/ 

•  / 

i  / 

w 

A 

PK(n) 

jV 
x 

n (WARHEADS) 

The appropriate T-only modification is obtained by finding the T 

parameter shift,   A^ such that  this  result occurs.    Thus,  define 

*      1 

I    ,1   ' 

Mt-V-V~V. ^IVV.V^MV. r.-Vi'.'.':..uIW^JIW. w <^+*^~* ^f+* *j\*k^iL£wy*s-^.<r- .'-ii -j^li1JL L_V1JVIVwW. \'» -.V»:»"- V. %*-«* -" 
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and  trier,  the  parameters of  P.,(n)  are 
K 

p  • p, and 

T - T + A . 

The Larranre method ignores any cavities introduced into the damage 

function by the translation shift, so that if the target implied by 

he sketch is attacked at a]I, it will be attacked by at least n 

wa. •!'. is of this type. 

T  any case where trie defense fires a constant number of inter- 

ceptors until he is exhausted, the defense impact can then be 

evaiuated by computing a  T parameter shift» A , by use of the W 

relationships presented in the above examples. 

a.  Optimal Assignment Doctrine 

The preceding analysis leads to an interesting and useful 

by-product - namely, an optimum intercertor assignment doctrine 

("optimum" in the sense of postponing first penetration as 

long as possible).  That is, suppose the defense wants to 

choose K and < n . I . _ ..        „ which maximize W subject 
{    J f  J - J-j • • • »  *■ 

to a stockpile constraint 

K 

£ n . < JL, 

= i 

where 

N = effective number of interceptors (see pp. IV-B-14). 

i •. 
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Note that the following problem is equivalent: 

choose K, 
K  maximizing 

F(ni, . . . , V = di+ did
? 

+ • • • + \ ■ • • \ 

subject  to      7       n . < NL 

J 

where d, = p        1  -  (1  -  p  )   ° (K-5) 

A non-integer solution to  (K-5)   in general  is  a point of tan.^ency 

in K-space between the plane N    n, = M_  and  a  contour surface 

J 

of the function to be maximized 

F(n n  ) = F  . 
..'« i,   .   .   .   ,     r\ o 

•V. However, no simple solution technique is available for the system 

of equations resulting from the taneencv requirement. Therefore, 

r>+ the following alternative approach has been used successfully 

\v in approximating the solution to (K-5). 

s.:m: Consider what occurs as the stockpile parameter IL is m * 
*V increased. At first all Nr interceptors are assigned to the 

f«/, first warhead seen by the defense, so that K = 1 and n, = N . 

'"/:. Eventually, however, a value N_ = N„ is attained where it 
*j * f Ei 

jj£« is better for tha defense to split his stockpile into n, + n_ = N , 
It's' 

w»\'. where n, > 0 and n-> 0 for N_>N_ .  And, continuing to increase 
1        2        E  E, 

IL, a sequence J M_ K . 
& \   5„ j    \  = 1, 2, 3, . . «is rroduced, where each 

t 

^ÄW^V>"v>v/i"A'Z\^v>.->.0.-. ^\»-v^Vv'-yv >\v^\/v'v^\i:^vVJ/ 



[V-K-10 

r 
!•       • /<•   nt  wl ir*   t I e   deft-is-    !.■-:•      • 

i   ! ! '  ' ,    ;. r.   v ' •-.    •'! t   • 
K   t    1 

assi t h ;.■ -ut. 

At  thest.1  b -. r -i-3 :■;.■  ;  dnt: ,   the  K   f  1    limersi ?nal   tin^nc.v   r°nuire- 

ment   i:   • ■ r. isf i e !  hv  r., n„ > 0 anJ  r...       .   - 0,   -in*  t be 
L,    .    .    .    ,      K l\  +   1 

result in tr  system  ?i"   aquations   is  solvable   i^r n, n 
L,   .    .    .    ,      r. 

i'bus  the  solution  technique  for a  rroblerr  where M 1  c; 

specified   is  to  bracket   N_  by two values  N       mi  N V 

(such   that  K    <  NV<N )  and  then  inte^erize  the 

resulting n.'s to obtain an optimum or near-optimum integer 

solution to   (K-5).     As will  be  shown later,   this arproach pro- 

duces  assignment doctrines  for the terminal defense which 

appear to  re  superior to  tr.ose  produced  by the modified  Prim- 

Read   methodology  described   in  Appendix C.     Thus,   the damage 

functions   produced   in AEM when  ND0C * 0   is  srecified,  now 

assume  this maximum "postponement"  type  of assignment doctrine 

for  the   defense. 

The K +  1  dimensional  tanpency requirement  (at the  nv   .   ,   - 0 
ft     T     L 

boundary,1  ultimately  results  in  the followinr  system or equations, 

expressed   in   terms   )f  the  d.'s  for simplicity: 
J 

1N 
(d]   +dld2+   .    .    .   +d1   .    .    .   d,)    (l-^)-(d .   d   )   d 

(dd    f .   .   .  +d.L  .   .   .  dK)   (1  --2) = M1   .   .   .  dK)  d. 

(d, V -  —,   -  (d. 1   )   i 
K       K 

lv*lv^^>,-5ii»lV^^lV/*. >> »Vl1ü> 
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The j— equation (j = 1, . . . , K-l) may be written as follows: 

dj_ - di • • • V • • •+ ^ ■ ■ ■ dK 
d. d.   .  .  . Av 

1_ -J. IK 

1 + d.j j I +  ■   ■   ■  + d.j + 1   •   •   •   ^K 
dj + 1  •   •   •  JK 

d .....  d 
j + 1 K 

+^*(1 + h**+ • • •+ d,i+* ■ • • V 
«W^j + s • • • V 

. ^l±i 
d ......  dj. d., 

PA 

Thus,  defining 

d. 
a. = —J-r- (K-6) 

1 

we have the recursion 

a. - z 3"   +   ai + i j = 1,  .  . .  , K-l J      d. + 1  .   .   .  dK o + l 

^%v--,\^-'\\\-\^/v:v-y-—        -•••• •••'•->•• •:•"-•>> ••• • • -- ■'•>-• • •■•••■<w 
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ore nüvalentJy 

a .      ,  = a . -♦ 
.   .   d. U .   ,  K), 

The last eauation in the system is 

\   l 

and (K-uJ may be rearranged to read 

d. = 
a, + P- 

THUS, the following simrle recursive solution is obt^rned for 

any value of K: 

aK = l 

d. = 

a, P* 

j  a + p (K-7) 

a . . = a. + v- 
j-i    j   ^ . . . dK 

The n.'s  are then  produced by inverting  (K-4): 
J 

d . 
In (1 - -J) 

P* 
n . = 
j  In (1 - Pj) 

j = K, K-l, . . . , 1 (K-S; 

Table K-l shows the first few optimum boundary assignments 

resulting when (K-7) and (K-B) are applied for the c^se 

>^^^^:^■^3^:^^^^^^^^•^^^^'^■V-"''^^^ \v>:-\»'>:v.^>.>^/v"">-:-- .-Afc^^ 
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IT 

TABLE K-l  OPTIMAL INTERCEPTOR ASSIGNMENTS 

N_ K n. 
EK J 

.32 1 .32 

.97 2 .65 

1.87 3 .89 

2.95 4 1.08 

4.19 5 1.24 

5.56 6 1.37 

7.04 7 1.48 

8.63 8 1,59 

10.31 9 1.68 

12.08 10 1.77 

The first column gives the stockpile sizes for which the assign- 

ments are exactly optimum.  The second gives the number of 

attacking warheads to which interceptors are assigned. The 

last column lists the non-integer interceptors to be assigned 

to successive warheads seen by the defense, in reverse order. 

For example, if the stockpile size is 4.19, the optimum assign- 

ments are n, = 1.24, n0 = 1.08, n - .89, n = .65 and nc = .32, 
1        *        3       4 5 

in non-integers. 

Intuitively, the best integerization of this doctrine for 

a stockpile size of 4 interceptors would be n = n0 = n = n = 1. 
12        3 4 

. > However,  another possibility is  n,  = 2,  n    = n„ = 1. 
* V*? 1 2        3 
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To  com; < "•■   • ••   tw^,   -  ■:.. ut e 

d< . 

and     F(l ,   i ,   i ,   1)  -   ,*1 +   L*] )2 ■+   (..^l)1  t   ( .••] >U 

■ .'./,3 

F(2,   1,   .      ■  .891 +  .391  (.--l)  +  .891  (.81)2 

= 2.20 

Thus  the   firs     '-"trine  is   clearly optimum. 

Subroutine  C0MPK generates  the continuous  n.  by the   above 

recursion   relation,   and  accumulates  them to  produce the \T_, 

values.     As  soon  as  the specified  stockpile  is  exceeded,   the 

corresponding n.'s  are rounded  to the nearest   integer  (except 
J 

that  zero   is  not  allowed),   the   K sum is matched  to  the 

specified  value of N-,  and  K  is   rea>.  , usted  to  afr°e with  the 

integer solution. 

To  illustrate  the advantages of  this   rrocess over the 

modified  Prim-Read  approach,   consider the example  riven on 

pp.   IV-B-34 with  ND0C « 0.     The  Prim-Read assignment of  the 

N^ = 12 interceptors  was n.   - 2,   n,,  - .   .   .  = n,,   - 1.     The 
& L '     2 11 

postponement doctrine  resulting  from the above  recursion   and 

n     -    1.     A integerization   is n,  = n0 ■= n„ = 2,  n        ... 

comparison of the  resulting   lamaffe  functions   is  <7iven   in 

Figure K-l. 

'ttä^&^^^'^^^it;^::^:.:, ^v^•^^^^^^^^^^v^.v^\^^••^s^•^'^\v■v/^^•^^^•^^^ 
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I'.       Sinif 1 i f ied  ^ama^u  Func . i ons  - Q|_tj ma i Asi-uyiment  Case 

The   recurs ion   (K-7)   is  not   in   itself  ,i   satisfactory  tool 

for quickly  apr-roximitinr  the  effect of  anv  piven number (N„) 
E 

of optimally assigned terminal interceptors on   the basic 

damage function.  However, it was instrumental in producing 

such i t >ol» 

Observe that for fixed values of p and K, equation (K-7) 

may be used to nroduce the d. values (j = 1, . . . , K).  With- 

out knowinr the assignment n,, . . . , n , the function 

F(n,, . . . , n,.) is then computable via the relation 

F = dx + dld2 + . . . + dl . . . dr 

One is thus inclined to regard F as a function of p and K only, 

and indeed Figure K-2 gives a riot of F(K,pA). *•* 

Also,  from equation   (K-8),  notice  that 

d. 
n.  In  (1 - pT) = In (1 - -*1) 

Therefore 

K 

j   -   1 

n.  In   (1  - Pj)  = In  (1 - 
d . 

.1 = 1 

d. 
or N^     In   (1  -  pT) )  -   V    In  (1 - -i) 

.1 = 1 

We trus define 

(K-9: 

Q(K. n. T 
.1 = 1 

d . 
In (1 - -1) 

:-l-:^\*ys*:i:sS/^^^^^ 
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and, like F, compute its values directly from the recursion. 

A plot is piveri in Figure K-3« 

The purpose of all this is as follows. The approach will 

be to first approximate the functions F(K,p.) and Q(K,p ) 

analytically. Then, for arbitrary specified values of p., pT 

and N-., in view of equation (K-9), find the (not necessarily 

integer) value K satisfying 

K* = Q~X (NE In (1 - Pj), PA). 

Finally, F(K ,p )  is evaluated to produce the numerator of the 

desired translation shift 

A « W* - J 

1 + F (V • - • ; V  l 
R " R 

(n1, . . . , nK) 

R 

This gives the approximate impact on the undefended target 

damage function oT Nv  optimally assigned terminal intercertors. 

Note that use of the procedure described above does not involve 

evaluation of the recursion, solving for the assignments (n.), 

or interpolating between solutions at adjacent boundary points 

(N  and N     ), and thus represents a considerable economy 
EK     EK + 1 

of effort in the computations. 

The following expre:- ions werp produced by a tedious 

fitting process to data ,7  nerated from the recursion (K-7), 

and have proven adequate us approximations to the functions F = nd Q: 

LVAurAj^^jC^jk^l^^^ -'■* -• ■■"-. ■ > • ^ -. • r •■« • •*,'•.  _^_^ 
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I 

where : 

irid 
. C 

*      '' A 
vK-L/J 

where      ' i. 38 

Thus, from Y   ..' : 

- (1 - 
"A 
a.336$  r 

.3865 i 

. 386*5 

K% [-*(K*, pO_ 

(K-17 

o r - NF in (1 - rT rJ 

1 

i c 
:K-I/; 

As outlined above, the procedure is to apply (K-14), -ind then 

(K-10). 

For example,   Let  p.  -  .9,   rr   =  .8,  N- = 30.     Thus, 
A. ' 1 Hi 

-•   M„   1 n   u - 48.3 'E  J"   v'      'Iy 

b - ,0?6 

c   -   ' 

K* -  U.l 

F ■=  5    ■'. 

With   ieta  led   pridr,,   Figures   (K-2)  and   (K-3)  yield   the more 

accurate res . ]T 

K*    =  14.6 

F      -    6.2 

A1I1 Wl tli*"1-'-^-^-*-''-" '-    *-"'■-'  ^•.•-'.•-' «i~ -J1 «-". «J* i.*. «.*.«,'«• -t ' n <\ • «  '. m. *. ..» . •». - - - * » w .  -.<-»*., «i*.. * -it - »'_ »*   »*. *».   ."..   .• . .»   .-   _■- . ,■» V> "1 ' jt - M - . • . •... Li % 
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<T 

Notice from equation (K-4) that is K and n.—► 00, ri , *. p 

and thus 

PA 
+ PA2 + V + • • • 

PA 
X-pA 

It is clear that the approximation (K-10) for F his the same 

asymptote.  Also, 

1 + 
1 - PA      1 

W ~"    R       R(l - p ) 

which is the same limit as that of the constant assignment doctrine 

expression given in Example 1 of the section entitled "Simplified 

Damage Functions." 

3.  Optimum Deployment 

Having designed suitable approximations to the functions ?v  (N.,D.) 
Kj J J 

for sequential strike cases, it is mear^nrful to discuss the solution 

to the defense's deployment problem as formulated in (K-2).  In 

Reference (11), Pugh suggests a La^rane;e multiplier approach solving 

the following unconstrained minimaximizqtion problem as a means of 

approximating the solution to (K-2): 

Li£vi^£slv.sVA>Vf-'-v.a>vv^^^ •/ ';:.-:.■ ^.•Xi .Oi-J /A-.'--^ 
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Find  multipliers H>Q  and    k. >  0  (i == 1,   . ,   ■.TA'"1  an '   choose 

I vlj = i, .1   :i  ( Noi j-i, .   ,  NT t-?chi evi n^ 

m.m  /    max 
r      NT 1 E 

NW 

lD,    iN,       Z, vj p
Kl 

(Nj- Dj) -   L, 
\       \  : = i       J i = i 

NT 

E*. E»S 
: = 1 

NT 

+  $    y^   D. 
i = 1 

such that 

•;>i 
NT = W. (i  -■ 1, 

.1 1 ) NW) 

and 

VT 

E 
j = i 

D. 
J 

= D 

In Reference  (11),   it   is   pointed out that this approach  produces  a 

defenoe option minimizing: the maximum "profit" available  to the attacker 

within the defense's  resource  constraint - that  is,  a deployment   \ D    > 

is  found  wtich  solves 

minimize P(D  ,   .   .   .   ,  D     ) = 

r NT 
max    ■    ^—^ 

JN.l    j     >       V.  ?,.     (N.,D.)   - 
i .if   I   L~i     j    K.      y  j 

- i 

NW NT 

z% E»; 
i  = 1 

:K-I5) 

subject to 

NT 

E 
.1   =   1 

D. < D  . 
J        o 

■^.V^ 
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The deployments  produced  in AEi4 result  from an attempt to solve  (K-15) 

directly,   without explicit use of a ^a^ranpe multiplier,  U ,   ror the 

defense. 

Note that the maximum profit function may be written  as  follows: 

P(Dr . • v ■ 
MT 

E 
max 
N. 
J \ (NV DJ; 

MW 

£ 
i = 1 

A. N3. 

where 

NT 

" L nJ (V 
J = 1 

p. (D.) = maximum profit available to the attacker at target j 
J  J 

max 
- N. 

J 

NW 

WW- EM 
i = l 

Thus, at every target there is a maximum attacker profit function 

of the form 

max  max 
p(D) = i    N. V • PK(N D) - X     N 

i\ l       li 

where N. has been redefined to mean the number of attacking weapons 

of type i. Since 

N. - T. - A. (D) 
PK (N., D) S 1 - S. *   *    * 

with the function  A. (Dj as derived abc**e, 

*_'.*A v'tikA »_.' '-.   "._",' ^''j"^\^''^\^'\-~M^'^'\^'^''^''-^'-^"^^^^^-''.  1*«!**»  **!. SÄ^WJSJJLAI^JW 
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n-:x        rri ix 

A.    k
; 

: 

Therefor* t» 

h(i 
N .    ~    i ki    W 

+   A.   N. (K-16) 

-    minimum  ittacker  "loss"  function at  any target 

and   it   is  cLe \r  :' it   the   lefense's goal of minimizinp overall  attacker 

profit   is the  same    LS  maximizing overall attacker loss. 

Thus,  h,   (D.)  may be regarded  as the defense's  ray-off  function 

at  target  j,   and   is  computable   for  integer values  of D.  via  equation 

(K-16).    The h.   (D .    have a generally  concave shape,   as  is  illustrated 

in  the  sketch  oelow. 

Since only  one  type of  resource  is  involved,   the defense  can 

sequentially  allocate  his  interceptors  to  targets  at  which the 

maximum benefit/interceptor  is  realized  and  be  assured  that,  wh^n 

his stockpile   is depleted,-11 

max E n    \ u .; 

will have been achieved. 

*  rin  the groused   r ;.rget  case,   the   incremental   deployments are made 
simultaneously   tor aIj   like   targets.     If stockpile  exhaustion 
occurs mid-way  through  a target   class,   it   is  split  into two 
classes,   one   it  the  higher  level  of deployment,  and  one  at  the 
lower. 

IT«!,,:■*.",A.'J^ÄlaX^JLlafcLA^AjAi Wal äVJL-. IVV> *»J~aj{M-f«."i 'o"^r^.,"^\\^v<^v'Cv""N-">,V/I%'<Iv"C*^I,-"l*. 
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hl (D1} h2  (D ) 

>» 0, 

The sketch illustrates some of the phenomena which can occur. 

i 

D, is a point at which the optimum attack on target 1 switches from. 

missiles to bombers.  As the slope criteria indicates, no further 

benefit accrues to the defense by aiding (ABM) interceptors. 

The pa} off h« (D ) has a slight cavity at D .  Therefore the 

program has s  look-ahead feature which isolates cavities like this 

and will deploy around them. 

When the attacker loss exceeds the value of the target, as at 

i? 

D-j the interpretation is that the defense level is sufficient to 

preclude any attack whatsoever by the offense.  In this situation 

no further addition of interceptors is warranted or permitted. 

The foregoing discussion has assumed that a defense stockpile 

consisted solely of interceptors.  A more realistic view is that 

there are certain fixed inotallation costs which enter the ■-'eploy- 

merit problem - i.e.,   radars,  computers,   site-preparation costs,  etc. 

must be taken  into account before  a single intercertor is  ^erloyed. 
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.:'   these   costs     in   b<    lumped   ;nto   m  equivalent   os1    in   i tit ercertors, 

f   t.h^r   ,l       'f'fect      '    '!"<    ^epl oynw.t   ■>'>■•* )-,-'   • otT\    i'    is   follows: 

* 

h . (r.\ 

V. 
J >o 

f- -J 

c. D! 

D. 
J 

J J 

That, is, the defense receives no benefit until he has rair tl e price, 

C., (in interceptors) of the defense installation. Because of the 
J 

Look-ahead feature of the program which skips over cavities, the 

first potential deployment increment available to the defense at 

this  target  is  then P.. 

Also,   it  is  sometimes desirable to deploy  interceptors  in 

batteries,   or in  incremental   steps  other than unity.     There  is a 

program input which accomplishes  this,   if desired,  with, no essential 

change  to the  above  theory. 

Finally,   in  order to solve   (K-15)  completely,   it is necessary 

to have attacking weapon  lambdas   (A.)  which   are optimum in the 

sense that  they must le  compatible with an attack aeainst  the 

optimum deployment  sought.     Since  these  are not  known at  the   start 

of trie  solution  process,   an  iteration  is  performed.     Starting with 

any deployment,   a strike  is  optimized  against  the defense,   producing 

A.'s   as   a  by-product.     These determine  a new   deployment,   mother 
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strike is conducted, new A.'s are produced, and so on.  This rrocess 

converges to reasonable defense deployments, but sufficient evidence 

exists to indicate there is no guarantee of optimality.  As Pu?h, 

Reference (11), indicates, the double La^rangian metho:i is not 

guaranteed to result in optimal solutions. The method described 

here is directly comcarable to the double Laf?rangian so it too is 

not guaranteed. 

In the process employed in this rrogram, special steps have 

been taken to encourage convergence. For example, special "effective" 

weapon lambdas are sometimes used in order to help direct the defense 

to a deployment which provides the offense with a constant return 

per weapon. 

However, usage of the deployment routine has shown little 

interest in having ieployments optimal for some precise attack 

condition. Rather, one usually iesires a deployment which is reason- 

able for a general attack condition. Such deployments do result 

from the process described above. 

h.  Balancing of Missile and Bomber Defenses 

As discussed in the sketch of the previous subsection, a target 

can be defended against missiles to such an extent that the target 

will then be attacked by bombers.  It is then necessary to add 

bomber terminal defense before ctntinuing with m< re missile defense. 

There is an option in this subroutine to detect that such a 

condition exists and it will appropriately add a balanced defense 

increment to the target (given a cost for bomber terminal defense). 

The increment is defined, as a level f missile defense rind a 

'j>£^*^>&&>L^^ 
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- •   Pep lay men L_ J, _I_ Dedicated Area Defenses 

Within the context of the Arsenal Exchange Model, dedicated 

are« defenders is the name attached to long-range Interceptors 

wh -u pt■. ■ -"      Lntercept function against exo-atmospheric 

objects, but only on those objects directed at some specific 

terminal target.  Thus, they could appropriately be considered 

V the sane as long-range terminal interceptors.  Their function is 

usually viewed simply as a defense barrier which is far enough 

away from a target so that short-range intercept -s can be directed 

at objects which survived the long-range intercept attempts.  In 

*^H addition, they might have an advantage because of the fact that 

intercepts would occur outside the atmosphere. 

V 

". A 

Ifl^Wrfk^A^J^^AVAOv^ ^-/■--^'■^■a.V. 
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In this section we will describe deployment procedures which can 

take a fixed number of such interceptors and optimally distribute them 

to specific targets so that the maximum benefit is achieved when a given 

arsenal is attacking a target set that includes the defended targets. 

An implied assumption in the methodology will be that the attacker 

knows the exact deployment outcome* This can be visualized as a two- 

move game where the defender moves first, 

a»  The Methodology 

A comprehensive methodology to deploy short-range terminal de- 

fenders has just been described.  It seemed most appropriate to adapt 

that methodology to this task to as large a degree as follows. 

The problem to be addressed here basically is as follows. A de- 

fender possesses some number of dedicated area interceptors to deploy. 

He expects an attack by an arsenal of some specified characteristics 

after he has completed his deployment. There is a set of targets (T) 

of varying values and characteristics which are candidates for receipt 

of the interceptors. The defenders' objective is to distribute, or 

deploy the interceptors to the individual targets in such a way tnat 

the resultant decrease in total damage to all targets is maximized. 

This can be expressed (as in K«-l) in mathemaMcal notation as 

follows: 

LVkVLVlvtV^^ 
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Choose a D which realizes 

i 

(K-17) 
Mia  j  flax  P (A, D) 

D   (  A/D 

where the notation is intended to mean 

A        ■  the action chosen by the attacker 

D        s. the deployment plan 

P (A, D)  * pay-off to the attacker if he selects 

action A after deployment D is chosen. 

The term inside the bracket implies that the attacker wants to 

maximize damage while the Min D outside the bracket indicates that 

the defender wants to minimize the maximum possible attacker pay-off. 

There are some inherent problems in attaining the global 

* 
optimum strategy, D . These problems were addressed earlier and 

will not be re-stated here.  It is important only to understand 

that the methodology utilized in AEM always produces "good" deploy- 

ments, usually "near-optimum" deployments are achieved, but opti- 

mality cannot be guaranteed. 

The basic deployment concept previously described in mathe- 

matical form can also be visualized as follows.  First, generate an 

attack plan on the targets in their "before-deployment" defense condi- 

tion.  Then, evaluate the net marginal pay-off to the attacker at each 

of the targets being attacked. This will produce a result like that 

in column two of the following tab^.  This net marginal pay-off at 

^'^ ^ -•>•'•■ -■ • -A'-:   ■■'   lli   ■*-'- *-'■ *-' ■•-**-* *-'■ •-"> ^•.,..V'..,.'^V -•« ^** -•«>.•> - « vV^j» - A J.1 -V»V^'« .« «■■/■.... -^»^m  *■_■>..»*-« "^a '-!• "-M'-ei '.ff 'J JL Ji t_. J-_ 
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target i is the loss to the attacker if target i were removed from 

his attack option list. 

TABLE K-2 ATTACKER NET PAY-OFF BY TARGET BY DEFENSE LEVEL 

Net Pay-Off To Attacker At Deployment Level 
Target 

1 

2 

3 

4 

5 

None 1 2 3 4 5 

60 56 52 48 44 40 

110 110 110 110 110 110 

87 80 74 70 67 64 

42 38 zr- 35 35 VJ 

15 11 5 0 0 0 

T       22       18    14      12     10      9 

Then compute a similar net pay-off for each target as if one 

defender was added to that target.  (This being done as if all 

other target deployments were held constr  at the starting level.) 

This would result in the data presented in column three of 

Table K-2.  A similar procedure might then be. conducted in order to 

arrive at the complete table„ 
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Several {<-, to not« about the table.  First, 

the pay-offs r-lw-M !•«  ft.reading at a r :tc which 

itPelf is deer« '       !econd% : me targets (like target '>') might 

not be worth       ng to bevond some level where the attacker would 

stop his attack,     rd, some targets (like target 2) «night not show 

any benefit from deployment if, for example, the target is being 

attacked by bombers and the defense is only good against missiles. 

Once such a table lias been constructed it is possible to develop 

a candidate deployment simply by putting the first interceptor on 

the target where the- ,<iggest decrease in attacker pay-off occurs, 

the second interceptor on the next largest decrease, and so on. 

In the case of Table k-2, the first would go to target 3, the second 

again to target 3, the third to target 4, and so on. 

ihfc- i . i Idate deployment is not necessarily optimum 

because ail of the net pay-off figures in the table are based on the 

starting defense condition and, as such, the pay-off decreases are 

only good estimates of the deployment benefits.  To be optimal, a 

new attack plan should be generated after each individual inter- 

ceptor is assign*d   (If there were hundreds of Interceptors to 

assign, sue!1, a scheme would be very ti.rre-consuming.) 

Within AEM ehe procedure is to deploy all interceptors by use 

of results like those in Table K-2, then to generate i new attack 

plan, re-computtr Table l<~~ .-md   •  ii adjustments to the deploy nil 

are necessary, and so on.  In practice, four to ten deployments 

and adjustments usually are. adequate. 

IfiiV a rt • i ,WftViii/v WrtAfliWfcV     -.vIv-V/.-':^v:\c>J;:^>^ 
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An issue not brought out in Table k-2, but which is addressed 

in the actual methodology is the concept of fixed installation 

costs at a site before any interceptors can be deployed and then 

deployment of interceptors in groups, or batteries.  Such factors 

affect the computation of the attacker benefit cables but do not 

modify the basic concept. 

A second issue which is addressed in the methodology is that 

of defenses which have been in existence prior to a new deployment. 

Such pre-existent defenses can exist and they, too, only affect 

the attacker benefit computations. 

b.  Methodology Implementation 

Since AEM already had procedures for computation of deploy- 

ment effects on net attacker pay-offs (like Table K-2) and all 

associated deployment logic, it v s not necessary to implement the 

procedure over again for dedicated area defenses.  Instead, this 

new deployment problem was resolved by modifications of input 

routines, internal bookkeeping procedures, and data management 

functions. 

The key issue in the task was the data management functions. 

Early versions of AEM had routines with built-in assumptions that the 

defenses being deployed were the standard terminal category. 

..._. ^ _V_!«W-Vi. ''MJ.KJ'M m'r -'"_/.'_• "-T -vW. V„V_ £_ *L A'- A  - A*«J *VfcV1« ff**" .'.  ■■/ O 
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Therefore,, items such as defense effectiveness factors were auto- 

matically taken to be those for the terminal defense input by the 

analyst.  Then, once a deployment was achieved, all print-outs of 

those results were, automatically tied to the terminal defense 

print-outs. 

Necessary implementation tasks in order to convert to dedicated 

area defenses therefore included modification of the data management 

routines so that the correct defense factors were used in the com- 

putation of the attacker benefits and so that all outputs could be 

properly associated with the dedicated area defense outputs. 

c#  Option Utilization 

In order to make the analyst job as simple as possible all inputs 

necessary for dedicated area defense deployment are designed to be 

used in common with those for the standard terminal deployment option. 

It is only necessary to input one extra parameter which indicates 

the number of dedicated area defenders to be deployed.  Because of 

the inherent nature of the methodology, standard terminal and dedicated 

area defenders cannot be deployed simultaneously in one case.  It can 

only be done by first deploying one type of interceptor and then in a 

following run deploying the other interceptor type. 

—'■—"^-■-•- ■•---'-.-*..-•» -'.-•'—•».'.,•■..■....•. .'. 1 '.._..•. —„—^_ j__V—!«__!_. ^_v«—~m . . , ". ..'»-JW-V^ '. i ,V--"■»-- ^-^J- 1^. ■.,',.:- ^* \.' *-\ '-.' i* A-* ^~ * * ^ ' m..^ •. 
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L.  MIXED-INTEGER VARIABLE PROCEDURES AND APPLICATIONS 

1.  An Overview of the Problem 

The basic linear programming allocation procedure (See Chapter 

IV-A) about which the whole AEM program revolves has been found to 

have many powerful features.  For example, damage constraints 

(IV-D), hedging allocations (IV-P), and budget optimizations 

(iV-J) all take extensive advantage of the option to insert nis- 

cellaneous types of constraints, which can allow the analyst to 

more nearly evaluate his true problem. 

As this exploitation of the power of LP techniques has pro- 

gressed, it has become apparent that one additional avenue of 

development which could lead to similar pay-offs occurs in the 

area of mixed-integer (MIP) variable L?'s.     As a first explora- 

tion of such concepts, such an option was addressed and reported 

upon in a separate document (Refers je 13). As a result of that 

work, the effort to be described in this chapter was undertaken. 

Before describing an example of a MIP option, it would be 

useful to review some of the current LP features.  Basically, the 

non-integer LP traditionally used in AEM chooses from among a 

candidate set of weapon-to-target strategies that sub-set which 

maximizes total pay-off for the specified limits on number of 

weapons, number of targets and other auxiliary constraints.  In 

doing so, integer number^ of weaoons are fired at targets, but 

the LP is not constrained to using those integer weapons on an 

integral number of targets.  For example, a strategy of six 

weapons of type 4 might be used to attack 8.1 targets of some 

class. 

E ■■ -■ y ■• •■■■••■••■■•••■•••■---•••••• -'■ •->----->>-• •- -'" • -'■ &av v "'^ a ■"' —-— —- 



IV-L-2 

This ha:        i i much oi .in issue in AEM  because l lie 

number of tiii,   «vtuch i in he Irnci ionaied is always ^ the 

number cf weapon iyp«    ijine.v IU--20 weapon types md several 

thousand targets    »vpical for AEM, the et feet of fractional in; 

a few speciiic i ugtrts Is minimal. 

However, there are a number of applications for AEM which 

require that at Least some of the variables picked by the LP must 

be only at integer values.  In fact, most of these applications 

require that selected variables be at values of 0 or 1.  Within 

these applications, it is always true, that the majority of the 

LP variables are allowed to be non-integer.  Hence, the name of 

mixed-integer LP, inesnir^g that some variables must be integers 

while others can be fractions. 

A classic example of a MT.P application occurs in the budget 

optimization process when R&D funds must be spent before any 

purchase of certain weapon types can occur.  This application 

was the primary one addressed in Reference 13 and it is the only 

one which has been implemented in AEM to date. 

Take a circumstance where some number of offensive weapon types 

are available for augmentation of a force.  Certain of these types 

might already have .'.opt.   through, development, while others require 

full R&D.  This key difference impacts on the relationship between 

budget spent and units deployed as demonstrated in the following 

figure• 

• - • I • M .-. ■ r. m i  . - . -I , 1 V- "' ■ •'."■''.''•i'^'.'^.'-'.V.'r-V.V 
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Note that the existing system has a higher unit cost (a higher 

slope) but that the netf system must first sink the R&D penalty. 

The type of relationship demonstrated for the new system is of 

the classic "fixed-charge" problem form.  That is, a fixed charge 

occurs before any usefu1. objects are acquired. Then, each object 

comes at some unit cost. 

The part the LP must play in such a budget allocation pro- 

cess must be as follows.  One, it m^st decide which system types 

should be purchased, knowing that some of them renuire R&D. 

Two, it must decide how many of each type to buy.  Three, it must 

decide how to allocate each of the purchased weapons to specific 

targets. 

The key issue in this process is simply that no R&D is necessary 

unless at least one unit of a certain type is purchased.  Once the 

R&D has been paid then it is possible to consider how many of each 

type to buy. 

!a_«Jj —'» -*h -2M.^k.^Tii —la ..% > ^n ^ZK »J"^ ^JA ^i..«.'.^.«1*. i_li_-I* mix. 
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This type of problem cm be expressed in  a  MIP format if Lhe 

tollowing typo o\   buuv;ci const mint occurs in the Li1. 

X(1)R(1) + X(2)R(2) i .. X(n)R(n) + Y(l)U(l) 1 Y(2)U(2) + ..    (L-L) 

Y(n)U(n) < B 

where:  B    ~    Total budget. 

R(5)  =  R&D cost for system i 

U(i)  =  Unit cost for system i 

Y(i)  = Number of units of type i purchased 

X(i)  = 0, I variable such that 

X(i) = 0 if Y(i) = 0 

X(i) = 1 if Y(i) > 0 

In this equation the X(i) variables are constrained to 0, 1 while 

the Y(i) can take on any values.  The X(i) perform the function 

that no R&D cost occurs for a system unless at least one un; t 

of that system is purchased. 

Up to this time AEM has not had any way to deal with the fixed 

charge aspects to this problem.  Insertion of a MIP option does 

resolve that deficiency however. 

In order to bring out the concepts behind MIP in AEM this 

Rod? problem will be used in all further examples in this chapter. 

This is most appropriate because it is the only implemented MIP 

option in AF1M but it also does lend itself to presentation of the 

methodology.  It should be noted however that other MIP applica- 

tions are in the planning stage at this time. 

\'*S.*J:*J.*J,..^-.'„%'-.:Ala Ji »:«^_>.,-->.:-., :^."JL:^ •.•■,'>'..>;.Z.'/^LA..«LI'^VW. -;\J"*A*_\MAMJ\AJ *JV*-\ 



IV-L-5 

2.  The R&D Problem In LP Format 

The AEM formulation of the R&D problem in budget allocations 

is demonstrated in tableau form in Figure L-l.  This tableau is 

st;L up  fur a three-weapon, six-target class problem.  A basic 

outline of the tableau is as follows. 

a. The Rows and Columns 

Each column has certain non-zero entries in certain rows. 

These entries indicate how many units of those rows will be 

utilized if the LP chooses that column to a level of one. 

For example, choosing column 4 means that one target of type 1 

will be attacked by 42 weapons of type 2 and that 42 J(z) units 

of the budget will be expended.  (The meaning of the other row 

entries will be brought out later.) 

b. The R&D Decision Columns 

The first three columns basically indicate which weapon 

types have been chosen by the LP for purchase.  For example, 

if column 1 was chosen to a level of one, it would indicate that 

weapon type 1 has been chosen for use. 

c. The Target Attack Co^mns 

Columns 4 through 15 ^re used to indicate which targets 

are attacked and which resources are expended. 

d. The Budget Constraint 

This row controls the budget expenditure and it is basically 

the equivalent of equation (L-l). 

e. The Total Weapon Purchase Constraints 

These three rows in essence guarantee that no weapons will 

f.V1.. wJViV'-V.. A.V- -•... M\'J^ '-»*-» ■.'•j'j.v;.,'.'.- '-r •_» *-f Ji.-- '-v -- .V..V '-\'J- \- •■A'.t'j.v.v'j v . j. j\^-_» *^;-A'^!,-S:_±\[ ^ <L»V.^' • »'* 
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fegt» 

be used to attack targets unless the appropriate R6J) decision 

variable is set to one.  For example, if X(l) = 0, then the 

first of these rows says that the sum of the weapons of type 1 

used in the target attack columns must be i 0.  Thus, none 

will be fired.  However, if X(l) = 1., then up to 125 of weapon 

type 1 could be fired at the real targets.  The number of 125 is 

entered in column 1 on the basis of that being the maximum 

possible purchase of type 1.  This can be competed from 

WM( :N
    B - R(i) 

1} = u(I) <L-2> 

where:  WM(i)  -  maximum feasible purchase of weapon i 

f•  The Integer Variable Limit Constraints 

These rows serve a purpose which will become clear when 

the specific MIP algorithm is described. 

If a MIP algorithm can be developed so that variables one 

through three would only take on the values of zero or one, 

then this LP tableau can be used to solve the buo et optimiza- 

tion problem even if there are R&D costs associated with some 

of the force options.  In the next sections such an algorithm 

will be described. 

3. The MIP Algorithm Search Process 

As was explained in Reference 13, the current status of MIP 

algorithms is somewhat cloudy.  There are quite a number of codes 

available in commercial and non-commercial form„  Each of these 

codes has advantages and disadvantages.  Further, it has been 

found by a number of investigators (private communication with 

■ >"- «"■»"-<—«- ■ . i ■■ - .,-Vo.l—1, .. V J fcj- ...- 
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K. E. Woolsey of the Colorado School of Mines) tint any given code 

might work well on one clays oi problems, but poorly on  another 

cl iss. 

There fore, it seemed imperative to conduct further research 

into some of the codes in order to find one that seemed most com- 

patible with AKM problems.  This research rather rapidly narrowed 

down to three options - a code called BBMIP, a code called RIP, 

and a theoretical concept called Benders' decomposition.  Each 

of these options were investigated, with the following results, 

a .  BBMIP 

This code was developed at IBM, Reference 14, on the basis 

of theory developed by Land and Doig, Reference 15.  A copy of 

the code was acquired from R. E. Woolsey and some degree of 

experimentation with the code was conducted.  Some of this 

experimentation was reported upon in Reference 13. 

Basically, the code operates as follows.  First an LP is 

solved without regard to the integer conditions.  Then the 

program proceeds to enumerate all the possible integer solu- 

tions by constraining the variables appropriately.  Meanwhile 

a dual simplex LP algorithm i; used to establish bounds and 

thus eliminate large subsets of possible enumerations. 

In summary, study and experimentation with the code revealed 

certain basic facts.  First, it provided c nclusive evidence 

that 1he code would solve AEM-like problems in somewhat of a 

reasonable computational time.  Second, it was apparent: that 

^JyfcJyfcJi, ;,<r^ frfi <fr '.*■"-*•'."•".*•.'• .■•/• V-',v.*«'."-'.' \ •'.'''•V-V'V-V'-V'V- ••>'■•'"-* ■■■" v»y «" >' v"»"■«" v""-"'"" ■ \'"~ "\"- ■"- ■ 
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the LP code used interior to BBMIP suffered somewhat from 

computational accuracy problems.  These problems demonstrated 

themselves in erratic convergence speed and, in some cases, 

convergence to non-optimal solutions.  Third, use of BBMIP 

would require extensive reprogramming in order to make it 

less susceptible to accuracy problems and to make computer 

storage requirements acceptable.  This storage issue was found 

to be very crucial since lack of adequate storage meant that 

numerous LP tableaus referenced in the branch and bound pro- 

cedure could not be saved and the running time would increase 

drastically. 

Overall, it was concluded that BBMIP offered an option 

which probably could be implemented, but which might well lack 

flexibility for future growth, 

b.  RIP 

This code was developed by Geoffrion, Reterence 16, as a 

follow-on to work he reported upon in Reference 12.  A copy of 

this code was also obtained from R. E. Woolsey for which we. 

are very grateful.  Experimentation with the code on true AEM- 

like problems was not immediately possible since in its acquired 

form it was capable of being used only on all-integer problems. 

This code, too, is based on branch and bound or implicit 

enumeration concept/   As a start on the code, Geoffrion 

describes in Reference 17 his reformulation of Balac' algorithm, 

•J««"/» with the basic idea being to minimize computer storage.  Then 

h" *-" •-' •-* '■* •-' '-" *-* '-" •-* "^" '-" *-" • -' '-* •-" •-" '-' v-* --'■-'■'- -."-.-'- • • • * «_- --• -A-' o --r ±jj gj x'. * - ^ - % r » • * - ■ • , - 
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in Rt't,:i .     , >. i' ' I 11 i i ■•] < >■ s< i i bus ,i s i gni I i can i. im pi ovemen t 

that was        i !-> use )i an imbedded linear program Lo 

generate sun     • i oust ra mt s that ho i p in minimizing Lhe 

work is-        or the .muim-r.it Ion.  In thai sense it draws 

upon Lin i: »net pi M oi" Keterenco 1.5. 

Even though experimentation with the code w.is not conducted, 

analysis of the theory was done in order to determine if the 

code was  candidate for use in AEM.  It should be mentioned 

t.hat; '" ii   - ><\ d i prov-i.de a menhod for converting the code 

Lo a MT i prob Lern *i ruci ure . 

This theoretical analysis revealed that there was some 

doubt about, the utility of the code's imbedded LP option for 

this AEM problem,  1'hat LP depends upon entries in the integer 

columns for generation of tight surrogate constraints.  In the 

structure >; Figure L-l, it can be seen that those columns 

do not contain extensive entries.  Thus, there was some doubt 

about the use of RIP in AEM. 

About; this same time considerable, research was being con- 

ducted Into i. ;\"   [Senders' decomposition idea, so further re- 

search on RIP was held back until that concept was further 

evaluated. 

c *  Benders' Decomposition 

Benders' decomposition is not an existing computer code, 

at leas, not in ivailable term.  Instead, it: is a mathematical 

procedure for solving MIP problems by decomposing the problem 

into an Iterative procedure, where the integer and the non- 

integer ■ . solved separately   This concept was 

> i ■ • ■ ■  ■ ■ i .i -i ■ i ■ i ■ t  i i i. I i . ■ ■ . « . . ».-».«'. ■■',.,;, i.-y\s . ' ..A m-r. H mjtm 
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developed by J. F. Renders, Reference 18, and it has received 

considerable attention by various investigators.  An excellent, 

discussion of the concept is contained in Reference 19. 

The key concepts are as follows.  Note in Figure L-1 

that the integer variables have been grouped away from the 

non-integer variables.  Second, note that one could arbitrarily 

decide which weapons to pay the R&D on.  Once such a decision 

was made, the integer variables have all been specified - that 

is X(i) = 1 for all weapon types where, the decision was to 

pay the R&D.  Otherwise, X(i) = 0.  Given that those variables 

are specified, it is not necessary to have a MIP program.  All 

that has to happen is that appropriate changes be made to the 

LP right-hand side (RHS), like subtracting the appropriate 

R&D costs from the budget. 

The steps in tue above paragraph are essentially those 

that would occur if the analyst simply guessed at which weapon 

types to pay R&D on.  After the appropriate target allocations 

are done for that guess, Baaders' procedure really is initiated. 

The Benders' procedure provides a means for analyzing the 

output from the target allocation LP.  That analysis then 

leads to a new, hopefully better, selection of which variables, 

X(i) , should be set. at 1 and which ones set to 0.  Once that 

h;js happened, a new RHS is computed and a new weapon allocation 

performed.  This new LP is analyzed and a new selection for 

the integer variables occurs.  The iteration continues until 

appropriate mathematical criteria indicate that ontimality 

has been reached. 

■ «■■-■-"-»-- - -« ■ * 
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One advantage of this procedure is that the integer and 

non-integei variables 'ire separated into two distinct problems, 

This allows s, ;      methodologies io  be developed on the 

two smaller problems.  Such a separation can result in a 

significant simplification and speed-up of the whole process. 

As more and more candidate specifications of the integer 

variables are tried, a library of LP output information is 

accumulate.  This updated information is used tu determine 

new candidate specifications by utiliz tion of >in all-integer 

LP technique.  (The logic behind the all-integei part oi the 

problem will be presented later.)  Thus, in Renders, it is 

necessary to have one code for solving all-integ r LP problems 

and another code for solving non-integer LP problems. 

After a review of Benders' procedure, it was decided to 

conduct some experimentation with it.  This experimentation 

used an AEM LP for the non-integer code and BBMIP and RIP for 

two separate ways to solve the a 11-integer problems.  It was 

felt that such experimentation could be conducted on problems 

which could be solved also by BBMIP alone, when used in its 

mixed integer form.  The part it played in the Renders' 

procedure was only in an all-integer form. 

By doing this experimentation, it was felt possible to 

at least compare very directly three candidate solution 

approaches to MIP in AEM.  Namely, RBMTP in mixed-integer 

form, the AEM LP matched up with BRMIP in all-integer form, 

and the AEM LP matched up with RIP for the a 11-integer code. 

/■■I'-*/--« '.V.^.'.'.'.VAA.-,.; -„ ..'* '. '. ,'. 'T \   '■ r I'LU^.'LI'JI 
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In summary, the experimentation revealed that: 

1) The AEM LP/RIP combination was better than the AEM 

LP/BBMIP combination. 

2) The AEM LP/RIP combination produced answers at least 

as fast as pure BBMIP, without the numerical accuracy 

limitations. 

3) The AEM LP/RTP approach seemed most compatible with 

the structure of AEM. 

After the experimentation was completed, an analysis was made 

of the pro and con arguments for each approach.  The;, result 

of that analysis is contained in the next secLion. 

4.  Final Choice of the MIP Approach 

After all of the experimentation and analyses were complete, 

it was necessary to make a final decision about which technique 

to implement.  The factors mainly involved in that decision were 

as follows: 

1) Which approach is most compatible with AEM structure? 

2) How do storage requirements and computer running time 

compare? 

3) Is any information obtained if total convergence to 

optimality does not occur? 

It turned out that Benders' procedure using RIP was the winner 

in all of these respects.  The basic facts are worth presenting 

since they reveal some of the subtleties of the decision. 

j^^^^^^ y.v 



IV-L- 14 

r j 

a .  AKM j i 1 i i i tv 

On» -  ■-   t!  key   aspect: LO AEM weapon a llocati on: is that 

a column-genera( ion procouur* Ls necessary,  h Is simply not 

possibL i  place into nu IT all the possible strategies 

for each target,  i'his column generation uses the LP multi- 

pliers to converge on better, and better LP strategies until 

optima lity is reached. 

A main problem will; a tt-<  M1P code, like BBMIP, is that 

i    : i ... v which contains entries from an Integer variable 

column produces a multiplier of some uncertain characteristics, 

Some research into the impact of integer variables or, the LP 

multipliers has been done but no clear position on their 

behavior could be uncovered.  It seems that totally new 

theories about the meaning of multipliers in MIP codes are 

being dev Loped. 

Since column generation is a necessity in AEM, and the 

multiplier.- form a crucial part in that generation, it was 

felt that use of BBMIP presented some possibilities for future 

problems.  Those  ossibilities do not exist when using an 

AEM LP/RIP combination since the integer variables are all 

specifitu during the time column generation is being performed. 

Thus, it has a distinct advantage. 

Another compatibility issue is in favor of AEM L-P/RIP 

because of Lhe structure of AEM.  Basically, most AEM problems 

do not need  MIP.  Therefore, any problem which doesn't need 
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MIP can simply be solved by use of the standard AEM LP and 

RIP would never be entered.  Thus, no conflict would occur. 

Meanwhile, use of BBMIP would possibly involve use of it 

in a non-integer form.  Tn that form, it did not appear to be 

as efficient as the standard AEM LP. 

Other structure aspects to the problem also seemed to De 

in favor of AEM LP/RIP. 

b. Storage Requirements and Panning Time 

In th-" s area the storage requirements are all in favor 

of a Benders' approach.  Since, two separated and smaller 

problems are scIved sequentially the storage necessary at any 

one time is less than for an all-at-once MIP code. 

Running time indications were that on smaller problems 

BBMIF and Benders were about the same.  Indications were that 

Benders could be sped up but there was no indication that a 

large speed advantage was guaranteed. 

All in all, the Benders' approach again seemed best by 

these measures of effectiveness. 

c. lformation On Non-Optimal Stops 

A key issue in any allocation procedure is the information 

content in any case Wiere the problem is stopped before final 

optimality.  It is always nice to have a feasible answer on 

hand even if it is non-or 'ma1. 

In the case of Benders, '' ire always exists a feasible 

answer plus an estimate of the maximum possible level of non- 

optima lity.  Thus, it presents nn ideal situation. 
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BRMTP, however, might, not have a feasiwl< solution at the 

stopping point,  h i i^uls to not work direct Ly fr<"»m feasihle- 

Lo-feasii Le so"iai ...•*..  Lbus, Lt appears i:hat Headers i.s a^ain 

the best approach. 

'),  r.mp lernen tat Ion of F ende rs ' Procedure 

We will now present some, details of the Benders' procedure 

implementation.  The presentation will not be involved with 

theoretical proofs of convergence, etc., since such are avail- 

able in other references.  Instead, Lhe emphasis will be upon 

physical understanding of the procedure as it applies to AEM. 

'i •  Basic benders 

In order to grasp the basic Benders' decomposition pro- 

cedure, consider the following matrix notation description 

of an LP problem: 

maximize    C'X 4- D'Y (L-3) 

subject to  AX + BY i  E (L-4) 

X - 0, 1  Y £ 0 (L-5) 

i'he notation is as follows: 

A  = MxN matrix 

M  - number of constraints 

W  -  number of 0, 1 variables 

B  = MxK matrix 

r  = number of non-Lntep^r variables 

E   = M vector 

C'  =  N vector, transposed 

^>^>:ö:->>'l>;.--,,i v-v-^^v^v.-:-/-.-/--. ..•■: 
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D'  = r vector, transposed 

X  = the 0, 1 variables 

Y  = the non-integer variables 

In terms of Figure L-1, the above notation is equivalent to: 

m  = 13, n = 3, r = 12 

A  = the entries in the first three columns, excluding 

the top row 

B  = the entries in the last twelve columns, excluding 

the top row 

E  =  the right-hand side values 

C'  = the entries in the top row for the first three 

columns 

D'  = the entries in the top row for the last twelve 

columns 

The basic Benders' procedure starts out as follows.  First, 

select a candidate specification of all the X variables.  Gall 

that candidate the vector X . Once each of those variables are 

specified the C'X and AX parts of the LP problem become con- 

stants.  Therefore, the above problem turns into a subproblem. 

maximize      D'Y (L-6) 

subject to    BY 6 E    -     AX° (L-7) 

This new problem has no integral variables and it can be 

solved by any standard LP code. 

Now, the crucial question becomes - is there a better 

specification of the X variables that should be tried? 
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• ■ ndt i ' '    « I imi in; ;^   . ■ .■ i: ■ i \   Mi ci   cand i dai v 

>y    mn I \ ■■        .-"    i .:    .    ; :m;    i i »>iv   ; l>.    sc, uit j or   t u   I IK   ahi'vi    1,1' 

problem ;;nec i i ic,  ' : ■-'.    I !•■•    invcedure  calla-    hn    forming   the 

to! low I."- ' qu   I    on 

Z £   ■ ' ; ;'       C'X    -   < AX)   IJ° (K-H) 

•.;■! M  vector  of multipliers   obtained   from 

the   so lilt ion   of   the   reduced   LP  prob lern 

estimated maximum  possible   pay-off   to 

the   original   MTP  problem 

By Bendei.-'   theory,   the   pay-off  to  the original  MIP problem 

must   satisfy   the  above   relationship. 

It   is   very   Interesting  to consider what   the  right-side 

of   (L-8)   re   i1y   amounts   to.      form by   term  the   tight-side 

bec< ■' - ■    ; ;.ow Lng: 

h    i the  estimated utility  of   the   resources   in  the 

MIP  problem,   as  measured  by   the  original RHS, 

E,   and  the marginal utility estimates,   U  , 

ll.   i)       ! •-       i. P. 

C'X the  direct   pay-off   contributions   >f  the 

integer  v« r i ibl e.s 

(AX) : Ü J tiie  estimated  change   in  pay-off  due   to  speci- 

tic ttion  oi   any   individual   LntegcJ    /ariable 

Lt->  0,   or      -      L'II is  esi ima ! ed   chang<    bei ag a 

n    •     '    ..   -ntri ea-   in   eacl    of   '. he   co Uimns 

of   A  and   the marginal   utility  estimates,   II 

■ ://<.y///-v«"...'VV«. -/v.■/%_-."/■«■• '.-v-v-", .••/«v»/••. •-•, wv ■.•;-.-..- .-.•.■..". -/••>. 
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:W 

»p»f 

These terms are most easily grasped if a simple example 

is carried out to some extent,  r'or the tableau of Figure 

L-l, assume that the original specification of X was X 

[O, 1, l] .  Then, for purposes of our example, assume that: 

the output LP multipliers were as follows:  U  =  [~. 5, .3, 

1.1, 1.7, 10., 4., 3., 2., 0., 14., 25., 0., 0.J   Using these 

values and the RHS of Figure L-l results in: 

E'U°    =  ,5 W1 + .3 W2 + 1.1 W3 + 17. T1  + 10. T2 

+ 4. T0 + 3. T. + 2. Tc + 14. B 3      4      5 

;v; G'x    =   o 

(AX)'U° - (14 R(l) - 125.25) X±  + 14 R(2) X2 

+ 14 R(3) X3 

Now, assuming that values exist for the W, T, B and R variables, 

it can be seen that equation (L-8) really turns out to be of 

the equivalent grouped form. 

