	PH	OTOGRAPH THI	S SHEET		-	
1938	LEVEL				INVENTO	PRY
AD A 95 1 9 DTIC ACCESSION NUMBER	The T	TPRC DOCUMENT IDENT		Seci	es. Volu 1971	ma #
AD		DISTRIBUTIO Approved is Distribut		elegen		
		DISTRIBUTIO	N STATEME	NT		
ACCESSION FOR NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY COL				JUNG	D	
	2 /	(1°)	D	ATE ACCE	SSIONED	
DISTRIBU	TION STAMP	UNANNOU	NCED			
		83	05	18	0 0 5	
	D	ATE RECEIVED	IN DTIC			
	PHOTOGRAPH TH	IIS SHEET AND	RETURN T	O DTIC-D	DA-2	
DTIO FORM TOA			Ī	OCUMEN	NT PROCESSI	NG SHEET
DTIC FORM 70A						

SECTION OF THE PARTY OF THE SECTION SE

T009

938

AD A 951

The TPRC Data Series
VOLUME 4

Vietsiic Eignents and Alloys

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Thermophysical Properties of Matter-The TPRC Data SeriesVol. 4. Specific Heat-Metallic Elements	5. Type of REPORY & PERIOD COVERED Data Book (See block 18)
and Alloys	FERFORMING ORG. REPORT NUMBER TPRC Data Series/Vol.
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
Touloukian, Y.S. and Buyco, E. H.	¥33615-71-C-1182
Performing organization name and address CINDAS/Purdue University	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
2595 Yeager Road	<i>i</i> -
West Lafayette, IN 47906	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Defense Logistics Agency	1971
DTIC-AI/Cameron Station	13. NUMBER OF PAGES
Alexandria, VA 22314	830
Army Materials & Mechanics Research Center Attn: DRXMR-P/Arsenal Street	15. SECURITY CLASS, (of this report) Unclassified
Waterteen, MA 02172	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES TEPIAC Publication (DTIC Source Code 413571) Limited hard copies on Data Book available from publisher: Plenum Publishing Corp., 227 W. 17th Street, New York, NY 10011 Price: \$80/copy. Microfiche copy available DTIC

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

*Specific Neat--*thermophysical properties--*elements--*alloys--*steels--stainless steels--aluminum--aluminum alloys--antimony--arsenic--barium--brass-cadmium--

(continue on reverse side)

The TPRC Data Series published in 13 volumes plus a Master Index volume constitutes a permanent and valuable contribution to science and technology. This 17,000 page Data Series should form a necessary acquisition to all scientific and technological libraries and laboratories. These volumes contain an enormous amount of data and information for thermophysical properties on more than 5,000 different materials of interest to researchers in government laboratories and the defense industrial establishment.

(continue on reverse side)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

19. **EEYWORDS** (cont)

Gadmium alloys--calcium--chromium--chromium alloys--cobalt@-cobalt alloys-columbium--copper--copper alloys--europium--gadolinium--gallium--germanium-gold-gold alloys--holmium--indium-indium alloys--iron--iron alloys--lanthanumlead-lead alloys--lithium--lithium alloys--magnesium--magnesium alloys--manganes ---manganese alloys--mercury--molybdenum--molybdenum alloys--neodymium-neptunium--mickel--nickel alloys--niobium--niobium alloys--palladium--palladium alfoys--platinum--plutonium--plutonium alloys--potassium--potassium alloys-praseodymium--quick silver--rhenium--rhodium--rubidium--ruthenium--semarium-scandium--selenium--silicon--silver--silver alloys--sodium--sodium alloys-solder--carbon steels--chromium steels--silicon steels--tantalum--tantalum alloys--terbium--thallium-thallium alloys--thorium--thulium--tin--tin alloys-titanium--titanium alloys--tungsten--tungsten alloys--uranium--uranium alloys-vanadium -- vanadium alloys -- ytterbium -- yttrium -- zinc -- zinc alloys -- sirconium -sirconium alloys.

20. ABSTRACT (cont)

'Specific Heat - Metallic Elements and Alloys, 'Touloukian, Y. W. and Buyco, E. H., 830 pp., 1970

Volume 4 in this 14 volume TPRC Data Series covers metallic elements and alloys, including 70 elements, 66 groups of nonferrous binary alloys, 36 groups of nonferrous multiple alloys, and 38 groups of ferrous alloys.

830 pages, 1971

\$80.00 (\$96.00 outside US)

Unclassified

From the the second of the sec

U240 . ** ja sittisa ož

3. NONFERROUS MULTIPLE ALLOYS (continued)

Figure and/or Table No.	Name	Formula														1	Page No.
168	Titanium + Iron + Cobalt	Ti + Fe + Co															604
169	Titanium + Vanadium + ΣX_i	$Ti + V + \Sigma X_i$															607
170	Zirconium + Iron + DK;	$Zr + Fe + \Sigma X_i$	•	•	•	•	•	•	•		•	•	•	•	•	•	610
171	Zirconium + Hafnium + ΣX_i	$Zr + Hf + \Sigma X_i$		•	•	•	•	•	•	•	•	•	•	•	•	•	613
172	Zirconium + Uranium + ΣX_i	$Zr + U + \Sigma X_i$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	616
FERROUS AL	LOYS																
A. CARBON	STEELS GROUP I																
173	Iron + Carben + ∑X _i	Fe + C + \(\sum_{i}\) (C< 2, 0u)	•	•	•	•	•	•	•	•	•		•			•	619
B. CARBON	STEELS GROUP II																
174	Iron + Carbon + ∑X _i	$\begin{array}{c} \text{Fe} + \text{C} + \sum X_i \\ (\text{C} < 2, 00) \end{array}$	•	•		•	•		•	•	•	•			•	•	623
C. ALLOY 8	TEELS GROUP I																
175	Iron + Aluminum	Fe + Al .															626
176	Iron + Antimony	Fe + Sb .															629
177	Iron + Chromium	Fe + Cr . (8 < Cr < 25)	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	632
178	Iron + Chromium	Fe + Cr (25≤Cr< 50)	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	635
179	Iron + Chromium + Manganese	Fe + Cr + Mn	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	638
180	Iron + Cobalt + ∑Xi	$Fe + Co + \Sigma X_1$	•	•	•	٠	٠	•	•	•	•	•	٠	•	•	•	641
181	Iron + Copper + ΣX _i	Fe + Cu + ΣX_i					•					•	•	•	•	•	644
182	Iron + Manganese + ΣX_i	Fe + Mn + ΣX		•	•	•	•	•	•	٠	•	•	•	•	•	•	647
183	Iron + Manganese + IX	Fe + Mn + ΣX ₁ (10 <mn≤50)< td=""><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>•</td><td>•</td><td>•</td><td>650</td></mn≤50)<>	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	650
184	Iron + Manganese + Carbon	Fe + Mn + C															655
185	Iron + Nickel + ∑Xi	Fe + Ni + XX															660
186	Iron + Nickel + Carbon	Fe + NI + C															665
187	Iron + Silicon + ΣX_i	Fe + Si + TXi															668
188	Iron + Tin	Fe + Sn												•			672
189	Iron + Titanium	Fe + Ti	•	•	•	•	•	•	•	•	•	•	•	•	•	•	675
D. ALLOY 8	TEELS GROUP II																
190	AISI 420, Iron + Chromium + D	X _i Fe + Cr + 2	x,														678
191	AISI 430, Iron + Chromium + Σ	•												•	•	•	681
192	AlSI 446, Iron + Chromium + Σ	X _i Fe + Cr + 2	x,	•	•	•		•			•	•	•	•	•	•	684
193		Fe + Cr + 1 (Cr < 5, 0	Mn)	+ ;	DY.		•	•		•			•	•	•	•	687

xxii Grouping of Materials and List of Figures and Tables

4. FERROUS ALLOYS (continued)

D. ALLOY STEELS GROUP II (continued)

Figure and/or Table No.	Name											Page No.
194	ron + Chromium + Manganese + ΣK _i	Fe + Cr + Mn + ΣX _i (14≤Cr≤27)	•	•	•	•	•	•	•	•	•	690
195	AISI 301, Iron + Chromium + Nickel + ΣΧ _i	Fe + Cr + Ni + ZXi										693
196	17-7 PH, Iron + Chromium + Nickel + ΣX _i	Fe + Cr + Ni + ΣX _i										696
197	Iron + Chromium + Nickel + ΣX_i	Fe + Cr + Ni + ΣX _i (17-20 Cr, 8-14 Ni		•	•	•	•	•	•	•	٠	699
198	AISI 305, Iron + Chromium + Nickel + ΣX _i	Fe + Cr + Ni + ΣX_i										702
199	AISI 310, Iron + Chromium + Nickel + ΣΧ _i	Fe + Cr + Ni + ΣX_i										705
200	AlSI 316, Iron + Chromium + Nickel + ΣΧ _i	Fe + Cr + Ni + ΣX_i										708
201	AISI 347, Iron + Chromium + Nickel + XX	Fe + Cr + Ni + ΣX _i										711
202	Crucible Iron + Chromium + Nickel + XXi	Fe + Cr + Ni + ΣX_i										714
203	Iron + Chromium + Nickel + ΣK_i	Fe + Cr + Ni + ΣX ₁ (15-16 Cr, 4-5 Ni)	•	•	•	•	•	•	•	•	•	717
204	EI 257, Iron + Chromium + Nickel + ΣΧ _i	Fe + Cr + Ni + ΣX_i										720
205	Iron + Manganese + ΣX_i	Fe + Mn + ΣX_i										723
206	Iron + Nickel + ∑X,	Fe + Ni + ΣX_i										726
207	Iron + Nickel + Chromium + ΣX_i	Fe + Ni + Cr + ΣX_i										729
208	Iron + Silicon + ΣX_1	Fe + Si + ΣX_i										732
209	Iron + Titanium + ∑X _i	$Fe + Ti + \Sigma X_i$				•						735
210	Iron + Tungsten + ∑X ₁	$Fe + W + \Sigma X_i$										738
	-	·										

Theory Estimation, and Weasurement

PROPERTY OF
THERMOPHYSICAL PROPERTIES RESEARCH CENTER

SPECIFIC HEAT

Metallic Elements and Alloys

THERMOPHYSICAL PROPERTIES OF MATTER The TPRC Data Series

A Comprehensive Compilation of Data by the Thermophysical Properties Research Center (TPRC), Purdue University

Y. S. Touloukian, Series Editor C. Y. Ho, Series Technical Editor

Volume 1	. Thermal Conductivity-Metallic Elements and Alloys
Volume 2	. Thermal Conductivity-Nonmetallic Solids
Volume 3	. Thermal Conductivity-Nonmetallic Liquids and Gases
Volume 4	Specific Heat-Metallic Elements and Alloys
Volume 5	Specific Heat-Nonmetallic Solids
Volume 6	Specific Heat-Nonmetallic Liquids and Gases
Volume 7	. Thermal Radiative Properties-Metallic Elements and Alloys
Volume 8	Thermal Radiative Properties-Nonmetallic Solids
Volume 9	Thermal Radiative Properties-Coatings
Volume 10	. Thermal Diffusivity
Volume 11	. Viscosity
Volume 12	Thermal Expansion-Metallic Elements and Allovs

Volume 13. Thermal Expansion-Nonmetallic Solids

New data on thermophysical properties are being constantly accumulated at TPRC. Contact TPRC and use its interim updating services for the most current information.

SPECIFIC HEAT

Metallic Elements and Alloys

Y. S. Touloukian

Director
Thermophysical Properties Research Center and
Distinguished Atkins Professor of Engineering School of Mechanical Engineering Purdue University and
Visiting Professor of Mechanical Engineering Auburn University

E. H. Buyco

Assistant Professor of Engineering
Purdue University
Calumet Campus
Formerly
Assistant Senior Researcher
Thermophysical Properties Research Center
Purdue University

IFI/PLENUM • NEW YORK-WASHINGTON • 1970

Library of Congress Catalog Card Number 73-129616

SBN (13-Volume Set) 306-67020-8 SBN (Volume 4) 306-67024-0

Copyright © 1970, Purdue Research Foundation

IFI/Plenum Data Corporation is a subsidiary of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

Distributed in Europe by Heyden & Son, Ltd. Spectrum House, Alderton Crescent London N.W. 4, England

Printed in the United States of America

"In this work, when it shall be found that much is omitted, let it not be forgotten that much likewise is performed..."

SAMUEL JOHNSON, A.M.

From last paragraph of Preface to his twovolume *Dictionary of the English Language*, Vol. 1, page 5, 1755, London, Printed by Strahan.

Foreword

In 1957, the Thermophysical Properties Research Center (TPRC) of Purdue University, under the leadership of its founder, Professor Y. S. Touloukian, began to develop a coordinated experimental, theoretical, and literature review program covering a set of properties of great importance to science and technology. Over the years, this program has grown steadily, producing bibliographies, data compilations and recommendations, experimental measurements, and other output. The series of volumes for which these remarks constitute a foreword is one of these many important products. These volumes are a monumental accomplishment in themselves, requiring for their production the combined knowledge and skills of dozens of dedicated specialists. The Thermophysical Properties Research Center deserves the gratitude of every scientist and engineer who uses these compiled data.

The individual nontechnical citizen of the United States has a stake in this work also, for much of the science and technology that contributes to his well-being relies on the use of these data. Indeed, recognition of this importance is indicated by a mere reading of the list of the financial sponsors of the Thermophysical Properties Research Center; leaders of the technical industry of the United States and agencies of the Federal Government are well represented.

Experimental measurements made in a laboratory have many potential applications. They might be used, for example, to check a theory, or to help design a chemical manufacturing plant, or to compute the characteristics of a heat exchanger in a nuclear power plant. The progress of science and technology demands that results be published in the open literature so that others may use them. Fortunately for progress, the useful data in any single field are not scattered throughout the tens of thousands of technical journals published throughout the world. In most fields, fifty percent of the useful work appears in no more than thirty or forty journals. However, in the case of TPRC, its field is so broad

that about 100 journals are required to yield fifty percent. But that other fifty percent! It is scattered through more than 3500 journals and other documents, often items not readily identifiable or obtainable. Nearly 50,000 references are now in the files.

Thus, the man who wants to use existing data, rather than make new measurements himself, faces a long and costly task if he wants to assure himself that he has found all the relevant results. More often than not, a search for data stops after one or two results are found—or after the searcher decides he has spent enough time looking. Now with the appearance of these volumes, the scientist or engineer who needs these kinds of data can consider himself very fortunate. He has a single source to turn to; thousands of hours of search time will be saved, innumerable repetitions of measurements will be avoided, and several billions of dollars of investment in research work will have been preserved.

However, the task is not ended with the generation of these volumes. A critical evaluation of much of the data is still needed. Why are discrepant results obtained by different experimentalists? What undetected sources of systematic error may affect some or even all measurements? What value can be derived as a "recommended" figure from the various conflicting values that may be reported? These questions are difficult to answer, requiring the most sophisticated judgment of a specialist in the field. While a number of the volumes in this Series do contain critically evaluated and recommended data, these are still in the minority. The data are now being more intensively evaluated by the staff of TPRC as an integral part of the effort of the National Standard Reference Data System (NSRDS). The task of the National Standard Reference Data System is to organize and operate a comprehensive program to prepare compilations of critically evaluated data on the properties of substances. The NSRDS is administered by the National Bureau of Standards under a directive from the Federal Council for Science

and Technology, augmented by special legislation of the Congress of the United States. TPRC is one of the national resources participating in the National Standard Reference Data System in a united effort to satisfy the needs of the technical community for readily accessible, critically evaluated data.

As a representative of the NBS Office of Standard Reference Data, I want to congratulate Professor Touloukian and his colleagues on the accomplishments represented by this Series of reference data

books. Scientists and engineers the world over are indebted to them. The task ahead is still an awesome one and I urgo the nation's private industries and all concerned Federal agencies to participate in fulfilling this national need of assuring the availability of standard numerical reference data for science and technology.

EDWARD L. BRADY
Associate Director for Information Programs
National Bureau of Standards

Preface

Thermophysical Properties of Matter, the TPRC Data Series, is the culmination of twelve years of pioneering effort in the generation of tables of numerical data for science and technology. It constitutes the restructuring, accompanied by extensive revision and expansion of coverage, of the original TPRC Data Book, first released in 1960 in loose-leaf format, 11"×17" in size, and issued in June and December annually in the form of supplements. The original loose-leaf Data Book was organized in three volumes: (1) metallic elements and alloys, (2) nonmetallic elements, compounds, and mixtures which are solid at N.T.P., and (3) nonmetallic elements, compounds, and mixtures which are liquid or gaseous at N.T.P. Within each volume, each property constituted a chapter.

Because of the vast proportions the *Data Book* began to assume over the years of its growth and the greatly increased effort necessary in its maintenance by the user, it was decided in 1967 to change from the loose-leaf format to a conventional publication. Thus, the December 1966 supplement of the original *Data Book* was the last supplement disseminated by TPRC.

While the manifold physical, logistic, and economic advantages of the bound volume over the loose-leaf oversize format are obvious and welcome to all who have used the unwieldy original volumes, the assumption that this work will no longer be kept on a current basis because of its bound format would not be correct. Fully recognizing the need of many important research and development programs which require the latest available information, TPRC has instituted a Data Update Plan enabling the subscriber to inquire, by telephone if necessary, for specific information and receive, in many instances, same-day response on any new data processed or revision of published data since the latest edition. In this context, the TPRC Data Series departs drastically from the conventional handbook and giant multivolume classical works, which are no longer adequate media for the dissemination of numerical data of science and technology without a continuing activity on contemporary coverage. The loose-leaf arrangements of many works fully recognize this fact and attempt to develop a combination of bound volumes and loose-leaf supplement arrangements as the work becomes increasingly large. TPRC's Data Update Plan is indeed unique in this sense since it maintains the contents of the TPRC Data Series current and live on a day-to-day basis between editions. In this spirit, I strongly urge all purchasers of these volumes to complete in detail and return the Volume Registration Certificate which accompanies each volume in order to assure themselves of the continuous receipt of annual listing of corrigenda during the life of the edition.

The TPRC Data Series consists initially of 13 independent volumes. The initial ten volumes will be published in 1970, and the remaining three by 1972. It is also contemplated that subsequent to the first edition, each volume will be revised, updated, and reissued in a new edition approximately every fifth year. The organization of the TPRC Data Series makes each volume a self-contained entity available individually without the need to purchase the entire Series.

The coverage of the specific thermophysical properties represented by this Series constitutes the most comprehensive and authoritative collection of numerical data of its kind for science and technology.

Whenever possible, a uniform format has been used in all volumes, except when variations in presentation were necessitated by the nature of the property or the physical state concerned. In spite of the wealth of data reported in these volumes, it should be recognized that all volumes are not of the same degree of completeness. However, as additional data are processed at TPRC on a continuing basis, subsequent editions will become increasingly more complete and up to date. Each volume in the Series basically comprises three sections, consisting of a text, the body of numerical data with source references, and a material index.

The aim of the textual material is to provide a complementary or supporting role to the body of numerical data rather than to present a treatise on the subject of the property. The user will find a basic theoretical treatment, a comprehensive presentation of selected works which constitute reviews, or compendia of empirical relations useful in estimation of the property when there exists a paucity of data or when data are completely lacking. Established major experimental techniques are also briefly reviewed.

The body of data is the core of each volume and is presented in both graphical and tabular format for convenience of the user. Every single point of numerical data is fully referenced as to its original source and no secondary sources of information are used in data extraction. In general, it has not been possible to critically scrutinize all the original data presented in these volumes, except to eliminate perpetuation of gross errors. However, in a significant number of cases, such as for the properties of liquids and gases and the thermal conductivity of all the elements, the task of full evaluation, synthesis, and correlation has been completed. It is hoped that in subsequent editions of this continuing work, not only new information will be reported but the critical evaluation will be extended to increasingly broader classes of materials and properties.

The third and final major section of each volume is the material index. This is the key to the volume, enabling the user to exercise full freedom of access to its contents by any choice of substance name or detailed alloy and mixture composition, trade name, synonym, etc. Of particular interest here is the fact that in the case of those properties which are reported in separate companion volumes, the material index in each of the volumes also reports the contents of the other companion volumes.* The sets of companion volumes are as follows:

Thermal conductivity: Volumes 1, 2, 3
Specific heat: Volumes 4, 5, 6
Radiative properties: Volumes 7, 8, 9
Thermal expansion: Volumes 12, 13

The ultimate aims and functions of TPRC's Data Tables Division are to extract, evaluate, reconcile, correlate, and synthesize all available data for the thermophysical properties of materials with

the result of obtaining internally consistent sets of property values, termed the "recommended reference values." In such work, gaps in the data often occur, for ranges of temperature, composition, etc. Whenever feasible, various techniques are used to fill in such missing information, ranging from empirical procedures to detailed theoretical calculations. Such studies are resulting in valuable new estimation methods being developed which have made it possible to estimate values for substances and/or physical conditions presently unmeasured or not amenable to laboratory investigation. Depending on the available information for a particular property and substance, the end product may vary from simple tabulations of isolated values to detailed tabulations with generating equations, plots showing the concordance of the different values, and, in some cases, over a range of parameters presently unexplored in the laboratory.

The TPRC Data Series constitutes a permanent and valuable contribution to science and technology. These constantly growing volumes are invaluable sources of data to engineers and scientists, sources in which a wealth of information heretofore unknown or not readily available has been made accessible. We look forward to continued improvement of both format and contents so that TPRC may serve the scientific and technological community with everincreasing excellence in the years to come. In this connection, the staff of TPRC is most anxious to receive comments, suggestions, and criticisms from all users of these volumes. An increasing number of colleagues are making available at the earliest possible moment reprints of their papers and reports as well as pertinent information on the more obscure publications. I wish to renew my earnest request that this procedure become a universal practice since it will prove to be most helpful in making TPRC's continuing effort more complete and up to date.

It is indeed a pleasure to acknowledge with gratitude the multisource financial assistance received from over fifty of TPRC's sponsors which has made the continued generation of these tables possible. In particular, I wish to single out the sustained major support being received from the Air Force Materials Laboratory-Air Force Systems Command, the Office of Standard Reference Data-National Bureau of Standards, and the Office of Advanced Research and Technology-National Aeronautics and Space Administration. TPRC is indeed proud to have been designated as a National Information Analysis Center for the Department of Defense as well as a component of the National

^{*}For the first edition of the Series, this arrangement was not feasible for Volume 7 due to the sequence and the schedule of its publication. This situation will be resolved in subsequent editions.

Standard Reference Data System under the cognizance of the National Bureau of Standards.

While the preparation and continued maintenance of this work is the responsibility of TPRC's Data Tables Division, it would not have been possible without the direct input of TPRC's Scientific Documentation Division and, to a lesser degree, the Theoretical and Experimental Research Divisions. The authors of the various volumes are the senior staff members in responsible charge of the work. It should be clearly understood, however, that many have contributed over the years and their contributions are specifically acknowledged in each volume. I wish to take this opportunity to personally

thank those members of the staff, research assistants, graduate research assistants, and supporting graphics and technical typing personnel without whose diligent and painstaking efforts this work could not have materialized.

