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This document containg a description of a computerized
strategic war game as developed by funding provided by the
Martin Morietta Corporation and the United States Government,
The dotument represents work performed during various contracts
since 1966, This continuously updatced compilation of work done
under several contracts is maintained a¢ new work is performed
because it provides the most convenient '"one-source' document
for all the varilous users of ALM,

During the previous twelve months work has been conducted
in sevgral areas relating to this document. Fundamental modifications
accomp;ished this year in AEM are described in Chapters IV-L, M,

T and U.
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Durin:~ the past several years stratecic systems analvsts at tie Martin

Mari=stta Cornoration nave been developin: a ramily ot system ecvaluation
ping 3 Y

ajalele
'.‘-"-...-

methodolosies and applying those methodolosties to a wide varicty of vrob-

.
=%,

lems. These developments have resulted in the arsenal exchan e model to

PR

te described in this paper. Tne key Tea.ure of that model, namely tLue

-

capability to analyze various forms of weapon exchanyies between two cpoo-

nents, is a vroduct of the developed reali:ation that adequat. analyses

-
[

s: must include the two opponents - two arsenals ivact of life.

-:\

?: For example, comparison of the relative strengths of two countries
- must be based on the total resources of each and, of egual importance, on
- their ohjectives in using those resources. The outcome of an eachan.e

<

s
n'. =

is a strong function of which side strikes first and which tar:cets he

attacks. On the other hand, the outcome is also a function of the total

“

s

target complex to be attacked and the capability of existing systems to

L

attain all desired objectives on those targets. Thus, any comparison of
opoonents depends upon a complex interaction between existins arsenal

characteristics, each opponent's objectives and potential tarset character-

isties.

Develoopment of a computerized war iame model can tske a wide variety
of forms. The model described in tnis revort is of the expected .alue
type. This avpproach was chosen because it was ielt that a simulation
model would be self-defeatins in the sense that computaticn time inicht
preclude a2nalysis of a variety of scenarios, srsensls, tar et cnaracter-
isztizs and obiectives. Of equsl. importance was the feelin that the

T outcome ol an exchange is most dependent uvon strategies, oblecti.es,
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and the nature of all resources engaging in the duel. The nature of simu-

’ l‘"‘ l"

’

lations can often make analysis of such factors difficult to implenment.

DD

I s
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Such considerations led to a model which uses descriptions of the

e

.C: systems and information possessed by twc opponents, their objectives in
'ii the exchange and the industrial resources each is attempting to protect.
EJE With these inputs the model conducts the exchanges and provides resource
f- management in such & way that each opponent maximizes the level of his

objectives he attains as constrained by his resources and the behavior
of his opponent. The model is distinguished by its ability to:
1) Analyze different types and levels of exchanges.
2) Accept a variety of forms of strike objectives.
3) Include in the analysis impacts of uncertainties in each
side's knowledge about his opponent.
4) Output measures of the utility of all systems taking part in
the exchanges.
To aid in the readers' understanding of the model and its capabil-
ities, the presentation is in four distinct phases. Presented first is
a section describing the general concepts involved in the model. This

acquaints the reader with several key thoughts which are important to

understanding of the model. This section is followed by a hypothetical,

<

Q;} but fairly representative, set of _xamples of different types of analyses
S

=iy and results which can be obtained. Next, several mathemnatical problems
T,

which turned out to be the key hurdles to be overcome in implementing

1}

2 -
"‘ E

.

the basic concepts are discussed. Finally, there is a section de-

LY

R g i i

P A

scribing the method of actually using and interpreting the model.

This section describes the complete set of input parameters and the

»
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method for manipulating those parameters to obtain any given type of

result.
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IT., THE MODEL

A.  BASIC ASSUMPTIONS

Two primary assumptions inhcerent in the logic of the model arc that
1) A real exchange can be approximated as a sequence of strikes
alternating between the opponents, and that
2) All torgets can be grouped into force, other military or value
categories, (For convenience of presentation all non-force,
military targets will be considered as belonging to the value
target list.)
It is recognized that in a real exchange one side could be striking at
his opponent while his opponent was striking at him. As the model was in
its early stages of development, however, it was felt that a model
utilizing a definite sequence of strikes would be of considerable aid in s
analyzing arsenal exchanges and possibly could be expanded later to aliow
for such overlapping strikes.
The major problems in a sequential strike model revolve around the
choice of appropriate targets for the weapons allocated in any given
strike. This problem of force management, or the classical wearon-tc-
‘target allocation problem, can be solved mathematically if it .s possible
to place relative values on all targets, Unfortunately the value of an
ICBM site relative to a city is not at all obvious. Our approach to

solving the force target vs. value target values made the second major

assumption necessary.
In the division of all targects into two categories the classical
definitions are utilized. A force target is defined to be a point, or

area which possesses a force which can retaliacte against you if it S

A value target is one which represents in some measurable

survived.
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i: 32{ way a portion of the iuaustrial capacity, or non-retaliatory military

Ei ‘ capacity of yocur opponent, These definitions allow a potential target to

f- be viewed as one which represents an immediate threat to yourself or one

ié which represents a longer term, potential threat,

iﬁ Given this target classification system it 1s possible to proceed

'G to a system of relative values for all targets, given that certain forms

; of strike objectives can be stated, For example, an acceptable objective
is one expressed in the form of a relative desirability of minimizing

E; damage to yourself (damage limitation) comvared to achieving damage

%S against your opponents' industrial and non-retaliatory military capability

ti (assured destruction).

- B. A BASIC SCENARIO

ﬁ: To clarify these concepts of sequentizl strikes, strike objectives

ii é?* and the two specilal classes of targets, consider a simple exchange which
is a massive first strike with retaliation, In this exchange, RED
prepares the maximum possible portion of his force for a strike on

BLUE, After the strike, BLUE takes whatever survivors he has left and
retaliates with them. (In reality several strikes of diminishing size
can occur but for our purposes it will be best tc consider only the
first strike by each side.)

Such an idealized exchange can be viewed in diagram form as repre-
sented in Figure 1, 1In that figure, the circles represent the two
target categorles for each side, F for force and V for value targets,

The arrows represent a flow of weapons to the opponents' targets.

PO
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FIRST STRIKE

SECOND STRIKE

FIGURE 1: MASSIVE FIRST STRIKE WITH RETALIATION

The inal result of such a two-move exchange is some damage done to
the value targets, VR and VB’ of each side. TrLe damage done to the forces, e
FB of BLUE are reflected in a reduction in the damaege which could have
occurred to VR'
In setting up the first r4rike RED would have to choose between attack-

ing force and value targets by stating his relative preference for damage

limitation and assured destruction. RED must then utilize that preference

in comvination with an analysis of the individuasl targets of BLUE to

;i allocate each of his weapons to some target.

:Ei In RED's weapon-to-target sllocation he would have to consider the
3 fact that not all targets are identical. They vary in thesir vuluera-
:§ bilities, tne value targets have variable industrial capacities and the
E, force targzts have variable retaliation potentialities. In addition,

RED will have a mixed arsenal with weapons of varying capabilities.
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i? -ii; The necessary ingredients for this allocation are a description of
;‘ the capability of avery weapnn, e.g. CEP, reiiability, yield, and the
SE vulnerability of every target, e.g. area, hardness, defense level. 1In
;g addition, tvhe relative industrial capacity, or value, of every value
iﬁ target must be specified. Normally these values are based on relative
;sj populations, manufacturing value added to the economy by that city, or
i% some similar measure.

w35

A basic methodology, which is described in Section IV, was developed

?f for this weapon-to-target allocation problem for the general mixed

:: arsenal to mixed target system case. The methodology is based on a
h! paper by Everett(l) in which a generalized Lagrange multiplier technique
;3 is described. The resultant program can optimally allocate up to 25

- . types of weapons against up to 50 classes of targets in 10 to 60 seconds

iﬁi

on a third generation computer, In this program all weapons of ldentical

.
s,

characteristics are grouped into types, e.g. all Minuteman II would be

g
F e~
L

L

a type, and targets of identiceal, or very similar, characteristics are

grouped into classes, e.g, all cities of 50,000 to 100,000 might be a

» ]

l-'.\~ b

class, This grouping causes very little loss ir accuracy and coasiderably

. AL

S

:‘ -“. ... -‘ .. :‘ J“'l‘-‘rm‘ i. -

shortens computation time,

A natural by-prcduct of the Lagrange mule. °~ technique is an out-
put of the marginal utility, or effectiveness of every system taking part
in the exchange, For examwle, if RED has 5 type: of weapons, the Lagrange

multipliers iudicate how much the damage levels could be changed by RED

5t @

|r‘l‘|‘»l1i NEIRTIO
PSSP STES ) TP
[

if he possessed onc more of any one of the types,

- (1) Everett, H,, 'Generalized Lagrange Multiplier Method for Solving
-~ Problems of Optimum Allocation of Resources.' Operations Research.
VOl. II, pp 399-417’ 1963'
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C.  WEAPON RELATIVE VALUES

Before RED can allocate nis weapons, it is also necesusary ror alm
to determine relative values for BUWIE’: torces. Those values must be
chosen co that the mon allocation by RED will acideve tne waximum
measure of the game to RED under the assumption thet BLUF utilizes
all of ais survivin: lorces to maximize damage to RED's value tar-ets.

To understand now strike oojecti.es can lead to relative values for

force targe.  consider Fioure 2.

Increasing
Preferenge
w/\,Max. A.D. for Achieved D.L.

Damage to BLUE Value Tar -et.
(Assured Destruction)

Damuage to RED Value Targets
(Damas~o Limitation)

FIGURE 2: POSSIBLE STRATEGIES FOE RED

In that ficure 2 family of constant prelerence contours it shown.
These contours are one way of stalin;; now RED views potentinl inter-
cnanges vetween less survivin: value of his own to obtain inc reased

dama;re Lo BLUE.
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On any one contour it is hypothesized tuat KED is indifferent to the
various situations represented. for example, i one point on one contour
is 52% damagze to RED and To% to BLUE while arother point on the scme
contour represents 65% to RED and o4% to BLUE it means that both sitnations
are equally acceptable to RED. However, anotner contour, -enerally

assumed to be up and to the left on Firre 2 would represent a scparate

set ol situations which are all inore desirable to RED.

A key characteristic of any contour is its slope at a given point.
The slope indicates, for that region, the acceptable exchanpe rate
between additicnal damage to RED and additicnal damage to BLUE. If the
slopes, o value exchange ratio, of all the contours were one it would

simoly say that RED would be indifferent to accepting 1% more damage in

exchange for 1% increased damage to BLUE.

Also indicated is e envelope of the maximum possible assured

destruction level for achievable damage limitation levels. The exact

location of this curve is a function of all the characteristics of the

arsenals and targets and the allccations of those arsenals. The tangent

voint between that curve and one member of the preference contours is
the best attainable result for RED given a fixed arsenal and ziven the

stated preference contours.
The problem is to perform all resource manacement in such a manner

that the specific strategies required to arrive at the tangent voint are

determined. One approach to this problem is to develop a number of

pcints on the ma: A.D. envelope one noint at a time. Given enouzh

(et

points on the curve, any set of preference contours can be matcned to

the total

curve to errive at the desired solution, or tanzency point.
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Development of any sin:le point on tie Max A.D. envelore can be obtained
by assuming some slooe, K of interest nnd ucin; the relative values for
force targets as the mechaniom for obtainins tune desivred strateries that
will achieve the voln. on tue envelove with that slope.

In this process, which is described iq rore detail in Section IV,
initial estimates for relative salues for BLUE's forces are made. Given
those values, that 52t of weapon-to-tar et allocations which maximizes
the sum of the value destroyed on all targets {force and ralue) is found.
This results in cer.nin svrviving weavons for BLUE which he can use Lo
maximize value d-stroyed on RED.

Tne Lagreange multiplier method is used in the allocation of BLUE'c
survivors 5o thoat the marinal utility ol each of his weapon types is
available. A logical next set of estimates for a relative value for
BLUE's forces can be shown to be those marginal utilities multivlied by
K. The K weigshting factor is the direct tie to the slope of tue
preference contours.

This smecific choice for a weapon relative value can be visualized
as the expected rcduction in RED's payoi'f if BLUE has one more < rviving
weapcn. Thus, when a new at'empt is mude by RED to optimize his attack,
the choice between attacking force or value targets can be based on the
expected increase in RED's payofrt if he can reduce BLUE's surviving
weapons. Tne ontimum balance hetween force and value attacks, as biased
by Lh> :referenecs ratio K, is that le.el where adaitional counterforce
attacks results in Less RED value saved tuan the additional BLUE value
which could he destroyed by the same weapons. Any individual RED

weapon will attack a value tarret, it the BLUF value it can destroy is




ol

Y0

i, e
I

<) more than K times the value which could be saved if a BLUE force target

A NI
1)

was attacked.

Experience has shown that judicious use of the original value

T T T ., ¥
s w8 e 2 LT e oo
PR et T e e
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estimate set and cycling through the improved estimates for the marginal
utility of BLUE's weapons will result in optimal, or near optimal force

management. Mathematical proof that global optima are not overlooked

»
ety
Phr

occasinnally is not available.

"
a

D. OTHER EXCHANGE TYPES

...
s L

The model is designed to handle a number of other exchange types.

v v ¢ 1 1
a4, -

g
‘-"‘.-- 2 a

o3
.

For example, RED might desire to attack only counterforce targets in a

first strike while maintaining & reserve force to deter BLUE from con-

W

Q{ tinuing the exchange. 1iIn this type of exchange RED must not only

:-:~

-2: . allocate wesr  1s-to-targets but must also decide which weapons to hold
. & in reserve.

A )

LT
Py
o«

The conflict in this strategy is that it would be desirable to use

.
& ‘-‘

a high portion of the force in a first strike in an attempt to seriously

4
w b

weaken BLUE's forces btut it is also desirable to maintain an adequate

-g reserve level. Assuming that BLUE's exact response could never be pre-
ﬁ: dicted, that response which imposes the meximum requirements on tue

W]

-89

bt reserve force can be assumed for the purpose of resolving the conflict.
f; It is desirable then to choose that reserve force for RED which presents
k>,

l? the maximum possible deterrence to BIUE against retaliating against RED's
fx

! value targets. Thus, for the purpose of choosing the best, reserve, the
..

@Z nature of the exchange after his first strike is assumed by RED to be

¥

4 as diagrammed in Figure 3.
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RED BLUE o

FIRST STRIKE

FIGURE 3: COUNTERFORCE FIRST STRIKE
SN
L
s
:{G Given that RED assumes the exchanpe might turn out as indicated in
588
Y p . ; . .
L2 Figure 3, it is necessary to determine, tor RED, that reserve force which
maximizes the value of tne game as measured by his preferences. The
same techniques as were described previously are used ir making all
' weapon-to-target allocations, and setting values on weapons. In this >
o
A A . :
N case both BLUE and RED nust determine such values. (The optimum reserve
.‘w.*‘
S
{:: force is determined by a method which is unimportant to *the current
-
Im discussion so it is only described in detail in Section IV.)
LK . . . .
o After RED has chosen a reserve and carried out a strike, BLUE can
o
[ retaliate as indicated in Figure 3 or with a pure counterforce strike of
\,:."-:
be N . . B B N
. his own. In the latter case BLUE would then have to choose a reserve
e
t,1 force. Reversal of the roles indicated in Figure 3 would ther occur and
4
[y, 01
> BLUE would use a similar logic in picking his reserve force. The model
LA
"ﬁi has the capability to analyze any number of such counteriorce strikes.
£ 0.1 .
{‘1 At each stare the optimum reserve is chosen based on the assumption
RS
9 C . )
s that the next retaliation mipzht be azaiust both force and value targets.
SN
'iw ) A . . . . .
o An additional type of' e~xchange the model can consider is descrived
o,
-:H in Figure /. S
P\r‘:'
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FIGURE 4: FIRST STRIKE WITH A RESIDUAL

This exchange is a more realistic version of thnat in Figure 1 in
the c2nse that residual weapons possessed by RED are allowed to exist and
be targeted.
The major problem in this scenaric is planning the countervalue
L portion of RED's first strike in such e way that he destroys a maximum
amount of BLUE industrial value with the combination of his first and

second strikes on BLUE value targets. Tie methodology for accompnlishing

this aspect of this s;cenario is described in Section IV.

oS E. IMPACT OF UNCERTAINTIES

L7y

b4

};: The sequential strike concept can be utilized to go considerably
.y

[
4

i )t

beyond the simple exchanges just discussed. For examplz, the flexibility

NN exists to analyze ti=2 impact of uncertainties. In essence, when one

o -:ﬁ

b opponent is setting up a strike h2 must hase that strike on his current
[

n-"'i

information concerning nis status, the status of his opponent and an

estimate of how his opponent might retaliate. Once that strike nas been

LY

ay 1

launched, the play in the duel passes to his opponent and tiie opponent

l,
e

;:t:‘l; CEE S

nas the same task facing him. In eddition, if the striie was set up

v
\ﬁF pased on only partially correct information, or assumptions, there can

n
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be a difference between the intended and actual effect of the strike.

This concept thet & strike is set up based on an estimated situation,
but that the actual e=ffect can be different than the intended effect gives
the power to the sequentiul ctrike method. For example, assume that all
elements engaging in an exchange are continually described by three
different descriptions which cover:

1) Actual characteristics and status of forces and targets,

2) Characteristics and status ol forces and targets as estimated by

the owner of those elements, and

3) Chsracteristics and status of forces and targets as estimated by

the opponent of the actuel owner of those elements.
For an example of the three types of characteristic.-, consider a hypothetical
ICBM that RED might possess. It might have an actual TEP of 1 n.mi.,
reliability of .75 and yield of 7.6 MI'. But, since no testing program is Q;g
perfect, RED's estimate of those characteristics might be .6, .80 and 7.0.
At the same time, BLUE might be basing his estimat < minimum intelligence
data and think the characteristics are .6, .85 anu _

Use of the sequential nature of the program to allow analysis of un-
certalnties has been implemented in some detail. The procedures use the above
described three sets of characteristics for each opponent. The utilization
of these three independent sets of parameters then is as follows.

In the previously described types of exchanges, RED's first strike
would be based on his estimate of his own situation and his estimate of
what BLUE's situation is. Then, before BLUE responds a computation is
mede, by the model, of the actual damage RED's strike did to BILUE

utilizing the actual characteristics, which neither side might know.
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R BLUE's responce would then be based on his estimate of the situation and

his actual survivinz rescurces. The scquence of strikes can continue, always

basing weapon-to-target allocations on estimated charscteristics and
e basing responses on actual damage done to tle opponent and on the

opponent's cstimate of the current situation.

In order Lo diagram such a case assume that each opporient knows his

S own status perfectly and that the scenario to be studied is like that

in Figure 3. The scquence can be visualized as in Figure 9.

S BLUE
Fo Fp acrual | Py
1 ACTUAL FIRST STRIKE EST. / EFFEC ACTUAL
SN RESERVE RESERVE
v/ F Fp
‘ R SECOND STRIKE
4 ACTUAL EST. .
L THIRD STRIKE
Vv \' |
YR R B
ACTUAL EST. ACTUAL

FIGURE »: COUNTERFORCE STRIKE USING ESTIMATES

T e . " 4 s« AT

In Figure 9 tue squares indicate actual characteristics and the circles

estimated charactericstics. It shows RED setting up a first strike based

1 on an estimate for FP' The wavy line then indicates that the strike will

- 3

{ |

o heve some effect on Fp actual. BLUE then would set up & retaliation based v

! on estimates. TWotle, especially tlhat BLUE would heve to estimate RED's 4

[ reserve. [Finally, RED performs his second strike vased on nils actual sur- 4

i i

[ 3 vivors trom BIUE's atisck and nis estimate of Ve AL the comuletion of y
Ny
"
4
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such a sequence there will be some actual d¢ age levels accepted by each
side. The question is - how would those differ if either side had a
better estimate of his opponent?

By u.ilizing; Lhe three diZferent sets ol descriptions for all elements
in the model it is possible to study almost any conceivable topic con-
cerned with optimum force management. For eyample, some items are as
follows:

1) What is it worth to know your own weapon characteristics perfectly?

2) What impact does it make to not know the exact characteristics of

your opnonents weapons?

3) What is the penalty for not realizing that your opponent has an

effective ASW system:

L) What is a system capable of detecting the vacated bases (empty

holes) of your opponent worth? (5%
5) What is the effect of the objectives of each opponent not being
diametrically opposed?
By appropriate control of the three basic sets of data it is possible to
investigate the case of launching at an opponent and having him vaceting
bases while your weapons are in-flight. It is also possible to investigate
the effect of numerous small exchanges rather than a few massive ones
with each opponent's viewpoints and objectives changing during the strikes.
The only limitation is that all objectives be relatable in some way to
a relative preference between damage limitation and assured destruction.