Z < BCn + BC1 X- + BC0 X0 + BC_ X_ (L-9) 
U    11    11 3 3 

where:  BC.  ~ constants as found by the definitions 
l 

for the components of (L-8) 

Essentially, equation (L-9) is an estimate of the maximum 

possible MIP pay-off as a function of the specification of the 

0, 1 variables.  The coefficients for each variable are simply 

computed from the LP output on the basis of the resource drain, 

or contribution, if a specific variable was set to a value 

and if the current constraint marginal utilities are known 

from the LP. 

*" -rY -" r    ~r 
•'■\-'>\0/%>>/V''>^v"--',-/'-^^^'>v^^v /->V->>>>",'••.••'.«-•. -V- CLLLL V- L V -•' V'. '. v'.'i '»V» 
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A remarkable thins about equation (L-9) u that it is the 

exact equivalent el the procedure out lined in the non- over- 

Lapping island de tense procedure, equations (M-8; and (M-9). 

[n fact that whole procedure is equivalent to a modified 

Benders. 

Since, it Is the objective to make the MIP pay-off maximized, 

it is clear that any 0, 1 variable for which BC is positive 

should be specified as 1.  If the BC is - 0, the specification 

should equal 0.  Thus, computation of (L-9) will indicate 

the next 0, 1 variable specification to try and the non-integer 

LP can be solved again. 

Once the new LP problem has been solved again, a new rela- 

tionship like (L-9) can be formed. This one will be different 

from the previous one because the U values will have changed. 

Benders' procedure now utilizes both of these generated 

relationships to develop a new candidate specification for X. 

The general procedure becomes: 

maximize  Z 

subject to 

Z 6:   BCQ  +  BC^ X1  +  BC' X   V     BC^ X3 

7,   1 BCQ + BC^ X1  + BC' X2  f  RC^ X3 

Z S BCQ  +  BCL Xi    +  BC2 X  +  BC3 X 

^^v>>^^:^>l'^<^^^^\'^v■'-/^«l-^^^:^':^^^/v\v/>■■^ ■. iv>/>/>/.--wi<v\yx--> v»>v»'. -».->.-- .--v v-i-^:_.-,^ -v. 
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tr? 

where:  BC  = the Benders' coefficients generated after 

X specification number i 

X.  =  0, 1 

As successive candidate X specifications are tried, new 

constraints are added to this problem.  This maximize Z problem 

is an a 11-integer problem in the sense that the X variables 

are all integral.  Therefore, it requires some sort of integer 

programming code to solve it. 

The total Benders' proceudre can be summarized as follows: 

Step 1:  Choose a candidate specification for the integer 

variables. 

Step 2:  Solve the non-integer LP problem on the basis 

of the candidate A specification. 

Step 3:  Extract the multipliers from the LP solution 

of Step 2. 

Step 4:  Form an auxiliary constraint of the (L-9) variety. 

Step 5:  Solve the integer LP problem formed from all 

the auxiliary constraints generated to date. 

Step 6:  Return to Step 2 with the new specification., 

The whole procedure can terminate by use of bounding in- 

formation generated as this iterative sequence is followed. 

First, the solutj.ni of each LP is a feasible solution to the 

MIP problem.  Thus, the highest pay-off LP solution in Lhe sequence 

must be a lower bound on the MIP solution.  Second, the Z 

values obtained in   the solution of the integer program of 

fe>>>;^vv\'-v^;-y:> •>:.-■:-• > > .- V - V <\-', •" •'.'■'. <*. 



•\   IV-L-22 

Step Si., in,d t o 1 he ! i u  Ml P so hi! i on .  When 

the uppei -jnd lower bounds are ncceptab ly close, I lie procedure 

can he Lenn Limited . 

b-  Benders Tn AHM 

The items necessary lor Implementation of the basic 

Benders' procedure in AKM ore rather clear«  The whole struc- 

ture of AKM revolves around an LP, so that structure will per- 

form the target attack optimization once a specification is 

set for the Integer variables.  The major new item is an all- 

integer cud:' necessary for the Z maximization necessary each 

time a new specification is generated. 

In the current mode of AKM, this a 11-integer work is per- 

formed by a modified version of RI?.  Basically, KIP was taken 

and reduced to its hare bones form, without the LP surrogate 

constraint  ption.  This mouitied RIP was then added to in 

order to make it interface with the main AEM structure.  A 

special subroutine, called BENDER, was written to compute the 

Bender equation coefficients and to feed RIP. 

Since RIP is a basic branch and bound code, it is not 

deemed necessary to describe, its workings in detail.  The 

description :."t  RIP provided in Reference 17 should be refer- 

enced if the reader de>ires to understand the approach of 

branch and bound.  For those unfamiliar with the. notion of 

branch and bound, toe following very brief resume is provided. 
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If one has an integer problem wiLli N (0,1) variables, 

N N 
there are 2  possible solutions.  Since 2  is finite, it is 

obvious that one could enumerate all of the solutions, and 

thus determine the optimal one for a problem at hand.  Branch 

and bound is simply an efficient way to conduct such an 

enumeration through implicit procedures. 

Say that one has a partial solution, i_hat is, some number, 

M of the variables have been "necified.  Then, depending upon 

the problem structure, it is often possible to devise bounding 

arguments which indicate whether any complete specification 

of that partial solution could produce more pay-off than some 

earlier discovered feasible solution.  If the bounding argu- 

ment indicates that no completion of the partial solution 

could lead to an improvement, then by implication a whole 

N 
sub-set of the 2  solutions will have been enumerated.  Then 

a different set of solutions can proceed to be evaluated. 

So, branch and bound is a procedure for evaluation of all 

N 
2  solutions either explicitly, or more often implicitly. 

The whole procedure amounts to a bookkeeping task and being 

clever in devising tight bounding arguments. 

One slight deviation away from classical Penders was taken 

in AEM after some experimentation with the procedure.  This 

deviation essentially can be considered as a two-phase Benders, 

where phase 1 is a procedure used to generate good initial 

sets of specifications of X.  The two-phases idea came about 

as follows. 
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M o^i'  chooses some inifi.il guess for in X specificat ion, 

it is most often tn   ii.il the Benders' procedure then pro- 

duce;- .1 new ■,. ■■■ -J Leb is .. direel complement of 

the previous one.  That is, anv variable which had value 1. 

will now he set at 0., and v^cc.  versa.  This general kind of 

behavior can continue for several candidate specifications 

until enough Benders' equations exist to stabilize the whole 

procedure to the point where less dramatic changes in speci- 

fica t i ons a re ob ta ined. 

The reason for this is that the Benders' equations are 

linear estimates of very nun- linear behavior and it requires 

a number of . uc'n equations before the non-linear aspects can 

be deduced. 

Knowing that the first few specifications are apt to lead 

to poo\ long-range estimates, it was decided that it would be 

wortn-while to have some procedure for making Benders change 

specifications more slowly.  This idea is directly comparable 

to the idea of - don't change more than one island at a time 

in the subtractive island procedure. 

Such a "slow-down" control over Benders could be imple- 

mented a number of different ways.  However, the current 

approach involve." utilization of the LP structure of Figure 

L-I iii a special way.  Looking hack at that figure, note 

that in the RM) decision columns there is a pay-off indicated. 

Also, note the three extra integer variable limit constraints 

at the bottom or the LP.  (We have ignored those rows up to 

now.) 

W 

A-A'k V 1V]V ■"•V.'.V J*. *Q. V. , \'\  +- I •Jf.L'i .'.',lfW.J.'«>' _^Ji_S_l r-'y* ■>-''»_•■ JvA^_l*J^1*«e'.V.-'«-*VVn..-'^-1''. "Vj\ -'..V. iLn "\ -.'.." A.V. r\    •'. O V '■■' 
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Now, suppose that tb«a first three pay-off row entries 

had values as follows: 

If X. = 0; pay-off - + M where M is an arbitrary con- 

stant 

If X. = 1; pay-off = - M 

Then, solve such an LP problem with the three bottom rows 

being i    :ei and using the standard LP code.  In the solu- 

tion that would be obtained, it will have occurred that X. 
l 

would = 0 if + M was a very large number and if it was the 

column pay-off and X. = 1 if -M had been the pay-off.  The 

so-called integer variable limit constraints serve the pur- 

pose of limiting the X. values to 5 1. 

This technique is simply a way to solve the LP for some 

determined specification of X without doing the standard 

Benders' modification of the RHS as called for in equation 

(L-7),  The + M entries guarantee that the desired values for 

X. will occur, 
l 

Suppose that the X specification was only a guess.  It 

seems clear that in such a circumstance it might be worth- 

while to encourage the LP tc satisfy the specification with- 

out demanding satisfaction.  For example, an L° where M = 10 

might indicate a preference for the LP to choose X. as de- 

sired, but it certainly would not preclude a different choice. 

This concept of encouraged specifications is the key of 

phase 1 of the AEM Benders' procedure.  During phase 1 choices 

are- made by RIP for the supposed next best choice for an X 

 _  - -.' •- */ ■-' ■- ■-" - • -.*«.•''••■»■*«. <*- •* •'»•".'•*■.' 
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specific M i« u.      riu s cliuicc is then used to sei up a special 

version nt the hP, where selected values ol M are used to 

encourage the LP I i meet. in. specification.  However, ii (he 

LP decides thai (lie provided specification is very poor, it 

will overrule Lhe [  M indicators and pick :i different speci- 

fication . 

If the encouraged specification is overruled, it usually 

happen.- that a fractional specification occurs.  That is, 

u — X. - I.  This is no catastrophe since the resultant Benders' 
l 

equa l ion is .still Legi r ima (e . 

The values for M are currently selected by a heuristic 

rule based >n an estimate o[.   the penalty accepted if the en- 

couraged specification is not met.  For example, if RIP ii, 

dicai.es that X. r 1 is correct, an estimate is made for the 

pena It} I t «:   • f  ^ 0.  This estimated penalty is then used as the 

value of M for that column in the LP.  A similar logic works 

for X. - n. 
i 

After some number of passes with these encouraged sets of 

specifications, '■   convergence on some best set occurs.  At 

that time the freedom of the i,P in overruling the specifica- 

tion is removed and phase 2 is entered.  In this phase 

true Benders is followed until optimality is reached. 

Use of this two-phase procedure has been found to be less 

erratic in behavior than pure Benders.  A behavior pattern 

that is not removed, however, is the. following.  Quite often 

the optimal inswer is found some significant amount of time 

S^^^j^MJL^AM^j^r^^C^^T^L'r^r^^. **• ^-> - -.j. r.i.i* ■ 



IV-L-27 

before the Benders' hound indicates optimal! ty.  In such c. 

caso, it would be valid to terminn  early, except that no 

early termination rules have vet been found. 

6 •  Oilier MIT Applications 

AL this time (June 1973) this MIP capability has been utilized 

in several ways besides the R&D budget situation.  These other 

areas are as follows: 

1) Use of Benders in the ABM island defense situation. 

2) Creation o(  bomber defense districts which are separate 

and unirpie from the ABM defenses. 

3) Use of either-or types of hedging conditions. 

4) Modelling of two-is land random defense situation. 

Beyond these, applications, there are undoubtedly countless 

others.  The practicality of others remains to be seen until more 

computational experience occurs with current and planned capabilities, 

^4tfiiih* JV Ja. ^*.^^Lftjt.\*. '^.'J?.\\~*?~ *^ +~ WY.jfY ,',.■» ^ a,1!*.*. n.,-'s ^.V?« _-. "^ -L^'JL^JA 
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M.   SUBTRACTIVE DEFENSES 

I.  General 

Among the simpler approaches t< defence ra deling is the assump- 

tion that a "price of admission" is charged the offense prior to Its 

destruction lay-down. For instance, with D perfect defenders, the 

first D reliable objects presented t' the defenses are negated.  'This, 

assumption will be called subtractive defenses here since it deletes 

some of the arsenal but does not affect the optimal lay-down procedure 

for the remaining weapons. 

The assumption of prior action is implicit in that the offense 

nay choose the weapon type(s) deleted.  This generally allows a 

higher damage achieved than If the defense could make the choice 

or even if random selection were adopted.  Figure M-l shows a 

hypothetical total damage function for offense choice deletion, 

defense choice deletion (type known by offense), and random deletion. 

Offense versus defense choice deletion is primarily a function of 

weapon type efficiency after defense negation. Random deletion is 

illustrated lower since arrival of any weapon to any target is now 

more uncertain, hence modifying the entire allocation process. 

OFFENSE WEAPON CHOICE DAMAGE 
DEFENSE WEAPON CHOICE 

RANDOM DELETION 

PRICE OF ADMISSION ATTACK LEVEL 

FIGURE M-l COMPARISON OF SUBTRACTIVE AND PERFECT RANDOM DEFENSES 

üj&ää&iMtä^^ 



.•!' ' -i ■.■'..■ ■ ■• ' !     na i .      ' iii r   i-  :n M-. . 

- •.!..:• : • an :<, ■' '   ■, ■        * he defence 

■■■''.•:' •• < -'•■ ■ ' • :-:   '   •  ■ ' •   le:-tr ' • j ■ n  t' 

!elenses ( : :' the :'prio<  '' ndmi:   n" ■"•an !•; Pad be paid). 

M n ■■ vt'c, i:!i::,vf
ri:    i ■ "rued d .e l< detV.se Leakage with an attack 

': ■:■'. i less t • ■ ! e price  ;' admin.;.! i . 

DAMA !E 
MOTIVE DOCTRINE 

-^-~ RANDOM DOCTRINE 

PRICE  OF ADMISSION   X ATTACK LEVEL 

FIGURE M-s COMPARISON ÜF SUBTRACTIVE AND IMPERFECT RANDOM DEFENSES 

We have elected t< model this defense/offense action as if the 

< ffense attempted defense destructi« n ir the first wave of an attack. 

This inte^pretat i< n i. compHtib! o v'Vs the basic assumption of sub- 

tractive deferses where the offense chooses the weapon type and, if 

:iie?tv.sful . sufft;i.-3 n<" consequent defensive penalties in subsequent 

•• |] eati :.. (a/-r,a Lr.rt 'eunterf roe and/ r ceuntervalue targets), 

i)< fenr;.i.vfj in. tal Lati ns are described by number, hardness, area, 

number of defenders per installation and their capabilities against each 

possible, attacker.  A price of admission is computed by the subtractive 

model Cor each attacker.  This price is then equated to the proper 

>V"MA*^^V^X^^ 
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kill function translation w.i i\\  near perfect Kill for the next 

weapon (translation plus one). The assignment of a strict equality 

on the target constraint in the LP assures the price 

will be paid, if possible.  Since J he remaining weapons will be 

optimally allocated against real targets and the defenses are assumed 

destroyed (99»99$ assumed), the proper lambdas are produced.  In 

this way, the process selects by iteration the optimal way (lor 

the offense) to pay for admission. 

Of major consideration to this model is the ability to assess 

quantitatively the penalty for poor judgment.  In the case of an 

overestimate of the price of admission, no pragmatic harm is done, 

the penalty being the damage that could have been done if the 

price had been correctly estimated.  However, when the price has 

nut been fully paid, the penalties are more exacting.  We have 

assumed that regardless of the rumber of installations, or their 

true content, all surviving defenders may be used as whole country, 

randomly acting interceptors.  This view is admittedly defense 

optimistic in light of damage assessment capabilities (destroyed 

radar faces,, failures of command and control, etc.) which precludes 

some areas from defensive protection even if whole nation coverage 

were attained prior to the attack.  It should be noted that there 

is no option on defense doctrine in this case. Even if the original 

defenses were more sophisticated (e.g., precommitted or preferential), 

the residual defense acts randomly. 

P The Subtract;.ve Model 

rpl'e price of admission is ccmputed as the more economical of 

interceptor ex:.;j':0 i n ('.   )  r install?! i n kill thr? ugh leakage 
A 

^%TwrV-.«.*•''••.'■".'-.'^'^'^^^^^ji^^^^^'^^^^'-'^'^yS-'.'-rS^.'''^ »\dkisy,-»vy V V V-   •' V "■• '-•\""*.*'v--\^'- •" -iJ! 



(NTr).     A! 1   inst -illai :   n '   'ir«    •• ■     r:i,  i 

hardness,   ar^a,   and  number }••■■..    : •;•   ,     .   •. 

computationn]   sequence   tVr  < a«'*,   a'!      ■■■       ."< ; 

prec] uded   fr m   tiii;    uts aek ). 

The  number     t1 attackers  ■ ■!''   type       rtq   !r»\i •.?■ 

defence   la: 

NY      =     S/   (Nn  -P.     '  R,   •   0.) v. 
xi L)        Ai ! 

Where:  S   = number of defenders per ins? a.l latiun 

Nyj  = firing doctrine ■ f the defense ;-.:/., 

tw< at each bje ,:.} 

P   - Probability of acquisi.ti i   ' an Luc min.g 
Ai 

object of  type L by the defense (i.e., 

firing "an be accomplished) 

h^ - reliability  f weapon kype L 

0. = number of objects observed :•■;    the defense 

for each incoming warhead ■ f type i 

:. = 1* (1 - PJ * d 
i i)    i 

P = probability  f determining that a 

de>: y ' ;• a dec« y 

d. = number ' f lee ys per war :nd 

It shi uld be noted that as the probability  •' aequ ieit j :, h< 

comes i wer, m re attackers are required f r exar> .. 

wea] ns are required '  pr vide a  ' : "i ':**■:" ve- -• ■• 

defender:-.  Therefore, a second  rice \ • m:»i '• ■■:   i •- a  w 

for the flense t' canitaliza •-n   tai  '■■•::.'. ■■. 

■v->^\a'\pZQ,Qr>.P.QvJW^«^ 
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The ability to penetrate the defense (P ) 1:; computed as the 

expected value with no assumed degradation • f the dtx'ense until a 

sufficient confidence of installation kill is achieved, i.e.: 

Pp = 1 - PA + PA (1 - P ) (M-2) 

Where:  PT =  single interceptor probability rf kill 

This probability is treated an a reliability modifier as dis- 

cussed in Section IV-B-2 to compute a probability of installation 

kill.  The price of admission via installation kill (N ) is then 
K 

computed as: 

NK = In (1 - CD) / In (1 - P) - T+l (M-3) 

Where:  GV = the desired confidence of defense kill (input) 

P and T are probability of installation kill 

descriptors.  (They are functions of the defense 

installation hardness, area and defense level.) 

The allowed strategy (N ) is then found: 
r 

N  = MIN { N , N } (M-1+) 



. :. '  , : v  ••..:•       '    : >-•    •   trip .; ■ »i.       ";. i r 

..,.....•      ,   , p .        • .• •   .   *        \,. • , >rm •    ,     | . , 

i'    ' :   :■ r      :'' r< -a   •: ■ •      :        !a i    ,\pav< 

£     .   • •   M,   •   :.   •  o.   • (M-5) 

.v.-;:-" :      "•'. :•     :'   •    trie:     - :. ' .^      t r*a1 eg;    \"      used 

I    '■■>>.■       "  •;.'    unptj at   rema r ti; rig   Lnutallat ion capa- 

bil. it\    is   rr-'Mv   \r  i<  rti   sal   t»    probability     t*  survival   (DPS) 

iiipiitt-u   '':• i;i  ■..■•      '   r ^ and  resul tant   Lnsi.all.ati   n  ¥ and 

parumel or:'),   su ".   t iia I : 

: et'enders    i   ■   : >UriE  = + (S I.   •    DPS) (M-6) 

and 

.:' 

KPEK --   S - DUSE 

When:  RDEF --=  number of random area defenders to be used 

(uearest integer). 

exported number  t' defenders n t used, and 

surv i v \ \u'   the F Lrst wave 

'.'  =   number  f initial defenders per Lnstalla- 

' : 'if ;.m< ■:■ n imb< T > f i nstaJ la i ■ i ns 

3.   f.'' m:. ( • i' : :.. 

■'.' ::i de! i. verv . traL^M.i rward .vHnin f,:;e r'ramewf V'A  < .' tne 

mp'.; .'.    -/ever, r: .' ne  '' infea: ibili?,;. :::■:,. ■■/'.' where aJ 

..■■• •:: ;..' .■■»•■  ■.■■• i l  :<ar* '. -. 11.; ; >a / '.\e :!•'•••  '' a rim ;. . I a.  [f the 
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defenses are Imperfect, another doctrine should be assumed« However, 

if the defenses are perfect, the attack should not have heen 

allowed.  There is no internal control of this region.  Since the 

contingencies are case sensitive, and control of the model is 

absolute by input, the analyst could best decide upon  the 

proper corrective action to be taken. The most dangerous cir- 

cumstance is in a three-cycle game (Jefensive targets only on  the 

third cycle) when the weapons used against defenses should have 

been used against force targets (cycle one as opposed to cycle 

three"   It is much more difficult to detect when random defenses 

should have been allowed, even though the price of admission has 

been paid.  If the defenses are imperfect and the arsenal not 

allocated against defences Is small, an additional run assuming 

random defenses should be made for comparison. The analyst must 

be wary of all case:; where defense dominance can occur. 

The choice of required, kill confidence must be less than 

one but may be arbitrarily close to one.  If mis-estimates are to 

be assessed during the case, random defenders will be generated 

even if the desired kill was achieved.  This is important since 

the random defenders are less valuable as the number increases. 

Therefore, a slight residual may cause a large variation in the 

answero The selection of perfect defenders assures exhaustion 

will be used, producing no random defenders if pertinent errors 

are not incurred. 

c\''%,*v^-.^,!--^^.'"'.""^V/\"'-,'lv\" 



Kxtgnsloii  c» Non-Over lappJLitg Is la mis 

a .   The basic Matju-tmajties 

The previous discussion Implied that there was one group ot 

defense Installations which could detenu any target In the whole 

nation.  This assumption of national coverage can be by passed 

if one assumes, instead, that the defenders have limited range 

and that all targets are divided into distinct defended islands, 

i.e.i each target in an island can be defended only by the de- 

fenders associated with that island.  In other words, the inter- 

ceptor defense zones do not overlap each other and a target is 

a member of oily one island. 

Given this basic assumption of non-over lap, the process for 

allocating weapons to a total target set can operate as follows. 

First, recognize that the problem for the attacker is to 

decide which defended islands to attack and which islands to 

avoid.  Given that the attacker selects a given combination of 

inlands to attack, he must pay the subtractive defense price for 

each of the islands in the attack, but he ignores all defenses 

and targets in the unattacked islands. 

The attackers' basic, decision therefore is to decide whether 

or not the option of attacking the targets in a specific island 

are worth the subtractive price of admission to that island. 

This decision is obviously a function of the value and vulner- 

ability of the targets in the island and the defense Luvel it 

the island. 

^'A'A!.'. -•-"^ '-* '-'-• "-• •^"•V:^':^1.^A^J-:~I.:^.:.A:.?■■•_;.-_* -l^».VJW A'AAJ 
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Fortunately, the AEM has sufficient 'ata for the attacker to 

converge on the optimum decision for the total island attack 

grouping.  This data is used in an iterative process which will 

now be described.  The ii-erative process exploits the fact that 

once a given combination of islands is chosen f jr attack the 

targets from those islands can be lumped together and the non 

island subtractive model described in Sections (1) to (3) will 

apply. 

The proce s is as follows: 

Step 1 - Assume that the optimal answer is to attack some 

combination of islands.  Accordingly, allocate the total attack 

so as to pay the entry price on all those islands and to maximize 

• the total damage on the combined target set.  Do not let the 

attack go against targets in the islands which are not being 

attacked.  This being accomplished simply by not listing those 

targets in the linear program. 

Step 2 - Retrieve the results of the linear program used in 

accomplishing the above allocation.  (See Section IV.A.)  These 

results include Lagrange multipliers for each constraint involved 

in the L.P. for the allocation.  Specifically, these multipliers 

indicate how i.uich value would  e lost (gained) if a single target 

of each type was removed from (added to) the target set. 

Step 3 - Compute the estimated net benefit for including 

each island in the attackers' option.  This benefit being com- 

  puted as follows: 

.»ii.t.>k'..-.>;.ii.',>>^; . n - - . • ...» » -. • . •-. .'.-..* fjg ■>. ■.^.-.^•— | ..... . . M -  ./- i.*t .mx.M.T M. \ ^L.^^-^--* -.-■>-_. .-.^ *.m. •».-»•..•,.:■>•.«• ■ 
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NB,.  =  N<;   - NPS (M.8) 

where: 

NR     ner benefit If Island S is included in the 

attackers' list. 

NG  -  Expected gain it all targets in tsLand S 

are included In the attackers' list. 

NP     Expected price which must be paid in 

ordei- to destroy the sub tractive de- 

fenders at island S. 

Computing each term in (M-8) is possible by use of the L.P. by- 

products as follows: 

N»S -    11   ™J8  • >• j -  <Vd - V ™ds       (M-9) 
j 

where: 

TN,   = Number of targets of class j in island S. js o J 

TN,   = Number of defense installations in island S. 
ds 

V,   = Value placed on each defense installation. 

A.    = Target multiplier from the L.P., which 

equals the expected gain if the attacker 

had one more target of type j to attack. 

A       Defense installation multiplier from the 

L.P. 

The first component of equation (M-9) sums up the expected 

gain in target damage if the attacker could attack the targets 

in island S.  The second component sums up the expected loss if 

m? 
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weapons which currently attack other targets must be diverted to 

attack the defenses in island S. 

Step 4 - Determine if the net benefit was positive for all 

islands being attacked in Step 1 and negative for all islands 

not attacked in Step 1.  If so, the assumption in Step 1 

was correct and the allocation is at least at a local optimum. 

If not, proceed to Step 5. 

Step 5 - Form a new island attack combination by use 

of the Benders procedure available in AEM.  (See Chapter 

IV-L). This procedure joins the latest set of island net 

benefits to all previous net benefit sets and util ^s an 

all-integer cod^ to choose the best possible specificai_j.on 

of which islands to attack. 

Step 6 - If this new island attack combination has never 

been considered before}   return to Step 1 and start over with 

this new combination.  If it has been considered before an 

optimal solution is guaranteed. 

The basic advantage of this process is that a requirement 

for large storage space in the allocation process is by-passed 

by going to the iterative procedure. 

\ä&£&^^ 
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For example, ii one wanted to work .1 . ase w* th _'> tar« ■■■( 

classes and fifteen islands, an alternate approach would he Lo 

create 2") X lb  - }7r> equivalent rarget classes and thus 

represent the fact that targets of a class arc still differ- 

entiated by their island identifier. 

This iterative process by-passes such :i procedure, 

which would require excessive computer storage, in lavor oi 

making several iterations through a problem which always has 

twenty-five target classes.  The main idea is that a procedure 

for finding the optimal combination of islands to lump togethei 

into one equivalent target set can be faster than solving an 

enormous one-step problem. 

The interface with the Headers procedure as included 

in step 5 is very straightforward.  In essence, the NB< 

i 
values computed by equation M-9 are equivalent to the BC 

coefficients utilized in equation (L-9) and the maximization 

problem on page IV-L-20.  The step-wise procedure on page 

IV-L-21 is the exact equivalent of the 6 step procedure just 

described here.  Therefore, the mathematical implementation 

of this procedure is described In Chapter IV-L If the reader 

io  IHLCLUOLLU  ill  1 L. 

b.  The Impact of Misestimates 

One of the key attributes of AJ'M is Lts ability to analyze 

V** 

^!A1JI^ÄLJ '"-I**.* W."-*** *".*''*+  -_«%„-i' -^  •-**: ^*^^"*Jm^J^^lJ»<^^%JN^^^^^^-»')^J^AJa'•'->» "V-M-'-I»..!^." ■-A.'-I^.V 



IV-M-13 

the impact of misestimates in the input parameters.  In this non- 

overlapping island option, there are some special aspects to 

such analyses which will now be discussed. 

If one desires to analyze misestimates which apply to the 

island configurations, there are four areas which are most 

critical.  These are rcisestimat s  of: 

1) Defense performance 

2) Defense interceptor stockpile 

3) Interceptor range 

4) Interceptor farm location 

Type 1 and 2 misestimates have a similar impact in that they 

affect the accomplishment of killing the subtractive defense. 

For example, if one underestimates the level of defenae, or the 

performance, the net effect is that the required defense price 

is not paid and the attack on the non-defense targets is vulner- 

able to the defense that was not destroyed. 

However, if one overestimates the defense level, or perform- 

ance, the impact is that more than enough weapons wei e used on 

the defense.  Thus, unnecessary wastage of weapons occurred. 

In the island defense case, one could misestimate the de- 

fense price by amounts that vary from island to island. Thus, 

in actuality, there could be varying levels of misestimate 

penalty from island to island. 

Such an island-dependent misestimate penalty is quite diffi- 

cult to implement in AEM, however.  The reason is that AEM lumps 

together all targets into classes when the allocation process 
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begins.     (Up  to   th.it   Linie,   the   targets  .-ire  classified   island-by- 

Island.)     Thus,   i  ..     :1location  ends   up by   saying how many   targets 

In   ,1  class   to bul    the   island  association   is   Lost . 

h        example,   say   that   Islands   3,   5   and   /  were   b   f ii.g   attacked 

and   thell    target   (lass  configuration  was   thoughl    to  be: 

Nui II her   ot   Target a   By  Class   By   I sla nd 

Island Glass =;__J__        2 3 A _         Defenses 

3 5 18 0 17 10 

S 3 7 12 10 0 

7 2 3 8 2 8 

Total 10   28   20   29 18 

AEM would choose an optimal allocation for the total targets of 

all classes (and the defense targets) in all islands.  For 

example, such an allocation might say to attack eight of the 

defense targets by one type of strategy, seven by another 

strategy and a different attack on the remaining three. 

The key point is that the island identifier is not associ- 

ated with these strategies.  Thus, there is no information as to 

which strategies apply to the targets in any given island. 

One could make some nominal assumptions that would arbitrar- 

ily proportion out the strategies to the specific Islands.  How- 

ever, the programming required to do this and to complete the 

island-by   7md misestimate impact was not felt to be warranted 

at this time.  Such programming is feasible, however. 

instead, AEM currently approximates the misestimated defense 



IV-M-15 

level by aggregating all defense level misestimates into one 

total figure for all islands attacked and then assumes that the 

surviving defenders have nation-wide capability and are random 

in their effect on the attackers.  (Thus, it is similar to the 

technique discussed in Section 2 of this chapter.)  In essence, 

any surviving defender is assumed to attack randomly over all 

attackers and is not confined to those attacking his island. 

By lumping all island misestimates into one total mis- 

estimate, this approach ignores all island-by-island distinctions 

and gives credit to the offense for proper proportioning of his 

attack ti  the islands.  He only pays a penalty if his total 

attack on all the islands is improperly sized.  In return, how- 

ever, the defense gets to use his excess defenders to defend 

any target in any island.  Thus, we have a blend of offense 

optimistic md defense optimistic aspects to the problem.  No 

accurate measurement of the impact of these contrasting assump- 

tions has been made. 

There is a separate, but similar, logic for the handling 

.>£ misestimates in interceptor range.  In AEM such a misestimate 

would be reflected in a misestimate of the number of targets in 

a class in an island.  For example, if the range was shorter 

than anticipated, there would be a number of targets less than 

anticipated in a given island.  The reverse beinp true for a 

longer range interceptor. 

Before delving into the range estimate problem, it is 

i "r- "A.""» 1 v"\""*.'<v,%* */*.*,- "•" '•".■»'.'•\r*-"•'.*• "»V.NV*"-"''."- -*• -% •*• • v'v'v'v v"'".-"'.*" ,*"v " -"v"v ".-"^""..•"v",-"v"",-" 
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necessai.y   t<    poinl   out    i   basic   tac<    11. <l   iv?ght   not   ho   obvious   in 

this   I a 1 HU]   analysis .     This     ■;» I    is     ! a t     11 1   ! i r^'!",s  must    !•<■   as so- 

elated  with  some   island   and   this   means  all   t •■ which    ir,>  no! 

in   an   a< Lua'i   defended   island  must   he   considered   ■ <«   •».>!.n:. [no   t   . 

an  undefended   island.     This   requirement    Is   inherent   Ivy  virtue 

of  the mathematical   process   utilized. 

,A   basic   follow-on     ret   is   that   misest iinates   in  range  demon- 

strates   it'*if only   in   incorrect   association   ol   targets  with  a 

specific ended  if.land or with   the  undefended   Island.     This 

happens  hv   vir   ue  of  the   fact   that   ill   islands   are   non-overlapping 

and   the   zone  between  all  defended   islands   aalongs   to   the   unde- 

fended   island. 

Thus,  misestimating   the   boundary   of  a   given   island  always 

transfers   targets   from   that   island   to   the  undefended   island,   (or 

in  reverse)   and never   to  another  defended   island.      (This   being 

*".rue  as   long as  the   battery   location  itself  is   not   in  doubt.) 

With  these  basic   facts,   consider   the  case  where   the   range 

was  overestimated.     (Such  a   case   is   diagrammed   in  Figure  M-3.) 

In   such  a   case,   some   targets  associated  wich  a   defended   island 

will   properly   go   to   the   undefended   island.      (Visualize   the   dashed 

line  as   the  actual   range   . )     However,   this  has   no  serious 

iniPct  at  all   sii.ee   the   pr    \_   w   -   paid  on   the   defense,   in   that 

island and   the   target   in  essence   is  "undefended"   anyhow.     The 

only   impact   is   that   the  attack*.c migh     aot   nave   paid   the   eric«-   !] 

he.  had  known about   ehe   nondefended nature  of   the   target. 

**** 
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( 

\ 
x 

X 

y 

A  = The undefended island. 

B  = First defended island. 

C  - Second defended island. 

x = Targets 

(x) = Targets which will be defended or undefended, depending 
upon correct range line. 

  Smallest likely range line. 

——- Largest likely range line. 

_N JS 

FIGURE M-3  A DIAGRAM FOR RANGE EFFECTS 
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In   ih»    c.-i.si'   of linderest imating  interceptor   range,   however, 

the   problem   is m.>re   serious.     (In  Figure  M-3,   the   actual   range 

would  now  he   t , <.   .   »lid   lir.   s.)      In   such   a   eise,   a   target  was 

thought    [«>   he   undefended   hut    in   actuality   It   was   de»fended.     Two 

variations  are   Important   when   this   happens.      I J   the   t.arget 

moved   into  an  island   for  which   the   subtractive   price   was   paid, 

there   is   no   iipact   since   the   defense will   already  have  been 

killed.     However,   if  the   target  moved   into  an  unattacked  island, 

the   defense might  well  he   able   to  nullity  any  attack  on  thr'.s 

target. 

The treatment of this circumstance in AKM is currently as 

follows. First, it LS assumed that any targets which went into 

a defended, but unattacked, island are completely protected by 

that island and no damage occurs on such targets Second, it is 

assumed that the attacker does not make a deliberate effort to 

avoid attacking targets which are near a boundary of an islar.l 

not being attacked. He simply attacks the targets he has bee 1 

allowed   to attack and  he   does  not   hedge  his   attack. 

Then,   for  all   targets   in a   class  which  are  attacked,   AEM 

computes   the  number  of   targets which moved  into  a   defended and un- 

attacked   island  and  removes  an appropriate  share  of  such  targets 

from   the   damage   list. 

For  eximple,   take   the   previously  described case  where   islands 

3,   b  and   7 were   being  attacked.     In   that   case,   it   was   assumed 

fhat   taget   class   2   had   18  members   in   Island   3,   seven   in   island  5 

and   three   in   island   7.     If,   however,   the   range  had been 

»V-a'y '-- '-• '-1*..?-. V-V-V.* <-.%"- -"^ £*JCMJ£M£*2 ^*%/.OvV^-V..^^VwVLV'.y.> *\J,r.m>^^^'-^\,^sjr~^..:.^^z^M:^m:^L^^*"M^tt*~- -f-V-V- -\ •"_•'. • 
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i underestimated, it could be that some of the seven targets in 

island 5 (which has no defenses) actually were in defended 

islands.  Say, for example, that all seven were, actually in other 

I islands as follows:  three were in island 7, two were in it .:nd 

4, and two were in island 8. 

Now, since island 7 has had its defenses killed, any attack 

5 on the three additional targets that were in that island will 

(- do their prescribed damage.  However, by our assumptions, the 

'; attack will do no damage on the othe: four targets, which were in 

defended and unattacked islands.  AEM will compute this loss of 

•' damage on the four targets (if they were attacked) . 

J Misestimates of interceptor farm location is much more diffi- 

• cult to treat in a consistent manner.  In such a case targets can 

"j go from one defended island to another defended island, or into 
4 

'. the undefended zone.  In essence, the sky is the limit in terms 

I of types of transfers which could occur. 

" No feasible and totally consistent resolution of this circum- 

\ stanc~ has been found.  It now appears that the only way to 

describe the impact of misestimating farm location would be to 

\ identify the change in association with each individual ;arget 

and, to identify that target in all allocations.  Such detailed 

* tracking of targets is counter to the basic aggregated nature 
* 

> of AEM. 

Therefote, AEM does not have at this time a special treat- 

.-—, ment for farm local.'.*  misestimates.  The only option vailable 

sV.^V,»'.- .% /^-.AA'L'.I -'«. -'» ■'.. ^:.^'.^v.*» ...'.«■l.v'.-V JWA/V JS.-VA*^ -'vW-V\ •^^».•..^-jJ-^TiJ^.la^-.Cj-.'i^.'.a-IJV^.' ^_.    ■-^1--L-1 —:—'- ' - ' - Bu ' 
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is to Ui'jut the misestimate in terms    lumbers of Lir^i'is iden 

tified with a given island.  Thus, the impact wl      stm1 u 

to a misestimated rau^ ■ :  »hlem.  i''..•:■■ wi 1 I nol he ;inv u 

indicate the case where an island loses one iiiembei oi a target 

class ami gains another member of the same i Lass, 

c.   Bomhet Inteiactious With island« 

There is a potential conflict in this subtractive island 

model when one considers the interaction of the defense with 

bombers.  Basically, the question revolves around the vulner- 

ability of the bombers to the island defenses.  Once car. visu- 

alize at least four main possibilities, i.e.: 

1) The bombers are totally unaffected by the defenses. 

2) The bombers have their own set ot   isiand de. < ■ uses 

to penetrate. 

j)  The bombers are affected by the defenses but. they 

cannot kill, or exhaust the defenses. 

<■',)  The bombers are affected by the defense but they 

m pay the defense price. 

/1 the present time A KM 5.3 programmed for condition two. 

mat is, the bombers have their own set- of is hinds and all 

targets must he described as belonging to one of those islands. 

Since a target could well hie.long to a mis si le island a  a 

bomber island, this automatically Leads to ,  method lor deal trig 

with overlapping islands.  Much a methodology is described in 

Section 6 oj this chapter. 

lAy-V- •*- iV.'XJ.N /- «"■»"* ■.VWO' ^V/W* -'->'• -~* -> «"- - * ►"* »*- -"" -*• ■»*" •"■ -"- -." -% *"■ -"- -"• »"* -"- ►* -"- .'- -"■■ '- ."•."- /• -'  ■    " 
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■ V 

r^r 

5»  Deployment of Subtractive Island Defenders 

This task has the same basic function as the terminal defense 

deployments described in Chapter IV-K, namely to develop a procedure 

for deployment of a type of defense interceptor among a set of candi- 

date locations so that benefit obtained from the interceptors is 

maximized^ It is similar also in terms of the concepts used in 

accomplishment of the task.  Basically, computations must be per- 

formed in order to compare benefits to be attained by various deploy- 

ment options and then to provide a method for converging upon the best 

deployment. 

It would be helpful to recap the concepts involved in sub- 

tractive island defenses (as described in Section 4) and thus set 

the stage for the methodology description« 

Within AEM all targets are aggregated into composite classes, 

where all members of a class have essentially limilar character- 

istics. With no defenses thic aggregation can usually represent 

the urban targets of interest in about ten classes. As defenses 

are inserted, this low level of aggregation is difficult to main- 

tain without sacrificing some degree of accuracy.  However, in the 

case of subtractive island defenses, the aggregation is still 

possible, hence the attractiveness of using such a defense repre- 

sentation. 
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w < 

K11 s t ot all, island defenses ire those de tens e situations 

where Limited rangt 1 iiei repcovs make ft possible to defend reason- 

dblv small regions (hence tin name Islands), hut regions that are 

Large enough to Include r.   nimm er of separated and distinct targets. 

For example, a region might, he several hundred miles in diameter. 

Secondly, subtractive defenses are defenses which are rather 

low in intelligence 1n the sense that they shoot at the *"; 3t 

arrivers in their island, regardless of the aim point of the 

arrlver, o~ the Lethality expected.  'Hin.fi, the name subtractive, 

since they subtract a price from the total attack on.  the island 

and once the price is paid all follow-on attackers enter without 

any interference from the defense. 

If these island subtractive defense installation are located 

so that no overlap exists between islands, one can visualize the 

total target set in a country as being broken into sub-sets where 

targets in each sub-set all belong to the same island, and not to 

any other island.,  Any individual, target class can then have a 

separate se: of identifiers to Indicate how many members of the. 

class belong to island 1, to island 2 and so on. 

If a total set of targets are described in this aianner, and 

if the defense level (number of interceptors) associated with each 

island are specified, then the attacker must decide which islands 

are attractive enough to warrant attack.  By definition, those 

islands chosen for attack must be such that there is adequate pay- 

off received In an island after paying the subtractive price (or 

k ill! n g t h e i s 1 arid d e f e n se). 

■JL±LA 'yA'Vj'v ■^"•,!^
s^-y\jt>^\V^>''^:>^:^^^ -:.- ^ -«■ -:» -'- -'* *~>      - - '- - - -  
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Given such island descriptors, it is possible to devise itera- 

tive procedures for determining the optimal combination of islands 

to attack for a given total attacking arsenal. Section 4 of this 

Chapter described just such a procedure. 

The problem in this section is to devise a procedure which 

will find out how many defenders should be deployed at eac1^ island 

in order to minimize the damage attained by the attacker when he 

chooses which islands to attack,  Basic assumptions in the task are 

as follows: 

1) The attacker knows about the deployment chosen. 

2) The geographical location is specified and, hence, the number 

of tar^-'ts \n each island is given. 

3) The task is :.o assign numbers of interceptors to the islands 

and, by virtue of assumption number 2, th. number of targets 

in each island is not to be changed. 

a.   The Methodology 

It would be appropriate at this time for the reader 'o review the 

essential ingredients of the optimal island attack procedures described 

on pages IV-M-9 to IV-M-13.  That procedure forms the basis for the deploy- 

ment procedures. 
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Tli  p1 . >i t    i Ihr de>c r ' IM'I! n rocui.li: t ■ ! ■ .  'M > -n  i 

very r .,< id and , wh i Le no muthcmai      i      i »  i\ i i I i 

sequences have rcsul tt i in t ! nd i n;. tin am :ma'        5 t .MI ^ • 

to attack. 

The Items in the procedure that ire '\.r-:     • ; ■ . ineni re this 

discussion arc the Island net benefits described b\ equal i.ms (M-8) 

and (M-9).  In essence, any islanH which has < posii ive nel benel' 

MB., will be attacked and any Island winch has 1 negative NP  is 
S 

not worthy nt :ittack.  As thost equal lei,:' indie '  ;.  ■■■■ ■: the 

major components in computing NB  is the de.fenst Lev*. I at: the 

given island.  The defense level is the item tu be chosen in the 

deployment so there should be much valuable information in t < nel 

benefit computation procedures. 

Consider the following sequence.  Choose a starting island 

defense deployment by some arbitrary means.  Given, that deploy- 

ment, compute the optimal attack on the islands and the 

resultant net benefits.  For a five-island case (AEM can handle 

up to 15 islands), the NB values might plot as follows: 
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NBS  0 
ISUNDS 

Note especially that not only do positive and negative values 

exist, but different magnitudes also occur.  Island 4 has a large 

negative NB . This means that the subtractive price on that island 

is so large that the isl*5 \d is definitely not worth attacking. 

Meanwhile island 1 has considerable margin in positive net benefit, 

which means that the targets in that island are well worth the 

subtractive price for the island. 

It is a basic thesis of defense deployments that an optimal 

deployment is one. where all defenders en ige the attack in some 

manner.  By definition, any defender is of no value if it is so 

placed as to never have any opportunity for engagement.  This says 

that some of the defenders on islands 3 and 4 must be misplaced 

because the islanc negative NB means no attack will enter those 
o 

islands. 

ag&s^ü»y- 
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Add i tieua! 1iv . island • is the mo si priii'  candidate, for 

additional d< ' use  > ,- ■ his NB has tit* largest positive margin 

and ci Lew mori' d      rs at. ! lu' island would simply extract a 

Larger pric« from his attack.  However, excessive additional 

di fense could drive the net ht.rul.it. on i,si and 1 to zero, or even 

; gat i ve. 

The number of defenders to drive any island NB  (.,  ?,eru can be 

estimated by setting NB =  0 and solving equation (M-9) for TN, 

to 1 I ows : 

TN*      7 t       TN   .    A  /(Vd -  Ad; (M-10) 
ds    i£M^     js       j 

where: 

TN .   =  estimated number of defense installations at 
ds 

island 5 to have a zero net benefit. 

This is just an estimate because changing the deployment very 

significantly from the starting deployment will change the A 

factors in equation (M-LO) and the Impact o! a u,iven number of 

defenders would be misjudged. 

One must always remember that the  X     factors are. only 

marginal slope indicators at some given condition point.  They 

are linear and therefore cannot predict nen-linear functions 

over Loo broad a change in condition. 

'^JJIS^^^^MJJ^M^^^I^^I^LIJL'^I..'^.. -V....- ...»_.,•.. «•.. *•- .'. ■'_.!*-<*-    - »"- WK. •. «_i *,"\ M.', r^' tw*. ^* Sh,'..i\''w'..1*'..-MM.-|« J\.\%. _"■ -Vw» .'■ fcVt.S jtV."- . " « LÄZ^üLjLLjk "JI./JL1J■ V 
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Despite the imperfect nature of the estimate provided by 

equation (M-10), it still forms n basis for making som« intelligent 

deployment changes away from the starting aeployment. 

Before delving further into the deployment procedure, it would 

be well to discuss another aspect to the deployment issue.  Consider 

the following net benefit plot: 

NB„ Jl 
ISLANDS 

In this case all the net benefits are positive, thus all islands will 

be attacked, and all defenders engaged.  By our previous optimality 

condition, there must be an optimal deployment of defenders.  However, 

it has been another basic thesis in this task that a better deploy- 

ment is one  where all the NB values are equal, even if they are all 

positive. 

The basic reasoning behind this the,is is as .ollows.  Optimal 

deployments should also minimize sensitivity to changes in the 

assumed defense performance, the attacking arsenal size, etc. 
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1 n    aiiV    ca.si       ,'it'li      ii'    I s i   in i    \!'       ' n ! N ill 

cond It ion   i hun^i ■  MI I y\\\ I     I rop    . .      n!   •   M        n .■<      ■ 

i •.   all   Nl>,   va I IH ■:■■■   are   itr;»r h>    - . i: ■ i * * , ■      ' I..I ! 
b 

:n i i! Lmal    sens Ll i v i L )    to   assumpt i     ■       ;hon i 

!rO I I   -W    a-,    ill!;-     I i IU'    o?     I lion ,'Ji! ,    rqu;il in 

determine.1,   fur   island   S,   tin    est LIWK ed   nnmla-i     «i     klonse   insl a 1 laL iou: 

in   order    Lo   have   H I   NB„   v/aliu    ol    som<    spot i? n        iriount ,     a    L;O tl . 

With   tills   concept    in mind,   the   basic   island   depl< vmu ut   proc« , 

is   as   fol1ows: 

S cop   I *     Wi th   a   start i n^1   dep I i >yi:t at ,   >. <' ,,p'i • ■.    an     pr i'.'i.a I    i s I .ma 

attack   ,\\\(\  all   associated   Nis     values. 

Step    y :      Evaluate   the   NR ,    terms    in   canal  ion   (M-1))    in     ,i   :( r   lo 

determine  what   dei'cusc   Level   at   * .ich     si  mJ   wnüM 

more   nearly  equalize   all    the   N'B     values. 
S 

Step    I;      using   the   new   dep I orient    rasa I i in.'    I'r    n   S L t-p    :, 

return   to   Step   I   and   compute   new  NB„   factors. 

This   process   will   be   repeated   until    the   NB     terms 

are  all   adequately   equal   to  each   other. 

The   details   of   the   implement at ;   e.  i-»i    this   procedure   arc   provided   in 

the   next   sect ion. 

') •        >U tliodo i  ';.;v    a-a l.--:-n a, . it i m 

The   total    implementation   process   can   he   view  a   as   a   reflection 

of   the    $-st.ep   process   just   presented   in   Lit«     =u 11 •   section,      I'he 

first   phase   thus   consisted   oi   d ■■       »pmenl lart-uj     <\      ■   inra 

getting  an   initial   deployment   (-■   be^in   the   itcrtti ai  pnnes.s. 

Ifl «>t« Ah^ü^^aiaJ^SaJ^Xa^Jrf^B \* '."AJTü.^ ».1 ■ i ■ ^'^^•^^''M.-'AJ^V. AAVT-I- A/fp-'V^ViV^lV^'LVAI:.Lfr w% V.'-V. VOI'CVLV-j-y WlvL% 
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A basic start-up deployment is a necessary first step in 

arriving at an optimal deployment".  At the present Lime the start- 

up is achieved by Letting the program compute a deployment which is 

proportional to the total value of all targets Included in each 

island.  That is, for example, an island will get 201 of the defenders 

if it contains 20% of all value which has been included in islands 

that are to be defended. 

Once this start-up deployment is chosen tin? program computes 

the optimal attack plan on the defended islands.  The main product 

of interest to the deployment process are the NB  factors obtained 

as a result of the attack and the   A  values for all target and 

defense installations. 

One complication in this step of the implementation results 

from the nature cf the procedure used to compute the cptimai island 

attack plan.  Recall that a 7-step procedure was necessary in order 

to find the island attack plan.  These 7 steps often result in a 

circumstance such that several island attack plans are nearly optimal 

and convergence on the optimal plan is achieved only by trying all 

of the near optimal plans in order to sort out the best plan.  When 

such an event occurs there is some question about which attack plan 

should be used to provide the NB_ values. 1 S 

Evaluation of a number of such cases demot,  rated that the most 

stable and consistent values for NB_ and   A . could be obtained by 
S d 

'^^^£*LJ^^-J^S.* Vki' * * ^^:^;^^^ll*L^^:^±^J^^~^'s^V^-rJVw-V-'.--"^-- 
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liSlll!      lilt'     I •    1  I OU t    : e.  Fi i sl , Nli . .tin!   A V.I I UO.S W(Ti' 

i'ht  l IK (I  i Of  .1 nid tit UK ['Luis unc I'Vi't "i*d while searching 

liir tlu opt [mal  l.in.  Hi. ii, i   weighted '.« rag» oi tin NB  and A 

values was i'o:;ipn (i d, wh <■    I in weight in.', factor was I he r.itio of the 

total v.ihi. drs t. L'oyet! in tin- i'.iwn attack plan to the value destroyed 

by ill el thf attack plans combined. 

l"or example, take a case where three attack plans wert evaluated 

and the NB , Lor island one was as follows in each case 

(f 150, f LOO, f- L25).  Also, for this example, say that the attacker 

payoff for each attack plan was (1010, 890, 955).  Then, the weighted 

average NB  for island one /ould be computed as follows: 

NB.. 
(150 x 1010 + 100 x  890 ±   125 x 955) 

(1010 f .890 + 955) 

1 $0.8 

(M-ll) 
**<•» 

Only the near-optimal attack plans ware used in this weighting 

procedure and one clearly optimal plan would dominate the weighting 

process. 

These weighting procedures were useful mostly in those situations 

where the NB values would change quite drastically even though small 

changes would occur in   the total attack plan damage.  Not using the 

weighting process could result in oscillations in deployment plans. 

Given that NB, and  X  values are available, the procedure 
S        d 

then requires that the defenders be moved from certain islands to 

f.V-V.^-*»'.AnVv:'^ «.Vv'-V AA.'< ^^JL«^-*A^ *-A^ 
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others in order to equalize the anticipated NB values tor ail 

islands.  Equation (M-9) can be u^vd   to compute what the equalizing 

deployment should be. 

However, experience proved that too complete and total a shift 

in deployment could create convergence problems.  The explanation 

lies in the fact that the  A 's are only slope indicators for a 

given deployment.  The effect of large shifts in deployment are 

simply not predicted well by the   A 's. 

The most stable procedure developed was to allow shifting only 

up to one-half of the defenders away from any one island and no more 

than doubling the defenders on any one island at any single deploy- 

ment stage.  This semi-control of the step size in deployment changes 

created the necessary stability. 

Given that the appropriate numerical control steps were taken, 

the implementation process for this deployment procedure consisted 

basically of internal data management input procedures and output 

formatting.  As always in AEM, these modifications required care in 

execution but no sophisticated math was necessary in their completion. 

c.   Option Utilization 

The option can be utilized very simply by indication of the 

island makeup by target class, the number of defenders to be deployed, 

and the existing deployment if there is one. 

The necessary input variables are described in The Arsenal 

Exchange Model Handbook. 
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6.  Extension to Overlappi ng Islands 

11 •  The_ Basic Problem 

In section 4. of this chaptei a methodology was prvs.Mited 

for Liu; circumstance, ot  non-overlapping ,ubtractive' lsl md 

defenses.  that methodology was developed in or tier to resoive 

one of the key issues in are.'. ABM defense modelling.  i'hat 

Issue is simply that defenses do have limited r mge, and 

national coverage defenses are not realistic. 

The work of section 4. allowed for finite r ange defenses 

of a special category, namely, where none oi the defense zones 

overlapped.  In other words, any individual target was a 

member of only one defense zone.  The targets would thus all 

be disjoint sets and the result would be that a country would 

be divided into regions where certain regions, or islands, 

had defenses and other regions had no defenses. 