Y. S. TOULOUKIAN

Director
Thermophysical Properties Research Center
Distinguished Atkins Professor of Engineering

Purdue University Lafayette, Indiana July 1969

Introduction to Volume 4

This volume of *Thermophysical Properties of Matter*, the TPRC Data Series, was initiated in recent years and follows the general format of the Center's work on thermal conductivity.

The volume comprises three major sections: the front text material together with its bibliography, the main body of numerical data and its references, and the material index.

The text material is intended to assume a role complementary to the main body of numerical data, the presentation of which is the primary purpose of this volume. It is felt that a concise discussion of the theoretical nature of the property under consideration together with a review of predictive procedures and recognized experimental techniques will be appropriate in a major reference work of this kind. The extensive reference citations given in the text should lead the interested reader to a highly comprehensive literature for a detailed study. It is hoped, however, that enough detail is presented for this volume to be self-contained for the practical user.

The main body of the volume consists of the presentation of numerical data compiled over the years in a most comprehensive and meticulous manner. The scope of coverage includes the metallic elements and most metallic alloys of engineering importance. The extraction of all data directly from their original sources ensures freedom from errors of transcription. Furthermore, some gross errors appearing in the original source documents have been corrected. The organization and presentation of the data together with other pertinent information in the use of the tables and figures are discussed in detail in the text of the section entitled Numerical Data.

It is regrettable that the authors have not yet had the time to review and evaluate critically the extensive data compiled in this volume. However, it is hoped that the user will be able to exercise proper selectivity and discretion among conflicting sets of data based on the extensive information reported for each set in the accompanying specification tables.

As stated earlier, all data have been obtained from their original sources and each data set is so referenced. TPRC has in its files all documents cited in this volume. Those that cannot be readily obtained elsewhere are available from TPRC in microfiche form.

The material index at the end of the volume covers the contents of all three companion volumes (Volumes 4, 5, and 6) on specific heat. It is hoped that the user will find these comprehensive indices helpful.

This volume has grown out of activities made possible principally through the support of the Air Force Materials Laboratory-Air Force Systems Command, under the monitorship of Mr. John H. Charlesworth. In the preparation of Volume 4 we have drawn most heavily upon the scientific literature and hence we feel a debt of gratitude to the authors of the referenced articles.

While this volume is primarily intended as a reference work for the designer, researcher, experimentalist, and theoretician, the teacher at the graduate level may also use it as a teaching tool to point out to his students the topography of the state of knowledge on the specific heat of metals. We believe there is also much food for reflection by the specialist and the academician concerning the meaning of "original" investigation and its "information content."

The authors are keenly aware of the possibility of many weaknesses in a work of this scope. We hope that we will not be judged too harshly and that we will receive the benefit of suggestions regarding references omitted, additional material groups needing more detailed treatment, improvements in presentation, and, most important, any inadvertent errors. If the Volume Registration Certificate accompanying this volume is returned, the reader will assure himself of receiving annually a list of corrigenda as possible errors come to our attention.

Lafayette, Indiana July 1969 Y. S. TOULOUKIAN E. H. BUYCO

Contents

Foreword			•									vi
Preface	•											iz
Introduction to Volume 4												xii
Grouping of Materials and List of F	igures a	and Ta	ables							•	•	xvi
	Theory,	Estin	nation,	and N	1e a su	rement						
Notation			•									18
Theory of Specific Heat of Solids.			•				•			•		38
1. Introduction	•	•					•					3
												38
3. Dulong and Petit's Law .	•										•	4
4. Einstein's Specific Heat Theory									•			4
5. Debye's Specific Heat Theory6. Electronic Specific Heat7. Magnetic Specific Heat	•											5
6. Electronic Specific Heat .												6
7. Magnetic Specific Heat .												7:
8. Low-Temperature Specific Hear	t .											8
8. Low-Temperature Specific Hea 9. Normal and Superconducting N	Material	s										8
Other Major Sources of Data .							•					9
Other Major Sources of Data . Methods for the Measurement of the	Specific	Heat	of Sol	ids								11:
1. Introduction									•			11
2. Nernst-Type Adiabatic Vacuun	n Calori	meter		_				•				
3. Modified Adiabatic Calorimete	г.		_									
 Modified Adiabatic Calorimete Drop Ice Calorimeter 												- 2
5. Drop Isothermal Water Calorin	meter	•										13
6. Drop Copper Block Calorimete												14
7 Pulse-Heating Method		•	•	•	•	•	•		•			14
7. Pulse-Heating Method8. Comparative Method.	•	•	•	•	•	•	•	•	•	•	•	15
8. Comparative Method	•	•	•	•	•	•	•	•	•	•		17
References to Text	•	•	•	•	•	•	•	•	•	•	•	177
		Nı	ımerica	d Dat								
Data Presentation and Related Gener	al Infor	matio	n									19
1. Scope of Coverage					_							198
2. Presentation of Data								•				19
 Presentation of Data Symbols and Abbreviations Us Conversion Factors for Units of Classification of Materials 	ed in th	e Figu	ures an	d Tal	oles							19
4. Conversion Factors for Units of	f Specif	ic He	at									21
5. Classification of Materials .												214
6. Convention for Bibliographic C	Citation											21:
7. Crystal Structures, Transition	Tempe	rature	es, and	Oth	er Pa	ertinent	Physical	Const	ents	of	the	
Elements												228
	•			-	-		•	-			-	

xvi Contents

entries for each															1
2. Nonferrous Bir	nary Alloys	,													291
3. Nonferrous M															511
4. Ferrous Alloys		7/2													619
A. Carbon stee	els-group	Ι.										•			619
B. Carbon stee	els-group	Π.							•	•					623
C. Alloy steels	group I														626
D. Alloy steels	group II		•												678
References to Data	Sources	•	٠	•	•	•	•	•	•	•	•	•	•	•	741
					Mater	ial Ind	lex								
Material Index to Si	necific Heat	Com	nanio	n Volu	ımes 4	1. 5. an	ıd 6							_	A.

THE PART OF THE PROPERTY OF THE PARTY OF THE

GROUPING OF MATERIALS AND LIST OF FIGURES AND TABLES

1. ELEMENTS

Figure and/or Table No.	Name	Symbol																			Page No.
1	Aluminum	Al																			1
2	Antimony	Sb																			6
3	Arsenic	As					•							•	•		•				9
4	Barium	Ba					•			•											13
5	Beryllium	Be	•	•	•					•	•	•	•				•	•	•		16
6	Bismuth	Bi						•							•						21
7	Boron	В		•	•		•	•	•	•	•	••	•	•	•	•	•				25
8	Cadmium	Cd			•		•	•	•	•	•		٠	•	•		•	•		•	29
9	Calcium	Ca	•	•				•		•	•	•			•		•	•	•	•	32
10	Cerium	Ce	•	•		•		•			•	•						•		•	36
11	Cesium	C.	•	•	•		•	•		•	•	•			•		•	•	•	•	40
12	Chromium	Cr				•		•			•	•							•	•	44
13	Cobalt	Co												•				•	•	•	48
14	Copper	Cu			•	•	•	•		•			•	•		•	•	•	•	•	51
15	Dysprosium	Dy	•	•		•				•	•	•			•	•			•	•	62
16	Erbium	Er	•			•					•					٠		•	•	•	65
17	Europium	Eu	•	•	•	•		•	•			•	•	•		•	•	•			68
18	Gadolinium	Gd		•	•	٠	•		•	•				•	•	•	•	•	•	•	72
19	Gallium	Ga	•	٠	•	•	•		•				•	•	•	•	•	•	•		75
20	Germanium	Ge	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	79
21	Gold	Au	•		•	•	٠	•	•	•	•	•	•		•	•	•	•	,	•	83
22	Hafnium	HC	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	87
23	Holmium	Но	•	•	•		•	•	•	•	•	•	•		•	٠	•	•	•	•	90
24	Indium	In	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	95
25	Iridium	Ir	•	•	•	٠	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	99
26	Iron	Fe	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	102
27	Lanthanum	La	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	110
28	Lead	Pb	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	113
29	Lithium	1.4	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	117
30	Lutetium	Lu	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	121
31	Magnesium	Mg	•	•	•	•	•	•	•	•	•	•	٠	•	٠	٠	•	•	•	•	124
32	Manganese	Mn	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	127
33	Mercury	Hg	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	131
34	Molybdenum	Mo	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	135
35	Neodymium	Nd	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	140
36	Neptunium	Np	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	143
37	Nickel	Ni	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	146
38	Niobium	Nb	•	•	•		•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	153
39	Osmium	Os		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	157
40	Palladium	Pd	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	160

xviii Grouping of Materials and List of Figures and Tables

1. ELEMENTS (continued)

Figure and/or Table No.	Name	Symbol																Page No.
41	Platinum	Pt																163
42	Plutonium	Pu			•			•			•		•					167
43	Potassium	K																171
44	Praseodymium	Pr				•	•	•										177
45	Rhenium	Re					•								•		•	181
46	Rhodium	Rh					•		•	•		•					•	184
47	Rubidium	Rb			•		•	•			•		•	•	•		•	187
48	Ruthenium	Ru										•			•	•		190
49	Samarium	Sm					•									•		193
50	Scandium	Sc					,					•			•			198
51	Selenium	Se										•	•		•	•		201
52	Silicon	Si								•		•				•		204
53	Silver	Ag														•		208
54	Sodium	Na													•	•		213
55	Strontium	Sr										•				•		218
56	Tantalum	Ta					•								•	•		221
57	Tellurium	Te	•												•			229
58	Terbium	Tb													•	•		232
59	Thallium	Tl			•							•						237
60	Thorium	Th												•	•			242
61	Thulium	Tm																245
62	Tin	Sn													•			249
63	Titanium	Ti											٠.		•			257
64	Tungsten	w								•								263
65	Uranium	U				•				•								268
66	Vanadium	v					•	•						•				271
67	Ytterbium	Yb				•					•				•			274
68	Yttrium	Y																278
69	Zinc	Zn				•												281
70	Zirconium	Zr																287

2. NONFERROUS BINARY ALLOYS

Figure and/or Table No.	Name	Formula										Page No.
71	Bismuth + Lead	Bi + Pb										291
72	Cadmium + Magnesium, MgCd	Mg + Cd										294
73	Cadmium + Magnesium, MggCd	Mga + Cd									•	297
74	Cadmium + Magnesium, MgCd ₃	Mg + Cd ₃									•	300
75	Chromium + Aluminum	Cr + Al									•	304
76	Chromium + Iron	Cr + Fe							•			307
77	Chromium + Manganese	Cr + Mn						•		•		311
78	Cobalt + Dysprosium	Co + Dy							•			314
79	Cobalt + Iron	Co + Fe										317
80	Cobalt + Nickel	Co + Ni									•	320
81	Copper + Aluminum	Cu + Al										323

2. NONFERROUS BINARY ALLOYS (continued)

Figure and/or Table No.	Name	Formula																Page No.
82	Copper + Gailium	Cu + Ga																327
83	Copper + Iron	Cu + Fe											•					331
84	Copper + Magnesium	Cu + Mg			•			۰,										335
85	Copper + Manganese	Cu + Mn							•							•		338
86	Copper + Nickel	Cu + Ni														•		341
87	Copper + Zinc	Cu + Zn		•					•			•			•			346
88	Gold + Nickel	Au + Ni														•		353
89	Hafnium + Zirconium	Hf + Zr						•	•							•		356
90	Indium + Tin	In + Sn		•														3 59
91	Lead + Tin	Pb + Sn			•		•	•	•								•	362
92	Lithium + Magnesium	Li + Mg					•		•	•						•	•	366
93	Magnesium + Silicon	Mg + Si					•							•				369
94	Manganese + Aluminum	Mn + Al																372
95	Manganese + Copper	Mn + Cu					•				•	•			•			377
96	Manganese + Nickel	Mn + Ni												•				380
97	Molybdenum + Titanium	Mo + Ti												•			•	383
98	Molybdenum + Tungsten	Mo + W								•	•						•	386
99	Nickel + Aluminum	Ni + Al				•				•			•	•			•	389
100	Nickel + Chromium	Ni + Cr							•	•								392
101	Nickel + Copper	Ni + Cu				•						•	•				•	398
102	Nickel + Iron	Ni + Fe				•				•				•		•	•	403
103	Nickel + Magnesium	Ni + Mg											•	•				407
104	Nickel + Manganese	Ni + Mn						•					•	•				410
105	Nickel + Silicon	Ni + Si							•				•	•				413
106	Nickel + Tungsten	Ni + W											•	•	•	•	•	416
107	Nickel + Zinc	Ni + Zn													•			419
108	Niobium + Zirconium	Nb + Zr									•		•	•		•	•	422
109	Palladium + Silver	Pd + Ag			•		•	•	•	•			•		•		•	425
110	Potassium + Sodium	K + Na	•	•	•		•		•			•	•	•	•	•	•	428
111	Sodium + Potassium	Na + K							•	•			•		•	•	•	431
112	Tantalum + Tungsten	Ta + W	•		•		•	•	•		•		•	•	•		•	434
113	Thallium + Lead, PbTl ₂	Tl + Pb	•	•	•	•	•	•	•	•	•		•	•	•	•	•	437
114	Tin + Bismuth	Sn + Bi								•	•		•	•	•	•	•	440
115	Tin + Indium	Sn + In	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	443
116	Tin + Lead	Sn + Pb	•	•	•	•	•	•	•	•	•	•	•	•		•	•	446
117	Tin + Magnesium	Sn + Mg	•	•	•	•	•		•	•	•		•	•	•	•	•	449
118	Titanium + Manganese	Ti + Mn		•	•	•	•	•	•	•	•	•	•	•	•	•	•	453
119	Titanium + Molybdenum	Ti + Mo			•	•	•	٠	•	•	•	•	•	•	•	•	٠	456
130	Tungsten + Cobalt	W + Co		•	•	•	•	•	•	•	•	•	•	•	•	•	•	459
124	Tungsten + Iron	W + Fe	•		•	•	•	•	•	•	•	•	•	•	•	•	•	462
122	Vanadium + Aluminum	V + Al	٠	•	•	•			•	•	•	•	•	•	•	•	•	465
123	Vanadium + Antimony	V + 86	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	468
124	Vanadium + Iron	V + Fe	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	471
125	Vanadium + Tin	V + Sn		•	•	•			•	•	•	•	•	•	•	•	•	474
126	Vanadium + Titanium	V + Ti	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	477
127	Zinc + Copper	Zn + Cu	•	•	•	•	•	•	,			•	•	•	•	•	•	480
128	Zinc + Magnesium	Zn + Mg	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	483

xx Grouping of Materials and List of Figures and Tables

2. NONFERROUS BINARY ALLOYS (continued)

	Figure and/or Table No.	Name	Formula	Page 'io,
	129	Zinc + Zirconium	Zn + Zr	. 486
	130	Zirconium + Indium	Zr + In	. 489
	131	Zirconium + Iron	Zr + Fe	. 492
	132	Zirconium + Niobium	Zr + Nb	. 495
	133	Zirconium + Silver	Zr + Ag	. 498
	134	Zirconium + Tin	Zr + Sn	. 501
	135	Zirconium + Titanium	Zr + Ti	. 504
	136	Zirconium + Uranium	Zr + U	. 507
3.	NON FERROUS	MULTIPLE ALLOYS		
	137	Aluminum + Copper + ΣX _i	A1 + Cu + \(\Sigma \)X_i	. 511
	138	Aluminum + Zinc + ΣX_i	$Al + Zn + \Sigma X_1 \dots \dots$	
	139	Chromium + Aluminum + ΣX_i	$\operatorname{Cr} + \operatorname{Al} + \Sigma X_{i} \dots \dots \dots$	•
	140	Chromium + Iron + ΣX_i	$\operatorname{Cr} + \operatorname{Fe} + \Sigma X_i$	
	141	Cobalt + Chromium + ΣX_i	$C_0 + C_T + \Sigma X_i$	-
	142	Cobalt Chromium + DX	$ \underbrace{\mathbf{cr} + \mathbf{cr} + \mathbf{x}_{i}}_{1} \dots \dots$. 526
	143	Copper + Magnesium + Aluminum, MgCu _{3-X} Al _X	Cu + Mg + Al	. 529
	144	Copper + Magnesium + Silicon, MgCu _{2-x} Si _x	Cu + Mg + Si	. 532
	145	Magnesium + Aluminum + ΣX_i	$Mg + Al + \Sigma X_i$	
	146	Magnesium + Thorium + $\sum X_i$	$Mg + Th + \Sigma X_i$	
	147	Magnesium + Zinc + ΣX_i	$Mg + Zn + \Sigma X_i$	-
	148	Molybdenum + Titanium + ΣX_i	$Mo + Ti + \Sigma X_i$	
	149	Neptunium + Calcium + ΣX_i	$Np + Ca + \Sigma X_i$. 547
	150	Nickel + Chromium + ΣX_i	$N_i + C_r + \sum_i X_i$. 550
	200	Worker Contonium Cari	(9≤Cr≤11)	
	151	Nickel + Chromium + ∑X _i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 553
	152	Nickel + Chromium + ΣX_i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 556
	153	Nickel + Chromium + ΣX_i	$Ni + Cr + \Sigma X_i$. 559
	154	Nickel + Copper + ΣX_i	$Ni + Cu + \Sigma X_i$. 562
	155	Nickel + Iron + ΣX_i	$Ni + Fe + \Sigma X_i$. 565
	156	Nickel + Manganese + ΣX_i	$Ni + Mn + \Sigma X_i$. 568
	157	Nickel + Molybdenum + XXi	$Ni + Mo + \Sigma X_1 \dots \dots$. 571
	158	Niobium + Iron + XXi	Nb + Fe + ΣX_1	. 574
	159	Niobium + Molybdenum + ΣX_i	$Nb + Mo + \Sigma X_i$. 577
	160	Niobium + Tantalum + ΣX_i	Nb + Ta + ΣX_1	. 580
	161	Niobium + Titanium + ΣX_i	$Nb + Ti + \Sigma X_i$	
	162	Niobium + Tungsten + ΣX_i	Nb + W + ΣX ₁	. 586
	163	Plutonium + Cerium + XX	$Pu + Ce + \Sigma X_i$	
	164	Tantalum + Niobium + XX	$Ta + Nb + \Sigma X_i$	
	165	Tantalum + Tungsten + XX	$Ta + W + \Sigma X_i$	
	166	Titanium + Aluminum + XX	$Ti + Al + \Sigma X_i$	
	167	Titanium + Chromium + XX ₁	$Ti + Cr + \Sigma X_i$	

Notation

A	Gruneisen constant; Cross-sectional area	Q	Amount of neat absorbed of removed from
a	Lattice constant: Empirical constant		the system
b	Empirical constant	R	Gas constant, 8.3143 J K ⁻¹ g-mol ⁻¹
c, C	Heat capacity of mass m, specific heat per	S	Spin vector
	unit mass	T	Temperature, K
C_a, C_f	Constant which depends on particular type	t	Time
350	of lattice and on crystal structure, respec-	V	Volume
	tively	\boldsymbol{v}	Specific volume
C.	Electronic specific heat	W	Work done on or by the system
C_p , C_v	Specific heat at constant pressure and	x, x_m	$h\nu/kT$ and $h\nu_D/kT$, respectively, as used in
100	constant volume, respectively		equation (17)
d	Density	X_{1}	Atomic mole or mass fraction of ith com-
e	Base of natural logarithm, 2.71828	•	ponent in an alloy or mixture
E	Total energy of an oscillator, particle, or	α, α_f	Coefficient of thermal linear expansion,
	system; Internal energy; Voltage	•	and a constant which depends on crystal
H	Enthalpy		structure, respectively
$(\Delta H)_f$	Heat of fusion	β	Coefficient of isobaric volumetric expansion;
h "	Planck constant, 6.6262×10^{-27} erg sec		Constant in Debye cube law
I	Electrical current	γ	Constant in the electronic specific heat
J, J'	Quantum mechanical exchange constants	•	relation (26)
K	Calibration factor in ice drop calorimeter	$\theta_{\mathrm{D}},\theta_{\mathrm{E}}$	Characteristic Debye temperature and Ein-
k	Boltzmann constant, 1.3806×10^{-18} erg	-	stein temperature, $h\nu_D/k$ and $h\nu/k$, respec-
	K^{-1}		tively
L	Linear dimension	ν	Frequency of oscillation of a particle
m	Mass of a particle, system, or specimen	$\nu_{ m D}$	Debye frequency
m.	Mass of an electron	ω	Natural angular frequency
n	Integer, 0, 1, 2, 3,	ρ	Electrical resistivity
$N_{\mathbf{A}}$	Avogadro's number, $6.0222 \times 10^{23} \text{ g-mol}^{-1}$	ρ_a	Number of free electrons per unit volume
N _e	Number of electrons per gram atom	ne e	Energy of an oscillation
p	Momentum of a particle; Pressure of a gas	π	Mathematical constant, 3.14159
q	Direction coordinate from equilibrium posi-	KT	Isothermal compressibility, as used in
•	tion	•	equation (36)

Theory of Specific Heat of Solids

1. INTRODUCTION

Rapid advances in the frontiers of science and technology have brought about a general realization of the fact that the present limitations in many technical developments are a direct result of inadequate knowledge of the thermophysical properties of materials. In the high-temperature range (T > 1000 K), interest in the determination of specific heats of materials has been hastened because of the requirements in space programs as well as industrial applications. The need for data at high temperatures has advanced our knowledge in many areas of solid state studies such as lattice vibrations, energy levels in magnetic solids, electronic distributions, and many other atomic and molecular phenomena.

The measurement of specific heat at cryogenic temperatures ($C_p \cong C_v$ for $T \leq 4$ K) provides us with a direct means to test theoretical models of a system. For instance, precise specific heat measurements were needed to test the validity of Debye's and Einstein's theory for specific heat of solids at low temperatures. Finally, knowledge of accurate specific heat data at low temperature is very useful in studies of cryogenic techniques.