F. CHOICE OF PREFERENCE CONTOURS

A key element of this model is the set of preference contours for
each opponent. Unfortunateiv, a universally acceptable set of contours _—

is not availeble now and likely never will be. To overcone this problem
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& number of concepts have been consldereu beiore arrivin: at the one
normally used and to te described in tuls paper.

Considerable logic for choosing various countour f{amilies is possible
but most of them involve two key thoughts. First, each opponent tends
to want to minimize damage to himself, but given obvious limits on that
it is reasonable to maximize the difference between the damaze to his
opponent and the damege to himself. Second, there is usually a realiza-
tion that once an opvonent is destroyed to some reasonaole level it is
rather foolish to continue destruction on nhim since ne is already an
ineffective vower.

Combining these two concepts leads to the contour family depicted
in Figure 6.

Shown in Figure 6 is a set of parallel contours with a distiuct
change from a slope value of one to an infinite slope at some [ixed level
of damege to BLUE for any level of damage to RED. In effect, this set
of contours results in maximizing the arithmetic difference between the
dsmage levels of two opponents with some upper limit placed on the

allowed damage to your opponent.
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J Application of such a set of contours develops weapon nllocations that

are very rational. It has been found that use of a max desired assured

™ Ly . . 03

-ﬁ destruction level eliminates the situations where both sides get destroyed
v

Q& to an extremely hish level, Also, the final solution does not appear to

- ';

be very sensitive to the unity slope assumption. Generally the max A.D.
curve is rather steep so that use of other slopes, e.g. 2 does not shift
the tangent point very much vertically.

Indicated on Figure & are two max A.D. envelopes. If envelope A

s
»

S
»'a"a"a

existed, the optimur noint would occur at the point on the envelope with

NN
LA A

slope cquel to ose. It B existed, the optimum point would occur at the

S

b

int on the envelope with damace to BIUE equal to the maximum desired by

19
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RED. Given any set of initial arsenals thc model can determine such 2%

optimum solutions in one run.
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Of courge, if this simvlified contovur family is not szcceptable, tne
program can be used to develcv the max A.D. cuvelope a vouint at a tim
s0 that any contour family can be matcned to the envelope. Ir essence,
the true capability of the prosram is reflecied in the fact thot it
can perform the force management function sc¢ tnat for any attainable

damage to an opvonent 8 minimun damase occurs to yourself.
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III. TYPICAL MODEL APPLICATIONS o2

To demonstrate the Uorm of tyoical results O ained from the model a
nunber of topics will e investicated concernine hyvpothetical RED and BLUE
oppouents. Tne arsenals ot each and all characteristics necessary tou the
runnin: of the mouvsl are desceribea in Tables I & II. The industrial
target complenes are ucescribed in Ta.les IIT & IV. The tar-et calues
in Tables III & IV are arvitrary but they do pa..llel those which could
be based on relative ponulation or some typical measure of ralue. In
addition, it will be assumed that each side launches 50% of all bombers
on warning. Also, that the availability numbers, which are the traction
of the force conslidered to te ready for launch, include such items as the
on-station fraction for submarines. It will be assumed that all bombers

have a probability of .9 of penetrating perimeter defenses of his ouponent. .
¥/ L oot P

L
T

(Mcre sophisticated homber and missile detense assumptions could be made
but they woula rnot add significantly to the understandingg of the concept

of the mod~l.)

TABLE 1: RED ARSENAL CEARACTERISTICS

SYSTEM TYPE NUMBER RELIABILITY AVAILABILITY CEP PAYLOAD
T ICBM 800 .9 .7 .5 5. MT
20G PSI
BASE
I ICEM 200 Wb .6 1. 25,
- 100 P8I
L BASE
o III  SLBM - 200 6 6 L. 1.
e 20 SUBS
» v BOMBER 200 .Y .9 .25 10.

20 BASES




TABLE 2: BLUE ARSENAT, CHARACTERISTICS

SYSTEM TYPE NUMBER RELIABILITY AVATLABILITY CEP PAYLOAD

A ICBM 650 .9 .8 Ok 2. M
500 PSI
BASE

B ICEM 250 .8 o7 0.6 10. MT
100 PSIT
BASE

C SLBM 300 B 5 1.0 2. M
30 SUBS

D BOMBER Loo «95 .8 25 10. MT
4O BASES

TABLE 3: RED INDUSTRIAL CHARACTERISTICS

SUMBER VALUE CUMULATIVE
CLASS IN CLASS OF EACH VALUE AREA
MEMBER
1 1 14.0 14 300 Sq. N. Mi.
2 3 8.0 38 171
3 9 5.0 83 107
4 27 3.0 164 6l
5 , 81 2.0 326 L3
6 243 1.2 618 26
7 536 .71 1000 15

TOTAL 900

------

.........................
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TABLE 4: BLUE INDU3STRIAL CHARACTERISTICS

1IUMBER VATUE CUMULATIVE
CLAS3 IN CLASS OF FACH VAIUE AREA
MEMBER
1 1 24,0 2k 1000 Sq. N. Mi.
2 2 1.0 00 430
3 b 12.0 100 290
b . 9.0 130 216
5 lo 6.0 276 1hb
6 32 L.o Lok 90
7 6L 2.5 564 60
8 128 1.5 756 36
9 olly 1.0 1000 2k
TOTAL 500

A. ASSURED DESTRUCTION VS. DAMAGE LIMITATION

For the siven arsenals the exchange type depicted in Figure 1 was
analyzed. The resultant max assured destruction envelope is given in Figure
7. several noints should be noted concerning this result. First, note
the relatively rapid rise in BLUE damape as RED's damage level increases.
This has been tound to be very typical when missile defense does not
exist. BSecond, the intercept at 2 RED damage level of 54% represeuts
the damage which BLUE can do even 1! RED attacks pure counterforce.

Third, the strateirry whiech results it RED desires to maximize the differ-
ence between BLUE and RED damnge aciicves O7.30 damag;;e on BLUK and 70.8%

damage on RED.
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. IT RED desires to maximize tuo ditforence without exeredin: Tuh X
'G dama-;e to BLUR whe “humen allocation ol his available weanous are as
Y
:~‘ shown in Tavle . ‘ac Cinal result ol tuese allocations, arter BLUE
WL
o v
AN
X optimally alloeates nis expecied survivors is (0% damerte to BLUE and
H 62.84 damace to RED.
SR
N
AL TABILE -: EXAMPLE OF RED WEAPON ALLOCATIONS
s
-"\-'
e BLUE TARGET  TCTAL EXPECTED [WUMBER NUMBER OF RED WEAPOI'S PER TARGET
CATEGORY PTMBER SURVIVORS  ATTACKED
WPN I  WPN IT WPN III  WPN IV
WEN TYFE A 50 [SARI 1 1 0 0 0
B 250 h1.23 250 1 0 Q 0
C S0 $0.0 O 0 0 0] 0
D 40 LoT5 hO 0 0 2 0
CITY TYPE 1 1 .03 L 0 10 0 0 .
[

2

o
C
=
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C
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0 0 it
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Ca
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=
=
o
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oy
C
o
(@]
(@]

7 Ol 12.76 30 0 0 0 3

40 0 0 1 Q
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RED allocated almost exactlly one-naly of nis avajlable, non=bomoer wop-
heads to the counterrorce role. I this 1illocation all bomts ro were orbi-
trarily restricled from the counterforce vole beeause o Lhe proi Lem o
strike timiiig.

B. SYSTEM COMPARISONS

To demoustrate the problems associated with verformivg svsuvom ovalua-
tions without a two-sided game tne results of Lhis case were comparcd with
an alternate avproach. Included in Table 6 are the results of tnat com-
rarison.

The various measures of effectiveness chosen for * D weapons are
those sugrestied by weapons effects theory and alternates which nlay down
the effect of CZF or yield. The alternates were chosen since it might be
suspected that in certain targets those characteristics would nave a
lesser effect.

Also included is the weapon relative value as obtainad from this model.
Tney are based on the Lar ange multipliers obtained when the RED weapous
were optimally allocated. The multipliers represent tae marcinal utility
of each weapon so they do describe the true elfectiveness of the next

additional weapon of each type.

TABLE 6: COMPARISON OF MEASURES OF FFFECTIVRIESS

WEAPON RELATIVY SYSTEM VALUR FOR GIVEDN MEASURE OF BEFFECTIVE TGS

TYPE 9/3 . 2/3 :-J,'/i . 1/‘{ .J..,// 4 .
LAGRAICE R.Y™/ R.Y ~ R.Y R.Y R.Y R.Y
MULTIPLIERS CEP9 Cri ORy (31

I 1o Lo 0 q L. . ko 1.

17T 1.25 .65 L. 30 2,60 L.o2 o’ Do 26

[rr .60 LOH 15 .30 0% & L2 L3

LY Sl 3 17 Y. Ay .6 Lo’ 5

* R i3y boll, § it Y P 0P Li
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[t can be seen that none of the nimvice measures dunlicate the multi- o
plier resulc. The reason no one measure is adequate is that ditferent

weapons would be optimally allocated a-ainst different targets so that

. no sinitle weapons efteci crameter is ogqually dominant in all cases.
n ror example, in tLhis case adaitional weapons of Type I would be
S used i a countertorce role agcinst a hardened tarset where CEP is im-

nortant while adaitional weapous ot Tynpe III would be used azainst a

value tar;set where CEP is much less imvortant. This use would relcase
some other weapon for use against a force target. Thus, purchase of
one weapon can feasibly affect the use of many other weapons.

0t equal interest is the case where BLUE is doing a system com-
parison. His problem is like that of RED but compounded by the necessity
to estimate the survivability of his weapons. 1In this case, Table 5
indicates additional weapons of Types A and C would not be attacked but s
those of Types B & D likely would be. It a different RED arsenal was
to be assumed, these conclusions could be changed. In any case, tne
probability of survival of any additional weapon can be determined by use
ol the exchange model.

Table 7 describes the set ol relative values for all BLUE weapons.
Included is 8 set based on the multipliers alone and & set which factors
in survivability as indicated by the model. Note how the values of

Sysiems B & D deprade when survivability is included. As RED increases

[
H."E‘—’&‘.-‘. Yo g

»
—a

his arsenals, those values do change. For example, if RED increases his
nuibers of Tyve I from 800 to 2000, the relative values are as shown.
As the 2000 level is approached, the sulimarine-based missiles begin to

dominate because ot their assumed invilnerability.
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tf RALH TABLY 7: BLUE SY3TEM JALURS
:"‘ n: ..‘.-\

WEAPON

. TYPE MULTIPLIERS SURVIVABTLITY AT GIVEN RED FORCE LEVEL
MULTIPLIERS ,

N 300 1200 1600 2000
T

'._\

W A 1.00 1.00 1.00 1.00 1.00
’:':-: B 1.26 Rt e ees .66
N
r_".' B ]
;:“3 C D) )] <95 95 1.26
.\
i D .57 A7 bl 4l A7
:-‘.-
n:‘,-'
b‘: -
};’ Cl. OTHER SCENARIOS
s As examples of the model application to another scenario, a case similar
jﬁ to that described by Figure 3 was analyzed. The only difference is that a
!P:'
b . : :

. BLUE first strike was assumed.

2 iﬁb In the BLUE pure counterforce first strike, the preferred strategy

o for BLUE was 220 weapons of Type A allocated one to each of RED's Types

5 2

s II and IV. The final damage levels resulting were 63.6% to BIUE and 62.7%
e

to RED. As an example of an alternate strategy for BLUE, he could allo-

w
'

cate 490 weapons of Type A, which results in a demage level of 73% to

s

o

o BLUE and 45% to RED. Notice that this latter stratesy does not achieve
4 as large a ditference between RED and BLUE damarse as the preferred

Sx

5 strategy does.

N

N -

ty D.  ANALYSIS OrF UNCERTAINTIES

"

;% One of Lhe most vital questions in a model of this type is that of
A

;ﬂ uncertaintics in assumptions. In a broader sense, Lhis can be equated
3y

bt

&: to the effect of uncertainties, which will always exist, in estimating
)

si the current situation ot yourself and your onpenent.
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.}' Some topics ot this nature have been investigated to demonstrate

gj‘ the application oif tn's model to such gquestions. Among those to be dis-

i ‘ cussed here are the following:

:§¥} 1) Is it better to underestimate or overestimate capabilities?

2) Is infermation coucerning your opponent's characteristics worth
as much as information concerning yourself?

3) What is the relrtive payoff between additional offense and

better information?
This analysis will be based on the hypothetical arsenals, but the general
form of the conclusions is believed to be valid elsewhere.

As an example of the underestimate/overestimate question, the

E:: reliability of RED weapons was investigated. The assumed scenario is
Sy
:{:' like Figure 1. The assumed objective for RED is to maximize the differ-
- ence in damage levels but not to exceed 70% damage on BLUE. The cases i
&ﬁ? considered are described in Table 8.
[
'fﬁj TABLE 8: EFFECT OF ERRORS IN RELIABILITY ESTIMATES
[ ACTUAL FINAL DAMAGE
. RELIABILITIES RELIABILITIES LEVELS
Qf} CASE FOR WEAPONS AS ESTIMATED BLUE RED GAME VALUE
e I,II,III,IV* BY RED
cd
A I .9,.8,.8, .45 .9, .8,.8, .45 T0% 62.8% 7.2
l‘---
o
' o II .9, .8,.8,.45 .7, <6, .6,.25 83.2% 73.7% -3.7
[ III .7,.6,.6,.25 .7, 6, .6,.25 T0% Th.3% -4.3
-y .
.|
NON Iv .7, .6,.6,.25 .9,.8,.8,.45 50.6% 66.3% -15.7
\';-.
AR
\ﬁ\ *Bomber reliability includes the probability of penetration of perimeter
e defenses.
RAN
.":i The effect of poor reliability estimates is very dramatic. For P
:‘? example, in comparing cases III and IV, the difference is caused purely
e

- . . v e = =
. e e L Ta e, .
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by RED's not knowing his own reliability. 1In Case III, he knows they arc

low and allocates accordingly. In Cace IV, he thinks they are high and

consequently mis-allocates but thce damage is accrued accordins to his

- actual reliability. The net effect is about 20% less damase o BLUE

»

e e v
»
r

and 8% less damage to KED. In terms of the stated RED criteria, Case

;\ III has a value of 70 - 7T4.3 =z -4.3 while Case IV has a value ot “0.0 -
:[:j 66.3 = ~15.7. Thus, the error caused a large drop in the criteria.

L The effect of an underestimate can be observed in Cases I and II.
E;:: Again, all differences are due to mis-allocation of weapons resulting

I;"\ vecause RED's knowledge of his own reliability was nct perfect. The

; interesting thing is that an underestimate tends to result in excessive
t_‘- damage to both sides while the overestimate tends to reduce damage to

: both sides.

j ‘-i If the value of the game is computed according to "maximize the differ-
:::: ence but no value is achieved for damage exceeding 70% to BLUE," Case IV
::: is the worst situation. But the true loss due to an underestimate is the
i difference between Cases I and II while the loss due to an overestimate
.: is the difference between Cases III and IV. Thus, the underestimate

.'::' caused a change of 10.9 units while the overestimate caused a change of
:E 11.4 units. The two losses are so close that it raises a gquestion as

r to the advisability of planning an actual strike using all conservative
: estimates. An additional factor is that this analysis indicates that

B

;‘: overestimat;es might tend to reduce damage levels.

t Comparison of Cases II and III raises a very interestin:: poiunt.

o

:. They show that, if no value is sccorded excess damage to BLUE, thinking
.‘i, your reliability is low (Case II) when it is high produces only sli;htly
E‘:‘ :.‘:{': better results than when it actuslly is low (Case TII).
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A case was also run where RED overestimated his own yield by about
33%. The net results were damage levels of 02.3% to RED and 62% to
BLUE. Compared to the perfect information case of 62.8% and 70%, the
big loss is in damage to iL5.

To nlace the value of ood reliability information in proper
perspective, consider the number of additional weapons which must be
purchased to make up for the imperfect informacion. 1In the case of
RED underestimating his own reliability, case II, an analysis using
additional model runs showed that it would require almost 400 additions’.
Type I weapons to achieve the same demage level as the perfect reliability
information cese. This suggests that considerable testing expenditures
might be warranted.

In contrast to the results presented in Table 8, poor estimates by
RED of BLUE force characteristics did not alter the basic results. For

example, an estimate by RED of a 500 psi hardness for BILUE Type II, when

it was actually 100 psi, did not make RED allocations nonoptimum. This

same effect holds true in the case of misestimating reliability and yield.

.
.
<

Cases were run where RED misestimated BLUE reliabilities and yields by

ey
'.

about the same amounts as described in 1able 8. 1In all cases no non-

»%ﬁ cptimum allocations resulted.

o €.  VALUE OF INFORMATION

i}i An interesting circumstance is where one opponent has some bit of
o, NG

'

information which can aid in his resource management. One example is
information concernin; whetner or not a weapon had a successful flight.
Another example is the possession of information about which enemy bases

have been vacated.




ﬁ e The possession of BLUE emply nole information wes analyzed for the
case ol' RED rirst strise CF/CV where he hes a reuidual force of 29% (the
scenario describea by Figure h). To obtain a basis for comparison, the
scenario was run twice, once where BLUE did not have eapty hole iuforma-

tion and once vhere he did h ve the information. The results indicated

that BLUE could not use tne information Lo reduce his own damae below

v,

"l
P

T70%. The 25% residual assumed for RED was not sufficiently . large to

T s

s
R

!I attract BLUE weapons. This type of information has not been analyzed
%: extensively enough to knov whether or not the same would be true in a
3 real world arsenal. .
j' A case of RED lirst strike CF/CV where RED has flight success in- '

T

formation was analyzed. The net effect was a drop in RED damage from :

L)
LA

.

02.8% to 5¢.4%. To calibrate the value of this information, the results

RN

N R A e

4

of the run indicated that it would take approximately 280 additional

F RED Type I weapons to achieve this same reduction in damage if the in-
4 |
4 formation did not exist.
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IV. KFY MATHEMATICAL ANALYSES e

In the course of implementing the concepts involve. in this model, sev-

-fﬂ eral key mathematicel problems haa to be solved. They involved the develop-
P ment of
R 1) A methodology for optimum allocation of a mixed weapon force to a

mixed set of targets.

A generalized routine for producing tairget probability of kill for

W
S T
RO
-
no
=

fil 3 .
e a given attack level o. a given type of weapon. This routine must
.l:\-
::} functicn for area or point targets, cefended and undefended targets
\-}\

.

and weapons of any characteristics.

Z5 7

3) A method for choosing values to place on counterforce targets so

that the optimum allocation of weapons results in a maximization

R )

of larger cojectives, e.g. maximize the difference in industrial i
damage to your opponent and industrial damage to yourself.

4) A method for choosing the optimum reserve force whgn the chosen
scenario is a pure countertforce first strike,.

S) A method for optimizing a strike when there is a maximum allowed
industrial demage to an opponent.

6) A logical method for allocating countervalue weapons in a first
strike when there will be a later opportunity to fire at those
same targets.

7). A representation of random area defenses for both aircraft and
missiles.

8) A method of analysis of an area ABM defense when the defense can
preferentially defend his turgets after he sees the offensive

strike.

ettt et e TR T s e S T e e e s,
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9) Approximate methods of analysis for the clrcumstance where the

offense and ABM defense must mike plans and deployments without

knowing their opvonents plans, (Called a pre-commnit decfense,)
10) A force structuring methodology for optimal distribution of -
budget among a specified set of oftensive and defensive options.
11) A technique for optimal deployment of a terminal ABM interceptor
budget to individual value targets so that the offense damage
is minimized, Included within the routine is the capability to
allow for fixed investment costs and discrete battery sizes.
12) A subtractive ABM defonse model,

13) An analysis method for dealing with weapon retargeting limits,

REA Do O

o 14) A method for dealing with weapon retarget.ng limits,

i (__‘_‘ 15) A mathematlical procedure for generation of hedged allocations,
Ly 16) An allocation procedure for use against a list of rank-ordered
: targets,

17) A weapon cdefense module (HSD or safeguard) option.

18) A method for aiding bomber penetration through defense suppression

T,
L

[, tactics.

o~

19) A new method of linear programming, called generalized upper bound-

ing, as it is used in AEM.

W

L
'
o




A. OPTIMUM WEAFON ALLOCATION FROCEDUWLE

In a basic paper on ‘he application of Lacrancre multirliers to the
optimum allocation of rescurces Everett (Ref. 1) iniicated that the wearon
allocation problem of interest here was a natural avrlication of the
technique. Following this thoueht, an attempt was made to arrly the ren-
eralized Lagrange multiplier method. With some extension »f the basic
concept, this attempt was successful.