As the number of defense installations increases, however, 

this assumption of non-overlapping defense coverage becomes 

rather weak.  Thus, it would be very appropriate to consider 

means for extending the non-overlapping methodology to the 

circumstance where at least some of the zones do overlap.  Such 

an extension has been accomplished and this section will 

describe the methodology. 

b.  Some Considerations 

A key factor which has previously precluded full develp- 

ment of overlapping defense options in AKM is the nature of 

the aggregation in AEM.  Basically, AEM is desj0Ufd uc operate 

fc^ci^^^^ 
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with 20 to 50 target classes.  By limiting the target class 

distinctions, considerable speed and storage advantages have 

been achieved. 

In essence, the presence of overlapping detenses can be 

viewed as another target distinction factor just like target 

area and value normally are. considered as such.  For example, 

if one target lies in a zone protected by defenses 2, 5 and 8, 

while another identical target lies in a zone protected by- 

defenses 2, 14 and 15, it is necessary to have these targets 

separated into different classes. 

However, such increases are not compatible with AEM 

structure.  For example, take a hypothetical case of only 

five defense zones.  If any degree of overlap is allowed for, 

there could be a theoretical maximum of 2 different defense 

overlap regions.  For example, a region might be that area 

which defenses 1, 3 and 5 could all protect.  Since any 

member of a standard target class could be a member of any 

overlap region, there would have to be allowance for 2 . NT 

target classes, where NT is the standard AEM target class 

numbers. 

Even if such storage was available, there is a question 

of data input.  AEM is typically used in a parametric manner 

where defense levels, etc. are varied.  If each target in a 

list of 2000 targets had to be identified with specific 

defense zone coverages for each variation, the input job would 

be so large that an input generator would have to be developed. 

Kfcfr«Ta»^V^fcVa
Hy«V*Vii>M>^ V-V V-,/ V .. .-'v'".' V-VVy -1 V'.'-V 
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Such consider, Lions resulted in .1 feeling that; approximate 

modelling of the overlap problem would have to be developed 

before such a capability could be added to AHM.  The idea 

was that some approximations might be possible such that the 

basic impact of overlap could be logically dealt with and 

still be compatible with the agregated natuie of AEM. 

c.  Degrees of Ov 'lap 

As was just d. cussed, it is not compatible with AEM 

technology to deal  1th large numbers of islands with extensive 

degrees of overlap.  AEM conceptually must deal with aggregated 

situations and the presence of a few (say 15 or less) islands 

for a complete country.  Therefore, it seems reasonable to 

develop a methodology which would be designed to deal with 

situations where mostly simple overlaps occur.  That is, 

where a given target is generally defended by, at most, two 

defense islands. 

One obvious case which is important is that of distinct 

missile and bomber defense islands or zones.  In such a case 

none of the missile, or bomber islands might overlap with another 

island of its own type but it probably would overlap with 

certain of the opposite type of defense. 

For example, consider Figure M-4. That figure demonstrates 

a situation where 3 missile and 2 bomber defense regions exist. 

The two bomber regions happen to protect some targets that are 

»vsy 

LA«->'VlV?J, »"„>'j^\"A,
J- jiL >-■-.«.. Jl '.A ' JXJ> 'J *.A Vn *JL.'-J>, *_g. ,'_e ' ,B '-ft -* --■■*-*}'>, ,V, *_r. ' JL "J> V- ^A*_fc ".*.*.*. .\Ai"Jfc A^*_»AA "^» *_»VJ.\
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also protected by missile Islands 2 and 3. llach isl.-nul, however, 

contains some targets that .»re protected mlv !>v i single dctciuui 

type. 

It was Celt that dealing witii this special typo of overlap 

was quite important.  Therefore, a methodology was developed 

which will allow for overlap between missile and bomber delenscs 

and will allow overlap even between given weapon type defenses. 

However, because of data storage problems it is not feasible 

to have large numbers of complex degrees of overlap.  Any single 

region, however, can have any desired degree of overlap. 

Basically, the analyst must describe the target list 

make-up (in terms of numbers of targets by class o\'  defense 

jone) in each unique defense, zone.  A unique defense zone is 

one where all targets have exactly the same islands defending 

them.  In Figure M-4 there are 8 such defense zones (including 

a single zone for all undefended targets).  This input problem 

is limited mostly because there is currently a limit in AEM 

of 15 unique zones. 

d•  The List of Uncovered Targets 

The basic concept of island defenses leads to a requirement 

to compute the correct list of uncovered targets as a function 

of the islands which were chosen for attack and the islands 

which were not chosen for attack.  This computation Is basically 

■'. L^I J~\.*-".*-"  -^ A." *." -JLVIJW'L'JI -•» U.V. J* ^% -"« L.'% -'A'Jk** - | -'» -% -% -*« -'» -*■ -'■.'»-' J** -*" ,.  '^_ "j> 7*M*Jk ~Jr   "j>.'".A -f „ 
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the one required in step 1 of the island attack optimization 

procedure outlined on page IV-M-10. 

If the analyst has defined every category of defense zone 

coverage such a computation is mainly one of list search and 

addition,  For example, if islands 1, 2 and 8 ate to be attacked 

it is necessary to inspect each defense zone to see if it is 

defended only by one or more of these islands, or if ii: is 

totally undefended.  If a zone is in the above categories all 

targets included in that zone are uncovered by the attack on 

islands 1, 2 and 8, and are therefore eligible for attack 

themselves. 

This simple type of uncovered target computation is done 

in AEM. 

e. Separate Missile and Bomber Target Lists 

If some of the island defenses are missile defenses and 

some are bomber defenses it is necessary to compute three sub- 

categories in the uncovered target list. The three are: targets 

which can only be attacked by missiles, targets which can cr.ly 

be attacked by bombers and targets which can be attacked by 

any weapon type.  Then the LP must be constrained so that the 

appropriate conditions on allowed target attacks are met. 

This means that a typical LP will have 3 times as many 

target constraints as normal.  For each target class there will 

^■.•L\,'.-.V-:^ ^:^:^^^^^^'^<2^:^r\\\\\'\^i\\u:^\^\ 3l"i»V.V.Y. /."JL:^ ^L^^-'^LVJ.!^ -^ • - 
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bo 3 separate constraints which quarantee that the correct; 

attack occurs on the uncovered targets.  Then, when a strategy 

column is inserted into the LP the appropriate target constraint 

entry must be. made. That is, the Lagrangian process must indi- 

cate which of the 3 target constraint types the strategy is 

designed for. 

This effect on the Lagrangian and the LP column generation 

is very direct.  Basically, the. target constraint lambdas 

indicate which of the constraint types are least binding and 

therefore which category of target constraint would allow the 

most effective attack. For example, consider the case where 

there are 200 targets eligible for each weapon category attack, 

50 only eligible for missiles and 25 only for bombers.  If a 

current LP has an attack on 105 of the 200, 45 of the 50 and 

75 of the 25, the next target attacked by bombers would he 

from the list of 200 because the bomber has attacked all 75 

confined to his attack. 

Another effect of this distinction between missile and 

bomber target attack constraints shows up in computation of 

the island net benefit from attacking a specific island. 

Equation (M-9) si 'S  how that computation is a function of the 

target multipliers (or lambdas) and the number of uncovered 

targets, TN. .  When there are missile and bomber uncovered 

targets the computation of island attack net benefit must span 
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Ln this formulation it is necessary to describe a defense 

"price' for the boirber islands, in addition to n price for the 

missile islands.  It is recognized that the standard concept 

of bomber area defenses runs counter to such a price concept. 

First, such defenses are more nearly viewed as random defenses, 

with a price proportional to the attack level.  Second, such 

defenses are not usually independent as island defenses usually 

are.  Typically, one must penetrate a zone before he can even 

outer another zone. 

These  nets cere recoeiiized prior to the modelling of the 

current independent, price-type of bomber islands.  However, 

the plan ./as to make the current capability a first step  in 

a development cycle.  The second step will be tu provide price 

computation procedures and dependency among the islands.  Alter 

that next step realism should be much more acceptable.  However, 

until that stage is reached the analyst must either utilize 

or not utilize the current option on its current merits. 
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V 

N •   ESTIMATES AND MISESTIMATES 

Allocations are perfoimed in the AEM on the basis of single valued 

data.  Such data inputs may be classed into two groups, those which are 

explicit (e.g., numbers, hardness, yield), and thosi* which imply assumed 

distributions (e.g., reliability, C.E.P.).  This data is used by the weapon 

allocation routine to produce an allocation which will achieve the optimum 

expected value damage if the expected values of these variables are correct. 

This section will address the measureme .t of the impact of errors in these 

expected value estimates.  The errors introduced by implied, inherent, or 

other distributional factors will not be addressed (see Section IV-L). 

Therefore, error assessment can occur in one value, namely the difference 

between the damage attained by optimum allocations and the damage attained 

as a result of a misestimate of the expected value of one or more parameters. 

Allocations are normally performed using the assumptions of the side 

commencing the war.  That is, the side going first assumes his estimates 

of all parameters are not only correct, but shared by his opponent. 

Obviously, if he estimated a certain weapon would have a yield of 2.0 mega- 

tons where it really has a yield of 1.5 megatons, his expected kill of 

targets attacked with this weapon is less than anticipated.  Such an assump- 

tion may not be catastrophic.  The allocation may also be optimal for 1.5 

megatons (if the change in expected kill would not cause a reallocation of 

forces).  In this case, the penalty for not knowing the yield was 1.5 

megatons is zero, but the penalty for not having two megatons yield is 

positive. 

If a side's estimate of his own forces are not accurate, the effect is 

like looking at oneself in an imperfect or wavy mirror,  Similarly, a 
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misestimate of an opponent is analogous to a view of that opponent t tit on ^.h 

a distorted or wavy glass.  Hence, cases where an anre.c u;ni. 

exists are often referred to as "wavy" cases. 

If a side believes the response will be based MI a different set of 

estimates than his own, he is assuming his opponent is 1 oMny through a 

wavy glass at him and in a wavy mirror at himself (since a side believes his 

own estimates to be wholly true).  Thus, the phrase "wavy-wavy" is frequent- 

ly used to describe a case having these assumptions.  Wavy and wavy-wavy 

capabilities are now discussed separately. 

1.   Misestimates (Wavy) 

The concept of misestimates is centered on the difference in the 

planning function and the consequence of the plan.  The side initiating 

the war allocates his weapons and predicts a retaliation based totally 

on his estimates of both sides and his objectives (assured destruction, 

damage limitation, etc.).  Figure N-1 shows a schematic of a two-strike 

war with misestimates.  The allocation on the first scrike is generated 

on BLUR'S estimate? of both sides (including the expected response). 

Note that BLUE assumes RED has precisely the same knowledge as BLUE. 

The actual expected damage to RED is then calculated.  The true sur- 

vivors are used by RED to generate his response based on his estimates 

of his weapon c." oabilities, BLUE's defenses and characteristics of 

his value and non-retaliatory, military targets (OMT for other military 

targets).  The true expected damage for this plan is then computed. 

It should be remembered that the allocations are based on a 

single value for each parameter and the allocations are optimal if 

these values aiö correct.  Therefore, the penalty incurred due. to 
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misestimates in the \EM Ls a raw measure for the scenario, opponents, 

estimates, and errors in estimates postulated.  This measure might 

be improved  - the avocation recognized some uncertainties in the 

estimates do exist.  Hedging against these uncertainties would reduce 

the penalty in most cases but would alsc tend to decrease the expected 

damage of an allocation (should the estimates be correct). 

2.   "istimate of Estimates (Wavy-Wavy) 

Th c ncept of estimates of estimates is a natural growth of the 

misestima  s capability discussed above.  In essence, the assumption 

that my opponents' estimates are the same as mine is removed. How- 

ever, my opponents' eatlniciiLS are assumed to have singular values. 

Figure N-2 shows a schematic of a two-strike war where estimates 

of estimates are used and misestimates are evaluated.  The only "*«? 

significant change from Figure N-1 is in BLUE's planning.  BLUE pre- 

dicts a response based on assumptions other than he would make based 

on his knowledge and estimates.  For example, if BLUE has deployed 

many terminal defenders of poor effectiveness but has designed his 

testing program and all other overt actions to indicate a good effective- 

ness, he might predict a retaliation based on the better defense.  To 

maximize BLUE's value received, he must compute the value of RED's 

forces in terms z,:.  how he believes they will truly effect him.  This 

computation is in two parts.  Using BLUE's estimate of RED's view of 

all parameters to predict the response, BLUE uses his own best esti- 

mates to evaluate how this response would really affect the damage to 

his value and OMT targets (double arrow B). Once BLUE's estimate of 
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his damage soTe    eis been found, KLUK must estimate the BLUE value 

saved if a KKL weapon base were destroyed (force target values).  In 

the AEM, fori - values >v   the mat} i la 1 utilitv of a weapon, 

i.e., the weapon   mhcia (see Section IV-C) .  Therefore, an effective 

weapon lami     st be computed.  The technique for this computation 

is discussed in paragraph 3.a. of this section.  This computation of 

the effective for ' values is denoted in Figvre N-2 by double arrow A 

between BLUE'8 estimate of RED forces and BLUE's estimate of RED's 

estimate of RED forces. 

a.   Some Genera^ Applications of Wavy-Wavy 

Some primary applications of wavy-wavy are values of intelli- 

gence, ploys, values of covert changes in arsenal capabilities 

(especially in an arms control environment), mu the effects of 

certain types of battle management information possessed by the 

opponent.  The first two areas follow from the objective of wavy- 

wavy.  My opponent will respond usinr different estimates than 

my own.  If we hypothesize, some control over my opponent's 

estimate, of me, we might wish to know whether it is better to 

appear stronger or weaker than we truly believe we are.  It is 

possible to determine the relative values of planting such infor- 

mation (it believed) using estimates of estimates.  Similarly, 

the value of changes in capabilities which are assumed to be 

unknown by the opponent may be evaluated.  The third area men- 

tioned is not so obvious.  However, the ability to assume the 

opponent does not possess precise knowledge of my reserve force 

composition is required (three or more strikes in the war). 

Mf 
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The following paragraph explains the types of battle management 

information available in the AEM. 

b.  Applications of Wavy-Wavy for Battle Management Analyses 

Using estimates of estimates, it is possible to correctly 

determine the effect of imperfect knowledge about the first strike 

attack.  This knowledge (in the AEM) is important only if there 

will be (or there is expected to be) another strike by the 

initiator, i.e., a three-strike war.  Consider three levels of 

information as follows: 

1) Knowledge of which bases were emptied on the first 

strike (empty hole information). 

2) Knowledge of the number of weapons by type sent in 

the first strike (attack level information). 

3) Knowledge of th2 number of nuclear impacts suffered 

luring the first strike (NUDETS information). 

These are, in descending order, types of battle management 

information potentially gathered between an attack and a response. 

In the AEM, these are treated as inclusive sets, i.e., having 

any empty hole information implies complete attack level informa- 

tion, and having any attack level information implies complete 

NUDETS information.  However, such information, as exists, may 

be incomplete.  As pointed out previously, normal cases in- 

herently assume perfect ALINFO, since the third strike weapons 

are assumed to be known by the opponent (his estimate is my 

estimate).  Using wavy-wavy, other assumptions can be made to 

te&\^yC£^Z{^<L*\'.'<'^: ^^l^'^'^/"'J>^,l^lV/>r^//J^rl'>a%V•L^'■''j'*^ •/v"v.:^lv//-V^V.*^.' 
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the lower limit where the retaliator only knows his survivors 

(no NUDET capability). 

Figure N-3 illustrates the interactions of wavy-wavy on a 

three-strike war with no misestimates evaluated.  Because the 

response is separated from the initial attack and the associated 

estimate, it is possible for the response to consider more (or 

less) weapons in the reserve than are actually there (arrow A). 

If BLUE believes RED has no capability to measure the attack in 

strike one, he assumes RED will behave as if all weapons are 

in the reserve holding RED*s value targets at risk.  Additionally, 

RED may be unaware of a covertly purchased weapon system which 

is assumed to be invulnerable to the response.  Note that since 

BLUE's reserve may be attacked, BLUE must estimate the true 

value of his weapons to RED in the second strike prior to 

estimating the value saved by attacking RED weapons. 

3•  Techniques and Problems 

The evaluation of estimated damage versus actual damage is pri- 

marily concerned with the kill functions themselves, since the alloca- 

tion is not changed and all misestimate impacts occur in the kill 

functions.  Therefore, the parameters which greatly influence achieved 

kill are generally more critical.  Such parameters are reliability 

(or effective reliability modifiers by means of defenses or target 

capacity), target hardness and area, weapon yield and C.E.P., and 

terminal defense effectiveness. 

Uncertainty in the number of targets of a type, e.g., empty 
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silos, hidden deployment of weapons, will also affect the answer.  In 

this case, if more "targets" are attacked than truly exist, it is 

assumed that the targets attacked include all true targets.  If fewer 

are attacked than exist, all those attacked were assumed to be true 

targets. 

The value of a target may be different than estimated.  While 

this is obviously true of force targets, true or corrected force 

target values are not normally computed (unless estimates of estimates 

are involved).  However, if the plan was based on erroneous or obsolete 

data or on values which are arbitrary, non-retaliatory targets may 

have different "planning" and "true" values. 

An allocation based on estimates may thus have kill functions, 

target values, and numbers changed and the "actual" expected damage **•'*** 

caused by that allocation computed.  The difference between the 

"estimated" damage and the "actual" damage     en the expected change 

caused by the discrepancy. 

a .  The Effect of Strategy Value Changes On Lambdas 

When an error in kill functions or in target value is made, 

the resulting value received by a strategy is also changed. 

Similarly, the marginal utility of the waapon involved is changed. 

Since lambdas are used in the AEM for computations of force values, 

this change in lambda must be treated.  If the error is a general 

one, involving all targets or all weapon types, averaging the 

slope of the correct kill functions for the strategies involved 

might yield a good approximation.  However, the error might _ 

•'•I-'-/ •' '-«l-. -•,"••.'-•. i .v.v.v"v..y-ylylv'',.\ v y'-V^r^W- ^V'^^fc>\'«^\\%\NLVj^\
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involve only one of several weapon types and then on only one 

target.  Fortunately, by use of the multiplier matrix from the 

linear program, no heuristic rules for such cases are required. 

A brief synopsis of the linear program formulation in the AEM 

is now presented. 

A linear program is composed of a set of matrices and vectors 

having initial and final definitions.  We speak of a strategy 

matrix(es) which is composed of the amount of each particular 

resource (weapons, targets, budgets, etc.) used to gain the 

corresponding value (normally value destroyed) in the pay-off 

vector (P).  The set of those strategies selected by the pro- 

gramming process form a matrix, B, which is called the basis. 

All columns which are members of S but not members of B were not 

necessary to the solution.  The AEK makes use of an identity 

matrix (I) to provide an initial basis.  This may be interpreted 

as the initial feasible solution; i.e., use no resources, which 

results in a program value of zero.  The initial construction is 

now shown as: 

p L V 

s I c 

where: 

P  is the pay-off matrix (vector). 

S   is the complete strategy matrix, 

-jL.mjCmj£mj£*J*jf^. iVJLV>*MJIVI «^VI -. * iJiVxV* VS *_* *-*, .O %." _•*/. -O. iJ *J*. LA. . -S^-_V_L3 1 ;  «I  . •-    •- s. --   1 



I   is the marginal cost or lambda matrix (vector), 

initially /.ero, I.e., there is no pay-off for 

ut firing weapons nor for not attacking 

targets. 

I   is the initial feasible solution matrix (an 

identity matrix which may be interpreted no 

resources used) . 

V  is the scalar value of the matrix or linear 

program solution value. 

C   is the solution matrix (vector) initially 

equal to this constraint or resource value 

(since nothing is used) . 

If the simplex algorithm is used, after some iterative cycle 

(or pivot) k, which produces a better solution, the construction 

has been changed such that the feasible solution contains some 

strategies of the S matrix.  The set of selected strategies is 

still identified by an identity matrix, although unordered.  Addi- 

tionally, the pivotal operations used transform the I matrix into 

the inverse of the basis.  Thus, after the Kth pivot, which re- 

places a strategy in the basis with a new strategy, the resulting 

matrix I is the inverse of the new basis (I  = B   ). 
K    K 

Note that the I matrix and B matrix are square,  Obviously, 

no more strategies can be in the basis than there are constraints. 

Just as ^.nportant is the fact that precisely the same number of 

strategies will be in the basis as there are constraints.  This 

Ü^IMJ^ 
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means that some columns which were In the initial solution (I 

matrix) may also be In the final basis.  This is the notion we 

call "GIVBAK" or weapons (and targets) not used in the allocation. 

This inverse may be used to enter new strategies into the 

basis without modification of the original and is called the 

simplex method using multipliers or more simply, the multiplier 

technique (see Reference 5, Chapter 9). 

If the basis is expanded to include the P vector and an identity 

vector (to square the matrix), the additional row in the inverse 

will yield the marginal cost (or lambdas in our case), i.e., 

L = P X B  .  In the AEM formulation, the inverse of the basis 

is saved.  As may be seen, if the basis does not change, i.e., no 

strategy is changed, the values of P may be freely changed to 

yield effective lambdas, or: 

—*  —*   _ i 
L = P X B 

wher«: 

—* 
P  is the new pay-off vector and 

—* 
L  is the resultant lambda vector. 

One key concept of estimates of estimates is the ability to 

predict a response based on a P vector which is different than 

the initiator truly expects to exist.  Therefore, while the P 

vector is used to generate the response, the P vector, which 

corresponds to the initiator's best estimates, mey be used to 

generate effective lambdas (L ) for the puroose of generating force 

target values discussed in paragraph 2. of this section. 
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The eftective Lambdas produced by Liu above ma\ v< i y w« 1! 

be negative«  This is not an obvious statement but mav be eusil . 

understood in the following w.iy.  Assume two dti i> n ni w« np n - 

are selected to attack a certain targ< t bas*ui on estimated 

values for P.  We further assume the P* value toi one ol the 

weapons is very low while the other weapon has a high P*.  It 

the high P-'r weapon has a higher ratio of P* to number of weapons 

used en   this target than on any other strategy involving that 

weapon, the weapon with the low I** value is preventing the maxi- 

mum attainable damage by using some of the target resources and 

that weapon will have a negative Lambda. 

There are two points of view concerning what weapon lambda 

value to use in this case.  The correctness of the method used 

must: be conditioned not only on why a negative Lambda exists 

but on the probability that it will continue to exist.  For 

instance, if the low P* value occurs because of covertly deployed 

random defenses, the desired effect of Low resultant error might 

be largely nullified if no attack on that system occurred. 

Similarly, if target area has been covertly increased by 

population dispersion, the low P* might result from a low yield 

weapon being improperly allocated.  If so, no attack on that 

system would be desirable.  Ln short, simply knowing a weapon 

possesses a negative lambda does not dictate that its value as 

a target is also negative. 

The confidence in the supposed retaliation must also be 

considered.  If the low P* value is caused by »ending a bomber 
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to a target having covertly deployed SAM defenses, an alternate 

allocation Involving only missiles against this target might 

be an equally good plan based on the assumed estimates.  [f 

this were true, planning on a bomber assignment to the target 

hardly seems certain. 

Additionally, if the retaliation arsenal includes 

separately targetable launched-on-warning weapons of if his 

plan is based on estimated prelaunch survival which is felt to 

be incorrect by the initiator, the resultant strategy set is 

no longer a square basis and cannot be directly inverted (see 

sub-paragraph 3-b). 

With a view of the above considerations, AEM HEDGE esti- 

mates the value of one additional weapon by type as if that 

additional weapon were to be randomly added to an existing 

strategy employing that weapon type.  This technique is not 

mathematically elegant but is guaranteed to produce non-negative 

weapon lambdas and still be sensitive to the conjuncture allocations 

for initiator and retaliator and assumed P* values for the 

retaliator.  Thus: 

SOL 
*  = Z^i   ( VD(N + 1) - VD(N ) )  •  SOL(k)      (N-l) 

y^    soL(k) 
S(i) 
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vlurt. : 

S(i)   ileiiou-s   the   set   of   s t :ra t i .1 i ny  which   Involve 

■v'liS   o I    L vpe   1 . 

?N: is   the   number  of  weapons   in   the  k   strategy   involv 

Lb 

i in; weapon t ype i . 

SOL(k)  is the number of Limes the kL" strategy was 

se lee ted. 

V!)(N )  is the damage attributable to allocating N. 
K k 

.    , lh 
weapon of type i in the k   itrategy. 

D •   Misestimates of Prelaunch Survivahi L i t y 

T'ne ability to misestimate prelaunch survivability has 

been added to A.EM HEDGE.  The impact: on  retargeting J units is 

discussed in Section IV-0; however, the mechanics o[   the pro- 

cedure are presented here since misestimates are involved. 

The procedure used requires that the retaliators' esti- 

mate of his strike assumes a slightly d fferent connotation, 

i.e., the strike generated and printed is the total force plan 

and not necessarily the final allocation.  This total force 

plan results in a partitioning of the targets into a group 

attacked by weapon type one, a group attacked by weapon type 

two, etc.  If the retargeting limit is greater than one, the 

weapon type commander may adjust the actual strategies used 

against his particular group of targets.  The resulting 

allocation is then evaluated to obtain actual expected destruc- 

tion of all target groups.  Figure N-4 illustrates this program 

sequence. 
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RED BLUE 

111!; INITIATOR GENERATES HIS 
PLAN FOR THE FIRST STRIKE. 

THE ACTUAL DAMAGE DONE IN THE 
FIRST STRIKE IS COMPUTED. Ill 
TRUE WEAPON SURVIVABILITY IS 
SAVED.  (N'\ R*) 

R AND N ARE COMPUTED BAS.XD 
E     E 

ON SURVIVABILITY ESTIMATES. 

FORCE PLANNING TO PARTITION 
TARGETS IS PERFORMED. 

ALLOCATE EACH WPN AGAINST THE 

APPROPRIATE TARGETS OF RE- 

SPONSIBILITY (USING N'\ Rg). 

FIG x-'i i : 

COMPUTE ACTUAL D/, 1ACE DONE B\ 
THE RESPONSE USING R*.  IN- 
CLUDE ANY OTHER MISESTIMATES. 

PROCEDURE FOR EVALUATING PRE-LAUNCH 
SURVIVAIJIL1 I'Y MISESTIMATES 
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Lach Lauget grouping reflects only those targets .it tacked 

by that particular weapon tvpe Ln the total force plan.  Tims, 

targets r.ot attacked in the total force plan cannot he attacked 

by the weapon tvpe commander.  Nor, can targets which belong 

to oi\e   group be attacked by any other weapon type.  In addition, 

the retargeting ievel is assumed at the most convenient de- 

markation level in AEM, i.e., by weapon tvpe.  It seems more 

realistic Lnat wing commander or force component commander 

would do the retargeting (e.g., retargeting within a group o{ 

fifty missiles, or retargeting the entire Hinuteman force) but 

such an option is not natural to AEM. 

This technique also is based oi\  the assumption oi   only 

pure strategies being in existance.  Thus, cross-targeting like **& 

occurs with hedges is not allowed.  It is anticipated that this 

restriction will be removed in the near future. 

c.   Misestimates of the Number of Separately Targeted Weapons 

Which Are Launched on Warning 

The capability of assuming the particular warheads which 

will be launched on warning has also been added to AEM HEDGE, 

These weapons are pretargeted and assume invulnerable.  However, 

if the number assumed is not correct, the penalty is assessed 

by use of the procedure used for prelaunch survival misestimates. 

Consider thfl case where the actual number launched en warn- 

ing (OA) is less than assumed (OE).  This implies a change in 

the available vulnerable warheads per base from those estimated 

(WE) to the actual (WA).  tf we assume the base survival (PS) **-• 

i"iV>i'i' V *- '■ •-'*^"*' /-J--V."--'. *--' ^^^^+i^ÄL±£*&£*iM£M±AlL*&kZA&j£*a fcika >:A.^'t,-\,i ■JIT^JL-. 
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T7 

was correctly estimated, we still must consider the effect on 

both the vulnerable and invulnerable components o[   this weapon 

system.  It is not essential that the same number of weapons be 

available in the estimate (OE + WE) as in the actual (OA + WA). 

The technique is designed for changes in the number allocated 

regardless of the cause. 

For the targets assigned to the OE weapons, no strategies 

are changed.  However, an effective reliability modifier 

(RMODn) is computed as: 

RMODn(OA<OE)     =     OA ±  (OE  -  OA)   ■   PS ([].2) 
U (JE 

This RM0Dn is then considered as an increased uncertainty 

arrival for the OE weapons in evaluating the actual damage. 

For the vulnerable weapon, if OA + WA = OE + WE, th^re 

is no change in strategies or estimated damage.  However, WA 

is equated with WE to insure proper bookkeeping (the launched 

on-warning portion of ehe weapon system will have WA - WE 

vulnerable warheads per base).  If OA + WA ^ OE + WE, there is 

an implied change in the number of vulnerable weapons to be 

allocated if a retargeting capability exists.  A new actual 

available warheads per base is calculated as WA1 = OA + WA - OE. 

These WA1 warheads are assumed to have the same aim points as 

the WE weapons assumed.  This is equivalent to a change in n 

as discussed in prelaunch survivability estimates. 

.•>*..J—-..V**.'...*» .'■V.--» /.i:.v..i..'.'.,i.v.\.. ^% ».A_.. - • I^Y.% ~:*..j.*j*^..m'j:* J»-V JY-V ■_•> _:... _v..»—i^Ji A ,Y .Y ..V.//..V A -Y*>A'JL*. »JL^L"»'.•-.a.?. *J 
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Let us consider the case of L000 warheads having an 

assumed avaiLabiiity oj .8 with 400 warheads estimated to be 

separately tar,» L. a and Launched an warning (OK = WE = 400). 

[f the actual number Launched on warning were only 200 (OA) 

and the base survival, were .5 (PS), then all strategies involv- 

ing the pretargeted 0E weapons would be evaluated with an 

increased uncertainty of arrival of: 

200 + (400 - 200) .5 RMUl)o.  L_  -  .75 

Additionally, if the actual weapon availability is .6 

instead ot . fc>, the true number of vulnerable weapons to be 

allocated is: 

WA'  =  200 + 400 - 400 =  200 

instead of the 400 assumed in the estimates.  However, the 

effective reliability due to retargeting limits would not 

change. 

If OA is greater than OE, there is no change in the 

separately targeted OE weapons.  However, there is an implied 

change in PS for the vulnerable weapons (PS*): 

= WA ■ PS + (OA - OE) 
WA + (OA - OE) ^ 5) 

Using this PS*, a new N* is computed and used in accordance 

with the plan depicted in Figure N-4. 

r^/«^Vr^.M%!«>_mN^1'l/r^>V:lm>^>^^ '-aT-fc,:-r. Lj J^rJ-c/^.:^/^-.^^ V_ ,^._ *j£-V, ^-V-V.V.» . «.V,»'.. 
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Thus in our example, it OA were truly 600, Llie effective 

PS for the vulnerable weapons would be: 

= WA • .5 + (600 - 400) 
WA + (600 - 400) 

If no availability error is made: 

_  200(.5) ±  200 _ 
Fb  '      400 -/j 

and if the actual availability is .6: 

PS* _ 0(.5) + 200 
200     '  * 

But only 200 weapons may be allocated instead of *"he 

estimated 400 since all available (600) warheads are launched 

on warning with 400 being sent to the targets assigned to the 

OE weapons. 

This analysis could be expanded to misestimates of numbers 

of weapons to allocate due to any reason and without specifying 

a launch on warning capability.  However, before this develop- 

ment occurs, the limitations of the technique which assumes 

pure strategies and retargeting by weapon type should first be 

removed to provide a more general and compatible technique. 

Such developments should be considered in the near future. 
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d •   Rest r ut ions and Limitations 

All allocations are evaluated on singular valued data 

for the primary weapon ll more than one weapon type is sent 

to a target.  This assumption may eatise an undue emphasis on 

the penalties projected it only the primary weapon is degraded. 

The scenario cannot be violated, i.e., number of strikes 

to be planned and which side initiates the conflict.  The first 

restriction is largely due to the structure of the model, but 

can be removed by use oi   separately targeted weapons which are 

launched on warning.  Otherwise, once an allocation is made, 

all factors which preclude a safe arrival are treated as 

reliability which may be vastly different than the reliability 

used to generate the allocation (or plan). 

It. is imnortant to note that the area target kill 

function formulation used in the AEM is based on optimal aim 

points for the uncertainties involved (reliability, C.E.I'.). 

We have no algorithm for the effect of poorly chosen aim 

points nor for defenses rThich deny certain aim points; therefore, 

the "true" damage functions reflect optimal aim point corrections 

even though the characteristics which lead to those aim points 

were not known.  This is 01 course inconsistent with the intent 

of misestimate (wavy) and estimates of estimates (wavy-wavy) 

analysis since no errors in aim points are permitted. 
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XT? 

This deficiency should be considered in light of other 

assumptions made in the model.  Area targets are basically con- 

sidered flat disk with uniformly distributed value (the Q-95 option 

allows a circular normal value spread with a sigma radius).  In 

reality, the value being attacked is more likely located in known 

or suspected pockets throughout a noncircular area.  The AEM kill 

functions have been shown to closely approximate national blast 

fatalities found by detailed grid lay-downs.  It is therefore 

suspected, but not proven, that the aim points inconsistency is 

probably more academic than real. Analyses to illuminate and 

resolve this apparent inconsistency have been suggested and are 

being planned. 

Another limitation is also apparent within the Prim-Read 

terminal defense doctrine.  The current formulation of this 

doctrine implies knowledge by the defense of the expected damage 

function attributable to an arriving weapon.  Therefore, the 

defense assigns interceptors to incoming weapons in such a way 

as to delay penetration until defense kill is imminent.  Since 

the defense characteristics are allowed to be different by 

attacking weapon type, the defense is assumed to know which weapon 

type is attacking; hence, the defense has perfect knowledge of 

attacking weapon type. 

jÄtfüJt* ^.^•^>--.'««-V-V~*-V-^^I
,
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4 .   Summ.ii y 

The AEM has the. ability to evaluate an allocation against different 

data than produced the allocation.  It is therefore possible to compute 

the difference In expected value destroyed due to data differences. 

By interpretation of data into "estimates" for purposes of allocation 

and "actual" for purposes of evaluation, a method of computing the 

penalty due to misestimates has been developed.  Similarly, by allow- 

ing different data to be used during a retaliation (the initiator's 

estimate of the retaliator's estimates) than the initiator "estimates" 

data, the ability to compute the value of knowledge about the opponent's 

knowledge has been developed. 

The evaluations are based on single valued data which is always 

assumed to be correct.  The allocations are optimal for the parti- 

cular parameter values and hedges assumed.  If hedging allocations 

are used, only the damage attributable to the primary weapon is 

evaluated.  Additionally, if hedges cause cross-targeting, prelaunch 

survival estimates and misestimates of separately targeted weapons 

which are launched on warning will not be properly performed.  The 

removal of these restrictions is anticipated. 
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SV 

0.       WEAPON RETARGETING 

1. Genera 1 

One physical characteristic of offensive weapons that has not 

been discussed to date is the limitation on retargeting of weapons 

after an enemy strike.  Basically, most weapons have guidance systems 

which can easily direct an individual weapon to any one aim point out 

of a finite group of aim points which were selected prior to the 

initiation of a war.  A requirement to go to an aim point that was 

not preselected can generally be satisfied only at the expense of 

considerable time delays.  This feature of redirecting a weapon to 

some aim point we call retargeting. 

The whole topic of modelling the impact of target capacity limi- 

tations is very complex and gets irco very detailed combinatorial 

analyses.  Feeling that such detail is inappropriate to AEM, modelling 

of the approximate effect of target capacity limits has been done 

This chapter discusses the form of that modelling today. 

2. End Point Conditions 

As an introduction into the concept of modelling the effect of 

retargeting limits without modelling the details, consider the impact 

of having no ability to retarget in contrast to the impact for unlimited 

retargeting. 

Consider the case where each weapon has only one. target, which 

must be set before an attack occurs and cannot be changed after the 

attack.  How would this -imitation affect the original targeting of 

the weapons and their utilization in retaliation?  If an estimate of 

the probability of survival, S, for the weapon existed, the fact that 

IvlvV\V»\VJA^y.«>!]»Vj>L«Si^ 
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a weapon might not survive can be viewed as an additional component of 

reliability. 

It will be assumed that, by definition, re liability is the. proba- 

bility that a weapon will be launched and detonated within some dis- 

tance, as described by a CEP, of its target.  Furthermore, the unre- 

liable weapons are not known until launch time and it is assumed that 

the assigned targets for the unreliable weapons cannot be shifted to 

a reliable weapon.  Thus, a reliable weapon is a weapon that performs 

its assigned function with some probability, R. 

If not surviving an attack is viewed as another way to fail to 

launch then, by the above definition of reliability, the probability 

of survival, S, is another component of reliability.  Thus, if the 

standard reliability is R, the effective reliability, R would be: 

* 
R = S • R 

If this effective reliability is used in the original targeting, 

the maximum utility of the unity target capacity will be attained even 

though retargeting cannot occur. 

For this case of a one target limit, ASM would therefore operate 

as follows.  The initial strike allocations would occur and the re- 

sultant probability of survival, S, computed for all weapons.  The 

new effective reliability, R = R • S, for each weapon would be com- 

puted and the retaliation allocations would be conducted using those 

effective reliabilities and a number of weapons equal to the original 

number possessed. 

The above process accounts for the fact that th2 side being 

attacked cannot retarget but that he would allocate targets before 

„*. . ~j*,J*i/:*\.'*M*^.*'iMi^:Jjk^L^^^AlA^'tL^£m.£m &.M.i'm.." - .'*-t-i «. •".»-"''•"■/. ■ 
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the exchnnge to account tor the possibility that any weapon might not 

survive, with probability S.  Implied Is Lhat he cnn estimate per- 

fectly what value S is. 

Consider now the case -«.'here a very large target capacity exists. 

(For this discussion, a very large nunber can be considered t be the 

total number of weapons.) 

In such a case no matter which weapons survive retargeting can 

take place so that weapons surviving can be targeted to the exact 

targets desired. 

For this case, AEM would operate as follows:  The initial strike 

allocations would occur and the resultant expected number of survivors 

computed for each weapon.  Leaving reliability at R = R, the computed 

expected survivors would be allocated in retaliation. 

This process accounts for the fact that the side bein^ hit can 

retarget afte * an attack so any surviving weapon can go to any target 

desired. 

Consideration of these two extreme cases points out. an interest- 

ing relationship.  In summary, for the case of capacity = one, if you 

have N weapons of reliability P. and probability of survival after an 

attack of S, the inability to retarget can be cor  lered the equiva- 

lent of retaliating with N weapons of effective reliability 

R = R • S.  For the large target capacity case, complete retargeting 

can always occur and this is equivalent to retaliating with an effec- 

tive number of weapons N = N • S with reliability R. 

Thus, even though the expected number of survivors is always 

N • S, the possession of retargeting capability is summarized in the 

^VJa.Cv'*oVnVv^'*o."ii.^:t'^ •-:^..^''.:..^-. -o.V. *.\.-.^ *JIV.*./ . .^- ^«\ •■ V ^.iV ^"'■.-V-.o ^-■*.- ^4ff&±^~\+*\<.'*\\\-i\-\?'m.\\<'m<L\ n\~\ ■>' 
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concept of having in ,»ff active number of weapons with an effective re- 

liability to retaliate with. 

For target capacity limit of one,   the effective number is N and 

the effective reliability is R * S.  For a large target capability, 

the effective number is N • S and the effective reliability is R. 

These effective numbers completely account for the fact that the s4 

retaliating will do his best to utilize whatever capacity he has. 

In summary, consideration of these end points h s led to the 

following relationships. 

First, consider the definitions as previously described: 

T  "=  target capacity (each weapon) 

N  = number of weapons before attack 

S  = attack survival probability (each weapon) 

R  = weapon reliability 

N  = "effective" number of weapons 

R* = "effective" reliability 

The results of the study of the extreme cases T = 1 and T =  are 

then as follows: 

n.r* 

T N R 

1 N R-S 

OO 

1 
R 

These cases are pleasing to treat since it is possible to define 

Ar       * 
here just what N and R are. 

^••*^v:^v V^^w^W.-^-'WlV.A :^\^/;JV-i'^'^^,;'Ji './: -.^?^;*r. V..V./aj-yj.?,V/^»'.V.V. 



IV-0-5 

It Is implied that the targeting takes place in two phases - ore? 

before the attack, and then a certain amount of reshuffling afterward 

(depending on T). 

For T = 1, no reshuffling is allowed, and the uncertainty of 

which weapons survive the attack must be taken into account in phase I 

targeting. 

For T ■ x , complete r huffling is possible, and the real 

targeting is done exclusively in phase II, using survivors of the 

attack. 

In both of these cases, N is the nnn.ber of weapons targeted and 

R is the uncertainty facing the targeteer at the time. 

3.  General Limits of Target Capacity 

For the intermediate cases (1< T < °c ) things are not so clear. 

It seems reasonable to assume, however, that since both extremes can 

be accurately dealt with by modification of numbers of weapons and 

their reliability, the intermediate cases be handled in th same 

fashion. Thus, we choose to describe N and R simply as "effective 

numbers which will result in the correct optimum expected damage for 

intermediate target capacities, though they may or may not have real 

interpretations. 

Since correct damage is the goal, it makes sense to preserve a 

heretofore unnoted property of the extremes: 

N R     N-R-S (0-1) 

that is, that the reliable surviving weapons are the same as the ex- 

pected value, whatever the value of T. 

^V:%M>/:V:V^V/:V:«^:V-::^^^ - 
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The job of targeting is to establish a c »rrospondence between 

weapons and targets in such a wav that effective use of the weapons is 

guaranteed.  Consideration of the target system is a pertinent aspect 

of this process, .and is currently handled in ARM through the Lagrangian. 

If there iß some obstacle preventing a weapon from reaching a valuable 

target (e.g., low reliability, poor CEP, defense), then doubling up 

will occur in the final allocation as long as a reasonable marginal 

return per weapon is achieved. 

In finite target capacity cases, however, a new ingredient is 

injected into this ^rocess - namely, that there is some probability 

(after an attack on weapons) that a valuable target will be unreachable 

by the surviving weapons due to their retargeting limitations.  Since 

this is, after all, the weapon's fault (and not the target's), it is 

proper to degrade weapon capability. 

If we define an aim point as being above the terminal defense of 

a target (if any exist), we may declare that an aim poinr is covered by 

an arriving warhead.  We further assume that aim points are independent 

and unique.  Therefore, an aim point Is covered if a warhead arrives 

at that point whether any other warheads arrive.  By this definition, 

a maximum of N'R-S aim points can be covered.  The question is how 

many of t! ese points are indeed targeted. 

Each weapon is assumed to have T aim points which are prestored 

in its guidance.  We will assume these are. unique destinations and 

that there exist T weapons possessing each possible aim point.  There- 

fore, an aim point may be covered with probability R if at least one . .- 

■\^V^V'".^V»V^V*Y-V* »vAV*V*v-".*•--• .>WV>VV MmAT^ -"->'• -"* -\«"- «\»\*"v"v*v*v V V -* V V *-- V'V'V V \- V ' .• ".- V V V '.- ".- '.- - 
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of Lhe T weapons possessing that aim p int survives.  We further assume 

these weapons are independently survxvable.  The probability that an 

aim point is covered by the surviving weapons (Pc) is thus: 

Pc  =  1 - (1 - S)T (0-2) 

We may now state that the total probability that an aim point is 

attained (R ) is the probability that the aim point is covered by the 

survivors times the probability that a launched weapon reaches the 

target, or: 

R  =    R •   1 - (1 - S)T (0-3) 

This R ma> be described as the effective reliability of the 

weapon type. We now must address the effective number of weapons 

of this type (N ) which are allocated. 

We note tnat ehe actual aim points covered by the surviving force 

is N#S.  The effective number required f :over these aim points is 

■k 
N *Pc.  If in fact N»S, aim points are selected by the targeteer, then: 

N*  - Sg (0-4) 

This assumption has been made in AEM.  Note that the property of the 

aim points described in equation (0-1) is preserved and that equation 

(0-4) is smoothly behaved between these extremes.  No proof is cur- 

rently offered that this assumption is optimal. 

CFK 
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4.   Impact On Force Values 

In a manner similar to the effect of random defenses, a limited 

retargeting ability by a weapon does have a measurable effect on the 

force value to be placed on that weapon type.  For example, if a 

certain weapon type has a target capacity of one, then destroying one 

of those weapons does not ch,, 2,e the number of "effective1" retaliating 

warheads, instead it modifies the "effective" reliability of the weapons. 

And, all of the weapons of the typ^ have their reliability changed. 

If a value is placed on one such weapon when it is a force target, that 

value must reflect the true imp; t resulting from destruction of one 

such target. 

In the general case, destruction of a si. ,le target of some weapon 

type will change the reliability and number of "effective" retaliating 

warheads.  If we use equations (0-3) and (0-4) to describe the 

effective retaliation forces, then we can derive: 

£&££££i£S^^ -' ■ 
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+z-* 

■Ar 
A R 
A NTD 

where: 

AR* 
A NTD 

a s      "TNTD 

Change in rrnlability of all weapons of a 

type when one force target of a type is 

destroyed. 

dR_   =  Change in reliability for a unit change in 
as" 

probability of survival. 

o S Change in overall probability of survival 

when one more target of a cype is destroyed. 
6NTD 

If we assume, for simplicity, that there are. N targets, then we have 

S = 1 - 
NTD 
N 

wh^re: 

NTD       =       Number  of  targets   destroyed. 

It   follows   then   that 

as 
a NTD b 

and,  using (0-3) 

a R*  _ RT   (1  -   S)   T_1 

and 

as 

* T-1 
A R    m      RT     (1 -   S) 

(0-6) 

CO-7) 

(0-8) 

(0-9) 

V > V v V V V V V V7>"W V  .'".-'.- <- '• 
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In a eimilar fashion, we can derive: 

* 

A N      N_    •      __*_J (0-10) 
A NTD       S d NTD 

where: 

£ N  ■  Change in effective number of retaliating war- 
A NTD 

heads when one   force   target  of  a   type   is 

destroyed. 

and 

A N*       a        1  -   (1  -   S)   T    -   s(l  -   S)   T"i(-T) (0-11) 
ANTD f -  (1- s)T]    2 

Now, the appropriate value to he placed on this weapon type can 

be computed using equations (0-9) and (0-11). We know '„hat changing 

a retaliatory force by one warhead reduces damage by \ units (see ^r 

Section IV-G). We also know that, for a fixed force, the loss in re- 

taliatory damage can be computed when there is a small change in re- 

liability (see IV.G.e.). 

Thus, the value to be placed on a force target can be computed as: 

A NTD ' NTD       ) R K ' 

where: 

V    = Force target value 

X   = Marginal weapon utility 

—r—-  =  Delta change in retaliatory damage for A  R 
A   K 

change in reliability. 

A  N 
It is interesting to note that -r —  *• 0 as T-->1 and 

NTD 

a R  -► 0 as T—►<» .  Thus, the two terms in equation (0-12) have. 
dNTD 

a different impact, depending upon the exact retargeting capability. 
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The process used to compute force values for any given situation 

would then operate as follows: 

1) Side attacking the weapons uses arbitrary initial force 

values. 

2) Side possessing the weapons uses the relationships of (0-3) 

and (0-4) to lead to his retaliation. 

3) After the completion of the retaliation in step (2), there 

will be available weapon lambdas ( \   in (0-12) and it is 

simple to compute the resultant small change in retaliatory 

damage, AVD for some small change in weapon reliability, 

A*. Using th se results and relationships (0-9), (0-11) 

and (0-12) will lead to new force values. 

5« Prelaunch Survivability Estimates 

The preceding discussions have described the targeting philosophy 

for some survivability factor S.  If the survivability is known prior 

to targeting, this philosophy has been shown to be correct at the 

end points where a target capacity of one implies only the surviva- 

bility is known and an essentially infinite target capacity where the 

particular surviving warheads are known. A more realistic case in- 

volves targeting based on an estimated survivability (SK) which may 

not correspond to the actual S. 

To model the effect of such estimates, two levels of targeting 

have been assumed. The first level involved total arsenal targeting 

in accordance with survival estimates for each weapon type which 

occurs before the war starts.  This allocation process, denoted as 
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plan generation in AEM HEDGE, determines the targets a particular 

weapon type may att... '.     iuu candidate strategies to be used.  (If 

target capacity is one, the candidate strategies will be used.) 

The second level of targeting is performed by the weapon type 

commander once the attack has occurred.  This targeting allows some 

adjustment of the strategies as generated by the arsenal plan.  This 

adjustment is made within the targets assigned to the weapon type 

commander and within the retargeting capability of his particular 

weapons.  However, the aim points of his weapons are not allowed 

to change, i.e., he retargets with improved knowledge of his sur- 

vivors but can only change the number directed to prestored aim 

points which were determined by the arsenal plan. ***''' 

This procedure is approximated in AEM HEDGE by using the 

estimated survivnbility (SE) to compute an R and au N which are 

used to generate the plan.  The true survivability (S) is tnen used 

to compute the true N .  These N weapons at reliability R are then 

retargeted against Lite same aim points denoted by the targets previ- 

ously assigned.  Then, an evaluation of the strike damage is made under 

the assumption that the N weapons really had a reliability of R . 

That is, if A aim points were originally assigned to a particular 

weapon type: 

A = R*  . N* (0-13) 
L    E 

^ .-1,;-1/-^ V^;-!^^ '-" *- 
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These aim points must be maintained during any post attack retargeting. 

Therefore, on the average, some fraction oi A, A will be retargeted. 

N 
A - 

N 
N = N  • R 
E        E (0-14) 

The above process identifies the aim points, A , and then evaluates 

the true damage :or those aim points. 

This retargeting technique is precise if survivability is correctly 

predicted since S  = S produces N = N which implies A = A.  If 
E h 

* 
S  ^ S, N is diffe *ent from N only if a retargeting capability exists. 

If a sufficiently la -ge retargeting limit is considered, R = R = 1. 
LJ 

Therefore, the number of aim points is changed from N  to N with the 
E 

further limit that no new target can be added to the list. 

The current formulation of estimated survivability do,.... net allow 

for contingent targets should N  be greater than N .  Nor can hedges 

currently be used in conjunction with misestimated survi ability. 

Hence, the effect is probably over emphasized in this formulation. 

The latter restriction wiLl most likely be removed in the near future. 

6.   Infernally Computed Prelaunch Survivability Estimates 

Prelaunch survivability has always been computed internally in 

AEM for all strikes when forces may have suffered a previous attack. 

In the case where an estimated survivability (SE) occurs, there is 

a question of proper procedures for arriving at SE.  With this in 

mind, a procedure has been provided for analyst aid in developing SE. 

r/w^V.V.Vfl^v.V-Vv v.v v v •> v. v "-■ ■/•*»m"t *"u »"■ * - x- +f ■/' **»'■«- **  .»■%.'■ ■"■ ■* >r V» 'J» ',■ "f 
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This procedure involver. computing a prelauncli survivability 

internally in one scenario and using that result in later scenarios. 

The primary control for this option Ls a variable HOLD which pre- 

initializes the prelaunch survivability for the next ease as the one 

computed for this case.  This allows the estimated S to be saved 

on a data tape if desired for later non-concurrent analyses.  The 

progr.'Ti flow is illustrated below: 

Perforn the entire 
first Scenario 

If HOLD = 1. 
Save the base survivability for 
all bases attacked on both sides. 
(Use actual survivability if mis- 
estimates were evaluated) 

If HOLD = 1, Pre- 
_^1 initialize PLS by surviv- 

ability computed on prev- 
ious case 

Read Data for Next Case 

Perform this scenario using PLS 
estimates if misestimates are 
to be evaluated and a previous 
H0LD=1 was encountered or PLS 
estimate read in. 

This estimate of PLS remains until a 
_new H0LD=1 is encountered or PLS is 
altered by input. 

_This operation includes saving 
of the current arsenal includ- 
ing PLS estimates on the data 
tape. 

,..L.^...t -. 1.._..1.. -. V- _i^-*^ 
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7.       Summary 

It must be remembered that this effort has been concerned only 

with modeling the effect ol retargeting limits and survival estimates 

and i ■; not: a detailed, rigorous formulation.  However, it has been 

shown that the effect is precise at the extremes of retargeting 

Limits and is smoothly behaved between these limits.  Additionally, 

retargeting at the weapon type level may be employed to investigate 

the effects of mis-estimating survivability.  The latter procedure 

involves retargeting within reselected aim points which are generated 

by the estimated survivability. 
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P.   GENERATION OF HEDGING ALLOCATIONS 

1.   The Problem 

The Arsenal Exchange Model has traditionally been ab] » ; i deal 

with measurement of the impact of uncertainties.  (This capability is 

described in an earlier chapter, TV-N, Estimates and Misestimates.) 

The traditional approach centered upon the notion of strict evaluation 

of penalties due to uncertainties, rather than development o\'  allo- 

cations which would minimize the penalties.  The philosophy was based 

on the idea that understanding of penalties could lead to actions 

designed to reduce uncertainties. 

There is another view of uncertainties, however, which is 

n7 probably of equal importance.  This view, which wiii be addressed in 

this chapter, is that some uncertainties cannot be eliminated, or even 

reduced, and allocations should be developed which would minimize the 

impact of such uncertainties. 

Considerable work has been done by many individuals in problems 

like that encountered when dealing with uncertainties in strategic 

allocations.  Review of that work reveals a fairly basic assumption 

that is unrealistic for this application, however.  Most otten, one 

finds that a necessary ingredient to the development is an assumption 

that probabilities, or probability density functions, are available 

to describe the uncertainties.  For example, if event A is an uncertain 

event, most approaches require specification of P , where P  is the 

probability that event A will occur. 

• -•• •,;•■/ -; v -■ "-* "-" --"*-" '-  ■"- "- "- "" "- "- "- 5* 



In thii context of strategic analyses, Like those AEM is involved 

with, such probabilities arc impossible to develop.  For example, 

L'kc the case where event A is the situation where all ICBMs »"nil 

because of some previously undetected defense mechanism.  In such a 

case it is impossible to arrive at any rational probability of event 

occurrence. 