2. DEFINITIONS

When a quantity of heat Q is added to a system so that there is a change in temperature, $T_2 - T_1$, then the mean heat capacity of the mass m of the substance is defined by

$$\bar{c} = \frac{Q}{T_2 - T_1} \tag{1}$$

The limiting value of the above ratio as the temperature changes by dT is defined as the true heat capacity, i.e.,

$$c = \frac{dQ^*}{dT} \tag{2}$$

In order to obtain a quantity that is independent of the mass, m, of a substance, equation (2) is divided by m; i.e.,

$$C = \frac{c}{m} = \frac{dQ}{m \, dT} \tag{3}$$

The quantity q represents the amount of heat per unit mass, so that equation (3) may also be written as

$$C = \frac{dq}{dT} \tag{4}$$

Raising the temperature of a unit mass of a substance by an amount dT, however, does not define the process in a thermodynamic sense; for instance, it will take a different amount of heat dq if the process is at constant pressure than when the process is at constant volume. As a matter of fact there are an infinite number of different processes for a system at temperature T to change to a temperature T + dT. It is clear, therefore, that an infinite number of specific heats could also be defined for a substance. The two processes that are most commonly used in thermodynamics are those at constant volume and constant pressure. For these two processes equation (4) may be written

$$C_{p} = \left(\frac{dq}{dT}\right)_{p} \tag{5}$$

and

$$C_{v} = \left(\frac{dq}{dT}\right)_{v} \tag{6}$$

Experimentally, the values of the specific heat measured are either at constant pressure, C_p , or at constant volume, C_v . The units most commonly used for specific heat are cal $g^{-1} K^{-1}$, Btu $lb^{-1} F^{-1}$, joules $kg^{-1} K^{-1}$. The units for molar or atomic specific heat are cal g-mol⁻¹ K^{-1} , Btu lb-mol⁻¹ F^{-1} , joules kg-mol⁻¹ K^{-1} , cal g-atom⁻¹ K^{-1} , joules kg-atom⁻¹ K^{-1} , etc.

[•]dQ is used instead of dQ to indicate that it is not an exact differential.

3. DULONG AND PETIT'S LAW

In 1819 Dulong and Petit [9] published the results of their measurements on the specific heat at constant pressure of thirteen solid elements at room temperature. From these measurements, they observed that the product of the specific heat at constant pressure and the atomic weight was approximately a constant, about 6 cal g-atom⁻¹ K⁻¹. Subsequent researches, extending from 1840 to 1862, revealed the general applicability of the Dulong and Petit's law to several metallic elements, when the specific heat at constant pressure was determined at temperatures sufficiently below their melting point but not far below room temperature. During the same period an important extension of Dulong and Petit's law was applied to chemical compounds, i.e., the molar specific heat of a compound is equal to the sum of the atomic specific heats of its constituent elements. This law which is generally referred to as the Kopp-Neumann law [32] has also been applied to predict the atomic specific heat of alloys. For alloys, the atomic specific heat is equal to the sum of the product of the atomic specific heat of each constituent element and its atomic fraction. If an alloy consists of elements 1, 2, 3, ..., n, with atomic fraction $X_1, X_2, X_3, \ldots, X_n$ and atomic specific heat $C_{p1}, C_{p2}, C_{p3}, \ldots, C_{pn}$, then the atomic specific heat of the alloy is

$$C_p = \sum_{i=1}^n X_i C_{p_i} \tag{7}$$

Equation (7) should be applied with caution for alloys especially near magnetic and phase transitions. Bottema and Jaeger [5] have applied the Kopp-Neumann law to the alloy Ag₃Au and they found that the experimental data on the specific heat at constant pressure of this alloy agree closely with the calculated values between 0 C to 400 C. Between 400 C and 800 C, the values obtained from the Kopp-Neumann law were 0.5 percent to 1.8 percent higher than the experimental results. Buyco [46] calculated the specific heat of the alloys of aluminum, beryllium, nickel, and iron between 300 K to 1000 K and found the calculated values agree with the experimental data to within 5 percent.

The theoretical justification of the law of Dulong and Petit was demonstrated by Boltzmann in 1871. The results obtained previously by Dulong and Petit also follow from Boltzmann's equipartition of energy theorem. Complete and detailed derivation of this theorem is discussed elsewhere [15, 20, 21, 33, and 43].

The following is a brief exposition. The energy of a linear harmonic oscillator consists of kinetic and potential energies, i.e.,

$$E = \frac{p^2}{2m} + \frac{m\omega^2 q^2}{2} \tag{8}$$

where p is the momentum, m is the mass, ω is the natural angular frequency, q is the distance from equilibrium position, and E is the total energy of an oscillator. From the theorem of equipartition of energy [15, 20, 21, 31], each degree of freedom contributes (kT/2) to the energy of a particle in equilibrium. A three-dimensional oscillator which has six degrees of freedom will therefore have an internal energy of 3kT at thermal equilibrium. A gram-atom of an element has N_A atoms; hence, the internal energy is $3N_AkT$. The specific heat at constant volume is obtained by differentiating the internal energy with respect to temperature at constant volume, i.e.,

$$\left(\frac{\partial E}{\partial T}\right)_{v} = C_{v} = 3N_{A}k \tag{9}$$

where N_A is the Avogadro constant and k is the Boltzmann constant. The product of Avogadro constant and Boltzmann constant is equal to the gas constant R. Therefore:

$$C_v = 3R \cong 5.96 \text{ cal mol}^{-1} \text{ K}^{-1}$$

Hence, the Dulong and Petit value of about 6 cal mol⁻¹ deg⁻¹ for the specific heat of metallic solids can be accounted for on the basis of classical statistical mechanics. However, the observation of Dulong and Petit was short lived. In 1875 Weber [48] showld that the atomic specific heat of silicon, boron, and carbon are considerably lower than the values predicted by Dulong and Petit. For example, the atomic specific heat of crystalline silicon, boron, and diamond were found to be 4.8, 2.7, and 1.8 cal mol⁻¹ deg⁻¹, respectively, at room temperature. Subsequent specific heat measurements at low temperatures (T < 300 K) revealed that the specific heat of solids increased rapidly with temperature and almost leveled off about their Debye temperature. Classical theory does not explain this behavior for solids. It should also be noted that classical theory encounters the same difficulty in the behavior of molar specific heats.

4. EINSTEIN'S SPECIFIC HEAT THEORY

Einstein [10] proposed a simple model to account

for the decrease in the specific heat at low temperatures below the value 3R per mole which was obtained at elevated temperatures. His oversimplified physical model considers the thermal properties of the vibrations of a lattice of N_A atoms as a set of $3N_A$ independent harmonic oscillators in one dimension, each with the same frequency, ν . He then quantized the energy of the oscillators in accordance with the results obtained by Planck. According to Planck, a harmonic oscillator does not have a continuous energy spectrum but can accept energy values equal to an integer times $h\nu$, where ν is the frequency of oscillations and h is the Planck constant. Hence the possible energy levels of an oscillator may be given by

$$\epsilon = nh\nu \qquad n = 0, 1, 2, 3, \dots$$

The average energy of an oscillator at temperature T, according to the well known Planck formula [7, 20, 21, 32], is

$$\dot{\epsilon} = \frac{h\nu}{\exp(h\nu/kT) - 1} \tag{10}$$

In Einstein's model the vibrational energy of a solid element containing N_A atoms is $3N_A$ times the average energy of an oscillator, i.e.,

$$E = 3N_{\rm A} \frac{h\nu}{\exp(h\nu/kT) - 1} \tag{11}$$

The results obtained from quantum mechanics however showed that the average energy of an oscillator [7, 15] should be written as

$$\bar{\epsilon} = \frac{h\nu}{2} + \frac{h\nu}{\exp(h\nu/kT) - 1} \tag{12}$$

instead of as in equation (10).

The result obtained for the specific heat by differentiating equation (10) is the same as that obtained from equation (12). In any case the specific heat for one atom of an element is

$$\left(\frac{\partial E}{\partial T}\right)_{v} = C_{v} = \frac{3N_{A}k(h\nu/kT)^{2}\exp(h\nu/kT)}{[\exp(h\nu/kT) - 1]^{2}} \quad (13)$$

For convenience, the characteristic Einstein temperature defined by $\theta_{\rm E}=h\nu/k$ may be introduced in equation (13) to obtain

$$C_{v} = \frac{3R(\theta_{\rm E}/T)^2 \exp(\theta_{\rm E}/T)}{[\exp(\theta_{\rm E}/T) - 1]^2}$$
(14)

In the high-temperature range with $T \gg \theta_{\rm E}$ [15, 20, 21, 32], equation (14) upon expansion in power series becomes

$$C_{\nu} \cong 3R \left[1 - \frac{1}{12} \left(\frac{\theta_{\rm E}}{T} \right)^2 \right] \tag{15}$$

When the value of $[(\theta_E/T)^2/12]$ is such that it is very much smaller than 1, then Einstein's theory yields the classical Dulong and Petit value of 6 cal mol⁻¹ deg⁻¹.

In the low-temperature region $T \ll \theta_E$, equation (14) may be written approximately as

$$C_v \cong 3R \left(\frac{\theta_E}{T}\right)^2 \exp(-\theta_E/T)$$
 (16)

According to equation (16), the low-temperature specific heat of solids should approach zero exponentially. Experimental evidence indicates that C_v approaches zero more slowly than this. The reason for the discrepancy between Einstein's theoretical prediction and the experimental results may be explained on the basis of the assumption made in the theory that each atom in a solid vibrates independently of the others but with precisely the same frequency. However, in spite of the weakness in Einstein's theory, his pioneering work opened the way for the application of quantum theory to the specific heat of solids.

5. DEBYE'S SPECIFIC HEAT THEORY

From the point of view of the wave whose wavelength is large compared with the interatomic distances, a crystal may appear like a continuum. The fundamental assumption of Debye [6] is that the continuum model may be employed for all possible vibrational modes of the crystal. Debye has given a limit to the total number of vibrational modes equal to $3N_A$, where N_A is the number of atoms in a gram atom of an element. In this case, the frequency spectrum which corresponds to an ideal continuum is cut off in order to comply with a total of $3N_A$ modes. This procedure should provide a maximum frequency v_D (Debye frequency) which is common to both the longitudinal and transverse modes. By associating with each vibrational mode a harmonic oscillator of the same frequency, Debye obtained the following expression [7, 15, 20, 21, 32] for the vibrational energy:

$$\bar{E} = 9N_{\rm A}h\nu_{\rm D} \left(\frac{kT}{h\nu_{\rm D}}\right)^4 \int_{0}^{z_{\rm m}} \frac{x^3 dx}{e^z - 1}$$
 (17)

where

$$x = h\nu/kT x_m = h\nu_D/kT$$

Clearly, when $T \gg \theta_D$, x_m is small compared with unity for the whole integration range. In this case $e^x - 1 \cong x$ so that equation (17) could easily be integrated to obtain the expression

$$E \cong 3N_{A}kT \tag{18}$$

Then

$$\left(\frac{\partial \vec{E}}{\partial T}\right)_{v} = C_{v} = 3N_{A}k = 3R \cong 6 \text{ cal mol}^{-1} \text{ deg}^{-1}$$

a result agreeing with classical theory.

At very low temperatures, $T \ll \theta_D$, the upper limit of integration in equation (17) may be replaced by infinity since $h\nu/kT \to \infty$ as $T \to 0$. It is now possible to integrate equation (17) as follows [51]

$$\int_0^\infty \frac{x^3 dx}{e^x - 1} = 6 \sum_{1}^\infty \frac{1}{n^4} = \frac{\pi^4}{15}$$
 (19)

Hence

$$E = \frac{3}{5} \pi^4 N_{\rm A} k T \left(\frac{T}{\theta_{\rm D}}\right)^3 \tag{20}$$

and

$$C_{v} = \left(\frac{\partial \vec{E}}{\partial T}\right)_{v} = \frac{12}{5} \pi^{4} N_{A} k \left(\frac{T}{\theta_{D}}\right)^{3}$$
 (21)

or

$$C_{v} = \frac{12}{5} \pi^4 R \left(\frac{T}{\theta_{\rm D}}\right)^3 \tag{22}$$

For one atom or one mole of a substance, R = 1.987 cal mol⁻¹ deg⁻¹ so that equation (22) may be written as

$$C_{\nu} = 464.5 \left(\frac{T}{\theta_{\rm D}}\right)^3 \text{ cal mol}^{-1} \text{ deg}^{-1} \qquad T < \left(\frac{\theta_{\rm D}}{50}\right)$$

Debye's theory predicts a cube law dependence of the specific heat of the elements for temperatures $T < (\theta_D/10)$. The range of validity of this law [15] has now been restricted to $T < (\theta_D/50)$ as a result of more recent theoretical work on specific heat studies. The predictions of Debye's theory agree quite well with experimental values of the specific heat of solids and is a definite improvement over Einstein's work.

Due to improved calorimetric measurements at low temperatures (T < 5 K), in recent years accurate

specific heat values revealed that Debye's equation for C_v does not fit the experimental results precisely. Furthermore, it was observed that θ_D , which according to Debye's theory is a constant, did in fact vary with temperature. The deficiency of the Debye theory may be explained on the basis of the approximation made in treating solids as a continuous elastic media and neglecting the discreteness of the atoms.

Further improvements on Debye's theory was developed by Born and Karman [4]. They calculated the frequency spectrum by considering the lattice modes of vibration for a particular crystal structure under investigation. The method is involved so that one is referred to the original work [4] for detailed discussion.

6. ELECTRONIC SPECIFIC HEAT

In 1900, Drude [8] suggested a model for a freeelectron theory of metals. He assumed that metals contain free electrons in thermal equilibrium with the atoms of the solid. He further assumed that the potential energy of the free electrons is equal to the product of the number of electrons per unit volume and the average energy of an electron. The essential feature in the problem is the determination of the number of electrons with energy between E and E + dE. Classical theory using Maxwell-Boltzmann statistics [2, 8, 15, 20, 21, 32, 43], would give an expression for the electronic specific heat as

$$C_e = \frac{1}{4} N_e k \tag{24}$$

Using Fermi-Dirac statistics [7, 15, 19, 20, 21, 31, 32], the following expression for the electronic specific heat may be obtained at low temperatures:

$$C_e = \pi^2 R (2m_e k/h^2) \left(\frac{\pi}{3\rho_e}\right)^{2/3} T$$
 (25)

or simply

$$C_{\bullet} = \gamma T \tag{26}$$

where ρ_e is the number of free electrons per unit volume, γ is the proportionality constant, T is the absolute temperature, N_e is the number of electrons per gram atom, m_e is the mass of an electron, k is the Boltzmann constant, h is the Planck constant, R is the gas constant, and C_e is the electronic specific heat.

The specific heat of metals below the Debye temperature and "very much" below the Fermi temperature [15, 19, 20, 21, 32] may be expressed as

the sum of the electronic specific heat and the lattice specific heat, i.e.,

$$C_{\nu} = \gamma T + \beta T^3 \tag{27}$$

Indeed, this relationship has been verified by accurate low temperature specific heat measurements. At sufficiently low temperature (T < 1 K) the electronic specific heat is dominant, while at high temperatures the lattice contribution is predominant.

7. MAGNETIC SPECIFIC HEAT

There are two types of materials that exhibit a magnetic contribution to the total specific heat: namely, the ferromagnetic and the ferrimagnetic materials.

A ferromagnet is a material [7, 15, 20, 21, 32] that contains a spontaneous magnetic moment. This means that this material possesses a magnetic moment even in the absence of an external magnetic field. This type of material exhibits a magnetic ordering with parallel alignment of adjacent spins. A ferromagnetic material has a Curie temperature, T_c , which is defined as the temperature above which magnetization disappears, and the material becomes paramagnetic. The Curie temperature separates the ordered ferromagnetic phase from the disordered paramagnetic phase.

An antiferromagnet is a material [7, 15, 20, 21, 32], that has spins which are ordered in an antiparallel arrangement. There is no net magnetic moment at temperatures below the Néel temperature. Hysteresis is usually observed and a sharp maximum in the susceptibility curve is exhibited. Above the Néel temperature, the spins are said to be free, and the material becomes paramagnetic. In some ways ferrimagnetic materials are similar to the ferromagnetic materials except that in the former the adjacent spins are unequal and antiparallel. The Néel temperature may be defined for ferrimagnetic material as the temperature separating the ordered ferrimagnetic phase from the disordered paramagnetic phase.

For ferri- and ferromagnets, the internal energy [7, 15, 20, 21, 32], is given by the expression

$$\vec{E} = 4\pi V (2\alpha_f J s a^2) \left(\frac{kT}{2\alpha_f J s a^2}\right)^{5/2} \int_0^z \frac{x^4 dx}{e^{z^4} - 1}$$
 (28)

At low temperatures the upper limit for x may be taken equal to infinity and hence the integral may be easily determined. Differentiating equation (28) gives the magnetic specific heat [15]

$$C_{\rm M} = \frac{d\vec{E}}{dT} = C_f N_{\rm A} k \left(\frac{kT}{2Js}\right)^{3/2} \tag{29}$$

where α_f and C_f are constants which depend upon crystal structure, a is the lattice constant, J is the quantum mechanical exchange constant, k is the Boltzmann constant, N_A is the Avogadro number, s is the magnitude of the spin vector, and V is the volume of the material.

Equation (29) shows that at low temperatures the ferromagnetic contribution to the specific heat is proportional to the three-halves power of the absolute temperature. For metals which are ferromagnetic [15], the total specific heat is equal to the sum of the electronic, lattice, and magnetic terms, i.e.,

$$C_{v} = \gamma T + \beta T^{3} + \delta T^{3/2}$$
 (30)

For ferrimagnets, which are electrical insulators, [15], the electronic term is negligible compared with the other terms, so that the total specific heat may be given by the expression

$$C_v = \beta T^3 + \delta T^{3/2} \tag{31}$$

Both sides of equation (31) may be divided by $T^{3/2}$ to give

$$C_{v}/T^{3/2} = \beta T^{3/2} + \delta \tag{32}$$

A plot of $C_v/T^{3/2}$ versus $T^{3/2}$ should give a straight line with slope β and intercept δ .

For the case of antiferromagnetic materials [15], the expressions for the mean internal energy is

$$E = 4\pi V(2\alpha_a J'sa^2) \left(\frac{kT}{2\alpha_a J'sa^2}\right)^4 \int_0^x \frac{x^3 dx}{e^x - 1}$$
 (33)

The upper limit for integration may be taken as equal to infinity at low temperatures so that differentiation of equation (33) gives the magnetic specific heat [15, 28]

$$C_{\mathbf{M}} = C_a N_{\mathbf{A}} k \left(\frac{kT}{2J's}\right)^3 \tag{34}$$

where C_a is a constant which depends upon the type of lattice and J' is the magnitude of the exchange constant.

The striking difference between the contributions to the specific heat exhibited by ferromagnets and ferrimagnets is the $T^{3/2}$ dependence in the former and T^3 dependence in the latter. Hence for antiferromagnetic materials, the temperature dependence is of the same form as the Debye's T^3 formula. The separation of the spin wave contribution from the lattice specific heat in antiferromagnetic materials is indeed very difficult.

8. LOW-TEMPERATURE SPECIFIC HEAT

The specific heat of solids is ordinarily measured at constant pressure. The specific heat at constant volume is that which is obtained if the interatomic distance is kept constant as the temperature changes. The specific heat at constant volume, C_v , may be assumed to be approximately equal to the specific heat at constant pressure, C_p , at cryogenic temperatures. At high temperatures, $C_p > C_v$. This difference is obtained from the classical thermodynamic relations

$$C_{p} - C_{v} = -T \left(\frac{\partial V}{\partial T}\right)_{p}^{2} / \left(\frac{\partial V}{\partial p}\right)_{T}$$
 (35)

From the definition of the isothermal compressibility

$$\kappa_T = -\left(\frac{\partial V}{\partial p}\right)_T / V \tag{36}$$

and the isobaric coefficient of volumetric expansion

$$\beta = \left(\frac{\partial V}{\partial T}\right)_{v} / V \tag{37}$$

Using equations (36) and (37), equation (35) may be written as

$$C_{p} - C_{v} = \frac{TV\beta^{2}}{\kappa_{T}} \tag{38}$$

By rearranging equation (38), this may also be written as

$$C_{p} - C_{v} = \left(\frac{V\beta^{2}}{\kappa_{T}C_{p}^{2}}\right)C_{p}^{2}T = AC_{p}^{2}T$$
 (39)

where

$$A = \frac{V\beta^2}{\kappa_T C_p^2}$$

The parameter A is called the Grüneisen constant, which is actually only approximately constant [15] over a wide range of temperature. If A is calculated at any one temperature from values of V, β , and κ_T , it may be used [15, 20, 21, 32] to calculate $C_p - C_v$ over a wide range of temperature without introducting a serious error.

For isotropic substances, the isothermal coefficient of volumetric expansion may be written in terms of the coefficient of linear expansion

$$\beta = \left(\frac{\partial V}{\partial T}\right)_{p} / V = 3 \left[\left(\frac{\partial L}{\partial T}\right)_{p} / L \right] = 3\alpha \qquad (40)$$

Hence, from equation (38)

$$C_p - C_v = \frac{9\alpha^2}{\kappa_T} TV = \left(\frac{9 V\alpha^2}{\kappa_T C_p^2}\right) C_p^2 T \qquad (41)$$

where

$$A = \frac{9 V \alpha^2}{\kappa_T C_n^2}$$

In the absence of contributions from magnetic and nuclear specific heat, the expression for C_v for most metals has been shown [15, 20, 21, 32] to be

$$C_{v} = \gamma T + \beta T^{3} \tag{27}$$

where γT is the electronic contribution and βT^3 is the lattice contribution. For nonmetals, the electronic contribution may be very small compared with the lattice term so that

$$C_v = \beta T^3 \tag{42}$$

When the nuclear quadrupole moment interacts with the electronic field gradient of the lattice and the electron, then the total specific heat of the substance is given as

$$C_v = \gamma T + \beta T^3 + \alpha T^{-2} \tag{43}$$

where αT^{-2} is the nuclear contribution to the total specific heat.

9. NORMAL AND SUPERCONDUCTING MATERIALS

At a certain critical temperature (superconducting temperature), several materials exhibit superconducting behavior [15, 20, 21, 32]. Below this temperature, the specific heat of a superconducting material is found to depart significantly from the values obtained for a normally behaving material. It is also found that if an external magnetic field of sufficient strength is applied while the specific heat of the material is being measured, the values obtained correspond to what the normal values would be. Hence, the specific heat values obtained experimentally in the presence of sufficient external magnetic field below the superconducting critical temperature are referred to as the normal specific heat (C_N) while the values obtained in the absence of a magnetic field are referred to as superconducting specific heat (C_s) . For example, the critical superconducting temperatures of aluminum and niobium are apprenimately 1.196 K and 9.22 K, respectively.

Other Major Sources of Data

There exists in the literature a number of reference sources which, while less extensive in scope, may nevertheless prove valuable to the reader. While it is not the intent here to cite every available review, it is felt that the following works, listed in chronological order, are of particular significance. One should note that most of the citations do not present critical evaluation of the data they report.

Furukawa, Saba, and Reilly [12] report on the critical analysis of the thermodynamic properties of copper, silver, and gold between 0 and 300 K. A tabulation is given for the values of specific heat C_p , enthalpy $H - H_0^0$, entropy S^0 , Gibbs energy $G - H_0^0$, enthalpy function $(H - H_0^0)/T$ and Gibbs energy function $(G - H_0^0)/T$. The report also contains a comparison of the values of the electronic coefficient of the specific heat and the 0 K limiting Debye characteristic temperature with their selected values. An appraisal of low-temperature calorimetry is also given.