To understand the svecifics of the method, it would bte worth-while to
first review the general oproblem of optimui: a’location of weayons to
targets in a mathematical format.

Assume that an arscnal which is to be allocated consists of T different

. tyres of weapons with Wi units of any given type i. Also assume that the
target system consists of J different targets. The objective is to ortimal-
l. ﬁi% ly allocate all weapons to the targets in such a manner that the maximum

2 total value is destroyed on the total target comrlex where any given tareset
J recresents a maximum value of Vj'

m Before weapons can be allocated to the targets, it is necessary to

o knocw the relationship between level of damage to a target and the number of

weapons of all types attacking the target. One common expression of this

relationship which holds for many types of trrgets is as follows:

I
e W, .,
PK.=1- 17 s, 13 A-1)
J i v 1) (
i=1
‘where:
PKj = rrobability of kill of tareet j

when attacked by Nij wearons of each of T tyvres,

w2
i

, probatility that tareget j survives one stot from a wearon
of type i.
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h"‘: IV-A-2

"nr the momci:it let us assume that this is the form of the damace function.
(1L will be shown later how other damare funciions can ke used.)

Civen the above, the weapon allocation problem can be stated in
mathematical form. Using the objective of minimizine total survivine value,
rather than the equivalent one of maximizing totai value destroyed, it is

simply to:

Ay
N AN

Choose a set of Nij’ the number of wearons c¢” type i attacking tareet j,

in such a way that the total survivine value, SV, where

B I .
SV = E vj II sij Y (A-2)
j=1 i=1

is minimized and the constraints on number of weapons of each type are not

‘. .
Sagar
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L
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exceeded, or
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Pt
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) Py
B
e
2 « "

T

J
E N. =W, for1<i<1 (A-3)
ijJ 1
=

l.l)

P
v,

P
1S Ay R

It should be noted that the Nij must be integer and that the objective

7
:
o

function 1is non-linear.
Dropping this formulation for a moment, leot us review the generalized
#*
Lagrange multirlier concept. Everett proved that if X minimizes the

I
.
function H(X) + E Ay Gy (X) in such a way that Gi (X )-‘:Bi for

i=1

T ¥
L ]
3

24

T
]
Nl

T
-“-‘ ".

3t 3 .
1 <i<1I and positive Ai then X also minim’zes H(X) subject to G.l (x) £

Bi for 1 £1 <I. ore importantly, he point-d out that if non-negative

'
1

.x_
multipliers A, can be found by any convenient technique such that the
L

,
Calal s,

T
-

%y

—
Wl

3*
desired X can be obtained the optimality conditions hold eve- for Ais-

L]

1@

continuous and nondifferentiable functions, H(X) and G(X).
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L Also of inrortance is the fact that if the functions, H(X) and G(X)
can be expressed as sums of two, or more completely independent functions
the above process operates on each of the inderendent functions with the
only connection teing the constraints on total resources, Bi and the
multipliers, ki. That is, each indevenient objective function, say

J
Hj(X) where H(X) = E Hj(X) and the associated constraint function,

=N

3
Gi:(X), can be operated on in such a way that X 5 are ohtained for a given
3

7
3

J
% ¥
\. and if E G.. (X .) =B, for 1 £ 1< I then the solutions X .
1 17 J 1 )
=1

are optimal.

In the context of the weapon =2llocation problem the constraints on

ram
e resources, the Bi’ are obviously equivalent to Wi. The ob‘ective function
oo : . : :
o~ H(X) is equivalent to the SV of equation (A-2; .1d the Hj(X) are equivalent to
N s N,
ry V. I I Sij *J the value surviving on target Jj.
o Ti=1
=
o Expressed in words the generalized Lasrange multiplier method applied
-“,:;
i to the weapon allocation problem is as follows. Determine weapon related
Onm 3=
o multipliers Ai such that if for each target j the solution<{Nij} which
o~
(3 I . I
~ C ]‘T' ij g
. minimizes V, S.. + P (a-4)
i J 1J 1 1]
= i=1 i=1
d
also results in E M.: = Wi then the {Nij} describe an optimum allocation
j=1

of the wearons to the targets.
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In order to solve the allocation problem in this way, two non-trivial
problems must be solved. First, a technique for minimizine equation (A-4)
with integral Nij must be obtained. Second, a method for convereing upon
the desired multiriiers A*j must be develored.

It has develop:d that ideal soluticns t~ .i'ese problems have not been
found but that very accertable approximate solutions are availahle. FEach

of these approximations will now be presented.

1. Optimal Tareget Strategies

Several possibilities exist in attemptine to find a minimum to
equation (A-4). Amonr those considered are:
1) Efficient enumeration of all possibilities.
2) Use of thea non-integral minimum to focus the enumeration
process.
3) Use of "pure" intecral solutions as apgproximate minimums.
L) Use of a sequence of "knapsack" rroblems tc converse cn a
general solution.
The last two methods were found to be =zomewhat useful with
mettod (2) being by far the most practi.al so it is the one in current
usage. FEach of those two methods w'll now be Jescribed.

a. Optimum Pure Strategy Method

Sore consideration of the rroblem leads to the thousht that
in many cases the best intepral strateecy miecht be a "rure"
solution where only one of the Nii is non-zero for a eiven Jj.

J
(Tt.is is in contrast to a "mixed" stratepy where more than

one Ni‘ for a given is non-zero.) Tris initially arreared

J

(v}

reasonable because it was suspected that esererally one tvre of

weapon will be preferred for a given target. In such a case

a T .
‘et a
- -
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- two, or more, weapon types will attack only to sort of "fill in "
o s ’ ' 3 Y

or destroy, what it isn't worth firine one more wearon of the
preferred type for.

If only pure integral strategies are to be considered,
minimization of equation (A-4) is ouite simrle. It reduces to

finding "I" minimums of the form

N..
MINH=V,S., ™ + A, N,. for a given i (A=%)
J 1] 1 1)

and choosing the specific solution with the overall minimum,
The minimum to ecuation (A-5) occurs when Nii = Ncij, the

integer value for Nij such that increasing by one more unit

decreases Vjsii 1J by an amount less than Ai. That is

(%)

e #* 3
a” N4 N, .+ 1
v.s.., W-ov,.s,.. M <, (A-6)
J 1) J 1 1
3
Solving this equation for N i3 resuits in
N leg( Ai) - log(V,) - loe(1-S,,) .
N.. > N Ll (A-7)
1J log(s..)
1]
But we are interested in the smallest integer which just makes
{.
equation (A-6)} true. Therefore the N 15 of interest is the next
larger integer above the right hand value of equation (A-7). Or,
. leg( N,) - lo=(V,) - lor(1-S,.)
N, = | 1+ - = — (A-2)
1] los(s, ,)
e where:

[AI = the larrest interer contained in A
]
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The conceprt for findine an arrroximate solution to equation '~;n
(A-4) is threrefore to find solutions for each i by use of eauation
(A-8) an? to chooswe the best "pure" strategy for a given tarret, j.
If such strategies are found for every tarset for a given set of

J
Ai and if the totals of E Nij meet the constraints, an
i=1

- approximate allocation optimum will be attained.
The obvious question is--how approximate is the answer
obtained by use of "pure" strategies? The result is exact if it
is desired to fire only one tyvre of weapon at any sinele target.
In the more general ca<e, though, an approximation does exist anrd
there is no general answer to the question.
As the most Adirect mettod of determining the -eeree of [

approximation for any individual case, Everett's "Epsilon Theorem"

is useful. That theorem (Ref. 1) states that the error involved
in using an apiroximate minimization of the Lapranrian (equation
(A-L)) is no larger than the difference between the value of

the absolute minimum and the value of the Lagrangian for the
strategy used.

It is not possible to find the value of the Lagranegian at

“a i

:{: the minimum but a lower tound can be obtained. One obvious bound

WA

Eﬁi is the value of the Lasrangian if the Nij are allowed to be non-
ol

.f'j integser. However, this bound can be tightened somewhat by the

ged _ ,

SRS following logic.

Ny '

"/.:u .

The first point is that we are lookinz for a bound on the

+
)

value of the Larrangian for the best "mixed" strateey. This ot

L TP
R A

DR IR AN
, LA N D TP N R



r-f—
v
oY g

= I+

T"—A—?

o automaticrally says that more than one of the Nij must be non-

a
.
.
.
-
0
%s
v,
"-

zero. Secondly, it is true that if non-integer Nij are a'lowed
there is one wearon which will actieve as low, or lower a
Lagrangian in a pure strategy as any rixed stroceey. This best

loe (S, .

. . . i
non-interer wearon is the one where the value of |._ J)

A,
i

for that weapon is larger than that for any other weapon. If
this is the case, it can bte shown that the best mixed strategy
in integers cannot have a lower Larrangian than the value when
one of the weaprons has Nij = 1 and the best non-integer weavon,
as defined above is allowed to be optimally chosen. To yrove
this, consider the following.

L In general, if the function VSN + AN is minimized in non-

integers, the ortimal N can be found by Adifferentiation. Thus
d [sz + AN] = sV log(S) + A (A=)
dN

Setting this equal to zero snd solving for N results in

# _ log(N) - log(V) - log [‘ 1°p(s)]
loe(S)

(4-10)

J
This relationship substituted into (VS“ + AYN) results in a value

for the Lagrangian of

G = - K + ) [lop(k ) - loo{V) - log [— 100(5)]] (A-11)
log(S lor(S)

This function now can te arrlied to a cereral mixed strategy.

For example, the value of the Lasrarrian for a civen set of Ni* is

)

‘.;‘
F 3
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I I
A ]
expressed as . AN, . (A-12)
: I I }E: i1

" . e e _ e & &%
1 [ A
.m& LA

ehes b

-

- 100(511)
K But if all the Nii except for the wearon with max. N

X A,
.:. 1

"

!! are some prescribed value then the value of the N, , for that "best"

non-integer wearon can be found by use of eauation (A-10). Calline

the weapon whicn has the max. -100(Sij) wearon m, the use of

A,
i

eauation (A-10) with

N. .
V=V, I ’ s.. (A-17)
0 J 10

3 ]
! results in obtaining an optimum N for whatever the other Ni* "

mJ

valuez are. If all these Nij are substituted into equation (4-12),

it yields

- a2t
HA ‘ '
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N, .
. Il IS
SN+ A [log( N_) - iog [vj TT 54, ] 1c [ 1o.g(smj)ﬂ

i =

P LA

.

i#m

log(Smj)

I
+ E NN,
1 1]

i=1
m
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:~:: -t )\m[log( )\m) - lon(Vi)— loe | - 1mv(3mi)]j|j
oo & == ' ~
loe(S .)
DR LiJ
-:2: I 1
By - z s 10*“-’(51]') + E )\iNij (4-15)
b i=1 Log(s, ;) =1
Lo i 7é m i 314 m
;:f But, the first term in equation (A-15) is simrly the value of the
Lagrangian if weapon m is allowed to be non-integer and it is a
pure strategy. Also, since
- log(S_.) - log(s..) log(S..).
> Ll we can say that A, 2 A -
A A i m loe(S
m i mJ

Thus, equation (A-15) will be at a minimum when N,; =0 for i #m

since the second two terms consist of

I
lo«(S. )
N..| N, = A i (A-16)
:E: 1) [ 1 m T;gzg;jy}

i=1

i#m
which results in a larger Lagrangian for any non-zero Nij'

It should be noted that if N*mj had turned out negative
it is possible to show that the strategy which minimizes the
Lagrangian has all Nij’ including ij, equal to zero.

The above shows that the minimum Lagrangian occurs when the
best non-integer weapon exists in a pure strategy. The best mixed

strategy must (by equations (A-15) and (A-1¢)) have a Larransian

P

2t least as large as L.G. = L.G. + [:A - A log(SJ' } (A-17)
p m -——T—EJ%
log smi
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where
L.G. = value of best non-inteeser Lasranecian in a
rure strateey

L = weapon which has a minimum value for

A, -a 103(5)
' )
loq(Smj

p#m

This relationship can be effectively used to find a lower bound
on the best mixed strategy Lagrangian and thus, by use of the
Epsilon Theorem, a bound on the errcr involved in using pure,
ratker than mixed strategies.

This error bound has been computed for countiess tyrical and
realistic cases with the result that no error ever exceeded 1% e
and the majority were far less than this value. Thus, there is
reasonable assurance that the use of pure strategies is not
causing a large error. Of course, this error estimating procedure
can te used on any given case.

b. Knapsack Method

The true minimum of equation (A-L) can be attained by use of

a sequence of "knapsack" problems as follows. First, consider
4 N

the sub-problem of minimizing Vj l I Si 'J to the constraint
i=1

Ce

.
; A N., <L . This p..bler is equivalent to minimizing
hd 1 1] k

l:
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I I

N.,
loe | V, | I S.. 'Y | which equals 1log V. + E 0., loe(S.,) (A-12)
J 1J J 1] 1]

el i=1
under the same constraint. Thus, for a eiven Lk this sub-problem
1
is equivalent to: minirize E AiNi where A, = log(Sij) (4-19)
i=1

under the constraint }E:X iNij < Lk' This is minimization of a

linear objective function in inteegers and it is equivalent to the
classical "knapsack" problem. Now, if a sequence of such protlems
are solved for various values of Lk’ the minimum solution to
equation (A-4) will be one of the krapsack solutions as long as

the correct value of Lk is included in the set considered.

The required solution can be obtained in a reasonably efficient
way if all information about equation (A-4) is utilized. For

example, the minimum value of equation (A-4) for intecral Nij

for a given value of L must be equal to or greater than the

k

value for non-integral Niﬁ at the same Lk‘ Also, the minimum

non-integral value of equation (A-4) can be shown to be the value

attained when all Ny g = O for i # m and ij = _Eg. Use of this

M

information allows the easy determination of a span of Lk which
must include the overall integral solution.
If Lk is allowed to take on any value, there is some value

which results in a minimum to the Lagraneian (equation (A-L4))

when non-integral Nij are allowed. As was shrwn in the previous

L e
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section, the N . at the optimum point is given by equation (A-10). .
Thus, the optimum non-inteper Lk must be riven by

* * kR . .
L, = )X N ., whereN . is defined bv equation (A-10), or
k moom] mj '
* loe( A ) ~ log(V,) - loe [ - lor(s ,)]

L K Am m 3 mi (4-20)
lor (S .)
mJ

where:
I
L. = value of the constraint on E AN
k ii]
i=1
which allows absolute minimization of the

s tareet Lagrangian for non-inteeer N, ..

Y Now consider Figure (A-1). That figure represents the Larrangian
solution space as a function of Lk' Of special imovortance is that S
all integral solutions "ie on or above the non-inteeral boundary.
In aidition, when weapon m takes on integral values for that

- given Lk’ there is an integral solution on the boundary. Also,

B

N the lowest integral solution value for wearon m occurs when

-"

¥ 3
L, = Iij| S LI (a-21)

That is, there is a minimum integral solution for weavon m at one

*

of the intesers on either side of N i’ Calline tris va'ue of

A "
k’

that L-"-k is between the two and the value of the Lasrangian at

1
Lk the Lk value there is another value for Lk’ call it L such

n 1

k

point L | on the minimum envelope is a constant, LG .
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7/ — Lacranrian Solutions
4 For Inteeral N..
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Lk ~ Constraint on z /\iN.lj

FIGURE A-1 LAGRANGIAN VALUE AS FUNCTION OF CONSTRAINT ON WEAPONS

' "
The span of Lk and Lk must include the best, mixed strategy if

there is one better than the best pure strategy. This is true

because a strategy already is known, namely that represented by
equation (A-21) which has a value of 1G'. Since no solution, non-
integral, or integral outside the span can produce a Lagrangian
lower than LG', it ic not necessary to look for the best mixed
strategy outside the span.

The mechanical process is then as follows. Solve a knapsack

!
problem with Lk =1L That integral solution will have a

K

- C A=A A A it e s e M e e A = e o=
] -
ALY L

. T Ay e e o n . -
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I
te tee
= < = - ho
Z )\iNij L= Lk' Set the new L L € , whore

€ is a small number desiened to exclude the current set of Nii
from the solution but no others. Obtain a new solution, set

ret 1t "
the new Lk eaual to the new Lk - € and continue until Ik <I

K
This process will obtain the best inteesral solutions in the

span and they can be compared to ot 1in the minimum Lasraneian
solution.

The buik of the problem with this metlod is an efficient
process for finding knapsack solvtions. Gomory's linear rro-
gramming alporithm (Ref. 2) and his knapsack methcds (Ref. 2)
were both tried wit! the mettod of Ref. 3 being the preferred

method. However, the additional computation time was prohibitive.

2. Multiplier Convergence Technigques

Given that a method exist. for minimizing the Laerangian on each
target the total weapons allocated to each can be summed to determine
if, for the chosen ‘Xi’ the correct total weapons were allocated. If
the number of any tyre allocated does not match the possessed numter,
the whole set. of Aﬁ_nmst be chansed. In general, reducing )\i causes
more wearons to be allocated of type 1 but since there is a dependency
among ihe Xi_it miecht also cause less weapcns of another type to be
allocated. Thus, there is a real rroblem in deciding how to chansge
the )\i to converge on the desired number of weapons allocated.

To understand the multiplier convergence method used in this

program, consider tre following. First, the Epsilon Theorem states

" -0 S MRS TUCY
T A A R ) 5 AR ST S v

A
. = LA A LA S L S
AR R R T e 1 R T A

=
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ﬁ %i; that if a strategy used on any target is not the one with the minimum

i Lagrangian the error involved is < the difference tetween the minimum

:? Lagrangian and the value of the Lagrangian for the strateey chosen.

A

; In other words, the Lagrangia:, value orders the strategies in a

i preference sense. The strategy with the minimum Laprangian is most

E desirable, the strategy with next higher Laegraneian is next on the
? list and so on.

H Thus, for a given set of Ai a list of potential strateeries for
§ each target, in ranked order, can be obtained. It is only necessary

g to modify the strategy selection process so the best S strategies,

ii as measured by the Lagrangian are obtained and rememvered for each
:i target. If S strategies are available for each target, it might be

? feasible to select from among the whole set one strategy for each
I -

i if% target such that all weapon constraints arc cxactly met. If this

d is done, the error involved in using the non-minimum Lagrangian strategy
? on every target can be obiwined by the Fosilcu Theorvem,

i Given this set of S strategies for ¢ .1 target, how does one

ﬁ select the sub-set which minimizes the error caused by not using the
é preferred strategy? The most directly utilizable process is lincar
y,

a programming. To see this, consider the following.

. Assume that strategy h fcr target j is described by the Nhij and
i an associated total value destroyed VDhj if that strategy is used c
.i target j. (For example, say that there are 3 weapon tyves and tratl
: the 4th strategy which potentially might be used on target 5 is
: N5 = 0y N5 =3, Ny =1 and that the value which will be

- destroyed is VAS = 1.07.) Then, the strategy selection process is

ot W . - .".) RS 5 “‘.." & - e, e e e T e e : e e e --’_.-'_‘4"'-". SR
v '&L.;}J‘:mymlhm\ ' s :.:"_A..s_Am‘.".-A‘_-:LL___-..A._n_A‘M A-A"!..A. .L.l‘;').'-'.l n.L..P'- oul TR i NWR L 0 tEeg
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to choose the stratecies to use such that the maximum total value

is destroyed on tre target system and all wearons are used up.

4
R A

In linear programming languave tinis is equivalent to choosine

ol

X

values for X, . such that

hJ
J S
S A K
ni ) Z th . VDhj is maximized (A-22)
h ™
o i=1 L=1

under the co.striints

"

J S
ST o,
24 Ty Vi ; 1€isl (a-23)
=1 b=1
S
E‘ X, S1 1550 (A-7L)
h=1
Constraint (A-24) essentially sayc that only one of the 35 stratepies e
{ﬂ for each tars~t can be chosen. Constraint (A-22) says that the
-
. strategies chosen must be such that the number of we -ons of each tyre

totally chosen must not exceei the resources. The objective of course
is to maximize total walue destroyed under these constraints. It can
be shown that maximizing total value Adestroyed is equivalent to

minimizing the error resulting because non-minimum Lagraneian stratecies

were used.

0

. Ide~""y, there should be ano® >r constraint which says that each

-
»

oL

XFj must equal only O. or 1.. This is recuired because inteser
1

REL

strategies must be ciiosen. However, linear prosrams with interer

< constraints are rotoriously Aifficu!t to solve. It was felt initially
R

L
*

that the process might naturally lead to inueger selection so t!is

L’
g
2

.
LA A
'\ /l

a

@,

PO
Lo d

-
Y T

o« 3,0

o ; P T T e e S P T e T Ty
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L.P. formulation was used without the inteecer constraint. Tt turned

out that the majority of the time integer solutions to Xh naturally
occur.
Part of the reason is that the N .. are integer and generally

hij

one of the S strategies for each target will definitely be the best
one. Fractional Xh generally occur on about as many targets as trere
are weapon types so that the last few remainine weapons of a type
can be employed even though there is not enough to completely fulfill
the ideal strategy.