Most often there is a finite, but small, number of events which 

are of veiv low Liklihood but whose occurrence could be catastrophic. 

In such <i case the analyst would like to develop allocations which 

minimize sensitivity of the allocation payoff to the occurrence of 

one, or more, of the events.  Such allocations can be called hedging 

al locations. 

The AEM concept for dealing with iuch low probability events 

is to require that  n analyst specify in some quantitative manner 

what result he would accept as "adequate" if such an event did 

occur and the allocation was not optimized exactly for the event. 

Specification of such goals results in placement of side conditions, 

or hedges, that the allocation must try to satisfy. 

A hedging condition should be considered as a specification of 

some requirement or goal to be met for the specified side whenever 

that side is conducting an allocation of weapons to targets.  These 

conditions can, at the present time, fall into three separate cate- 

gories as follows: 

W 

Lv^vA\::r^y-v/-^v^^'^ - — 
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1) A condition on the tola] damage achieved on a specified 

set of target classes by ^   specified set of weapon types. 

2) A condition on the total number o[ weapon RV's allocated 

against a specified set of target classes by a specified 

set of weapon types. 

3) A condition on the total number of targets hit by a 

specified set oi  weapon types over a specified set of 

target classes. 

In most cases such hedging conditions cause the allocation to give 

up some damage in order to satisfy them.  In that sense, a hedged 

allocation is usually "non-optimum" by a max damage criteria but the 

allocation will meet the specified hedging conditions if at all 

possible, ant' it will do so at a minimum penalty to the max damage 

objective. 

In order to demonstrate what is meant by a hedge, consider the 

following examples:  (Not in AEM input format.) 

Example 1:  Have Side 2 attain at least 250 i its of value 

destroyed on value targets and have weapon type 7 

be the only type of weapon achieving the damag . 

Example 2:  Allocate no more than 175, Side l, ICBM RV's 

against OMT targets. 

Example 3:  Allocate Side 1 weapons so that if all missile 

pen-aids fail the damage received from the 

allocation would h  at least 500 units. 

U,^j.^V»M>-fc^A«.t!^^^^^lL>>W^>.JV.>.\Ai.^lA.N.l g—J ■■>. •..-■■. ■ -* ■ -• ■ ■ i ■  
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Those examples demonstrate certain kinds o| side conditions 

which the analyst wants to insert so lie can influence Hie sensitivity 

to some uncertainty. 

Example I might have been generated because weapon type 7 is a 

submarine type that is verv invulnerable and allocation of that type 

to cities guarantees adequate assured destruction in the event that 

side 1 conducts a pre-emptive attack on ; de 2. 

Example 2 might have been generated in order to force a mixed 

attack on side 2 military targets.  This hedge would do   so in an 

indirect way by limiting the number of ICBM weapons launched at 

such targets. 

Example 3 basically is a hedge against the event where all pen- 

aids fail.  No probability of the event is available, but the analyst 

would, be satisfied with an allocation that achieves some "adequate" 

level of damage if the event does occur. 

This latter concept of an "adequate" level of damage can best 

be visualized if one considers more fully the situation of example '). 

Assume, for an example, that side 1 can allocate for the condition 

where his pen-aids work and he knew they would work or for the 

condition where they fail, but he knew they were going to fail. 

Two such allocations might result in 8^ü» 1 and 613.3 units of payoff, 

respectively for the work/fail events.  These two allocations could 

then be evaluated to see how much payoff would occur for the opposite 

event.  Such evaluations might yield the following: 

- '••-•> V.'- ' •-"-■«- «'. • ■ £ 
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896.1 310.0 

705.3 613.3 

*T7 

This table demonstrates a basic point.  If the allocation was based 

on the pen-aids working, and they failed, the result (310.0) is far 

worse than if the assumption originally had been that the pen-aids 

would fail (615.3).  This is usually an inherent characteristic ol 

allocations which are based on single measures of effectiveness-- 

namely that some low probability event can cause catastrophic drops 

in payoff. 

In this example the desired hedging allocation would have the 

characteristic  that at least 500 units of damage would be achieved 

if the pen-aids failed, even though the primary assumption was that 

they would not fail.  Such an allocation might, for example, result, 

in 815.0 units of damage if pen-aids worked and 500 units if they 

failed.  This is not as good, in either event, as the best possible 

but it does minimize to some degree sensitivity to the event 

occurrence. 

The analyst has basic control by his specification of the 

"adequate" damage value.  In this case, where 500 damage units was 

■V-WY-' 
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defined  as  adequate,   n  certain  allocation would   result.      ft   the 

")()() was   raised   to   ul)0,   the   allocation  would  shift   toward  emphasis 

ol   the   pen-aids t-vent.     AM   possible   inputs   for   the  desired 

goal  might   result   in  allocations  whose  damage  plots   as   follows: 

l')00 

iS96)^ 

DAMAGE 
LEVEL 

800 - 

600 ■ 

400 ■ 

200 ■ 

Damage If Pen-Aids Do  Not 

(705) 

(615) 

(310)     V 
* Damai? Damage   If Pen-Aids  Fail 

200 400 600 800 

MINIMUM ACCEPTABLE DAMAGE LEVEL 
IN EVENT PEN-AIDS FAIL 

By development of this whole plot thp analyst could understand 

completely the implication of ar" definition he is interested in 

Lor "adequate". 

The analyst might feel that he would never accept anything as 

low as 500 units of damage.  In such a case this type of plot could 

%'&? 
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immediately tell him what goal to require tor the pen-aids fail 

event and it would also show how big a penalty that goal is imposing 

if they do not fail. 

In summary, a hedging allocation is an allocation generated on 

the basis of maximizing against a primary objective while, at the 

same time, satisfying a number o[  side conditions or goals.  The 

basic intent of such allocations is to arrive at an allocation which 

has no "Achilles Heel" where certain specified events would result 

in unacceptable payoff levels. 

2.   The Methodology Base 

The mathematical structure for development of hedging allocations 

is available in AEM because of the linear programming (LP) approach 

used in all allocations.  (See Chapters IV-A and IV-D.)  The presence 

of an LP offers the opportunity to insert miscellaneous constraints, 

or conditions, into the allocation process in a very matural manner. 

The way this works out in the case of hedges will now be addressed. 

Basic understanding of the hedging condition impact must begin 

will the approach used in AEM for ail weapon allocations.  Basically, 

the idea is as follows: 

Step 1:  Generate, on some arbitrary basis, a candidate 

allocation of all weapons to individual targets in 

the target set.  This candidate allocation takes the 

form of a set of "scrategies", where each strategy 

is a proposed allocation of some number of weapons to 

KÜ _£v!&£v^^ 
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W s ome sp cc i f i c t a r ge t.  For <«x amp' e, a t yp i c a I s t ra te g\ 

might, say to allocate L7 weapons of type 3 to i singli 

target of class 8. 

Step 2:  Given the candidate set o[  strategies, insert, all of 

them into an LP which is to chnci.se from among all the 

strategies so as to maximize total payoff, while not 

exceeding constraints on the number of weapons and 

cargets. 

Step 3:  At the completion of Step 2, evaluate the strategies 

chosen and determine if any new candidate strategies 

should be searched for, or if the given allocation is 

optimal. 

Step A:  If the optimal allocation has not yet been determined, 

go into a search mode to find new candidates and insert 

them into an LP, then return to Step 2 with the new 

candidate set. 

The crucial step in this whole procedure revolves around 

Step 4.  It is in this step that presence of hedging constraints 

impact most strongly. 

To help visualize a typical LP tableau consider Figure P-l. 

This is a tableau as might occur for a 2-weapon type, 6-target 

class problem with 3 hedges.  (Note that the payoff row has negative 

entries.  This occurs because a minimizing algorithm is being used 

to perform a maximization objective.) 

-..-. , * % 
- -  '  T  -  .  .  ■  -  ■ £    - 
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There are two candidate strategies for each of the 6 target 

classes.  For example, Lhe first candidate for target class 1 indicates 

that 3 weapons ul iv, ■ I would attain 18.1 an its of payofj if it were 

chosen.  The entry of a 1 in the first target class constraint indi- 

cates that choosing this first strategy will use up 1 of the 5 targets 

oi   class 1.  The target constraint row for class 1 assures that no 

more than 5 targets of that type will be attacked. 

There are 3 hedging conditions in the tableau.  Hedge 1 is a 

condition that says:  do not. fire more than 25 of weapon type 1 on 

targets in classes L through 3.  Hedge 2 is a condition that says: 

do not attain more than 250 units of damage in target classes 3 

through 5.  Hedge 3 is a condition that says:  do not attack more 

than 35 targets with strategies that involve weapon 2. 

The job of the LP algorithm, as called for in Step 2, is to 

choose that combination of sti fegies which lives within the con- 

straints and, at the same time, maximizes total payoff.  In 

mathematical notation this is equivalent to: 

Choose X(i) such that: 

\^    X(i)VD(i) is maximized (P-l) 

i 

and 

2^  X(i)E(i,j)  <   R (j) for 1 < j < C (P-2) 

ä^j^AJ^iJ^ai^ v -; 
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where: 

X(i) - number oi   targets to be hit using, strategy i. 

VD(i) = payoff attained each time strategy i is used 

one time. 

E(i,j) = entry in row j and column i. 

R(j) - constraint value for constraint j. 

C - total number of constraints. 

It is important to realize in this formulation that the X(i) can 

take on non-integer values.  That is, for example, X(l) can be any 

value from 0 up to 5.  The limit of 5 occurs simply because there are 

only 5 targets of class 1 and that is the target class involved in 

strategy 1. 

An alternate matrix notation for equation (P-2) is of interest 

because it emphasizes the columnar aspects to the problem.  That form 

is as follows: 

( 

X(l)+ 

0 

5 

i 

0 

0 

0 

0 

0 

0 

0 
i 
11 

X(2}+... X(12) < 

H 
82 

5 

8 

L4 

22 

89 

14 

25 

(P-30 

250 

\ 35 / 

KJV_V_ A. ■•rJ.jV.. -*>JLjfc, V- .. - S- a i - g. i - - - - - i - =_«_: • ~-i-'-■<-----• - « .•.----»- ■ - - ■«   « - - • : ; = : . t ■ j     ■ t 
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Each of the 1 column matrices indicated in i lio brackets corresponds 

to a column in tht1 LP tableau.  Thus, add'1 urn ol ot 1KM: candidate 

strategies .simply amounts to augmentation ol the tableau with moth« r 

column, and another bracket in equation (P-3). 

it is very important to understand the nature ol the entries 

in each of these columns.  Basically, each row in an LP should be 

visualized as a resource constraint.  This is true even for con- 

straints which normally one would not think of as "resources".  A 

constraint is always a "resource" in the sense that only so many units 

are available for use and the LP must "dole out" the resources in as 

efficient a manner as possible.  In this light the entries in a 

column are the amounts of resources of each constraint type used up 

• * - ■. 

if that strategy is chosen to a level nf 1. %«yy 

For example, column 1 says that 3 units at weapon type 1 

resource will be used, 1 unit of target type 1 resource and 3 units 

of hedge condition 1 resource, if that column is chosen. 

This notion of column entries will be returned to, but for the 

moment consider another aspect to the LP algorithm.  At the completion 

of L? convergence with a given candidate set of strategics, the values 

of X. have all been set.  In addition the LP produces some auxiliary 

output "which is very important.  This other output can be described 

in many wayj. , but for our purnoses it can best be viewed as marginal 

utility measurer for the constraints. 

These marginal utilities, herein called lambdas, indicate the 

marginal change in payoff for a unit change in a given constraint 

.v_y,v/«'-V.y. CM •*> •"• *".-''■-•*■-'''-■• -.* -.' -/ •/•..•-'•/. -•■-..• .•• ,•,"->'•,'• '•-*'• a!i• -.' •-/.• --.\s..-.r■■»•_y_*M-_'V-y. "■•■V«.'.-.". ". •-. v. -". •*« A"\- ^ 
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if all other constraint values and tableau entries are held constant. 

These lambdas provide a relative "scarcity of resource" measure.  If 

the lambda for constraint 5 is equal to 10.7 and the lambda for con- 

straint 3 is equal to 3.5, it indicates that the last unit oi' 

constraint 5 is worth about 3 times that of the last unit o[   con- 

straint 3. 

Using such lambdas, any column which is a candidate for being 

added to the LP can be "costed-out" to determine how big a demand it 

would place upon the limited resources.  For example, column 1 of the 

tableau requires 3 units of constraint 1, 1 unit of constraint 3 and 

3 units of constraint 9.  Thus, if column 1 was brought into the LP 

solution, it would tentatively cost an amount equal to: 

P(l) = 3 • X (1) + 1 • A(3) + 3 • X(9) (P-4) 

where: 

P(l) = expected price to pay if column 1 is chosen 

to level one. 

^ = current marginal constraint values. 

However, if column 1 is chosen, 18.1 units of payoff will be accrued. 

Thus, the net benefit of bringing in column 1 is: 

NP = 18.1 - 3 • A(l) - 1 • X(3) - 3 - A(9) (P-5) 

where: 

18.1 = return for bringing in column 1. 

NP = net payoff for bringing in colunn 1. 

= (return) - (cost). 
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This   concept   of "n   icing-out"   a  column   is  key   to   the  whole A EM LP 

procedure   and,   espc< Lallv,   to   the  hedging  constraints. 

The  mathc:        L.U   term of   equation   (P-5),   see  Reference   (4)   arid 

Chapter   IV-D,   can   be   stated   as   follows: 

C 

NP(i)     =     PX(i)   - A (j)  G   (i,j) (P-6) 

j   -   1 

whe re: 

PX(i) = expected payoff from column X(i). 

A(j) - constraint j marginal utility measure. 

C = total number of constraints. 

G(i,j)  = level of resources of type j called upon 

in column i. <vrr' 

Determination of the best possible strategies follows from 

equation (P-6).  The best strategy at any given iteration stage is 

that one which "prices-out"  most positive, or in other words the 

best   G(i,j) values for a column are those which result in the 

largest possible NP value. 

Primarily, equation (P-6) is used in steps 3 and 4 of the basic 

A£M LP iteration process.  At the completion of any given LP this 

equation can be used to find out if any new candidate strategies 

should be added to the LP and, at the same time, determine if the 

iteration process can stop. 

:b>>^^:K^ 
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The crucial stop in using (P-6) is in finding the best values 

for the column entries (G (i,j) ).  Since hedging conditions result 

in entries in the column, the presence o !r hedges therefore make use 

of (P-6) more complex. 

Before delving into the use of (P-6) in hedging allocations 

it would be of some use to consider what varieties of hedges might 

be of interest.  This would indicate possible entry sources. 

3.   Types of Hedges 

There are obviously countless types and varieties of hedges 

possible.  However, at this stage of development it seems appropriate 

to consider three special types which offer considerable flexibility. 

These three types are classified as follows: 

Value Hedges:   A condition on the value destroyed on a specified 

set of targets by a specified set of weapons. 

Weapon Hedges:   A condition on the number of RV's of a specified 

category allocated to a specified set of targets. 

Target Hedges:   A condition on the number of targets of specified 

classes attacked by a specified category of 

weapons. 

These types are of special interest because they are involved with the 

three crucial elements of allocation:  how many weapons attack; which 

targets; and how much damage will they do? 

All of these three types of hedges are demons,_rated in the 

tableau of Figure (P-l).  Hedge 1 is a weapon hedge; hedge 2 is a 

value hedge; and hedge 3 is a target hedge. 

-jtäjL^^^^^A^L^^^ .'-V-^ /- ,^ ■>.«•-> «Ji^Vi ._, _ _._ _.. 
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In add i t i >n there is .1 variant 01 Lhe value hedge which is o! 

interest.  The value destroyed hy a i;iven •>;• ttegy is 1 t'unct ion oi 

three things:  the value e  the. target; the uumbet oi weapons 

allocated; and the damage function parameters tor the given weapon 

on  the given target.  It is in the damage Junction that the impact oi 

many crucial uncertainties assert themselves. 

For example, • *"    >.  - is uncertain about any weapon effectiveness 

parameters, like yield and CEP, or about any target vulnerability 

parameters, Like hardness and defense Level, th«3 uncertainty can be 

expressed as an uncertainty about such things as probability of 

single-shot kill. 

The importance ox   damage function uncertainty leads to the desire 

to specify value hedges which allow for uncertainty in damage 

function parameters.  Thus, a broader  definition uf .1 value hedge 

might be as follows: 

Value Hedges:   A condition on the value destroyed on a 

specified set of targets by a specified set of 

weapons when the probability of kill for the 

weapons is computed on the basis of some 

de s cr i be d we ap 0 n a n d t ar ge t ch ar a c t e r i. s t i . c s. 

Such a hedge might be as follows:  attain at least 907 damage on all 

value targets even if side 1 weapon reliabilities are .10 lower than 

expected.  This uncertainty about reliability reflects itself in 

uncertainty about the damage such weapons will achieve on Lhe targets. 

•*fr* 
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Even though many othei hedge varieties are possible, these 

three types seem to contain the essence of the hedging problem. 

In order to demonstrate more fully the notion o\'  hedging types, 

consider the following examples: 

Example 1:    (Weapon Hedge) 

Have side 1 attack the 5th city class on side 2 by at 

least a total, of 50 RV's of the SLEM type. 

Example 2:    (Value Hedge) 

If side 2 has 500 random area defenders instead of the 

nominal side 1 estimate of 250 defenders, side 1 would still 

like to try to do at least 650 units of damage to the value 

targets on side 2. 

Examp1e 3:   (Weapon Hedge) 

Each target in the first OMT target class (which has ten 

targets) on side 1 must on the average be attacked by 2 ICBM, 

3 SLBM, and 5 A/C RV's. 

Example 4:    (Target Hedge) 

All targets in the last OMT class and the first two value 

target classes on side 2 must be attacked by some weapon. 

Examp 1-3 5:    (Value Hedge) 

Side 2 is unsure about his own weapon reliability (values 

of .7, .8, cr ,95 are possible, with .8 being nominal).  Separate 
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runs for RL = ./ and .95 were5 made hol ore the current hedging 

run.  In (hose ^asts, the damage attained against side J were: 

805 units w;    v.  -■   . / and 902 when RL ■ .95.  Side 2 would be 

satisfied with Oi\e  allocation that maximized damage for RL = .8, 

while attaining at least /HO units damage if RL = .7 and 850 

when RL = .9 5. 

Example 6:   (Target Hedge) 

The OMT targets on side L are so important that side 2 

wants to attack all of them by some weapons oi'   type 3, some of 

type 2 and some A/C. 

4.   Evaluation of A Hedging Strategy 

Given that some set of hedges occur in an LP, it is necessary to 

utilize equation (P-6) to determine if any new strategies exist which       \tfi* 

price out positive, and therefore should be added to the LP in the 

next iteration step.  Expressed in a partitioned form, this amounts 

to the following: 

Find a strategy for which NP(i) is maximized, where: 

NWP 

NP(i)  =  V-PK -        LW(M)-N(M) - LT 

M = 1 

NV 

- V  /        LVH(M) . PKV(M) 

M = 1 

'jf^l*.'\ lVV\.\VVwVm*-•AV\'I. AA'JA" JL'.»1T.V VJAJ^JI.. _J._A~ ._*.„, L.   ■.:•./. '."•-' :-"_%"._"^"_v"L*/_"i 
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NW 

/    LWH(M) • NWH(M) 

M = 1 

NT 

Yj  LTH(M) . NTH(M) (P-7) 

M = 1 

whe re: 

V = value of a target of the class being attacked. 

PK = probability of kill on this target for the allocation 

being studied. 

NWP = number of weapon types. 

N(M) = number of weapons of type M in the allocation. 

LW(M) = constraint lambda for weapon type M. 

LT = lambda for the target constraint.. 

NV = number of value hedges. 

LVH(M) = constraint lambda for value hedge number M. 

PKV(M) = probability of kill as computed by the rules for value 

hedge M. 

NW = number of weapon hedges. 

LWH(M) = constraint lambda for weapon hedge M. 

NWH(M) - entry in weapon hedge M constraint row. 

NT = number of target hedges. 

LTH(M) = constraint Limbda for target hedge M. 

NTH(M) = entry in target hedge M constraint row. 

•■^•'^•'»..-^•'-r.^   .'.1V./V  •^W'.V.  -   ■-•".•"-.-  l'   -'  ^.'':^■^A^^.^,^■'\^'|.(^■^'    '\''. >', N '','', '',  '    .    *'^ *'.    ^S <'-   S     '%  ■ V   .'V  ^ 



Equation (P-7) is quite a complex mess to understand in one 

piece so a partitioned explanation is hi order.  Tin simplest way 

to understand (P-7) is to assium that someone has picked a Candida1;» 

strategy for a given targeL and (P-7) is  o be used to see if that 

strategy is a g od one.  Having a candidat» strategy m.ans that 

N(M) is specified for 1 < M < NWP.  For example, one might have 

N(l) = 0, N(2) = 3, N(3) = 0 and N(4) - 8, for a 4-weapon case. 

In order to make this equation   understandable it will be 

convenient to conduct sample computations for a typical case for each 

term in aquation (P-7).  Data necessary for the sample computations 

will be as follows: 

TargeL Value, V =  105. and it is a force target. 

Number cf Weapons, NWP =  2. -H»*** 

Number of Value Hedges, NV =  2. 

Number oi  Weapon Hedges, NW =  3. 

Number of Target Ledges, NT =  2. 

Candidate Strategy, N(i), is N(l) - 5, N(2) = 3. 

Lambdas trom last LP are: 

LW(1) = .89, LW(2) = 1.55, LT - 67.0 

LVH(l) = .05, LVH(2) =- .52 

LWH(l) = .5, LWU(2) - .8, LWH(3) - .7 

LTH(l) - 2.1. LTH(2) = 3.2. 

The hedges are: 

Value Hedge i:    Value destroyed on all force targets must be at 

least 7 50 units even if 97 5 random AtM exist.  k 

(Nominal estimate is that 500 exist.) 

•jL^Ü-'j *-» ' -■ '-'      '--.'■» V^.T-W ''j  • ■ '.- '-•  "-T ,', ! .-  V '.':     '.*. 'mf 
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xw 

Value Hedge 2:   Value destroyed on all urban targets in   the 

list must exceed 5C% of the val~e in the list. 

Weapon Hedge 1:   The number of weapon type 1 attacking all 

force target ■- must not exceed 210. 

Weapon Hedge 2:   The number oC weapon type 2 attacking all 

force targets must not exceed 100. 

Weapon Hedge 3:   The number of weapons of any type attack'  ; 

force targets must not exceed 350. 

Target Hedge 1:  The number of targets hit by weapon type 2 

must exceed 200. 

Target Hedge 2:  The number of OMT targets hit by all weapons 

must exceed 150. 

The appropriate single-shot probability of survival numbers are as 

follows: 

WEAPON 
SINGLE-SHOT SURVIVAL  IF 

r00 ABM                               975 ABM 

1 

2 

.55                                       .68 

.72                                       .81 

c» 

Further  explanation  and  use  of all   these  numbers  will   occur   in  the 

term-by-term  discussion. 

Computing V»FK 

Given  that   the  N(M)   are known,   one   should  be  able   to  compute 

the  probabi'    _y of kill   for  the   given  target.     For  example,   if  the 

■s'\i\'ys.vssA<&^ 
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färbet is a point target with no defense, the following equation 

holds: 

PK -  1 -   j j     PSK(M)N(M) (P-8) 

M = 1 

where: 

PSK(M)  =  probability of single shot survival 

against the target class being attacked, 

when attacked by weapon type M. 

Given that PK is known and the vr.1ue of the target, V, is known, 

the first term in equation (P-7)  can be computed. 

However, this is where the first .eal complexity arises.  If 

the N(M) includes more than one non-zero value a mixed strategy- 

exists .  In addition, if the target is an area target, or a defended 

target, the PK value depends upon the degree of partnership employed 

by the various weapon types.  For example, a defended city will have 

one kill level if several weapon types are time sequenced to arrive 

in a well ordered manner and a different kill level if they arrive 

with no order.  Also, in an area target the aim points might, or 

might not have been chosen to allow for mixed strategies.  All of 

these, "ifs" amount to a real problem in computing PK for a general 

circumstance. 

lA'iiV *_•.. -.V,:.^-,.J^. /.'•.'■ ■w'.j'J.v*^«.' ■.'.-.• ■. *.'..-/ . .'-..../ . . . -.• •»• 
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Within AEM a simplification was made in compute g PK.  First, 

it was recognized that realistic computation of PK implies a lot of 

knowledge about very detailed war planning performance.  Second, it 

has been found that mixed strategies usually occur only when hedges 

forct them.  This usually means that r"!tiple weapon types are 

allocated to a target only in case the primary weapo* does not show 

up.  Thus, the idea is to guarantee some level of damage and not to 

take credit for the combined damage which might occur if all weapons 

show up exactly on schedule. 

This logic led to the idea that in each mixed strategy there 

would be one weapon type identified as the primary weapon. All 

other types would be secondaries in that strategy. Then, the PK 

value taken credit for would be the damage expected from the primary 

weapon alone. The secondary weapons would be taken credit for only 

in satisfying the hedges. This primary weapon is identified as that 

weapon which would get the maximum kill if he was the only weapon 

type arriving at the target. 

If ehe previously presented numbers are used, we find that: 

V = 105 

PK(1) = 1 - ,555 = .95 

PK(2) = 1 - .723 =- .363 

Since the PK from weapon 1 is higher, it will be designated as 

primary weapon for the target.  This would result in 

V*PK = 105'(.95) » 100. 

[j^^r^^^ — - —— • — 
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Computing   V*  LW(M) * N(M) 

M = 1 

The second term in equation (P-7) is quite straightforward to 

compute»  N(M) is known and the weapon lambdas are assumed known from 

the current LP solution.  Therefore, this term can be computed directly. 

From the data we can form: 

4 

LW(M) • N(M) - .89 (5) + 1.55 (3) == 9.10 

M ■ 1 

Computing LT 

This term is simply the target lambda from the current LP and 

it therefore is a known value.  In our example LT - 67. 

NV 

Computing    r     LVH(M)»PKV(M) 

M = 1 

'The next term in the so-called "Lagrangian" equation (equation 

P--7) is the contribution of the column entries because of any value 

type hedges that might exist. Again, the lambda factor presents no 

problem since the lambdas are available from the last LP. However, 

the PKV(M) factor, which is the probability of kill as computed tor 

the specified value hedge number M, c^n be somewhat of a prol lem. 

Essentially, all of the issues discussed in the section on 

computing V*PK will arise here also.  If the strategy is a mixed 

strategy, computation of PKV(M) is exactly the same as computation of 

■ •-•-*-■'-- 
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PK, except for the possibly different damage function parameters 

involved. 

The approach in AEM is to compute PKV(M) for each of the 

weapon types in the mixed strategy and to take credit for the largest 

individual PKV(M).  Thus, one of the weapon types in the mixed 

strategy will be designated as the weapon responsible for satisfaction 

of the hedge. 

With this approach, it is necessary to compute separate PKW 

values for each eligible weapon type in the mixed strategy.  (It should 

be noted that usually all weapon types in a mixed strategy will not 

be eligible for a given hedge.) The KW values are the probabilities 

of kill for each weapon type, or: 

PKW(i,M) - 1. - PSS(i,M)N^ (P-9) 

where: 

PKW(i,M) = cumulative probability of kill for weapon 

type i in hedge number M.. 

PSS(i,M) = probability of single-shot survival for one 

weapon of type i. 

N(i)  = number of weapons of type i in the strategy. 

In this equation the PSS ingredient is of special interest.  The 

general value hedge must allow for uncertainties in damage function 

parameters and those uncertainties show up in the PSS factor. 

The situation ic>   as follows.  Weapon type i will have a nominal 

probability of single-shot survival for the target being attacked 

>>>>>V>>:-vvX>Vv^ 



(this is PSK(i) in equation (P-8) ).  But, since there is uncertainty 

.-bout some factors used in computing PSK, like weapon characteristics, 

alternate values vva.iJ show up in the PSS. 

In our typical situation we. have the following case.  Weapons are 

being allocated on  the assumption that 500 random ABM defenders exist. 

However, there is some possibility that as few as 250 exist, or as 

many as 975.  The analyst wants to protect himself against the high 

defense level so he specified a value hedge which indicated a goal 

if such a defense level existed.  This higher defense level then 

resulted in the 1 SS \alues indicated in the single-shot survival 

table. 

Die appropiiate values for PKW must then be computed for each 

hedge and each weapon tyDe by use of equation (P-9) and numbers like        *&& 

those in the table.  The correct value for PKV(M) will then be the 

maximum PKW(i,M) for that target, or: 

PKV(M) = max ' PKW(i,M) 5 (P-10) 
i ) 

Given that PKV(M) is available, the complete term 

NV 

y LVH(M)-PKV(M) can then De computed. 

M = 1 
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Using the probability of survival table in our example yields 

the following computation: 

Value Hedge 1:   This hedge applies to force targets and the 

target being studied is in the force class. 

We then compute: 

PKW(1,1) = 1 - .685 = ,855 

PKW(2,1) = 1 - .813 - .468. 

Since PKT-/(1,1) is max, weapon 1 will be 

designated as the primary hedge weapon, for 

this hedge at least. 

This results in: 

V-LVH(1)-PKV(1) = 105(.05)(.855) « 4.5 

Value Hedge 2:   This value hedge applies only to urban targets 

and, thus, will not call for an entry in this 

column. 

V*iVH(2)-PKV(2) = 0. 

Computing  V^   LWH(M) »NWH(M) 

This computation is rather straightforward.  The lambdas, LWH, 

are available from the last LP.  NWH(M) is the number of weapons in 

the mixed strategy which are eligible for satisfaction of weapon 

hedge number M.  Simple knowledge of N(i) and the statement of the 

weapon hedge allows direct computation of this •omponent. 

rflh-VA«.*'-/ *s -V -A .* .' S J    _• -1 s «,.,.* ■ • s i_!_i! 1 « Ü . • • • .—a 1 1 .—• . •—•—■  .  .  ■ 
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In our example, 3 weapon hedges exist: so it will be necessary 

to go through 3 computations: 

Weapon Hedge I:   Weapon I is involve a Ln this streets 

hedge does apply: 

LWH(1)»NWH(1) - .5 (5) - 2.5 

Weapon Hedge 2:   This hedge doss apply since weapon 2 is 

included in the mixed strategy: 

LWH(2)-NWH(2) = .8 (3) - 2.4 

Weapon Hedge 3:   This is a force target so the hedge does apply 

and we get; 

LWH(3)-NWH(3) « .7 (5 + 3) = 5.6 

Note that NWH(3) is the sum of all weapons in the strategy.  This 

occurs because the hedge said that all weapons attacking force 

targets must not exceed 350. 

Computing   V^   LTH(M) «NTH(M) 

Again, the computation of this term can be done very easily. 

The LTH are available from the last LP and NTH(M) will always be 1. 

or 0.  If target hedge M does not involve the target under investi- 

gation, it will be a 0.  If the hedge does include this target, 

NTH(M) will be a 1.  In cur example, target hedge 1 applies to all 

targets, while target hedge 2 applies only to OMT targets.  Thus, 

NTH(l) will be a 1 and NTH(2) will be a 0.  This results in: 

**,«? 
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LTH(1)-NTH(1) - 2.1 (1) = 2.1 

LTH(2)-NTH(2) = 3.2 (0) - 0. 

Computing NP 

Now that all individual terms are available the total value 

for NP can be found.  In the example we have been using the terms 

add as follows: 

NP(i) = 100 - 9.1 - 67 - (4.5 + 0.) 

- (2.5 + 2.4 + 5.6) - (2.1 + 0.) 

= 100 - 93.2 

= 6.8 

Since NP(i) has turned out positive, it can be concluded that the 

candidate strategy would be a good one to add to the LP tab! 

The more crucial question, however, is one of finding that 

strategy set, N(M), which would make NP as large as possible.  Such 

a strategy would result in the most rapid improvement to the alloca- 

tion process.  The issue of finding such optimal strategies will be 

addressed next. 

5.   Generation of Optimal Strategies 

The basic mathematical problem in generati n of optimal strategies 

is to find N(M) such that NP is maximized for a given target.  (This 

is one case where it is far easier to express the objective than it 

is to carry out the problem.)  A grasp of the difficulties in this 

objective can best be obtained by working up to the most general 

case from the simplest possible case. 

*\*"* «% .N . .. «. » r a -^ 
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The simpl« ;t situation exists when only one  weapon typo is 

being allocated and there arc no hedges.  In that circumstance 

i '[nation (P-7) ret! .    LO: 

NP(i) - V-PK - LW(])«N(1) - LT 

tn addition we know that: 

(P-ll) 

(P-12) 
N(J ) 

PK = i - PSK(l) V' 

so that the objective is to:  choose N(l) such that: 

NP(1) - V(l - PSK(1)N^) - LW(1)-N(1) - LT 

is maximized. 

Maximizing this function is thoroughly described in IV-A and the 

derivation will not be repeated here.  The basic procedure, however, 

is to compute: 

N*(l) = 

where: 

A 

LQG(LW(T)) - LOG(V) - LOC (1 - PSK(l)) 
LOG (PSK(l)) 

the largest integer contained in A. 

(P-13) 

N*(l)=  the integer value for N(l) which maximizes 

equation (P-ll), 

A more complex situation occurs when there are hedges in existence. 

In such a case equation (P-7) reduces to (where we still have only 1 

weapon type): 

k^AJaJml J^'iV*.  fc "l d,J\  *Ä W*l 
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NP(1) = V-PK - LW(1)-N(1) - LT 

m 
- V   ]T  LVH(M)-PKV(M) 

M = 1 

NW 

>    LWH(M)-NWH(M) 

M = ] 

NT 

Y^       LTH(M)-NTH(N) 

M = 1 
(P-14) 

In this reduction the only issue has been to indicate that a single 

weapon type exists.  The next reduction is to express PK and PKV in 

terms of survival probabilities and N(l).  Before doing so, it is 

important to note that only some oi. the hedges will involve this 

weapon type on the target class being analyzed.  Thus, the 

summations in equation (P-14) only occur for those hedges that do 

apply.  All of these issues lead to: 

'.A.;.^.«..:->.,\«.1A'J..;- :JI.:^,.\- :*& '^ :.■  '.•..v.'v, «r.V.."«: ,'.;.,■'«■„. "..•„/«•„^.„."■«-'V, •--"•-• -- '^-.^.'Z± ±3Z**^l±2L*J. 



IV-P-32 

NP(L)   V(l - PSK(J)N( ]) • - LW(n-N(L) - I I 

NV 

y^    DD(M)tLVH(M)-(] - PSS(l,n)N^1)) 
M ■ 1 

NW 

SA DD(M)*LWH(M) N(l) 
M = i 

NT 

^    DD(M)-LTH(M)' 
M = 1 

(P-15) 

where: 

DD(M) dirac-delta type function which takes on 

value of 1 when the hedge applies and a 

value of 0 when it does not apply. 

It is possible to group these terms in a slightly better form: 

NY 

NP(i) - V PSK(i)N(l) ^ DD(M)»LVH(M)" ( 1 - PSS(1,M) v  ) 

M = 1 
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NW 

LW(1) +  \   DD(M)-LWHi  ] 

M - 1 
>) 

LI + 

NW 

£ 
M - 1 

DD(M)*LTH(M) (P-16) 

This can be restated in an even simpler form as: 

NV 

NP(i) = K - V PSK(1)N(1) - y^   VE(M) PSS(i,M) 

M - 1 

N(l) 

- LWE-N(l) (P-17) 

where: 

K 

VE(M) 

LWE 

= all constant factors in equation (P-16) that 

do not use N(l). 

effective value for value hedge number M. 

= V-DD(M) • LVH(M) 

= effective weapon value for all combined weapon 

hedges. 
NW 

=  LW(1) +  V^  DD(M) • LWH(M) 

M = 1 

/TV- - - .'• 
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In order to visualize this equation consider the example numbers 

used In demonstration ol computations for (P-7).  Use of those 

numbers lure wou   i ■iui.t in: 

K - 32.75 

V =  LOS 

PSK(i)  =  .55 

VE(1) --     c.z5 

VE(2)  =  0 

SSI1.1)  =  .68 

LWE =  1.39 

which produces the following tor NP(i): 

N(l) NCI) 
NP(i)  = 32.75 - 105 (.55) v ' - 5.25 (.68) K  } 

- 1.39 N(l) (P-18) 

For this example, it would be necessary to find that value for N(l) 

which maximizes (P-18).  (Just for interest's sake, N*(l) = 7 is 

the correct value.) 

Et is not possible to produce a closed form equation which will 

yield the optimal N(l).  The most consistent procedure found to date 

is to use a Newton-Raphsor iteration procedure which uses a 

derivarive r.eLhod to converge u y     the correct value.  Such a 

procedure unfortunately can take considerable computation time when 

there are literally thousands of times the procedure will be used 

in a [liven LP problem. 

*v** 
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In evaluation of several procedures for maximizing equations 

like (P-17) and (P-18) it was observed that most often one of the 

N 
terms of the form VPS would dominate the computations.  For example, 

in (P-18), it is the 105(.55)    part of the equation which in 

essence determines the optimal N(l).  The 5.25(.68)    has liw  o 

effect because the coefficient is so much smaller and the optima 

N(l) must be integer. 

This observation resulted in a fairly rapid procedure co~ 

approximately maximizing equation (P-17).  This procedure was to 

find various candidate N(l) values by solving a sequence of maxi- 

mizations.  Each candidate N(l) was found by acting as if all parts 

i**+rr of the equation of the rorm VPS were non-existent, except for one rS* 

N 
of the parts.  That is, if the equation had 4 terms of the VPS  form, 

N 
an N(I) candidate would be found by setting all VPS parts to zero 

except for one of them.  Then, a different part would be set to zero 

and another N(l) found.  Finally, all of these candidate values for 

N(l) would be evaluated by use of the whele equation and the one 

which led to the overall maximum vvoulH be accepted as the optimal 

N(l). 

In the above example only 2 parts exist so one could proc< ed 

as follows: 

Stage 1.   MaxJ32.75 - .05 (.55)N(i) - 1.39 N(l)| 

Stage. 2:       Maxf}2.75   - 5. 25(. 68)N(1)   -  1.39 N(l)> 
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Stay,      Evaluate equation (P-!8) with the N( I ) found in 

stagt 1 and the N( 1 .) found LH stage 2,     ehoose the 

on, • ha1 '  -en- » s the Urges t v- I ue ! a 'e\ i . 

At t. tu present time comparisons are being made to determine if, 

in real data situations, this procedure is adequate.  The issue ol 

computing time to accomplish the Newton-Raphson rethod is also being 

investigated.  However, at the moment it does appear that this approxi- 

mation is adequate. 

The next level of complication in the generation of optimal 

Strategie:-' occurs when more than out'  weapon type exists.  In a:it 

circumstance all issues come together in equation (P-7).  The issues 

are so complex thai they are rather difficult to describe., but 

describing them is necessary before the problems can be understood. 

Consider a typical general case with 12 weapon types, 5 value 

hedges, ;• weapon hedges and 2 target hedges.  in. such a circumstance 

some weapon types might apply to some hedges and not to others.  The 

net effect can be displayed as in the following table; 

•y'^yxy*. 
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CAN WEAPON TYPE  I   CONTRIBUTE  TO  \IVAW: J? 
WEAPON -^5^ 

1    23456789   10 

1 Yes 

2 Yes   Yes 

3 Yes 

4 Yes 

5 Yes Yes 

6 Yes 

7 Yes Yes 

8 Yes Yes Yes 

9 Yes Yes 

10 ;_s      Yes      Yes Yes 

11 Yes Yes Yes 

12 Yes      Yes 

Within this table all weapons which can qualify for contribution to 

a given hedge are labeled yes.  Ail blanks imply that no, Che weapon 

cannot qualify.  In addition, all weapons are assumed to qualify for 

the basic objective of maximizing target damage.  Note that columns 

3 and 5 have no yes entries.  This will occur when those specific 

hedges do Tot apply to a given target class.  Thus, the table will 

change if the same question is asked for a different target class. 

If such a table w:s constructed for the example we have been working 
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with, it would appear as follows: 

CAN WEAPON TYPE I CONTRIBUTE TO HEDGE J? 
WEAPON 3   4 

1 Yes      Yes      Yes 

2 Yes Yes  Yes  Yes 

It should be clear from these tables that finding out which weapon 

types should come int. a strategy and to what level is a very complex 

issue.  Take the above table.  Weapon 1 can qualify for hedges 1, 3 

and 5.  He is &\1  alone in satisfying hedge 3 but will be competing 

for hedges 1 and 5 with weapon 2-  Meanwhile, weapon 2 is also work- 

ing on hedges 4 and 6. 

It is clearly possible that at one level for weapon 1, hedge 3 

would have a good contribution but weapon 1 would lose the competi- 

tion for entering into hedges 1 and 5.  Meanwhile, at a higher level, 

weapon 1 would win all competitions for all hedges he qualified for. 

This concept oi.  being in competition for hedge entries has formed 

the basis for th  . current approach to maximizing equation (P-7). 

In esse  e, each weapon type is presumably trying to find an attack 

level such that he gets assigned to as many entry locations in the 

column as possible.  Meanwhile, the overall choice for which weapon 

types do enter into the column rows is made on  the basis of which 

combination produces the largest value foi NP(i). 

*crt** 
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An equivalent way of expressing this concept is in terms of 

assignments.  Each hedge row and the top row entry of value 

destroyed is to have a weapon type assigned to it in a given column. 

This primary assignment is to be made for the column in such a way 

that NP(i) is maximized. 

The manner in which the assignments are carried out a" present 

in AEM is as follows,  A series of competitions are set up with the 

series being run in a special order.  First, a composition is held 

to determine which weapon type will be tentatively assigned the job 

of being the primary weapon in geccing overall damage to the target. 

Second, a competition is held to determine ^hich weapon type will be 

assigned the job of being the primary weapon in satisfaction of hedge 

number 1.  Then, competitions wilJ be held for hedges 2, 3 and so on 

until all hedges have weapons assigned to their fulfillment. 

Some weapons might be designated as primary on more than one 

hedge.  In fact, it often happens this way. 

The assignment of being primary weapon to a given hedge is made 

in the following way.  Assume that some number of assignments have 

been made.  Determine, by an analysis like that made in producing the 

previous table, which weapon types are eligible for the next assign- 

ment.  Then, go through the following sequence: 

Step 1:    Find out the optimal attack level for a given weapon 

type as if he were going to be chosen as the assigned 

weapon for all as yet undertcrmined assIgnmcnls for 

*jrL,*«A.\f,.." «?-' £ „V „"ii-V JV.^: .«"«fc-» i*.V«-a'^-&L^j'»Va, i*«.^'fc..r» £^*'*.•'•.•'^'^IMSMSIS -Jmj\ •V^JI'»J n. i"».««^« S .•oV'Vv*«V-V-".~ "V %^nJl \ * * ."Cr «""*. *. -w"i ■%" 



lV-P-40 

which he gual 1 lies.  This is found by construction 

of an equation Like (P~15) and then consequent 

max imitation. 

For example, in our last table, say that assignments 

have been made tor primary weapons on the target and 

satisiaction of hedges 1 and 2.  Now, it is time to 

assign hedge 3 to some weapon type.  Weapon 1 qualifies 

so it is possible to form an equation like (P-15) 

where it is assumed that weapon 1 is also going to be 

assigned to hedge 5.  Maximization of that equation 

will produce a candidate N(l). 

Repeat this procedure for all weapon types eligible 

lor the given hedge assignment. 

Step 2.    Assign the given hedge to that weapon which yields 

a maximum value for equation (P-7), where eligible 

weapon types are in at the attack levels found in 

Step 1. 

Step "3;   Tentatively choose as the attack level for the winning 

weapon type the value found in step 1. 

Step 4:    Return to step 1 and carry out a competition for the 

next urassigned hedge. 

Tile result of these steps is an assignment of given weapon 

typos at given attack levels to the strategy.  Thus, all N('M) 

„,.. 

LV,A\^V.LihAJfl^fQuuk^iJL^lA^^M^^^rf^»«—^■.'^'■■w.'-,
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arc specified and a procedure like that in section 4 can be followed 

in order to compute all column entries and evaluate the final 

Lagrangian. 

Why does d is procedure work?  The answer lies in the basic 

nature of the Lagrangian process.  First, mixed strategies are 

usually not optimum unless some hedge forces their entry.  Because 

all hedges are really secondary objectives to the primary objective 

of maximizing total damage, the best weapon types for a strategy are 

usually those that simultaneously do a good job of damage attain- 

ment and hedge satisfaction. 

This fact makes it most important to find single weapon types 

that do a good job in several row entries in a column.  Thus, most 

often, the Lagrangian will be maximized by choosing weapons that are 

in at levels which werp chosen on the assumption that they would win 

all competitions for which they qualified.  Large levels of mixed 

strategies only occur when there are numbers of hedges which can be 

satisfied only by a few weapon types. 

This sequential procedure ''stacks the deck", so to speak, in 

favor of weapon types that qualify for many hedges, but this is 

exactly what is most often the right thing to do.  However, the 

procedure does not short-change the hedges which can be met only 

by one weapon type since a competition will be held for that hedge 

assignment and the only eligible weapon type will win the competition. 

.:>\--:. •^-^"...-.,•,".•....^,.^,..:.'-..-.a^-.v •.". «.'.. \\\m.^^xm^J-'^ic2^J's.''-"Al*\\^^m"J'Ar^..'^L.''jt?^^ntä>x^y^?^.^\±A±\M.^.iLJLXMSt\\W*»L'./J»V* _* 
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h.        Conipii i .it i • Ki I   Cons ! ill1 rat ion: 

The above p rondure has been tested on quite a number of hedging 

Lost CMsos,        is h It that in most circumstances it does do an 

acceptable job in an iving at near-opt I'MI.II allocations.  There are, 

howevei , some alternate schemes which .we   being evaluated tor their 

applicability.  As was mentioned, the single weapon type maximization 

(P-15) has been solved by a Newton-Raphson procedure, and the only 

reason why it is not being used is that computation time seems 

excess i ve. 

This issue of computation Lime is worthy of some discussion because 

it indicates how much effort must be devote! LO approximation pro- 

ccdu res.. 

Consider a 15-weapon, >0-target class, 7-hedge case.  Optimal 

allocations for such a case can usually  be obtained In 7 to 10 LP 

iterations.  At. each LP iteration each weapon-target combination 

must be considered as a candidate for Inclusion as a new LP strategy. 

This amounts to -bout 450 solutions of equation (P-13) for every LP 

i f no hedges ex ist. 

However, in this case it might be necessary to consider each 

weapon type as a candidate for each hedge even if the weapon type 

was not designated as the primary weapon for target damage.  But, 

the procedure1 ol Step 1, as just described, said that equation (P-15) 

would be solve! for each weapon type eligible for a given hedge. 

In turn, the approximation for a solution to (P-15) involved solving 

^\\\  equation like (P-13) as many times as there were value hedges 

%>? 
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still unassigned to any weapon.  This all amounts to the possibility 

of solving equation (P-13) many more times because of the hedges. 

As a general formula, the number of solutions to (P-13) in a 

hedging LP iteration can be estimated by the following relationship: 

NH 
PAS < NWP-NTG-(-~- + NH + 1) (P-19) 

where: 

PAS = number of required solutions to (P-13). 

NWP = number of weapon types. 

NTG = number of target types. 

Nil = number of hedges. 

In practice PAS rarely approaches this magnitude because most 

hedges only apply to certain weapon and target types.  In addition, 

2 
the Nil  factor in (P-19) occurs because of value hedges of certain 

varieties, and those varieties do not occur in every rase. 

Nevertheless, the total strategy generation time is proportional 

to PAS and PAS can very easily go up linearly with Nil.  Thus, even if 

the approximations currently in use in AEM are followed, the running 

time could increase by a factor from 1 to 10.  "hus , it is imperative 

that considerable effort be expended on finding rapid, but accu^ .te 

approximations to use in solving (P-7). 

In the forementioned testing of these procedures several good 

usage rules have been uncovered.  For example, because of the -'ay 

^-•-•-».^■^"-•-•JLJL.*-&.'-,{. .VJ^J^J^-l^-'*".,'■:..'■'JJ.*-*A Ja ~ i- VJLA!*. 'Vü*. V« •". '.V'.V'! mJ. cT%■> v"i \.. CA'AWAVVJ^'A A JS *!Wa 
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that hedge issigmnents occur in a deso-udi •   • let, ii i 

to affect the qual Lty ol tin approximai ion by s i -np 1 ^ change i'l ->r .lei 

in the List of hedges.  ^ue.h a chang«  I order ! :    -  • . worth 

trying when in some case a given hedge was not :,ie I .  (.'hangiuu tin 

order oJ hedge specification might lead f.!n alloc.n ion int. * a 

different and better approximation route. 

In general, the procedure is slight!) biased Lo flu; idea .0 n t 

putting extensive mixed strategies into the LP.  As a result, tlie 

most common non-optimal allocation situations are those when a 

mixture was not specified and it should have bo< 1.  Inequality hc<!g< ;, 

which will, be discussed in more detail, of the <  fovm (end to 

liscour^ge mixtures, while other Inequalities might en miM^ them. 

It has been found that the procedure works best when ;he liedge T**t& 

specification order has <  hedges first in the List and  _>  hedges 

last. 

The presence of infeasible hedges warps the allocation since 

all possible effort is made to satisfy such a hedge.  At the same 

time, however, weapons not involved In the hedge satisfaction problem 

will be allocated optimally.  Thus, allocations when infeasible 

hedges exist will still convey considerable information. 

Another issue in hedging, allocations is that weapon lambdas 

are warped to some degree.  Therefore, their use as a part oi the 

force value scale problem (Chapter IV-C) is not valid.  According!y, 

hedges are only allowed in the first strike oi any :■■  enario. 
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Hedges for the side going in any other strike can be evaluated 

only by use of a mis-estimate option within AEM (see Reference 11), 

Other computational considerations and guidelines are also pre- 

sented in that same reference. 

7.  Relative Hedge Preferences 

Implementation of these hedging concepts required modifi- 

cation of the linear program (LP) so that it would properly deal 

with all forms of inequality constraints.  Prior to this hedging 

development the LP could only accept < constraints. With hedges, 

however, it was cricial to allow~and > types of constraints. 

The method chosen for implementation of these inequality 

f^ constraints is known as the big M method.  In this method the 

following equation trans formation first occurs (using an > con- 

straint as an example). Start first with a general equation of 

the form 

n 

y] C(i) X (i) > B (P-20) 

i=l 

This is equivalent to 

n 

]T C(i) X (O-Y - B (P-21) 
i=l 

Where Y is called a slack variable and it define  the level by 

v,hich ]L C(i)X(i) exceeds B. 

'^v^j^*^i^y<iüwB^ '- - 
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11 >-!:•• simp;   .  rteil an equation oi the form of eq (P-21) 

into «-in I,T the       rob I em is one oi devising an initial feasible 

solution.  Hut is. i:u- woulu have to determine values fcr the X(i^ 

so that some value for Y win oh is >  0 would result.  This problem 

results because negative values for the LP variables are not allowed. 

Given such an initial set of X(i) the LP could then proceed 

to an optima! sot oi X(i). In this process only feasible values 

t o r X ( i ) w( HI Id be a I lowed. 

In many applications of linear programming finding the required 

feasible X(i) to start with can be a serious problem.  This can 

be overcome by adding a second slack variable, to equation (P-21). 

Doing so resuIts in 

n 

^2  C(i)X(i)  V +-2 - B (P-22) 

1 = 1 

j'n this now form any starting X(i) is allowed because Z can be 

positive, and   thus satisfy equation (P-22) for a zero value of Y, 

or Y can be positive when Z is zero. 

However, the desired condition requires that Z equal zero 

since we started with an > constraint and any positive value for 

7 would violate that requirement.  This is possible by using the 

big M concept  s follows. 

Visualize an LP Lableau where the payoff (or objective) row 

contains a pena1ty oi   amount M for every unit of the variable Z 

i\Z\.i«i^&^WL^l^^ y■"<■'-'■ vo;» ^w'.'m.Vfc.-r^-"^:.^: ... 
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in the final solution.  That is, if the optimal X(i) results in 

Y=0 and Z-Z* then the objective is reduced by an amount of Z* 

times M. 

If M is an arbitrary, but very large number, this penalty 

can be so great that the LP will make every possible effort to 

fin! an optimal X(i) such that Z^O.  The net result is satisfaction 

of the original requirement for > B. 

This approach was selected for use in AEM for one major reason. 

1^ is not alw^rs true that a feasible X(i) exists. The analyst 

could easily specify a condition that the existing arsenals could 

simply never meet.  In such a circumstance the LP should still 

attempt to minimize Z and thus communicate to the analyst exactly 

how infeasible the requirement was.  By use of a big M infeasi- 

bility is discouraged but not precluded. 

The negative fact that use of a very large value for M can 

cause numerical convergence problems in the LP was felt to be 

overcome by i_nis ability to allow infeasibi lities to exist if they 

were necessary. 

The use of this big M technique also had the fortuitous 

capability to allow specification of preferences among a set of 

hedges as required by this task.  The manner in which this capa- 

bility was exploited is described as follows. 

'■AiALAl^'^i-JA !W> .T.'n V„V;I~■ :■", h^iA\.>iAiL'k'.: iaj£^\'j^3-'^'\f-j'     ' 1.1 v v-"-/-»- ■ "o:v-'%.•'■>vifeViy&A^V. v?.■YJ'Ay»vJVJy..v. «iv...'A\v." -/Av 
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11 •  A Nop<.i for Preferenvt■; 

The notion of a preleroi <     m»i»i  hedges 

in the  ircumstanco wher«. it is not U'.isi ■•>•  01 a g iwn 

to sati: f\ every one of a sot. ol hedges.  Li ;i I j hedie run Id 

simultaneously be satisfied it would not be necessary :  as!« ioi 

a preference list. 

When it is not feasible to satisfy every hedge ir a set, 

however, the analyst would normally prefer that certain hedges be 

satisfied in preference to others that might be easier to satisfy. 