Touloukian [44] edited a handbook entitled Thermophysical Properties of High Temperature Solid Materials consisting of nine books totaling more than 8500 pages. The properties covered in the handbook are density, melting point, heat of fusion, heat of vaporization, heat of sublimation, electrical resistivity, specific heat at constant pressure, thermal conductivity, thermal diffusivity, thermal linear expansion, thermal radiative properties (absorptance, emittance, reflectance, and transmittance), and vapor pressure. Generally, only materials with melting points above 800 K are included, except for materials within the categories of polymers, plastics, and composites.

Touloukian, Gerritsen, and Moore [45], Thermophysical Properties Research Literature Retrieval Guide, consisting of a set of three books, contains references for 33,700 research documents on thermophysical properties of matter. The properties covered are thermal conductivity, specific heat at constant pressure, viscosity, thermal radiative properties (emissivity, absorptivity, reflectivity, transmissivity),

optical constants (total and spectral), diffusion coefficient, thermal diffusivity, and Prandtl number. This publication supersedes the earlier works of this series (Volume I, 1960 and Volume II, 1963), and constitutes an enlarged and consolidated definitive work reporting the total literature through June 1964.

Schick [29] edited a comprehensive work entitled Thermodynamics of Certain Refractory Compounds. Volume 2 of this work includes thermodynamic properties of borides, carbides, nitrides, and oxides of 31 elements in the temperature range from 0 to 6000 K. Over 160 thermodynamic tables, together with comprehensive discussions, are presented.

Moeller et al.'s [24] compilation on Thermophysical Properties of Thermal Insulating Materials should prove useful in cryogenic and high temperature applications. The properties included in this compilation are thermal conductivity, thermal linear expansion, specific heat, total normal emittance, thermal diffusivity, compressive strength, density, melting point, and modulus of elasticity. Various experimental methods for determining thermal properties are described and their accuracies are indicated.

Wood and Deem [52] report on the compilation of specific heat, thermal linear expansion, and thermal conductivity data for materials of possible structural usefulness above 1500 K. Data are presented graphically with notations as to measurement methods and test conditions.

Hultgren, Orr, Anderson, and Kelley [16] published their book on the Selected Values of Thermodynamic Properties of Metals and Alloys in 1963. This book presents in tabular form heat capacity, enthalpy, entropy, free energy function, and vapor pressure. In some cases the heat of fusion, melting point, and other transition temperatures are also given. For the binary alloys, phase diagrams are included.

Eldridge and Deem [11] issued a report under the auspices of the Data and Publication Panel of

ASTM-ASME joint committee on effects of temperature on the properties of metals. The metals covered are Al, Co, Fe, Mg, Mo, Ni, and their alloys. The properties included are thermal conductivity, thermal linear expansion, specific heat, electrical resistivity, density, emissivity, diffusivity, and magnetic permeability. Emphasis is given to data over a range from cryogenic (2 K) to elevated temperatures (2800 K).

Johnson [17] edited a compendium of the properties of materials at low temperatures. The first phase of the compendium covers properties of ten fluids (Part I), properties of solids (Part II), and an extensive bibliography of references (Part III). The properties covered are density, expansivity, thermal conductivity, specific heat, enthalpy, heats of transition, phase equilibria, dielectric constants, adsorption, surface tension, and viscosity for solid, liquid, and gas phases of He, H₂, Ne, N₂, O₂, air, CO, F₂, A, and NH₃. Data sheets, primarily in graphic form, are

presented for "best values" of data collected. The sources of the materials used, other references, and tables of selected values with appropriate comments are furnished with each data sheet.

Kelley's [18] bulletin contains the then-available high-temperature specific heat data for the elements and inorganic compounds. The thermodynamic properties are listed in tables and algebraic expressions for their representations are also given.

Stull and Sinke [40] published their well-known reference work on the Thermodynamic Properties of the Elements in 1956. This book reports specific heat as well as thermodynamic property values for the elements in their condensed and gaseous state. A search of the literature was made by the authors through 1955. Whenever experimental data were not available, reasonable estimates were made in order to fill the gaps in information. A tabulation of thermodynamic values from 298.15 K to 3000 K is given for the elements.

Methods for the Measurement of the Specific Heat of Solids

1. INTRODUCTION

There are few methods for the practical and precise determination of the specific heat of solids. Although many variants and minor modifications or improvements are reported in the various references cited in this section, the most important ones are described in detail in reference [54]. References [55] to [61] also constitute major works on calorimetry including various specialized applications.

The primary methods for the measurement of the specific heat of solids which are commonly used are the method of mixtures or drop method, adiabatic method, comparative method, pulse-heating method, and modifications of these. A number of specific calorimetric techniques are briefly described in this section.

The method of mixtures [14, 37, 50] is widely employed for measuring specific heats of solids above room temperature. This method frequently gives accurate results in a temperature range where no phase transition exists. The usual method consists of dropping the substance under investigation from a furnace temperature into a calorimeter (at room or ice temperature) and the quantity that is obtained directly is the change in enthalpy. Heat capacities are obtained from these values by differentiation, i.e., $C_p = (\partial H/\partial T)_p$. This method is inherently not suitable for use with substances which undergo phase transitions over the temperature range of interest or whose specific heat is highly temperature sensitive.

Various methods of obtaining directly the true specific heat based on the Nernst calorimeter [38, 42, 47, 49] have been used successfully in obtaining precise data in the temperature range below room temperature. Attempts to use this method at moderately high temperatures have not produced accurate results because of heat exchange with the

surroundings. This method involves the measurement of energy required to raise the temperature of the substance over small temperature intervals from a fraction of a degree to a few degrees.

2. NERNST-TYPE ADIABATIC VACUUM CALORIMETER

A typical adiabatic vacuum calorimeter consists of a block over which an insulated coil of platinum wire is wound. The block may be either a solid sample under investigation or a container for the solid sample. The block is suspended by leads in a vacuumtight container. The container is cooled in a dewar containing liquid air, hydrogen, or helium, depending on the temperature range involved. At the start of the operation, the vacuum-tight container is filled with helium gas at very low pressure while the block is cooled to the bath temperature by heat transfer through the helium gas. After the block has been cooled, the gas is removed by pumping and a known amount of heat is applied to the platinum coil by means of electric current for a given time interval. The temperature rise of the block is measured by means of a suitable resistance thermometer. The specific heat is then determined from the measured heat input and temperature change of the sample. Improved versions of the Nernst-type adiabatic calorimeter are described by Taylor and Smith [42], Wallace et al. [47], and Westrum [49].

The calorimeter assembly which is discussed by Wallace et al. [47] consisted of the sample container, the thermal shields, the outer jacket with associated radiation shields, and the vacuum system. Figure 1 presents a schematic diagram of the calorimeter.

3. MODIFIED ADIABATIC CALORIMETER

A modification of the direct method has been applied successfully by Schmidt and Leidenfrost [30]

to obtain the specific heats of powders and granular materials from 273 K to 773 K. The determination of specific heats was carried out for Mond Nickel (99.85% Ni) with an accuracy of 0.6 percent.

The theory of the method as employed for a continuously heated adiabatic calorimeter for measuring powders and granular materials is discussed in detail in reference [30].

Consider a calorimeter and sample system with negligible heat loss to the surroundings, then the heat input may be expressed as

$$\frac{\partial \mathcal{Q}}{\partial t} = mC_p \frac{dT}{dt} + W_c \frac{dT}{dt} \tag{44}$$

where dQ/dt is the heat input per unit time, T is the temperature, t is the time, m is the mass of the specimen, W_c is the thermal constant of calorimeter body and heater element, energy per degree, and C_p is the specific heat of specimen. From equation (44),

$$C_p = \frac{1}{m} \left[\frac{dQ/dt}{dT/dt} - W_c \right] \tag{45}$$

It is desirable to achieve as small a temperature variation as possible if the specific heat is assumed

Fig. 1. Schematic diagram for adiabatic specific heat calorimeter [47].

Fig. 2. Schematic diagram for spherical adiabatic calorimeter [30].

constant during each measurement interval. On the other hand, this temperature variation must be large enough to lend itself to precision measurement. The heating must be such that steady-state condition is reached within a reasonable length of time. Schmidt and Leidenfrost [30] have shown that for powders or granular materials of low thermal diffusivity, the following assumptions can be satisfied well enough to yield accurate measurements:

- 1. The temperature field is dependent only on time and the radial coordinate.
- 2. The sample is uniformly homogeneous, and its properties are constant over small temperature differences.
- 3. The sum of the heat capacities of the calorimeter body and its inside heater is small compared with the heat capacity of the sample mass.

The experimental arrangement of the apparatus is shown in schematic form in Fig. 2.

4. DROP ICE CALORIMETER

In this method [13] the heat given off by the sample is used to melt a portion of the ice in an equilibrium ice-water bath and the resulting change

Fig. 3. Schematic diagram for drop ice calorimeter [13].

in volume of the bath is measured by the change in height of a mercury column. The calibration factor for a particular calorimeter (ratio of heat input to mass of mercury displaced by melted ice) is determined from the following expression:

$$K = \Delta H_f / (v_i - v_w) d_m \tag{46}$$

where K is the calibration factor, ΔH_f is the heat of fusion of ice, v_t is the specific volume of ice, v_w is the specific volume of water, and d_m is the density of mercury.

The calibration factor K relates the enthalpy change of the specimen to the height of the mercury column. Values of $(H_T - H_{273.15})$ are then determined for various initial specimen temperatures. These data are either represented graphically or by a suitable empirical relation. The specific heat curve is either derived from the graphically smoothed enthalpy data or from the equation

$$C_p = \frac{d}{dT}(H_T - H_{273.15})_p$$

A schematic drawing of the ice calorimeter is shown in Fig. 3. A central well is provided to receive the specimen whose enthalpy is to be determined. An electric heater, sheathed in a metal tube, is soldered on the outside of the well in order to introduce known amounts of heat for calibration purposes. The lower portion of the well is surrounded by two coaxial glass vessels which provide an insulating space between the inner ice-water system and the surrounding ice bath. Any volume change resulting from the melting of ice in the inner vessel displaces an equivalent volume of mercury and is collected in a beaker and weighed to account for the change in mercury in the calorimeter. A special gate prevents heat transfer from above to the calorimeter along the central well.

5. DROP ISOTHERMAL WATER CALORIMETER

In the drop water calorimeter a sample is heated in the furnace and dropped into the calorimeter

Fig. 4. Schematic diagram for drop isothermal water calorimeter [50].

proper, which consists of a water bath with free air space above. The water in the bath is stirred to assure uniform temperature. The calorimeter is enclosed by an isothermal jacket and the top is covered with copper plates which have a constant temperature because of their high thermal conductivity. The rise in the temperature of the calorimeter is measured with great accuracy by using a Beckmann thermometer or a sensitive thermopile. The enthalpy change of the specimen is determined from the known heat capacity of the calorimeter and its temperature rise. The enthalpy change may be referred to either 273.15 K or 298.15 K. In either case the specific heat is obtained from the smoothed enthalpy data by either graphical or analytical differentiation, i.e.,

$$C_p = \frac{d(H_T - H_{298.15})_p}{dT}$$

A schematic drawing [50] is shown in Fig. 4 to illustrate the details of the apparatus.

Fig. 5 Schematic diagram for drop isothermal copper block calorimeter [37].

6. DROP COPPER BLOCK CALORIMETER

This drop calorimeter employs a copper block which is submerged in an isothermal oil bath. The temperature of the calorimeter is measured using a special bridge network of copper and manganin resistances. The heat released from the sample is distributed to the copper block because of its high thermal conductivity. Generally it takes some time to achieve uniform heat distribution. The change in enthalpy of the specimen is measured in terms of the amount of heat absorbed by the copper block in changing from its initial temperature to its final temperature. This value is then corrected to 298.15 K so that the tabulated enthalpy values of the specimen are referred to 298.15 K, that is, $H_T - H_{298.15}$. The specific heat as a function of temperature may then be derived from the smoothed enthalpy data obtained either graphically or from the equation

$$C_p = \frac{d}{dT}(H_T - H_{298.15})_p$$

A schematic diagram according to Southard [37] is shown in Fig. 5.

7. PULSE-HEATING METHOD

The pulse-heating method of measuring specific heat is very attractive, particularly for materials that are electrical conductors. This method was first discussed by Avramescu [1] and later modified by other investigators [2, 25, 39, 41]. The method involves the rapid heating of small samples in vacuum. Voltage probes are attached across the central portion of the sample wire which is then mounted in a high-vacuum system. The sample is connected to an electrical circuit consisting of a large storage battery, a variable resistor, a fixed resistor, and a high-current relay controlled by a timing circuit which determines the duration of the pulse. A schematic diagram of a typical circuit [41] for the measurement of specific heat is shown in Fig. 6. The current flowing through the specimen and the voltage drop across the central portion are measured simultaneously as a function of time. The specific resistance at each time interval is calculated from the relationship $\rho = AE/LI$, where A is the cross-sectional area of sample, E is the voltage, I is the current, and L is the distance between voltage probes. This specific electrical resistance is then plotted as a function of time. The specific heat at any temperature T is given by the equation

Fig. 6. Schematic diagram of circuit for specific heat measurement using pulse-heating method [41].

$$C_{p} = \frac{EI(d\rho/dT)}{Jm(d\rho/dt)} \tag{47}$$

where C_p is the specific heat, cal g^{-1} K⁻¹, J is the conversion factor, 4.184 joules cal⁻¹, m is the mass of sample between voltage probes, grams, $d\rho/dT$ is the

temperature coefficient of the resistance at temperature T, $d\rho/dt$ is the time rate of change of resistivity at temperature T, and ρ is the electrical resistivity of sample.

8. COMPARATIVE METHOD

The method consists of placing a specimen with its temperature-monitoring thermocouple in a refractory container of low thermal conductivity and in turn placing this in a furnace whose temperature is maintained constant above or below the specimen temperature. The container is calibrated by determining its heating rate when empty and then with a reference sample of known specific heat. Separate electrical heating circuits are usually provided for the specimen and the shield so that their temperature will rise equally and simultaneously in order to reduce heat losses. The specific heat C_{p2} of the unknown specimen is calculated from the following relation:

$$\frac{C_{p2}W_2}{C_{p1}W_1} = \frac{\Delta t_2/\Delta T_2 - \Delta t_r/\Delta T_r}{\Delta t_1/\Delta T_1 - \Delta t_r/\Delta T_r}$$
(48)

where $(\Delta t/\Delta T)$ is the slope of a time-temperature curve, and the subscripts r, 1, and 2 represent the empty container, the container with specimen 1, and the container with specimen 2, respectively. The papers by Boggs and Wiebelt [3] and Smith [34] give excellent accounts in the use of this method.

Irreproducible heating or cooling conditions and differences in thermal conductivity between the unknown and reference specimen usually account for the inaccuracies encountered in this method.

References to Text

- Avramescu, A., "Temperature Variation of the True Specific Heat of Conductivity Copper and Conductivity Aluminum up to the Melting Point," Z. Tech. Physik 20, 213-17, 1939.
- Baxter, H., "Determination of Specific Heat of Metals," Nature 153, 316, 1944.
- Boggs, J. H. and Wiebelt, J. A., "An Investigation of a Particular Comparative Method of Specific Heat Determination in the Temperature Range of 1500 F to 2600 F," USAEC TID-5734, 1-91, 1960.
- Born, M. and Karman, T., "Vibrations in Space Lattices," Physik Z. 13, 297-309, 1912.
- Bottema, J. A. and Jaeger, F. M., "The Law of Additive Atomic Heats in Intermetallic Compounds," Proc. Acad. Sci. Amsterdam 35, 928-31, 1932.
- Debye, P., "The Theory of Specific Heat," Ann. Physik 39 (4), 789-839, 1912.
- Dekker, A. J., Solid State Physics, Prentice-Hall, Inc., 1-525, 1961.
- 8. Drude, P., "The Electronic Theory of Metal," Ann. Physik 1, 566-613, 1900.
- Dulong, P. L. and Petit, A. T., Ann. Chim. 10, 395-413, 1819.
- Einstein, A., "The Planck's Theory of Radiation and the Theory of Specific Heat," Ann. Physik 22 (4), 180-90, 1907.
- 11. Eldridge, E. A. and Deem, H. W., "Report on Physical Properties of Metals and Alloys from Cryogenic to Elevated Temperatures," ASTM-STP-296, 1-206, 1961.
- 12. Furukawa, G. T., Saba, W. G., and Reilly, M. L., "Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold from 0 to 300 K," NSRDS-NBS 18, 1-49, 1968.
- Ginnings, D. C. and Corruccini, R. J., "An Improved Ice Calorimeter—The Determination of its Calibration Factor and the Density of Ice at 0 C," J. Res. Natl. Bur. Std. 38, 583-91, 1947.
- Ginnings, D. C. and Furukawa, G. T., "Heat Capacity Standards for the Range 14 to 1200 K," J. Am. Chem. Soc. 75, 522-7, 1953.
- Gopal, E. S. R., Specific Heats at Low Temperatures, Plenum Press, 1-111, 1966.
- Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K., Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley and Sons, Inc., 1-963, 1963
- Johnson, V. J. (Editor), "A Compendium of the Properties of Materials at Low Temperature," WADD-TR-60-56, Pt. 2, 1-333, 1960. [AD 249 786]

- Kelley, K. K., "Data on Theoretical Metallurgy. XIII. High-Temperature Heat Capacity and Entropy Data for the Elements and Inorganic Compounds," U.S. Bur. Mines Bull. 584, 1-232, 1960.
- King, A. L., Thermophysics, W. H. Freeman and Company, 1-369, 1962.
- 20. Kittel, C., Introduction to Solid State Physics, John Wiley and Sons, Inc., 122-5, 1963.
- Kittel, C., Elementary Solid State Physics, John Wiley and Sons, Inc., 49-52, 1962.
- Lehman, G. W., "Thermal Properties of Refractory Materials," WADD-TR-60-581, 1-19, 1960. [AD 247 4111. [PB 160 804]
- Levinson, L. S., "High Temperature Drop Calorimeter," Rev. Sci. Instr. 36 (6), 639-42, 1962.
- Moeller, C. E., Loser, J. B., Thompson, M. B., Snyder, W. E., and Hopkins, V., "Thermophysical Properties of Thermal Insulating Materials," ASD-TDR-64-5, 1-362, 1964. [AD 601 535], [N64 22689]
- Nathan, A. M., "A Dynamic Method for Measuring the Specific Heat of Metals," J. Appl. Phys. 22, 234-5, 1951.
- Parker, W. J., Jenkins, R. J., Butler, C. P., and Abbott, G. L., "Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity," J. Appl. Phys. 32, 1679-84, 1961.
- Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Co., Inc., 1-651, 1965.
- Sachs, M., Solid State Theory, McGraw-Hill Book Co., Inc., 143-68, 1963.
- Schick, H. L. (Editor), Thermodynamics of Certain Refractory Compounds, Vol. 2, Academic Press, 1-775, 1966.
- Schmidt, E. O. and Leidenfrost, W., "Adiabatic Calorimeter for Measurements of Specific Heats of Powder and Granular Materials at 0 C to 500 C," ASME 2nd Symp. Thermophysical Properties, Princeton, N.J., 178-84, 1962.
- Sears, F. W., An Introduction to Thermodynamics, The Kinetic Theory of Gases, and Statistical Mechanics, Addison-Wesley Publishing Co., Inc., 1-373, 1964.
- 32. Seitz, F., The Modern Theory of Solids, McGraw-Hill Book Co., Inc., 38-9, 1940.
- 33. Slater, J. C., Introduction to Chemical Physics, McGraw-Hill Book Co., Inc., 1939.
- Smith, C. S., "A Simple Method for Thermal Analysis Permitting Quantitative Measurements of Specific and Latent Heats," Trans. AIME 137, 1936, 1940.
- Smith, D. F., Kaylor, C. E., Walden, G. E., Taylor, A. R., and Gayle, J. B., "Construction, Calibration and Operation of Ice Calorimeter," U.S. Bur. Mines Rept. Invest. 5832, 1-20, 1961.

- Sommerfeld, A., "The Electronic Theory of Metals," Naturwiss 15, 825-32, 1927.
- Southard, J. C., "A Modified Calorimeter for High Temperatures. The Heat Content of Silica, Wollastonite, and Thorium Dioxide above 25°," J. Am. Chem. Soc. 63, 3142-6, 1941.
- Sterrett, K. F., Blackburn, D. A., Bestul, A. B., Chang, S. S., and Horman, J., "An Adiabatic Calorimeter for the Range 10 K to 360 K," J. Res. Natl. Bur. Std. 69C, 19-26, 1965.
- Strittmater, R. C., Pearson, G. J., and Danielson, G. C., "Measurements of Specific Heats by a Pulse Method," Proc. Iowa Acad. Sci. 64, 466-70, 1957.
- 40. Stull, D. R. and Sinke, G. C., Thermodynamic Properties of the Elements, Am. Chem. Soc., 1-234, 1956.
- Taylor, R. E. and Finch, R. A., "The Specific Heats and Resistivities of Molybdenum, Tantalum, and Rhenium," J. Less-Common Metals 6, 283-94, 1964.
- Taylor, A. R. and Smith, D. F., "Construction, Calibration, and Operation of a Low-Temperature Adiabatic Calorimeter," U.S. Bur. Mines Rept. Invest. 5974, 1-17, 1962.
- Tolman, R. C., Principles of Statistical Mechanics, Oxford Univ. Press, London, 1938.
- Touloukian, Y. S. (Editor), Thermophysical Properties of High Temperature Solid Materials, MacMillan Co., Vols. 1, 2, 3, 4, 5, and 6, 1-8500, 1967.
- Touloukian, Y. S., Gerritsen, J. K., and Moore, N. Y., Thermophysical Properties Research Literature Retrieval Guide, Plenum Press, 2nd Ed., Books 1, 2, and 3, 1967.
- Touloukian, Y. S. (Editor), "Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides," TPRC Rept. 16, 323-46, 1966.
- 47. Wallace, W. E., Craig, R. S., and Johnston, W. V., "An

- Adiabatic Calorimeter for the Range 15 C to 290 C," U.S. At. Energy Comm., NYD-6328, 1-16, 1966.
- Weber, H. F., "The Specific Heat of Elements Carbon, Boron, and Silicon," Phil. Mag. 49, 161-301, 1875.
- Westrum, E. F., Jr., "Cryogenic Calorimetric Contributions to Chemical Thermodynamics," J. Chem. Educ. 39 (9), 443-54, 1962.
- White, W. P., "Specific Heat Determination at Higher Temperatures," Am. J. Sci. 47 (4), 1-59, 1919.
- Whittaker, E. T. and Watson, G. N., Modern Analysis, Cambridge Univ. Press, 4th edition, 1938.
- Wood, W. D. and Deem, H. W., "Thermal Properties of High-Temperature Materials," RSIC-202, 1-399, 1964. [AD 455 069]
- Zemansky, M. W., Heat and Thermodynamics, McGraw-Hill Book Co., Inc., 1-484, 1957.
- McCullough, J. P. and Scott, D. W. (Editors), Experimental Thermodynamics, Volume I, Calorimetry of Non-Reacting Systems, Plenum Press (New York)/Butterworths (London), 1968.
- White, W. P., The Modern Calorimeter, Chemical Catalog Co., New York, 1928.
- Swietoslawski, W., Microcalorimetry, Reinhold, NewYork, 1964.
- Calvet, E. and Prat, H., Microcalorimétrie, Masson et Cie, Paris, 1956.
- Roth, W. A. and Becker, F., Kalorimetrische Methoden zur Bestimmung chemischer Reaktionswärmen, F. Vieweg, Braunschweig, 1956.
- Rossini, F. D. (Editor), Experimental Thermochemistry, Vol. I, Interscience, New York, 1956.
- Weissberger, A. (Editor), "Calorimetry" in Technique of Organic Chemistry Vol. I. Physical Methods of Organic Chemistry, Chap. X, Interscience, New York, 1959.
- Skinner, H. A. (Editor), Experimental Thermochemistry, Vol. II, Interscience, London, 1962.