An additional saving feature is that rather than having J
distinctly different targets the total target complex can often be
grouped into J different classes of targets where there are Tj

members in each class. In that case the L.F, formulation is the

same as the above except equation (A-24) becomes

S
X, ST, 12j3<4 A-25
D, TySTy 1S )
n=1
Thus, the X, . become numbers larger than 1 and the only fractional

hj

strategy is on no more than one of T, targets. Thus, there generally

J

won't be more than J fractional strategies out of a total of

J
E Tj strategies.

J=1

Use of the L.P. produces a by-product vastly more useful than
just the selection of strategies. demember that the physical inter-
pretation of a A is that it represents the marginal utility of a

resource (Ref. (1)). This can be ocualitatively grasped by

)

-.. xl -~~.- . R R v --' - - - - - . ~.’ PO - o« Te T R ) .
.- . P e T st
WS- TN VL R W i D s i s i B S P . T AT . eV T Ty T T T U T T T
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T consideration of the Lasrangian equation. The Larrangian is simrly O
a
. . N
a balancing of two functions. The VS term repr '‘sents thte return
from firing N weapons while the A N proiuct represents the  rice
ol buying N weapons at a price of A per weapon. In turn, the price

A must be the value of that wearon if it is used c- snme other

.
. e
..

target.

DAL
LI
.

0 /1

.

It turns out that a natural bv-product of an L.P. process is a

~
s
o'

measure of the aiditional payoff if any individual constraint is

o relaxed by one unit. These multipliers, or prices as they are
O called, thus represent, in our case, the same thing as the lambdas
: involved in the Lagrangian.

:{: Thus, at the completion of an L.P. run with any g.ven set of
-.'.N

--«V.* . . 3 I3 3

L strategies one of the results is a set of multipliers which form

the best rossible estimate for a new set of 'Xi which can be used i

Qf; to generate a new set of strateegies and so on until the A:i have

2N

LR

[ converged.

Recently Brooks & Geoffrion (Ref. L) have alsoc pointed out this

.

> same concept of using L.P. to find the Lasrange Muitinliers. They
}:3 have a simple proof that the method will lead to a convercence on
I

.

D

0 optimal A..

2 1

]

:%% Our experience over the past three years has indicated several
) , :

Q:J procedures which are required to make the process work for this case.
o
[Té First, as Ref. (5) indicates, convergence will occur cnly if the

}?3 specific set of strategies chosen at one stage of the process are
:ﬁk retained in the next set of strategies znalyzed. Second, the set
[
r'ﬁ of strateries used in any given phase should include not only the —
o

R

'-1\,4

9
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.
R
L S PP )

Sk strategies in the last phase but also more than one new strateecy for

P
h
»
L

each target class.

This use of more than one new strategy for each target at each
phase is necessary to achieve reasonably rapid convergence tc an
optimum set of Aif Use of several new strategies at each phase
allow enough new alternate choices to enter in tc definitely imrrove
the estimate for Ai.from onr. phase to the next.

Another valid question is the choice of a set of A, to start
the process and the procedure to follow when the L.P. produces some

A i = 0. (Which will occur whenever all weapons of a given tyre

cannot be allocated.) Experience has shown that any starting f.i

<4
A

v
o By AP iy

will allow convergence as 1l ng as cuificient stratesgies are

(3 .-,
. P
“att"s

X 5 a

iritially inserted into the L.P. process. However, the better the

X 8 s
L}

/

»
.
»

ﬁga starting A i the more rapid the convergence. If Ai = 0 do occur,
experience has shown that a satisfactory p--ocess 1s to arbitrarily
set tae new Aj-= .5 x (previous Ai). "5s causes “epon i1 oto

ap 2ar in more strategies ar.i, ultimately to cause a non-zero Aj_

to develop.

One technique that has be:n found to be useful in developing
excellent starting A i is to use an upper bound theorem that has not
previously been rublished. Since this theorem has other uses in its

own right it will now be ~erived and its rossible applications

indiicated.

The basic Lagrangian solution results in an X which minimizes

I
’
the function H(X) + E xi,Gi(x) over all allowed values for X.

P 1:1
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s
o 1 I
A 3 ¥ % 3 i
o In other words HiX ) + E xi Gi(X ) < E(X) + E )\i Gi(X) (A-26)
: i=1 i=1
\l
\q‘
\f where X Is allowed to take on any value in the space over which the
“w
i function H(X) is to te minimized.
L Of specific interest te our problem is the value of the Larraneian
x? when Xa Adenotes the special condition that

, G.(X.) =0 for i #a (A-27)

i‘Ta

s and
.'.‘v._:. ~ - _op
[~ ua(xa) Ca (=t
¥
v where:

T
»
we

i |
5 PP P
.‘t-.‘ RN

o1,

o

A

=
Pd

Ca = the level of resource tyve a such that

. ¥
H(Xa) = H(X ) when all other resources are at a

zero level (Gi(Xa) = 0).

" "
o

In other words, the Lagraneian takes on the special value

, 4 e 4,

'

Bis

H(X ) + )\aca when Xa describes a special condition on resources such

that there is some level, Ca’ of resource tyre "a" which can reduce

Ao
NN A

the payoff H(X) to the same level as the mixed level of resources.

. .‘A ',l i
S

In this circumstance for X = Xa'equation (A-26) becomes

"

R
A

2

I
H(X*) + Z )\*r‘ X%‘< 3 )\—;:- C (1 oo)
3 Jl( ) S H(X ) + 3L |-
i=1
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It is possible to find other similar soluticns for the remaining

variables, i.e.,

I
E : ¥ %
= 1>‘i 50
>

- C.
J

AL (r-71)
But the =olution X*>is defined to be thz one such that Gi(X*):z Bi
vhere Bi is the level of resources cf the original minimization

problem. If equation (A-31) is multiplied by Bj and then summed

for 1<j<I, the result becomes

I I

I
Z )\; Bj EZ [ Z )\; BiJ %? (4-32)
i J

i=1 =1L i=1

this becomes

s

2

=1

(A-32)

c_Jole
IA
[}

which represents the upper bound Theorem.

To see how this is useful as an uprer bound Theorem, consider
what led up to equation (A-33). A mixed set of resources, denoted by
Bj were to be allocated in such a way as to minimize some payoff,
H(X). In addition, each of the resources were to be substitutable
in the sense that there is some level of each resource, Cj’ such that
if all other resources levels were zero the same —ayoff as for the
mixed set would result. Finally, equation (A-33) says that the
Bj/cj ratios relate in a special way.

Consider the minimization payoff H(X) as a function of the Tevel

of resources of one tyre alone. Generallv this function is corcave,
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that is v

W8z, + (1-8) 2,] < BH(z,) + (1-8) K(Z,) (A-24)

Zl’ Z2 are any two levels of resources of one tyrpe.

Ttus, if for example there are three types of rescurces, tyrical

functions might appear as in Figure (A-2).

o
o

H(X)

{."‘ I'{'n_",
AL,
Fayoff

o

%
.
¥..