Such a preference is conveniently allowed for by variable bi-, M 

values. 

Consider a set of hedging constraints like that oi  equation 

(P-22).  Further assume that each equation has its' own value 

for M.  In such a case the normal - maximize total value destroyed • 

type of objective gets converted into 

H 

maximize TVD -/M(j) • Z(j) (P-2'3^ 

J-l 

where: 

TVD = total value destroyed 

M(j) = big M for hedge j 

H = total number of > hedges 

Z(j) ■ amount by which hedge j is not satisfied 

*W 
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Now. if all Z(j) can not be simultaneously driven to zero the LP 

will automatically drive for a specification which still maximizes 

equation (P-23).  If all the M(j) are equal, but still very large, 

the LP would therefore attempt to minimize £]7.(j). 

This would naturally result in satisfaction of those hedges 

which are least binding before satisfaction of the more constrain- 

ing hedges.  This course of events is what an analyst might desire 

to preclude by some sort of preference specification. 

Consideration of equation (P-23) leads to the obvious thought 

that selection of unequal values for M(j) could lead to a prefer- 

ence matching allocation.  For example, if M(l) is 10 times M(2) 

X*j? the LP would be 10 times as interested in reducing Z(l) as it would 

be in reducing Z(2).  Such a technique for analyst control over 

the M(j) was devised as follows, 

b.  Expression of Preferences 

At first glance it might appear that an option which would 

allow analyst input of M(j) directly would be adequate.  This has 

been done for AEM HEDGE; however, there can be difficulties for 

cne anaiyst in selection of such values. 

First, the analyst will not usually know exactly how difficult 

each hedge is to satisfy. Second, because of the numerical accuracy 

problems with very large values for M(j) it is not feasible to 

simply input numbers auch as 

M(l) = 105 

'.'"*' TO 
M(2) - 10-U 

M(3) = 1015 

Etc. 
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The computer verv rapidly would develop problems in round-off. 

in fact, anyt       it lias an M(j) larger than 10 has bean foiaiJ 

tu be crror-proue.  A ■ an alternate treatment for M(.i) sizing 

consider the following interpretation for each big M. 

When an analyst inserts a hedge he usually can express some 

desire for satisfaction of that hedge in terms of comparison with 

the total value of all targets in the target structure.  For example, 

he might say "I would like to satisfy this hedge about as much 

as I would like 20 7, more damage to the total target structure." 

A second less desirable hedge might be as acceptable as 10 7. more 

damage to the total target structure. 

When one thinks in terms of this kind of preference it is 

more feasible to expect an analyst to choose a value that he can 

relate to.  He normally understands the basis for the value scales 

of his targets and he can scale his hedge preference to those scales. 

In these terms each hedge will be satisfied as lc:.g as doing 

so will not detract from the TVD by more than M(j) units per each 

extra unit of hedge j requirement met.  This concept can be expanded 

even further as follows. 

When the analyst specifies a hedge requirement he must desig- 

nate a value for B(j) which is the goal value for the hedge. Now, 

his preference could be in either of two forms: 

1.  I would like to totally satisfy hedge j about as much as 

207, more damage to the total target structure, or 

.A ... UtjkJ ^:LJ: ^l.aJl j£ rJ'-.M*'.. .«.•, fc&Ai'-V-'» LAhi J_-J.^J-^-_J 
IO-.", <</' ■ .fc _A^_£   J-- '-i.Vfjvv"^ \K ' 
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2.  For each unit I come closer to satisfaction o(  hedge j, 

that is for each reduction in Z(j) by one, I am willing 

to accept 201  less damage to the total target structure. 

The difference between these two is the following.  In type 1. the 

analyst will give up 20% more damage in order to drive Z(}) all 

the way to zero.  In type 2. the analyst would give up 207d more 

damage in order to reduce Z(j) by a single unit. 

All of these options have been programmed into AEM HEDGE. 

They allow the analyst to specify a preference for a given hedge 

in any one of the following ways: 

Option 1: A value for M(j) is input directly and no program 

modification of that value occurs. 

Option 2:  A value, A(j), is input by the analyst and the 

program computes M(j) as equal to A(j)/B(j). 

Option 3: A value, A(j), is input by the analyst and the 

program computes M(j) as equal to A(j)* TV, where 

TV is the total value of all targets in the target 

list. 

Option 4:  The same as Option ? except M(j) is equal to 

A(j)* TV/B(j). 

By appropriate use of these options the analyst should be capable 

of expressing his preferences in an acceptable manner, without 

requiring abstract selection of M(j). 

An allocation will then be guided by the M(j) values and the 

final optimal allocation will be one where a hedge will be satisfied 

up to the point where more accomplishment in that hedge results in 

unacceptable reductions in the TVD. 
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8. ' hl.  Lj L   lledg<    ' ■  ' 

i'    I      •   Jp  ll'l   litv    lM       '    ul       ifi X, , 

special   sub-coals,   or  allocation  «. : PS i . ,, I nt .,   c -a need 

spec *        • : eatment   ol    infea   ; ■  !.    I .>P . « i,-, s) v.-i 

create  very   binding  hedges   ii   he   so  i;es   :.   .    [i    .    ;? ( a,     t 

given  arsenal   is   incapable  ol   meeting   t:i <      ed -. ■■. ■   pro 

must   then decide  how  to  deal   with   the   s i Luat ion. 

The  previous   section discussed   one  option   in  dealing 

such  a circumstance.      Thai:   option   is   siiiipb    to  oj irr   ;i<   anal'    i 

the  capability   to  express   relative  preferences   among   the   hedges. 

This  preference  is  then used  by the program to  sntisf\   ;',.   hedges 

in  such a manner as   to minimize  the undesirability <      not  meeting 

the  complete  set  of  hedges. 

This   section   is  directed   at  a   second    »ption.     Namely,   I ■■    n!- 

selected  growth  in  the arsenal  as  necessary   to   fulfill   .1 ! 1   ol"   the 

hedges.     When  this   is  accomplished   in   such   a  manner as   to minimize 

the  required  growth  in  the  arsenal   the analyst   then   is   shown how 

much  additional  arsenal woulrl   be   required   in  order  to  meet   all   of 

his  hedges. 

The analyst   obviously  could  make  several   runs   at   different 

force   levels  with  the hedges   and   then   interpolate   to  detorw 

minimum  force  augmentation  necessary   to  achieve   sati; l.scci  »n 

all   the  hedges.     Within  this   task,   however,   tin !   is   to    ichit.ve 

that determination within   a   . ;ing le   nm   i i   at   all   p,»s 

**<;,>? 

■j?ji>-ff.\e~'-* --^r^'-n ZM ii&kJUklA •-A'.-^ '-»'•-/•-> •-A-jk*rjt**f'^j**y\*rj' r^ji^jkiULL^^jU^z*rM,*C«VnV^r «J.»V^, 
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a.  The Methodology 

Several possibilities exist for development of an appropriate 

methodology for this objective.  First, it is possible to make ehe 

program conduct a single parameter search and interpolation process 

just like an analyst could accomplish by making a sequence of 

individual runs.  In this type of approach, however, one would 

have to expect an increase in running time that would be signi- 

ficant. The approach is essentially like making a number of sep- 

arate runs and it is most likely that at least three such equiva- 

lent runs would be necessary in order to accomplish acceptable 

convergence. The only savings in this approach would be in terms 

of reduced analyst interface with the computer. 

A second, more desirable approach has been pursued.  This 

approach makes maximum utilization of the flexibility offered by 

the linear programming (LP) capability within AEM.  Within the 

approach automatic convergence to a minimum required force aug- 

mentation is possible. 

It is advisable to discuss adaptation of the weapon constraint 

row to the purpose of this task and the interaction of that row 

with the rest of the constraints. 

In each LP there are several types of constraints. First, 

there are < types of constraints on the number of weapons of each 

weapon type and on the number of targets of each target class. 

Second, there are the hedging constraints, which can be of any 

h!CvC^\^^\%j"^V^vV>V^\'vJ*J. ,..-  i^^y^v-vj^vL'.v^■•*V^>»^V .- ;,«?/v..v.y.>.>..V.>V- -./V' 
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inequality I'orni, VM\   they can require satisfaction of conditions 

which the sjuviti.'1   ( el  e.apon types are incapable y>\   achieving. 

If one e! the weapon constraint rows was converted from an <. 

;om; into an N form the eft eel could be useful to the purposes 

of this te.sk.  A weapon constraint of an >  term, in essence, 

totally unbinds that weapon row.  This allows unlimited growth 

in the arsenal, as that weapon type could be used in any amount 

as necessary to accomplish damage on the targets, or satisfaction 

of the hedges. 

The problem with this inequality reversal is tha  it allows 

unlimited growth in the number of weapons of that type.  As a 

result, enough weapons would be added to the arsenal to achieve 

100% total target damage.  In other words the arsenal would grow 

beyond the minimum level necessary to satisfy the set of hedges. 

After some experimentation with this unbounded arsenal problem 

it was possible to devise a precise technique for controlling the 

arsenal growth so that only the minimum necessary augmentation would 

occur.  This was accomplished by requiring the analyst to insert 

one additional control hedge which could be used in the LP to cut 

off the arsenal growth at the preferred point.  This control hedge 

operates as follows. 

The analyst estimates how much total damage could be accomp- 

lished by the unaugmented arsenal.  This estimate most likely would 

'. »^'. .•-'.'/. .I*. -J, •_:. .-^l, t^' •.' y*. y.*. ■-'. -.". ■_' y".... .,..:. y.\ 'J.a^. y' ^3 -_*■ -• ^j »_• y" »..• v.e .-.v. *.'. -. ■ jbrf,',% k.", i'vC v.Vy"' y^yly *•.' y" I*£AJL*-L±1 
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be obtained from the run which first showed the analyst that he 

had a set of infeasible hedges. It could also be a damage goal 

which is adequate for his total damage objective. For example, 

25X national fatalities or some similar accepted goal. 

This control hedge is treated in a snecial manner within the 

LP.  The form of the hedge is like any standard value destroyed 

hedge, namely: 

HEDGE(L*,J) = V (ALL) BY (ALL) GE AMO 

where: 

L* = the special control hedge number 

J = the side with the augmentation problem. 

AMO = the estimated total value destroyed by the unaugmented 

arsenal. 

However, the program has been told to treat this control hijüge 

in a special manner when it comes to taking credit for totaL value 

destroyed beyond the level of AMD. 

Under normal circumstances the above hedge would specify that 

AH) is to be the minimum total damage acceptable, but that any 

excess above that is allowed and even desirable.  In this control 

hedge the LP is modified so that any excess above AMO is acceptable 

but it is not desirable at all.  This allows the total damage to 

grow, as would occur when the arsenal is augmented, but as soon as 

theall hedges are met further growth will be stopped.  In order 

to understand how this is accomplished, consider the following. 

^Vl^Xr* V*^'^'VZ>J^V/^^ 
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A normal constraint oi > form is usually insertod into Hie 

LP in the form 

n 

X]  C<i) X <i) "Y f z   ü 0J- 
i-1 

where: 

C(i) - constants 

n = total number of non-slack variables in the LP 

Y,Z - artificial slack variables 

B - constraint amount 

This form of insertion would occur also for the special control 

hedge. 

In addition, the payoff, or objective row is normally con 

strueted as follows: 

H 

maximize TVD -^M (j) Z (j) 

J-l 

(P-25) 

where: 

TVD = total value destroyed on all targets by all weapons 

H = total number of > constraints 

M(j) = big M for row j (see Section 7) 

Z(j) = amount by which row j > constraint is not satisfied. 

The M(j) factor  ^re used to drive the Z(j) terms to zero and thus 

accomplish the satisfaction of all the > constraints.  In this 

problem, however, the arsenal is not adequate enough to drive all 

the Z(j) to zero. 

■•.v.;.;.v.,^;,^ 
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When  the  special  control hedge   for  this  problem exists, 

however,   the  above  objective   row  is modified   to  be of   the   form 

ftfl 
maximize TVD  -Y -V*   M(j)  Z(j) (P-26) 

i-i 

In this new form the variable Y appears.  From equation (1) it can 

be seen that when Z=0 and Y > 0 it is the excess by which that 

control constraint exceeds the constraint amount, AMO. 

Observe that as the force is augmented in order to drive all 

of the Z(i) to zero the Y term in the objective function will 

exactly nullify any desire to increase the force augmentation just 

to increase TVD. This occurs because the control hedge specifies 

that total value destroyed by all weapons on all targets was to 

be > than AMO.  Therefore, the Y variable measures how much the 

TVD has grown beyond AMO and its presence in the objective row 

cuts off any incentive for such growth. Note that it does not 

preclude such growth as long as some of the Z(j) terms are being 

driven to zero. 

Experimentation with this technique demonstrated excellent 

performance.  Computer running time with the addition of the control 

hedge was not noticeably affected and determination of a minimum 

arsenal augmentation did occur as theorized. 

The analyst need only do three things.  First, he muse estimate 

the unaugmented arsenal damage, AH).  Second, he must construct 

the additional control hedge in the form previously described. 
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IKC (J)      :. 

- tlic hedge number which I.; designated to bo tk< control 

hedge. 

This variable identifies the proper V variable to insert into the 

objective row.  None of the other hedges would have anv modil L- 

cation to rhe objective time!  i - 

Before Leaving this discussion of the methodology it is neces- 

sary Lo point out one caution in usage ol this torm of force aug- 

ment a t i on c i >mputat i on. 

In certain defense types, namely random area defenses, a 

probability oi defense penetration is computed prior to LP time 

by use ot the ratio oi defenders to total attackers. Since this 

computation occurs before determination of the final force aug- 

mentation level the LP will be using probability of kill values 

which do not take credit for the impact of the extra arsenal on 

the probability of penetration. 

The net effect is that the LP will choose a conservative sized 

force augmentation which is an upper bound to the true minimum 

required.  The degree of  conservatism can only be determined by 

making a second run without the control hedge but with the pre- 

viously determined force augmentation. 

*•*" 
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9.  Non-Alert Weapon Allocations 

One of the classical problems in weapon allocations is that 

of devising war plans which are not overly sensitive to precise 

pre-war knowledge about the conditions and performance of weapons 

when the war actually begins.  It is obvious that >.ne mint know 

quite a lot about his own capabilities and the capabilities of his 

opponent just to devise a reasonable allocation.  WhaL is desired, 

however, is to avoid the requirement for allocations finely tuned 

wO precise situations. 

AEM HEDGE has numerous features unsigned to provide aid in 

development of such allocations.  These features allow measurement 

of ehe impact of making misestimates and development of hedging 

allocations which guarantee achievement of specific goals even 

when certain defined misestimates do occur. 

Therefore, it is natural to desire t> develop a capability 

for dealing with weapons which might or might not be r ^ilable at 

war start time.  None of the current AEM HEDGE options dral with 

such misestimates in a truly optimal procedure. 

In order to help understand the issues in such a task, con- 

sider the following situation.  Blue has 1000 weapons of a certain 

variety.  His nominal estimate for their alert rate is 85%.  '."hus, 

on the average, 850 of the 1000 are available for launch at .my 

given time.  However, which 850 it is keeps changing and on some 

occasions he has more, or less than 850 available. 

kiV^VlVÄ^h/iv^ »»v.- .'• .'• »'• ■' '• »-V 
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i> 1 ;\' .. on lu t ike Loin  . ! ! o i ■ •  A- , . iu- n 

..■.■■•• is are ava i InM(    i'■' < insta       '• ■■■■■.■.■ ■ '   ; ■ 

He conh! do   this qu"? to easily if IK  imp I y i i i t i»u unM ! ! he detune 

time ;■> OM.!r(l and then generat'ed an ,11 h'ra' i n u-hien .ouiti In 

optimal tor the specific weapons avai Labi«  it that Lhne.  This 

would result in the maximal usage of the alert weapons. 

A major problem with such a scheme (s that revising and gener- 

ating war plans is not such an instantaneous event.  Many aspects 

must: be considered and time i;; always short.  Hie command md 

requirements would be strenuous and in Many ways such *i concept 

wouId be cons idered infcas 1 b1e. 

A second option one might consider is to use the alert -ate 

factor as a modifier of reliability during the allocation process. 

For example, if the Blue weapons had a reliability of .90 BLue 

could allocate all 1000 weapons at an effective reliability of 

.83 X .90.  Then, when the war began Blue would not have to ad jus' 

any a1 locations, 

This concept does not maximize tb        F.om the alert 

weapons since allocations with 850 weapon.  •- reliability oi .9 

will achieve more total damage than an allocation of 1000 weapons 

with reliability of .763.  It also has toe feature oi'  being sen- 

sitive to the estimated alert rate.  If the alert rate reallv is 

.9 the capabilities of the arsenal will not   be taken  advaivl i 

of to the highest level. 

W 

.iiik^^ 
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It   desired to devise a procedure for generating allo- 

cations that adapt by themselves to the day-to-day alert conditions 

and require a minimum of re-allocation in order to gain maximum 

utility from the weapons.  Such an allocation would hopefully 

b of minimal sensitivity to the nominal alert estimate. Some 

sen, itivity will obviously exist, however, 

a.  1_ i  Methodology 

The concept developed in this section follows from certain 

basic premises concerikinj characteristics of a desirable allocation 

of the non-alert weapons.  These premises include the following: 

• 1.  It is desirable to have an allocation that includes the 

total set of weapons, both alert and non-alert. 

2. The allocation should not require a distinction as to 

which specific weapons are on alert, or on non-alert. At most, 

the fraction on alert can be a basic assumption. 

3. The allocation should, if possible, include as a sub-set 

an allocation which would be reasonable if only the alert weapons 

were allocated. 

Other premises could be added; however, the above set should allow 

acceptance of an allocation as one which would yield a reasonable, 

even if non-optimal, allocation of the alert plus the non-alert 

weapons. 

,—^ The premises can be further expanded upon as follows.  First, 

if one assumes that re-allocations at war time are impractical it 

is vital that all weapons should be included in the plan.  Then, 
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whichever DIH .     <M alert can go towards aocompl ishment of the 

»I i ctives h:       .1   SociMid, on the long term, weapons go in 

.•ii.H 'tit oi ilert si irus.     ;, i si order to minimize re-allocations 

over time it  ouId be desirable to not require a daily re-assignment 

weapon by weapon.  .Third, since some re-allocation probably is 

possible .;s long as time urgency does not exist, it would seem 

intuitively reasonable that the allocation obtained by illocation 

of precisely the alert weapons should fie attainable as a sub-set 

of the total allocation. 

Within the above premises the following method of operation 

would seem reasonable.  first, all weapons are allocated to some 

target or another.  Second, if an important, weapon became unavail- 

able his target position could simply be switched with an alert 

weapon which at that time has as his primary target one which 

is lower on the list.  This re-assignment could occur as often 

as time allowed, but it would always involve one-to-one switching 

of positions, with no major reshuffling of the complete plan. 

A technique for development of a plan with the above charac- 

teristics has been ace cap lishtsd in this task by expansion of the 

hedging option in A£M HEDGE.  This expansion requires the follow- 

ing procedure. 

Allocate the total (alert ) non-alert) weapons as if they 

would all be on alert.  However, allocate them in such a way that 

if only a share of the weapons actually were on alert the damage 
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attained by that share would be nearly as good as would be achieved 

if the precise alert weapons had been known. The net effect of 

this "guarantee acceptable damage by the alert share" concept is 

modeled as a proportional reduction of the attackers to each and 

every target. 

For example, take the case where n weapons are being allocated 

to a given target under the assumption of some PSSK that would 

exist If all weapons were on alert.  However, if the alert share 

was only 75% the PSSK might be somewhat different. This other 

PSSK, call it PSSKP, would be lower; for example, if there were 

random defenses whose effectiveness depended upon the total number 

of attackers in the whole arsenal.  In such a case the damage 

might be 

VD(i) = V(i) (1- (1-PSSK)11) (P-27) 

where: 

V(i) - value of target i 

n = number of attacking weapons on target i 

PSSK = probability of single shot kill 

The damage for the proportional share of alert weapons on that 

target mij-^t be 

VDH(i) =  V(i) (1- (l-PSSKP)AV*n) (P-28) 

where: 

AV = weapon alert rate 

PSSKP = probability of single shot kill if only the expected 

alert weapons exist. 

.'.-'.•• -'•*. • - -^--V.'-a^.^'/^',:-^ :.»':-*.■■ jt'^^r^L^: .<i.V^V^>-^"^>^>^"'^'^'^. •-^'^."'^^'••J»'' -\J.*'->"-V- ,'-_.."•.,/■ «*"V»»% *^j."i»V-"r „'■ .,■...-_ 
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In the spec ia'l a i local:i on.-;  . >.. i . • . <i I   'i< m , li- 

the ob je t i vc i s i o mas ii*i 

according Lo the VD(i) rolai i n.-d Lp, ...   iave uio u»L.ii 

destroyed lecording to the Vnil(i) relatiei  i] b«  . = •.  i, opt.e I o 

goal.  This two-pronged objective result: i i in allocation ul ,i ! 1 

weapons in such a way that it only the estimated ilert trad  n 

occurs the total damage will be acceptable. 

In this use. of what is to be called an availability hedge 

the analyst must specify what is "acceptable" total damage when 

only some specified fraction is on alert.  This gool can be obtai u 

by the analyst making a rim in order to determine what ma> 

damage could be obtained it the time alert weapons were known at 

war plan generation time. 

One way of looking at the allocations generated by this in 

ing plan is as follows.  Consider it to be a plan which could be 

obtained by tricing a separate plan which involves only the alert. 

weapons and proportionally assigning the non-alert weapons to that 

plan.  That is, if 10 alert weapons are to go to a target and the 

alert rate is 50%: then make a new plan which has 10/. ;> - 20 

weapons to that target. 

However, the basic alert weapon plan and the final tot ■■ 

weapon plan are related to each other in sn/'    r, th.it tin final 

plan maximizes damage if all weapons weru on ilert w« i   | • ;i 

for acceptable damage if only the expected alert ■     curs. 

*w 
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A plan which does well at the two conditions of 100% alert 

and the expected alert hopefully would be a reasonable plan for 

any alert rate in between.  No testing procedr-e for this hope 

was devised during the task effort, however tl.j hypothesis seems 

reasonable. 

One perspective on the capability offered by this option is 

that it allows the analyst another way to develop a plan that 

hedges against a type of uncertainty.  In certain cases this option 

might be of some use while in others a different set might be more 

appropriate. The whole intent is to offer a spectrum of capabi- 

lities which an analyst could use as an exploratory tool. 

^ W 10.  Some Applications 

There are certainly countless numbers of ways that this 

hedging condition option can be applied. The programming of the 

option has been done in a flexible manner so that the analyst 

should be able to devise sets of hedges which at least come close 

to any specific application. This section will discuss three 

examples of applications that have been tried and found to be of 

some use.  The discussion of the examples will illustrate how 

cases not normally thought possible in previous AEM versions are 

now open to the analyst. 

^-:V^-^,'V^IL^, 



IV-P-66 

; ;i ! .'In i • •    :    . lie ' 'injvcr 

►\ c'L< ■ ■ « probb m in bomber al locat ions in ARM is created 

because *• i no control o er the number of targets 

any individuaj eombei could hi t.  r'or example, u ... igle bomber 

carr bombs cou'd hit up to five separate targets. 

Considering chat, defenses between targets, etc» are in existence 

and that the bomber would have to serially penetrate a number 

of targef.s it is certainly unreasonable not to penalise the 

bombers in some way. 

With hedges the analyst cannot penalize the bombers but 

he can make his own decision about the number of targets per 

bomber he thinks is reasonable.  Then, he would simply state 

a target: hedge that said:  Targets of all types hit by bombers 

must be IJ£ N*R, where B is the number of bombers and N is the 

desired limit on targets per bomber.  Such a hedge would offer 

some reasonable control. 

k •   Force Damage. Require merits 

In previous versions of AEM an analyst could specify an 

assured destruction objective, where, assured destruction is 

defined as an industrial target damage goal, or upper limit. 

This was achieved in the weapon allocation process by insertion 

of a damage constraint into the weapon allocation linear 

program (see IV-D).  Since that approach has been reliable and 

successful, it was felt that a similar option which applies 

to force damage, goals would be a natura* application of hedges. 

*n (* 
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**• 

In any strike where force targets are open to attack a 

value hedge can be specified so that a force damage require- 

ment is met, if possible.  Essentially^ it is only necessary 

for the analyst to state: 

1) The percentage of force damage he places as a 

requirement. 

2) A specification as to tha equality condition on 

the requirement, i.e., is it a minimum, a maximum, 

or an exact goal. 

3) Tue weapon type, or types, he desires to take part 

in achievement of the damage requirements. 

Item 3), above, is of special interest sine* it implies 

that the analyst cannot only specify a goal, but also which 

weapons meet the goal. Thus, it is possible to demand use 

of what the analyst thinks of as >    astM counterforce 

weapons. 

c»  Resarve Force By Weapon Types 

The three strike, reserve force scenario (see IV-E) has 

typically been difficult to use because of the extremely 

difficult mathematical problems occurring when truly optimal 

reserves are desired. To help alleviate these problems, AEM 

has been previously modified to allow analyst specification 

of the reserve force. The presence of hedges now allows a 

third option - to allow analyst control over the types of 

weapons going into reserve without giving the complete 

specification. 

^i^^-^^^Zv 
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.' - ■{    Lh(    i »wed hedg: ug « o' .- ■ ■ i    c ■ . 

added to the I..P. and Hu1 mij'.hi v» 11 iiiie\ rl ■ i'h.»'c 

ror.r.TN'c into, or nil «>1 - » r:' in ■ ■ ouf-:, n i * 

la the essence of the. new option open tl ough iiod^os^ 

f-'or example, one can place upp< " lowoi  inuts on, the 

number of warheads of a given r; \n   going into the t irst .•; , 

attack, a total bound on the number of warheads o] a i 

category, e.g., ICBM's, going in tho first strike, or a IiniI 

on tho total warheads of all typos going Ln the first strike. 

These are primary examples but other forms could b» used if 

desired. 

A complete discussion of the detailed parameters necessary 

to use the hedging option is appropriate only r.o a document 

like the Arsenal Exchange Model Handbook.  For the purposes 

of this report, it would be of interest, however, to rt- 

summarize the types of constraint controls the analyst has, 

By Input one can design cons train us which specify: 

1) Which Force target classes are involved in the 

given constraint, 

2) Which attacking weapon types, or categories are 

involved in the constraint. 

3) The type of inequality in >ived, that is 

L ,  s  , > . 

4) The constraint value. 

5) The general form of tin' constraint, i.e., is it :J 

constraint on damage, or on weapon numbers? 
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'-'or exainplt , say there were ten force target classed and 

t1 !' '■'   "> hu'.l c'ive weapon types, two types iu ing [CNN's   d 

types Zeitig L^ I ^>>* * .  Ai  malyst might then generate 

constraints oj th« following types. 

H  Do not attack Force targets with more than 500 

total warheads. 

2) Achieve at least X units of damage on the. Force 

targets. 

3) At rack target classes 3 through 7 only by ICBM class 

» 

'0  Allocate at least 2.50 SLBM warheads against 

Force targets. 

It is obvious that the constraint design process rould go 

on a [.most without end. However, the analyst must be careful 

he overcontrol the reserve force selection process.  In 

essence, he must use the constraints in a reasonable manner. 

Wi\*l\'\*l%&£<(bA&^ 
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Q.   RANK ORDERED ATTACK ALLOCATIONS 

1. The Problem 

The concept of allocations within AEM has always involved the 

objective of maximizing total damage over a complete target set, with- 

out putting conditions on which targets must be destroyed.  If no 

adequate value system to rate targets one to the other is possible, 

such an allocation objective becomes difficult to accept. 

An alternate scheme which has some advantages is the notion of 

a ranked target list.  Such a list indicates a strict order of pre- 

ference and no balance of several targets in the list can be achieved 

when compared to a higher ranked target. Allocations to targets which 

are ranked in such an absolute manner can be conducted in AEM.  This 

chapter describes the procedures used in such allocations. 

2. The Methodology 

In order to clarify the specific methodology used in obtaining 

rank ordered allocations some discussion of the rank-ordered attack 

concept would be useful.  The concept deviations away from the 

standard weapon allocation process in AEM can thus be isolated. 

In the classical concept of rank-ordered attacks, there is 

usually an ordered list of targets, a specified set of weapons to 

allocate against the targets and the condition that the final alloca- 

tion must take on a form such that no target in the list is attacked 

unless all targets higher in the ordered list have been destroyed 

at least to some specified kill level.  The overall objective 

of the process is then to produce an allocation which 
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results hi t h. • required kill level being achieved on as m.my targets 

in the list as possible.  Ln other words, to achieve maximum penetra- 

tion down the ordereu list. 

The normal aspects to the problem which make determination of 

such an allocation non-trivial are:  (1) the presence of several 

weapon types and (2) blending of this rank-ordered type of alloca- 

tion for a sub-set of the targets in a larger list, where the re- 

maining targets are to be attacked by a "maximize total damage" 

form of objective.  Since both of these conditions are normal for 

AEM analyses, the final methodology must be capable of handling 

such variations. 

In essence the above situations impart most strongly in two 

areas.  They are reflected in the necessity to guarantee that: 

(1) no targets are skipped over when trying to penetrate the rank, 

while at the same time, (2) the easiest way possible to satisfy 

the rank conditions must be discovered.  These two sub-objectives 

fight each other and a delicate balancing problem can result. 

If ten different varieties of attacking weapons exist in an 

arsenal and if the targets are rather diverse in their vulnerabilities, 

by virtue of defense levels, etc., it can be a very large combinatorial 

problem to determine exactly which weapon type should satisfy the 

rank objective on each target so that deepest possible penetration 

of the list is attained. 

Howeve1  i f only one weapon type existed, there would not be any 

combinatorial problem to consider and the job of computing the dept,* 

Vtf* 
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of penetration could be achieved simply by allocating weapons to 

each individual target in the list, in the order of the rank, until 

all weapons had been allocated.  The number of weapons to allocate 

to any individual target is clearly determined by the desired kill 

level specified for the target. 

In the circumstance where the rank-ordered list of targets can 

be completely penetrated, the allocation process must then be 

capable of switching to the normal "maximize total damage" on an 

additional list of non-ordered targets.  In this case, it is very 

important that the ranked list was penetrated in the most efficient 

manner possible so that the "maximize total damage" objective can 

be truly maximized. 

Consideration of the above aspects led to the following AEM 

methodology concept.  Basically, the idea is to exploit the current 

AEM structure, which is totally dedicated to the idea of maximizing 

total damage, but to trick thri. methodology into achieving the real 

rank-ordered objectives. 

For complete understanding of the current AEM allocation 

methodology, the reader should refer to Chapter IV-A.  However, for 

our purposes here, it will suffice to say that a fundamental part 

of the allocation process is involved with a linear program whose 

objective it is to maximize total damage for a candidate set of 

individual weapon-to-target allocations for all the targets in the 

target list.  A key item in the L.p- is the value which will be 

destroyed if any candidate weapon  'location to a specific target 

is chosen. 

jftffiMjBfo^  , .„ ^"^JCaJ^lc^l ■ »*i»'« m±* AA'AJL LM /^LV-^ILV- JL . JLL A"M A"M t!a-i.jjfjLJjAr^i I.'. /»* Ai I."k*..% .A. 
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The primary technique, in manipulation i»l the \r'M .iil«»iai 

process, therefore, is to moditv the L.l\ value destroyed In i w.i . 

that vill drive the L.P. process to a rank-ordered attack objective 

while the L.P. is actually maximizing total damage.  However, this 

manipulation must be done very carefully so that the exact rank- 

ordered format is achieved. 

Consider the following scheme.  In order to impose the rank- 

ordered objective on a standard L.P. of AEM format, we must make 

it allocate weapons to a given target only if all targets above 

that one in the list are being attacked.  This can be achieved by 

placing specially constructed, artificial value destroyed entries 

in the pay-off function of the L.P. 

The artificial values would be selected so that the value 

destroyed per weapon allocated for any given weapon type would be 

.argest for the first target in the ranked list, slightly smaller 

for the next ranked target and so on down the list. Given such a 

specially constructed pay-off function, no weapon of a type won Id 

be allocated to any given target as long as higher targets on the 

list were not b^ing attacked. 

However, this step alone will not guarantee that the correct 

weapon type will be assigned to each target so that maximum list 

penetration will occur.  In order to insure that there is no favorit- 

ism to any given weapon typ«*, it is necessary to guarantee that any 

strategy which achieves the desired kill on a given target contrib- 

utes the same absolute value destroyed as any other strategy which 

gets the desired kill on that target. 

>w* 
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In order to clarify how thea> special constructions occur, 

consider a case where three target classes exist ami two weapon types 

exist.  Further, consider the following hypothetical set of candidate 

strategies which are being provided to an L.P. 

Value Va lue 

Target Glass       Strategy        Destroyed Mod 1   Destroyed Mod 2 

1 5 Weapons of Type 1        8.0 17.0 

2 Weapons of Type 2        3.0             17.0 

2 3 Weapons of Type 1        4.0 10.0 

8 Weapons of Type 2       10.0 10.0 

3 1 Weapon  of Type 1        1.0 2.0 

2 Weapons of Type 2        2.0 2.0 

Now, for the six strategies which are provided to the L.P., 

consider the value destroyed mod 1 column.  Mote that for each 

individual weapon type, the value destroyed per weapon on target 

class 1 exceeds that for class 2, which exceeds that for class 3. 

For ~xample, for weapon type 2, the appropriate values are 3/2, 

10/8 and 2/2 respectively. 

However, note that the absolute value destroyed on each target 

is not constant.  Especially, note that on class 2, weapon 2 is 

given credit for ten units of value destroyed, while weapon 1 

would get the same kill level but only get credit for four units 

destroyed.  This could well force weapon 2 to be used on this 

target. 

£_j£. 
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It we construct mother value destroyed variety (the mod 2 

column), we. can ret'»t»i the desired ordering as in mod 1 but at the 

same time ftlve each weapon credit for the same vralue destroyed on 

: given target.  i'his is iccomplished by working UD the list from 

class 3 and insuring both conditions simultaneously. 

In order to describe the technique in a more rigorous manner, 

consider t! •■*   following recursive type of process   Let T be ehe 

total number of target classes in the ranked list.  Further, assume 

that W weapon types exist and that all weapons have a potential 

strategy for each target type, where, the strategy consists of some 

number of weapons assigned to that target.  Denote this number of 

weapons as N(I,J), where I is the target subscript and J is the 

weapon subscript. 

Now, according to our previous discussion, we desire to assign 

value destroyed units to each of the strategies and these assignments 

must be such that: 

VD(I,J)/N(I,.T) > VD(I+1,J)/N(I+1,J) (Q-l) 

for all (15 I *T) 

where: 

VD(T,J)  = value destroyed for the strategy for 

weapon J on target I 

and such that 

VD(I,J)  =  VD(I,K) CQ-2) 

for (li K :-W) and (1< I <T) 

i.i«n*..rii „r^-^^'vV'-'-' --'-iV--" %/, -.', ?-•. ?.:. ■^.,|. ■-»-,.•... -a.. \*. A\ I'- K\ *'.. .'.VA'.'AW, .",.'-« .".I V>*_«> "^.'V"' ■/» » ' M & m\kVkkVhaf«\ m*ä «V -*A W"J( k.% -"»V«V*V*",-"v YrJ\ 
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Equation (0-1) simply forces the correct descending order Cor the 

weapon value destroyed units while equation (Q-2) says that all 

strategies on any target must be given credit for a constant value 

destroyed. 

The recursive process would then start with the lowest ranked 

target class (I = T) and simply apsign any arbitrary VD value to 

each strategy.  For example, VD(3,1)  = VD(3,2)  ■ 2.0 in column 

4 of the table. 

Given this start, one can use equation 1 to compute 

VD(2,1)/N(2,1) > VD(3,1)/N(3,1) 

and 

VD(2,2)/N(2,2) > VD(3,2)/N(3,2) 

or 

and 

VD(2,1) > 2*(3)/l 

VD(2,2) > 2'(8)/2 = 8 

Theoretically we could choose any numbers that satisfies the above 

equations, as long as   (from equation 2) VD(2,1)  = VD(2,2).  In 

this case, the value of ten was chosen, as is indicated in column 4 

of the table.  We can then go on to determine that 

VD(1,1) >  16+2/3 

and 

VD(1,2)    >     2U/2 

Since we  also have  the  condition VD(1,1)     ■    VD(1,2),  we have 

chosen  the  value of  17   (see   the   t ible) . 

^A^ft^iVw^Jli'^iVi^VdV:^ ^r«.^k^t «.i^—*-"j-k-.» .»jt.«*j^j»2fc.«ik.«_• «i«.. j 
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Thus, we have demonstrated that It is possibl  Lo use ,: 

recursive process to develop appropriate value destroy (i  aits 

any given set of Strategie«» no   <!,.ii the ..... will proam e a .. 

ordered attack.  These values will esseuti ill\ trick ; i.■• i ,.i\ 

doing a rank-ordered attack even though it Is programmed to nu.ximize 

the total value destroyed. 

In the case where target classes beyond class T exist but they 

are not to be included in the ranked list, the only effect on the 

above process is involved In equation (0-! ).  In tuat I.M^ , . ■ I 

then target class I + 1 must be arbitrarily defined as that membei 

of the unranked list where weapon J will achieve the maximum value 

destroyed per weapon (VD(I+1,J)/N(I+1,J)).  Thus, in such . case, 

equation (Q-l) must be satisfied for the last member in. the List so 

that attacking the lowest ranked target is preferable to ^rtack'nj 

an unranked target. 

3•  The Program Modifleatiua Scheme 

Basically, the modifications to AEM were isolated in the optimal 

strategy generation loop.  This loop can be diagrammed as follows: 

J& ^.vC^^l^l^^ y_VJ.J».:^   



SUBROUTINE CHOICE SUBROUTINE WAYS 

PERFORM ALL 
BOOKKEEPING AND 
RELATED FUNCTIONS 
NECESSARY TO 
ALLOCATION PROCESS 

*t- 

USE A LINEAR 
PROGRAM TO 
FIND OPTIMAL 
STRATEGIES 

SUBROUTINE LINEAR 

SELECT CANDIDATE 
STRATEGIES 
BY LAGRANGIAN 
PROCESS 
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m 

In this operation, the logic flow is from Choice to Ways by Link A, 

return to Choice by Link B, more computations in Choice, proceed 

to Linear by Link C, return to Choice by Link D and then either 

repeat the process if the optimal allocation has not yet been 

found, or return Lo other AEM functions, by Link E, if it has been 

found. 

The rank-ordered recursive process operates in Choice at the 

time the return from Ways occurs via Link B,  At that time all the 

candidate L.P. strategies are available and the proper VO parameters 

can be sei so that the rank condition will be imposed.  Logic in 

Choice simply scans alj the strategies and generates the appropriate 

VD unit8 by equations (Q-l) and (Q-2). 

4#     Problem Areas 

There are some additional problems caused within AEM by 

these rank conditions that should be discussed. 

i"d**»*vVJV.V\ f?jCm**m'~ „vV, -v. J\ '.A •-« *-" •-- •-<< \J *-» 'J •-- ■_/■ ^. -^Sj..-_. -^y.» ;^;^'^\,v ;_.-. VJ'J •_» '.\r^''-**-■■> r^ -..% \/,-^»'» *'• «% .' ■. s->^.' /•»\ 
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. , t;,. .    . >s foi certain realistic cases can become 

8 
?r large nunuS'    -a ■ •.•■ oi lei of 10 ) and, as a result, the 

process encounters computer round-off problems,  riius, Li was 

•i 'essary t • modi i* subroul ne linear so that these problems -ire 

minimized.  H.owever, more computational experience might reveal 

tba t addi t iona1 work is necessary. 

Second, in many cases, the rank condition might we I be 

satisfied through natural allocations because of the inherent 

nature of realistic target systems. Thus, in order to minimize 

computer time, routines were added to Choice and Linear so that 

the rank-ordered conditions would only be imposed if the normal 

"maximize total value destroyed" allocation would not satisfy the 

rank conditions. 

Third, sii..r; AEM u »es weapon Lagrangian values in the force 

target value computation, it must be recognized that imposing rank- 

ordered conditions can conflict with the normal two and three-strike 

scenarios where the scenario objective is to maximize delta damage. 

In essence, the rank conditions are partially reflected in modifica- 

tions to the weapon lambdas and this modification is not at all 

clear-cut. 

In multi-stril"j scenarios, it is recommended that rank 

condition cases should be run as mis-estimate cases where neither 

opponent knows about his opponents' rank objective.  This by-passes 

the conflict between max delta and rank attack objectives by simply 

letting each side attack his opponent as if the retaliation would 

be a max damage attack and not a rank attack. 

H^g* 

*C^>1JG 6<iz^^>^:;i;v 
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Finally, there are some conceptual conflicts between rank- 

ordered attacks, island defenses and preferential defenses.  For 

example, if one has island defenses, the normal AEM logic Is to 

determine, for a given attack arsenal, which islands, and associated 

targets, should be attacked.  However, if there are rank attack 

conditions, does this mean that there must be attack on any island 

which contains any ranked targets?  Or, does it mean that in any 

island attacked the rank conditions must be followed?  AEM is 

currently programmed for this latter practice. 

When preferential defenses exist, there are convergence 

conflicts between the rank attack process and the correct attack 

plan through the defenses.  This conflict is such that the final 

closure of the program on the correct attack plan might not occur. 

It is therefore recommended that a combination of this variety should 

be used with caution. 



lV-RA-1 

V. R.     A  VARIETY OF  SMALL TOPICS 
% 

I 

* 

V 

RA.  The Assured Destruction Scenario 

Since the assured destruction (AD) scenario is such a common 

analysis procedure in strategic analyses, it was deemed worthwhile 

to mechanize the scenario as a special AEM option so input of 

such a case would be as simple as possible.  This section describes 

the implementation of concepts behind the scenario as viewed 

in AEM. 

1.  Definition and Tnsk Approach 

The implementation of an AD scenario is concerned primarily 

'-* 
with data manipulation rather than mathematical developments.  Thus, 

^\ the methodology discussion will involve basic definitions of the 

scenario sequence of interest as it was programmed and the fcrm 

of the data manipulation necessary to task accomplishment. 

Assured destruction (AD) as described herein will be defined 

as the ability of a force to  incur damage to an opponent after 

suffereing a severe counterforce attack.  The AEM has been com- 

patible with analysis of assured destruction capability for some 

time through thoughtful use of inputs.  However, the job of input 

management for an in-dpeth study of a wide range of force postures 

was prohibitive.  Thus, in this AEM option it is an objective to 

add control to AEM to set the proper parameter values if this type 

'■/V-V. K'*. ^VuV^\V^V^^yjV^.«fmj?,^*^^ „-^ ^x ^* ^:» _** _%- \_* LA.1 
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of case is tti • •: i red .  I n this w.iv Mi«  ma      i, ;>ii} y       •■<   < . 

The as sir* ud destruction  conn    :: based «a ;!- ; ■ ■■ 

game (a CJi'/CV attack followed by a CV retaliat u>n) win ic the 

strike J  piuiarily counterforce,  Li; current del nil in .•.  r ai 

run iJ a weapon type may attack force targets, il must »Had I >rre 

targets in the first strike.  It is also assumed thai a ; ! ! ■  I 

strike weapons are on generated alert to insure the largest praeti* I 

counterforce attack. (Retaliating weapons are assumed to he on day- 

to-day alert ,) 

Unless otherwise specified by the analyst ail other (non-force) 

military targets are removed from the game.  This is done to increase 

the attack on retaliatory weapons in the first strike.  In addition 

there is normally a limitation of the retaliatory response to urban 

targets only. 

In certain circumstances the analyst might desire the inclusion 

of additional targets in assured destruction cases.  Such .1  capability 

is offered in AEM through the use of special variables as follows. 

A target parameter (TTYPE) which denotes a basic target class 

category and a scenario control (INCLUDE) which specifies those target- 

categories which may be attacked on each strike.  These variables are 

defined as 

TTYPE(I,J)  - 1  denotes that targets o.l class   possessed by 

side J are retaliatory force targets (weapon 

bases), 

- 2     targets of class 1   possessed by ;:!e .1 ire 

nonretal 1 atory, other military Lai • a.s (oMf) 

testä^^^ 
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- 3  targets of class I possessed by side J are 

civilian value target 

= 4 targets of class I are non-retaliatory, Nth 

country targets which may be attacked when side 

J is attacked. 

= 5  targets of class I on side J describe A.BM 

defense installations for a missile subtractive 

defense island 

= 6 targets of class I on side J describe a bomber 

defense installation for a bomber subtractive 

defense island. 

INCLUDE(L,J)= all target TTYPE's which may be attacked by side 

J on strike L (L=l,2,3).  Thus, INCLUDE(1,2)=14 

would specify retaliatory force targets and Nth 

country targets only are to be attacked on a first 

strike perform .d by side 2. 

For the particular case of assured destruction scenarios, the 

control INCLUDE, would normally allow only the retaliatory forces and 

civilian value targets to be attacked in the first strike with only 

those weapons designated as having no counter force capability being 

allowed on the civilian followed by a retaliation against only the 

civilian value targets of the initiator. This control may be over- 

ridden by specifying INCLUDE in ehe input array to include Nth country, 

OMT, or other target categories as desired. 

»*^^>X^.flj>\ :^1*. S' J'V «--:-/-..• ■■*"-■/.•■;■ %.A'-_C^Lä .V.;»,' Jilv :*':^*ATA,:*, I^I^^JI^AL^ JJI^U!^ «»*- *.t^L*L^^ ^•. .•..i.-«v._v k.'^tjkla 
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The full use  : these variables is described in the ARM-HEDGE 

id book.  The  •. •  >• '      bore only to indicate a rapHn 1 i ty. 

in an AD type u!       >nav be desirable u inve; t igate higher 

IMIH idence in ichieved dam.i ;.  ['bis it? Cacj ! i t" >i ed  ndireetly hy 

means ot a large! hardness (ADHARD), used only in AD ruris3 v . ch may 

be different than that used in ordinary analysis (HARD).  Therefore, 

weapons may be easier to kill (ADHARD <  HARD) yielding   lower weapon 

survival than won hi normally be anticipated and the urban target may 

be harder to kill (ADHAW) > HARD) during the retaliation to gain 

confidence in the achieved damage. 

A key part of the AD scenario is an option which would allow 

an investigation of the assured destruction level if one or more 

force components could not retaliate (retargeting is allowed for 

each component failure).  As a result of this objective, AEM was 

programmed so the following sequence of responses is computed after 

the normal assured destruction computation: 1) ICBM's only, 2) SLBM1s 

only, 3) aircraft only, 4) ICBM's plus SLBM's, 5) ICBM's plus aircraft, 

and 6) SLBM's plus aircraft.  If a component is not in the basic force, 

they are deleted from the sequence, e.g., if th  9 are no aircraft 

weapon types (JTYPE-3), response 3, 'J, and 6 would not: be computed. 

Within the above definitions concerning the AD sequence, AEM 

input data ami internal controls are set so that the analyst can indi- 

cate a dos ire to have an AD run and all other input mods would follow 

Lj "-> .--«- 'jfJ'.'.'/,V..V...' . .Vk.v. JL«'- £M *. »l V. »'- W- »'- ■>*- ./-. »'- ».'. -.'^ O.V. a!ä <--f. •"- •"- i*- »*» .» V- i ~ *« '.'» •■ H^IJLAV^"»«-'•^". «_■" •*_* *J\ «."f-c- JLS*J!*."> *-f v~ ■%.' \. 
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automativ  • •■ sots  up   rh"  dos i. rod   two-strike  ^iri'>, I'ltcs 

11u    »lor!    rat i       md  hardness   K.-vt Is   .is   previously  discussed    md   con- 

ducts   the   (   o-st i  in. 

At   tht-  i   »nn'ction  of   the  two-strike   run,   the  appropriate  sequence 

of  alternative   responses   in   the  second   strike,   as  defined   above, 

then occur   in   the   form o[~  individual   one-strike  games.     That   is,   e..,., 

the ICBM only  response   is  a  one-strike  game,   the  SLBM only  response 

is  a   separate  one-strike game  and   so on. 

2 .        Option  L'tilizati -n   Cautions 

If  the  assured destruction  option   is  elected,   there  is  virtually 

no   further control   oi   the  scenario  possible by  input. 

It   is   also   important   to  note  that   the   first   strike   is  based  on 

computed   force   values  as   if  all  components   of   the   force will   retali- 

ate.      Che '.'  by  components   at   the  end   oi   tiie  game  assumes 

component   failure  was known by   the  retaliator  prior  to  the war. 

This   sequence   is  optimal   if   this knowledge  exists. 

■■•.W-!»J-'-i>'^'..-^..-i"- -     jfcVjJjLi^:».^V^JL^.JIY -'* .v, -r»ijiri . i »V»*—',* t.ü, .'*-$ J»^i..A^ 
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RB.  Impacting Megatons 

'•   General 

The strike summaries in AEM HEDGE include both impacting eciuiva- 

lent megatons and true impacting one megaton warheads.  The difference 

is in the method of computation which is described here so the analyst 

may decide which (if either) computation is meaningful in his analysis. 

2.   Impacting Equivalent Megatons (EMT) 

This parameter is based on a scaling law of the form: 

EMT = W • Y2/3;   Y < 1. 

1/2 
EMT = W  • Y   ;   Y > 1. 

where 

EMT is the impacting equivalent megatons 

W   is the number of impacting warheads 

Y   is the weapon yield in megatons 

The question then remains how to determine the number of impacting war- 

heads. 

Consider an undefended point target attacked by a weapon of re- 

liability R.  If A weapons are allocated, A • R are expected to impact. 

If D perfect defenders are added, a translation shift of T units in 

the damage function where T = D/R is caused and the number of impacts 

is (A - T) • R. 

There may be other target types having areas greater than zero 

and/or imperfect defenses.  For these cases, an effective reliability R 

ll.^.M,*» -'■;, m'f m"/t m\.m\..Ul  ."fl » »■ h j m   '.m   " M "-M *. M^^M.. * j, ."^T^« &JJ ?^*   \M     Jt  "-te .'-«I "-» AAIIA""^ * _> »_» '.» ~^>   ",*,   '^ •_»**„; ".f..' --."-?  "-■V'V '-- *.- "V 'J-■   'M_      .'. V_.-^_' l!_^_ ^_„ , 
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and an effective translation i  n-o L''MH|»UI< I,   u >■ .   ■ .     i.n.i. 

weapon,  image pararacLi us (J1 , : ; ace ..• ■■» ipjted    Ui   ... 

.aid turret (with no dcloa.se).  i'he eii  tiv» re 1 i    n\ L.-, 

(R  • : : i.  »mere 1' LS Che imporieci single suo: V.L.).  in .n! ■.. 

area targets .vhich normally have a translation, ;  Ls uuuiiiied ;. 

reliability considerations to produce T .  L'hus, ij tin taivei l 

has no translation, (T1 = jö) e.g., point target, I  ;ilJ also equal 

zero.  Li the target has a positive area, the difierenc in I    nu! i 

is an approximation of the defense price.  the general tanuu! ; ' -1 i. 

then: 

W, R  . A - (T - T ) 

If T  = 0, the approximation is exact with Liu: exception of ur.vt. 

Invi; ' Infii ite area with value distributed acrorainp, tu the < i»*rnl ir 

normal distribution.  In this case W  is only an approximation 

3.   jJLyil ümnacting One yoga ton Warheads (TEMTl 

This computation requires the derivation of the damage tun I ; 

for a perfectly reliable, one meg.:ton weapon which is impe.rvie.us ;" 

defenses*  The weapon i^ further dc cri.bed by a .25 nautical mile CEiJ, 

The question than asked, strategy by strategy, is how many oi these, 

"perfect" weapons would be required Lo obtain the same expected damage 

on the targets attacked by this strategy«  'A<< integer condition i... 

applied as follows:  consider  <;U U i-  ti'-i     a ct.a i 

target with expectations of kiJ I Lng 90"/'.   oi aJ ! <    ■   toilets. '■ ; 

**# 

IjI^Mj^BigiUfik^AlA^k^ w-iVO*..i'«-wA*m-T»^i^a!^jtlA.v>.'t'J--^^.j!^^^- 
.•'j'"'/.^^/^:.'.:.; ,',i VJ^A^J^:..:. "Ar^./J^L^',^^-^^^Lja^^^,^L'

!L«>.. 
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"perfect" oiv   nit jyiL.i" weapon has a perfect damage Function (P = I, 

I'  0), nine true ono  megatons would be equivalent (one on each oi 

nine targets) in terms of expected damage.  in general, u PK denotes 

the expected damage lor a selected strategy used S times: 

TEMT =   (X - I)  ;-  (S - X) • (I + 1) 

where 

S (PK - Pi) 
(PU - PI) 

PI = 1 - (1 - P) , [ 

PU = 1 - (1 - P) 
I + 1 

i - 
In (1 - PK) 
In (1 - P) 

P =  "perfect" weapon 
PKSS for the target involved 

Note that   PI < PK < PU. 

i^IiIZ^L&al^^^^ '-• •-'■•/.-•'/> V-"-•-*>".'>".>".•-'. 
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RC.  A Specialized Bomber Model 

There are two complex issues which are not dealt with in standard 

AEM bomber relationships.  These issues are:  (1) the fact that bomber 

loadings are generally mixed in nature, and (2) bomber penetration of 

area defenses is a complex function oi   the bomber types penetrating 

and the manned interceptor types in the defense.  These issues have 

been addressed to some degree by insertion of a specialized bomber 

model into AEM.  This section will discuss some of the key issues 

pertinent to that model. 

1.   Bomber Loading 

In the real world a bomber can obviously carry a complex combination 

of offensive weaponry.  For example, gravity-drop bombs, air-to-surface 

missiles and air-launched decoys are all candidates to be loaded onto 

a given bomber.  There might be reasons why some of the many possible 

combinations would never exist on a single bomber, but the general 

problem still remains. 

AEM has a feature which makes such mixed loads an even more complex 

issue. All internal weapon allocations and bookkeeping in AEM implies 

a one-to-one correspondence between weapon types and base types.  That 

is, a given base is not allowed to contain more than one kind of weapon. 