Numerical Data

Data Presentation and Related General Information

1. SCOPE OF COVERAGE

The materials studied in this volume consist of metallic elements and their alloys.* The elements are listed in the table of contents in alphabetical order according to chemical name while the alloys are in alphabetical order according to the major constituent element. The data presented are original experimental data on the specific heat of these materials as reported by various investigators. These data were extracted from the world's technical and scientific literature, United States Government Publications, Doctoral and Masters dissertations, data supplied by private companies, and special reports of major research centers throughout the world. The range of temperatures covered is from zero degree. Kelvin to the melting point and beyond. For most hightemperature metals and alloys, no information is found in the liquid range.

2. PRESENTATION OF DATA

The data for all substances are presented in graphical and tabular form together with a specification table for each substance. The specification table gives the temperature range, the original reference number, the curve number, reported estimates of error, year of publication of the original document, specimen designation, and such other pertinent information as composition or purity of sample, test environment, mechanical, chemical, and thermal history of the test specimen, etc., to the extent provided in the original source document. The data for the specific heat of the materials are plotted on a log-log scale for comparative evaluation. When several sets of data are coincident, the graphical

plotting of all of them would lead to confusion. For this reason, some of the sets of data points are omitted from the figures. They are, however, reported in the data tables and specification tables.

The numerical data are presented in double columns. The temperature T is in degrees Kelvin, and the specific heat C_p is in calories per gram per degree Kelvin. A unique curve number is assigned to each set of data. This corresponds exactly to the number which also appears in the specification table and on the figure.

The two general types of data that are obtainable from the literature are the true specific heat data obtained directly from the results of measurements using, for instance, the Nernst-type calorimeter and the derived true specific heat data, deduced from direct enthalpy measurements using the drop technique. In the latter type an empirical equation has been fitted by the authors to the enthalpy data by least squares technique and specific heat obtained by differentiation. The results are usually tabulated at rounded temperature intervals.

3. SYMBOLS AND ABBREVIATIONS USED IN THE FIGURES AND TABLES

Symbo	ol Definition	Units
Ť	Temperature	degree Kelvin, K
C_p	Constant pressure specific heat	cal g ⁻¹ K ⁻¹
$C_{\mathbf{v}}$	Constant volume specific heat	cal g ⁻¹ K ⁻¹
M.P.	Melting point	degree
T.P.	Toursition maint	Kelvin, K
1.P.	Transition point	degree Kelvin, K
S.C.	Superconducting	
N	Normal	
c	Cubic	
f.c.c.	Face-centered cubic	

^{*}Boron, which is a nonmetal, has been included in this volume because of its extensive use as an alloying element for most metallic alloys. However, boron has also been listed in Volume 5, as a nonmetal.

CONVERSION FACTORS FOR UNITS OF SPECIFIC HEAT

MULTIPLY by appropriate factor to OBTAIN—	cal _{th} g-mol-1 C-1	cal _{th} g ⁻¹ C ⁻¹	cal _{IT} q-mol ⁻⁴ C ⁻¹	cal _{IT} g-1 C-1	J g-mol-1 K-1	J 2-1 K-1	J kg-mol-1 K-1	J kg-1 K-1	But 15-1 F-1	Ba _{IT} b-1 g-1
cal _{th} g-mol-4 C-4	1	и/п	0. 999331	0. 999331/M	4.184	4.184/M	4.184 x 10³	4.184/M×10 ³ 1/M	1/M	0. 999331/M
cal _{th} g - c - s	×	1	0. 995C31 M	0. 998331	4.184M	4.184	4.184M x 10³	4.184 x 10 ³	1	0.995331
cal_I g-mol-4 C-4 1.00067	1,00067	1.00067/M	7	1/и	4.1868	4.1868/M	4.1868 x 103	(4.1868/M)×10 ² 1.00067/M	1. 00067/M	1/M
cal _{II} g ⁻¹ C ⁻⁴	1. 00067M	1.00067	ĸ	1	4.1868M	4.1868	4.1868M x 10³	4.1868 x 10 ³	1.00067	1
7 g-mol→ g-1	0. 239006	0. 239006/M	0. 238846	0. 238946/K	1	1/Ж	1 x 10³	1 × 10 ³ /M	0.239006/M	0.238846/M
7 E-1 K-1	0. 239006М	0,239006	0. 238846M	0.238846	×	1	M x 103	104	0.239006	0.238946
J kg-mol-4 K-1	2.39006 x 10-4 (2.39006/M) x	(2.39006/M) x 10-4	2.38846 x 10 ⁻⁴ (2.38846/M) x	2.38946/M) x 10-4	10-4	10~1/M	1	N/1	(2.39006/M) x 10-4	(2.38946/M) x 10-4
2 Mg 2 K 2	2. 39006M x 10-4	2.39066 x 10-4	2. 38846M x 10-4	2.38846 x 10-4	K × 10.2	10-2	×	-	2. 39006 x 10 4	2, 38946 x 10
But b-1 F-1	×	1	0. 99\$331 M	0. 995331	4. 184 K	4.184	4. 184M x 10 ³	4.184 x 10 ²	1	0. 999331
Bla ₁₁ B-4 F-1	1.00067M	1.00067	×	1	4.1868M	4.1968	4. 1868M x 10 ³	4.1868 x 10 ³	1.00067	1

Classification of Materials

		Limi	ts of composition	on (weight perc	ent)*
	Classification	, X ₁	$X_1 + X_2$	Xa	X ₃
1. Metallic elemen	ts ———	>99.5	_	< 0.2	< 0.2
	A. Binary				
2. Nonferrous	alloys —		≥ 99.5	≥ 0.2	≤ 0.2
alloys		r –	≥ 99.5	> 0.2	> 0.2
$(X_1 \neq Fe)$	∟B. Multiple	-	< 99.5	≥ 0.2	≤ 0.2
	alloys		< 99.5	> 0.2	> 0.2
		_ ≤ 99.5	_	< 0.2	< 0.2
		X_1	X ₂	X ₃	Mn, P, S, or Si
	Group I	Fe Fe Fe	C ≤ 2.0	≤ 0.2	≤ 0.6
	steels	∟Fe	$C \leq 2.0$	≤ 0.2	> 0.6
	LGroup II	Fe	$C \leq 2.0$	> 0.2	≤ 0.6
		LFe	$C \leq 2.0$	> 0.2	> 0.6
3. Ferrous —	B. Cast	——Fe	C > 2.0	≤ 0.2	≤ 0.6
Alloys	irons	rFe.	C > 2.0	≤ 0.2	> 0.6
$(X_1 = Fe)$	Group II	Fe	C > 2.0 C > 2.0		≤ 0.6
,	•	LFe	C > 2.0	> 0.2	> 0.6
	-C. Alloy	——-Fe	≠ C	≤ 0.2 and $C \leq 2.0$	≤ 0.6
	steels†	-Fe	≠ C ≠ C	≤ 0.2	> 0.6
	LGroup II	— Fe	≠ C	> 0.2	≤ 0.6
	5.53 p 5.	Fe	≠ C	> 0.2	> 0.6

 $^{{}^*}X_1 \geq X_2 \geq X_3 \geq X_4 \ldots.$

b.c.c. Body-centered cubic

h Hexagonal

c.p.h. Close-packed hexagonal

4. CONVERSION FACTORS FOR UNITS OF SPECIFIC HEAT

The conversion factors given in the table on page 20a are based upon the following basic definitions:

$$\begin{array}{lll} 1 \ lb & = 0.45359237 \ kg^{\bullet} \\ 1 \ cal_{th} & = 4.184 \ (exactly) \ J^{\bullet} \\ 1 \ cal_{rT} & = 4.1868 \ (exactly) \ J^{\bullet} \\ 1 \ Btu_{th} \ lb^{-1} \ F^{-1} & = 1 \ cal_{th} \ g^{-1} \ C^{-1} \\ 1 \ Btu_{tT} \ lb^{-1} \ F^{-1} & = 1 \ cal_{rT} \ g^{-1} \ C^{-1} \\ \end{array}$$

The subscripts "th" and "IT" designate "thermochemical" and "International Steam Table," respectively.

5. CLASSIFICATION OF MATERIALS

The classification scheme as shown in the table for metallic elements and alloys contained in this volume is based upon the chemical composition of the material. This scheme is mainly for the convenience of material grouping and data organization and is not intended to be used as definitions for the various material groups.

6. CONVENTION FOR BIBLIOGRAPHIC CITATION

For the following types of documents the bibliographic information is cited in the sequences given below.

 $[\]dagger$ In case Mn, P, S, or Si represents X_2 , this particular element is dropped from the last column. Alloy cast irons are also included in Group II of this category.

^{*}National Bureau of Standards, "New Values for the Physical Constants Recommended by NAS-NRC," NBS Tech. News Bull. 47(10), 175-7, 1963.

[†]Mueller, E. F. and Rossini, F. D., "The Calory and the Joule in Thermodynamics and Thermochemistry," Am. J. Phys. 12(1), 1-7, 1944.

Journal Article:

- a. Author(s)—The names and initials of all authors are given. The last name is written first, followed by initials.
- b. Title of article—In this volume, the titles of the journal articles listed in the References to Text are given, but not of those listed in the References to Data Sources.
- c. Journal title—The abbreviated title of the journal as in *Chemical Abstracts* is given.
- d. Series, volume, and number—If the series is designated by a letter, no comma is used between the letter for series and the numeral for volume, and they are underlined together. In case series is also designated by a numeral, a comma is used between the numeral for series and the numeral for volume, and only the numeral representing volume is underlined. No comma is used between the numerals representing volume and number. The numeral for number is enclosed in parentheses.
- e. Pages—The inclusive page numbers of the article.
- f. Year—The year of publication.

Report:

- a. Author(s)
- b. Title of report—In this volume, the titles of the reports listed in the References to Text are given, but not of those listed in the References to Data Sources.
- c. Name of the responsible organization.

- d. Report, or bulletin, circular, technical note, etc.
- e. Number
- f. Part
- g. Pages
- h. Year
- i. ASTIA'S AD number—This is given in square brackets whenever available.

Book:

- a. Author(s)
- b. Title
- c. Volume
- d. Edition
- e. Publisher
- f. Place of publication
- g. Pages
- h. Year

7. CRYSTAL STRUCTURES, TRANSITION TEMPERATURES, AND OTHER PERTINENT PHYSICAL CONSTANTS OF THE ELEMENTS

The table on the following pages contains information on the crystal structure, transition temperatures, and certain other pertinent physical constants of each element. This information is very useful in data analysis and synthesis. However, no attempt has been made to critically evaluate the temperatures/constants given in the table and they should not be considered recommended values. This table has an independent series of numbered references which immediately follow the table.

CRYSTAL STRUCTURES, TRANSITION TEMPERATURES, AND OTHER PERTINENT PHYSICAL CONSTANTS OF THE ELEMENTS

					Phase	Superconducting	П						
Name	Number	Weight	Density,	Structure	Transition		Temp.	Temp.	at 0 K,	10 K, at 296 K,	Melting Point,	Pot.at,	Temp.
			kg m ⁻³ . 10-3		K.	K K	- 1	×	×	×	×	¥	¥
Actinium	68	(227)	10.07	f.c.c.					124	100 (at~50 K)	1323	3200 ± 300	
Alumhum	13	26.9815	2.702	f. c. c.		1, 196 1, 17 1, 18			423 ±5	390	933.2	2723	11 8650 7740
Americium	96	(243)	11.7	Pouble c. p.h.							1473	2880	
Antimony	51	121.75	6.684	 3 3 3	367.8 (?-?) 690 (?-?)	2.6 (Sb II, high-pressure modification)			150	200	903.7 23 903.65	1907 ± 10	2969
Argon	18	39, 948	0.0017824 (at 273.2 K and 1 atm)							90 (at~45 K)	83.8 H	87.29 B	151
Arsenic	æ	74. 9216	5.73 (gray, at 287.2 K) 4.7 (black) 2.0 (yellow)	r. (gray) c. (yellow)					236 3	275	1090 1090 (35.8 atm) (35.8 atm) subl. 886	1090 35.8 atm)	
Astatine	85	(210)									573.2	650	
Berlum	98	137.34	3,5 29	b.c.c. (n) n	648 ". 21 (n-B)				110.5±1.8 116	8 22 116 23	998. 2		3663 188 3920
Berkellum	26	(249)											
Beryllium	•	9.0122	1.85	c. p. h. ² (a) b. c. c. (A)	1533 (n-8) ~6 ~ 8.4	~6 188 ~			1160	1031	1550	3142±100 6153	6153
Blemuth	2	206.980	82 70 . 66	ب _. .		3. 9 (Bi II. at 25 kbar) 7. 2 (Bi III. at 27 kbar)			119 ±2	116 ±5		544, 525 1824 ± 8	4620
Boron	G	10,811	2.50	Simple r. (a)	1473 (α-β)				1315	1362	2573	4060±100	
Bromine	35	79, 909	3, 119	orthorh.							266.0	331.93	* 15

Atomic weights are based on 12C = 12 as adopted by the International Union of Pure and Applied Chemistry in 1961; those in parentheses are the mass numbers of the isotopes longest known half-life.

^b Density values are given at 293.2 K unless otherwise noted.

^c Superscript numbers designate references listed at the end of the table.

Name	Atomic Number	Atomic ² Weight	Density,	Crystal Structure	_	ting	Curle Temp.	Néel	Debye Temperature	perature at 298 K	Nelting	Boiling	Critical
			kg m ⁻³ · 10 ⁻³		remp K	lemp., K		X	*4	Ж	Х	K	K
Cadmium	\$	112.40	8.65	c.p.h.		0.56	56	Si .	252 ± 48		90	3, 10	1903
				b.c.c. (?)		0.52					.c., Subl. 13 594, 1 (at 0.11 mm Hr.)	(a)	3560
Calcium	20	40.08	1, 55	f. c. c. (α) b. c. c. (β)	737 ⁶² (a-β)				234±5	230	1123 176 Subl. 1123	1765³	3267
Californium	86	(251)									(at 0.35 mm	, не)	
Carbon (amorphous)	9	12.01115	1, 8~2, 1								Subl. s 4473 3925-3970	s 4473	
Carbon (diamond)	۰	12.01115	3.51	* •					2240±5	1874	> 3823	5100	
Carbon (graphite)	ø	12,01115	$2.26^{29}(\alpha)$	h. ² (a) r. ^{(g})					402±11	1550	SubL s 4473 3925-3970	s 4473	
Cerlum	80 10	140.12	6. 90 23	f. c. c. (a) Double c. p.h.? (β) f. c. c. (γ)	103 ± 5 $(\alpha - \beta)$ 263 ± 5 $(\beta - \gamma)$ 1003 $(\gamma - \delta)$			113 22	146	138 H	1077		10400
Cestum	88	132, 905	1. 873	b.c.c.					3 40±5	£ 43	301.9 13 Subl. 301.9 (at 1.2 µHg)	339 34 (B)	20+3 19C.
Chlorine	11	35, 453	0. 003214 (at 273. 2K)	*						115 4. M (at~58 K)	172.2	239, 10	417
Chromium	24	51. 996	7. 16	c.p.h. 13,d,	~299 (Q-β)			311	598 ± 32	424	2118	2918±35	
Cobalt	27	58, 9332	8. 862	c. p. h. (α)	38 (Δ-Β)		1400		452 ± 17	386	1765,10	3229	
Copper	59	63, 54	8. 933	f.c.c.					342 ± 2	310	1356	2811±20	8500 118 8280
Curtum	*	(247)	a _	Double c.p.h.									
Dysprostum	8	162. 50	8. 556	c. p. h. (a) b. c. c. (b)	Near m.p. (n-b)			174 ts 83. 5 (ferro-	172 ±35	158	1773	3011	7640
								antiferromag.)	omag.)				

disceptable dexagonal crystalline modification of chromium may be formed by electrodeposition below 293 K under special conditions of deposition process. This c.p.h. form is unstable and will irreversibly transform into b.c.c. form on heating.

Name	Atomic Number	Atomic Weight	Density,	Crystal Structure	Phase Transition Temp., K	Superconducting Transition Temp	Curie Temp., K	Néel Temp	Debye Ter at 0 K, K	Debye Temperature it 0 K, at 298 K, K K	Melting Point, K	Boiling Point, K	Critical Temp.,
iron	36	55, 947	7. 87	b.c.cferromag, ^(tr) 1183 (g-3) b.c.cparamag, (g) 1673 (y-6) f.c.c. ^(r) b.c.c. ^(r)	(A) 1183 (B-7)		1043		457 ± 12	E	1810	2	9400
Krypton	36	83.80	0.003708 (at 273.2 K and 1 atm)							60 tat~30K)	116.6	119.93	209.4
Landhamm	57	138. 91	6. 18	Double c. p. h. (a) f. c. c. (β) b. c. c. (γ)	$583 \frac{H}{(\alpha - \beta)}$ 1141 $\frac{H}{(\beta - \gamma)}$	6.3 (3)			142 ±3	135 ± 5	1193	3713±70 10500	10500
Lawrencium	103	(257)											
Lead	22	207.19	11.34	f.c.c.		7.193			102 ±5	87 ± 1³	600.576 3,111	022 ± 10	5400
Lithium	m	6.939	0.534	b. c. c.	Martensitic transformation at low temp.	x g			352 ± 17	°*	453.7 ¹⁹	1599	4150
Lutetium	11	174. 97	9.85	c. p. h. ² α) b. c. c. ² β)	Near m.p. (2-8)	6			210	116	1923	4140	
Magnesium	77	24.312	1.74	c. p. h.					396 ±54	330	923	1385	3530
Manganese	25	54, 9380	7.43 $(\alpha)^{23}$ 7.29 $(\beta)^{23}$ 7.18 $(\gamma)^{23}$	c. (6) b. c. c. (6)	c. (g) 1374 (g-y) c. (g) 1374 (g-y) c. (g) (g-10 (y-0) b.c. c. (6)			92 S	418 ±32		1517±3		6050
Mendelevium	101	(256)											
Mercury	8	200.59	13.546 14.19 (at 234.25K)	r. (\alpha) b. c. t pressure 25 K) induced structure (\alpha)	Markensitic transformation at low temp.	4. 153 (q)			~ 75	28 78 83	234.28	16 629.73 ^{3,16} 1733	11733 1705
Molybdenum	2	96.94	10.24	b.c.e.		0.92 5.8			459±11	3773	2883	5785 ± 175	17000
Neody mium	9	144.24	7.007	Double c. p. h. ^(a) b. c. c. ³⁵	1135 ^R (n-β)		3 3	(ordinary) 19 (special)	159	148±8	1292	2956	7.900 ***
Neon	10	20, 163	0.0009002 (at 273.2 K and 1 atm)	f.c.c.						60 (at~30K)	24. 48	27.23 27.06	‡.