7

Level of Each Kesource ~ Xi

FIGURE A-2 PAYOFF AS A FUNCTION OF THE LEVEI OF INDIVIDUAL RESOURCES ION

~~~~~~~~~
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1
Since these functions are concave, there is sore rayoff l=vel H (X)

which represents thke urper possible payoff suc“- that

where:

1 1
C; = Level of resource tyre i to attain payoff H (X).

1
Thus, H (X) represents an upper bound to the payoff which the mixed

I
. . B,
resources{ Bi} can attain. Any higher H(X) must achieve a E Y

i=1C,
i

and thus not meet the conditions of eauation (A-33).

The interesting thing is that H‘(X)'has turned out to be very
close to the actual H(X%) in the majority of weapon allocation
problems to which this theorem has been applied. Of equal interest
is that equation (A-33) can be used to obtain excellent starting Aj}

The starting Ai can be obtained simrly by noting that )\a
represents the A payoff if all B, (i # a) are held fixed and the
level of resource type a is increased by one unit. Using the urper
bound theorem, it is possible to find the difference between two
upper bounds, one at each level of resource type a and use this
difference as an approximation to ‘Xa

Assuming a small chanee in the upper bound, it can be shown that

A, R —— 1/Ca (4-26)
a il
Ba-l+z_ﬂ_i
¢ %s =4 s,
i#a
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B., Ci = previous definitions

S. = Minus the slope of the "resource tvre i only" pavoff
function (as ‘escribed in Firure (A4-2) at the location
where X, = C,.

i i
The upper bound Treorem has the potential of beine useful in many
resource allocation problems where it is convenient to determine how

to allocate one type of resource ani expedient to usc an estimated

payoff rather than allocating the true mixed resources.
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2; : B.  DEVELOPMENT OF VARIOUS DAMAGE FUNCTIONS
és! The preceding discussion on weapon allocations has lareely assumed tlat
;:g the damage to a target when attacked by a number of wearons of one tyvre is
described by the function
) PK =1 - (1-p)" (B-1)
or
PK=1-8" (B-2)
where:

P = probability of the target being killed by a single shct
from a given weapon.
This function represents reasonably well the destruction of a roint
target but is deficient for area or defended tarcets. Thus, it is necessary

to consider the meaning of other functional types, how they affect the

ra
L] . : o5 :
_ allocation problem and to describe an efficient method for Aeveloping
e damage functions for all cases of interest.
J!
- In general, damage functions will take on. of the three generalized
, forms represented in Figure B-1.
£
ol
3 100 — — —
t O
o £
e
~« 0
—~ 0
— e
o
e
“
o & efended Target
>J&
-
Ha ]
~ 0
Ual
o
s O
o A
o
O
- o, o
S ' 0
e

Number of Attackine Wearons

FIGURE B-1 TYFICAL NAMAGE FUNCTIONS
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Tke point tarpet is represented by a function of the eauation (B-2) tvone.
The area tareet has a linear portion which results from attacking an
area in such a way that the nuclear effecc.s of one wearon are inderendent
of the effects from ancl..r weap:n. Eventually no wearons can be im-
pacted without overlarping the effect of another ieapon and the linear
damage function becomes rcan~ave downward. In the case of a dzfended
target, there is generally some level of attack such that below that
roint only the "leakage™ hrcugh the defense results in damage while
above that roint a satura.i.n, or exhaustion occurs and damage accrues
quite rapidly.

Given that such damage lunctions rerresent the general categories,
it is important to realize how such functions react with the Lasrange
multiplier method of wearon allocation. Everett points out (Ref. (1))
the most important consideration, namely that the metlod cannot be
guaranteed in conjunction with non-convex functions such as are represented
by the defended tarset function.

The multipliers essentially equate to the partial :lerivatives of
the payoff function at a point and, as a consecuence, it is impossible
to determine unicue ,Xihin a region where a plane tanegent to the payoff
intersects the payoff function at some other point. The derivation of
this necessary condition follows from the statement of the Lagrangian.

3+
As has been stated previously, an optimal! solution, X 1is one such

I I
3 - 3 *
te . H(X) + z AG () < HX) + E A6, (X) (B-3)
i=1 i=1

for any allowed value of X.
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!3 b
g

: I This is equivalent to

I
¥* 3 #* ,
H(X) 2 H(X ) + E xi[ui(x b= oi(x)} {(R-)
i=1

But, the right hand side of equation (B-4) is nothing more than the equation

¥
for an "I" dimensional plane of slopes >\. passine through the roint

o 3t ¥

r" H(X ) when X == X . Thus, if equation (B-3) can be satisfied, there must
r\ be no X which results in a payoff less than that described by a plane

-

tangent at Xw. In a region where the payoff H(X) is a non-convex func ion

T
= ‘T
L

#*
of Gi(X), it is not possible to use the Lagrange method to find an X

A

3 ¥
which leads to a Gi(X ) = B, while minimizing H(X) since there is no o3

o

which satisfies equation (B-3) in such a region.

D)
»

RO S

N . kY
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ot
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Slope = A*

l“’..l '.[s‘*.‘ b
H(X)

AW

Slope = )\ ’

A s 8 a

P e e e o — — —

I e e e e o e e o i w— —
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G(X)

FIGURE B-2 A MNCN-CONVEX PAYOFF FUNCTION
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For example, consider Figure (B-2) which ‘emonstrates a pavoff
function, H(X), as lerenient upon only one tyre of resource, G(X). In
the region where Alé @(X):_Az the function is non-convex ani a rlane
tangent to the function, e.s, at Ay, intersects tte H(X) function at
some o her G(X). If A were set equal to the slore, Ay, and the
multiplier method used, the sclution obtained wouli be the one which
satisfies equation (B-3) and it is at G(X) = AL’ since that taneent
does not intersect the payoff at any other resource level.

This limitation concerning the defended target damace function is
not as seriouc as might be thought. Consider the problem of allocating
weapons to a target where the damage function is non-convex. As is

3

represented in Figure U-2, there is some number of wearons, N , which

ideally should be the minimum allocation if the target is attacke? at all.

e
Tan

PK(N)

Dam=zce Function

Number of Wear~sns Allocated - N

FIGURE B-3  NON-CONVEX DAMATG= FUNCTION
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; é;: The reason is simply that the averare payoff per wearon allocated is lecss

ij tran the maximum possitble if N«(N*. (The N% value is that one represented

ﬁi by the tangent point of a line from the origin to *he Aamage function.

?S This tangent line determines the allocation which results in the maximum

S

- attainable average rayoff per weapon.)

F! If the attacker has any choice, he will attack at least to the N{

= level, if he attacks at all. Thus, the precise shape of the function
3 3

for NN 1is unimportant as long as N 1is still the voint of taneency.

More specifically, the same allocation would result for any rayoff

!
function PK (N) such that

! % *
PK (N) < Eﬁ . PK(N') for N N (B-5)
N
:ﬁ and
o s 1 #*
l "y ] PK (N) = PK(N) for N2> N (B-6)

'
In other words, as long as the new function PK (N) has a rayoff equal to

or less than the convex approximation to PK(N).

R

Following this line of reasoning that says an optimized attack will

avoid non-convex payoff regions as far as possible leads one to the idea

. e P 3
‘.'.‘.A

Ya“e'a

E‘ of using only convex payoff function approximations. If any given payoff
<,

> function is non-convex and a convex representation is used, errors will

. result only for those targets where an allocation of N < N* is chosen.

R In turn, this will occur only for the one target of a class where there

3
is not enough weapons available to achieve the more preferred N 2 N

allocation.

Accordingly, the method used in tris prosram is to determine thre

exact non-convex payoff function for a defended target an? to tren




. IV-B-6

optimally allocate on the best convex arproximation to that function. If

all resultant allocations have N 2

* -
N, no error results. In the rare I

instance where N< N, it is possible to perform hand computations to

4
o
3
\

indicate the level of errors resulting.

[

Under the above reasoning, a generalized ..amnge function has the

shape represented in Figure B-4.

T E TaTe n w1

1.0 o _ __ __ _ _—

"4?;;;;;;;hinn Return Region

[4angent Point On Exact
Damare Function

P Y

T,

FK(N)

'
|
|
|
|
I
|
|

~r
.’:_
T N
wearons Allocated - N
FIGURE B-4 CZNERAL TARGWT NAMAGE FUNCTION
Represented is a damage function composed of two regions. First is a
region where each .dditional weapon result. in a constant delta payoff.
This is followed by a region where the return from one additional wearon
is less than the last weapon.
Such a generalized functi»n can be represented by a two parameter
(T & P) family as follows:
N 3% 3
PK(N) ==, *+ PK(N' ) for N< N (B-7)
N
. 3
PK(N) = PK(N) for N2 N (B-8)
AR

el e et AL, - m tm Y a e s M M w4 e oM A e e M _a
PRI I P T L T T R . - _ e T e _.\._" - R T N

o . B « , n - 0, ~ ) \ 'y
;'1;.-))._.;_4(&.41_,; ot --'v---n-------'-'\-- PP T O D TR o W N DN e .A')o")‘_- T T .
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and
PK(N) = 1-(1-?)”‘T (B-9)

where

=
I

Foint of tangency of a line from the origin to
the FK(N) function.

T = A Translation Parameter

I

P A Non-Linear Fittine Parameter
This representation has the special advantare that for point ta--=ts
the translation parameter (T) becomes O. and FK(N) results in the correct

function. Also, for area targets, the linear portion can be fit exactly

while the diminishing return regi~n can usually be approximated auite well

by a 1—(1—P)N type of function.

i

".' '."r)_(l‘z =
ol

In this section, the methodology for obtainine the correct values

of T & P is described. The methodolory includes all types of tarsets,

#2 po>int, area and lcfended, for all possible combinations of conditions,

I‘\

}g such as hardness, area, weapon yield, CEP, defense level, etc. Involved
"

in the methodology are basic program subroutines called COMPK and FIT.

=

T
—“‘ -

r

1. Perfectly Reliable Wearons Vs. Undefended Tareget Damace Function

o

Ly
'

For perfectly reliable weapons against undefended tarzets, Rand

Research Memorandum #RM-27.43 {"Mobile System Survival Against a

:J!iﬁfﬁ}'

Ty

Ballistic Salvo - The Effects of Position Uncertainty and Other

Parameters") gives the "expected coverase" of a circular tarret by

W (=1,2,3,...) optimally patterned weapons. A "cookie cutter"

G HPPRD

tyre of damare is used - thkat is, cach weapon type is assumed to have

e .
Pl '

N R

‘v "o

an associated lethal radius (derending uron the wearon yield and the

v

s A 4
dbm LR
» N
'

-i"—-'.‘f.. 1
e

..................

.......
.........

,,,,,
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Wi
N hardness of the tareet) which determines a circle centered at the
E! point of impact. Total {estruction of any rortion o” the tarret
35
20 lying therein, is assumed. Expected coverace for a roint tareet
-
':a is the probability that at !-ast one lethal cirele .11 contain
-~
the point. For an area target, it is the expected fraction of

) the circular taiget area which will be included in at least one
. lethal circle. (the term "kill probability" -- notation, Py —=
ii is used here instead of expeciad coverare.)

4

Data taken from the Rand report tends to sraph in one of the ff.

o fashions:

-

e

R
P ()
N O oo O
‘ i A
\
L
i I
Py(n\
N o m O
N\
\

L
o W W

Y where, fur a particular weapon an? tarset (abbreviated as wpn and
?ﬂ tgt hereafter), the precise shape of the curve is depenient only
upon the lethal radius-to-CEF ratio and the lethal area-to-tpt area
=\ ratio. If there is a linear poition (as in the second sketch),

I'i its slope is egual Lo ti2 lethal area-to-tet area ratio.

koo Data like that in the first sketch is closely arproximated

by the mathematical form

gs e,
.
-'l'.. 'J

)w

!

P(W) =1 ~ (1-p)7, (B-10) -

-7

where

|
I: 0<p~=l
I

.il
AoRe 2 T e

o

b3
<
.

MR
a
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3
:,;.
S~ . The non-linear data in the second sketch follows
- W-T
E P W) =1 - (1-p)"7, (R-11)
:L where
- 0<p<1 and T>0.
ﬂn The linear data behaves as was described above. If a “enotes the
';: slope of the linear portion and W& the point of taneency between the
~ =
i line and the curve, then all of the occurrine cases may bz Aescrihed
[i' by the set of equations
"
S
. aW for WSW,, and
< P (W) = (B-12)

il = (1-p)w'T for W>W,,

where

0<p<1 and T=20.

The approach used in the development of COMPK was to first
define the kill probability functions for perfectly reliable wpns
against undefended tgts, and then introduce reliability and defense
effects. The former was resolved in accordance with the ff,
procedure:

a) Graphs like the sketches shown above were rroduced from

the Rand revort data for a ranee of values of the lethal radius-

to-CEP and lethal area-to-tgt area ratios.

b) For each curve, the rlotted 4ata was inrut to a comruter

program which produced srproximating T and p values according

to equations (B-12).

¢) The fitted curves were evaluated anid checked for aerreement

K with the input data points.

SRR

=T

. e e e - .« A vy w » ~
AL P ST RO IR DA e |

R ‘ . e e T e T A e,
LT, VR ST, O S P A S A S B A e N 1,

RS




<. IV-B-10

53

» 8 A3
Syl

Dy
B

A

l' “
—~

g q .
o :"1_1_-'1

« & 0§«

.
L

T
N

i

£

R 15

D
v »_a
2"

3 SR

.
—a

d) It was then necessary to relate the T and p rarameters to
the two ratios mentioned above which influence the share of
the PK curve. This was done through a series of fairly com-
plicated curve fitting technioues, specifically tailored to
insure that the functions produced would have correct
properties and asymptotes. The resultine equatinns were
cvaluated over the initial range of values of the ratios,
each time producing values for T and p whick in turn,
specified a unicue curve of the form (B-12). This curve

was then checked for consistency with the original Rand data.
e) Although wpn CEP's and tgt areas constitute a nortion of
the input data for AEM, the lethal radius of a wpn-tet pair
does not. A study* of the problem of computing lethal radii
produced a pair of equations depender.t uron won yield and tet
hardness, one eguation applying to tets whose hardness is
below 48 psi, the other for harder tets.

The process described in a) through e) above made possible a

determination of the kill probability function for perfectly reliable

wpns which are optimally patterned acainst undefended tegts. The

Y
3

P QIRIL e S5 S DA P ~ - R Bl RS M
[ AV R N . Y 8, R0 B WP (- B Ol S A S AT PR wed iy e Wl Al YA Sl T Y S L At e T at et i, TaNart e tar oY

" Based upon data contajned in DIA document #PC550/1-2-£7 (1 September

1963) entitled "Physical Vulnerability Handbook--Nuclear Wearnns."

SRS
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significant variatles are wpn CEP and yield, and tet area and hard-
' ness. Complete details of the rrocess are riven in Appendix A.

2. Effect of Unreliable Wearons

The introduction of reliability into the F, eauations was done

K
in an elementary manner. If the Parameter T in eauations (B-12) is
zero, the tet is small in comprarison to the lethal area of the

attacking wpn -- effectively a roint tet. In this case, the inter-

pretation of the parameter p is that it is the single-shot proba-

bility of kill, since

P(1) = = (1-p)"
=1-1+p
= p.
iﬁ, However, in the less-than-perfect reliability case, the true single-

shot PK is given by the product of the in-flight reliability (R)
times the probability of terminal kill (p), since both of these

events must occur for the wpn to perform effectively. Trus the

—
L e

indicated modification for an unreliable weapon is to define a

A .

A

!
new parameter (p = R.p) which is then used in equations (B-12)

& s

in place of p as the single-shot kill probability.

For an area tet (T>0), the linear portion of the P, curve

K

reflects the attacker's ability to target his wearons far encugh

apart to insure no overlar in the corresrondine lethal circles.

If the wpn reliability is not perfect, however, there is a definite

probability that some of tlese circles will be missing. Thus the

correct modification to the linear rortion in the unreliable case is
Pp(W) = R.a.W

!
--that is, define a new slore (a = R.a) for the line~r part.

- --" -q.‘ -------- ‘. n.- - 1 ‘- - ‘ ‘ - - L - I
T 'S.l._....‘r*:a._a__nm..a}. A-_-JA, T T e M.L.A-;A R A R T P

-------- QS al 0.2 qlq L T Y

% -, %5 SN e s
«a® et et aMat ot A" o o of
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e In order to insure compatibility as T—Q between the point ard SR
I! area tgt methodologies, and in the absence of a clearly defined
[, "
‘.‘“
o, rationale, the parameter p is also modified in the unreliable wrn --
“«: '
ﬂ: area tet case in the same fashion as above (i.e. p = R.p). A new
- 1 1
i. translation (T ) and point of tangen~y (wT ) may then be solved for
1 !
5 directly, as a function of the transformed slore (a ) and p :
K ' ]
a
1-1n | ————
_1.’ + L=in QQ-p ) _J_ \
; J for a < -1 -
t
T =
0 otherwise
!
1n —a__'___
T' " -1n (1"p ) R
' fo a'<- 1In (1- ') W
In (1-p ) r P
1
and WT =
4 0 otherwise
The resulting curve. although it is only approximately correct in the
area tet case beyord the tangent point, produces PK values which
may be checked rdinc Lo the more detailed theorv ‘escribed helow
(by letting :he defense effectiveness arrroach zero). Tris com-
parison has been performed several times with the result that the
approximate values have not 4iffered by more than 3% from the exact,.
(A sample is found in Appendix B.) The main reason for continuine
to use the approximate method 1s that considerable savine of
computer time is reoalized,
3. Effect of Reliability and Defense .S
-:-n.:,

The development of a capabilit; for modelline a nation's

£ et m oa = - .® .

<o LT ¥ TP Pt TR SRR S N T R m T N Tyt~ IR Y -
A A S N o N R A ) Y v y ) YO ™ YRR G IR E R I A P TS N B LR P P L
PRI LA T B LRI T W A R TSR R, .\L&i\f@.\&\‘.&‘.\ﬁ&&.’\.~:‘_*.‘_3.1».‘0.1 I T T Syl Tyl Al Pl Sl Sy WAL SRR S
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defensive strength and accurately describing the impact 2 That

iefense on the outcome »f 1 st ratesic wir v e | Tl e T tod
a task as the actual lefense yroourerent, fre ot renae |

the last wove insofar as wpn allocation 1 itback Limine s enn-
cerncd, ite defenre nmust be as versalile qu poosible in orler to

be capable of dealing with the myriad forms which a sovhisticated
offensive txreat may assume. Area vs. terminal vs. roerimeter
defenses, ICBM vs. bomber !o¥ences, ant civil deTspse are some of
the identifiable components of a versatile natiomal lefense in

the nuclear age.

Subroutine COMPK deals with terminal Hdefenses only -- ABM,

primarily, but with some AAA capability. Tt is assumed 'hat an
) attack bty a ballistic missiie on an ABRM-defended tgt may te
- |
characterized within the scoyre of the ff. descriptors:
2, Attacking Wpn
1) Reliability
2) CEF (n.mi.)
3)  Yield (MT)
4) Number of decoys ~er whd
b. Target
\ o2y
1, Area (n.mi. )
2) Hardness (psi
c. Defense
1) Number of AM:
2) Probability voaisitiorn.
3) Probability «f Tiscriminatinn
o™
.\ . > . . .
- L) Single-shot Frorability of Int. peecvion
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d. Tactical Options

(The tactical situations possible will be described in

7
v

:i: detail later.)
Q} One of the first things done in the program is to reduce the input
g. .

number of AMM's to an effective number reserved for whds:

o~ %

%{ Let N = input no. of AMM's

NE = effective no. of AMM's
. d = decoys/whd
EE Pp = prob. of discrimination

UFP = undiscriminated objects/whd

It is assumed that

i\ =1+ (1-

1% UFd =1 + (1 pD)d

v PARE
hl that is, that the probability of discrimination applies to recoys only. g
= Then

o = N

L Ng = orp

% gives the expected number of AMM's available for whds,

.\‘

x For each of W attacking whds, the ff. outcomes are assumed

~“'

é; possible:

= a) unreliable

- b) reliable, .ot acauired

o

:4 c) reliable, acquired, not intercepted

123

i d) reliable, acquired, intercepted

{: unless the defense has been exhausted or Aestroyed, in which case

;l the possible outcomes reduce to

Fj‘ ~
KX a) unreliable, or e
& b) reliable.

s Ty
- o

R R B SR I S R I
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- These events form the basis for the detailed method~losy referred

T
»

to previously, since it is roscible to enuncrate trose combinations

~
e of the basic events which contribute 4o teot destruction, eomrute
o their probabilities of occurrence, ani comrute the axreeted tarcat

1amaze resulting given their occurrance, In this way, an over-

3

all exrectel damage, FK (W), is nrodured for a ~iven value of W,

(S
3

)
o

5 0
4 a_ s

(The arcuracy of this methodology is decraded by a

et unresolved problem - namely, to Yefine the
y v,

/ l v’

)
o Vea

expected tgt damage wren 5 whds, for examrle, are

‘e e
L,

optimally patterned and 3 renetrate. At the present
time, COMPK assumes that the expected damare is the
same as that which would obtain if the 3 penetrators
é:é were ortimally patterned. This 2ssumrtion results
in a slirht overestimate of the true expected damace
in those cases where the optimal aim roints do rnot
all coinci“e at the center of the tet.
However, there is in opcration a separate IBVM
1130 version of CPMPK which facilitates - with a
minimum of reprogramming - the study of other, non-
optimum damage functions. So far, no acceptable
alternative to the damase computation used in C@MPK

has been found.)

Currently, a choice of three tactical situations is possible
via tre input (integer) variable NDYC. 1If 'M@C 20, the rroeram

recards the attack as occurrine seauentially in time. It is

Dt
PR

»

>

2!
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assumed that the defense is eliminated by the first penetrating
whd, the only f .ctors rreventine succeeding whis from accumulating
further damage being their unreliability or the fact that total tet
damage has already bLeen acricved, It is further assumed that the
defense is unaware of the extent of the attack.

In addition, if NDZC > O, the defense has decided to assien
a constant number (namely, ND@C) of its NE available AMM's to each
visible whd until defense destruction or exhaustion occurs.

If NDFC = 0, it is assumed that the defense chooses its
successive AMM assignments according to the Prim-Read doctrine
described in Appendix C, until the NE AMM's are depleted or the
defense has been killed.

The tactical situation is quite different if ND@C <O is
specified. In this case, the program assumes that the attack
is in the form of a simultaneous salvo of W whds, where the
defense does kncw the extent of the attack, and cannot be killed,
It is further assume’ that the defense allocates all of its NE
AMM's uniformly (inscfi. as is possible in integers) to counter
the attack. This situation gives the defense all of the
advantages, since it can't be killed and does the best job of
allocating its AMM's.

If the recal situation is that the defense's command and
control system can be overloaded by achievine simultaneous arrival
in the tzt zone - that is, if the defense can only hanile a limited
number of AMM intercepts simultaneously - then the farut number of

AMM's (N) should be reduced accordingly when NDFC < O is input.

........
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\ 4., The Computational Proceduras For Various Tactical Situations
4;‘ a. Sequential Strike e
SE: Let Pn(I) =  probability that the Nth penetration
!q occurs on the Ith shot (I = N,N+1,...,W).
izz PN1(K,W) = probability of exactly K penetrators
o in W warheads (K = 1,2,...,N-1).
D(I,W) = expected damage given that W warheads
are fired and the Nth penetration occurs
on the Ith shot, i.e., expected damage
= accrued by penetrators N through (W-N).
:l: D1(K,W) = expected damage accrued by penetrators
‘;Z o 1 through (N-1).
- <
X The main calculation is then governed by the equation:
" W N-1
H pK*(w) = Z P (I) + D(L,W) + Z PNL(K,W) - DI(K,W) (B-13)