Thus, mixed load bombers cannot even be allowed in AEM. 

Within the specialized bomber model, herein called BOMBER, these 

aspects are worked out to somewhat of a satisfactory conclusion. 
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l-'irsL, however, M ."i \   i>e   recognised Lhal l he analyst can do any 

>n he c . . ! : v avoi d    usi      M      lowever, 

31; ■.;. in mo BOMBKK w I i    i     '  i('l    , - ' • ;    I.J;U ,im 

'Öl' OIL; OJ  h   . !tO I';.;-:- I de.  . ' ( i ■     • '■■•      I v I ; an 

i nput (st v the U  : 01 :■ ' Handbook for fui ! details); 

B(i), B(2), B(3)  -  Inventory number? of three diw:erent kinds 

of bombers 

SRAM - Total number of air-launched missiles in 

inventory 

;ICAD  =  Total number ol   air-launched decuyb iu 

inventory 

BASES = Total number of bases occupied by the 

total set of bombers 

The loading part oi   BOMBER simply distributes these total inventories 

in such a manner as to maintain consistency in the number oi weapons 

available for use and the number of bases which contain them.  In 

doing so, however, it creates artificial basing categories so that 

a given base type will contain only one type of weapon.  For example, 

there will be a category of B(l) that carries only gravity-drop bombs, 

a category of ß(l) that carries only SRAM, a category of B(2) that 

carries on 1 y S CA D, e L c . 

The intent of this distributed loading is to live within the AEM 

limitation that each base type can only possess a single weapon type, 

but not force the analyst to compute some artificial loadings by hand. 

*'-- - -'-■'■*- '-"■■ -*  *-"- '-*-.-^w^ .?./,»•,.< «fti.."t JH^. -r . V. ."_.-. »r .v. —- . .".. .X~.. JL. .-. _» .-'   -rv --.'-> V v . ^» ■/■. .1 > \J* , -r . -M J:. *..-*.. *.-\  J*   J>  '-»'.,- "^» V« -.»» ".. '^ :^_'^' ^ 
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*-*** 

While performing this bomber loading function appropriate detail 

is paid to such issues as:  bombers not available because of training 

and withhold options, alert rates, load capacities and general bomber 

type (of which three are allowed).  These issues simply modify the 

loading procedures used in partitioning out the total inventories to 

the various single-weapon base types that are created. 

The precise loading rules cannot be presented here, but basically 

the procedure is as follows.  First, add up the total number of 

bombers and divide by the total bases to obtain an average base load- 

ing.  Then, take the total inventories of SRAM and SCAD and distribute 

them among the three bomber types according to their capacities.  In 

doing so SRAM bombers and SCAD bombers are created. Assign remain- 

ing bombers as gravity-drop bombers.  Then use the average base 

loading to convert all bases into bases of each type. 

At present in AEM not all possible base types are created. Refer- 

ence to the AEM Users' Handbook will provide an understanding of six 

types that are created and the analyst inputs available to control 

the whole process. 

This creation of artificial base types is acceptable for AEM type 

analyses for the following basic reason.  It is usually true that all 

bomber bases get attacked to a rather high level, whatever the assumed 

loading.  Thus, there is no misleading survivability effect because 

of the artificial base type.  In such a case, the off-on-warning 

weapons are the only survivors and from case-to-case this fact remains 

rather constant« 

<wW,:>lAi',ki,fclii.J ^M,rt,.iM.fcr^^^.-fr^^?mVj^fla\«VfcJUL^^ 
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Sine«  iii  lumber oi bomber  survi1       i i;      he' d 

is then possible to computt      t  •■ let.rai u»;i        : i • : . 

pn ..'■..:i   !  •, : >< ,;i \*  ! i!,  ■  :.     '.'lb ! !        : '     .'■  , \  i - 

iiLiXl . . '..       hen, when tht bombt !• ., .;■ ■ < a •  I 

. > di ;tiueii on oi which bomboi c.irriui u.u'!    ;  .    ; t.rai 

w imply .- ays how many weapons oi a given typ* arc ni located to a .''w'' 

target. 

2,   B omb e r P e ne. t r a t i o n 

A number of bomber penetration studies hav< I ui conducted in many 

groups over tue years in an attempt to develop aggregate:1 bombe J p< 

tration models.  These efforts have usual1> been concerned with aich 

issues as geography, multiple interceptor types, tactics, eurohe] 

passes per interceptor, acquisition and interception prnbabiHHn^t 

etc.  One such continuing effort has been conducted by the Air Ion. 

group in the Office of the Assistant Chief of. Staff, Studies ana 

Analysis (AFCSA).  The penetration relationship to be presented her» 

is from that source. 

The basic AFCSA equation used in this penetration model is as 

follows: 

B(i)   - B(i-l) <   1   - PK 1   - exp     (-  PI)   •   I/B(i-1) 
■\\ 

( 
(RC-1) 

. t.n 
where;     B(i)     -    number  of   bombers   surviving   the   i—:" 

wave made by 1 interceptors 

PK =     probability   thai   an   uiterta-pLui     ,1.11: 

the bomber in a single pasi-, 

PD =     probability   that  an   intcrcepioi   civ (.■. i 

a   bomber   and   converts   to    in    ill".. 

position 

L.i ■ ni\i*<  ,*'„,kV «"»,*«■„.V.,'«."^»!, m'.Km'ttm' ^' ;.'.Li^jb't^L. k". •»; ;."„ ■-•..•^.A:.^' •-'. .\."~«e\ v' ^^■-•"^•W>. •*• •'«. ■"A-". -', »'.*-■'/"... ••."i"-"-*.*-'/.'-"i.a\ -V '*.- V a- 
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hv 

I = number of reliable Interceptors available 

for possible engagement of the bombers in 

.,  .th 
the i— wave 

This equation is based on several key assumptions.  First, it is assumed 

that the interceptor control environment is adequate enough to vector 

the interceptors into the vicinity of the bomber raid.  Second, it is 

assumed that interceptors then encounter bombers in the raid in a 

random manner, with no overall control of the final vectoring.  Third, 

it is assumed that some number of interceptor waves engage the bomber 

raid and that each succeeding wave encounters only survivors from 

previous waves. 

It should be observed that the interceptor effectiveness is con- 

tained in the parameters PK and PD.  Other than these two parameters 

the key issues are the ratio of interceptors to  cnbers (I/B), and 

the number of waves allowed to the interceptors. 

If there are multiple interceptor types, this equation can be ex- 

panded to the following: 

B(i)  = B(i- i-1) | 1 - PK (j)   1 - exp  -]£ PD(j) ' I(j)/B(i-1) 

' j (RC-2) 

where:  PK(j)  = PK by interceptor type j in a single pass 

PD(j)  - Detection and conversion probability by 

interceptor type j 

I(j)  = Number of interceptors of type j 

In addition, presence of multiple bomber types can be represented by 

computing the above equation for each bomber type and by making PK and 

PD functions of j and the bomber type. 
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1'hi.s basic e       has been adapted tor use in \KM as follows. 

[rally, each oi I ' bomber categories created in the Loading part. 

Mil   i  idtv     . as ^ioiiy;i.ig to jiie of five di i. tercet pene- 

' i-u! i ■MI ( I asses,  h'or eau pen« trat: urn class there a IT SI c: aJ 

p. si aiik'tvTs describing the e t t"ect.iv«Miess oi each inte.ree.pf <r category 

igainst iln class.  (There ire a;"> to six different intercept :>r types 

11 owed. I 

Kor example, one bomber category might be thought oi a. a good 

penetrator against some interceptor types but not against other types. 

For this bomber category, and for each interceptor category, the inter- 

ceptor effectiveness is described in terms of PK and PD values, the 

number or turnarounds, or waves, the interceptor could make on that 

bomber category, and the number of passes the interceptor could make 

in any single wave at.tack. 

Given that effectiveness values are available for each intereeptor 

type against each penetration class, the program then uses equation 

(RC-2) to compute the number of bombers of that class whici will sur- 

v" vc wave number 1,  The survivors of that wave are then en  ged in 

another wave, and so on.     The number of passes a given interceptor type 

can perform in a given wave is used as a multiplier of I(j) in the 

equat Lon. 

The number oi waves LS a parameter which must be chosen on the 

basis of the expected geometry of the penetration routes, aircraft 

p< rformance, etc.  it also turn:-; out. that the development of the 

Am■«.,ai.»r&* VM V»J£»_LI. .t!\.M*.^^.s^J'jAl^S^alC'tJiXuiSLlrJjklM.ftjtJLMJlMljjL^uAjak^V*** JW JJ^ML^JS»\V\a»'C .\'..* V'  . .. _'.'/.//_'■'-"*" '*■"■"> 
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basic equation by AFCSA revealed Lhat good prediction of penetration 

can be achieved only if the wave parameter takes on certain values. 

This led to the following choice of the number of waves. 

The basic assumption is that four waves will occur and that 

one-fourth of all available and reliable interceptors will take part 

in each wave.  However, if four waves result in a ratio of inter- 

ceptors per bomber less than .3, the number of waves is cut back to 

a number of waves such that 

W = 
,3B (RC-3) 

where:   W 

A 

I 

B 

number of waves 

largest integer included in A 

total available and reliable 

interceptors 

number of arriving bombers 

Use of this procedure for selection of the number of waves has resulted 

in adequate accuracy of computation of penetration losses when the PD 

and PK parameters are also appropriately chosen. 

3,   The BOMBER Output 

Once the loading and penetration computations are completed 

BOMBER creates special AEM format inputs for the analyst. These vari- 

ables are: the number of bases of each artificial type, the number of 

bombers on each base type, the number of warheads of each type off-on- 

warning and the reliability of each warhead type (which includes pene- 

tration probability). 
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These inputs are generated in the from oJ A.KM, just wiu a o .± 1 j 

inputs get into the program.  BLC.IL^ ol t hi .^ I oca», mi ».out  ! 

factors are affected by the scenario outcome.  L'hi: i   i-uwhai 

critical in the case of penetration, but, as ,<;> been discussed, L« 

is not generally a problem since onl) o: 1 -( i -u.-i i i <.,rj  wt dpons ar< 

generally survivors and that is non-seenarin «•utconu uoponliiit. 

4.  A Generalized Capability 

More generalized bomber loading and penetration options have been 

developed from these simple concepts.  Discussion OJ those capabi liti*>- 

in AEM is the subject of reference 21,  Contained therein is consider- 

able insight intn additional aspects to the issues presented here. 

Since the procedures discussed in reference 21 are mostly  ; a bookkeep- 

ing variety they are not reproduced here. 

«' V- -"- "' - '"- -'■ -\ •-■*-'•'•-'    ~   .   ■-" ." -- •■" . '■ '. '. '• "» -"■ -' -"' -"• -" -'----•.*.* » -J> ' - -..». * « V" •'-■ .*•--. *J-. V-. V..V-_V',. ."- >'„ .>-^*_ u"- 
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RD.  RV Impact Limits 

The current version of AEM has a rapid method for calculating an 

approximate number of impacting RV's which is correct foi perfectly 

defended point targets and is a gooct approximation for targets with 

defense leakage,  This method, whicn was described in IV-RB, was 

adapted to allow control over the maximum allowed number of RVTs 

impacting on a point target by appropriate control over the strategies 

allowed to enter the weapon allocation process. 

Consider the following equation for computing the number of RV 

impacts on a target when the defense is p«rf»rt, 

I  « A • R -  D (1) 

where:  I  ■ Number of impacts. 

A  = Number of RV's of a given weapon type allocated 

to a target of some given class. 

R ■ RV reliability for the given weapon type. 

D = Number of RV's lost to terminal defense 

located at the target. 

The A • R part of the equation is simply the expected 

arrivers at the defended target and the D subtraction 

indicates the reduction of those arrivers by the 

defense. 

In terms of AEM processes, this equation can be transformed in 

the perfect defense case to the following for a point target: 

i"*- ' -'"^< ''-••■'•■•■'"-'«•••''-' aJ - ' •- • v* - '"v ■.•'*•-'■•! »-. '.•.•',-'■ 
'. *. "\. •. ". 
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(A  -  ANZ)  •  R (2) 

where.: 

ANZ -  hamage function translation = — parameter. 
R 

If one considers the K and ANZ terms in equation (2) as "loss 

factors," equation (2) is generalized in AKM for the leaky defense 

case by the following approximation: 

R Ä  -^ 
P 

where: 

P  -  Damage function single shot kill parameter. 

p  =  Damage function single shot kill parameter 

for the same target in a no defense, perfect- 

reliability weapon circumstance. 

Substituting this relationship into (2) we get: 

P
K 

I  -  (A - ANZ)  • — (3> 
P 

Solving  (3)   for A   (the maxiir-m number  of  RV!s  to be  allocated 

to a   target): 

A     =    ~~     4     ANZ (4) 

where I is now the desired limit on number of impacts. 

The method thus reduces down to use  of equation (4) to compute the 

maximum number of allocated RV'z   such that the expected impacts 

on the target will not exceed L.  This number is used in AEM to 

prohibit any allocations which would exceed I for any weapon-target 

combination. 

fcfr »% «"* >"* -s -N «"• ■"• -s »' -'' ■•"• ""' •'• tl --*-> '• * '•*"-• ' -'* ^ ■• ■ -"'V* -"* --J' «*•• >■'" *" '"*. »% ■■'" »'-*>■«' .-*.' n ," h " xLa., /* " - ~.L "■• V V V li 
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S.   WEAP01I DEFENSE MODULES 

1.   General 

A weapon defense module is defined as the common defense of multiple 

weapon silos by a single defensive system.  The silos are assumed to 

have adequate separation in distance to be considered separate targets 

inside the module.  However, any silo within the module may be defended 

if the defense is operative.  The defense is vulnerable and will be 

considered as an attack option. 

A weapon defense module is described by the. number of radars and 

interceptors possessed by the defense and the number of silos in the 

module.  Only the radars and silos are assumed vulnerable (an attack 

on the interceptors is not considered).  Ladder down, Mackout, and 

other variations dependent on sequence and timing of the attack are 

not considered.  Therefore, defenses are suppressed only by blast 

damage on the radars from a penetrating warhead.  In addition, leakage 

parameters are assumed constant independent of numbers of warheads or 

warhead type. 

These assumptions prohibit detailed analysis of various systems 

with these models. However, the effects of such modular defenses or 

exchange analysis can be analyzed. There are two spearate models in 

AEM which operate in different environments (Safeguard and Hard Site 

Defense). There is currently no way in AEM for any weapons to be 

simultaneously defended by both defense types. 

The Safeguard assumes high altitude, endoatmospheric interceptors 

which are used in a shoot-look-shoot mode against incoming warheads. 

*• <»""- •" •"•"'"- £i£a ""' •"- -"• : ■.-"-■•V-V.-"- •V'"^'•--"■-•' v" -A' A/-." l± -i.' •-" v -/ --" *-•--' -.' ■'-• --" --' 
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All warheads arc assumed to arrive simultaneously in any auii.-r.ular 

attack.  The radar attack level Is identical lor ill radars in terms 

of allocated warheads.  The radars are netted and commonly defended, 

however, the survival of more than one radar may be required to main- 

tain a credible defense.  Interceptors are used against J random 

selection of warheads attacking silos if the defense survives the 

radar attack. 

The Hard Site Defense model assumes low altitude intercepts (after 

terminal decoys are aerodvnamically stripped).  Only one interceptor 

is assigned to each incoming warhead directed against radars.  How- 

ever, a variety of firing doctrines may be used it. the warhead is 

directed against silos.  The radars are completely netted and of such 

capability that only a single radar survivor is required.  Survival 

may be enhanced by the creation of a collection pool of interceptors 

which are assigned to one radar which has successfully used its share 

of interceptors. 

These models are very different in mathematical derivation.  The 

Safeguard model uses expected values almost exclusively, while the Hard 

Site Defense model uses the distributions implied by certain mean 

values.  The formulation of each model is discussed below. 

2.   Safeguard Defenses 

These defenses protect a larger area than Hard Site Defenses due 

to the assumption that high altitude intercepts are accomplished. 

Therefore, the number of silos within a module may be reasonably large 

and still assume sufficient separation for independent targeting.  In 

r 1 •> vV" • v v vS v »"•'• v V'\"- -\A1VM ^'>.v.--y-;.y .v.-.y.'.v.-.-'v-..■"•.•'• • \ ' .-W-/'. •-.' .--.•*- -.-'- -.- \ 
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knA V? 

addition, radars -ire considered sufficiently .■■■.,■ :i ■. {« ■  -  n< .- ■< 

multiple kill or "accidental" kill.  1 in au'.i-vilo attack utavr, 

simultaneously and may be preo ded by a simul t..inc< «sly arrivin«   t 

radar attack.  All radars arc attacked b\ an ui< ntic; i mini i i    ., i - 

heads.  (Even though it may not be necessary to Ki Li a» 1 radars Lo 

nullify the defense.) 

Since Safeguard operates in the high altitude environment, decoys 

must be considered.  In keeping with other defense models in AEM, the 

following definitions are made: 

SGPA  - The probability an object is acquired by 

the Safeguard radars and is placed in the 

firing list. 

SGPD  - The probability an incoming decoy is 

determined to be a decoy. 

SCPI  -  The single shot lethality of  a Safeguard 

interceptor against an incoming warhead. 

OBJ  - The number of terminal decoys accompanying 

each arriving warhead. 

Decoys are assumed to be the equivalent of a warhead in terms 

of acquisition and intercept lethality.  This assumption is dubious 

unless intercept lethality is totally described by in-flight relia- 

bility (interceptor warhead lethality is perfect)« 

Acquisition type leakage is most likely du< to the mass ol   the 

attack and probably should be a function of the attack  i ;■ 

the simultaneous tracking capability has been exceed;'! m queues 

develop in data transmission channels.  The level oi  iud< ! 

L,V/A.^I v,rHtVin'A':^^^^^^J^j^v^^'-^y^j^'yy^ •^-.•»vt^^^ y/.v. - .-• •-.. M.\-. _■ v 
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prohibited serious analysis of these considerations.  Nevertheless, 

the factor is included to allow whatever unopposed leakage the 

analyst might; uosuv is a constant factor. 

Until the de fens i Ls exhausted, on<'   interceptor is assigned to 

each acquired and undiscriminated object.  A second interci "tor will 

be s°nt onLV if the first failed.  No objects are assigned more than 

twe ''nterceptors. 

The objective of the model is to find, Lor a given total attack 

(MA), that radar attack which maximizes the expected number of silos 

destroyed.  Thus, if there are R radars and M weapons sent against 

each, there is some probability (FKR) that the defense has been 

nullified.  If the defense was killed, the effectiveness of the re- 

maining attack (MA - R • M) will not be affected by the defense. 

We first address those factors considered during the radar 

attack.  The question of how large M should be cannot be answered 

until both radar and silo attacks are considered together.  There- 

fore, we shall begin by determining how large M can be. 

There exists a maximum expected number of intercepts which may 

be accomplished by a stated number of interceptors (INT).  For every 

acquirer nd undiscriminated object, one interceptor will be used. 

If it is not successful, a second interceptor is fired.  The expected 

i .anber of interceptors used against each acquired and undiscriminated 

object (INT/O) (assuming no discrimination by blast) is thus: 

INT/O -  1 • SCPi -L 1   '   (\-  SGPI) 

=  2 - SCPi (S-i) 

Note that 0 may be either a warhead o. decoy. 

AVi\^ae^\>..V.'^''V "AV.'V.Vv.V' V. 
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The   <U"' • ": <     is   i \pocted   to   be   exhausted  when   [   c   number   o\   object'. 

acquired   by   the    U I. tist    -   INT/(2   -  SGPI),   or 

!NT/( I'l)   -  N'v   •   r   •   SGPA   •   (1 +   (1   -  SGPD)   ■   OBJ)     (S-2) 

Where [ is »he in-flight reliability of the attacking weapons and N 

us rlie expected number <>i warheads allocate*! against the module to 

achieve exhaustion.  Therefore, we may assume the radar attack is 

successful ii more than N warheads are used in the radar attack 

(since expected values are assumed).  Hence, the maximum i adar (MMR) 

a11aek cons iderec 1 Ls 

MAXR (S-3) 

n*^2«*f 

Equation (S-3) is a limit only in the expected value.  We rewrite 

Equation (S-2) to further explore the assumptions involved by this 

de f ini t ion o I MAX.!i. 

INT 
(2 - SGPI) • r • SGPA •(!+(!- SGPD) • OBJ) 

(S-4) 

Note t\it r, SGPA, SGPD, SGL'I are means of distributions, each having 

a possible upper limit of one and Lower limit of zero.  If all are 

it 
equal to oiw,   N  is exact.  Note also that N increases with increasing 

SGPI and SGPD, and decreases with increasing r and SGPA.  If the de- 

fense is perfect, indeed, if SGPI, SGPA are 1, there is no advantage 

in a11ackLug the radars at all. 

II leakage is introduced, the advantage of a radar attack is to 

prevent all [NT interceptors from being ni>eu.  Therefore, the relative 

-". «»V< • 
•- m\ m'.' 

La-r .» .n .. « 
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advantage of a radar attack may bo described in Lin- Limit as: 

(MA - M-R) • PKR >[ I - ~- jMA; (MA ■ i. ) 

The left hand side of the above Inequality considers the extreme 

case where the silo attack accrues damage only if the radars have 

been killed and represents the expected number o[  attackers in the 

silo attack.  Thi right hand portion of  the inequality is the 

expected number of attackers in the silo attack, if the radars ,wc 

not attacked but are finitely limited to N  random deletions from 

MA attackers.  The left hand portion is Limiting since other leakage 

does exist and the defense is not infinite and is therefore a lower 

bound on the expected attackers.  We may then find an upper bound on 

M since it appears negatively in this lower bound by stating the 

equations as an equality and setting PKP equal to one.  (Note1 that 

* MA 
if N >  MA, the MAXR in Equation (S-3) is greater than ~.) 

R 

Thus:   MA - M • R = wA - N 

M-R = N 

M  =  jT"~ =  upper bouad on M 

Therefore, no radar attack exceeding MAXR as defined in Equation 

(S-3) need be considered. 

However, there exists some positive probability that the defense 

is nullified prior to the exhaustion limit oi MAXR.   This is tree 

because of leakage and because only a subset of R must be killed 

to nullify the defense.  We denote this subset by defining RK  as the 

^w 

- '   -'S -*■■ -'*-**-'•--   •-->•-•-■---   ■ • - ' -   .•---*.•■■■..*. *.-.  g ' ~       --'     _-|1-. ■-■«-*-----■------.-   i    .,j-.i-r-*-.  i«  ■»- 
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number of surviving radars when the defense hetome' inop« 

(i.e., R - RK must be killed to aulii.lv Lhi dv Louse).  iv< aev con- 

sider the event tree for the r dar attack Ln l-'i ;uro 

There are thus two closely related ways Lu ki i i t!i< I ad.j 

three ways tor the radar to survive.  The probability 01 tcilüm 

radar with one warhead is thus: 

PKRSS  - r  | (1 - SGPA) + SGPA * (J - SGPI)*" (So) 

since, if acquired, the defense must be unsuccessful on  both inter- 

cept attempts.  The probability of the radar being alive after M 

warheads are allocated is then: 

PRS(M)  =  (1 - PKRSS)M (S-6) 

This assumes no capability degradations as a function of attack size. 

We must now compute PKR(M), since any RK radars may survive and 

the defense be. inoperative.  We will employ the binomial expansion 

such that the probability that X of R radars survive an attack by M 

warhead against each radar is: 

P(X)  =(M PRS(M)A  (1 - PRS(M))R"X (S-7) 

and the probability that the defense has been nullified by this 

attack is: 

RK 

?KR (M)  =  V^  I M PRS(M)1  i! - PRS(M;r (S-8) 

i = 0 

:3^£ä&Li?3^ \\'*\\ 
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WARHEAD ALLOCATED 
AGAINST A RADAR 

RELIABLE (r)' 

UNACQUIRED (1-SGPA) 
(RADAR DESTROYED) 

FIRST INTERCEPT 
UNSUCCESSFUL (1-SGPI). 

SECOND ATTEMPT UN- 
SUCCESSFUL (1-SGPI) 
(RADAR DESTROYED) 

UNRELIABLE (1-n) 
(RADAR SURVIVES) 

ACQUIRED (SGPA) 

FIRST INTERCEPT SUCCESS- 
FUL (SGPI) (RADAR SUR- 
VIVES ) 

SECOND ATTEMPT SUCCESS- 
FUL (SGPI) (RADAR SUR- 
VIVES) 

FIGURE S-l:  SAFEGUARD RADAR ATTACK EVENT TREE 
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We >irc.  now prepared to consider the events which can occur in the 

SLAO attach.  |«'j  ■, s-2 depicts a 1J. possible events concerning an 

,i I located warii 

As may he seen in i. his tree, there arc five ways to penc- 

trate and onlv three ways not to penetrate (unreliable weapon, killed 

by first intercept, killed oy second intercept).  From these eight 

events we can deduce the probabilities for a single warhead to pene- 

trate (PP) and not to penetrate (PNP) as follows: 

PP = r (1 - PKR) f r (1 - PKR) (1 - SGPA) 

4 r (1 - PKR) . SGPA (1 - PDR) 

f r (1 - PKR) • SGPA + r (1 - PKR) • SGPA 

• PDR (1 - SGPI) (1 - PUR') 

f r (1 - PKR) - SGPA • PDR • (1 - SGPI) 

• PDR' • (1 - SGPI) (S-9) 

PNP - (! - r ) + r (1 - PKR) SGPA ' PDR • SGPI 

+ r (1 - PKR) SGPA • PDR • (1 - SGPI) ' PDR1 • SGPI 
(S-10) 

PKR  is the probability of killing the radars (M attackers per 

radar). 

PDR  is the probability the defense has not been exhausted prior 

to first intercept attempt. 

PDR*  is the probability the defense was not exhausted on the 

first intercept attempt. 

■ * * '.-" a *.* *.* '.* V* t » a ■*.. ■* tl il. £. -1"- £M £M £» • ---•'*•*.- » « i * 
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ALLOCATED WARHEAD 

RELIABLE   (r) 

DEFENSE  ALIVE 
(1-PKR) 

ACQUIRED  BY DE- 
FENSE   (SGPA) 

INTERCEPTOR REMAIN- 
ING   (PDR) 

FIRST INTERCEPT 
FAILS   (1-SGPI) 

INTERCEPTOR REMAIN- 
ING   (PDR') 

SECOND INTERCEPT 
FAILS   (1-SGPI) 
(PENETRATION 
ASSURED) 

UNRELIABLE   (1-r) 
(NO  PENETRATION) 

DEFENSE  DEAD   (PKR) 
(PENETRATION ASSURED) 

NOT ACQUIRED  BY DEFENSE 
(1-SGPA)   (PENETRATION 
ASSURED) 

DEFENSE  EXILAUSTED   (1-PDR) 
(PENETRATION ASSURED) 

FIRST  INTERCEPT  SUCCESS- 
FUL   (SGPI)   (NO PENETRA- 
TION) 

DEFENSE EXHAUSTED  BY  FIRST'     -. 
INTERCEPI ATTEMPT   (1-PDKT) ( 6   ) 
(PENETRATION ASSURED) V7' 

SECOND  INTERCEPT SUCCESS- 
FUL   (SGPI)   (NO PENETRA-       ( 7 
TION) 

FIGURE  S-2:     SAFEGUARD DEFENSE  SILO ATTACK EVENT  TREE 

•> "- 3L «..(   1 ■ *  a 
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From Equation (S-4): 

PDR  =  1 MA 

FDR  >  ~ MA > N*" ^-i 

If we assume PDR' involves the very next interccptoi , i.e.,   . 

hold is placed on another interceptor until r.lu success ot the first 

attempt is ascertained, 1 - PDR' may be considered as the partial. et 

PDR with respect to INT, i.e., the probability no interceptor is 

available for holding at the time of first intercept attempt is: 

i-PDR'      apDR      ' d  INT    MA   d  INT 

(S-12) 

^Bf MA (2 - SGPI) • RL • SGPA  1 -h (1 - SGPD) OBJ) 

%  0  (for large MA) 

or,      PDR' «  1. 

Noting that PP - 1 - PNP, we are more content to work w:th Equation 

(S-10).  Incorporating the results of (S-12), we rewrite (S-10) as: 

PNP -  1 - r + r (1 - PKR) PDR * SGPA 

• SGPI (1 + (1 - SGPI)) (S-13) 

and the probability of killing a silo (PKS) by an allocated warhead 

as: 

PKS  -  (1 - PNP) * PKSS 

^  ."  .* f . , ."■ .' m       .", ■  a»  / ■ .*•  l^ m  . W, , ■", ."  .' ■' , .'  ■*  ^ . V , {     / ■ i £■ ~ - i ..-.■■.■■.. ^ ■ •-■_--■-■ . - - • - -i , - - - - • .. ■■ 
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whore:  PKSS is the single shot probability of kill for a 

perfectly reliable weapon against a silo. 

Two terms in Equation (S-13) are controLl.ee! by the offense (PKR, 

PDR) it he chooses to employ an initial radar attack.  The objective 

of this model is to find that radar attack M (hence, PKR, PDR) such 

that the greatest expected silo destruction, SK, is enjoyed for a 

stated total attack size MA: 

max  | SK = N   I 1 - (1 - PKS)L 

(S-15) 
+ (NS - N) I 1 - (1 - PKS)L + l      [ 

where:  N of NS silos are attacked with L warheads each. 

The remaining silos attacked with L + 1 warheads each. 

This model selects the maximum SK for a considered attack MA by 

straightforward enumeration of all integer M values which are less 

than MAXR defined in Equation (S-3) or MA if less than MAXR.  Note 

that L • N + (L + 1) (NS - N) = MA - M'R where M warheads are directed 

against each radar. 

Examples of Safeguard functions and consider-.tionu in AEM HEDGE 

arc presented in paragraph IV-S-4. 

3.   Hard Site Defense (HSD) 

The HSD model is similar to the Safeguard model in that the objec- 

tive is to maximize expected silo destruction for a stated attack 

level MA which may include a radar attack prior to a silo attack. 

However, since 4SD is a low attitude defense, the module size is 

probably smaller. 

•?AV/'%V<> "•«''"-. ,'-/VlvV.V»"«%. ". A- /v /v'v v v v - Y.V.'-'- • ■' ■ •'« ' •••'•-• ■'  
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•■ are i.;.-umed Lo be completely netted so that all must be 

l<i i led Lo uuifitj»    deleiise.  Any radar attack is assumed sequential 

natui'i with     • a-oiu assignment oi Interceptors.  No acquisi- 

. >n typ» o! leakagt is issumod and all decoys are assumed to be aero- 

;.\.11> stripped prior to defensive action.  These differences 

dictate compar itively small numbers of objects arid interceptors. 

Additionally, whereas all radars are commonly defended in the 

Safeguard model, they independently provide for their own defense in 

HSU.  Therefore, etch radar is assumed to have, a percent of the total 

interceptors i:: may use lor its own defense specified by INT/R (R is 

the number oi radars and INT is the total number of interceptors). 

ilow?ver, i specified percentage of these defenders are donated by 

each isdar to a common pool.  This pool of interceptors will be 

assigned during the radar attack (if necessary) to additionally de- 

fend ot.e radar which has successfully used all available interceptors 

in his ['articular initial batch of INT/R interceptors minus his 

donation. 

This assignment of additional defenders is assumed to be. random 

among all radars who have successfully used their initial interceptors. 

Other rules might be considered, e.g., Lie radar which had the most 

available initial defenders and used i;iit...a all successfully.  However, 

ibis would assume some knowledge about the number of warheads allocated 

against, that radar but which were unreliable.  It also assumes that a 

proportional attack is yet to come, i.e., this radar has already sur- 

vived i greater portion of the total attack directed against it.  This 

:>:v: vjiSjL/s'dk^ ;/->y.y>> \ ■y-vy-y- . ~>y •/•■*••■>•;-• ,'■ y-y-y-y- . y ^ v 
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concept has credibility it wartieads arc directed against the radars 

in waves of R.  With a more raadora attack ordering, it is less clear 

what ehe rule should be.  By assuming random solution oj Liu addi- 

tional defense assignment, we may assume a random attack order (at 

least in the eyes of the defense). 

The radar attack resuits in the. deletion of some available inte: 

ceptors and SOIL    -uability that the defense is inop rative.  The 

silo attack is weighed by these considerations.  If at toast one 

radar survives, all remaining, available inuerccptors will bo used 

in the silo defense and will employ one or the following doctrine^: 

subtractive, random, Prim-Read, or preferential» 

Basically, subtractive defenses attempt intercepts on the 

first INT reliable warhearis. where INT  is the number of available 
s s 

interceptor? remaining after the radar attack.  Random defense is 

mere defensively optimistic in that the entire silo attack appears 

simultaneously, allowing multiple interceptor assignments to warheads 

if fewer reliable warheads ehan INT appear.  Prim-Read defense 
s 

attempts to allocate a decreasing number of interceptors to reliable 

warheads as they sequentially appear in order to approximate the 

random deiense at that attack which produces the maximum return per 

attacking warhead.  Preferential defense is assumed to see the 

entire attack, to know where each warhead will impact, and to assign 

one on one to maximize the number of silos saved 

It should be noted that the random doctrine is superior if INT 

is greater than the number of reliable attacking war heads.  The 

- • ••'*  "*> - ■ ~»v - «^"." **\-\- 
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pre i er cut ; ■ i ie tense is superior for       ' - ;- « . 

respect to INI.' , Prim-Road Is in between th  ;ubtnci i 

doctrines.  However, in il I , tses, lh<  : ' 

the damage capability oi   the attacking tore* . 

Distributional variations are not treaLed in t lie silo :ti ick. 

If warhead reliability is low, the silo attack will be larg«.  nd the 

expected silo destruction is relatively insensitive to small changes 

in the attack.  If reliability is high, the distribution of events 

is small and gathered at the expected value.  While a medium value 

of reliability might be worthy oi  distribution analysis, it is not 

done.  Since several silos are in the module, the errors of expected 

value analysis are felt to be within AEM tolerances. 

The mathematical discussions pertinent to both ttu radar a«, ick 

and silo attack are presented below. 

a.   Hard Site Defense-Radar Attack 

In this defense module, two levels of defense are possible 

since one radar may be assigned an additional number of de lender'; 

if all initial available interceptors have; successfully been 

used.  For convenience, we denote these as lower defense events 

for the initial defenders, and upper defense events for the one 

radar receiving the additional defenders.  As mentioned 

previously, all possible events of arriving warheads and avail- 

able interceptors are considered as independent ev«   proba- 

bilities   Thus, I of M attackers may arrive at tht ra in I 

BAU ü.iA\j£h-l ILUVV .\V.-IV i' > A ^» .-\ V.'V J«."-'I 
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J of L interceptors may be available Lor allocation. We will 

consider three Independent states in the lower defense events 

for a radar havl^^ M attackers allocated to it: 

1) The radar survives the attack without being 

addi tiona1ly defended, 

2) The radar was killed prior to using all 

initi-.' L defenders. 

3) The radar qualified for the additional defenders. 

The third state implies that the radar is killed if it does 

not win the additional defenders.  There are in addition two 

states for the single radar in the upper defense events, i.^., 

additionally defended: 

4) Radar is additionally defended and survives. 

5) Radar is additionally defended and is killed. 

We will consider the three states for the lower defense events 

as independent.  One radar in state three (if any) also has two 

possible independent states in the upper defense events.  It is 

now pertinent to define the probabilities of each state from an 

analysis of defense events. 

Let:  SP(N) denote the probability of a radar being in state 

N;  PA(I) denote the probability of I arriving warheads at a radar 

(M warheads allocated); PL(J) denote the probability of J inter- 

ceptors being available in the lower defense (L total interceptors); 

PU(K) denote the probability of K interceptors being available in 

the upper defense (U total interceptors); and PK denote the inter- 

ceptor lethality against a warhead.  We may then define SP as 

follows: 

f-v^,v».tvf.»'V^VAV.*-:,l-;flA^k'»l':-li*£*sL:'•_-.'^"»1 ^"—-'-L^^y'^..;«_•"^^v^v^^^a^:. -'.v. •'. ••.. -^>.>>.v-;>'.v, 
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SIM, I)     2     PA(i) 

- 0 
/ t PL(j)    * PKL     (S-16) 

(a) 
J   i 

min(i-l,L-l) 

SP(2)     2^   PA(i)      X]       PRJ ° " PK) 
i = 1 j - i) 

V    PT.(m) 
m = i+j (b) 

M 

SP(3)  - E 
i = I 

PA(i) 

i-1 

E PL(J) • PK~ (c) 

SP(3) is used to generate SP(4) and SP(5) for that radar 

addLtion.al.ly defended by: 

SP(4) 

M i-1 

Y   PA(i)   2_]        PL(J) PK^ 
i-1        j == 0 

SP(5)  = 

y^     PU(k)  PKL"j 

k = i - j 

M i-1 

y PA(i)   V^   PL(j) PK^ 

j * 0 

(d) 

i = 1 

U 

L-j-1 

y^ pu(k) + 
k = 0 

E 
k-1 

E PU(k)    7     PK'1 U - PK) 

i - j n =  U 

(e) 

■ "*-» *-«■ ' • '-- '--'-*■»"<>' - *_- "_- ' J- '...  : *+. 1^ ^_^_ : '^_1^: e_."_= » ■*-» L.*-'. .' ̂  . -a J-- e_ '■■- *-» *-l» *JB * - ' /» '-I 
\  V  "-  "• _\ 
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We define PA(i) by the binomial distribution on in-tli^bi rr 

.lability (r) such that 

( I ]i'  (1 - r}M"! 

The variables PL(j) ;u\(.\   PU(k) a . similarly defined by (in binomial 

distribution o\\  interceptor availability (DAV) such that 

PL(j)  = (L) DAV^   (i - DAV)L " ~] (S-18) 

[ J^ | DAVk   (1 - DAV)L! 

"   "  R  (1  AD) 

U -  INT - L * B 

AD =  Fractional donation by each radar 

to the common pool. 

The above equations are more easily understood by considering 

the event tree in Figure S-3. 

Note that if there is no a^'itional defense, there are three 

ways for the radar to be killed and oaa  way to survive:.  If addi- 

tional defense exists, there are four ways Tor the radar to be 

killed and two ways to survive - but only lor one radar in state 

SP(3).  Therefore, 

and 

SP(1) + SP(2) + SP(3)  = 1 (S-20 
(a) 

SP(4) + SP(5)  = SP(3) (b) 

1 . ' .-. | M   ' h • . - M.'  > * - » » j >*<- Ll -"^* -'* -'- - * -'"-'. ..'y    -\       '-   ~ S.* 
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I OF M A\LACKERS (PA(I)) 

j OF L LOWER INTERCEPTORS (PL(j)) 

k OF U UPPER INTERCEPTORS (l'il(k)) 

I<j t>j 

\ 

i 

I SUCCESSES 
SP(1) 

LESS THAN I 
SUCCESSES 

SP(2) 

j SI ..CESSES 
SP(3) 

/ 

LESS THAN j 
SUCCESSES 

SP(2) 

\": 

CONDITIONAL 
UPPER 
EVENTS 

K>I - j 

I-j SUCCESSES 
SP(4) 

K<I - j 

SP(5) 

LESS THAN I-j 
SUCCESSES 

SP(S) 

»J 

FIGURE S-3:  EVENT TREE FOR HARD SITE 
DEFENSE RADAR ATTACK 
STATE PROBABILITIES 

h 
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Wo can then say the survivabiiity of at Least one.   radar is based 

on SP(J) lor •'--! radars ai i  SP(L) + SPC+) for one radar,  r 

converseIv, 

K 

PKR  - SP(2)R + £ ( • ) »O*-1 «(4 ) 
i = 1 

(S-21) 
(a) 

PRS  =  1 - PKR (b) 

where PRS is the probability of radar survival. 

it PRS were the only result of interest, this formulation is 

sufficient.  However, we are also concerned with the number of 

interceptors remaining for the silo defense.  The assumptions 

previously stated are now augmented by further stating an implied 

assumption in the state probabilities:  Namely, available inter- 

ceptors not used bv a killed radar become unavailable until the 

silo attack.  Therefore, to determine the number of remaining 

available interceptors, the number of such interceptors depends 

on the state each radar is in after the radar attack. 

Thus,   will compute the expected number or available inter- 

ceptors in each state and combine these numbers according to the 

probabilities of each outcome. 

%v* 

L £1(1)  =  > .  PA(i) ' PK 

i = 0 

L 

j = i 

PL(j) [j " i]' 1/SP(1) 

(S-22) 
(a) 



M L-l 

E1(J) y PA(i)       2*      PKJ
     (]   " PK) 

I j   =  0 

IV-S-21 

y] rL(n)    fra  - j -   ll Pl.(n)       TU   -  j  -   1 !     •   i/SP(2) 

m  =   j+] 

EI(3)     -    0. 

(b) 

(c) 

M k-1 

EI(4) = ^j  PA(i) 22  pL(j) PKJ 

i =  1 j  = 0 

Ü 

E PU(k)    PK "J H L/SP(4) 

k = i  - j (d) 

M k-1 

EI(5) 22     M(i)      /Ll      PL(j)    PK 

i --'■ 1 j   = 0 

J 

U k-1 

/,      PU(k)      y^      PKn(l   - PL)   (k  - a)   '   1/SP(5) 

k =   1 n = 0 (e) 

We must remember that if the radars do not survive the number of 

available interceptors remaining is immaterial.  Thus: 

R-l 

INT £ ■: 
i = 0 

SP(1)R "' X • EI(1) (R - 1) • (1 - SP(1)) 

L-l 

12s l\   SPCi)1^"1 * SP(2)k 

= 0 (1 - SP(1))4" 
k • EI(2) 

i ! » r »i " . '. 
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-I- ^ ■ m\ + «<» ■ m pci) 

+ SP(2) El (2)   •   i + U   *   DAV ! 

+ 

R-l 

s (v; 
k = o 

SP(3)R"k  •   SPC2)1 

k  ■   EI(2) + EI(4)   •  |f§2 (S-23) 

This equation accounts for all variations when at least one 

radar survives.  Table S-l has been constructed for a 

case where R = 3 to illustrate the variabilities considered 

above. 

Cf these 13 cases based on R - 3 and some attack Level M on 

each radar, only cases 7, 9, 11 and 13 result in complete defense. 

kill.  Note that as M increases, SP(1) decreases which decreases 

the likelihood of the fi^st six cases. 

Figure S-4 depicts the variability of the probability that 

the radars are killed (PKR) and INT as a function of the number 
s 

)f attackers allocated against each of these radars.  it is 

interesting to note how smoothly the functions behave, PKR being 

largely linear for attack levels between 20 and 50, and INT 

having a linear or a linear reciprocal behavior.  In di\  expected 

sense, there are 22*5 available intercepts per radar in the 

lower events.  Since warhead reliability is also .9, 22.5 of 

25 attackers are expected to arrive.  Thus, if  expected values 

^N*•-V*^-'^*'^*'-»*'-^''-»- ^v^-l^'^-»^IV-CV.vr.Vi^^ .»*•_/•■.. •■■■': .'•>■ «'•.»■• -': - :^ 
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were ti! it' f •» i \ used, an attack o[  51 per radar would guarantee 

ra^  kill.  Sty considering the variability of all possible 

events, an •  ,uk of 51 p,:r radar results in only a 90% kill 

confidence but reduces Liu- number of interceptors remaining 

f or s i I o de ien s e t o one. 

It Is perhaps due L'o this behavior that the number of values 

chosen for M is relatively unimportant as long as the extremes 

are Included, i.e., in general, the radar attack will be very 

heavy or non-existent.  There are some parametric values and 

silo defense doctrines where this is not true.  Therefore, ten 

M values ue considered by the model as candidate radar attack 

strategies. 

We now direct our attention to the silo defense doctrines 

which are considered as a separate, later attack then the radar 

attack.  n us, all available interceptors not used in radar 

defense may be used in silo defense if at least one radar survives. 

D•   Hard Srt.e Defense - Silo Attack 

The defense may  Koose any one of four doctrine  to defend 

the silos.  As previously mentioned, these are:  sub tractive, 

random, preferential and Prim-Read,  Each doctrine is employed 

in an expected value manner since the errors involved by doing 

so are felt to ie tolerable within the AEM framework.  Each 

doctrine is discussed separately below. 

For all tne ensuring discussion, MA is the total attack size 

(radar and silo), R the number of radars, NS the number of silos, 
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INT  the available Interceptors it the defense is alive, 1'KK 

is the probability the radars have been killed, M the runnbei 

of warheads directed at each radar, 

i.   Subtractive Doctrine 

Attempts will be made against the first [NT  reliable 
s 

warheads sent against tue silos.  This doctrine is best 

understood if sequential arrivals are considered and the 

first INT reliable warheads are "thrown awav."  This is 
s 

achievable by cyclic tar^etinc, i.e., the first INT /R aim 
s 

points, or silos, are covered by some later attacker as in 

the following figure: 

Sl) Wl' U7 

S6) W6 
s0)   w,, w„ 

h)    W5 s3) w3, w9 

S4) W4' W10 

S.  is the i—' silo in the module to be attacked. 
l 

W.  is the j— allocated warhead against the module. 

If weapon reliability (r) is perfect ,u\d   INT  less 

than or ec; a 1 4, each silo will suffer at least one impaci 

If weapons one and two were directed a ainsi the first 

l&flv&^iiy^^^ 
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s lo, Lhree and four against the second, etc., iht defence 

might: save the fit si two silos enlireiy. 

Let N denn'., the number of si.io;. atlacKcd i/ita ! . 

heads, Ni denote the number of siios attacked with L f 1 

warheads.  Let. D denote the number of siios defended by J 

interceptors and ii denote the number defended by J + 1. 

MS is the total silo attack CMS - MA - M ■ R), and INT' 

the effective number of interceptors. 

INT  = MIN 
INT 

r 

L = 
MS 
NS 

+   .5 MS [ (S-24) 
(a) 

(b) 

Jp£g, 
Nl  = MS - L ' NS 

N = NS - Ni 

J = 
INT 
NS 

Dl  = INT  - J ' NS 

S  = NS - D 

' c) 

(d) 

(e) 

(f) 

(s) 

By the cyciic attack plan assumed, ,re define QD as the 

probability of silo survival for the first LNT attackers 

and Q for all additional attackers as; 

QD =  1 - PK ' PKSS 

Q =  1 - PKSS 

(S-25) 
U) 

(h) 

'\.r\ ''^.m~^-',L'\ •.'-. ",. •.'>■''..■" ^-.' •'.-;*■.•'■*". "- •*■> -\ -'. '.'-'.'i'. ■*-" .-.."••-%_■'■"•• ■ •;kv \s\ V• \- V •„ 
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Any silo can potentially be in one of lour states: 

1) Defended by J, attacked by L 

2) ■ Unded by J + 1, a (.Lacked bv L 

3) Defended bv J, attacked by L + 1 

4) Defended by J f 1, attacked by L + L 

We now define Kl through K4 as the number of silos in 

each state: 

Kl = MIN j N, D ( 

K2 = MAX { Dl - Nl, 0 | 

K3 - MAX ) 0, Nl - Dl | 

K4 = MiN j Nl, Dl \ 

(S-26) 
(a) 

(b) 

(c) 

(d) 

The following table clarifies the above equations.  Note 

that for each condition the number ->f silos sums to 

NS (NS = Dl   +  D = Nl + N).     > 

Condition Kl 
Number By State 
K2          K3 K4 

Ni = Dl; N = D D = N 0 0 Nl = Dl 

Nl > Dl; N < D N 0 Nl - Dl Dl 

N1 < D L; N > D D Dl - Nl 0 Nl 

We may now state the expected silos destroyed as: 

SK =  KJ (1 - QDJ QL " J)  + 

K2 (1 -QDJ+1QL"J- l) 

K3 (1 - QDJ QL + J■ " J) + 

K4 (1 - QDJ + l  QL  J) vS-27; 

!vl*i3lj^!a^^AJ^^A!^^ 
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i i .   jv. nJiMi Doctrine 

random doctrine assumes simultaneous arrival for 

the      ttack with no  saturation limits.  The impact of 

this defense is a reliability degradation for the silo 

.it tacking weapons.  There is no  restriction on the number 

oL   interceptors assigned to each reliable warhead.  There- 

tore, all INT defenders will be used regardless of the 
s 

number of weapons in the silo attack. 

Let N denote the number of silos attacked with L war- 

heads and Nl denote the number of silos attacked with 

L 4- 1 warheads.  The expected number of arriving warheads, 

E(A), in the silo attack is th^n: 

E(A)  - MS • r (S-28) 
(a) 

where 

MS   = MA - R ' M (b) 

We may now define an effective reliability modifier for 

al iocai.ed warheads as: 

r* =  (1 - PK) INT /E(A) (S-29) 

if integer effects are not considered.  however, since an 

interceptor cannot attack a fraction of a warhead, the 

following effective reliability is used: 
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where 

w (i - PK)J -f u\  (i - npJ 

E(A) (S-JO) 
(a) 

E(A)  = W + Wl 

INT 

E(A) 

(b) 

W = INT - J * E(A) 
s (d) 

which applies to each allocated warhead.  The expected silos 

destroved is then: 

SK = N (1 - (1 - r* • PKSS)L) 

+ Nl (1 - (1 - r* • ?KSS)L+1) (S-31) 

It should be noted that this equation is used for 

evaluating silo destruction if the defense is killed by 

settling r = 1. 

i i i.  Preferential Doctrine 

This doctrine limits the defense to one interceptor per 

reliable warhead, but assumes the defense can predict which 

s lo each warhead is attacking and how many warheads will 

arrive at the silo.  A practical v/ay to view this scheme 

is simultaneous arrival with impact prediction.  The defense 

then se Luces a portion of the silos to defend which, h >ve 

the fewest arrivals to the point, of interceptor exhaustion. 

^cvä^^^^ 
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For any attack MS there are N siios aU.ickcd I  L warh 

and NI = NS - N si los attacked b> I  4 I warheads.  We may 

! hen define RF = r • i and RFl = r * (1   I) as :..!u 

pected number of warheads an Lvins' at these silos. 

All warheads  ttacked suffer a degradation of I - PK. 

We now take the offensive point of view and suggest that 

the L class of strategies be subjeel to defense until 

defense exhaustion or until the L -4- L class of strategies 

are defended against.  If r - MS is greater than INT , all 

INT interceptors will be used.  Therefore, one strategy 

may be only partially defended against.  We define ND as 

the number of L class strategies totally defended, NDP as 

the number of L class strategies partially defended 

(= 0 or 1), ND1 as the number of L + 1 class strategies 

totally defended, ND1P as the number of L + 1 class 

strategies partially defended (= 0 or 1).  Note that if 

NDP = 1, NDi  nd ND1P both equal zero. 

SK = ND ' (1 - Q)L f M.)P • (1 - Q)ID (] - PKSS)L " LD 

•f NDI   •   (1   - Q)L +  l + ND1P   .   (1   - Q)ID  •   (1   -  PKSS)L  +   *   '   LD 

+  (N  -  ND   -  NDI)   (1   -  PKSS)L 

+ (Nl - NDI - ND1P) (1 - PKSS)L + (S-32) 

where 

Q     =     (!    -   PK)   •   PKSS 

ID     -     number  of warheads  attacked   in  the 

fract i.ona 1   s trat c&.y 

%"l%r'«L:«^"^!^^ •' ■• 
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Not e ( ha I 

NT: t NOP < N 

ND1 ; NMP < Nl 

Li  NDP = 1;   ND1, ND1P - 0 

LNT = NO • r • L + NDP • ID 
s 

+ NDl • (L + 1) * r + NDIP • ID 

iv.  Prim-Read *.. :trinc 

Che purpo.c of Prim-Read is to approximate the results 

t  : simultaneous arrival random doctrine where the attack 

is sequential.  It is a more clever use of interceptors 

than the subtract;ive doctrine where ehe first INT reliabie 
s 

warheads are attacked.  Consider Figure S-5 which depicts 

the module kill functions for the subtractive and random 

doctrines. 

At some point (x in Figure S-5) for a stated INT , the 

offense receives a maximum kill per allocated warhead.  It 

is assumed that some firing doctrines can be found such 

that the expectations of a sequential attack cannot exceed 

this pay-off per warhead.  Such a doctrines might be two 

on each of  the first x, arriving warheads, one on each of 

the next x and on    every other of the next x , etc. 

Again, this firing ^octrine is not computed in this model 

but is assumed to exist.  The dotted line in the above 

figure Illustrates the expecte^ iruduJe PK if this doctrine 

is used.  Thus, the module ?K is greater than subtractive 

for low attack and greater than or equal to the random 

doctcine everywhere . 

[iiI d maJE^t^M *^-' ■--* —.»A. i»«U./. ^*.i. «/*.,. ».*.. it,* M,*. .MT... -*.. ..* —* "'* r*'. i''^"'^ 'jkCJk'tAJ'^'jk *■ % 
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1Ü0 

INT,. 

%.* 

7.00 

SK   (RANDOM)  TANGENT   POINT 

FIGURE     S-6       VARIATION  OF X WITH INTg   FOR  PRIM-RKAD  DOCTRIN; 
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The   procedure   used   in   i: h i;    model    is   d.s   Lollows:      i»._. ■ 

each value   LNT     t esulI i ng   1 i ■ mi  a   radar   .it t.,ici>   . r '  - . ,. . 
s 

find the attack Level \ succ ■ h i   in  iv .   v    ,•■  • 

attacking warhead (v.) is maximized it random defenses art 

assumed, i.e., 

Find  x such thai 

max 
/      SK (i andoir) ( 
< v = T: "*- ( LS  üund, 
I A 

We then ass'ime for any silo attack MS < X, each warhead 

obtains J units of damage.  If the attack i.s greater than 

x we assume a weighted average of SK (random) and SK 

(subtractive).  It .should be noticed that th- precise 

damage past x i; r e 1 a t i ve 1 y  un imp or t an t sin c e b y de. f in i - 

Lion we bound the function between subtractive and random 

doctrines.  The point x occurs after the defense is 

exhausted unless the probability of intercept (PK) is 

very small.  As PK decreases, the. difference between SK 

(random) and SK (subtractive) also decreases.  It is 

also true that while the effect of a decreasing firing 

doctrine on attacks greater than x is not computable 

without precise definition of the firing sequence, the 

greatest defense employment is during early arrivals. 