Francium 63 Erbium 63 Francium 63 Francium 64 Gadolinium 64 Gallium 32 Germanium 32 Germanium 32 Hellum 2 Hellum 67	Atomic Weight	Density	Crystal			Sinco		Total Tax	aritation.	Melting	Doi:	
		-	Structure	Transition	Transition	Temp.	Temp.	at 0 K, at 298 K,	at 298 K.	Point,	Point,	Temp.
		kg m ⁻³ · 10 ⁻³		K K	K	¥	¥	¥	¥	¥	¥	¥
	(254)											
i de la companya de l	167. 26	9. 06	c. p. h. (a)	1643 (0-8)		19		134 ± 10	163	1770	3000	7250
	151.96	5 245	b.c.c. (8)				706~	127		1099	1971	4600
)	(253)											
· · · · · · · · · · · · · · · · · · ·	18. 9984	29 0.001695 (at 273.2 K and 1 atm)	c. (8-F2)							53, 58	85.24	# # # # # # # # # # # # # # # # # # #
- · · ·	(223)							39			879 879	
um i	157. 25	7.87	C. p. h. (a)	1535 (4-8)		292		170	155±3		3540	8670
	69. 72	5. 91 29	orthorh. (17)	275.6 (α-β) (at 8.86 x 10 ⁴ mm Hg)	1.091 30 7.2 (Ga II, high-pressure modification)			317	240 240 125 (tetra at ~63 K)	302. 93 275. 6 (at 8. 86 x 10 ⁶ mm Hg)	2510	7620
un un vier	72. 59	5.36 %	ę.		5, 5 (at ~118 kbar)			378 ±22	+03°	1210.6	3100	5642 15
	196, 967	19. 3	f.c.c.		2 4			165 ± 1	178 ± 8	1336. 2 23	3240	95(3 H
	178.49	13. 28	c.p.h. (2)	2023±20 (n-B)	3) 0.16 0.35			256±5	213	2495	*	•
	4. 0026	0. 0001785 (at 273, 2 K and 1 atm)	c.p.h.						30 4 (at~15 K)	30 4 3.45 29 (at ~15 K) 1.8 ± 0.2 (at 30 atm)	4. 216 13 4. 22 23	5. 3.
	164, 930	8.80	c.p.h (n) b.c.c.(g)	Near m. p. (α-β)	6	204	132	114±7	161	1734	3228	
	1. 007 <i>9</i> 7	0. 00006967 (at 273. 2 K and 1 atm)	c. p. h.						116 (para., 1. at~58 K) 105 (ortho., at~53 K)	116 (para., 13, 8±0, 1 at~58 K) 106 (ortho., at~53 K)	17 20.39 2 20.37	33.3
Indium 49	114. 82	7.3	f.c.t.		3.4035			106.8±0.3 129	3 129	429.76	2279 ±6	4377 # 7050
S3 S4	126. 9044	4, 93 #	orthorh.						105 (at~53 K)	106 386.8 18 (at~53 K) ubi. 296.16 (at 0.31 mm Hg)	457.50 Hg)	
Iridium 77	192.2	22.5	f.c.e.		0.145.9			425 ± 5	226	2716 3,10	4820±30 ³	

Nichel 28 58.71 Nichel 28 58.71 Nichelum 41 92.906 Nichelum 102 (254) Osmium 76 190.2 Orygen 8 15.9994 Palladium 46 106.4 Phosphorus 15 30.9738 Platinum 78 195.09 Plutonhum 78 195.09	20.46 2.0.46 8.90 E	Structure 10^{-3} orthorb. (α)	Temp., Temp., K	. K	K K	21 U.N. 21 236 K.	#1 296 K.	Zolet.	Point,	remp.
ium 93 (2 28 11 1 102 (25 12 12 12 12 12 12 12 12 12 12 12 12 12		orthorh, (α)	2						4	¥
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		t, (4) b.c.c. (3)	551 (a-f 8) 813 (β- γ)			121	163	913. 2 ⁵	4150	
True 8 78 19 19 19 19 19 19 19 19 19 19 19 19 19		f.e.e.		631		427 ±14	345	1726 *** 1726 ±4	3065	6294 11750
n 102 (25 18 19 192 (25 18 18 15 18 18 15 18 18 18 18 18 18 18 18 18 18 18 18 18		b. c. c.	9.13 9.09 9.09 9.1			341±13	260 27	2741 ±27 2688 2688	4813	19000
102 (25 mm 102 (25 mm 103 (25 mm 103 (25 mm 103 mm 103 (25 mm 103	25 0.0012506	δ c. ^K (σ) h. ^M (β)	35. 62 (n-B)				70 (at~35K)	63. 29	77.34 13,73	126.2
m 46 37 18 18 18 18 18 18 18 18 18 18 18 18 18						!		:	1	
orus 46 8 15 15 1 2 4 6 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	22.48	c. p. h.	0,655 0,655			000		-	10	
\$ 2	994 0.001429 (at 273.2 K and 1 atm)	2 b. c. orthorh. (n) r. (g) c. (y)	23, 876 ± 0, 01 $\frac{19}{(\alpha - \beta)}$ 43, 818 ± 0, 01 $\frac{11}{(\beta - \gamma)}$				250 (at~125 K) 500 (at~250 K)	. 8. 8. 8. 8.	90.19 20.18	154.8
2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.02					283 ± 16	275 4	1825 3, 10	3200	
# *		ŭ e k c	136 (7–β) 298. 16 (β–γ) 298. 16 (β–Φ)			193 (white 325 (red)	g #	317.3 whi 1300 Thac	te)553 ts	993. 8 11
*		f.c.e.				2:14 ±13		2042 3, 10	4100	32 98 28 31
	19, 737 (at 296.2 K)		7396.7 1 1 1 1 2 2 3 4 5 1 1 4 5 5 1 4 5 5 5 1 4 5			171		912.7	3727	
Polonium 84 (210)	9.3 % (8) 8.8 9.5 %	Ø	327 ± 1. 5 (α-β)			, 1s		527.2	1235	2281
Potassium 19 39, 102						39.4±0.5 100	,100	336.8	1 027 x	2450 18 2140
Praseodymium 59 140.907	6.769	Double c. p. h. (c) 1071 (c-f) b. c. c. (f)	1071 ^H (a-β)		25	¥6±1	138	1192±2	3616	8900

Neme			:			9	9(11)	N.i.o	Dehre Jon	O LING BERT	To the same	Rolling	Tatelon!
	Number	Weight	Density,	Structure	Transition Temp.,	Transition Temp.,	Temp.	Temp.	at 0 K, at 298 K,	at 298 K.	Point,	Point,	Temp.,
			kg m-3 · 10-3			¥	¥	×	¥	¥	¥	×	¥
Promethium	61	(145)		h. (cz)	1185 (27-5)		•	128 6			1353 ± 10	2730	
Protectinium	16	(231)	15.37	b. c. t. 3		1.4	50		159	262	1503	10894	
Radium	80	(226)	តិភ						\$		973.2	1900	
Radon	*	(222)	0.00973 (at 273.2 K and 1 atm)	f.c.c.						400 (at~200 K)	202. 2	211	377. 16
Rhenlum	75	186.2	21.1	c.p.h.		1.698	,		429 = 22		3453	6035 ± 135 20000	20000
Phodium	45	102.905	12.45		possible transfor- 57 mation at 1373-1473 K	3K			480 = 32		3,10,8	3960±60	
Rubidium	37	85.47	1, 53	b. c. c.					54=4	2 65 5	312.04	в 98	21 00 115,116,116
Ruthenium	2	101. 07	12.2	c.p.h. (a)	1308 13, 131 (9g) 1473 13, 131 (9y) 1773 (9y)	0.49 **			ts 009	415	2523 ± 10	2523±10 4325±25	
Samarium	3	150, 35	7,54	r. ^g (g) b. c. c. ²² (g)	1190 (a-β)		**	106	116	184 ±4	1345. 2	2140	5400
Scandium	21	44. 956	3.00 8	c. p. h. 23)	1607 (α-β)				470 = 80	476 3	1812	3537 ±30	
Selesium	¥	78. 96	4.50 ²⁹ (c)	monocl. (a) h. (β) amorphous	304 .111 (vitrification) 398 (vitβ) 423 (α-β)	7.3 (at~118 kbar)			151,7±0,4 89 (at~45) 150 (at~75)	4 89 84 (at~45 K) 150 (at~75 K)	490.2	1009 (Se ₆) 1757 ¹⁵ 958.0 ¹⁶ (Se _{4,37}) 1027 (Se ₅)	1757
Silicon	*	28.086	2.33	• •		7.5 (at 118-128 kbar)	Ŧ		647 =11	. 269	1685±2	2753	5159
Silver	4.1	107.870	10.5	f.c.c.					228 =3	221	1234.0	2468±15	7460
Sodium	Ħ	22. 9696	0.9712	b. c. c.	Martensitic transformation at low temp				157 = 1	155±5	371.0 ¹³	1154	2 800 ¹¹
Strontium	e e	87.62	2.60	f. c. c. ²⁸ (q) c. p. h. ⁷ (8) b. c. c. ⁷ (γ)	488 (α-β) 878 (β-γ)				147 ± 1	148 22	1042	1645	3059 18 3810
Sulfer	97	32. 064	2. 07 ¹⁸ (a) 1. 96 (b)	$\mathbf{r}.^{1}(\alpha)$ monocl. $^{T}(\beta)$	368. 6 ¹³ (α−β)				200 3(8)	527 (cr) 250 (cr. at 40 K) Su (at	(1) 386.0 (2) 7 (2) 392.2 (3) Sub1.368.6 (at 0.0047 mm Hg)) 717.75 ^{3,10} 1313 ¹⁶)	1313
Tantalum	£	180, 948	16.6	b.c.c.	-	4. 483 4. 48			247 ± 13	225 H	3269	5760±60 22000	22000

Neme	Atomic	Atomica	Pensity	Crystal	Phase S	Superconducting C	1	Neel	Debye Temperature	perature	Melting	Boiling	Critical
	Nember	Weight	kg m-7 . 10-3	Structure	J		Temp., K		t o K	at 296 K, K	Pol et , K	Point, K	Temp., K
Technetium	£3	(%)	11.50	c.p.h.²		8.22 8.22 11.2			351	t 227	2473±50	6	į.
Tellurium	22	127.60	6.24 (d) h. (a) 6.00 (amorph.) ? (β)	h. (a) .) ? (b) t	621 ¹³ (q- .)	3.3 (Te II, at 56 kbar)			141 ± 12		722. 7	1163±1	2329
Terbium	S.	158.924	8.25	emorph. c.p.h., ''(a) b.c.c. (b)	Near m. p. (α-β)		219	230	150 H	158	1629	3810	
Thallfum	18	204.37	11,85	c. p. h. ² (n) b. c. c. (A)	508.3 (a-A	2, 39 g g g g g g g g g g g g g g g g g g			88 ± 1	3 8	576.2	1939	3219
Thorium	8	232, 038	11.7	f. c. c. ² (s) b. c. c. (s)	1673 ±25 (α-β)				170 E	1000	2 023	4200	14550
Thullum	6	168. 934	9. 32 ts	c. p. h. $^{2}(\alpha)$ b. c. c. $^{2}(\beta)$	Near m.p. (α-β)		22 (ferro	23 x	127 ± 1	167	1818	2266	6430
Tie	20	118.69	5.750 (a) 7.31 (A)	f.c.c. ⁷ (α) b.c.t. (β) r. (γ)	286, 2 ± 3 ¹⁶ (α−β)	3. 722 ⁵ (β)	ī		255 ±24 (gray) 196 ±9 (white)		254 (gray) 505.06 ^{3,18} 2766±14 ³ 170 (white)	2766 ± 14 3	8000 11 9300
Titanium	22	47.30	4.5	c. p. h. (c)	1155 ¹³ (α−β)	0. 39 6. 9			426 ±5	380 14	1963	3586	
Tungsten	7.	183.85	19.3	b.c.c.		0.011			388±17		3653	6:000 ±200 23000	23000
Urradum	8	238 03	19.07	orthorth. (a) t. '(b) b. c. c. '(y)	37±2 ¹¹³ (n ₀ -x) 938 ¹³ (o- β) 1049 ¹³ (β-γ)				300 E	300	1405.6±0.6	3960±250 12500	12500 100 12000
Vanadium	23	50.942	6.1	b. c. c.		5, 3 5, 03			326 ±54	390 14	2192 ±2	3582 ± 42	11200
Xenon	25	131.30	0.005851 (at 273.2 K and 1 atm)	f.c.c.							161. 2	165.1	289.75
Ytterblum	70	173.04	7.02	f. c. c. "(y)	$1m1^{2}$, ${}^{5}(\alpha-\beta)$				118		1097	1970	4420
Yttrhum	8 6	88.905	4.47	c. p. h. "(a) b. c. c. (b)	1753 (a-β)				268±32	214	1798	3670	8950
Zinc	30	65.37	7.140	c.p.h.²		0.875 0.85			316 ±20	237 ±3	92, 655 ° 1175	1175	2169 2910
Zirconium	\$	91. 22	6.57	c.p.h. (A) b.c.c. (B)	1135 ¹³ (n-β)	0,546 0,55			289±24	250	221.2	4650	12300

REFERENCES

(Crystal Structures, Transition Temperatures, and Other Pertinent Physical Constants of the Elements)

- 1. Farr, J.D., Giorgi, A.L., and Bowman, M.G., USAEC Rept. LA-1545, 1-13, 1953.
- 2. Elliott, R. P., Constitution of Binary Alloys, 1st Suppl., McGraw-Hill, 1965.
- 3. Gschneider, K.A., Jr., Solid State Physics (Sietz, F. and Turnbull, D., Editors), 16, 275-426, 1964.
- 4. Gopal, E. S. R., Specific Heat at Low Temperatures, Plenum Press, 1966.
- 5. Weast, R.C. (Editor), Handbook of Chemistry and Physics, 47th Ed., The Chemical Rubber Co., 1966-67.
- 6. Foster, K.W. and Fauble, L.G., J. Phys. Chem., 64, 958-60, 1960.
- 7. The Institution of Metallurgists, Annual Yearbook, pp. 68-73, 1960-61.
- 8. Meaden, G. T., Electrical Resistance of Metals, Plenum Press, 1965.
- 9. Matthias, B. T., Geballe, T. H., and Compton, V. B., Rev. Mod. Phys., 35, 1-22, 1963.
- 10. Stimson, H. F., J. Res. NBS, 42, 209, 1949.
- 11. Grosse, A.V., Rev. Hautes Tempér. et Réfract., 3, 115-46, 1966.
- 12. Spedding, F. H. and Daane, A. H., J. Metals, 6 (5), 504-10, 1954.
- 13. Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., and Jaffe, I., NBS Circ. 500, 537-822, 1952.
- 14. deLaunay, J., Solid State Physics, 2, 219-303, 1956.
- 15. Gates, D.S. and Thodos, G., AIChE J., 6 (1), 50-4, 1960.
- 16. Gray, D. E. (Coordinating Editor), American Institute of Physics Handbook, McGraw-Hill, 1957.
- 17. Sasaki, K. and Sekito, S., Trans. Electrochem. Scc., 59, 437-60, 1931.
- 18. Anderson, C.T., J. Am. Chem. Soc., 52, 2296-300, 1930.
- 19. Trombe, F., Bull. Soc. Chim. (France), 20, 1010-2, 1953.
- Stull, D. R. and Sinke, G.C., Thermodynamic Properties of the Elements in Their Standard State, American Chemical Soc., 1956.
- 21. Rinck, E., Ann. Chim. (Paris), 18 (10), 455-531, 1932.
- 22. Roberts, L.M., Proc. Phys. Soc. (London), B70, 738-43, 1957.
- 23. Zemansky, M. W., Heat and Thermodynamics, 4th Ed., McGraw-Hill, 1957.
- 24. Martin, A.J. and Moore, A., J. Less-Common Metals, 1, 85, 1959.
- 25. Hill, R.W. and Smith, P.L., Phil. Mag., 44 (7), 636-44, 1953.
- Moffatt, W.G., Pearsall, G.W., and Wulff, J., The Structure and Properties of Materials, Vol. I, pp. 205-7, 1964.
- 27. Grosse, A.V., Temple Univ. Research Institute Rept., 1-40, 1960.
- 28. Lyman, T. (Editor), Metals Handbook, Vol. 1, 8th Ed., American Soc. for Metals, 1961.
- 29. Lange, N.A. (Editor). Handbook of Chemistry, Revised 10th Edition. McGraw-Hill, 1967.
- 30. Paule, R.C., Dissertation Abstr., 22, 4200, 1962.
- 31. Burk, D. L. and Friedberg, S. A., Phys. Rev., 111 (5), 1275-82, 1958.
- 32. Spedding, F. H. and Daane, A. H. (Editors), The Rare Earths, John Wiley, 1961.
- 33. McHargue, C.J., Yakel, H.L., and Letter, C.K., ACTA Cryst., 10, 832-33, 1957.
- 34. Arajs, S. and Colvin, R.V., J. Less-Common Metals, 4, 159-68, 1962.
- 35. Bonilla, C.F., Sawhney, D.L., and Makansi, M.M., Trans. Am. Soc. Metals, 55, 877, 1962.
- 36. Rosenberg, H.M., Low Temperature Solid State Physics, Oxford at Clarendon Press, 1965.
- 37. Arajs, S., J. Less-Common Metals, 4, 46-51, 1962.
- 38. Edwards, A.R. and Johnstone, S.T.M., J. Inst. Metals, 84 (8), 313-7, 1966.
- 39. Lagneborg, R. and Kaplow, R., ACTA Metallurgica, 15 (1), 13-24, 1967.
- 40. Kittel, C., Introduction to Solid State Physics, 3rd Ed., John Wiley, 1967.
- 41. Kirshenbaum, A.D. and Cahill, J.A., J. Inorg. and Nucl. Chem., 25 (2), 232-34, 1963.
- 42. Touloukian, Y. S. (Ed.), Thermophysical Properties of High Temperature Solid Materials, MacMillan, Vol. 1, 1967.
- 43. Griffel, M., Skochdopole, R. E., and Spedding, F. H., J. Chem. Phys., 25 (1), 75-9, 1956.
- 44. Gschneidner, K.A., Jr., Rare Earth Alloys, Van Nostrand, 1961.
- 45. Dreyfus, B., Goodman, B.B., Lacaze, A., and Trolliet, G., Compt. Rend., 253, 1764-6, 1961.

- 46. Spedding, F.H., Hanak, J.J., and Daane, A.H., Trans. AIME, 212, 379, 1958.
- 47. Buckel, W. and Wittig, J., Phys. Lett. (Netherland), 17 (3), 187-8, 1965.
- 48. Deardorff, D.K. and Kata, H., Trans. AIME, 215, 876-7, 1959.
- 49. Panish, M. B. and Reif, L., J. Chem. Phys., 38 (1), 253-6, 1963.
- 50. Miller, A.E. and Daane, A.H., Trans. ADME, 230, 568-72, 1964.
- 51. Spedding, F.H. and Daane, A.H., USAEC Rept. IS-350, 22-4, 1961.
- 52. Montgomery, H. and Pells, G. P., Proc. Phys. Soc. (London), 78, 622-5, 1961.
- 53. Kaufman, L. and Clougherty, E.V., ManLabs, Inc., Semi-Annual Rept. No. 2, 1963.
- 54. Lounasmaa, O. V., Proc. 3rd Rare Earth Conf., 1963, Gordon and Breach, New York, 1964.
- 55. Baker, H., WADC TR 57-194, 1-24, 1957.
- 56. Reed, R. P. and Breedis, J. F., ASTM STP 387, pp. 60-132, 1966.
- 57. Hansen, M., Constitution of Binary Alloys, 2nd Edition, McGraw-Hill, p. 1268, 1958.
- 58. Smith, P. L., Conf. Phys. Basses Temp., Inst. Intern. du Froid, Paris, 281, 1956.
- 59. Powell, R.W. and Tye, R.P., J. Less-Common Metals, 3, 202-15, 1961.
- 60. Yamamoto, A.S., Lundin, C.E., and Nachman, J.F., Denver Res. Inst. Rept., NP-11023, 1961.
- 61. Oriena, R.A. and Jones, T.S., Rev. Sci. Instr., 25, 248-51, 1954.
- 62. Smith, J. F., Carlson, O. N., and Vest, R. W., J. Electrochem. Soc., 103, 409-13, 1956.
- 63. Edwards, J.W. and Marshal, A.L., J. Am. Chem. Soc., 62, 1382, 1940.
- 64. Morin, F.J. and Maita, J.P., Phys. Rev., 129 (3), 1115-20, 1963.
- 65. Pendleton, W. N., ASD-TDR-63-164, 1963.
- 66. Woerner, P. F. and Wakefield, G. F., Rev. Sci. Instr., 33 (12), 1456-7, 1962.
- 67. Walcott, N. M., Conf. Phys. Basses Temp., Inst. Intern. du Froid, Paris, 286, 1956.
- 68. White, G. K. and Woods, S. B., Phil. Trans. Roy. Soc. (London), A251 (995), 273-202, 1959.
- 69. Douglass, R.W. and Adkins, E.F., Trans. AIME, 221, 248-9, 1961.
- 70. Panish, M. B. and Reif, L., J. Chem. Phys., 37 (1), 128-31, 1962.
- 71. Bridgman, P.W., J. Am. Chem. Soc., 36 (7), 1344-63, 1914.
- 72. Slack, G.A., Phys. Rev., A139 (2), 507-15, 1965.
- 73. Sandenaw, T.A. and Gibney, R.B., J. Phys. Chem. Solids, 6 (1), 81-8, 1958.
- 74. Sandenaw, T.A., Olsen, C.E., and Gibney, R.B., Plutonium 1960, Proc. 2nd Intern. Conf. (Grison, E., Lord, W.B.H., and Fowler, R.D., Editors), 66-79, 1961.
- 75. Mulford, R. N. R., USAEC Rept. LA-2813, 1-11, 1963.
- 76. Goode, J.M., J. Chem. Phys., 26 (5), 1269-71, 1957.
- 77. Cable, J. W., Moon, R. M., Koehler, W. C., and Wollan, E.O., Phys. Rev. Letters, 12 (20), 553-5, 1964.
- 78. Murao, T., Progr. Theoret. Phys. (Kyoto), 20 (3), 277-86, 1958.
- Grigor'ev, A.T., Sokolovskaya, E.M., Budennaya, L.D., Lyutina, I.A., and Maksimona, M.V., Zhur. Neorg. Khim., 1, 1052-63, 1956.
- 80. Daane, A.H., USAEC AECD-3209, 1950.
- 81. Weigel, F., Angew. Chem., 75, 451, 1963.
- 82. Nassau, K. and Broyer, A.M., J. Am. Ceram. Soc., 45 (10), 474-8, 1962.
- 83. McKeown, J.J., State Univ. of Iowa, Ph. D. Dissertation, 1-113, 1958.
- 84. Abdullaev, G. B., Mckhtiyeva, S. L., Abdinov, D. Sh., and Aliev, G. M., Phys. Letters, 23 (3), 215-6, 1966.
- 85. Wittig, J., Phys. Rev. Letters, 15 (4), 159, 1965.
- 86. Fukuroi, T. and Muto, Y., Tohoku Univ. Res. Inst. Sci. Rept., A8, 213-22, 1956.
- 87. Olette, M., Compt. Rend., 244, 1033-6, 1957.
- 88. Sheldon, E. A., and King, A.J., ACTA Cryst., 6, 100, 1953.
- 89. Eastman, E.D. and McGavock, W.C., J. Am. Chem. Soc., 59, 145-51, 1937.
- 90. Arajs, S. and Colvin, R.V., Phys. Rev., A136 (2), 439-41, 1964.
- 91. Roach, P.R. and Lounasmaa, O.V., Bull. Am. Phys. Soc., 7, 408, 1962.
- 92. Shchukarev, S.A., Semenov, G.A., and Rat'kovskii, I.A., Zh. Neorgan, Khim., 7, 469, 1962.
- 93. Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, 1958.

32a Numerical Data

- 94. Smith, P.L. and Walcott, N.M., Conf. Phys. Basses Temp., Inst. Intern. du Froid, 283, 1956.
- 95. Davis, D.D. and Bozorth, R.M., Phys. Rev., 118 (6), 1543-5, 1960.
- 96. Alicv. N.G. and Volkenstein, N.V., Soviet Physics JETP, 22 (5), 997-8, 1966.
- 97. Spedding, F. H., Barton, R.J., and Daane, A.H., J. Am. Chem. Soc., 79, 5160, 1957.
- 98. Raynor, G. V. and Smith, R. W., Proc. Roy. Soc. (London), A244, 101-9, 1958.
- 99. Savitskii, E.M. and Burhkanov, G.S., Zhur. Neorg. Khim., 2, 2609-16, 1957.
- Argent, B. B. and Milne, J.G.C., Niobium, Tantalum, Molybdenum and Tungsten, Elsevier Publ. Co. (Quarrell, A.G., Editor), pp. 160-8, 1961.
- 101. Argonne National Laboratory, USAEC Rept. ANL-5717, 1-67, 1957.
- 102. Holden, A.N., Physical Metallurgy of Uranium, Addison-Wesley, 1958.
- 103. Lounasmaa, O.V., Phys. Rev., 129, 2460-4, 1963.
- 104. Jennings, L.D., Miller, R.E., and Spedding, F.H., J. Chem. Phys., 33 (6), 1849-52, 1960.
- 105. Ackerman, R.J. and Rauh, E.G., J. Chem. Phys., 36 (2), 448-52, 1962.
- 106. Rosenblatt, G. M. and Birchenall, C. E., J. Chem. Phys., 35 (3), 788-94, 1961.
- 107. Streib, W. E., Jordan, T. H., and Lipscomb, W. N., J. Chem. Phys., 37 (12), 2962-5, 1962.
- 108. Samsonov, G.V. (Editor), Handbook of the Physicochemical Properties of the Elements, Plenum Press, 1968.
- 109. Kopp, L.Z., Russ. J. Phys. Chem., 41 (6), 782-3, 1967.
- Stimson, H. F., in Temperature, Its Measurement and Control in Science and Industry (Herzfeld, C.M., Ed.),
 Vol. 3, Part 1, Reinhold, New York, pp. 59-66, 1962.
- McLaren, E. H., in Temperature, Its Measurement and Control in Science and Industry (Herzfeld, C.M., Ed.), Vol. 3, Part 1, Reinhold, New York, pp. 185-98, 1962.
- Orlova, M. P., in Temperature, Its Measurement and Control in Science and Industry (Herzfeld, C.M., Ed.),
 Vol. 3, Part 1, Reinhold, New York, pp. 179-83, 1962.
- 113. Grosse, A.V., J. Inorg. Nucl. Chem., 28, 2125-9, 1966.
- 114. Hochman, J.M. and Bonilla, C.F., in Advances in Thermophysical Properties at Extreme Temperatures and Pressures (Gratch, S., Ed.), ASME 3rd Symposium on Thermophysical Properties, Purdue University, March 22-25, 1965, ASME, pp. 122-30, 1965.
- 115. Dillon, I.G., Illinois Institute of Technology, Ph.D. Thesis, June 1965.
- 116. Hochman, J.M., Silver, I.L., and Bonilla, C.F., USAEC Rept. CIJ-2660-13, 1964.
- Abdullaev, G.B., Mekhtieva, S.I., Abdinov, D.Sh., Aliev, G.M., and Alieva, S.G., Phys. Status Solidi, 13(2), 315-23, 1966.
- 118. Fisher, E.S. and Dover, D., Phys. Rev., 2, 170(3), 607-13, 1968.
- 119. Beaudry, B.J., J. Less-Common Metals, 14(3), 370-2, 1968.
- 120. Williams, R.K. and McElroy, D.L., USAEC Rept. ORNL-TM 1424, 1-32, 1966.
- 121. Jaeger, F.M. and Rosenbaum, E., Proc. Nederland Akademie van Wetenschappen, 44, 144-52, 1941.
- 122. Gibson, J.W. and Hein, R.A., Phys. Letters, 12(25), 688-90, 1964.