4 I=N K=1
E? The Pn(I) values are obtained by accumulating the probabilities of
;: occurrence of those combinations of basic events which lead to the
Iii Nth penetration on the Ith shot. The D(I,W) and D1(K,W) values
z; are computed from weapon reliability and equations (B-12), makine
;; use of the optimum damage assumption described earlier. In
-

v
e

order that the Nth penetrating warhead kills the terminal de-

fenses, we must have the following scheme:

- . . - - R TP TR S P SR S
P PR ERPE - . AT W }
P I A R N S Y] SR . AT ] D e e N e
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e I-1 Shots 10 Shot
I-L-N L [ Nth
unreliable reliable penetrators penetrator
warheads acquired

and intercepted

warheads
J¢¥——— non-penetrators - penetrators e
That is to say, there will be some penetrators and some non-penef:ra-
tors, but we must have N-1 penetrators in I-1 shots and the Nth

(-, th
t penetrator on the I shot.
[\ We define Pn-1 to be the probability of N-1 penetrators in
::::: I-1 shots. This probability, of course, acts sccording to the bi-
nomial distribution. Therefore, -
'I;:\ I—l
Ay N-1 I-N
of - - ;
- PN-l ppen (1 ppen) , where ppen is
o N-1
E the probability of penetration for a single warhead.
1::::: We now define L to be the number of reliable, acquired, and
v,
‘\.“':- intercepted warheads in I-1 shots. Because the probability of
several independent events all occurring is
-
R
[_5': p(A N Azf oo \An) = p(Al) p(Az) """p(An)’ we have
=
SN
d L ™y
l\' = ’ = . - -
L Py p(L) | ‘ R:p, (1-(1~-p)
B }=1
- -
s S A S - 3)
4 R pA (1 (1 PI) ) ,t—
:—'_:: § =1 .
$
AS)
e
hy
oy
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where:
PA = probability of acquisition
PI = probability of interception

m, = the interceptor assignment
The remaining I-L-N non-penetrators are unreliable. If we define,

p. = p(I-L-N), we have

a
I-L-N
p, = (1-R)
Thus, combining all of these factors, we have for P, the proba-
bility of the Nth penetrator on the Ith shot, the following:
MIN
Py @ = } : Pg " Pp " Pyop ppen
L=20
MIN r L ( , mj‘-
7 I-L-N| L L 'l 1-(-p)
= 1-R R 1
L=0 . j=1
I-1 1
N-1 1-N
ppen A = ppen) ppen
N-1 ]

where:
MIN = min !I - N, NWUDXk
For those sequential strike cases with a constant assignment doc-
trine (ND@C > 1)
NWUDX ==[igga
In the Prim-Read ca;e (NDOC = @), define mj = # of interceptors

assigned to the jth rellable and acquired warhead.
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5 Here, NWUDX is the largest integer such that m

where the m,'s are determined as in Appendix C.

A 3
E! The second sum in equation (B-13) coasists of the damage

PR

2 accrued by penetrators 1 through (N-1) and the probability of

.-xactly one penetrator the probabjlity of exactly two penetra-

E €@ T tytx
- L AP g

tors, ..., up to the probability of exactly (N-1) penetratcrs.

A A

The e~ .ed damage 18 described by (B~14b). The probability PN1

ataaal

is cai:ulated as follows:

“. l‘ l.. ‘i‘ l- { LS

a4

& an

W-K
W L+ K .

\L+K/\

L
m.»
T-| 1-(t-p)3 g% 1-p 3+
\ I A
j=1

DS

-
'a "2 B By
2
¥
4

y—p—
-’.(

A
a st

¥

¥
PPN

- ]
PA (1 PI)
Assuming that penetrators accumulate damage according to equa-

tions (B-12), the calculation of expected damage from W warheads

1
L

where the Ith is the N° to penetrate, is governed by the equations:

% ﬂ[\L
D(I,W) = R™ (1- R) PK(L+N) (B-14a)
-0\ %)
and
D1(K,W) = PK(K) (B-14b)

---------------------------------
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where L = random variable denoting the number of additional
th
penetrators (after the N )
R = reliability

and PK(L+N), PK(K) are determined according to (B-12).
Defense parameters do not appear in this expression since 1t 1is
assumed that the Ith warhead eliminates the defense.

To avoid the indicated summation in (B-1l4a), two cases are
distinguished. 1If W, i; 1 in equations (B-12), then (B-1l4a) may

be shown to be exactly equivalent to

N-T w-1
D(L,W) =1 ~ (1-p) " (1-Rp) (B-15)
where p and T are the parameters appearing in equations (B- 12).

If W 1, equation (B-1l4a) is rewritten as

T
— (I L W-I-L
DLW = Y. ( RY (1-R) P (L)
f=ot L
/w 1t
+ ! rY (1—R)W'I'LI'PK(L+N)-PK(L),
L _

and approximated in this form.

The first summation is the expected damage due to W-I war-
heads, each with reliability R. This may be approximately computed
via the short-cut method discussed in the "Reliability" section
(above) and exemplified in Appendix B.

The second sum can be viewed as the average value of a func-
tion of a random variable (L), and approx’mated by the function

of the average value (of L). The function here 1s

U T Y, LR S P Cal wt e T ve™
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-
wm DLy - P (LANY-P (L
..:‘:., vL) PK( / K (1 )
)
! and o gverage value of 1 Lls given by
o
- E(L) = (W-I)R.
E{i Thus, .o overall approximation (for WT > 1) is:
['.' .: ' o
o DLW ~ P (W-I) + f tE(L)J

where PK is the kill probability function resulting when the
paramcters of (B-12) are modified by R (in accordance with the
short-cut logic.)

Therefore, for WT > 1:

D(I,W) ~ Py

(W-1) + P, [N+(W—I)R] - P [(W-I)R]. (b-16)

(The IBM 1130 version of COMPK computes D(I,W) in the WT > 1 case e
by the more precise equation (B-15). A comparison of the results
is give1 helow.)

b. Simultancous Strike Case

As unentloned previovsly, the simultaneous strike case 1is
characterized by an unkillable defonse which allocates its inter-
ceptors unliormly (insofar as is possible in integers) to the
visible portion of the attack.

Notation:

NE = (integer) effective number of defenders

W = number of attacking warheads (=1,2,3,...)

J = random variable denoting the number of reliable
i . warheads (0<J<CW) _*
; K = random variable cCenoting the number of reliable and

0 IS
4 &t
ML A

]

acquired warheads (0« K-« J)
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(Then n, = K - N.)

ninimum number of “efenders assirned Lo any vizible
warhead

N
=

K

maximum number of “efenders asciened tn arv visio.e
warhead
number of reliatle and acouired warheads to which

exactly m,. intercertcrs have been assigned

K
number of reliable and acquired warheals to which

exactly m,+1 intercezu o0 Lave been assiened

K

\| - -

Ng - K - my
K

single-shot intercept probability
penetration nrobability for a reliable and acquired

warhead to which mK interceptors have been assiened

M

(1-py)

penetration -robability for 1 reliable ani acquired

warhead tc which mK+1 intercertcrs kave been as=iened

m..+1
h

random variatle denotine the number of penetrating

warheads of the Nk to wnich my intercertors wera

asoirned (0O4nén,)

% iare

R

-
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K = random variable denotine tle number of penetratine
warheads of the N}\’ to whic “‘y* L intercertcrs were
o assirned (OéNéNK)
e J-K+mtN = total_number of penetratine warhe~ds
R = reliability of =ach altackine warnead
N Py = probability of acquisition
e
8 FK = kill rrobability (expected damace) function defined in
. equations (B-12).
'* The detailed expression for the overall expected damare in the
e simultaneous strike case is then c¢iven by:
x ZN LA W-J
Py (W) = R (1-R)
I
J=0""
&
J
J
K \WJ-K
: pA (l_pA/
k]
K=0 ‘"
n
K n
b n n,-n
: E r (1-p) K
n
n=20
Koy
) }-n l/-l P)P\IK—N
NZ:_ A/
B )
SRR C By (J-K4ntN) (R-12)
. K
"" where the values p,.r,r-K an-i .‘.'](, 7f tho two inuermost sums are
"
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dependent on the index K, in accordance with their defiring

h’ equations 4¢ given above.
[ Equation (B-13) is higbly combinatorial in the sense that
- comrutation time incresces astronomically with increasine W,

However, it has been prosrammed for both the IBM 1130 and the
CDC ALOQ for reasonable values of W. (The 1130 version of
CIMPK uses (B-1%) with the restriction W<25.)

By revlacing P, (j-K+ntN) in (B-12) by J-K+n+N, the

. K

e exprzssion becomes the expected number of penetrators (FW)
-..:\

L given W warheads fired, rather than expected Aamace, A

tedious derivation then stows that the exvrrecsion for FW

reduces to:

W
W K WK , o
PW(W) = WR(l—pA) 3 c(K) (HpA) (l-RnA) (B-17) Sy
k=0 K
where, for pI< i
6(0) =0
Ty
= 7 - N -
c(k) = [K(14mepy) - Nppp ] (1-pp)
and. for Py = 1:
o
0 (K& r\E)
C(K) =
N
. K-Ng (K>N_)
? Also, if R = Py~ 1, ejustion (B-19) Further reduces to
2 _ :
i PW(W) = C(W) (8-27)
) e
™) where C is as given above. T
-.J
~
y
A
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The aprarent interpretation of C{¥) is that it is tte
exrected number of reliable ani acnuired renot ritors esiven K
reliable and acquired warheais,.

Since FW(W) is comyutationally feasible £or larce W, the

aprroach taken in the AEM version of CUMFK is to “efine an
approximate, constant probability of penetration (TP) for each
of the W attacking warheads, accordine to the equation

pp(w) = AU (p-n7)

and then compute overall expected Adamare using the anproximate

expression
W
* W I 0 W-I /
ER (W) = E [Pr(wW) J° [1-PF(W) ] + P (1) (p-22)
'-;‘ I - O I i

Thus, the pertinent computations in the simultaneous strike case

»

Leh ) ) , . e )
s are given in equations (B-19), (T-21), and (B-22}, A comrarison
A
Y . . . . ¥,

\ is given below with eaquation {(B-18) PK (W) values.
5. Obtairing T & P Parameters From Damage Functions
¥
In all defense c3ses, after several PK (W) valuss Fave been

ol generited and stored, a further comput-tional ster is necessary
.

b . : :

v in order to present the results in usable form to the AFM main
ﬂ.';
o program.
o3l
!! In genersl, the etfect of defense on the FK function is like
‘. -
O g 2
N that showri in the sketch helow.
2
W
3
‘.'\
)

@
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Py (W)

W

That is, the offense's kill probability is lowered significantly for
low values of W, but this effect diminishes for higher values Aduc
to the increasing chance of defense exhaustion and leakage. This

tends to introduce a concave region into the P, furction which,

K
without defense, is convex. However, as was discussed previously,

the central wpn-to-tgt allocation problem is solved (in AEM) S
through the use of Lasranese multirliers, an ortimization process

which is inherently limited to convex functions. Thus, the final

computational step is to provide a convex arproximation to the

stored PK*(W) values. This is done in sutroutine FIT, which pro-

duces new values for the parameters T and p of equations (?),

which, in turn, svecify a convex function arrroximating FK*(W)'

The final fit is a two-phase prrocess. In the first rhase,

3
those PK (W) values which will be fit by the nun-linear form

P (W) =1 - (L) 2 (B-27)

are identified. 1In the second, le~st squares estimates of the

*_
parameters of (B-22) are obtained for the selected PK (W) values.
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o o ¥
o If NW values of PK (W) have been comruted and stored (i.e., for

W=1, .,NW), the prowram first locates the larvest value of ]

W (=W___) having the prorerty.
max ‘ ‘

for all W =1,...,K\W.

If W =1, all NW points are fit in phase 2.

. max

\ If W > 1, the program restricts attention to trose W<W !

[ max m

»‘:‘- ' 3

o and selects the largest of these (= W ) with the property:

p .

PW L) - B (W) 2 P (W) - P (W) |

ji K K - K 7K |

-7 for all W< W )

< max. !

) 3 .

-i o In this case, the rhase 2 points are chosen to be the [W,PK (W)] b
<7 , L I

g pairs for W=W ,...,NW.
.:‘
bﬁ To derive the rhase 2 least squares estimates, define

(B-2L,
as the function of interest. (Bquation (B-23) is of this form.)
Given n observations, (Xi’ yi), the sum of squares function to

be minimized is

S =Z[yi-(l—qxi-T) ] 2.
1
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For siirlicity, the subscripts will not be carried in the derivation, ]

so that
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st

s =2 [y-(1-¢*") ] ?, .:‘;_I:

3
PR

o ~ I

= 3 2; _1+qx T) "T)qx—T-l

N

.I"i .
PP

237 g T (y-14a™ ) = 0

o T
% COUTAOR D

A1 -. ‘;

1

P xq  N(y-14a"T) = T g T (y-14g*T)
A

]
Prleln ]

¥ [

95 = 2 ¥ (y-1+" )" (10 a)

-.4_ ) . ) ZqX—T (\y—l+qx—T) = O -

”T) = (Q,

and z:qu-T(y~1+qX

Define

Thus
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=
K T
L Zox(qx—q y)=0
[ |
n:“: t
" and qux(qx—qu ) = 0.
Y )
o . ‘ )
Zqzx = qT qu.v (p-2e) |
ard qu = q __,Xq y ‘.
j
X\ 2 - X\ 2
2@ - 2.x(aM)
x_! x !
Zq ¥y qu y '
X\ 2 X\ 2 :
2@ 2x(@) .
x ! Z: x ! * .
. ay XqQy
<7 ,
- At this point, the Newton-Raphson iterative scheme (Arrendix A, eqn. 25)
& is used to solve ]

F(q) =A-% (R-26)

= T(q%? |
2%y

> x(q%)? f
1
= 2 xqy .

. .. BRI ., AR LA .- e -
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- The derivative of F with respect to q is

' \ 1 1 1 1
: P'(q) = BAZAB _ DC 0D
h:‘ D B < D

where

et
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a BrX_4. 2 -7
: ! ] q ! a, or
™ Fq) = 2 - 2 ’
[. B D)
o
e
ull ' 2BC - AD - 2DU - G
e o) = = [ Lo A0 - ’} (8-27)
o 4 B D*
:Eﬂ where A,B,C,D,U and V are as defined above. The iteration eguation

is then
F(qK)

F'(qK)

Qe = U (B-28)

usinz (B-26) and (B-27), and, ucon convergence, equation (R-25) yields

the expression for T:

".-.d
[Zq?x]‘Tlno +1n[zq ]
InA=7(lngqg) +in3B
ln A -~ 1nB
= e B-29
E Ino (B-29)
The final results of this process are estimates for the parameter.
T and p (= 1 - q) of ~quation (B-23), whic.a then uniouely determine the
equation (B-12) kill probability furction used in AEM
Examples
Firures B-5 and B-6 give exarrles of the defended tsrget com-
%
prutations. Figure B-5 dericts the FK (W) values produced fcr varicus
i tactical situations (identified by NDAC values). The solid curvex
o
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Xﬁ'&.x'\(\_fh- " '-1 )\."' - ‘-'_..A;-l -(_-.\.’i-t}’\\-!dmau‘d‘.};};m‘-“ ..li-";i_!n. - -l} & o ‘\ LS "T"‘)'- .




-
-
[

Nag

-

X

‘s!:‘h

-

"o

Qs
o
. .
R.- ) 3
= SNOZLVINdWOD LdDY¥VI CQHANZEIC 40 STTIHVXE §-9 FuNHId ~

“ .Ar{l -'f
28 "

R, I

AAEREREAE RN, . 4 WERE RS RPR RURC
» " e T T il & P L
W R T B, e T S . T, D T,




o

(2
hal
t
~~ 5 tr T () m (e} 7 X
et o A _ﬂ M " T i
| m ! !
H i |
B , ﬁ y T -+ .
m m :
_ | | 4
,_ _ | i
, * | _ n
\ + 4 _ = T 7 { -
| m | i
| |
| . !
B T t : .
& , M 1 ¢

e
de
il
|
I

S ! . 4 = | = H_

2BaN _ A

b
]

O
—
LN RNR SRR

(LaLavl GdGNzdas) SSE0CHd ONILIIA 'IVNId dHL d4C SAT4AVXT  9~€ JUNDIJ

TRPGIN

N\
Eard
-9
N,
N

P




S A
‘o LS

N .-
-0

~ IV-B-3k

B
s

e present the IBM 1130 results, wrile the dotted curves are trose

-

obtained by the aprroximate mettods of CIMPK. (In most cases,

i) a. --:

the two coincide to within rlottine accuracy and only the solid

curves are shown.) Fipure R-6 gives the convex arrroximations

3
7

result.ing from the COMPK PK (W) vzlues.

.

o T
§ - XNAre

5o Ti.e ‘nput 4data used were:
Reliability = .9

CEF = .5 n.mi.

‘... RO
- P R

» y e e P
s L AL .

-

!

e Yield = 1 MT

S‘ No. of Decoys = 2

o Hardness = '/ psi

~

- . . 2

2 Area = 50 n.mi.

Q& Frobability of Acquisition = .9

N

Probability of Discriminaticn = .875 -
. Probability of Interception = .9

Number of AMM's = 15§

ND@C = variaole
In all cases, the following intermediate computations resulted:

Tethal Radius = 3.15189 n.mi.

LR/CEP = 6.30378
(L/)? = 62419
T = 42907
= .2197 Initial values for the ecuation (B-12)
p=- parameters (perfect reliability, no
iy, = 1.018L1 defense assumed.)
a = .62420
NE = 12.20000 =

e WA N e N N T M A AR St R L R P L P e [ A P S S a
MATHRR LRI LG RN R O VAT 0, 1R P SR AT AL I T

- nlFxaa
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srle
4

RPSRES

&k

.......

NWUDX =

12

W =1

S
1

18
. 52651
.17380

- 2,71191

a = .12579

J e S i i i O T
EJ -.’ L-,ﬁg‘-' .‘. -\"-._‘..,.‘h -- '.‘.._..-_‘\.'x} .>1

o

:i:: Specific case results:
a. NDIC = -1:
x '
':\_ W = 8
b1 NW = 20
e ™™
L
T = 5.688732
p = .21002 Firal values “or the eaquation (R-12)
i param-ters (resulting PK frnction
,,.' T =] £77
" “T 11.15739 rlotted in Fipure 3-6.
a = .06L9,
A) b.  NDEC = O:
. NWUDX = 11
Frim-ticad Assignment (Modified Method, Arpendix C):
ny = 2, Ny = eee =0y = 1, Nyy ¥ eee = 0]
1
W =2
\v
NW = 17
T = 1.14227
p = .17982
WT = 1.19536
- a = .10822
. c. NDPC = 1:

SATTN

T Vet
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d, NDPC = 2

NWIDX = 6

=
i
~

T = 5,76818
P = 34076

* a4 2 ;
WT = 2,76053

& = 10366

6 Bomber Kill Probabilities

A straightforward adaptation ol all aspects of the above methodology
is used to determine bomber kill probabilities in AEM, with number of
SAM's input as the number of defenders, In this case, the assumption
of optimum damage for penetrators 1s more realistic than in the missile
case, since a certain amount of in-flight retargeting might be possible.

However, there is a basic drawback.

The basic unit penetrating (or not penetrating) 18 considered
to be a bomb (or standoff weapon) rather than a bomber, Contrary to
reality, it is this unit which the program regards as being reliable
(or not), etc., (This 2ame 1ifficulty is encountered {n MIRV-ed
missile cases,) The cifvcl of this faulty conceptualization on the

*
Py (W) values f2 unknown, but believed small,

- N LN L LR L B N IV R I I P
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o C. FORCE TARGET VALUES
delore descr.bing a method for letermin ne force tarset yaneo, i
would bt valuable to review the reauirement ¢ ekl temal fa waa
cussed In Section I, the recuirement is Lo feve!or L rrosrat wioiet will
maxinize the oblective function of e orronent ene v ne Lo = o1 e

in some given scenario. This term "ohlective functin” ecar ohvionev
take many forms but in this proeram it is visuilize?! as a firily of
preference contours which describe osne opronent's relative prefopence

for reducing his own lamave (damare limitation) wien comrared to achiovipe

more damare on his crponent (assured destruction.

These preference contours cannot be built into the moiel tut, in-
stead can be rerresented in the form of an ecuivalent ob’ective of

maximizing:

where:

V02 = industrial value destroyed on tre side hittineg second

l’ 17

e

a_ &

VDl = industrial value destroyed on the side hittine first

»

et
"‘l'l'l

K = side 1 relative rreference for damare limitation

TR

R e S N

b
L

i)

compared to assured destruction.

o
)
:‘.l
“3 . . - . . . . . ~
~:q This objective function can be used in conjunction with anv set nf preferarce

contours in a manner now to he described,

S

oL NN

v
.

The key to use of preference contours is the ability tn derive the
maximum A.D. envelope shown on Firure (2. Tie maximun 4.0, envelopa ird’

cates the maximum attainable assured destruction for an atiainable leye]

of damagze limitation. Tre locaticon of this function in the AN, vs. D.T,
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plane is determined by such items as the resources of each side ani the
manaceme: . Of those resources,
If a method exists to maximize the above objective fuiction for any
given situation, the result must be that roint on tle maximum A.D,
envelope with slope K. This is prnven very easily as follows:
Consider Fieure C-?, which s - visualization of the VD? vs, VDl
function.
Taneent of Slore K —
’ \7/
S
¥
; —~Max. 4.D. Envelo
JD7 ________ S L nve.ove
l
o
o |
=4 l Y
| T
I
l
l
I
|
L |
0
VD,
FIGURE C~-1 ASSURED DESTRUCTION (VD?) VS. DAMARE LIMITATION (VDl) FUNCTION
Now, at the achievement of a solution where VD2 -K - VDl has been
3 $#
maximized the solution VDl’ VD2 must lie on the envelope. This must be
true because for any value of VD1 any companion VD? which does rnot lie
on the envelope could not he the one such that V02 - K - VD1 is
maximized.
#* #* ) . .
Additionally, the VDl’ VD2 pair must be at the unique roint on the
3 envelope with slope K. This is true because the maximum of V02 - K - VDl ,{ff
'25 means
Y
.‘;:
\
:if

Y

LRI R i (8

LT, = a1
I S T IPE IS P Y T E,
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VD, - K - VD, 2 VD, - K VD, (Cc-2)
or

. - # . ¥

VD, € VD, 4+ K [ Vo, - vol] (c-7)

As in the gen=sral laerangiar, the rieht side of equation (C-3) le=cribes

g +
a !lnear function of slope K passine throueb the roint VDI’ VD, wren

IS

3¢
VDl = VDl' Since VD, is < this function for any other value of VDI’ the
<

B
iy

VDi, V02 solution must lie on the max. A.D. envelcpe at the roint where
the taneent has a slope of K. (It is important to note that the ahove
mus’ only be true if the max. A.D. envelore is convex so that the uniaue
taneent point does exist).

Since maximizing VD, - K VDl’ results in one point on the max A.D,

envelope it is rossible to obtain multiple solutions for various K values

h' so the complete envelope can be obtained in a numerical approxima.ion
W form. Thus, given that a program can be developed to maximize the above
o

)
]

simple function that same program is useful for any preference conto i's

’
-

of interest. The development of a generally useful program resolves down

e
e on W
Lol

)

R e Y

to the problem of obtaining one which will max. [VD2 - K- VDl].

-
“

Of the many schemes which mieht be used to maxirize the delta damage,

-
s

y the one chosen for this model is the one that exploits the availability
-
?i of 3 linear value scale oriented weapon allocation procedure. In Part A
- of this chapter such a method was described. That method can be used to
!! optimally allocate wearons to a set of target, where each tareet is

.? represented by a constant value, Vj returned if that tareset is destroyed.
;; To see how such an allocation orocedure mirht te used to maximize
=

!! Y delta damace consider again the scenario of Fiocure 1. 4s R¥D Is setting
'.n -n\'-ﬂ‘
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up his strike he “nmows Wbt values will be testraved for each BIUE industria? -ﬂlf
target he lestr. Trese valusa are an inrut to the rrorsram and nicht be
based on porulatio., MVA, industrial f{loor svace or anv other value cvatem,
However, RED does n t poscess any similar values for BLUE wearons.  Tnstead,
he knows that he w s to maximize the Yelta “amavce,
Also, RED realires that if he did place values on BLUE wearons *he net
effect is a control ve» the allocation rrocedure. That is, Yieb values
on BLUE weapons comy the values on BLUE industry results in hieh
counterforce attacke '@ | result in reduced damare to RED industry when
BLUE retaliates., When tte . ~ron values are low, the oprosit~ «ffect

occurs.
rollowing the above line of reasoning, it appears reasonable to

3
suspect that trere might te some special set of values Vi to -lace on RIUE

weapons such that the allocation procedure is indirectly led to an attack e
allocation which maximirzes delta damage. If such a set of values exists,
it would be necessary to develop an efficient rroredure for finding threm,
In summary, the nacure of Lhe rrocedure utilized in this proeram for
the above is as follows:
STEP 1: Choose an arbit.ary set of values for RED to rlace on
BLUE weapuas.
STEP 2: Optimally allocate RFD wrapons to all BLUE tareets,
STEP 3: Compute expected BLUE survivine weapons,
STEP L: Optimally allecate expected BLUE survivors to all RED
tarrets.
: Make a new set of BLUE weapon values equal to K times
the wearon multiplier values resulting from STET 4 and TR

return to STEF 2. Stop whlen the valua scales eonverpe,



by Jt can be shown that this rrocedure is cuaranteed o fini at east 2 Tacn?
ortimum in t.e man. delta damace furction "ut o ~lotal maximn rarnnt
be guaranteed. However, considerable experionce witt *tba procedyre ba
led to the development of sub-sters in tbe rrocedure which =iriejse tbe
possivility of everlookine global mavima,

To see that local ortima are ruaranteed, concider ‘te rroreiure af

STEF

A9 4]

Just after BLUE surviving wearons tave bteer allocs*ed, STED &
chiooses 3 value for BLUE weapon tarcet ' to te V., K+ A . whore i
identifies the BLUE weapcn type based at tarcet 3. Then, when the
procedure returns to STEF 2, RED's objective ir the wearon allocation

proczdure is to maximize the sum of value destroyed on force tareets

rlus the value destroyed on industrial targets, or

\v4 2 R N,
MAX H = _5_ Vel1- I ' 5. . 1°+‘-!DB (c-t)

3
0

BIUE industrial value destroyed

o
"x1
I

number of BLUE » :aron targets

Vj = value of each wearon target
5l IP = number of different trres of RED wearons
'_l Y

However, this is equivalent to the following:

E L4 -nNs 1+ /0 (!
MAX H VoL, .msk]_ .

- . x e

iy w .._._‘-aq.~-\“ ~~.~<|".-.-.1,\.,2.-‘\-..'. -_“‘..',k
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where:
N, = total number of BLUE weapons of tyre k