Therefore, at some point Prim-Read will be no better 

than subtractive.  Che following equations an used 

SK = v • MS MS ■  ■ (S-J3) 
(a) 

SK (r en.,;, i) * X_t SK, < y_ _;  _ tjv< j    ' \j \ _ ,; 

•-'*---«-' *- ■'- *■ "  «■■* » J j I I I >">■■■ hmJJ lAAJfcll 1.-.*.'-*-.^»''- **- >Vr"^ mat «I tL^ML-'«fc*>-V \\"A '^^J..'_■--L»..'„,«. *.rtJ.A_^_A. :_% t_ '.A '__n* fc,?.a\» >.. «JT_.._L«Zc_«lt .V ■'» -*■ L.  
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^*       Kill Functions For A Dcjfcnded Weapon Module 

Both the Safeguard and USD models produce the maximum SK values 

tor a staled aft,   level.  However, the desired attack level is not 

known prior to the allocation which is generated by Lagrangian 

analysis of the entire weapon and target system.  It would be possible 

to store a spaced collection of SK, MA pairs for each candidate weapon 

type against each module type which would be considered as special 

linear programming strategies.  This approach might be too restrictive 

unless the SK, MA pairs selected were carefully chosen (and occasion- 

ally updated with finer cuts if a desirable region is found). 

It was felt that if a functional relationship were found between 

SK and MA of sufficient quality to generate a desirable MA, the 

Lagrangian process could be directly applied.  Therefore, only the 

function and pertinent parameters would be stored in AEM.  This would 

greatly reduce storage requirements and possibly save computation time. 

In every case, module defense kill is an "S" shaped function of 

the attack level.  However, as is typical 01 such functions, if any 

attack is to occur or   the target, the attack will be at least as 

large as thai attack yielding the maximum return per allocated war- 

head.  Tor this reason, the technique described in Appendix A for 

finding a translated "P" parameter fit to such data was attempted. 

This formulation was even more desirable since the Lagrangian process 

in AKM is built on this concept. 

Several figures have been drawn to illustrate the goodness of 

tll between the functions and the P and T parameter fit which best 

describes the functions.  All figures assume a 50 silo module whose 

' - "> V "■■f.-lA.*.- '-e -•->. 'J\ -..• mj-   „• J* '■■» "J». J\?± ^ "J ~-H 'J- **r "-je*-». ~j- "J*  '-- '..< --j 
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defense lias three radars and LOO in t creep tors attacked by a weapon 

having L'KSS ol ,-.  gainst a silo and a .9 in-{light, reliability.  In 

ail cases, l u  ■ 'or copter lethality is .95. 

Figure S-7 depicts a Safeguard module which must further be 

described by noting the attacking weapon has no decoys and that if 

only inn.1 radar survives, the defense is assumed to be killed. 

Figures S-8 through S-1I depict the four Hard Site Defense 

doctrines.  Phis defense is fur eher described by each radar having 

25 interceptors in the lower events with 25 interceptors in a common 

pool for upper events.  Figure. S-12 compares the four Hard Site 

De tense doctrine ior this case. 

Of particular interest is the attack split into silo and radar 

attack for i given attack level*  fable S-2 shows this variation 

for Safeguard ittack levels.  Tables S-3 through S-6 ^how this in- 

formation for the Lour Hard Site Defense doctrines. 

5,   Computational Considerations 

The Safeguard model causes no noticeable i crease in computation 

time.  However, the fitted P and T are generally pessimistic at the 

attack level generated by the Lagrangian process.  Therefore, after 

each attack where a strategy was used against a Safeguard module, the 

correct survivors are computed before the retaliation plan is 

generated.  While this process is not ideal, the impact of the evalua- 

tion is in the right direction.  This is true since the true survivors 

are Less than anticipated and the lower the number of survivors the 

higher the Lambda, and hence, force values.  Therefore the next 

Jm,*Z*, At-,1, -V-*« k>, ml *JL±AJLLA1A-ÄL^JL A'-. A~ £* .V. .:\ £* ♦"« «"i »'«,y ,', •,'_'V -_•j^J^j:/^_•_;/_•■^'•^j; \ " "«' ^ \-~„-'"/"* J-.-.V..."*.^« „'1 



TABLE S-2:  SAFEGUARD MODULE ATTACK 

TOTAL        ANTI-      ANTI- EXPECTED 
ATTACK       SILO       RADAR      SILOS DESTROYED 

25 13 12 3.0 

50 26 24 LI.3 

75 45 30 23.0 

100 52 48 32.7 

125 83 42 38.9 

150 102 48 44.7 

175 130 45 46.7 

200 152 48 48.5 

-%^..:_.„- A/...V -»*■ '-" •*■' "-'■ '-" '-' - *-' - '-' •-'- w <' •-'  •-' «*.' "-'. %Z ^" •-' v! *.f».: •...•. «.•"♦.'•'. -;'«.-■', ."> "\. • » ».'. <■*+ »*M •'-**. «.•_'«*. »'.' 
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LABLE S-3:  HARD SITE DEFENSE MODULE 
ATTACK - SUBTRACTIVE DOCTRINE 

TOTAL        ANTI-      ANT I- EJECTED 
ATTACK       SILO       RADAR      SILOS DESTROYED 

35 35 0 1.3 

70 40 \0 2.8 

105 45 60 8.9 

140 140 0 30.3 

175 U5 60 42.0 

210 150 60 47.0 

245 245 0 48.7 

Note that by use of integer assignments of warheads 
to silos and interceptors to warheads, the optimal 
split of anti-silo and anti-radar is not smooth. 
If sixty attackers were using anti-radar at the 
attack of 140, the expected silo destruction would 
be almost identical to that obtained with no radar 
attack. 
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TABLE  S-4:      HARD  SITE  DEFENSE MODULE 
ATTACK   -  RANDOM  DOCTF[NE 

TOTAL 
ATTACK 

ANTI- ANTI- EXPECTED 
SILO RADAR SILOS   DESTROYED 

■5 30 

70 40 50 1.8 

105 

140 

43 

80 

60 

60 

5.   ' 

27.7 

175 115 60 34-3 

210 150 60 45.4 

2.45 155 90 48.1 

^^^■^^ * —« - ^-i~\ -"-•■ -*. -**.  -"•. -*«1 L.'.« t>> ^ J..u  .: »'-■.• .fc,■'. ■ .".A *, ■» .' X*. f, J*.'-J .'.^J.^_J£_J& , -r„ .*.. «r:. 
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L'AIJLE S-5:  HARD SITE DEFENSE MODULE ATTACK - 
PREFERENTIAL DOCTRINE 

TOTAL 
ATTACK 

ANTI- 
SILO 

ANTI- EXPECTED 
RADAR      SILOS DESTROYED 

35 35 1.3 

70 iü \0 2.8 

105 60 8.9 

140 50 90 2". 5 

175 «!j 90 35.7 

210 120 90 42.0 

245 125 120 46. Q 

280 160 120 48.1 
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TABLE S-6:     HARD  SITE  DEFENSE MODULE ATTACK  - 
PRIM-READ  DOCTRINE 

TOTAL ANTI- ANTI- EXPECTED 

ATTACK SILO RADAR SILOS DESTROYED 

35 35 0 7.5 

70 70 0 15.0 

105 105 0 22.5 

140 140 30.0 

175 

210 

245 

115 

150 

155 

60 

60 

90 

39.6 

45.9 

48.3 

-'-» '-** -»-'-^ '-».'.*■ '..»■■■ -*fj?A±!'^?*y.-.'^ :.* '.it a.:j*:.-\ Zm ■ iAa."JL'-O.WJLLM '-»l.j^^^^jtSJ^jJUCJMhj^Lik^^Jkhj&lAliLt • J"-E, "*».' J> TJL r_*_ *.* ' 
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V 

r* 

-       c MI    i li • .. . i n.s :    ;. In    i.ioeu U    :- iuui 1 d   h       I i        ...   . .-■ a t , 

iiii U'i    i    r< six«i ; ii  v • >nstuut. 

. ,hc lit if.i , i< »Ut i- is li kowisc ix  ' l. ' 

ck it _'U)p; .  ['in procedure used LO correct  lit survivors 

s identicaJ to the Safeguard discussion above.  However, this model 

docs itfect computation time.  This additional time is a Inn st en- 

Lir.'Iy spent in evaluating various attack love s against the radars. 

Li the number oi initial interceptors per radar is smd    he total 

number ol events to be considered is small and computation tin.' 

rapidly decreases.  Additionally, very high or very low values for 

attacker Ln-flight reliability, interceptor availability, ana inter- 

ceptor Lethality also tend to decrease considered events. 

6.   Summary 

Two weapon defense module types are modeled in AEM HEDGE.  They 

correspond to a high altitude endoatmospheric defense called Safe- 

guard, and a low altitude defense called Hard Site Defense.  The 

Safeguard model always employs a shoot-look-shoot firing doctrine 

against one  or two v/aves of attackers.  If there .ire two waves, the 

first is directed against the defensive radars.  The Hard Site De- 

fense model has four separate firing doctrines for defense of silos. 

The silo attack may be preceded by a sequential radar attack where 

a one-on-one tiring doctrine is assumed.  Each radar L.. independently 

defended during the radar attack and if all available interceptors 

are successfully used, may compete for a pool of additional interceptors 

reserved for that purpose. 
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In bot li cases,   several constant interval attack levels are 

assumed.  1'he radar attack wh ch maximizes th. expected silo de- 

struction is found by enumeration.  These values are then mathemat- 

ically fit with a P and T parameter for purposes ol   strategy 

generation. 

It is not currently possible to simultaneously defend a weapon 

with both defenses in AEM HEDGE,  It is anticipated that this res trie 

tion will eventually be removed. 

*•*• 

.* V '«- '-* "«* «f. -" ■••''■■'■•■'■•■'■ ■^v\'■/•^^•\^»\'■^••'/>V^^•■^•^^^■^^»'^•^v'v\/v>X^^^^"^^V■.'^^^^^>^W-^" 
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T.  BOMBER DEFENSE SUPPRESSION 

1.  The Defense Suppress [or Kiiv i 1 Ln:nent 

Defense suppression, as it is used here, denotes attacl strat- 

egies directed at defensiv installations wbi :h protect desirable 

targets.  There are two possible benefits from assigning defense 

suppression missions (DSM) to various attackers.  II successful, 

the effect of the defenses is totally removed from target attack 

strategy considerations.  Even if DSM is unsuccessful, some number 

of interceptors may be used against the DSM.  Therefore, unless the 

defense has the time and capability to reload, the number of inter- 

ceptors available for target defense is reduced by DSM..  An exception 

to this rule exists if the defense has no capability igainst the 

DSM weapons but does against the target kill weapons, e.g., ICBM 

against SAM or bombers against ABM. 

The DSM model incorporated into AEM has a basic assumption 

regarding the separability of attacks against a target and its 

defense. 

In reality, it is probable that some collateral effects of either 

DSM or target kill assignments are encountered.  This is true if the 

suppression is by exhaustive overflights of the defense but against. 

some target or if the target is within a radar's lethal radius of 

the defense (accidental DSM).  There is also some probability that 

a near-by detonation jiggles a wire loose in the defensive network 

or the radar is covered with dust. 

L -\ ai^fc '-- '-''^ Is *-*""-" ,j*'j>.-j'.V.--j.,ji)'.>.t.'. •-fc'-A^'i.y.i '^'^'.A.'.» 'i^,\i. J>';A '.i ',i';.i'Li':..i': ..l: J i«> ■> ■,.»'i^x^La.JJ& . '■ -*fc -JL^^IL.V ^MV-VJV jV. 
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The relative timing of the DSM and target attach may also be 

Important.  If the DSM is not totally successful and the defense 

has both the capability and sufficient time to reload, the weapons 

used in DSM were essentially wasted.  There is also the possibility 

o(  DSM by saturation.  This technique requires precise arrival timing 

where a relatively large number o\   objects are directed at the 

defense immediately followed by the target attack.  The assumption 

is that the defense will be so busy defending itself that the target 

attack is essentially unmolested.  Other time-sensitive factors could 

be of interest, e.g., ladder down, blackout, use of debris clouds 

carried by the ambient wind, etc., where specific concern for the 

tactics of the DSM attacks are considered. 

The mathematical implication of this assumed separability is that 

the expected value destroyed against a target protected by a defense 

of INT interceptors, assuming DSM with D attackers of type k and a 

target attack with N attackers of type i, is given by 

INT 

VD - V.£ ?(j|V * PK (Ni|j) t1"1) 

where 

V - The target value 

P(j |D, ) = The probability that j operational defenders survive, 

given a DSM allocation, of D attackers. 

PK(N.jl]) = The cumulative probability of damage of N. attackers 

against the target, given j operational survivors of 

the DSM attack. 

kw\y.^VilffiVA\N\VA^ 
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Equation i'-! Illuminates the crucial factory involved in DSM. 

The genorati< ■   strategies against defense installations, the like- 

lihood oi successfully suppressing the defense, the degradations 

oi a defense which has Leen attacked but survives, and the impact 

oi a surviving defense on the target strategy generation process. 

Hie complete solution of (T-l) is beyond the current capability 

of AEM.  In tact, prior to the inclusion ol a DSM capability in the 

program, research was conducted to determine what kind of .. DSM uodel 

could reasonably be incorporated.  (See reference JJ).  The conclu- 

sion of this analysis was that a high confidence DSM capability was 

possible, and it is the option which has been implemented for the 

case of bomber defenses which protect a single target. 

The restriction of DSM strategies to tho&e which have i  high 

confidence of succeeding, while mathematically restrictive, is 

sound military doctrine.  This is the same assumption which has 

been made in the subtractive island defense models. Under this 

assumption, the defense may be viewed as a separate target which 

is independent of the target it protectj.  Hence separate strategies 

may be generated against each.  The linking condition is the require- 

ment that if the true target is attacked, then a DSM allocation of 

sufficient size to have a high confidence ( > .99) of suppressing 

the. defense must also be generated.  (The two allocations may be 

done with different weapon types, however.) 

t:^'l-:^^'-S^~,y^^^:^"'S:»':J'"*S^.\'-Äv^^^:^.'*,*iV«l:«",•■".••*.•-"-"-."»-•*•* ■"- ■'■ -V-—- —- - - —- - -■■ - - 
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With only high confidence DSM strategics permitted, equation 

(T-l) simplifies to 

VD = V • P (o| Dk) • PK (Ni j o) •= V • PK (N,) (T-2) 

where PK(N.) is the normal AEM damage function.  If (T-2) applies, 

then generating a strategy for weapon type  i  also requires deter- 

mining that weapon type k which maximizes the Lagrangian function 

H = V • PK (N.) - N. Xi - Dk ,\k (T-3) 

Subject to the condition that D, is of sufficient magnitude that 

P(0|Dk) = 1. (T-4) 

Since 0 operational survivors can occur either because there 

are no remaining interceptors or because the defense installation/ 

radars no longer survive, (T-4) includes the condition that the DSM 

weapons have destroyed the defense prior to the launching of all 

interceptors (as will be shown later, because ot the attack geometry 

for realistic systems, this is a very likely condition). 

2. The Bomber Defense Barrier 

The high confidence DSM model in the current version of AEM 

HEDGE treats the case of SAM bomber defenses which protect a single 

target.  Since high confidence DSM is required, these bomber defenses 

act as a defense barrier which must be eliminated before bomber- 

delivered weapons ~an be allocated to the target. 

The bomber defense barrier is pictured in Figure T-l.  Up to 

three distinct SAM types (SAM1, SAM2, and SAM3) are modeled, which 

L"«y*.r'^'JV.:". v^-*^ -~~ -.*■-•■'J/.. •V..:*'« '-. -*«.5\ -.V'". V.. V- -".. v» £m »"- W«'-..-: f*,Aft;*V- VlVA^V.V. »' ."«*.'.' .V *^, -A   -• ^a '-■■ ,.••»•■•*-• r 
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T? 

are  assumed  deployed   in   independent   sit«..;   pr>>tt\[ i •     '' .   ; 

\v      ii:.:-b.;   of   Sites   of   r:u*ii :'■! t t • ■i ,        :! 

be allocated DSM weapons separately, :;•,,,• tu 

adjacent sites assumed.  Similarly, no nett in; ',:.  ;, i tes i 

assumed, so that each site engages only the attackers directed Lo 

that site.  Figure T-l also shows the relationship ni the SAMl.'SAM?/ 

SAM3 deiense barrier to the other AtIM bomber defense options. 

It would have been possible to develop a purely probabilistic DSM 

model.  However, analysis of the disparity of attacker/defender 

characteristics for systems of interest showed that this -would have 

.nilicantly distorted the true situation.  This is because oJ 

the variance in defense capability caused by such variables as 

attacker speed and altitude, and defense reaction time, interceptor 

speed and flyout range,  When such considerations are included, a very 

large stockpile of interceptors may be useless because of the 

attacker speed and slow defense reaction time.  Consequently an 

attack geometry model has been included tor the case of bomber 

delivered weapons.  The purpose of this model is to determine the 

maximum number of encounter arenas which could actually cccur  ho.f-een 

interceptors and attackers. Probabilistic considerations then determine 

the outcome of each single encounter arena, and the totality of such 

arenas. This allows, for any stated number of attackers, the compu- 

tation of the probability that the defense is killed.  It has I 

assumed that a single penetrator will render the defense inoperative. 

g 'ji,:j>:*?..~,.i..*ur."ji..':^rjL'j'.'j.jj!.rj\.*^\.'* la 
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rERMINAL   (PEN)   DEFENSE 

Vw* 

id 

DIRECTION OF 
ATTACK 

BOMBER ISLAND DEFENSE 

(Multi-Target) 

BOMBER RANDOM AREA DEFENSE. 

(All Targets) 

Figure T-l:  Bomber Defenses 

lälkiAi li'ii Tin !*■■?- "*•"- -*•-" »-' v-V^. *-1 V>. *..-. «-".*J<.a.-. ^.IAJ »A ha »-"l fcji LBJI 8 «■ '^ * - B"V V-:'v- V- wV .<". •.'-'* LSA^ 
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':■••'  ,  , '    i< -d« 1 lus b vn [JK judoil 
: or tbu  l e of DSM 

iiMtns! Lhc ■"     " ' ■ ' ■ with LCKM'S or "".';.:.'     .r SAM 

systems of interest,  he PSSK  gainst these !ti tckei  ;    small 

that tlu1 only consideration foi high con fid on ., n is the 

reliability ot the ittacker.  However, a capal [Hi  ■■•   ' .. been 

included to allow the user to specify via pi   i number 

of reliable attackers required for suppression. SAM 

systems which have a capabili;  against ICBM's/SI.BM's are •,; interest, 

they can be included by this method. 

'Hie inclusion of an attack geometry model for ICBM's/SLBM's would 

require detailed trajectory specifications and also greater vari- 

ability in firing doctrines than is reasonable for bomber-delivered 

weapons. 

The following quantities are used to specify the attack geometry/ 

encounter model.  To simplify the notation, a single weapon type 

and a single SAM type will be assumed unless otherwise specified. 

In the actual model, the required computations are performed for each 

weapon type against each SAM type (SAM1/SAM2/SAM3). 

N = The number of warheads/RV's allocated for DSM against a 

single SAM site. 

R = The non-reprogrammable reliability of the attacking warhead. 

(This may include degradations for retargetting and area 

defense penetration). 
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m 

H = The altitude of the attacker. 

VT = The attacker velocity. 

RF = The interceptor maximum Clyout range. 

VM = The interceptor velocity. 

HT = The radar antenna height. 

% = The radar mask angle. 

DIS = The minimum intercept distance. 

TD = The initial interceptor launch delav time. 

TBS = The interceptor retire time (time between shots). 

L - The number of launchers. 

I - The number of interceptors which can be loaded and fired 

from each launcher. 

As = The reprogrammable reliability of an interceptor. 

Rs = The in-flight reliability of an interceptor. 

PK = The single shot probability of kill of an interceptor against 

the specific attacker under consideration. 

Using these quantities, the procedir-  for computLig the number 

of warheads required for high-confider     • wilt now be computed. 

The crucial issues are: 

a. How many salvos could the defense possibly fire? 

b. What is the probability that the attacker penetrates a single 

salvo? 

c. What is the probability that: the defense survives? 

d. How many warheads arc required for high confidence DSM? 

m  
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Each  of   these   areas  will   now  be   a i :■-< > ■ ■; s *d     eparatcl)      -• 

delivered   weapons,     The  r.oran       * " ■ •   lor ■ "  .        .        i ■ 

cussed,   to      »wed   by  the  computation   lev   the ease   in  ■ hieb   ■; !'.     ■< I 

price  in   reliable  RV's   Is  specified.     Multi-site  suppression     iM 

then he discussed,   followed  by   the   strategy generation   procedure, 

. md  the  t reatment of misest imates. 

3.      ,;,e Attack  Geometry7 Mode !_ 

Fo ' mber-delivered weapons, it is assumed that the defender 

has line- ""-sight radar, with a specified mask angle a , are ..-ill 
m 

launch as soon as possible after detection occurs (subject to initi i! 

delay time and flyout range considerations).  The attacker is assumed 

to launch at some pre-specifiad coordinates which are known to he 

within range of the SAM site for Iris weapons.  Furthermore, the 

attacker is assumed to fly at an altitude sufficiently Low so that 

when detection occurs b3T the SAM site, launch of the DSM weapon can 

he assumed to have occurred. 

A spherical earth is assumed.  This results in the geometry oi 

Figure T-2.  (Distances on the surface have been exaggerated [or 

clarity). 

In determining line-of-sight distances, an equivalent earth 

radius R - 4/3 Ra is used to correct for atmospheric refraction 

at altitudes below 20 kft. (See references 34- ')"■>).     IJ the mask 

•cl.:>:':e*^'"i.^^^,\:i:^^ AiAVJÜAVTLAJ»\\LV .."W* k.W« L'*WkVl\ [?«"■ 
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SAM Sire 

Figure T-2: Attack Geometry 
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angle  were  2er< .    'otection would   occur  at  point-  A.     iknec 

. i 

^ - ..'   ;;/r; irr) (T-5) 

and thus A  p' * a corrects lor raiL r masking, duri.nj w! i.eh time m 

the attacker aas moved to point B.  Using the riv/ oj sines, 

sin w  (R+HT) sinÖ/(R+H) (T-6) 

and hence  can be calculated trom th^ relations! a 

The separation angle is thus given by 

5= 7T- (Q + w) (T-8) 

and the separation distance is computed as 

JF = 5.R (T-9) 

This distance as Sinnes an antenna of height HT. A 1 in-    sight 

distance from the attacker to the site itself (base of the antenna) 

strictly is not possible until the attacker moves to paint C. 

However, if HT is small., distance BC is negligible.  Hena c it will 

be. assumed that the potential engagement begins at point B, and 

|H along the slant range BJ.  (This neglects possible curvilinear 

V- trajectc ries of both the attacker and defender).  Consequently the 

engagement occurs over a slant range distance 

\m SR = (JF  f FT) (T-10) 

The problem now is to determine how many engagements occur 

along the distance SR.  Assume a single attacker and an unlimited 

m    _ 

\*\ 
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number of perfectly reliable interceptors, all fired from n single 

launcher.  The attacker is traveling with velocity VT, and the 

interceptor with velocity VM.  However, the interceptor lias a limited 

range RF, and must intercept at a distance of at least DIS from the 

SAM site.  Furthermore the first interceptor cannot be fired until 

a time TD has elapsed, and succeeding interceptors are fired with 

separation times of TBS.  It is assumed that TBS is of sufficient 

magnitude that the interceptor launches can be treated as a sequence 

of discrete events, of sufficient spacing so that the engagement of 

the i-th interceptor with the attacker is independent of the (i+l)st 

interceptor engagement.  (This assumption is realistic for actual 

systems considered.) 

It is also assumed that if SR < RF, the defender will fire as 

soon as possible.  However, if SR>RF, the defender will wait, if 

possible, and timf the interceptor launch so that the first inter- 

cept occurs at the maximum intercept distance RF.  Consequently define 

D0 = The distance the attacker travels during the initial 

delay period (=TD-VT). 

DF = The distance the attacker travels during the time it takes 

the interceptor to reach RF. (-VT-(RF/VM)) 

NOB = The number of attacker-interceptor engagements (fly-by's) 

which occur along the distance SR. 

The first condition which can occur is that D0 > SR.  This means 

that no launches can occur.  Hence NOB = 0.  If D0^SR, then two 

'VJ? 
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cases happen.  In either Instance, an effective e?v'/i,*.enient distance 

RE,  different  from SR,   is  delined   to  comr   te  110 

between the attacker and the site when the first Interceptor is 

launched. 

a. RF > SR.  The defender fires as soon as pos: Lhle.  Hence 

RE - SR - D0 

b. RF<SR.  The defender may wait, or shoot. 

1. D0 + DF>SR-RF.  The defender sho^t-s   Hence RE  SR-D0. 

2. D0 + DP < SR-RF.  The defender waitr until HIP attack i 

is close enough.  Thus RE - SR+DF. 

Given the effective engagement range, the number of  possible 

engagements is computed as 

NOB =  (RE/VT)/TBS + 1 

where  denotes the integer part. 

Previous computations have assumed a minimum intercept distance 

of zero. If this is not the case, the computations remain valid by 

replacing SR by SR-DIS. 

Figure T-3 illustrates the relationships between the distances 

of interest. 

Attack 

  i SA& Site 

Figure T-3:  Attack Geometry Distances 

»'-'«^y^yja'A'jv.*«-. '*> vjv^jtv t*. «r^y«y. W HVVW».« ^vA*y*j\Vfli»v<«y 
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To illustrate the results of parametric variations on the number 

of engagement arenas. Figure T-4 has been prepared for three sets of 

delay time/retire time pairs.  Standard conditions for other variables 

were the following: 

Interceptor range (RF) 

Interceptor velocity (VM) 

Antenna height (HT) 

Radar Mask Angle (a. ) 

Minimum Intercept Distance (DIS) 

Using these standard conditions and TD*20 sees, TBS=20 seconds, 

and the same altitude/velocity variations given in Figure T-4, no 

engagements are possible (NOB=0) at any velocity for altitudes below 

600 ft.  The maximum number of engagements at higher altitudes is 

75000 ft. 

800 ft/sec. 

30 ft. 

2 degrees 

0 ft. 

one. 

Attacker Altitude (Ft) 

Attacker Velocity 
(ft/sec) 100 200 300 400 500 600 800 1000 

600 2 6 9 13 17 20 28 35 

800 1 4 7 10 12 15 21 26 

1000 1 3 5 8 10 12 16 21 

1200 1 3 4 6 8 10 14 17 

1400 1 2 4 5 7 8 12 15 

1600 0 2 3 5 6 7 10 13 

1800 0 2 3 4 5 6 9 10 

2000 0 1 2 4 5 6 8 10 

2200 0 1 2 3 4 5 7 9 

2400 0 1 2 3 4 5 7 8 

Figure T-4(a):  Number of Engagement Arenas, 
Delay Time TD = 1 sec, Refire 
Time = 1 sec. 

{A\.vLV..%V%i> CSV^'SJ". vÜLJjjLkJLL^Aliä** i»i i., ~^.j^J&^'x*'jJirm\'*m\.\m'^^r^,^'^j-^.'ä?J**Jj\\~f\\'*\\'<* 
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v-t tacker Al Li tude (Fi ) 

11 f acker Ve 
(ft/ sec) 

600 

800 

1000 

1200 

1400 

1600 

L800 

2OO0 

2200 

2400 

Figure T-4(b):  Number of Engagement Arenas, 
Delay Time TD-5 sec, Retire 
Time TBS - b  sees. 

Attacker Altitude (Ft) 

Figure T-4(c): Number of Engagement Arenas, 
Delay Time TD=10 sec, Retire 
Time TBS=10 sees. 
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1 oo »oo Wo '.00 »00 600 soo 1000 

0 1 ! 9 3 u ') 7 

0 0 ! ') . 3 -4 5 

, * 0 1 1 • •> 3 4 

11 0 0 1 1 - 
1 

3 

0 0 0 1 I 1 2 3 

0 0 0 !. 1 1 2 2 

0 0 0 0 1 ! 1 1 2 

o 0 o 0 1 1 1 2 

0 0 n 1 i 1 

0 0 0 0 (I 1 I 1 

Attacker Velocity 
(ft/sec) 100 200 30C ) 500 600 800 1000 

600 0 0 I 1 1 2 2 3 

300 0 0 0 1 1 i 
-L 2 2 

1000 0 0 0 0 1 L 1 2 

1200 0 0 0 0 0 i 1 1 

1400 0 0 0 (J 0 0 1 1 

1600 0 0 0 0 0 0 1 1 

1800 0 0 0 0 0 0 0 1 

2000 0 0 0 0 0 0 0 1 

2200 0 0 0 0 0 0 0 0 

2400 0 0 0 0 0 0 0 0 
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The previous development has assumed an unlimited m^ber of 

interceptors fired from a single launcher.  This provided NOB, (lie 

maximum number o(  engagement arenas which could occur along the slant 

range SR.  To extend this to the case of multiple launchers, it will 

be assumed that all such launchers are fired in a salvo, every TBS 

seconds.  This provides an apparent restriction on the tirinc doc- 

trine.  However computation of NOB for realistic parameters shows 

that if some other firing doctrine were used, perhaps based on obser- 

vations of the outcomes of previous engagement arenas, that the 

defense would simply no!: have sufficient time to react.  Additionally, 

the modeling of a continuous firing doctrine, with its corollary 

of a continuous encounter along the slant range, is beyond the 

scope of the present attack geometry model. 

If all launchers at a site are fired simultaneously, then the 

maximum number of encounters possible is the minimum of the NOB 

determined by the attack geometry model and the number of inter- 

ceptors which could be fired from a single launcher.  Symbolically, 

NOB  ► min (NOB, I) 

Similarly, if all interceptors were perfectly reliable, then the 

number which engage an attacker in each arena along the slant range 

is simply the number of launchers L. 

Hence the DSM outcome for bomber-delivered weapons has been 

reduced to determining the results of NOB independent encounters, 

each of which has L interceptors and the number of attackers win ich 

H& 

£££&&&& 



iV-T-17 

survive the previous encounter.  However, since the \w,    ers   . !ve« 

are generally small, the rate •, nu.^t  q ! ' . r uu>  , . 

taintics associated witli the interceptor avuiLalu I itv, reliability, 

and PSSK, .md  the attacker reliability (since he is assumed to il lo- 

cate sufficient warheads for high confidence DSM).  The overall 

encounter model is pictured in Figure T-5. 

q.  The Engagement Model 

The method used to compute the DSM confidence will be to compute, 

for each engagement arena, a Markov transition matrix T which gives 

the distribution of surviving attackers as a function of the number 

of interceptors in the arena and the maximum number of attackers 

which could have survived all previous arenas.  The following defi- 

nitions are required. 

x(j) = An N+l dimensional vector whose i-th comparent x.(j) is 

the probability that exactly i-1 attackers survive the 

j-th engagement arena. 

b(M,?) - An M4-1 dimensional vector whose i-th component b  is the 
i 

i-th tern, of a binmial distribution oi'  M objects with 

probability of success P.  (Hence b  is the probability 

of zero successes, etc.) 

T(j) = f°(j) i T (j) — TN(j)  is the N+l x N+l state transi- 

tion matrix for engagement arena j, .cbero T (]) is an N+l 

dimensional vector whose k-th comparent, T. (j), gives 
k 

the  probability of  exactly k  survivors,   given   i   attackers. 

^'•-  •-  \.:... v, V:A..'JL'^ v\*.' i.1 v' ^'. v'.*.1: v v* e ^. v\i\J ■.''.,\.". ^-.• v-. o,^■.i.; ^.-. o,.^>.•!,    , .. ^,;tl.'.-. . «,,Y«*^*^Ajt^^r,^':J.k..-...*.v*. !^/.e 
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t\'i tli   these   definitions,   the   results   oi   .1   single  engagement   arena 

>bta i ned   bv   • >r -   ..   m 

X(j)       T(j)   X   (j-1) (T-ll) 

Hence Lor some initial number oJ attackers X(0), the distribution oi' 

surviving attackers, which penetrate to the SAM site itself, is 

obtained by applying (T-ll) recursively NOB times, obtaining X(NOB). 

It is assumed here that the first penetrator kills the offense. 

Hence a high confidence of defense kill is equivalent to requiring 

the probability of zere penetrators to be very small.  But the 

probability of zero penetrators is given by X (NOB).  Hence the 

high confidence requirement of (T-4) is equivalent to the condition 

X (NOB) < .01 = 0. (T-12) 

This leads to a mathematical programming problem which must be 

solved, for each bomber-delivered weapon against <^ich SAM type, 

to obtain the smallest number of attackers required for high confi- 

dence DSM. 

minimize N (Problem T-l) 

subject to the conditions 

X (NOB) < .01 

X(j) = T(j) X (j-1) 

j = 1,...N0B 

Since X,(N0B) is a monotone decreasing function of the number of 

attackers N, Problem T-l is solved in AEM by a Newton-Raphson based 

technique. 

]Hm -V AhU", *'.- -il\m. . *.■»"-. aJLi •-* •.■>.",'-« -\*. ■.jt.'^.'^ij .---. *--:^ '.f. .•-,.. :.J_:^.:.~.:*  -•„..- .-v .-, .r. V.VA.--* -.."«.•-'ir./^»''. *-.. r. 
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The remaining issues to be discussed are the computation o] T(]) 

and the determination o£ X(0).  The latter quest ion can easilv be 

dealt with, since the distribution oi survivors o\   N attackers after 

0 encounters Is simply the distribution of  arrivers, which is a func- 

tion of the non-reprogrammable reliability.  Hence 

X(0) - b (N,R) (T-13) 

The computation of T is somewliat more difficult, and is done by 

computing each column T (j) separately.  The first observation Is 

that T(j) is upper diagonal, since the probability of, for example, 

6 survivors given 3 attackers Is zero.  Consequently T has the form 

T = 

''; 
N 

To To    .... 
-      T0 

i —      Tl 

0 
9 

T2    .... -  3 
(T-14) 

(all zeros) 

The computation of each column T requires consideration of the 

relationship between the number of attackers  i and the number of 

defenders L. A random independent encounter between attackers p^nd 

defenders will be assumed, with the defenders distributed as evenly 

as possible among the attackers.  Two cases are possible. 

a.  i ^ L  In this case there are more attackers than 

defenders.  Hence each attacker which encounters a defender meet:; 

exactly one, and some attackers meet none.  This results in the 

i'^e-.jiX.» '-ej'v ■■>*•./".*\A'-./'.A>'.J>.;^ -e' V'A \..'^^A>^'^'^>.A\j.yJ^'-A *.^-.^\-,:.-. ..> .:.;. »„v.J.. ^± ^^ J., .\ .\ .„ -'■'-'.'.•» -vVv j^.jj^Tjw'Li.'^wVv ~v.-] 
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kind of computation shown in Figure T-(> tor the case ol (* attackers 

and 3 int< rceptors. 

Possible Number 
of Survivors ProbabiLity 

0 0 

1 0 

2 0 

3 Prob (3 kills) 

4 Prob (2 kills) 

5 Prob (1 kill) 

6 Prob (0 kills) 

Figure T-6: Distribution of Outcomes 

In general, then 

l£(j) = 0   k --- 0,1,...i-L 

= b (L,PK) 

- 0   k > 1+1 

k - i-L+l,. ..i-rL, I        1 L+l 

_* 
where b (L,PK) denotes the vector b(L,FlO taken in reverse order. 

b.  i <LL  In this case the number of defenders exceeds the num- 

ber of attackers.  Consequently, let the L defenders be distributed 

as evenly ?G possible among the attackers, so that i. attackers 

are engaged by L.. interceptors, and L« attackers by L + 1 interceptors, 

In this case, T is given by 

k 

/-Il i 

(T-16) 

- Ü   k > i+1 

L, 
where PK1 = l.-(l-PK) L and PK2 - 1. - (1-PK)  . 
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This compute I i«>n of T has assumed perfectly reliable» interceptors. 

In the case o(   1:1; ~ in-flight reliability it , this can be relaxed 

by Letting PK ► PK • R. .  The; treatment of the interceptor avail- 

ability requires some discussion.  Classically in ARM the treatment 

of reprogrammable reliabilities has been to reduce the stockpile 

to the expected number of available interceptors.  However this is 

not appropriate here, because even if an interceptor can be replaced, 

it requires TBf seconds to reload the launcher.  But by definition, 

this means that the reloaded launcher results in an interceptor 

which appears in the next encounter arena.  Consequently, with respect 

to the j~th encounter arena, the fact that an interceptor was not 

launchable is a non-reprogrammable uncertainty that L interceptors 

will in fact arrive.  Hence the. net PK is assumed to be computed 

by 

PK -» PK * Pv -A 
s   s 

In summary, the computation of the high confidence DSN price 

against a single SAM site consists of the following steps: 

1. Determining the number of possible engagement arenas 

based on the attack geometry and the number of inter- 

ceptors /launcher. 

2. Computing the results of a single engagement arena, 

expressed in the form of a transition matrix, based on 

the range of possible surviving attackers and the number 

of launchers per site. 

LTj^^fiy^fcjfcAJ^j^; V,' h -' h;' .'^.■^w^...."J.^.VAt.'" *. V^IV-'IJL, UL ^MS^^KSMh^jj^j^^jT^^-im^C^.^*.^. 
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c.  l?ropo;»aring the distribution of arriving attackers 

(bar : »n the m>n-reprogrammable reliability), through 

the engagement arenas to determine the probability of 

zero penetrators to the SAM site. 

il,  Iterating n this procedure to find the minimum number 

of attackers for which the probability of  zero pene- 

trators is less than .01. 

5•  DSM with IC.KM's/SLBM;s 

In this case, since the defense is assumed to be ineffective, 

the only consideration is the non-reprogrammable reliability R. 

Hence N  is computed by solving 

(l.-R)N * ,01 

whence 

N = log (.01)/log(l.-R) + .99 

6.  Fixed Price DSM 

(T-17) 

If the analyst specifies a DSM price D in reliable RV's, then 

as in the case of ICBM's/SLBM1 s, the only consideration is the 

requirement to allocate sufficient numbers to have a high confidence 

of D arrivers.  Hence the problem is to 

minimize N (Problem T-2) 

subject to the condition 

D-l 
Z     b   (N,R)<.01 
i=0 

This is solved iteratively starting with the N computed in (T-17). 

. -B mM M.^M.^l--^lS. i^LLjS_J..^.1J.— 
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7•  Multi-Site Suppression 

The previous discussion has been concerned with high confidence 

suppression against a single site, achieved by determining the mini- 

mum number of warheads N. of type k which must he allocated against 

a SAM site of type i  so that, using the notation ol   (T-4), 

P.(0|Np > .99 - i. 

Tliis is necessary so that the probability o\'  kill function tor the 

weapon used to attack the target itself does not require modification 

because of surviving defenders.  However, if multiple SAM sites are 

present, then an additional requirement is necessary. 

Let   S. = The number of SAM sites of type i protecting a 

given target. 

N, = The number of warheads of type k required lor high 
K 

confidence defense suppression against a single site 

of type i . 

It will be assumed that all DSM against a single target will be done 

with a single weapon type.  Because of the assumed independence of 

the individual sites, then, 

M,si 2*2 ,3,S3 
P(0|Nk) = PjW N£) l. P2(0|Nk) '.   P3(0|Np ■ (T-18) 

Hence if 1(0 IN,) > .99, it is not sufficient to have P.i(o|N ) = .99. 

Rather, the confidence of successful DSM against each individual site 

must be increased to have a sufficiently high confidence of suppress- 

ing all sites. (For example, if Sj-^+S« - 50 and P.-(ON) = «99 tor 

all i , then P(0 |Nk) is only .605). 

.+_.j  . .. ^ v. A -'.'-«*-"'» J' -**w'<»'» - j .'•-•-• ^ i - : » ILA tfrJ.d.\' 
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Unfortunately, the amount by which the confidence must he increased 

at each individual site is a function of (S.,S„,S,), whereas previous 
1 I      > 

computations have considered only the single site encounter.  Com- 

L  2  3 
puting and storing the data required to express (N, , N , N ) tor 

K    l\    K 

each weapon-target combination (as opposed to each SAM site type) 

is prohibitive.  Consequently an approximate technique lias been 

developed which permits computing and storing only the single site 

prices (N, ), but adjusting these for the target of interest when 

required.  To develop this approximation, it will be assumed that 

PJ (0 IN. ) = .99 for all  i „  Hence the problem ol adjusting (N ; 

can be viewed in 2 steps. 

a.  Find the £ for which 

S S S 
(.99 4-C ) 1# (.99 +C) 2. (.99 +C) 3 > .99 

b.  For that £ , find AN^ so that 

P (O|N^ + AN^) >> .99 +C 

Tli3 first step is solved directly: 
1 

S +S?+S? 
C* .99        - .99 

(T-19) 

(T-20) 

(T-21) 

To solve the second, consider Figure T-6, which ^enerically illu- 

strates the relationship used to determine N. . 
1 

.99 

Pr(>l penetrator 
against SAM 
Type i ) 

L 
/ 

linear slope 

\< 

N, 
Figure T-6: DSM Confidence Curve 
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At high confidence regions, the curve is very flat.  Consequently 

a linear estimate of the slope d. deyond the N point can be used 
k k 

to predict AN .  Furtiierrnore, d  can be easily computed at the 

same time as N, , and, since N, is integer, both N, and d ' can be 
k k (c     k 

stored in the same, computer storage locations. AN, is then given 

by 

(T-22) AN,1 = C/d.1 + .99 
k  L  k 

Consequently the true high confidence DSM price for a given target 

can be readily computed as 

3 

\  = £  \L + ^ (T-23) 
i = 1 

8•  Inclusion of DSM In The Strategy Generation Process **— * 

Once the just described process has developed appropriate defense 

suppression prices it is necessary to properly account for the DSK 

option in deciding how to attack a specific target.  In AEM the 

effect is very conveniently dealt with by appropriate modification 

of the Lagrangian strategy generation process. The Lagrangian 

strategy generation scheme has been well explored elsewhere in this 

report. Suffice it to say, at any given stage where a feasible, but 

no¥i-optimal allocation exists, an improved strategy (if one exists) 

for a given target can be determined by finding that number of attackers, 

N., of weapon type i , that maximizes H , where 

H ■= V • PK (Nj - N. A. (T-24) 

This equation simply allows for balancing the payoff (V • PK(N.)) 

in attacking the target with the Lagrangian "cost" (N. \j_), 
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That value o\   N. which maximizes the difference between payoff and 

cost Is the optimal attack level tor weapon type  i . 

As was indicated in  equation (T-3) the proper Lagrangian when 

DSM is required includes an extra DSM "cost", namely D \r.  This DSM 

cost Ls simply that minimal Lagrangian cost required to pay the 

linn DSM requirement on the taiget if weapon type  i  requires such 

payment.  The DSM price, D^, is known lor all weapon types and the 

Lagrangian multiplier A  is known at each stage of the strategy 

generation process.  Therefore, the best DSM weapon on the target is 

that one which minimizes Dtr A... 

These considerations are allowed for in AEM as follows. As each 

target has a strategy generated for it a check is made to determine 

if the attacking weapon under consideration requires DSM.  If it does, 

the appropriate DSM Lagrang:an price, D A   is added to the weapon 
K. Is. 

price, N. A.., which maximizes the o/erall Lagrangian as indicated 

by equation (T-J). As each weapon type is considered for the target 

attack an appropriate Lagrangian, H., is computed.  The best attacking 

weapon type on the target is therefore that weapon type which results 

in a maximal II. , where each H. has the appropriate DSM cost included. 

This proces: is included even in the more complex hedging stra- 

tegy generation steps. The only impact, essentially, is to require 

that a DSM cost be included when certain weapons attack certain targets, 

As each selected strategy is inserted into the LP a check is made 

in order to determine if the chosen attacking weapon requires a com- 

r^  ."v; panion DSM.  If it does the D  for the correct DSM weapon is inserted 

Tr 

W- 4 

K 

-.'«£«£* ^.r^lmf^ *J».AJ> V, 
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into the strategy.  The only complexity In the process involves 

internal AEM bookkeeping to assure that the DSM weapons '.re properly 

inserted into the LF, while at the same time those weapons do not 

take any credit for damage to the target itself. 

8.  The Impact of Misestimates 

If misestimate data is being considered, then even though the. 

allocator is assumed to generate his war plan based on high confi- 

dence DSM strategies, the actual confidence of the result may be 

different.  For a given target strategy, define 

VD = The expected value destroyed (against the target) 

based on an estimated high confidence DSM. 

P(0 IN, ) = 1. = The estimated confidence of defense suppression. 

P*(0I N. ) = The actual confidence of defense suppression. 

VD* = The actual expected value destroyed. 

Then two distinct and drastically different cases occur: 

a. P*(O|N ±  P(O|N )„  In this case the attacker allocated 

more weapons to DSM than would have been required had he known the 

true situation.  However, the confidence of defense suppression 

remains high. Consequently the warheads allocated against the target 

were not perturbed, the target damage function remains valid, and 

VD* = VD. 

b. P*(O|N )<P(0 IN ).  This is the situation where there is some 

probability that the defense in tact survived the DSM attack. 

•- _v' \ _v ^ _.v_% _* 
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hence 

vn->  :^vio |N/I     < -i'-ro IN, >) ■ vi)(s) (T-> ^ - . | Mr 

where ': :) denotes r'u' expecLed value destroyed foi the strategy 

if Indeed the dcieu.-n sui . [.ved.  But the determination o! VO(S) 

is nicci.-v:1     problem discussed in detail i:i reference ;), and 

the inability to compute it in a realistic manner compatible with 

AEM requirements was one oi   the principal reasons Lor modeling only 

high-confidenct DSM.  (The proper computation of VD(S) is even more 

complicated when special purpose target data bases such as the 

Q-95 or q/a data bases are used, since these, assume an optimal pat- 

terning of the arriving warheads).  Consequently the assumption has 

been made here that VD(S) = 0, that is, if the defense survives, 

no target damage results.  This is offense conservative, and also 

probably realistic for the case when a few bombers are allocated 

1 ■ i ■ ;! « 1   t-t, since in this case a surviving de.tense is likely 

to nullify the strategy.  Consequently (T- 25) is replaced by 

VD* ■ P*(0 k ) • VD (T- 26) 

L« V. x. «*.. •- .-_ i\ • ■ s ^ ■ 
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U.  LINEAR PROGRAMMING VIA GENERAL IZ E1) UPPER BOcMMNi, 

1.  General 

Centra L to the A EM allocation procedure is : :•  use >! a 1 in--ar 

program (LP) to select, from among a candidate set ol strategies, 

that subset which maximizes the total expected value destroyed 

and yet does not violate any weapon, target, or hedging constraints, 

The LP is used in an iterative fashion on even a single strike 

game.  Since multi-strike games are solved by numerous repetitions 

of special one-strike games, the number of times en  LP may have 

to be solved in a single AEM run may be large.  Consequently the 

technique used to solve the LP must be extremely rapid.  Another 

requirement is that the amount of core storage required to execute 

the LP be minimal, so that the maximum amount is available for 

modeling logic. 

In previous versions of the AEM, a standard revised simplex 

code was used.  However, with increased development, in particular 

the inclusion of separate missile and bomber island defenses, 

and expanded hedging capabilities, the old revised simplex code 

would not accommodate the significant number of additional con- 

straints which were required.  One solution would have been to 

simply increase the dimensions of the revised simplex code.  This, 

however, would have caused a significant increase in computer core 

requirements, and also a disproportionate increase in the time 

required to solve a single LP.  This increase is caused by the 

additional operations which must be performed to maintain numerical 

accuracy with a large basis inverse.  A second resolution, wind: 

was adopted, lies in a new development in advanced LP theory called 

Generalized Upper Bounding (GUB). 
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GUB is basically a mathematical theory for dealing with LP 

problems in which some fraction of the co straint rows have a special 

structure.  This structure must be of the form where a set of rows 

have the characteristic that one row has non-zero entries in certain 

columns and all other rows have 0 entries in those columns but non- 

zero entries in other columns.  This structure creates a staircase 

appearance to the tableau.  For example, consider an allocation prob- 

lem involving three weapon types and three target classes.  Then a 

candidate constraint tableau, expressed in ehe normal AEM format 

(see Figure J-l) might be the following: 

2    7    1      < 13 (Weapon Type 1 Constraint) 

3    4    5     < 6  (Weapon Type 2 Constraint) 

5    2    3    < 8  (Weapon Type 3 Constraint) 

111 <  5  (Target Class 1 Constraint) 

111 < 3  (Target Class 2 Constraint) 

111    < 2  (Target Class 3 Constraint) 

Figure U-l.  GUB Structure 

It happens that when there are such constraint rows the revised 

simplex algorithm can be adapted so that the special staircase rows 

need not be kept in the tableau.  This results in a significant space 

saving if large numbers of such rows exist. 

In AEM the previous L? could accept up to 80 constraint rows 

and 50 of them were of this special GUB structure.  (The 50 represent 

the target constraints and they always are of the staircase form.) 

s&i&äafl^^ ^   ^    .A ^"A ./* _ I J~M ü'« m.  '.M.'f. >  AM '^t*M   ^-*^L!.V- «".   tLM £M^LM-1?JLA AAMJZA* 
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TT 

The crucial storage is taken up in a matrix of size 80 x 80 (the 

basis inverse).  With GUß, a matrix oi size 30 x _>0 solves the same 

pr< '■: ems.  Th i -■ represents an improvement in storage by a factor 

o1 7.  Alt-'    velv, fci tiie same storage as the oLd LP, much larger 

problems can be solved. 

GUB also lias computer time advantages for a given problem size. 

The reasons for these time advantages are complex but they basically 

result from some simplified bookkeeping steps that eliminate unneces- 

sary operations that occur in standard LP pivotb, and from a diminished 

requirement to maintain GUB numerical accuracy because of the reduced 

dimensions of the basic inverse. 

Implementation of GUB into AEM could have been quite costly 

except for one basic fact.  Under a separate government contract, a 

GUB subroutine, and all associated routines, have been developed, 

thoroughly tested, and incorporated into a strategic model OSAGE 

(reference 22), whose LP is similar in structure to that of a one- 

strike AEM LP.  Consequently, the existing GUB program was resized 

and meshed into AEM in the current location of the LP program. 

Adaptation of GUB into AEM has resulted in a vastly more flexible 

LP structure for larger problems.  Growth in target classes will be 

of far less importance and many resultant *  dfits will accrue.  The 

running time for current sized problems will most likely drop.  More 

importantly, growth in problem size will not result in nearly as 

fast a growth in time. 

_v „". 

e v V v V V V v v V v v V v V i a-— y --. ■'■-■<-'>-—*^t .^'■'-""-*....*-'. •v''-' *.'...ic. o ^~ •<-• ■«-•' i' «C\'H.* «..• » ■• ^1^*^*^ -^"'. *\. V. *\ ].{."v'».u.iV'!..uV, 
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Commercial GUB codes have boon compared with non-GUR codes ot 

comparable capability, and nmning time Improvements bv factors «•(" 

five to ten have been common (see reference 23).  Additionally, the 

GUB included in AEM has been modified to a special list-processing 

structure (reference 24), which increases its speed even more. 

The remainder of this section is divide- into three division. . 

The first motivates the GUB algorithm by directly considering the 

revised simplex method for problems of GUE structure.  The second 

division is a compact description of the classical GUB algorithm 

taken from reference 24, which generally follows the terminology and 

notation of the original Dantzig-Van Slyke paper (reference 2")). 

Other developments and discussions will be found in references 19 

and 26-31.  The third division briefly defines and discusses the use 

of list processing.  The complete definition of the list-processing 

GUB formulation, which is too lengthy and cumbersome to include here, 

is given in reference 24. 

2.  GUB Motivation 

This section provides a motivation for GUB by considering a 

transformation of the basis inverse of the standard revised simplex 

method which is possible for any problem of GUB structure. 

Assume an LP problem in standard revised simplex form. 

Maximize Z 

Subject to the constraints ÄX = b 

X > 0 
d'-i) 

!\A v-V-j^ v_* tVT\%,-V«j'^rtL.TVT^"«cv  -.jet VA'A .V-vI^ViyAVl.'y «v /- «IACAII* ,:.- jjj ,y v •-■ :»«lv^\-^^.a^v^AvjL^ji^.v-:.„v^ 
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Let B be   the current basis, and parti ti >n 

Ä - (B : R) and X - (XR : XR ), so that 

BXB + RXR = b ^ XB + B^RX* ■   B'lb "J-2) 

Hence if the inverse of B is known, the current solution X can 

easily be determined from (U-2).  The revised simplex method uses 

this fact to advantage, and defines all of the standard simplex 

operations in terms of operations with B  .  (°ce reierence 32). 

Consequently the crucial point is to be able to compute and store 

F1. 
Suppose now that A has GUB structure (as in Figure lT-l), with 

L special staircase (or GUB) rows, and M non-staircase (non-GUB) rows. 

Furthermore, for a given staircase row, let all the columns with an 

entry in that row be defined as belonging to the same GUB set.  (Then 

there are L (XB sets).  It can be shown that at least one column 

from each GUB set must be in the uasis (and hence in B) .  Consequently 

arbitrarily select one such column for each GUB set, and call it the 

key column for tha*; set.  Since the key columns are in the basis, 

B can be re-arranged as follows: 

Yc~" "~i~1  L~GÜi r~GÖB~rows'" 

where A is the MXL matrix which represents the non-GUB row entries 

in the key columns, A is the MXM matrix which represents the non-GUB 

.....:» ....•» -v .:■> -'...y ..•.. - »lv .^ »V^V^y.v.;»'. ^ '■ V-jOt-V..?* , ' ..--'.A-. -J^.^\ *,. <«-" p.».' ■>..•. _. ^ ^.....■..i , ., ^'t.'j ,'u> «',■ 
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row entries in the non-key columns, I is an LXL identity matrix 

(corresponding to the GUB row entries of the key columns), and c 

is an LXM matrix of zeros and ones corresponding to the GUB row 

entries of the non-key columns. 