 123. Grosso, A.V., Rossarch = stitute of Temple Univ., Report on USAEC Contract No. At (30-1) 2082, 1-71, 1965.

or Deta Benorted in Manne and Table No. 1

					LFOT Data Repo	For Data Reported in Figure and Table No. 1
No.	No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
4	Ŋ	1937	1.1-19			99.7 Al; liquid helium atmosphere.
8	81	1937	15-20			99.7 Al; solid and liquid hydrogen atmosphere.
•	*	1941	15-302	0.1-3.0		99.944 Al; sample supplied by the Research Lab of the Aluminum Company of America; meited, and cooled for 2 days to produce single crystals.
•	n	1953	273-923	<5.0	Al - wire	99.9 Al, 0.05 StO ₂ , and 0.03 B.
ĸ	7	1961	295	₹2.0		
ψ	ဟ	1962	1.1-1.2	0.88		99.995 Al, 0.00025 Fe, < 0.0001 Si, and 0.00005 Cu; 1.4 x 10 ⁻⁵ mm Hg vacuum; melted, etched in dilute aqua regla, amealed under vacuum at 600 C for 91 hrs and cooled gradually to room temperature during 24 hrs; etched again for 10 min; annealed for 165 hrs at 585 C and cooled gradually to room temperature during 114 hrs.
2	\$	1962	1.17-1.18	≠3.0	N - I	99.99 Al, 0.009 Si, 0.001 Mg, <0.0008 Cu, <0.0006 Fe, and 0.0003 Mn; two large single crystals; zone-refined.
80	•	1962	1.18-1.19	₹3.0	и - гу	99.99 Al, 0.01 Si, 0.001 Mn, 0.0005 Ti, <0.0005 Cu, <0.0005 Fe, and 0.0002 Mg; about 6 single crystals of equal size; zone-refined.
o	•	1962	1.18-1.19	₹3.0	м - п	99.99 Al, 0.009 Sl, 0.004 Mg, 0.001 Mn, 0.0005 Tl, <0.0005 Cu, and <0.0005 Fe; polycrystalline.
10	102	1962	323-573	3.0-5.0		
=	ro	1962	1.0-1.2	0.88	Superconducting	99.995 Al, 0.00025 Fe, <0.0001 Si, and 0.00005 Cu; 1.4 x 10 ⁻⁴ mm Hg vacuum; melted, etched in dilute aqua regia, amealed under vacuum at 600 C for 91 hrs and cooled gradually to room temperature during 24 hrs; etched again for 10 min; annealed for 165 hrs at 585 C and cooled gradually to room temperature during 114 hrs.
12	ဖ	1962	1.1-1.2	+3.0	Al - III cooling	99.99 Al, 0.009 Sl, 0.004 Mg, 0.001 Mn, 0.0005 Tl, <0.0005 Cu, and <0.0005 Fe; poly-crystalline.
13	179	1924	373-873	1		NBS standard.
1	261	1934	55-296			99.985 Al; annealed; heated in high vacuum for 18 hrs at 460 C.
15	261	1934	56-291			99.985 Al; single crystal; hard drawn aluminum.
16	262	1937	398-673			
11	263	1939	373-873			
18	797	1981	90-373			99.5 Al.
19	265	1959	0.1-4.0	<0.5		99.998 Al, 0.002 Cu; polycrystalline with grain size 3-5 mm; cast in a vacuum; vacuum annealed at 450 C for 48 hrs; 300 gauss magnetic field.
20	265	1959	0.2-1.2	<0.5		Same as above; zero magnetic field; superconducting.

DATA TABLE NO. 1 SPECIFIC HEAT OF ALUMINUM

H	ປ	H	ŭ <u>.</u> 5	emperature, 1	Temperature, T, K; Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]	i, Cp, Calg	'1 K -1]		ပ	, +	ບ
			Q.			•	a.		+	.	ď
CURVE	~I	CURVE	CURVE 1 (contd)	CURVE	VE 3	CURVE	CURVE 3 (contd)	밁	CURVE 6*	CURV	CURVE 7 (contd)
1, 110	3. 152 x 10-5	7.664	2.061 x 10-4	15, 29	¥ 6	209.38	1, 943 x 10 ^{-1*}	1, 0563	1, 461 x 10 ⁻⁶	_	2. 17 x 10-6
1, 122	3, 109	9.463	3 072	20.08	7 4 X 10 2	210.52	1. 858 1. 858 1. 858	1. 068 070	1,481	1. 174,	2 11
1, 129	2, 291	10, 479	4. 133	22, 67	3.0	216. 53	1. 974	1 090	1.513		2, 14
1, 139	7. 926	11, 722	5, 208	27.01	5.4	220, 40	L. 977*	1, 107,	1.54.1		2 09
1. 140	1, 802	12, 185	6. 067	31.61	0.6	225. 75	1, 993	1, 118,	1, 565	-	2, 12
141	1.668	13, 726	8, 095	35.94	L 33 x 10-2	231, 37	2, 009	1, 126,	1, 571		2, 08
1.312	L 798	14, 713	1 100 < 10-3	40.68	3 &	236. 95	2.031	1. 140	1.586	1, 175,	2, 08 0.08
1 54	1 7	17, 121		51.11		247.80	2 051	156	1, 336	1 175	2, 02
1, 690	2, 321	17, 951	1, 527*	55, 18	4, 29	253.32	2,065	1. 162	1. 620	1,175	
1.873	2. 636	18, 875	1, 821	58, 59	4.88	257.99	2. 0	1. 166,	1, 629		
1.911	2,716	19.230	1.958	61.90	5, 46	263. 44	2, 091	1, 170,	1, 630		1.71
2000	2. 742	į		65, 79	6. L3	268, 80		1, 173,	1, 640		1.67
2.201	3. 175		CURVE 2	70, 16	6.90	273. 03	22		1, 638	L 1764	1, 60
Z. 269	3.263	0		70. 52	6.96	278, 57	2, 121	1. 180	1, 650		1.58
2.311	5. 150 5. 250	9. 581	3. 432 x 10 *	74.66	7. 69	284. 01		1, 182,	1.652		1. 59
2. 330	2007	900	3.018	79.35	g. 45	289, 65	2, 152	1. 1843	1, 655 . 655	1, 176,	1.58
6. 500	5. #60 5 270	10.000	******	3 3	17.6	295. 40		1. 1861	T 650		1. 57
100	200	11. 500	3. 00±	90, 32	3, 50	293.94		T- 183	F 653	T. I.V.	1.57
•	3.505	12 424	6 075	97.93	1, 069 x 10 1	307.60	2. 169	•	***************************************	1. 1778	3 .
2, 551	3, 781	13, 072	6, 887	102. 24	1.183	CHRVE	VE. 4	31	1 2 4	17.0	7 C
	3, 766	13, 219	7. 072	106, 65	1, 235			1 170	3 64 x 10-5	617 -7	96.7
2, 859	4. 133	14, 217	8, 106	111, 17		273, 15	2, 00 x 10 ⁻¹	1,171,		כו	CIRVE 8*
3. 070	4. 463	14, 655	9, 188	115, 78	1.342	373	2, 19	1, 171,	3.59		ų i
3. 153	4. 852	14, 727	8, 814	119. 44	1.388	473		1. 171	3. 62	1, 182,	3.56 x 10-6
3. Z13	4.918	14, 785	9.451	119.74	1, 389	573	2.46	1, 171,	3, 66	1, 183,	3.60
3.453	5, 140	15.083	1 047*	129 77	1.481	773	2 20	1 172	3.68		
3,589	5. 667	15.307	1 035	134 95	1 594	633	2 2 2	1 179	2.61	1 1 2 2	3, 6
3.652	5, 730	15, 458	9, 896 x 10 ⁻⁴	138, 91	1, 557	873	8	1, 172.	3.67	• • •	25.
3, 786	5, 997	15,600	1. 106	143, 55	1, 595	868	2, 97	1, 172,	3, 56	1, 184	3, 50
3.901	6. 179	15. 742	1, 090	148, 50	1, 628	923	3.05	1, 172,	3, 66	1, 185,	3.47
4.072	6.768	15, 820	1, 158	153, 54	1,665			1, 172,	3.46	1, 185,	3.48
400	7 987	17.043	1, 507	158. 60	1, 697		CURVE 5	1. 172	3,28	1, 185,	
4. 485	8.284	18, 095	1.609	167.26	1 769	206	9 1 × 10-1	1.172	3, 32	1 196	3.41
5 002	9 674	18 388	1 250*	173 70	1000	200			70 7	8 .	9.00
5.093		18.598	1.69	178 45	1 816			1 179	o. 63	1 196	3.31
5.367	1, 109 x 10-6	18,850	1.875	183 79	1.84			173	2 41	1 187	2
5, 382	1.072	19, 286	1, 995	189, 05	1, 865			1.173	23	1, 187	90
5, 393	1, 060	19, 354	1, 930 *	194, 06	1, 890			1.173			38.
5. 871	1, 236	19.442	2. 026	199, 45	1, 913*			1.173			
6, 003	1, 245	20,003	2, 194	204. 92	1, 932			1, 173,	2.11	1, 188,	2, 63

Not shown on plot

DATA TABLE NO. 1 (continued)

٩	CURVE 20 (cont.)*	Series 5 (cont.)	3.53 x 10-7	4.840	6.62		2.010 x 10-6	2.356	2.659	3.051		Series 6		8.020 x 10-1	1.750 x 10-6	1.780	2.980	5.030	6.840	8.800	1.090 x 10-5	1.309	2.646	3.038																						
-	CURVE	Series	0.2693	0.2891	0.3054	0.3126	0.9049	0.9736	1.0381	1.1124		Seri		0.3191	0.3840	0.3852	0.4432	0.5210	0.5803	0.6382	0.6934	0.7462	1.0333	1.1078																						
ይ	CURVE 20 (cont.)*	Series 2	2.03 x 10 ⁻⁷	3.56	5.21	8.11	8.77	1.213 x 10 4	1.860	2.418	3.610	5.240	7.255	9.345	1.156 x 10 ⁻⁵	1.425	1.655	1.748	2.035	2.452	2.848		Series 3		1.080 x 10-7	9.740 x 10-4	9.660	1.440 x 10-7	1.550	1.800		Series 4		5.800 x 10 4	1.580 x 10-7	2.040	2.770		Series 5		7.700 x 10-6	1.180 x 10-7	1.480	1.780		7.00
•	CURVE	Ser	0.2402	0.2695	0.2953	0.3182	0.3272	0.3503	0.3889	0.4210	0.4731	0.5329	0.5332	0.6530	0.7099	0.7732	0.8296	0.8471	9606.0	0.9961	1.0745		Ser		0.2017	0.2055	0.2058	0.2264	0.2314	0.2323		2		0.1887	0.2239	0.2423	0.2600		Ser		0.1718	0.2103	0.2302	0.2386	10000	1077.0
٩	CURVE 19 (cont.)*	(cont.)	5.56 x 10-6	6.42	7.12	7.87	4.17	2.08	5.75	9.20	7. 22	8.18	8	9.691	1.066 x 10-	1.179	1.301		9 9		3.77 × 10	4.4	4.91	5.51	6.45	6.72	7.30	7.72	2 .	9.247	1.020 x 10-6	1.072	1.148	1.256	1.364	1.464		204	1	6.1		3.14 x 10-5	3.17	3.2	200	3.
4	CURVE 1	Series 5 (cont.)	0.4643	0.5834	0.5908	0. 8524	0.3413	0.4164	0.4755	0.5422	0.6046	0.6668	0.7240	0.7925	0.8712	0.9582	. 0499		Series 6		0.3082	0.3599	0.4045	0.4565	0.5139	0.5529	0.5946	0.6357	0.6945	7567	0.8303	0.8697	0.9319	1.0159	1.1018	1.1924		CURVE 20*		Series		1.1290	1.1361	1.1513	1696	DOOT .

SPECIFICATION TABLE NO. 2 SPECIFIC HEAT OF ANTIMONY

(Impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 2]

Composition (weight percent), Specifications and Remarks	99.99 Sb; purified by zone recrystallization.	99.90 Sb, 0.03 As, 0.015 Fe, 0.015 S, and 0.01 Pb; sample supplied by the Johnson, Matthey Co.		99.735 Sb, 0.145 S, 0.06 Fe, 0.04 Pb, and 0.02 Cu.	<0.2 total of As, Pb, ant insoluble matter; density = 6.74 g cm ⁻³ at 24.1 C.
Name and Specimen Designation					
Reported Error, %	s 0.2				
Temp. Range, K	587-885	13-70	86-98	373-1273	56-293
Year	1961	1953	1920	1926	1930
Ref. No.	152	152	267	268	180
Curve No.	-	84	69	*	6

DATA TABLE NO. 2 SPECIFIC HEAT OF ANTIMONY

[Temperature, T,K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T G	CURVE 4*	423.0 5.05 x 10 ⁻² 523.0 5.20 623.0 5.37 723.0 5.52 823.0 5.69 948.0 6.58	CURVE	66.0 3.217 x 10 ⁻² 69.6 3.354 75.7 3.562 85.8 3.780 93.1 3.860 104.6 4.092		
Т	CURVE 1	587.0 5.81 x 10 ⁻² 706.0 6.36 786.0 6.73 885.0 7.19	13,21 2.02×10 ⁴ 13,44 2.04* 14,44 2.64 15,19 3.56	44666	CURVE	90.4 4.26 x 10 ⁻² 81.6 4.16 85.6 4.29 86.2 4.29 92.0 4.38 96.0 4.40 96.1 4.49

SPECIFICATION TABLE NO. 3 SPECIFIC HEAT OF ARSENIC

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 3]

Composition (weight percent), Specifications and Remarks	>99.8 As and 0.13 Sb; density = 5.48 g cm ⁻³ . 99.999 As; sample supplied by Cominco Products Inc.
Name and Specimen Designation	
Reported Error, %	1.0-2.0
Temp. Range, K	57-291 0. 6-1 .5
Year	1930
Ref.	260
Curve No.	1 2

DATA TABLE NO. 3 SPECIFIC HEAT OF ARSENIC [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹]

+	ာ <mark>ရ</mark>	-	ပ္ခံ	۴	ం	H	ာ်	H	c _p	۲	ဝ
CURVE	~ 1	CURVE 2 (cont.)	(cont.)	CURVE 2 (cont.)	cont.	CURVE 2 (cont.)*	(cont.)*	CURVE 2 (cont.)*	2 (cont.)*	CURVE 2	2(cont.)*
7.2 3	3. 202 x 10-2	0.675	5.111 x 10 ⁻⁷	0.872	7.178 x 10°	1. 128	1.094 x 10"	1.485	1.822 x 10.6	9 953	4 616 - 107
_	. 279	0.675	5.117	0.875	7.273	1.130		1.488	:	2 256	•
7	3, 854	0.676	5.130	9.876	7.210	1.131	1.097	1.499	1.853	2.290	4.756
o.	4. 781	0.683	5.187	0.878	7.273	1.147	1. 126	1.520	1.911	2 332	5 031
85.2 4	4. 717	0.683	5, 187	0.879	7.337	1.147	1.126	1.524	908	23.6	5.02
91.0 4	4. 940	0.688	5.229	0.882	7.337	1.155	1.142	1.535	1 933	2 379	2.033
98.6 5	5. 180	0.688	5.229	0.889	7.433	1.167	1.164	1.543	1.965	2.2.2	5 248
115.5 5	5. 978	0.698	5.327	0.893	7.465	1.174	1.171	1.564	2.016	2.300	5.63
2	6. 171	0.70	5.378	0.895	7.497	1.181	1.18	1.570	2.029	2 443	5 557
9	6. 403	0.719	5,602	0.897	7.497	1.188	1. 196	1.585	2.077	2.455	5 697
	6.657	0.720	5.592	0.899	7.524	1,204	1.228	1.586	2.061	2 503	5 952
4	6.853	0.723	5.634	0.910	7.742	1.208	1.228	1.619	2, 172	2 533	6 195
202.7	7.268	0.730	5.691	0.917	7.816	1.214	1.233	1 625	2 185	9 6 6	3 2
	7.385*	0.733	5,723	0.927	7.943	1.228	1.263	1.634	2.214	6.50	6.323
_	. 466	0.737	5.745	0.936	8.039	1.243	1.305	1.637	2.208	2 624	6 667
4	7.661	0.739	5.742	0.940	8.039	1.24	1.298	1.661	2.281	2.646	6 827
o	. 693	0.742	5.790	0.941	8.135	1.255	1.327	1.668	2.322	2 650	6 801
2	7. 649	0.743	5.812	0.950	8.250	1.267	1.346	1.688	2.367	2.688	7 178
00	7.676	0.746	5.838	0.957	8.326	1.285	1.378	1.693	2.373	2.728	7.401
285.7	. 801*	0.747	5.822	0.958	8.294	1.286	1.378	1.798	2.424	2.762	7.624
291.0 7	. 871	0.752	5.873	0.959	8.326	1.287	1.381	1.725	2,539	2.788	7.848
		0.764	6.007	0.959	8.390	1.295	1.394	1.725	2.479	2.843	8.262
CORVEZ		0.770	6.058	0.964	8.422	1.310	1.423	1.750	2.562	2.864	8.390
602	200 - 100	0.778	6. 182	0.975	8.581	1.312	1.432	1.757	2.584	2.897	8.741
* <	447	0.1.3	6. 133	0.976	8.613	1.314	1.439	1.785	2.661	2.917	8.837
•	470	197.0	6.214 6.901	0.993	8.805	1.318	1.448	1 3	2,705	2.962	9.187
		0. 000	167.0	0.998	8.896	1.333	1.467	1.018	2.785	2.972	9.283
0.010	610	0.00	6.300	0.999	8.900	1.345	1.506	1.837	2.846	3.011	9.666
•	010	500	6.333	1.003	8, 996	1.350	1.512	1.864	2.919	3.061	1.008 x 10 ⁻⁵
0.020	663	0.901	0.412	1.011	9.124	1.353	1.515	1.881	3.021	3,095	1.030
	. 600	0.00	0.470	1.013	9. 124	1.357	1.522	1.901	3.040	3, 119	1.065
	1. (31	0.812	6.240	1.026	9.347	1.371	1.547	1.927	3, 155	3, 168	1.104
	260.	0.818	6.635	1.029	9.347	1.386	1.592	1.949	3.251	3,234	1.161
b	1.737	0.821	6.667	1.029	9.379	1.387	1.595	1.965	3, 324	3.241	1.174
	7.47	0.823	6.699	1.030	9.379	1.397	1.605	1.987	3,432	3,294	1.225
•	1.08	0.825	6. 699	1.031	9.411	1.399	1.617	2.000	3,436	3,330	1.270
	. 855	0.827	6.699	1.034	9.443	1.416	1.652	2.033	3.598	3,381	1.321
	878	0.859	6. 699	1.035	9.443	1.424	1.713	2.039	3.605	3, 394	1.330
	1.983	0.834	6.795	1.036	9.475	1.432	1.704	2.078	3.752	3,432	1.375
	1.986	0.844	6.891	1.057	9.730	1.439	1.700	2.109	3.908	3,459	1.404
	5.002	0.844	6.891	1.060	3.7%	1.447	1.732	2.126	3.975	3.542	1.496
	. 989	0.845	6.922	1,061	9.762	1.468	1.774	2.175	4.185	3,551	1,506
0.663 4	4.750	0.847	6.954	1.106	1.053 x 10°6	1.471	1.780	2.183	4.265	3,590	1,544

* Not shown on plot

*Not shown on plot

T Cp CURVE 2 (cont.)* 3.714 1.719 x 1 3.727 1.723 3.735 1.758 3.736 1.777 3.989 1.971 3.933 2.026 4.101 2.278 4.142 2.316 4.343 2.708 4.343 2.708 4.343 2.708

SPECIFICATION TABLE NO. 4 SPECIFIC HEAT OF BARIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 4]

	Composition (weight percent), Specifications and Remarks	0.2 Sr. 0.05 Fe and 0.02 each Al, Sn; sample supplied by Measrs New Metals and Chemicals 14d.
No omen	Specimen Designation	
Reported	Error, %	7
Temp	Range, K	1.5-20
	Year	1957
Ref.	No.	212
Curve	No.	-
Curve	No.	1 2]

DATA TABLE NO. 4 SPECIFIC HEAT OF BARIUM

[Temperature, T, K; Specific Heat, C_p, Ca₁ g⁻¹K⁻¹]

CURVE 1

1.5 1.56 x 10⁴
2.0 2.941
2.5 5.099
3.0 8.197
3.5 1.262 x 10⁴
4.5 2.690
5.0 3.829
6.0 7.100
7.0 1.157 x 10⁷
8.0 1.740
9.0 2.402
10.0 3.219
12.0 7.116
14.0 9.467
18.0 1.183 x 10⁷
20.0 1.420

SPECIFICATION TABLE NO. 5 SPECIFIC HEAT OF BERYLLIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 5]

1963 5-30 1961 600-2200 1959 323-773 1.8-2.0 1966 1.3-20 1966 1.3-30 1929 373-1173 1929 373-1173 1939 303-1073 1.0-1.2 1939 303-1073 1939 303-473	Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
75 1961 600-2200 7 1959 323-773 1.8-2.0 Sample II Ob 269 1966 1.3-20 Sample II Ob 201 1929 373-1173 201 1929 373-1173 201 1931 286 272 1934 273-1073 1.0-1.2 273 1939 303-473 999	-	78	1953	5-30			99.5 Be, 0.15 Cl, 0.10 O and 0.05 others; prepared from powder by high temperature extrusion process.
7 1959 323-773 1.8-2.0 Sample I Ob 269 1966 1.3-20 Sample II Ob 269 1966 1.3-30 Sample II Ob 201 1929 373-1173 Cc 270 1929 98-463 Cc 271 1931 2.86 Cc 272 1934 273-1073 1.0-1.2 Per 273 1939 303-473 999	64	42	1961	600-2200			99.8 Be; pulverized and tightly filled into ampules; measured under 10-15 mm Hg argon atmosphere.
269 1966 1.3-20 Sample II Ob 269 1966 1.3-30 Sample II Ob 201 1929 373-1173 270 1929 98-463 271 1931 2.86 272 1934 273-1073 1.0-1.2 273 1939 303-1073 999	e	2	1959	323-773	1.8-2.0		99.8 Be.
269 1966 1.3-30 Sample II 201 1929 373-1173 270 1929 98-463 271 1931 286 272 1934 273-1073 1.0-1.2 273 1939 303-1073 273 1939 303-473	•	269	1966	1.3-20		Sample I	Obtained by seven zone-refining passes from vacuum distilled starting material; sample supplied by Nuclear Metals Inc; Sample I included polycrystalline trailing end of the zone-refining; the portion of Sample I which was single crystal had a resistance ratio of Fast = 380.
201 1929 373-1173 270 1929 98-463 271 1931 286 272 1934 273-1073 1.0-1.2 273 1939 303-1073 273 1939 303-473	w	269	1966	1.3-30		Sample II	Obtained by seven zone-refining passes from vacuum distilled starting material; sample supplied by Nuclear Metals Inc; Sample II was spark cut from center section of the rod; single crystal had resistance ratio of $\frac{R_{ML}}{R_{L,1}} = 1100$.
270 1929 98-463 271 1931 286 272 1934 273-1073 1.0-1.2 273 1939 303-1073 273 1939 303-473	•	201	1929	373-1173			20 To 17 To
271 1931 286 272 1934 273-1073 1.0-1.2 273 1939 303-1073 273 1939 303-473	2	270	1929	98-463			Commercially pure Be, traces of Al, Mn, and Cr, also small traces of re, mg, and ca, the total about 0.5%; sample supplied by Beryllium Company of America.
272 1934 273-1073 1.0-1.2 273 1939 303-1073 273 1939 303-473	•	271	1931	286			
273 1939 303-1073 273 1939 303-473	6	272	1934	273-1073	1.0-1.2		Pure crystallized Be lumps.
1939 303-473	10	273	1939	303-1073			99.962 Be.
	==	273	1939	303-473			99.781 Be.