Nsk = number of survivors of BLUE tyre k wearons

IB = total number of tyres of BLUE wearons

This equivalence is obtained simply by eroupine all FB

into IB distinct types and sumnine up the total

F I

BLUE weapon tarese‘s

survivors as follows

0 B
I NS, = E X I I S.. (C-€)

ij

“:.: = l =
E;;
s where:

X X =1 if j identifies a tarzet of type K

:.\' X = 0 otherwise
‘l o i.AiA-

But, STEP 5 chose as a weapon value for BLUE weapo.as the amount .

g

;...-. v _ K . A|

N k k (c-7)

)

I‘.‘e\.
ﬁ where

. )\1; = weapon A of the last time BLUE allocated his survivors.

1:;21: Substitution of (C-7) into (C-5) vields the equivalent RED objective of
o

::::‘ IB

a t

o _ + o

2% max E K >‘k [I\.k NSk:I Dy (c-8)

*} k=1

N which is the same as

o

A

- Ig

-‘." ' (C Q)

' 1 + -G

1;_; max E A NS, * Vg

. k=1 T
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where:
z : Xk Tk
- . . . . . *
At STEF 2 this objiective function would be maximize? and some NSk woul A
{,
result. It will now be stown that the value lestproyed on RED by tle NSk
mist be such that the delta damare from the Jast rhase tH> this rhase rmust
not have dininished. In other wor's, that
Vo, "> -k - D, (C-17)
JDB - K VDR Z VDp - K R =
3 - *( * - . .
First, note that the solution VDB and NSK maximize ecuation (C-9), or
IB 7 IB
] 1
S, + V> VD, - K - NS, + ' -
Z /\kmsk e 2 Vg - K E )xkbsk e (c-11)
k=1 k=1

for any other combination of VDB and NSk attainable. More specifically
for the VDB and NSk cormbination resulting from the last set of force

values. Thus

Z )‘ \s >VD Z )\ NS (c-12)

k=1
where:

1
* denotes the new solution resulting from the K °* Ak values

' denotes the last solution
However, at the completion of STEP 4 usine the previous set of values,

there was some accomplished value destroyed by the then existent number of

P - - - R s )
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BLUE survivors. OJince ttose survivors were allocated by the [qcpqnrian

! mettod, it can te saii that

1 1 1 1
2 Vg - VD + 2 A, N5, < Vg - VD 4 A, NS, (C-1?)

V. = total RED ndustrial value

b (;k om0 ¢ BeUE wearons survivine REDfs attack on last
S50 .

bl .Leration

b° o 1

g VDH RED value destroyed by BLUE's survivors
~t

b .

‘x"«:. 1 .

N = op T

L )\k optimal set of >‘k

n Y

. Tris equates to A

i 3 )\l ! N\ !
\J - . ] -1
VD“ i i\Sk \,HR Z ' NSk (C-14)

It carn be said 1l equation (C-14) would hold even when VDR and NSk take
%
on the values ol ’«";K eV ')‘ which are eoine to result from the next

iteration. This meaun t

N

R -

=3
a

"
P -
\I
~
.
“
.

‘
110

Ty
! ! 3¢ t 3
E xk NS, < VD - VDp + E .\k NS, (C-1%)
k=1

Substitution of (C-15) into (C-12) iz possible without changine the

e
a2
lt !.__‘ <.h

.
a

13

..
et

oS
e

AL Fs

B
1 [
inecuality sinc: the S A K NSk on the rieht side o1 equation (C-12) e
k=1

AaTa s

a
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is preceded by a neeative and a number > than A‘ N3, o1g per Tae ne
§ ; e
b 1
that term. Doine so yields
o IE i
.-“.- e 1 3¢ 1 i K
VD, - K - A, NS > vD_ - K | VD, S AL RS (C-6)
e B v k k B It e K
\I'.:": k = l
)
\ This reduces to the desired form which says that the new solution is Z the
A previous solution, or
: . 3 3 - 1 1
VDg ~ K * VD, 2 VD, - K - VD, (¢-17)

The above proof very simply says that use of the )\k from BLUE's

allocation as a basis for weapen target values in REN's allocation is

e guaranteed to not result in a deerradation to the overall objective func-
3 SRR
'.\‘ . . . . v .
" tion. However, it does not sav that another solution which achieves a
-. N
.":’-L‘ .
:u: higher payoff doesn't exist.

As in many other mathematical ortimization rroblems, there is alwayvs
b

.

SN the thought that the corvergence tc a global ortimum can be prartially
B
4 . o e . . .
ﬁ@ guaranteed oy solving a 1c .l optimization . - ~n several times with
o
different starting points. If all of the.. *s converce Lo the same
ADA
i solution, there is some confidence that a glonsl ortimum was found.
I
- In this case such a procedure has been found to work verv well, Tn

0
]

1&1‘:

o’
P

fact, only one solution is generally found if the starting value seales

]
a)
Y
-

for use in STEP 1 are appropriately chosen, Exrerience i-dicated tiat if

.
' U te e e
DA A

"

o a e

a non-global optimum is found the most comman errar is that BIUE Toree

n,
¢

-
4
-’

)

targets were not attacked heav’ly enourh. It has turred out *‘hat 17 ttre

3

<0
.
%
2"s
.
o
3
«
.

starting BLUE weapon values are chosen to be very hich co-paprcd to RIUVE

o

e

(l.l.l
=

2

industrial values (say a 10 to 1 ratio) the process will converge to a

I"'
da

]
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near global maximum in one series of steps through the process,

a. Defense Effoect on Force Values

Before leaving this tople of weapon value seales, it would be

appropriate t. liscuss one
instances, e.g. when attacking a bamber fleet, attack on a target not
only reduces the surviving fcerce by some amount but rlso reduces

5lightly the effectiveness of the other survivors. In such a cace

“he app '~priate value is nct exactly K ° Xi.

For - v-mple, if a bmber fleet has to penetrate an area detfense,

the average

well depend upcn the rnotal number of bembers in the fleet. That is a

pecial case which is important. In certuin

. robability of penetration of one member cf the fleet might

1 1
fleet of" W bembers mignt have a probability of penetraticn of P while

=3
1

1
W= W - X bonbers would have a prcbability of penetration Pt(P . 1In

such a case destructicn of one bomber does not reduce the capability
1
' the surviving force by K ° Ai but it dces reduce it by

r ' |
v, m K l_xi + MU¢J
Where:

71

I

approximate value saved it cne less weapon of type i

survives

A, = value saved because one weapn of tyvpe 1 deoes not attack

i
a target
MUP = marginal vnlue saved becauce ne less weapon interacts

with the area defense 4nd ail the other weaprns which

do curvive nave a probability «f penetration lower

than what they wonld have 1t the weapon was not destroyed




NI s . n " . , e
el MUY = marsinn mpeet S8 tavi RiGe H0V o0 10 Hood BeSBRauigmt nSeEs)

O fntore: It e M GRS s e jrati v (=1 ). Ia
cle fgotor that allowe ¥or cveririce » nelderatl oo the diintion erfeot
E.E present, in random aros: detfenses.
{:' in Secticn w, ranaom micsile and srea defences are presented and
R the basic egustiocns discussed. lhose equuticns relate the bumber (cr
missile) provability f penetraticn to the total number of bonbers
(missiles) in tne attack. Thus, the dilutici fzolor is directly com-
vutable.

Derived in Seeticn G is the method for computing the marginal

impact of having cne more defender. This marginal impact is shown to

be equal t

AV : 3vp, [ P

MUT = Z J P (c-19)
_ 3T, | 9

.""

- A‘-I

iﬁ MUI = marginal value cf having ocne more interceptor
ey

..'\_‘«_‘ A q

Yy J = target subscript

[ = total number of targets

<
o
il

value destroyed on target J under the existing

allccation

vy
[
S A
oAl s

1

approrrliate weapon probability ot penetration

" ,‘l
« ¥
o' a

3
-

D = total number of defenders

Ay - Y

i".’ o

Ry use of thig relationship and equaticns {G-t), or (G-11), and (G-9),

»

1
P

MUIL can be computed.

-
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Thus, it is pcssible tc us

in a given strike (1ikce th

Using the same st L ! ible t¢ dem votrate onad
marginal valne ! ! t Wl 1 le biccet attacking MY,
equates to MUL av Uollowae:

. N
Mug MUT | = ("=00)
Where:
Sy =t tal number of relianble, acquired and undi-criminated

bjucts presented to the defense

e the rand:mm defense marginal utility, MUI,

o second strike in Figure 2) to provide a

R basis for the MUY term in =12, This then leads to a value to place
..“ -\
b
DN on the force target in strike one such that the attack which maximizes
o J a
"a N
?}: the delta will result.
The two compenents ol equation (C-IQ) 2llcw ror the tact that
v
- "'l.' - Ry 3 M 2 al Ay -~ .
af dectructicn <. 1 weap:n causes degradation of the total force etrrective-
oK
o nee¢s due to a dependency cn the total number of curvivors ana for the
fact that not cnly has Lhe foree been degraded but there is also cne
less member in the e~
QiQ In general, fti. v inctunces where this form of a valne is used i
<3 in the random defense envircument., If it is used, however, the con-
SN
N
N vergence pr ‘ 56111 held.
AN
o
2}‘ b. Secondnry Tolta "image Criteria
]
4
= In some special ¢ ses it is necessary to have a capability for using
e
- a secondary criteria fo: .fse situations when maximiz.ng delta damage
L] -
LR
L3 leads to allocations wh e only marginally better than other potential
¢
_— N - . . . . .
e allocations. 1In s the use of a secondary criteria is desirable
n J'. . .
e fcr use to help choose fru among alternate strategies generated in the
.\‘h‘
AN
o allocation process,
A
ql. o
w-_\\
)
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"Ir, 5

This event usually occurs when arsenals are usced wvhich have very

3

(=28

¥

high assured destruction capabilities. In such cases, the delta damage

LA e
l" -
'y A

s

computed may flutuate due to small numerical differences in the stratepy

T
N

"

sets selected and the resulting force values computed. Mor these cases,

X

ES the optimal delta damage normally sought by AEM loses some of its meaning

.

{i since the expected delta damage is scarcely controlled by the initiator.

™ In such a circumstance it would be desirable to improve the consis-

s tency of case results as opposed to improving the delita damage optimality.
é y This consistency can be obtained by means of a secondary criteria which

ff is queried if the delta damage is within a specified range of the maxi-

;3 mum found. The best answer is assumed to be that answer which has the

:; ié; best solution in terms of the secondary criteria that is within a specific
|

- range of the maximum delta damage found. Note that the secondary criteria
4

:f is not an sllocation objective and is therefore not maximized by the

f} allocation process. Rather, the results which incidentally produces the

best result in the secondary criteria is preferred as long as the delta

L

damage penalty is within a specified tolerance.
There are several candidate criteria to be considered. For instance,
an attack plan which achieves the highest OMIT target damage may be

pcreferred if the delta damage is not drastically affected. There are many

criteria of this type which could be formulated which state a prefercnce
between attack plans which result in nearly equivalent damage, However,
these preferences could be directly controlled by use of hedges which

would include these preferences during the plar generation. Since this

PPl W ol - VNN ‘3-3&uf{f./. L

o development is a post-attack ev-luation, to choose between competing attack

plans, we are more concerned with a reasonable criteria for a mere gencral

case,
L .
S N T e T e e O T L W L oot
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There are several causes of delta damage instability. Non-linearities

e

Sl A

»

in survivability effects, retargeting effects, and random defense effects

Gl o ¢

frequently prevent the best delta damage from being found. 1In addition,
if both arsznals can accomplish very high damage levels independent of
the level of any counter force attack, the resulting delta damage is
reasonably insensitive to the allocation. In an extreme case, there is
no real benefit in even performing a counter force strike if the opponent
can still achieve virtually 100 percent damage in his retaliation. In
all these cases it seems prudent to prefer a heavier counter force attack.
This is true if one assumes the retaliation may have en increased uncer-
tainty in achieving the best expected damage if weapon survivability is
relatively low. Note that AEM consideres only prompt nuclear effects ‘
e

and assumes command and control as being reasonably independent by weapon !
type. If all operational factors could be considered, it is likely
that a counter force attack is in reality more destructive than is cur-
rently modeled in AEM.

In addition, delta damage may be the same at more than one level of
civilian damage, e.g., if delta damage is 10, the damage levels could be
50-40 or 100-90. 1In this case the lower damage levels seem more desirable
since the retaliation is more sensitive to the attack plan and the implied

uncertainty of the retaliator capability to accomplish the best plan is

-7 increased.

It was felt that for competing attack plans which result in reason-

oA

ably close expected delta damages, preference should be given to the plan
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having the greater counter force attack. The question then becomes one
of defining a greater counter force attack. Several options are open:
the secondary criteria could be the lowest non-force damage by the ini-
tiator, which implies the highest force attack; or the fewest mmber of
retaliating warheads; or the fewest surviving bases after the first strike,
etc. Any of these could have been selected. However, most inconsistencies
have appeared in the attack on ICEM silos. Since the secondary criteria
is not maximized but is used to improve consistencies over a range of
force options, this was the selected secondary criteria model, i.e., the
attack plan incidentally generated which results in an expected delta
damage no less than a specified amount less than the best one generated
which results in the fevest surviving JCBM's is the preferred plam.
The amount of delta damage which is allowed to be lost to achieve
this secondary criteria is specified by input as follows:
REPTOL = the maximum penalty in delta damage to be allowed while
considering the secondary criteria of fewest surviving
ICBM weapons.
1at us consider a case vhich has the following expected results:

Iteration Delta Damage Surviving ICKMs
1 =106 120
2 20 375
3 (Best Delta) 32 300
4 27 290
5 a1 314

VAN P e P ER - PR R R R X W AL R REACI
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If REPTOL is less than 5, iteration number 3 would be the preferred
attack plan since it has the best delta damage (and fewer surviving ICBM
) than iteration five). If REPIOL is greater than five, iteration number 4
would be the preferred attack plan since there are fewer surviving ICEM's
and the delta damage is within REPTOL of the best delta damage.

This criteria thus forms a stateable bias toward the heavier counter
force attacks. Whether minimizing the surviving ICEM's within a specified
range of the best delta damage provides sufficient consistency will only

be determined by analytic utility of AEM.
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D.  COUNTERVALUE DAMAGE CONSTRAINTS

Even though this program can be used to generate optimum strategies
for any set of preference contours (by use of the K factor in the delta
damage function) there is a strong requirement to be able to find an
optimum solution in one run on the computer without making multirle
runs for various values of K. The best current solution to this need
is the one described in Section I. Namely, the use of K = 1 plus a
maxinmum allowed imdustrial value destroyed on your opronent.

As diagrammed in Figure (6), this objective has a solution which
occurs in one of two places on the max. A.D. envelope. If the location
on the envelope with slope = 1. occurs at an assured Adestruction level
less than the max. allowed level the desired solution is at the unity
slope location. However, if the unity slope location is above the max.
desired A.D. the desired solution is at that location where the A.D., =
max. allowed A.D.

It has been possible to modify the basic weapon allocation and valuve
scale deterxination process described previously so that the desired one
of the two possible solution locations is determined in one comrwter run.
This is ackieved by aprropriate use of the flexibility of the linear
program used to optimally allocate weapons, |

'lorlnlly, the objective of the program is tc maximize delta damare
(VDB -K - VDR) within constraints on weapon and tarzet quantities. The
above desired limitation on countervalue destruction car be viewe! as

another constraint like

VDB -4 WB max. {D-1)

where:

VDb max = max. desired “estruction on BIUS industrial value.
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This constraint will not interfere with the solution if the unity

slope condition is for a VD, < VD and it will locate that point

B max. !

R at VDB = VDB max. if the second location

for the unity slope occurs. Very often this second ccndition is the one

B
with the minimum possible VD

that holds and the program then finds those strategies which achieve
a desired A.D. in such a way that RED has a minimum loss. In the
context of the current concepts about A.D. and D.L. this is a very
compatible statement about the possible objectives of a country.

As simple as this constraint is, it does interfere with the optimum
A 4 iteration process in the L.P. if the solution to be obtained is at
VDB - VDB TaX. To realize how this interference occurs, let us review
the A iteration process.

Beginning with some set of A g 8 set of preferrad strategies are @
found for each target. The L.P. then chooses from amonz those stratezies
the set which maximizes total value destroyed. As a by-product, the L.P.
also produces a new set of Ai which should allow determination of an even
better set of strategies. ‘

At any step in this iteration .t.hc currently most preferred stratecy

*
N

1§ for target j is the one with

1

I [ ]
N
- II i z: * -
min. H in lsu +1 1)‘1"1.1 (9-2)

This specific strategy will improve the answer (Ref. (L) an? (5) only if
the following condition holds

Vy -y 2 N (0-3)
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where:

v j = value of target }

H {n, = minimum solution to equation (D-2)

Aj = target A obtained from the last L.P.

The new item in equation (D-3) is the target A . Remember that the weapon
A's obtained from the L.P. represent the amount of value destroyed which
would be lost if the Ig weapon constraint was tightened by one unit.
Similarly, there are target A's which represent the value “estroyed which
would be lost if the target j constraint was tightened by one unit., With-
in these definitions of A N and A 3 it is easy to understand equation (D-3).

First, consider equation (D-2). The first term indicates the value
surviving on target j if attacked by the atrateg{N:J} . But, those
weapons in the attack must be removed from some other target and value
destroyed must decrease on those targets. The A 4 essentially represent
this amount of value destroyed given up for each weapon of type { diverted
from some other target. (The very definition of 4\1 dictates that this
be true.) Thus, equation (D-2), when minimized, represents the net value
surviving in the total target comrlex if target J was to be attacked by
strategy {N:J} .

However, if target J is to be attacked by this new atrateg{lzj}
the weapons attacking that target in the last L.P. must be diverted
elsevhere. In doing so there will.be a net loss in value destroyed, which
is represented by the aprropriate AJ.

This new strategy for target J will be an irrrovement over the previous

solution unly if the new way to attack target J results in a net increase
in valuc destroyed. That is, if
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oy [ sz 20 A A (-4)
i=1 i=1
I N
Or, if the value “estroyed on target J (VJ - V.j I I sij 1j) exceeds thre
i=1
I
loss Z XiN:J because weapons were shifted from other tareets to this
1=1
one plus the loss ( ‘\j) because weapons currently attackinz this target
had to go elsewhers.
With this visualization of the L.P. iteration process, it is rossible
to uncover the problems associated with the damage constraint (VDB & VDB max. )
If the above process is being applied to a countervalue target, the
question about a given strategy {"i J} being an improvement (as descrihed by @
equation (D-3)) must be expanied. If the damage constraint is not being
mst, then any improved strategy can enter into the solution. However,
if the damage constraint is exactly met, the new strategy must Ao more
than meet the condition of equation (D-3) because no increased delts
damage is allowed on the value targets.
The general L.P. version of equation (D-3) has a form (Ref. (L))
as follows:
n
]
) 2 D by gy (D) (0-5)
i=1
where:
P(X) = payoff from strategy X
gi(!) = level of corn=tvaint i called upon by strategy X s::}

ﬁ; = constraint i multipriier from the last L.P.
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In the case ‘ust described P(X) is \IJ - V\j l I 511 Y and the Si ara the

)«1 when 11 ¢7J and Aj when i = j. The gi(x) = Nij when 1€41 &1 and

gi(x) = 1 when i = j since the strategy aprlies to only one tarset.

In the case when there is a damage constraint, there is one a<di-
tional component of equation (D-5), namely when i = k where k identifies
the damage constraint. When i = k, the zi(x) must equal P(X) since that
is the amount of the damage constraint used up by strategy X.

Now, what is A; when 1 = k? The definition of A;( is the stardiard
one of “the value destroyea :sduction if constraint k is tiehtened by
one unit.” Thus A;‘ will equal zero if in the last L.F. the damare ccn-
straint was not met. In such a case, equation (D-5) reduces to equat'on
(D-3). If in the last L.P. the damage constraint was met, X; will have

a finite, positive value and equation (D-3) takes on the new form of

TV-D-5§

1 I 1
N N
- 1) _ > - i3y 5
v‘1 vJ | l s“ E Ai"u"\g*”g \v.j l I Sy ) ‘\u (9-4)
1=1 fw] {w)
where:

Ak = damage constraint lambda

(There is an obvious physical interpretation of eouations (D-£) nnd (D-6)
like the one for ecuations (D-3) am? (D-4).)

Manipulation of the terme in equat on (D-6) resuits in

1

I
- ¥
ISR W NP I I Syy 7 - E A, 2 A oo

i=1 i=]
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N

Except for the (1 - Ak) multinlier of VJ in this equation it is the same, if
effectively, as equation (D-3). This indicates that when strategies are
being developsd for countervalue targets the optimum strategy is one
that minimizes the Lagrangian, H, for that target with an effectiva value
V=V - A
This result identifies the effect of adding a damare constraint to
the L.P. iteration process. The impact is a very slight modification of
the basic process to the extent that the Lasrangian for the countervalue
targets should be minimized for an effective value V; =Y 3 Q(1- '\k)

rather than for a value of V Given this modification, the process is

guaranteed to converge to opiinal allocations.
Of equal importance is the thought that almost any tyre of constraint
could be added to the L.P. and the lambda convergence would occur as QEE
long as the appropriate process change was identified by the above method.
Other examples of such an application will be described in conjlunction
witl. the description of optimizing a reserve force selection and optimizing
a first strike countervalue strike when it is known that a later strike

on the same targets will occur.
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E.  OPTIMUM RESWRVIC FORCE CHOICE

In one of the basic scenarios that can be analyzed by use of this
model (Figure 3), the side hitting first attacks only counterforce while
maintaining a reserve for future strikes. The preferred reserve force is
designated to be trat one which results in maximum "elta damare if the
retaliation is apainst hoth force and value tarcets as diagrammed in Figure 3.

Several different techniques have been utilized in the reserve force
choice methodology, however only the current, and best method will be
described. The methed utilizes the basic L.P. process plus the by-products
of the multiplier method to determine the optimum reserve in very few
iterations by the program.

Consider RED's allocation problem in his first strike counterforce.
The allocation process he uses must determine the ootimum division of the
complete force into those weapons which are to be used in the first strike
and those weapons which are to be placed into reserve. Additionally, the
weapons being fired in the first strike must have specific targets assiened
to them. These divisions and allocations must be such that the maximum
delta damage results.

Once RED has decided upon a first strike allocation BLUE then can