Now consider a trans formation B* = BE . where E^ is the element- 
t        t 

ary transformation matrix which causes 

_.  -       /B  !  Ak \  M rows 
B* = BEt =  «J™.,—...J---..--... 

V   '     / 

Using the inverse formula for partitioned matrices (see reference 32), 

-l    ,VL i  -B'lAk> B*  = ^-5-i--r---- 

But  ß"1 - E B*"1, and E^ =  4----}?+ 
t t   l-c i I I 

Combining these results gives 

r-1    LB"1  I  -B"lAk 
B    =   _L.._-:     :T"k""" 

V-cB   !  cB A +1 

Hence for any given basis B, B  can be determined by knowing only 

a. Hie set of key columns 

b. B  , which is of dimension MXM. 

c. The matrix c. 

Thus all the steps of the revised simplex, which must be performed 

wiuh the elements of B  , can be done, by appropriate red< tinition 

with the elements of B  , A , and c.  The GUB algorithm of Dantzig 

and Van Slyke formalizes the steps required to carry out the revised 

simplex method using these quantities. 

L"VJ 

ES'.^v» '«."^«% •*•«% ,*- A ■ v „v u*- /• «"• .>v>v> -%.>"yy- -"">"• »"* -% «v -"• »"'• -'• - 
ILJ*JL -!*.,.J« ^%.J^jJk.>^.jZ*^V»^-^^^2a^^^L-J-'»..Ji.'j_fcA.JJ!fe i.."^._«.j). -i.. • -lv 
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*•  Class ion I i^-noral i zed   > pui' r Bo irui i n^a 

The I'.nnor.-i I : od upper bounding (CUB) algorithm is .« revised 

simplex based , . eJ ire which applies to Linear programming problems 

<>i the form 

maximize Z (GUB) 

subject to the constraints 

z-(c, x) -- 0 

Ax = b 

k "" 
(e ,x^j  =   1 k = 1,...L 

where x and c are N x 1 column vectors, b is an M-l x 1 column vector, 

A is an M-l x N matrix, x = (x  : x  : . ..x_)  and e  is a column 

vector, of dimensions equal to x, , with all elements equal Lo unity. 

(By appropriate scaling, any set of linear constraints which has L 

constraints of the form 

(Pe\ xk) = d 

where P is a diagonal matrix and d is scalar, can be reduced to GUB 

form.)  It is also assumed that ehe system GUB is of full row rank. 

The k - th GUB set of variables (columns)S, will refer to those 

variables (columns) indexed by y  (k = 0,1,...L). 
K. 

Direct application of the revised simplex procedure to problem 

CUB requires a basis inverse of dimensions M+L x M+-L. For large 

problems this dimensionality is prunibitive, both because of compu- 

tation time and potential aumerical accuracy problems. The GUB 

i\ •" ~v "-i "■» 
lV<VV^".>V\"-\^i'V.Vr'.M'V ^%-.M''i'''ü'"'»Vu>V- V« V - m'-\''~  - * ."" .'-,/ 
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algorithm uses the structure of GUB to define an equivalent system, 

which uses an inverse, of dimensions M x M.  All information required 

to use the revised simplex procedure is available fron: the smaller 

inverse plus some additional data.  Since In Large problems, gener- 

ally M»L, the savings in both computer storage and computation 

time are significant. 

The following results apply to GUB structured problems. 

LFMMA 1:  At least one ~ iumn from each set S, is basic (k ■- 0,1,...L). 

LEMMA. 2: The number of sets containing two or more basic columns 

is at most M - lr 

Sets S. containing two or more basic columns arc called essential. 
k  ■— 

Other s^ts are called non- ;sential. 

Some additional definitions are required.  The M f L x 1 column 

vectors ot GUB will be denoted by AJ (j  0,1,...N), where A is 

the vector (Z,0,0,...)', A denotes the M x 1 column vector iden- 

tical to the first V  components of A .  The vector b denor.es (0 : b) ' . 

«J-| t ~JM+L 
A feasible basis to GUB is (A  ;  A   ).  Furthermore, for each 

set S  (1 = 1,...L), select one variable \,T\   to be the key variable. 

k(l) 
A    is the key_ column.  (S  has no key variable.) 

Tli en,   if Aj   Cs       let 

DMD=AMD 

DJ   = Aj-Ak(l)     j  4 k(l) 

L 
d = b  -£    Dk(l) 

1=1 

r.-Vv> V\vV\«_'s'~* '-* 'Jt La '-•>''-■>*'-* IJLIJLLA - **' a '. aS »'■ « -, «v i ' • : - ' .e > -■—»'•■'» 
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ß =i"j A  is basic and not keyj 

T == (B"!) 

M  = -7T A 

L 

k(l) 
(1 - 1,...L) 

A - current entering column 

s 
<r = index for which A fc S 

jr 
A  = current leaving column 

jr _ 
P = index for which A  CS« 

g 
A  = vector for which 

M+L 
r-zr A. sÄJj 

D" - B 4)° 

b* ■ current value of basic variables 

*?. a column number in A corresponding to the i - th 

column of the working basis B 

«'.  - Column number of the key column corresponding to T.. 

Using these definitions, the following results hold. 

L&1MA 3:  ( w   ; p  ) is *. set of prices for GUB. 

LEMMA. 4; As is determined by solving 

linAä = ( 7T ,A_ ) + u  ., for A £ S.. . mm. 

AJ C A 

■^-A'AV. ■ ■ r ■ l in 1 ■ ■ 'r ,-■ "t 
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H ■ 

LEMMA 5: 

A."8   1 - >     D*  it AJi = Ak(j) 

i't-k(c) 

=■ D if A    A   for some t. 

-    >  1")    if A  - A   for some t. 
t~d     t 

"t - h 

and b.  = 1 - V*  d  if A  is key 
i      ^—' .  t 

"t 
= Ji 

ji    "t 
- d if A  = A   for some t. 

Using Lemma 5, the computation of the leaving column is done 

J r 
in the usual manner, that is, A  is the column which solves 

\ 
minimize -a— i = 1....M+L 
*c      A s 

A.s>0   Ai 
i 

where s is determined by Lemma 4. 

Given the entering and leaving columns, all quantities are 

updated as follows.  (Only one procedure is applicable at any pivot.) 

UPDATING PROCEDURES 

jr 
A.  If Sa   is not essential and A  CS^, then 

S Jr 1. A replaces A  as the key column in S 

2. d - d - DS 

3. B remains unchanged. 

■v.••-.••-.•>■.• /.*---• ^.v>v:'-.'--/v.'--."--.y-- >.v-w*'*y ■•••-••.^'■•-■-■ •• - • • -/••vvv\-\-vvvvvvvv:-.:v: 
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-^ 
** 

!).  T f A   i s m.i key, then 

1 . Update 13  by pivoting on the column D on the row 

winch A        occupies in the working basis, 

?.  d - Pd, where  P  is the pivot matrix. 

C.  IfA,C-Ak^ 

!,  Change the key variable in S,. 

2. Transform B  and d to consider the ne< key column. 

3. Update as in procedure B. 

Based on these definitions, a macro-definition of the (?JB algor- 

ithm can be stated. 

GENERALIZED UPPER BOUNDING ALGORITHM 

Step 1:  Enter with B" , d, K 

-1, 
S_te£_2:  Price columns using (B )-, giving min A s  = Ac.  If 

-S 
A is positive, go to step 7.  If not, assume A C S . 

—S  *s  *  J -J, -jr 
Step 3:  Compute D , A  , b , A  , where ACS.  If A 

is key, go to step 5. 

—S J r    -1 Step 4:  Pivot on D in the row corresponding t> D  in B  and 

update d. Go  to Step 1. 

TS Step 5:  If Sp is essential, go to step 7.  Otherwise, make A Vcy 

-jr 
instead of A  . Update d and go to step 1. 

Step 6:  Switch key columns in S .  Update B  and d. Gv  to step 4, 

Step 7:  Current solution is optimal.  STOP 

•.••:->i ■ mi i 1 !*■'■ *■ i' ■ ■ — ■ * I 
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7.1 :;t Processing GUB 

discussions of QIB available in the literature are cone  noxi 

with a statement of the algorithm, and a mathematical definition 

ot. .ill required elements, but not with the computational imple- 

mentation of GUB.  Computational results with a straightforward 

implementation of GUB on test problems (see reference 24) showed 

that is GUB was to be successful in large problems, the implemen- 

tation must be improved considerably.  (The "classical CUE" imple- 

mentation was based on straight forward coding of the mathematics 

in the original Dantzig and Van Slyke paper). 

The basic method used is to re-structure the operations of the 

GUB algorithm in a list-processing format.  This requires the 

definition of a number of special sets, lists and pointers. These 

are all used to minimize data-handling time and virtually eliminate 

lengthy search procedures and unnecessary operations. A minimum 

amount of additional high-speed storage is required, but this dis- 

advantage is more than overcome by the reduction in execution time. 

The final list-processing definitions and technique are the results 

of extensive experimentation and execution time analysis of the 

various components of GUB. 

The fundamental quantities used in the revised GUB algorithm are 

the list, the ordered list, and the pointer. 

Definition 1 

Let P = | p-,p«,••.p J and Q be two sets.  Then a list y  is 

 % '■, > ■'»>'■ V v V ■;» :■ .V.V-V V •■ 
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defined  to be a vector y whose components  arc  the  elements   o1 

«= (P,Q) = |i| P,  CQl 
y i    A ' 

Definition 2: 

Let V be an n x 1 vector.  Then an ordered 1 ist V.   is defined 

as a vector Z whose components are. the elements oi   the set 

£(v) = ji | v. > v.+1, ; = i,...n-i| . 

Definition 3: 

Let A = ja,,a0,...a [ and B =UB.  (OB. = 0 ) be two sets. 
'12    n>        j j     j 

Then a pointer y is defined to be a vector y whoso components 

define a 1 - 1 mapping P_(A,B) from A into B, that is, 

P_(A,B) = |(i,y. = j)| a. -*B.,  i = 1,2,...n[ . 

Definition 4. 

(a) The notation y = £, where .£ is a list, ordered list, or 

pointer, will denote that y is the vector associated with£. 

(b) If y = (V1,V2,...Vn) , then 

(1) C(y) = n, where C denotes the cardinality. 

(2) y± - v. 

(3) y  (i) = that  j  for which y. = i 

(4) i £y => V. = i for some j. 

To clarify further these definitions, consider the following 

example. 

Let  A = {1,2,3,4,5,6} 

B =   {2,8[ij|4,9fu|6l     -   {2,8,4,9,6} 

L^^^'^:^\^^^^^^^^^^V/^^^">^V.V.^^>^ t -8 ,^- ■ i »; 
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-   r v V  , !  !:\S,47 
J 

Then C(A) = 6, C(B)   5, and C(D)   = 3.  Furthermore, 

x - £- (B,A) = 

y = P_ (D,B) 

1,3,5 

L,2,3 

Z - £(V) = 4,2,1,3 

is a list. 

is a pointer. 

is an ordered list. 

-1. 
L(X) - 3, C(y) = 3, and C(Z) - 4.  Also x (3) - 2, and 3£y, whereas 

4Cy. 

Us-.ng these concepts, i  set of lists/pointers appropriate to GUB 

has been defined, and the algorithm restructured in terms of them. 

This restructured algorithm is the one which has been incorporated 

into AEM. 

.' .TV- 
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ÄFFENDIX  A: '^RIVATI^  :F  KILL rPOFAPl! ITT^S  FOR f^HFgCTLY 

RELIABLE W'.Af^y'  VVRSUS m™Tryn?n TAROFTS 

In  the   liscussi   :,    I' this  rrocess,   it   is   i lluminatinr to carry alonp 

two   e>_m\ t ! i. :,: 

'i;     LR/CEF    -  1,   (L/D)    -   .9 

b)   LR :KI     (D , (i o)r  - .; 

ROTATION: 

LR    = lethal  radius 
CEP = circular pvr^r  rrobable 
I.      = d i gi^eter of  1 ethal   circle 
D      = target  iiameter 

- 21.R 

Case  (a)   produces a  kill   probability   function which has essentially no straight 

line  portion,   whereas  case  (b)  yields a function with  an  easily  recognizable 

linear  part. 

Rand  Report  #RK-2743  contains  graphs of F  (n)   ("kill   probability"   ... 

2 
''expected  coverage  by  n weapons")  versus n(I/D)     for selected values  of the 

ratio LR/CEF.     Visual   inspection of these  ^raphs produced  P, (n)  data for 

/    2 
each  pair of LR/CEF  and   (L/D)     values.     Specifically,   for the  two   ->bove 

cases,   the   1ata  obtained   were: 

Case  (a) : n. 
l 

rk(n.) 

1 
c 

3 
U 

.39 

.64 

.77 

.05 
7 .93 

Cane   (b): n. F. (n.) 
k     l 

I 
p .u 
3 .6 
U .77 
5 .87 
6 .96 
7 .9^9 

k>i^vi&-i^ 
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It was not possible to re.r I the same number of iata : i r t •• • «v 

LR/CE! an/' il Dj" pair. The number of point? ; n each -et varied fre.m ■ 

few as  ;   to as  many  as  J 5   for sein;:  curves.      (This   fart r     - * 

account  in the  fitting  process  later on.) 

]   :      Uta set was  input to a  computer  prorram wl let   produce^  vi  ■:■ 

for the four parameters  (T,   p,   x_  and  a)  of * h°  approximating   runetior.: 

PK(n) = 

an 

I   1-(1-P kn-T 

(n<xT) 

(n >xj 

Before discussing the approximation method, it will be useful to derive 

the least squares' estimate for the slope, c, of a line oassinr through 

the origin and having equation: 

y = ex. 

Given the set of points (x.,y.)   i - l,...,m, the function to be 

(? 

minimized  is 

m 

E >     (yi - ex.)' 

r= i 

dS 
dc 

= 2 

m 

E 
i  = 1 

(yi -  ex.)   (-x.) 

-  c y. 
i  - 1 

IV. ;■! •/,.:,"> *>r.:»' '.,'. :..'„ •■/ ■*...' <L.:.^..A »_:.Yv»..\^ c.\c ViV. /.V.'c.'.vV>.>.,v..".r ^A^A^JLJ1^JAA!*LMJ»VM'VU"V1V^
V
..'^.\%.''-\\'»\ •>'. -.'' -J" ■.* A? -S 
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IS 

For a ninimum: 

m 

E v, - • I 
l =•• I i = 1 

m 

E 
1 « 1 

x. v. 
r l 

m 

E 
i - 1 

x. 

Note that the linear part of equation (1) is of the form ('; .. Tho- non- 

linear cart may be transformed s > that it is also of the f~rm {?): 

P„(n) = 1 - (1-p) 
vn-T 

m 

m 

m 

(l-p)n~T = 1 - PK(n) 

(n-T) In(l-p) « In [l - F'K(n) 

Defining 

x = n-T 

y = In [l - FK(n)J 

c - In(1-p) 

it is clear that equation {k)   is equivalent to ( 

Thus, for a fixed value of the parameter T, the K(vr- 

U) 

be transformed to (x.,y.J pairs by (5)> ami a sloce, ■:.,   may ■-■ ■ --' 

A 



A-4 

,. ■ •■'   {}■).     This may be converted to an estimate of  the parameter r, s^nce 

c 
e    :-p 

- ] - e° (6) 

Tr : process involved Ln producing the parameters of eauation (1) for 

a given iata set may be described as follows: 

1) Assuming initially that T = 0 (i.e., ttnt all of tr.*» eiven -iata 

was non-linear), eouations (5), (?) and (6) were used to produce an 

approximate value for p. 

2) The sum of squares in the n, P„(n) plane was computed as a 

measure of goodness-of-fit: 

m 

i -1 

3) The data set wa^ then divided successively into two subsets, 

the first of which contained the 1st k points [n, , P«.(n,) ] ,..., 

[n, , P (n '] . The values of k assigned were k = l,...,m~l. 

k)    For each value of k, the slope parameter, a, of equation (1) 

was estimated by fitting a straight line to the first k points 

KJ
t according to 

K 

n. PK(n.) 

I - i = l _ (ö) 
k        k 

2 E n. 
l 

i - 1 

whic\   IF; similar to equation (3). 

•lO^lvZvlv-l'...j ££tä±^i^±L\W.\^?\\*.-^^^'^^^^'^*^     -     ----- -■--' 



At   t; :.    ;  ■ int.,   in   i t.rri? i VP   ; rrcr>r  wir 

tr.r   i  «nr   *■■•-,   ;',   :    mi  x^ of   n   curve  wMh  !'•'   f        ■ *•  ■'■-   ■•   -      ; i «-s ■ 

i        : l     i' , • ,   1 ■ .-   m- K    rt»m i n : r »T   i 

?h<    i * • rV ;   '.  A ■■•  i.p^un by     »:ectinr   i      . lu1   '"   - :. '    r  1 

name  v  T     =   k/?)   ml estimating  p us i :.:i :'■   ■   ^ 

U),   wh:>re 

E 
k + 1 (9) 
m 

E 
k + 1 

gives the modification of equation (3) necenssry to exclude the 

I Lneir data roir1-. 

6) To produce the roint of tanrency, xT and the n- xt va^ue of 

the parampter T, it is necessary that two conditions pr*3 satisfied: 

xT-T 
a) a, x_ - l-(l-p) l (10) 

x --T 
b) a. = -(i-p) T  lnil-p) (11) 

K 

Equation (10) is the reouirement that the oHin.it es :f the linear and 

nonlinear portions he equal it. the tan?ent roint, while (11) requires 

l'!''   r l -;; :"s 4  r'*' equal there.  From (11) and (c): 

lnu-p)    c 

. *." 
gA,^«0/X'X^'^*'^V^.,^""^<>-ft'v"-yv"v"vV^%^lvV^j.*w'.':.- '.vv^.:^^^^:^^h/^^.^^;.^ J^'J»''.^!: ■'- ■• *«> -*^* ^ -^- • v •'* •'- -"■■-* •'• -v - - 
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Thus, from (10): 

a, x- = 1 + 
k T 

x. = £-. + ± 
1  \  c 

That is, the tangent point is the sum of the reciprocals of  the linear 

and nonlinear slope estimates.  And, from (12): 

(Xj-T)ln(l-p) = lnf- V] 

*T -T = 
In LU 

T = XT 
In 2$ (H) 

**»* 

Thus, use of equations (13) and (14) produce values of xT and T which 

are compatible with a, and the current r value, and satisfy th° require- 

ments stated in step 5« Experience has shown this iteration to be 

convergent, and with ever-dee re-is im?1 sums of squares in the lop plane - 

that is, 

s= £ (^-w] -c[ni-T])2 
i - k + 1N ' 

decreases monotonely to a limit, \ 

7) The e;oodness-of-fit measure of interest, however, is in the 

real plane.  Thus, at each iteration, the current sum or squared 

deviations, 5, is commuted for the P„(n.) valuer, In the riven data 

(IS) 

LL*\m.'.:_«"•-»'.'.*" • J-. • J~*-/V_» ^JAA** _W.'-• L& '.0 ■w- « . «t .. 1. . *.«-.-.. !£>"&>,* »iivy-ii'-ii"*. •?^-.,*i>i"«i<i i-"**«"*A*i."i •c-vyv-* (w*.\.»o ^""A 



set.  The deviations are measured from the current nonlinear c^.rv? 

for values of n. greater than the current tangent point, ml from 

the linear part otherwise.  The parameters of tin car\>»  y^:d;nr 

the minimum value of S encountered, Lre saved.  '•  tirif 
k 

the value of  this minimum for each   /alue of k =  L,...,m-1,   Men 

the overall  best  fit  is  chosen  to be that   line-curve  combination 

corresponding  to 

.     = min i5 ,S,,....S     . 1 . 
in (   o'   1'       '   m-1 f mm 

For cases where S .  = S , thf» parameter x_ was set to sero (so that 
nun   o' T 

T = x_ = 0) and the slope set equal to the derivative of F (n) at the 
* K 

origin: 

a = P^(n = 0) 

- -(l-p)° ln(l-p) 

= -ln(l-p) 

= ~c (11) 

It is interesting to note that with thid definition of the slope, eouation 

(13) remains valid, yielding 

x = L. + I =-i + I = 0. 
1  a   c   c  c 

o 

Application o_ the above procedure yielded the following raramet^r values 

for the two samrle data sets: 

a) T = .056 

p = .404 

x^ = .634 

a = .390 

\S.-J:j±'.?.". *J"t..*X»*." --*. '."Ly*. '»'Ly__'.'>.V..'» A"^L» -..' ■»'». -X>N ^'■«■.''■■^*« .' — '..*>.-%- —^ "-»V..M.*.JI 'j. *JL.^(L-S *«-„!••_".•-. JLTat^W_.V "."_"W_*J"„"»-L\",
_"J

,
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; B [;EI    IL/DV 
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.] 

.4 

a 

1 .1 

1. 
■?     n 
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.01 

.05 

.25 

.l^ 

.75 
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1. 

,075 

.1 

.2 

.4 

,6 

.8 

.9 

2 .1 

1. 

1.2 

.00? 

o 

,116 

, i9i 

0 

.056 

0 

u 

0 

0 

0 

.056 

.016 

.020 

0 

. 07b 

0 

.106 

0 

.01.9 

.084 

.085 

.086 

.842 

0 

0 

.111 

.140 

.158 

.148 

,149 

.668 

.661 

15 

5 

5 

s 

5 

4 

LR 'CEi (L/D) 

102 7 

584 4 

406 4 

012 12 

058 12 

195 

291 5 

343 5 

590 4 

408 5 
078 5 

101 5 
164 5 

259 5 

347 5 

584 5 
404 5 

4 

3 

00 

.01 9.019 .016 12 

.05 1.804 .079 12 

.1 .S4S .135 5 

.2 .390 .260 5 
.104 .414 ri 

• 0 .154 .572 4 

.8 0 .617 4 

.9 .190 .688 4 

.1 2.290 .217 10 

1. .430 .191 3 
1. .354 .882 3 

1.2 .759 .998 3 
.01 24.904 .026 15 

.05 4.981 .122 15 

.4 .252 .495 3 

.6 .200 .628 3 

.8 .258 .765 7 

.9 0 .736 5 

.1 6.013 .532 12 

.2 1.794 .506 7 

.4 .945 .708 4 

.6 .675 .910 4 

.8 .512 .961 3 

.01 62.458 .080 12 

.05 12.492 .340 12 

.4 .926 .701 4 

.6 .674 .910 4 

.8 .506 .960 7 

FIGURE  2    RESULTS OF  INITIAL FITTING  PROCESS 

(m = No.   of  Pts.   in Each  Input   Data Set) 

'"V-V-V- .*•.."-'-'■' /-J\' V«V«'^\vV^./-"---"-'>'-"*.%V»V»'-V--.' ','.-.'.-' -.'.-./  .' •.•.-.'-.• -. -.• .' ■.' -.    •■/.^ 
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b)    T    = 1.794 

p    =    .506 

xT -  ^.5Ö1 
j 

a    =    .200 

Graphs  uf the   initial data sets and the  fitted  F„(n)  functions   fnr l i •■■■-. e 
K 

two cases are given in Figure 1. 

In general, any two of the four parameters (T, r, xT -?nd a) are 

sufficient to specify uniquely the cornrlete Pv(n) function. Within 

the Arsenal Exchange Model, it is particularly convenient to use +he 

T and p values.  Therefore, the emphasis in the analysis to follow will 

be on these two of the four parameters. 

2 
Figure 7  tabulates (according to LR/CEP and (I'D)  valuer-' the numbei 

of points in each data set reaa from the Rand curves and input to the 

computer program described above, and the resulting T and p estirrat^s. 

Inspection of this table shows that the region of data collection may he 

sketched as follows: 

e 

j 

1.0 
/ 

1 
1 
1 

%. ̂ 
\ 

^ 
^ 

1 
i 

.5 
1 

4 - - J_ 
1 ! 

i 
i 
i 
I 

■=4? 
2        3 

LR/CSP 
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The next   task was  to   iefine  the  tarameter?   ~:*  tr 

(equation  v i ))   in terms  of the  LR  CEF   am   ;i 

th     • ibuiat ?d  iata,  s >me  asyr-pt -t : 

the parameter p.     It  is  known  that  for a polr.1 

kill  probability   is  given by 

(LH.V 
\CEPy 

• 

r:',     » » 

r.-   ,'-ri 

nrie   ' • >>t 

i' 1 -M 

Assuming that  the  parameter T is  zero   for a  roint    an?°t   in  the   forruNa- 

tion of kill   probability  according  to equation   (1),   ;t       Hows  that 

PK(D = 1 -  (1-p) 

= P 

1-0 (rO 

That is, the p parameter may be interpreted as single sv:ot probability 

of kill when the target is small. Thus, p —» Pcev as D ~>0. Or,  stating 

the same result in a more useful form: 

1 - I 
LR 
CEP 

as(^ oo (20) 

for a fixed value of LR/'CEP. 

Thus the task of relating the parameters of equation •'"!) to the IP 'CEP 

2 
and (L/D) ratios was initiated by fitting the tabulated values of the 

p parameter (for constant LR/CEP) using a function of (l 1)     w! ich 

anproaches P-.-« in accordance with pronerty (?*)). 

..;.WL .•"'.•"■v" -/*--'"■»-•'-.• \'.' -.'"■.'.'■-•''-LA^ v''--^•--'«-•"--'\.'\'\ •\^v. •"■ •'.•'.*'.-'■■'■':',■'. •". ■>•-">•. -'. <T.V V W V 
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After sever-.il unsuccessful attempts with various infinite domain 

functional forms, the f-llowing (unlikely) form was selected and rroved 

s-it i.--.f'-j.-t. >ry: 

Let x = (L/D)2 

P(x) = P3SK i(-M]>H)(0 

Also, 

for 04x4C. 

p(x) = PSSK for x>C. 

(21) 

(22) 

(23) 

The function piven by equation (22) increases monotonically with increasing 

x, from a minimum of p(0) = 0 to a maximum of p(C) == PcqK«  It also has 

t 

the property that p (C) ~ 0 if B>1.  The interpretation of B and C is 

that they are the parameters of the family, with B determininp the shape 

of the initial portion, and C the point at which the limiting asymptote 

(Poelr) is achieved. 
Dbrv 

Ordinarily,   both  5 and   C must  be  estimated   from the tabulated  p 

Viiues.     However,   in the  CEP = 0  case  (i.e.,   LR./CEP =   «>   )   the value 

mcLj   be assigned a priori,   since perfect single shot  kill  is achieved 

if and  only  if D 4 L (i.e.,   if and  only if  (L/D)2 =XM). 

Therefore,   for LR/CEP = oo   : 

(24) 

p(x)  - x  (1  -[1 - x]B)  + (1 - x) 

1 
B 

for  3 4x41 

. W   .- , «T    ." 
»» * ■ j ■ -1' v —„l^t/n. j'm m~\ 
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TB* 

VZV 

: ix;        !   for x   >  ]. (p6) 

■      -4 ' >n   (r.      " T fir.il.       ■   u       cf  IF   CSF, 

-■   ;:       M       '; ■ :■   v ■ '      ■'   r   LR/Vf.F   = oo   ,   w:ir,    hne by   \>.   .   '    -.'-.-.'.     The 

. ory   i: ussed   in    : ■ :"■•  del lil   below.     Tie   results   are   -■:-   f   'lows: 

Lit ^r'F '; Z 

. 5 2.169 . 6 - 2 

L.O 1.845 1.5/+Ö 

;.o L.640 1.727 

i #Q 1.613 l.?20 

(27) 

to P.731 (1.000) 

The curves specified by these values of the parameters, in accordance 

with equations (13), (21), (22) and (23) j are plotted in Figures ?• through 

Inclusive,  Also, ap^earine; in these figures '-ire the data points to 

which the curves were fit, namely the tabulated p values of  Figure 2. 

Fach point is labeled with t>e corresponding value cf :n aiven in Figure 2, 

the number of data points originally read from the Rand curves and input 

to the computer program { iescribed above) which produced each plotted 

valu^ of p.  These labels were used as relative weights for the data 

points in the curve-fit process. 

Frior to a description of this process, it is convenient to discuss 

a numerical procedure for solving, the simultaneous equations: 

F,(u,v) = 0 

Fn(u,v) - 0 (2**) 

>j     'S>i Conceptually,   think  of F,   and  F    as  surfaces  as   in  the   following  sketch: 

iVfr£y[>^vlv^ 
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FIGURE  3 

(LR/CEP = .5) 
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1.0 

FIGURE 7 

(LR/'CEF = oo) 
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If  circumstance*   are   •;   "nice"   RS  thore ricturH,   then the   solution  of 

equations(28)   is piver by  the u ini  v  coordinates of the  roint  F. 

It   :z   also   int.:' •   cle^i   that    in  this  case  the  rlanes  tangent 

to  Fn   and  F    ^at  F)   -*r.i  the n,   v  rlane  all   Intersect  =it  the roint  F,   and 

that   this  roint,   is  uniquely   determined by the   intersection. 

This  fact   surest« an  iterative  procedure wM'rh might converge to 

the solution roint,  F.    Startini? with  an  initial   guess  (u = u   ,  v - v  ), 
o      o ' 

find the tangent i lanes at the points F, (u , v ) an"! F^(u , v }.  Then 
loo 2    o      o 

find  the   intersection of these  tangent rlanes with the u,  v  rlane,   thus 

ieterming a new point   (u,,  v.)   in the  iteration. 

The  equation of the  plane tangent to the surface F.   at the point 

(u .,  v )  is: 

T.(u,v)  = FjCu^vJ  + F.   (u,,v.)   (u  - u.) 

+ F.   U:,v.)   (v - v.) (29) 

where 

Vuo'V= OF. 
i 

<5u 

u = u . 
J 

V   =   V . 

:?o: 

F.   (u„v.) 
OF. 
 i 

5v 

u = u 

V   =   V 

I -   I,   2. 

'■yC-'ö->o*---i'-.--■•'-■'-■ ■■/•■•.v'\"lv "■•■■•■-■•■      ■■■-.■• -.- ^.■■'■^.-" 
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"" •   nexl   t    ;r,!   (u.L],   v..»)   is    >bt'iirsH   b,v  ^olviru* 

Vu'+r v'.i (3D 

imp! . f i    i    ■ 3*   1 tori,   e-'a, ,' i   n:    (?P   -tr   ■ 

F,    r   r 
1 'i J   f  K.   \v - v.)  " 0 

!v     -!+1 

F0  -i   F0   I 
* u .'"/'I   ' V + Fr.lVi " v.i 

:-    (') 

■■r 

Fl 
u V 

u V 

ui+l - u> 

V .     ,     -   V . 
• f-1 "I 

_  w 
1 

- p. 
(3?) 

The  solution  of rcquati >n:    (32)  are: 

u .   .   -  u . 
.1*1        ;i 

ind 

-F, F 
1 1 

-F.. 

^,,    -   v 

P    F       -  F     F 
v v 

-  F,,     F, 

u u 

U V u V 
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Therefore,   the  iteration  equations  ire: 

u ...   = u . + 
.1+1 .1 

?       p _    p       I? 
2  rl Pl *2 

v v 

Vl 

F.     F,    - F„    F, 
i. .C < 

U V U        V 

F    F      - F    F 
1     2        *2 Pl 

u u 

(^) 

V      + 
i      F,     F - F    F 

1       2 2 rl 
U V U      V 

where the evaluations of  the  function F.   and  their partial  derivative   * 
l 

to be at the point   (u.,  v.). 
J  J 

The one-dimensional Newton-Raphson iterative procedure may be obtained 

from equations (33) by setting 

Fj (u,v) = Fx (u) 

?2  (u,v) = v. 
(?0 

In this case 

0 - F (u ) 
U 4J.1 = U . +  ; J- 

Fj (u.) - 0 

Vi = uo ■ Fl <v 
(,, 

and 

0 - v F (u,; 
v   - v. -t —j—J - 
J+1   J  F^u.J-O 

= v . - v . 
J  J 

(76) 

^r\^^%^-->>2:^-^-i:-\v";^--l'-:.:-\'-^ -•'- ■ ow •••»>: v-\ A^^Oö^V.V'V> "•• ■•)*•> w.v vvv■•'- 
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Equation  (35)   is  the Newton-Raprson  r 

(36)   is a quickly-convergent set! . i of      ''v'^   »■ 

The above  discussion oops   . ..•-     r-.l 

convergence of  (33)   or  (33).     Rather,   these  eninM ^ •        •■• 

indiscriminately  in  the analysis   to  follow,   with   only   two   <:•■<-?: >np   •><"-*: 

1) Did  the  process  converge  to a  numerical 

2) Did  the  resulting  parameters specify  ••  curve w! ich  r;t   !\b* 

data visually0 

The answers  to both  of  these have  been  yes   Ln  ^very   case. 

Returning to  the  problem of fitting the  parameter  r   as   -\   functio 

/-*2 
(L/D) , the sum of squares for both (22)   and (25) is riv-r; by: 

S = 

i = 1 

i(pi - P(x1))
- fr7) 

where,   for fixed LR/CEP,  x.,  p.   ani  w.   are  (r^sreH the  va1u< 
1       1 1 

(L/D)   ,   p and m tabulated  in Figure  2.     (mis   the  number nf  pom 

tabulated). 

For finite LR 'CEP, p(x) is sriven by {22).  In tl is case 

as 
SB 

= 0 

3s 
"5T 

= 0 

are conditions for the Least squares solution, . ■.'      »q :•«.     : ••* 

of the form (20) with u = B and v = C.  Thus, equa1 . .■ .      were a: . 

»'•**• • >'j .>*•■-»"•.»''-«'•-- \-%'-r'~." J''J-' --.:.•, •-- .•..".■O'.ft"-T"./^-- •-- •-«—p '--.'.-"•.-•-- '-« *M • ~ ■ ■, •, • M. ■  -. ■. ■ „—■*•»• *^ ■»- ^» -'■'•*-'"*• -'*■»"* -"•- * -"■"—• -*- 
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F'^r infinite  LR CKF,   equation   (2*0  yields p(x),   in which   eise the 

condition  fT minimum 5  is 

as = 0 (?Q) 

which is of the form F-,(u) --" 0 wi tn u = B.  In this ci~e equation (Qc0 
i 

was apr1 icabLe. 

The starting values used were B - C = 2 in the finite JR 'CEF cases, 

and B - 1 In the LR, CEF = oo case.  In this latter instance, the initial 

weighted fit seemed too heavily influenced by the point -it (L/D) = .1 

(see Figure ?).  Therefore, another curve fit was performed with 

w. = 1, (i = l,...,n), which produced a more satisfactory description 

of  the data.  The unweighted treatment resulted in the curve plotted 

In Figure 7, which has as parameter B = 2.731- 

The preceding discussion is an outline of the techniques used to 

fit p(x), but does not oive all details.  Needless to say, the expressions 

for the derivatives required in minimizing (37) are tedious, and would 

occupy undue space if presented here.  However, enough of the theory has 

been given to enable understanding of the results (and their duplication, 

i f desired). 

The next step in the analysis was to relate the B and C parameters 

to the LR/CEF ratio. The basic data is that eiven in (27). 

/ function playing an important role in this task was 

y = abV. (40) 

/.-T-V" -.' ■*.-.%   •■ . •- . V vW .--• i\-.   ^•'.■C.'N.'.'V'.AJ'-.I* fclAlAJAJ »J --•' \-" •<■ •.'-•"»■■ '.v-'V • > • . "'> ■■ -■"--- 
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.     "S. 

iir.p    ,ri  the  v-ilu   •   ^»surr.ed by   it?   parameter's,  the   function of equation 

nay   ■ ■ i: ■■ -      !'  t he  fol Jowin«   fisl    ms: 

Thus,   (40)   iefines a  rauher  eenerai   family  of  functions.     To  estimate 

vaiues  of a,  b and  c which  specify a  curve approximating a set of 

known  points )    (x.,  y.)     >     t  - 1, . ..,  n     ,   first  note that 

In  y -    n  a 4- x   Ln  b + c In x (41) 

IE  that 

Y = a^ + a,X,   + aJC, o      ii       ~ < 

where we hive substituted 

X, ^x 

X9 - in x 

In  a 

a = In h 

a„ T- c 

(42) 

(43) 

. ■'AV.V. -•■ ----/- .'■•»'-•.'--».-'/-'. ^.-. A '._* ^.. V. -V ■" •.".-.' -.' •.* *.'-'-' sJ v^. 
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The approach is to derive least squares estimates for (a , a and a,, in 
o   i      . 

(42), and convert them to estimates of  a, b and c via the equations 

_ a 
a = e o 

b = eal (hh) 

c - a. 

The  sura of squares,   (with weights w.   for mor*'' central i ty),   is pnven by: 

n 

s = 2 wi [ ri ■ (a°+aixii+a?v] 
1 = 1 

:u5) 

dS      = _ 2 

o .    = x 
£•.[ Y.   -  (a    + a,X-.  + a0X0.) 1 o        In 2  2i    J 

1 i = 1 

a    + a, o        1 X..  + aJC0.) ] 

ÖS 
"SI 

n 

- 2 2 wi x2i [ Yi"( a    + a^Xn .   f a~X. 

i = 1 
«>] 

For a minimum, the partial derivatives are zero, so that 

2 wiyi=ao 2 wi+ ai 2 w.Y.   = a       >       w.   f a,     >       w.X,.   + a_,    >       w.X^. 
11 o    /   j     1 1    /   j     1  li ^   /   J      i   ?i 

n n v 
i = 1 i - 1 i  - 1 1    =     L 

\2^ijk'M^.*jifjä.:M^j\A'J':jiiTjt '--^'•-^"XMS.AT^ '.m.  --m-^ _w: ^_L^ *i fc~>1 -1 -;—-c ^- 



n n 

7      w.X, .Y. ■» a      > 
/   J     l  li  l o   /   j 

n n 

w.X..    t  a        7 
l   li 1     •' 

i = 1 i = 1 

V w. X ,        >   n .      >        w. X-, . X , 
L    J I 2      /      f- 1     1 1     , 

i       "1 

n 

E 
i = 1 

w.X^.Y. 
i 2i i 

= a 

n 

E 
i - 1 

w.Xn.   f a, 
L 2i 1 

n 

E w X,   X 
i 11 ; 

t- a. E 
1 -= 1 

p 
w.X. . 

l   .-1 

IE that 

E»    Y?\    E wX, 

£"*!  EwXi?   EwXA 

EwX2  EwXix2  EwX?2 J 

a 
0 

")   w'f 

ai 
= ^wX?Y 

a0 2 E*V (46 

Thus the complete procedure used to fit a curve of the form (40) may be 

outlined as follows: 

(1) Perform the transformations on the given x. and y. values indi- 
1*1 

cated by equations(43) to produce corresponding values of 

X, ., X-,, and Y.. 
li'  2i*     l 

(2) Compu  .ne weighted sums (over i : l,...,n.) required as 

entries in the matrices of coefficients and constant terms 

in (46). 

(3) Solve the linear system (46) for a , a,, and a«. 

(/,)  Use (44) to obtain a, b and c estimates. 

Ordinarily, the estimates obtained by this process would rot coincide with 

the actual least squares estimates of a, b and c.  In our applications, 

"*-'. - v^;*.^V..»..T»V...-:»'':■ .-.,".«-•.»— r.' ».•. - -. m. •.'. •',\ »".'«. -1*. v«V« •"„ -v■'^V *«••*JL"«^V* *-■• "»/* "-"iA* 'J\">» AVSV^VJ«'L-V-M'V«"V «\w"* kV -*«."*"j»"A\\L', 
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nowever, the number or data points was invariably equal to the number of 

parameters estimated (I.E. n-3) , and in this case the above methodology 

iucf"' a "iirw  which eri^tlv fits the three data points. 

Figures %    and i     ?i ve riots of the B and C data tabulated at (27), 

and functions relating these parameters to the LR/CEF ratios. These 

functions were obtained by the following procedure: 

For the C parameter, a curve of  the form (40) was fit (by the 

process described above; to the first three data points (I.E. LR/CEP = 

.5, 1.0, 2.0), yielding 

y = Cx C2 x > a?) 

where: 

y - c 

x = LR/CEP 

Cx  = 7-A5995 

C0 = .207535 

C = 2.42620 

(48) 

Then, to insure correct asympt tic behavior, the 2nd, 3rd and Ztth 

points were transformed slightly and a.so fit by a (40) curve, namely 

- r     r  x C'b y - C^ Cc x o 

where, in this case 

y = C-l 

x - LR/CEP 

C.   = 5.39243 
4 

Cr = .0930345 

c    •= 3..«>o321 

(49) 

(TO) 

fcJaJ A*1 a"r a"",a, ■ mT,m'"«ab\m"' ■"■' t.'if »V >'.,*!•. «.'i >..,->,.-• »'■-..." •■^■.'JT. ^..«■^..■»^- , s. J?,.^'t.» A Jr »'> ..',-, .'a. .,,", 
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Both (//?) and (i.v) were compared ir the sv ••■an - ■ 

and a smoother overall fit wir obtain**«-; (visualLv   - • • enn-,t.;or ■'..■■' !?••:■■»». 

Thus, the following functional ieerr*' : d ; ->r  f r >.-•- w: 'H ■ 

is that plotted in Figure 9: 

In      C   X X^ 
K L2 *       for 0<x<l 

1 T C,   CC
X x°6    for l<y<w 

\ k    j 

where  x = LR/CEP,   and  the  constants  are  '-:ven   in   {iß)   qni   '^i. 

The D parameter was treated similarly.    The  fit   of equation  (/;0)  to 

the  first three data points produced  the expression: 

y = C?  C3
X xL9 ;«,'! 

where 

■-_- p 

x    = LR/CEF 

C    = 1.68900 '^) 

(^ = 1.09218 

C    = -.296980 

Again,   a transformation of the  2nd,   3rd  and  4th  data  points   (LR ''CEP  = 

1.,   2.,   3«)   was  necessary to  insure that the  fitted  curve approached   the 

proper asymptote.     In this  case the  resulting  function was: 

y - C,,   C10     X ^ 
i i     JL2 

y&^^^ 
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where 

y    = c10 - P 

LR CFf 

H  "I = \v   "5-™°9 m 

C„   - 1.1.-109 

C,n - -7906S5 

C13 =  .63^752 

As before,   equations   (*>2)  and (f;k) w^re compared  visually   in  the 

region of overlap (1< LR/CEF <2). In this  case eouation  (co)   moved more 

satisfactory.     Thus,   the following functional  description of B  is plotted 

in Figure S: 

C? C/  xC9 for 0<x<2 

(56) 
Cin - C,, C_

X x 13  for 2<x<co 

where x - LR/CEF, and the constants are those in (5?) and (55). 

This completes the analysis performed to relate the parameter r in eouation 

(1) to the two ratios LR/CEF and (L/C) .  The significant equations are 

(56), (51), (IB), (22) and (?3). 

As was mentioned earlier, Pv(n) is uniauely determined by any two 

of  the four parameter? in equation (l).  Note that, if there is any linear 

portion of the F function at all, its slope must be 

a = (L/D)2 (57) 

from physical considerations. 

l^ö^^^o:^:^.^ . t''v^m\v»'".:, ■ ^Va A A*'I«V^.W^L:AV.. ■•.V.».V» .V* -■>' >^^:^^^i^^.^^-^^^ 
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,   defining 

(■>«) 

i   ;   .:   ■     f  ;    t ro \u T   r '   '.t'   to  the  process   levelored   ivo v°     ir 1 

ü: ;iv   { ''■" :,   the   remain  nfi   two  paramei   TS   (X     and  T)  m:iy  b^  solved  for 

J L   -» -  T, directly  i;   pm    Uons   (P;   and   (!/♦)•     Caution must  be  pxercl icwever, 

insure   *bi'   the mathematical   possibility   illustrated   in   \ he  following 

kel cb,    !( »s   :. >t        cur: 

That is, negative tangent points are not oermitted. 

From (13) an'. {5°J,   the condition that x_>0 is equivalent to the 

condition    a < - In(l-r). (^9) 

If, for a ^iven pair of a and p values, condition (59) is not satisfied, 

then 1- (n) has no linear portion and 
K. 

:<T - 0 

T - 0 

arc the correct values for  the remaining parameters of (1). 

(60) 

j ^V-,:..!i,.^..L.       .„■■^•■•■-:JL..V". ^'^M^^^IA^^^,^*^:*-'. «-" ■*-' •dBriL!?^'f^<'-*■*■ 'WAJ'L». Ü.V-.».'.^'.l',V. m\r>\ iW-*'.. &'.. iLfculi ■»'■■ lL BT-J^A« «"   Jf- K 
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Firure 10 summari ■■■ s  the analytical   descrirtion  of  r a?  a function  of 

LR/CKI   'in'   (L/D1"".     Firc.re  11  iericts  thp  corr^oondinr   results  Tor T, 

t ~ined   in a^cordan^f*  :;''f1'  the ibove  rrocedure» 

.Spot   checks on  the  validity   >f  the  analysis  are possible.     Consider 

the   two  samtde   cas. s  of Figure   L: 

Case  (a LR/CEF =  !.,   (L-'D)    -  .9 

Figures 10 and 11 yield p = -39 and T = 0.  Thus, In accordance with 

equation (1), the following tabular comparison results: 

n. 
i ¥ n.)   (RAND) F„(n.)  (SMOOTHED) 

K    l 

1 .39 .390 

2 .6/, .628 

3 .77 .773 

4 .35 .862 

7 .93 .969 

Case (b)   LR/CEP =oo, (L/D) = .2 

In this case, p = .535 and T - 1.95 (from Figures 10 and 11).  Also, 

a -- .2 (equation (57)). From (58), c = ln(.465) - - »766.  Since condition 

(S9) is satisfied, eouation (13) yields xm = ± 1— = 5 - 1.3 = 3.7, 
T  .2  .766 

Thus, the comparison is: 
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gÄS 

n . 
l 

L.i ii   )   (RAND) 
K 

1 .<>0 

<r . /,o 

3 .60 

A .^7 

5 .87 

6 .96 

7 .999 

P„(n.)   (SMOOTHED) 
K       1 

.TOO 

.400 

. 600 

.79? 

.903 

.955 

.979 

These  results  -ire  plotted   in Figure  12, 

Three additional  rrarhs  are  presented  as  evidence that  the  analysis 

produces  proper trending   in the kill   probabilities  as  CEF  improves.     In 

Figures  13,   Ik and  15,   the kill  probabilities   for one,  two and   ten 

weapons  (respectively)   are  plotted vs.  LR/'CEP for constant values  of 

(L/D)2.     It   is  clear   from  Flfnire 13  that  for  (L/D)2 <  1,   PK(1) ->(L/D)2 

as   CEP—*0,   an  intuitively  pleasant   result. 

-*-"-* "-'•■"-H m* '-' *-'   V-'-vW-f  '-- "--■"-• '-r '-■ .'---'-■. ...:-V-■•-.—•_-_■.•._ i _:. ^.^ .   Z^-A» - . _«r«. ■ ^ • . •.»■"-«"- »'^ ■*- **^ •..»"- vi^ ■"- «*- 
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APPENDIX B: CCMTARISON  OF THREF METHODS OF PRODUCING KILL 

•.>.;;; M.JTIEo  FOR Till-:   IMPERFECT  RELIABILITY, 

NO DEFENSE CASE 

V 

r«r 

» 

<m 

In  this section, the results of three runs of the IBM II30 pro- 

gram are presented.  The input data was that tabulated here: 

VARIABLE VALUE INPUT 

Case 1 Case 2 Case 3 

Reliability • 9 .9 .9 

CEP (n. mi) .5 .5 • 5 

Yield (MT) 1.0 1.0 1.0 

No. of Decoys 2 2 2 

Hardness (psi) 7.0 7.0 7.0 

Area (n. mi. ; 50.0 50.0 50.0 

Prob, (acquis.) .0000 .0001 .0001 

Prob, (discrim.) .87^ .875 .875 

I rob. ( intercept,) .9 .9 .9 

^o. of AMK's 15 L5 15 

ND0C T -1 1 

The only differences in the three cases are the ND0C and probability 

of acquisition inputs. 

In all cases, the initial values produced for the parameters oT 

equation (B-12) wore (for perfectly reliable weapons against an unde- 

fended target): 

.v. --,- ,.-->.. rtiiili'V-■**-■• **"-^- *-"- *■"*- LV..V,..V,"«vv ■ v v diL^äblj^Aiv.rrf.VAV'J'A'^Araivl' 
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« ,81974148 

T « .'42907249 

WT - 1.0184080 
(1) 

a =  .62419808 

In case 1, since p. = 0, the program computed modified values for 

these parameters directly via the short-cut method described in the 

"Reliability" section above, yielding: 

P = .73776722 

T =- .38433289 

wT = 1.0329694 
(2) 

a B 061778I8 

In case 2, since p. > 0 and ND0C = -1 were input, the program pro- 

* 
duced several PV(W) values according to equation (B-18), the basic si- 

ft 

multaneous strike case equation. 

In case 3» since p )> 0 and ND0C ^ 1 were specified, sequential 
A 

strike was assumed and equations (B-13, (B-14), and (B~15) were evalu- 

a ted to produce the PLr(w) values. 
K. 

Due to the small acquisition probability, the influence of defense 

en the kill probabilities resulting from cases ? and 5 is negligible. 

Thus, these values provide a standard against which the short-cut 

C0MPK methodology (case l) may be evaluated. 

» 
The kill probabilities for case 1, PV(W), are obtained by using 

equation (B-12) with (2) as values for the parameters. 

Thus, the. desired comparison is provided uy the following tabula- 

tion of program output: 
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V* 
CASE   i 

V"' 
CASE 2 CASE   5 

PJ(W) 

i .S617781 .3617220 .5617276 

2 .884^7^0 .8675969 .867^2S5 

3 .96(:>8^67 .963^87 .9634659 

/+ .9920902 .99023^7 .9902^21 

5 .9979^^8 »997^20 5 .9974231 

- .999^561 .9995211 .9993224 

IT? 

iiv:;-::^:i^-:^:-:i. ,"- ."• »"• „'- fw «*► .% *-- . •. • .> ■,"•>'» „> » rf>- - -> ■ 
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APPENDIX C:   I RIM-K^A" \." V;;:NM-\T '^'CTP INE 

Assuming a uniform (not necesa.iri 1 v inter--r   :.ov.ti   :>f • 

reserved for whds, the most favorable result achievabLe by the d^f'Tise 

against a salvo of W whds is represented by M:* ecu it.i n 

P(W) --•  1 -[ i - (i - Pj) 

-- prob .   of   int >arcept 

*J, 
'}) 

where P(WJ is the probability of at least one penetrating whd. r.-^wv^r, 

in the case where the defense decs not know the extent ^    attack 

(sequential case), it would be desirable to ievise an interceptor assign- 

ment policy which is in some sense optimal. 

Equation (l) typically Fives rise to an S-shared curve like that in 

the ff. sketch: 

For any size salvo, the offense's return per whd Is Fiver by P(T.\rV/ty, 

assuming that the defense allocates uniformly.  If fr" iefense choopfs 

any other allocation, the return/whd is greater. 

_i J^wi A _"V ^V iJ". w"« J"s ^'n  _V -^ 



rhe maximum  return '■-'■ ,d  attainable 1-   the offen'0  inin?t an  omnis- 

ie'>nse   i::    '-m: -i  by W     in  the  sketch,   the  point  -it which 

; . .\ ,   .')   is  [r.r.ximizeu.     The   Prim-Read   firing doctrine   is baseri  on  the 

assumition  L; at,    in   a   sequent Lai  at, tack,   the  offense  will   f rv  4o  achieve 

at   least   P(W   j  W  .    The   ieropse's  approach   is  to  lot  the  oT'^nse  hive 
o 

the maximum average  return achievable  against an oir.riscient   ie'vnse 

(but no iiior ■  than  this)  until defense  exhaustion occurs.    Thu:    the 

defense  «rants   to allocate such that P(W) becomes   linear (witI 

slope c = FiW  )/W    up to the  point   DT lefense  exhaustion.     Or,   stating 
'00 

the defensive problem mathematic  !ly,   choose n.  such  that 

PQÜ. .. 
w 1 - 

w 
1    1 

.1 = 1 

1 - (1 - pj 
^ 

/w 

-   c 

whore n.   is the  number of AMM's  assigned  to the  j-— whd. Thus, 

W n . 
1 -  (1 - pT)    

J 

i 
= 1  -  cW. 

The n.'s   are   found as   follows: 
J 

-   (1  -  pj     L -  1   - 

£^V ^..'^'^'.iV.i^.A.i'v^ik ' 'j' *Af J^V, 1..' ^ tL JL-1.- L.'i..s' ^-Li-it". A    "l _".ii «.   V M-'t J».'   «_"   »-*   *-"■   *•'   ^»'- ^VA 
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w 

l   -   U   -  :   ; 

[■-■][■ 

l   -   .1   -   v v "'j = .1 - 

O   ■ pT)    ' -  1   -  2c 

-   v- Pr1 1  -  2 

W -  3: 

..u-^ir.-o n2 ]   [l-il-p/3]   -I- 

V 
b-][*¥][> -   U    -   Pj) |     =   1   -   ?C 

]     -    0 
1   -   ?c 

in  srenervu, 

]   -  i i   - 

n . 
i   -   U  -  P-, 

1  -   ^c 
5 rTFTu: 

1 -  (j-l)c 

n . 
(i - PT;   

J 

n . 
J 

In c -  In[j   - (j-i)cj 
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In  COMPK,   the slope  c   Is  found b.y a  numerical  process,   anH then  eouation 

(2) used  t i  produce  the  n.'s  UP to  the roint of defense  exhaustion. 
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besides   this   formulation of   the   Prim-Read  doctrine,   another  one 

(the  one.   in current usage)   that   allows   for  non-pet feet  acquisition   p- 

bilities has  br  n developed.     Th.'e   other   formulation  has   the   tollowln 

characteristics: 

1. The   probability  of   intercept    used   in  d2termining  the 

n  '8   is modified  to  take  probability of acquisition 
i 

into  account.      (I.E.   PT   -   p.    •   PT   is  used   in  equation 

(2)). 

2. Also, the n 's so determined arc modified to give an 

integer AMM as signment. 
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