utilize his survivors to minimize the delta damage that RED is trying to
maximize. Thus, the pure counterforce scenario of Figure 3 can be visual-
ized as a first strike by RED followed by a scenario like that of Figure 1
except with BLUE hitting first. Viewed in this way, it van be seen that
after RED has hit first it ls necessary to go through a force value scale
iteration process for BLUE so that his attempt to minimize the Adelta

damage is roprescnted.
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After BLUE's optimization process is comrleted, it becomes arrropriate

to ask how RED might affect the outcome by strikine differently in his
first strike. If a different RED allocation which does increase the
delta damage can be determined, it would then be necessary to give BLUE

another opportunity to re-optimize the delta damage as much as he can.

By appropriate use of such a sequence of fictitious plays, it is rossible

to finally arrive at a point where RED cannot determine a method for

improving the delta damage and a max-min solution exists.

Consider the use of BLUE weapon lambdas as a basis for the values to

place on BLUE's forces.
lambdas does result in convergence to at least a local optimum in the
delta damage so it would be suspected that for thc weapons RED uses in

his first strike the values placed on BLUE forces could be derived in

exactly the same manner.

To verify this, consider RED's overall problem of optimizing his
first strike in two distinct steps.
which weapons should go into reserve.

protlem is to optimally allocate the first strike weapons.

Assume, first that RED has decided

Given this situation, his only

1
Given that RED places a value of AB on BLUE forces, his objective is

to use his first strike weapons to:

Ip

.
max i )\éj 1 —-[—T SiJNi‘j

=1

where:

ft

i=1

number of BLUE weapon targets

number of types of RED weapons

lambda of whatever type of weanon the 3ith RLUR

weapon is —

(E-1)
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However, this is eauivalent to

18 l
1
max Z )\BK [Nk - M’k‘_‘ W

s

wr.ece:

i
I

- number of different tvees of BIUM w acons

=z
I3

= total number of BLUE wearons of tvre k

=
e
i

number of survivors of wearon typre k

lollowing the same pattern as in equations (C-R) 1o (C-12), tiis ecan be
ol

st.own to be the equivalent of

: u

B
\v 3 < NV Al ’ 1 .
E L
’ Bk NSk = Bk NSk (- )
k = k=1
where:

¥ denotes the current solution

! denotes the previous solution
However, assuring that BLUE is using a Lagrangian allocation which has
found a global minimum Lo VDB -K - VUR, the result of his last allocation

was such that

¥ ! ! ! 3¢ 3 1 3t (E—l )
= . I3 < - K e » 1 +
VD, - K - VD + E /\Bk NS, £ VD, - K * D + E /\Rk NS,

combining (E-3) and (E-4) result in

D - . _>_ : W .oy r’_
v B K JDR /DB K d%

LY ' . .
which snows that use of the /\B for i-erative RIUF “orce vy ues dces reos if

in at least a locat ortima.
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To understand the method for chaneging RED's reserve after be has
ortivized 1is attack for a current reserve, consider the marcinal effect
of changing one wearon from the first strike to reserve.

For the currsnt reserve the wearon has a value as used in the first

1
strike. Tihis value is equivalent to Aﬂm’ the lambia of that wearon in
the first strike. Also, if the wearon was rlaced in reserve ani survived,
it wou'd have a3 value in R¥ND's second strike. This vilue is sauivalent
to A}ﬁr‘ the lambia of that weavon in the seconi strike.

However, the wearon must survive BLUE's attack before it can accumu-
late any value in R¥D's 2ni strike. The probability that it does =urvive
Jerends upon the nature of BLU%'s utilization of tre extra weapons that
survive recause RED has one less attacker in his first strike. It also
ierends upon BLU%'s treatment of RED targets if he knew RED had rlaced
one more weapon in reserve.

This comrlex interaction results in sore net marginal vaiue of the

new wearon rlaced in reserve. The final net value takes con different

ferns depending upon the nature of BLUE's knowledge sbout RED's action.
Assume that BLUE has a launch detection or empty-hole -detecticn

system. Then 1f KED firas one less weapon BLUE will a“d one tareet to

his counterforce system. The net value RED will achieve because he creates

2o a new taroet can be deterrined by comruting a Larransian for this new tarcet,
S By the Lagrangian it can be said trat
o
.
B . T 1
o B v B
G )" . Tim A ' (£-6)
o AV = min . S + .+ N, B¢
T o Y Hnt im Bi im
- 3 i=1 i=1
|
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where:

s

fouglue to nED for tre wearor rlared! in recapve

va'ue of the RED wearon rlaced in reserve

1

%n; woaron A of FIUE wearon type i

S, = rrobabi ity of survival of a tarpet of tyve m when
1811 ' i

attacked by one wearon of tyre i

Trhe final net contributior to the delta damace of this new RYD reserve
weapron musi be the difference between the raln by the reserve wearon
and tiie 1oss because there is one less first strike weapon. Thrus, the
net benefit, AV' of one more reserve wearon 1n this case beccmes

1
AV'=~ AV - Xﬁm

!
This is only approx:mats because the ‘ARi involved in AV are¢ marginal

values which carn change for slight changes in the target structure. It
1

Rl

change for a small change in RED's attack level. The degree of arrroxima-

is also approximate because A might te at such a point that it could
tion is probably very small for a one unit change in the reserve level,

If ELUE does nct have ar emriy-hcole detection system, he mirht have
a bomb iwpact systom which counts the number of each tyre of RED wearons
impacting c¢n him. In such 2 case, BLUE do=s not chanve the number of
targets in his system but instead nodifies the value rlaced on each
tarzet by the probability that » wearon is still at te bhuve, This
value arclies to 2ll bases of o pivon tyne,

It this case, BLUW would roscibly chance his way of atlackine the

o

RED turoets. The net offect can jrain he obtaine’ rv usine the Larraneian.

o tetar
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L Before the extra weapor was rvlaced into reserve, tle net survivine valpe
=
a of all wearans of a miven trre wac given by
- I T,
. . N o

n v H ]
N AV, =~ N | Min A, _kR s, T4 Ao N (7.2)

1 m km Ty im y, R "im
. m i=1 i =]
N where:
>
;- Nm = total numker of RED weapons of a siven tyre
N?H = current number of wearons in reserve for that type

- After prlacing one more weavon in reserve, the sbove btecomes

" (NRR + 1)

1y .
AV~ N | vin | [ A S | L E“ Ao, W (£-0)
2% P M Am ~ N ]- Cim i BRI im T
m =1 i

Thus, in this case, the avrroximate total net benefit of idirne a2 wearon i

into reserve becomes

t
'~ A = - e
AV! & AV, Av1 ARm (E-10)

| - LAF P S

O

T
«'s’a

Generally the ortimum solutions to eauations (E-8) an? (E-9) will be

identical since for any reasorahle values for Nm ani NRR it would ke true that

" e (N + 1)
>\Rm gﬂ ) /\Rrr. N —— and the optimur interer attack stratepy

5

=

m

will not change. In such a - ise {%-10) reduces to

" 1" >‘n 1
B & FSRm Ru ~ “um (B-11)

L
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where:

I, }
B Nm
" - . 1
FS R i ‘ Sim
i=1

= probability of survival of an averace
target of tyre m with th- current r-serv- level,
For the purrose of discussion, assume that t'is last circumstance is
the case. Then it will be arprorriate to rlace a wearcn in reserve any

time AV' is 2 0, Or, if

Equation (E-12) essentially is an indication of tre slore of the ray-

v

off (delta damaee) in the reserve force space. If the relationshir of
equation (E-12) is true, it simply says that a small increase in the
reserve ,orce should increase the delta damaege in R¥D's favor. If
n 1
PS. AL <A (R-17)
Rm Rm Rm R
if simply says that a small decrease in the reserve force should be Ade-
. >\ " \!
sirable. When PS : = for all valuess of "m" the recerve force
Rm Rm Rm

must be at a local optimum.

Oae obvious use of eouations (E-12) and (E-13) is in the method of
Steepest ascents. That is, they can be used to idetermine which wearons
wouid change the delta damare the fastest, a ster could be taken in that

" n !

direction and a convergence to 31 new set of ,\um, ?qqm and ALP ntaine:

Tris process was attemrted btut found to re unaccertsanle hecqure »F the

SIS = - “..

A T e et T Ta -'\-' LR AP e -'_,:‘_-.‘. -"__- _..-' I
") ¥ o “.meﬂhuhﬁAALMmsdkdndmuﬁ&;A“qmc“cmﬁdL-




difficulty in choosing a ster size. Too small a chanr~e in reservs force

numbers caused slow conversence while larese chancos caused instability

T in the solution.
(e A satisfactory wettod currently n use is one which internally

chooses a ster size. This mettod is based on the idea that R"D's first
strike objective can be stated to be to raximize the sum of the value
destroyed on BLUE forces plus an estimated value “estroyved on BLUE value

tarcets by tis reserve force. In mathematical form, this is equivalent to

IB IR
W" max Z )\ék N -Ns [+ Z Ps;m - )\;m Nppo (5-14)
08 k=1 m=1
.:E where:

NRRm = numter of RED tyre m wearons vlaced in reserve

" 1"
FSRm © A . hest estimate of value destroyed by sach RED
reserve wearon

If this is chosen ss RED's first strike objective, it will cause the se’ ec-

o tion of that reserve force choice which comes the closest to a case where
2 I | | o .
XN PS - A . A . (It is not always rossible to achieve {bis eauality
R Rm Ry ST ‘

e m i nm

-~

‘.‘“ . .

-f for each wearon tyre because of the integer constraints. )

[ In this obiective RED would allocate all his weapons, rather tran

only the first strike wearons assumed to be allocated for the obtjiective

N of anuatizn (E-2). The concent »f allocation tere thus includes 91loca-
4
)
% tion of wearons Lo Largets and a'location of wearons to a reserve block.

) In ecuatizn (E-14) any wearon can te allocated o~ reserve at an estimated

" "
payoff of PS"; ) AIQ or .t ran be alloca'ed to a Ciret strike, 1If
A Ym
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el allocated in a first strike, the ravo"f is in t s of 2 reduced VS
The ojtimum talarce is the one where 3131itisnal wearons iced in reserve
bring less ravof{ than tie same wearon fired i= *be fipst strike.
Considerable exrerience witt this method ' “own that convergence
to the correct general reserve force magnitude usually does occur,
However, in constrast to the value scale convergence techniques, it is
not possible to prove finite convergence to a local optimum.
To understand why finite converesence is not cuaranteed, consider

the following. First, note that after RED's allocation of his rrevious

reserve force by the Lagrangian metlod the followine can be stated.

1 I

! i 1 3
- E 1%
VDB Z >\R'n NF{Sm >‘R RST. (E-15)

m=1 m =

f=o)
=o)

RSm = RED recerve force survivors of tyre m

i =R . i Fe
With NRSm ASR_n NRH and the assumption that PSRm does not chanrse we can say
" n 3 ' 3t 1
z - N 2 1 - (F-
ARm pSR:n (NRRm I\RRm) - JDB VDB (E-16)

"

"
which indicates that use of APm . PSRm leads to an overestimate of the

! 3% '
change in BLUE damage, VDB to VDB, when a reserve is chaneed from NRR*n to

Hi
N . Fossible chanres in FS make the estimate evern more opti~istic
RARm Rm :
"

since increases 1n the recerve renerally reduces H'tn'
AL

By a sirilar use of ecuation (E-4), it can te shown that use Of}‘nk

as a value =2st . mate for BIUE forces lenlds to arn uniderestimate on the

ORI B, Fo o
‘-'-'

T -,,-1‘ . ‘v .
NN T A -Ll_.l }_&_A Jum.a e Al el e
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effect of changing the first strike weapor allocation. But, eauation
(E-4) avrrlies to a static RED situation and not one whepe RIUE'g

t-rgets are changing. Titis chanrine of BLUE tar-ets can bo shown to cauce
overestimates tc occur. Thus, use of this corbined oblective function

has a mixture of ortimistic and conservative factors., Tre net effect
being that there s neo way to puarantee that the orti-istic estimate

of the value of ctaneine the reserve doesn't overshadinow the consepvation

in the counterforce strike rayeff cranre estimate.

Tre method is somewhat self-correcting in the senge that soine from .
one reserve to another results in new estirates for the three parameters
of interest. These new values tend to correct 1istakes male in the

previous chcice. For examrle, if too larre a recerve force is made,

" 1n
both PSqm and 'ARm tend to dror sovewrat which cavses the rext recerve

> 41 *
LA gy

choice to be somewhzt smaller and, thus to corrict the error,

P
Pals

v
s 4

implementation of this concert i5 rather straishtforwari. 1In

"

essence, placing a wearon in reserve is another rotential stratesy in-

o e 4

volving use of thzt wearon. This n-w tyre of "stratropy" invalves use

Pt

PP A

1 1
of only one wecapon of type "m" at a rayoff of FSRm . A‘i . In addition,
! Hm

£i

ti.is strateey does not involve anv "tarret" s~ it does not enter into

L] lrv,lv
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:ﬂ_ any tare~t constraints like the stratercios ipvolvine use 7
the first strike.

Thus, a tyvical RED first strike line.r rroream ot anv ot '
the rrocess ccntains strategies which are candidates for coupnt o roe
strikes plus these special stratecics which repro=. vt}
piacing weapons in reserve. The lambda c nvegaence rroceas nps =gt os
as usual.

A special case of the above is ~ne where RED dasires n~ more than
a specified damare to BLUE (VDB). In such 1 case tte rreaferred res - -ve
is thzt one which maximizes delta 'amare unier the max. VUF constra‘nt,

Since all damare to BLUE is done by RED reserve weapcns, this amounts

to the placement of a constraint on the size of the RED reserve. Tnis

. can be achieved by adding the follcwing constraint to the lst strike I T,
=

R
" " 3¢ * " it 1 '
oled . o N s o . 1 -V
Z “pn ARm l\‘RRm L FSRm ARm NRRm * mB max. "UF'
m=1 m=1
where:

* denotes new reserve choice

' denotes last reserve result
K VD = max. allowe”d damage to BIUE
. B max.
- ' ‘ _
it If VDB < VDB R after the last recserve fo ct2ice, this con-
=) HUSH Y
r: straint allows only enough a!diticnal weapons to tecome recerve =uch that
-\ . . . J - .o . .
-, the desired damase is exactly met. If JUE > Vg L will indiente
- that wearons must te re-oved fron Li: reserve,
“
& s It is interssting to note that tris corstraint 1s used to advantaee
. zven when there is no srecified iirit on BLUE lsmare. I such 3 cnoe




VD is set equal to the total >f all ZIUE industrial value. Tren
B max.

the above constraint tenis to reduce tie vossibility that an o~verly

larre reserve 1orce is ever choesen an?, thus helps eli~inate axtreme

swinrs in the roserve force clolces.

This discussion has been coniuctel as if the est'Tated net benefit

of one m re reserve weayon is riven b eguntion (B=12). However. the

- mettod is exactly the same for rayo”{c as indicated by eountions

!l (E-7) and (E-12). The cnly chance is t» use the arrrorriate A7 in

" " ) .

Fas rlace of FS N in the process just described,

A Rm Rm

-“‘

» It should also be ncted that t'ie method conceivably cou'd be used
‘. for rarid convereen~e to a reeion near an ortirzl reserve forece, Then

another metind could te us2d t2 retine the s-lution. Howaver, tries hasg

£ not arypeared necessary on tte few cases to Jate- where comrlete convercence
did not cerzur.
- A variant of thc above method has also been tried and fou.d to add

some degree of stability to the process. In this vaviant the estimates

1) "
for PSRm and \ R are separated and dealt with on an individual basis.

d in

.

o This separation occurs as follows,

.‘:.

.. 98 o - " : " s b o .

s First, remember that the "strategies' that went into the T1' were on
b3

-.* the basis of one reserve weapon type "M" always attaining a payoff

:~-' 1" "

) of PSRI . A R This linear payoff estimate falls apart for large chauges
Rs? n L

in reserve force and a better approach is to insert rea: strateties for
the reserve weapons cn the third strike targets. That is, indicate how
- miany reserve weapons will achieve what level of damage on which third

strike targec,

RNV AR
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3 thes Llate e Y muted g, iy Lot ! e thi
3
RS Cratevies tor the tirst stribe | WE At vputed. However, stnce
he peserve weapoen ms, Fuive b veond st e Plack, th Hewing
tod ai i Ifw:l;i‘ liolas:
- W ;
L m .
';\I,\ e (L'lg)
K PS
O
Rm
where:
W = number of weapons going to a given tarcet in
S
o strike 3.
oo
.‘\ ~ . .
N wa = number of weapons which must be placed in
e n
=
o .. reserve in order to have w,3 weapons available
’ - m
Vo by
¢ . .
for the third strike stragety.
It is Wr that is inscrced into the specific third strike strategyv.
i ‘
The net effect »f this varian. is that true strategies are generated
in the first strike LP for all first and third strike targets. However,
I.|
K the number of weapons which must be held in reserve for each individual
IES third strike strateuy is computed by the use of (E-=18). Thus, depending

"
upon the value for PSRA, a given third strike strategy might use up
m

rl .:’. “

< considerably more veserve weapons thuan another strategy which uses n
-
z: difterenc weapon witih a difterent survival probabilitv.
]
W This approach removes the linearity assumptions inherent ia use of
s .
b .
'S the N . It deoes not reduce the problem of covrectly estimating PS,
. T
] however., Bstimate of that factor thus is the key issue in this optimal

p—
4w

5]

L

. X reserve force methodology.
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F. MUITI-STRIKE WEATON ALLOCATIONS
Deronstrated in Fioure (L) ie arctber aepecial scenario whict can be
analyz>d by use of this mrdel. This scenario was ‘eaiened to o low

analysis of the special ~ase where RED attacked both counterforce and
countervalue in a tirst strike but BIUE launches 1 r-taliation before
ail RED weapons are taunched. This allows both sides teo attack connter-
force one time. In this case, the rrorsram does not ortimize a re=erve
for RED (since it obvicusly would be a zero reserve). Instead there

is a sperified RED remainder whi_-h BLUE can attempt to destroy by

counterforce attack.
Tris scenario is a generalized version of the basic scenario
(Ficure 1). If the rermainier is srecified to equal zero, the basic

scenario is the result. However, this scenario contains an ineredient

a not existing in the simrler one,

As RED is setting ur his first strike, he must allocate some weapons
against BLUE industry. [t would be crtimum for RED if he could con“uct
the 1st strike countervalue attack in such a way that the survivors from

L
» his remainder are allowed to perfectly augment his first strike. That
N
-, is, RED should allocate so that the total damage accumulated by toth
-—1 13 . . . . .
% countervalue strikes is maximized. I RED ionores the existence of
v
i his remainder, the first strike nieht be ronducted in such a way that
0

v q . L
i) the remainder survivors couldn't accomrlish much.
‘j There are obvious 71uestions about RED ever being capable of pre-
o dicting tis own survivors. Before such suestions are investirated, it
- is necessary to develor a methodology for RED to use in allocatine ris
p 1st strike assuming he knew exactly what Iis survivors would be, Given
I i tiils methodolovy tihie non-perfect information cace can then re analyzed,
p
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One point of view atout RED's allceat‘on rroblem i= that be Tust
decide which countervalue tareots to l1abel first strike tareots and wtich
to label seconi strike tareets. This s a concent very similar to the
one described in Fart E where RFD pad to label his weapons as first or
second strike weavrous,

Vicwed in this way EED's rroblem becomes one of celelcire a fipst
strike objective whicl somehow allocates wearons to tarests ard tareets to
a first or second strike category. (Given the allocation is actieved
BIUE will minimize the delta damare tc the be<t 5f Fis ability by optimum
use of ris survivors.) The rroblem is to select an objective which leads
to a progressively improved decision about which tareets to set aside
for attack by RED'e seconi strike.

Jne obvious limitation of this tarepet alloc:tion concert is that
RED first and second strike weaprons never attack the same tareet., A
target is eithor attacked in the first or tre second strike cr is not
attacked a. all. This limitation is felt to ve reasonable and no e“fort
has been made Lo avoid it. Some corrarisons have been mate with tle
alternate aprroach of allowine mixed atiacks and no sienificant imrrove-
ment in total value destroyed wae observed.

It can be shown, in a manner sirilar to the 2ne of Part E, th-t if
RED chooses a specific set »f targets to he reserved for his second strike
the use of lambla value scales do lead to ortimization of the delts Jamare,
The basic probler is to show that ‘here is an objective fur-~tion which
will lead to a target labeline which cauves overall moxirization of the
delts damare.

Tre similarity of this rroblem to the ortimum recerve forpee rroblem

extends into the croice of an objisctive func*ion ant the
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N
Y convergence assurance. As in the reserve force i1roblen, consider the
infoimation availible to make a1 lecision ibout the advisaba ity af a
R
- small change in a giventarget allocation. The basic information includes

._'. !

B an estimate of the wearon lambias for BLUE survivors, \Ri’ an? an estimate
of dbkD survivors from BLUE's retaliaticon. Use of ti’s informition can be
utilized by makine the first strike objective

maximize VD__ + VD + VD (F-1)
BF BV1 BV2 ’
where:
VDBF = estimated valve destroyed on BLUE forces
VDBVl = value destroyed on RED's first strike on ELUE
value targets
VDBV2 = estimated value destroyed on R¥D's 2nd strike on
e BLUE value targets
Each of the above terms are eauivalent to
I
1
VD, = Ao (Ng. - NS_.) (F-2)
BF Mps (Mg Bi’
i=1

pak where:

:3 NBi = total number of targets containing RELUE tyre i wearons

N

- NSBi = number of surviving targets with BLUL tyre 1 weapons
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IV-F-4
where:
%&a Vj = value of BIUE value tarret tyre j
N. = total number of BLUE targets of tyve j
= i
!gz Nj = nunber of BLUE targets of tyre j set aside by
5 RED for his 2nd strike
ﬁ FK, = average rrobability of kill of BLUE tarpets »f tyre j
o J
o1 as attacked by RED in his first strike
(2 J
Ry ) n 3¢
Dgyo = vj (Nj) PKJ. (F-4)
J=1

where:
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FK; = average rrobability of kill of BLUE targets of type j
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s attacked by RED in his second strike.
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Usirg this objective results in
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1) A chlioice of which targets should be reserved for RED's second strike.

2} Allocation of RZED first strike weapons to counterforce and allowed
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countervalue targets.

3 Allocation of RED's estimated second strike wearons to srecific
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targets.

This results 1n a balance such that rlacine another tarcet in the second

ft
strike category (N; increased by one) his less pay-off than reservine that

oy .
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P target for the first strike. In RED's first strike, he will choose a
\‘2" 1
o c e q q 9 mq S

~. specific allocation of his wegpons and a specific set of values for Nj

. '—l—.
er,
- 'y

such that the objective function is maximized. The allocation of his

.. ort a d . 3 1 d \ ct, 'Al .
wearons affects tle hSBi factor in JDBf and the PK? factor in /DBVl
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As in the reserve force method, it is not rossible to suarantee con-
tinuous improvement in the delta damace from ster b step. However,
experience his shown that conversence rarely doesn't occur. Tn those
instances w#hen converrence doesn't occur, the ascillation in delta Aamaee
has been very small (a percent or two, at most).

Implement-tion of the above concept is verv straicshtforward. 1In
the first strike of the scenario, the countervalue and counterforce tareets
are all represented. The number of attacking wearons is the actual number
of RED first strike weapons. Additionally, there is inserted into the L.P.
an additiocnal set of co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>