DATA TABLE NO. 5 SPECIFIC HEAT OF BERYLLIUM

1 g-1K-1
Ü
it, C
Hea
Specific
¥
F.
Temperature,

່ວ	CURVE 5* (cont.)	570 1.768 x 10-4			Series 4	e col too		9, 192 5, 434		571 6.752		101 7.643					1.329		Series 5			8.821 5.111				374 6.515		Series 6				591 7.863			643 1.199		Series 7	Selles		01 x 10 2	
C _D T		17.670	18.932		1.622	1.726				10, 571		× 10-4				1.445 14.197		2‡			90	2.520 x 10-6 8.8			3.923 9.994	4.668 10.374				2.279 x 10 10.729		809			14.643	1		1 267 x 10-4		1 559	
alg 'K-!	CURVE 4*(cont.)	Series 6	3 132							Series 7						3.054 1.		CURVE 5		Series 1		20.710 2.	21.849 2.						Series 2					27.823 5.		Series 3			15.804		
Lemperature, 1, K; Specific Heat, Cp, Cal g 'K'; T Cp	CURVE 4*(cont.)	Series 3	4.872 2.373 x 10-6		5.596 2.804						9, 329 5, 605		Series 4				5.321 2.625								7.821 4.224				9.895 5.918			Series 5	3.185 1.513 x 10-5								
Lemperatur C _p	CURVE 4*	Series 1	9 6.244 x 10 ⁻⁶	6.191			9.633							3.601		Series 2			8 2.278										7 240												i
C _p	7	3.4 x 10-5*	3.83 x 10-4 * 1.359	10-3		x 10-2			2.66 4.463		4.38 5.565		2	6.831	6.25 x 10 ⁻¹	6.49									8.57		7.66		7 63 11 150	7 64		8.00	m]		x 10-1				6.55 19.219		
H	CURVE	20 0			09						300		CURVE		009	200						1300		1500		1560	1200			2100	0000	0022	CURVE		323						

DATA TABLE NO. 5 (continued)

o ^d	(cont.)	4.865 x 10-	3,669	4.139	4.631	5, 337	5, 739	900 9	0.030	***	1	4 776 x 10-1	5, 118	5.410	5, 657	5.865	6.038	6 182	6 301	6.401	6 481	6 564	6.637	6.712	202	6 884	984	7 060	900	#4	1	3.89 × 10-2	2.70 × 10-1		61.5	5 93	3	i de	1	2 07 - 10-1	0. 8 A 10 .	**	1	1-01 - 071 7	4.825	2.402
T	CURVE 5*(cont.)	26.796	24.064	25, 141	26.307	27.625	28, 194	20 086	23.300	CIRVE		373	423	473	523	573	623	673	723	773	803	87.3	003	973	1023	1073	1199	1173	2111	CIRCUE		9 76	208.2	282.7	377.0	463.2		TITELY		286 15	600.10	CITETA	CON	27.3	373	473
c _p	5*(cont.)	s 16		8.450 x 10-6	8.938	9.581	1.020 x 10-5	1.063	1.103	1.139	1.183	1.254	1,295	1.340	1.420	1.469	1,560	1.651	1	8 17		6.252 x 10-6	6.401	6.742	6,630	6.531	7.024	6.975	7.610	8,713	7.167	7.953	8.527	9.276	9.471	9.949	1.048 x 10-5	1.055	1.127	1, 203	1.301		20		3.044 x 10-4	3.400
H	CURVE 5*(cont.)	Series 16		1,833	1.947	2,083	2,217	2.304	2,382	2,460	2,550	2,653	2,775	2.871	3,034	3, 130	3,308	3,450		Series 17		1.347	1.388	1.460	1.440	1.419	1.505	1,523	1.661	1.894	1.566	1.736	1.855	2.018	2.064	2, 169	2,268	2.284	2,425	2,587	2.781		Series 18	•	22.358	600 .09
$_{\mathbf{p}}^{\mathbf{q}}$	CURVE 5"(cont.)	2.915 x 10-5	3, 092	3.312	3,589	3,904		Series 13		2.249 x 10-5	2,432	2.594	2.726	2,855	3,022	3, 222	3.478	3,679	4.004	4.477	4.768	5, 169	5.615		ss 14		1.650 x 10-6	1,739	1,831	1.941	2.077		ss 15		1.443 x 10-6	1.496	1.557	1,624	1.698	1,787	1,890	2.013	2, 170	2,363		
H	CURVE	5.775	6,062	6.388	6.770	7, 232		Serie		4.617	4.943	5.215	5,442	5.677	5.946	6, 253	6.612	6.891	7.415	8.043	8,429	8.887	9.441		Series 14		3,491	3,646	3,825	4.039	4.294		Series 15		3.082	3, 191	3,305	3,433	3,579	3,750	3,952	4.188	4.471	4.826		
Сp	5*(cont.)	8 88		1.901 x 10 1	2.050	2.244	2.478	2.760		686		2.064 x 10 L	2, 337	2, 599		s 10	3 1	2.147 x 10-	2.077	2,306	2,545	2.846	3.246	3.777	4.428	5.567		s 11		2.114 × 10-4	2.443	2.709	3.079	3,560	4.209	5.045		s 12	2	2.106 x 10-6	2.324	2.425	2.540	2.653	2.775	
£-	CURVE 5*(cont	Series 8	1000	18.247	18.904	19,621	20.484	21.456		Series		18.994	19.965	20.860	1	Series 10		19.241	19,030	19.918	26.775	21.761	22.917	24.276	25,907	27,899		Series 11		19, 199	20.415	21.348	22.444	23.715	25.220	27.056		Series		4.363	4.757	4.939	5.122	5,316	5.528	
ď	CURVE 5*(cont.)	6.396 x 10 ⁻⁵	6.603	0.720	6.865	6.968	7.083	7.152	7.278	7.408	7.503	7.636	7.497	7.578	7.684	7.757	7.890	7.986	8. 124	8.230	8.392	8.496	8.898	9.249	9.481	9.767	1.015 x 10-1	1.010	1.041	1.063	1.099	1.126	1, 183	1.491	1.261	1.50	1.350	1.414	1.659	1.781	1.902	2.058	2.281	2.521	2.827	
H	CURVE	10.241	10.409	10.562	10.673	10.772	10.869	10.969	11.077	11.187	11,300	11.418	11.290	11.382	11.462	11.544	11.630	11.718	11.808	11.901	11.996	12,093	12.469	12.682	12.88	13,096	13, 314	13, 314	13, 501	13, 691	13,891	14.104	14.564	14.813	15.081	15, 363	15.672	16.001	17.181	17.763	18, 302	18.980	19,805	20.673	21.671	

THE PROPERTY OF

5.839 x 10⁻¹ 6.149 6.364 6.585 6.924 7.536 573 673 773 873 873

CURVE 10* 303, 15 373, 15 473, 15 673, 15 873, 15

4.88 x 10⁻¹ 4.98 5.13 303.15 373.15 473.15

SPECIFICATION TABLE NO. 6 SPECIFIC HEAT OF BISMUTH

(Impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 6]

	900		E	701000		
No.	No.	Year	Range, K	Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	8	1958	21-105			0.00005 Cu.
81	8	1949	15-21	9.0		99.998 Bi.
က	16	1964	11-271			99.9 Br.
4	268	1928	348-873			99.85 Bi, 0.1 Cu, 0.015 Fe, and 0.01 Al.
S	274	1927	272-426			
ø	275	1930	61-298			High purity sample supplied by American Smelting and Refining Co.; density $^{\rm a}$ 9.86 g cm $^{-3}$ at 20.6 C.
7	276	1930	3.6-19			Sample supplied by Kahlbaum and Co.
80	277	1932	306-644			0.1 Pb. 0.002 Ag and very minute traces of Ca, Fe, Mg, Na, Ni, Sn, and Th.
ő	278	1938	183-393	0.1		<0.02~S,~0.0022~Cu,~<0.002~Pb,~and~<0.00005~As; sample supplied by the Consolidated Mining and Smelting Co.
10	266	1954	0.9-5.0			99.99 Bi; polycrystalline; resistance ratio: $\frac{R_{4.2}}{R_{713}} = 0.112$.
11	280	1960	545-802			99.9939 Bi, and trace of Fe; pelleted sample supplied by Consolidated Mining and Smelting Co.

DATA TABLE NO. 6 SPECIFIC HEAT OF BISMUTH

	۵	J)	x 10-2	2.937	-							7 10-3										r 01 ×			× 10-							x 10-	¥ 10 ¥						101 ×	¥ 101 ×				
	ပ	CURVE 6*(cont.)	2.911	2.937	2,913	2.921		VE 7*		Series 1	V.	5.55	6.03	6. 3	7.51	7.66	33	3.0		Series 2		4.23	9.08	9		1.60	2.80	4.25	0.03	Series 3		6.83	.53	2. 23	2.62		Series 4		5.84	1.02	1.72	3.81	5.31	6. P
	ь	CURV	272.8	285.3	295.2	298.2		CURVE		8	ľ	14.26	14.72	15.27	16.41	16.86	17.11	17.76		S		3 8	6.03	6.61	7.81	8. 16	10.27	14.70	14.01	j	i	3, 52	4. 17	4.52	4.88		Ser		2.77	3.6	4.38	5, 35	5.8	6.45
			x 10-2													x 10-											6 v 10-2	01 4 6	2, 283		9	4	S	1	9	8	6 0	2	-	6		_	_	o.
	ပ	£ 4*	2.96	3.20	3.32	3.44	3,60	3.86	3.73	3.73	3, 73	3,73		E 5#		8.8	2.30	7 6	2.68	2.30		9 6	3 8	2.3	10	1	9 91	2 31	2.28	2.41	2.49	2.61	2.715	2.78	2.75	2.78	2.80	2.82	2.83	2.85	2.85	2.86	2.811	2.89
	H	CURVE	38	398	423	448	473	(s) 523	(1) 573	673	773	873		CURVE		27.1.75	20.607	319.15	350. 15	200 16	387 15	392 15	426.15	150.13	CITOTOR	202	8	4.5	2	71.1	74.6	101.2	111.2	125.1	137.2	150.2	162.5	176.8	187.7	198.9	208.8	218.8	258.1	266.3
g-1 K-1]	္မ	CURVE 3 (cont.)	2, 353 x 10-2*	2, 42%	2 485	2, 533	2.601	2, 633	2,656	2, 680	2, 709	2, 729	2, 752	2,767	0 707	2 807	2 832	2 835	9 840	2 856			2.865		2 884	2, 875	2,880	2, 893	2, 885	2, 904	2 909	2, 901	2, 909	2.919	2.923	2.917	2. 917	2, 922	2, 931	2, 933	2. 935	2. 928	2. 342	
eat, Cp, Cal	H	CURVE	67.54	73.68	13.43	85, 11	91.54	97. 51	103, 25	109, 92	115, 88	123. 47	123. 74	149.65	149 66	155 63	161.81	169 60	175 81	182.90	188, 99	196.21	200.53	202, 30	204, 49	206.26	209, 07	213, 25	216, 86	222, 41	225.86	229, 85	230, 85	236.96	242, 43	242, 65	248, 15	250, 14	255, 63	255, 96	262. 67	41 .Coz	210, 59	
emperature, T, K; Specific Heat, Cp, Cal g-1 K-1]	c _p	CURVE 2 (cont.)	9. 278 x 10-3	9. 239	9, 455	9, 536	9. 775	9.699	9.842	9. 952		2		3.378 x 10 •	3.619	3 630	705 7	1. 563	* 56.	5. 766	5. 761	5,847	5, 809*	6, 876	7, 057	7.048	7.660	8, 057	8, 230	8, 254	9, 148	9, 775	1, 156 x 10-7	1.341	1,518	1,681	7. 838	L. 963	2. 087	7, 134	2, 213	2.213	2.283	2. 350
emperature,	T	CURVE	21, 21	21. 24	21. 60	21. 64	21.91	21, 96	22, 23	22, 25		CORVE		11, 59	11 80	11 82	13 18	13 29	13.36	15. 26	15, 32	15, 43	15, 51	17, 35	17.66	17.67	18, 87	19, 57	19, 96	20.08	21. 70	22. 75	25, 89	29. 67	33. 56	37.44	42.09	46.74	51,34	2 5	27.00	26.10	67. 13	60.10
Ē	c _p	CURVE 1 (cont.)	2.577 x 10 ⁻²	2.092	4. 603	2.634		CURVE 2		5. 220 × 10-3	5,575	5. 47.4 5. 47.4	2.4.4	3. 312 5. 853					6 239*	6. 522	6. 593	6.727	6.938	* 106.9	7.062	7, 153	7,301	7.402	7.483	7. 603	7. 220	7.976	7.909	8, 16,	8. 402	8. 431	6. 56U	8, 622	g. 606	***************************************	0.010 0.010	9, 93,	9. 03 E	0, 0, 0
	H	CURVE	90. 52	93. IA	20.01	104. 62				14. 40	14.00		15.03	15.59	15.62	15, 88		16.26	16. 43		17.0	17. 27	17, 38	17. 53	17, 76	17, 99	18, 08	18, 33	18, 47	18, 72	18, 88	19, 20	19. 23	19. 62	19, 93	20.00	20. 60	20.26	20.35	20.08	20.03	20.00	20.01	60.00
	ď	CURVE 1	8. 632 x 10 ⁻³	3. 144	- 01 x 200 .	L. 084	L. 220	1. 322	L 420	1, 544	1. 693	1 893	7.0	1 988	2 007	2 022	2.058	2.064	2.070	2, 095		2, 169	2. 203	2, 229	2, 250	2, 270	2.287	2.287	2, 299	2, 314	2, 333	Z. 356*	2, 364	2.374	2, 396	2. 436	7. 40	2.491	2. 50!	4. 550 8. 547*	5. 02 i	1 2 2	2 571	4.014
	H	5	20.64	25.40	10.77	24. 82	27. 14	29. 47	31. 72	34, 19	20.00				49.50				53. 03	53, 51	56.46	57, 86	58, 96	60.24	60.94	62. 43	62, 75	£. 59	54.73	65, 66	68, 32	96.00	69.38	70.40	71.20	75.32	20.00	0 0	9 6	80 30	27 70	3 2	80.00	

DATA TABLE NO. 6 (continued)

o ^b	out.)	4.760 x 10-6	5. 137	5.888	0.330	7.68	8.305	8.847	9.879	1.074 × 10-6	1.111	1. 182		٠	2 479 - 10-2	3 519	493	3,508	3.484	3,503	3,488	3.450	3,455	3.412	3.311	3,364	3,311	3,283	3,249	3,235	3,268	3.201	3.216												
۲	CURVE 10*(cont.				1 7 10 7									CURVE 11*	6 473																		801.8 3.												
o ^a	CURVE 10*(cont.)	1.434 4.126 x 10-6		1.469 4.386							Series 3	1000		0.850 1.578 0.989 1.455																1.129 2.067	1.138 2.149		1. 190 2.437		1.215 2.564		1.255 2.787								1.470 4.487
C _p	CURVE 10*(cont.)	3.867 x 10-1	4.083	2 5 566			7.517	7.897				9.331	220.0	1.016 x 10-1	1.062	1, 132																N (9 Z.514		3,115		Series 2					3.606			0 4.031
H	CURV		3,009	3 282	3.45	3.497	3, 534	3.57	3.64	3.67		3,751	0.00	3.850	3,380	3,95	3,989	4.019	4.060	4.106	4.146	4.183	4.220	4.25	4.287				4.507	4.601	4.63	4.781	4.819		9°0.°c	•	8		1 250	1.05	1.393	1.571	1.374	1.374	1.410
ဝ	AVE St (cont.)			3.447				_		CURVE 9		15 1.203 x 10 ⁻¹	, u	2 42	5		5	2		1.283	1. 292		CURVE 10		Series 1		1.297 3.300 x 10-6		99	00	3.247		1.562 5.464				1.913 9.950					1.945 1.945			3.017
F		x 10-3 558.0	558.	577.	009		x 10 ⁻³ 643, 1	£		01		193.1	222	253	273.	293.	313.1			373.	393.		OI				-	-	1.3	1.3	7		-	-	-	-	-		-					7	7
ပိ	CURVE 7* (cont.)	3.01	14 49 7 66		Series 5		7.48			14 7.27		65 8 99			21 9.24		CURVE 8*		033		50 (C)					350	572		_		# C										7.5	4 1.242 x 10 .	212		
H	리	20.5	14.49				14.0	15. 14	15.72	16. 14	16.59	17.07	9	18.57	19.		-		305.9	306.5	372.5	373.0	427.5	428	477	478	505.1	505	250	521	225	0.00	23.5	535	236.4	223	538	530	240		175	(8)24I.	246	2	

27

SPECIFICATION TABLE NO. 7 SPECIFIC HEAT OF BORCH

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 7]

Composition (weight percent), Specifications and Remarks	Extremely pure: amorphous.	Extremely pure, crystalline, heated under vacuum to 1700-1900	v. 08 Si, 0. 06 Na, 0.04 Fe and 0. 02 Ni; amorphous, sample supplied by the Fairmount	Chemical Comments segred in gold amounted
Name and Specimen Designation			Boron III	
Reported Error, %				
Temp. Range, K	18-308	17-304	298-1200	
Year	1921	1951	1960	
Ref. No.	8	8	162	
Curve No.		8	က	

SPECIFIC HEAT OF BORON DATA TABLE NO. 7
[Temperature, T, K; S]

K-1
6-1
Cal
$_{\rm p}^{\rm c}$
Heat,
Specific
¥
Ŧ,
Temperature,

, , , , , , , , , , , , , , , , , , ,			10-1									10−1 *																																
Cp	CURVE 2 (cont.)		1. 954 × 10 ⁻¹	9 179	2 263	2 434	2.487	2,516		VE 3	1	2.643 x	3. 562	4.099	4.490	4.814	5. 102	5, 369	5.623	5.868	6. 108																							
۲	CURV		251. 28	270 29	297 74	78 44	301, 79	303.71		CURVE 3		298	400	200	009	100	800	900	1000	1100	1200																							
္မ	CURVE 1 (cont.)		2. 629 x 10 ⁻¹		VE 2	<u>'</u>	2. 312 x 10-4		6. 937	8, 232	5. 920	5, 550	4. 782	3.811	3.691	5, 938	1.508 x 10 ⁻³	1.831	3, 006	4, 246	5. 485	6. 484	8. 158	1. 023 x 10 ⁻²	1. 434	1.828	2, 167	2. 585	3.080	3. 765	4. 588	5. 309	6 . 086	6. 928	8, 103	9.000	1, 020 x 10 ⁻¹	1.141	1, 280	1.375	L 490	1, 617	1. 690	1 759
H	CURVE	N. (400)	303. 26	3	CIRVE 2		16, 90	19. 47	21.89	24.90	27.84	30, 48	32.74	35, 47	40.48	43, 87	48.12	50.96	54. 51	57. 77	61.46	65. 23	72. 71	79. 58	84.74	91. 66	97. 02	103, 11	109. 72	116.81	125. 43	133.00	140.54	147.98	157.86	166.08	175.54	185.96	195. 77	202. 71	211. 43	220.70	227. 43	929 75
ပိ	~		2. 201 × 10 ⁻³	1 757	1, 110	8. 602 x 10-4		1, 776	2.710	3.940	4.551	6.873	8.806	8. 121	9.379	1. 193 x 10 ⁻²	1. 539	2, 154	2. 405	3.154	3. 737	4. 625	5. 457	6. 299	7.067	8. 676	9. 120	9. 69 4	1.027 x 10 ⁻¹	1.156	1.281	1. 405	1.680	1.833	1. 973	2. 083	2. 415	2. 477	2. 471	2, 476	2, 530	2, 547*	2. 622	
۲	CURVE		18. 25		25. 89	29, 08	35, 98	39, 70	44.43	48.52	52, 97	58.71	62.25	63. 10	66. 10	71, 20	77.03	83. 79	91. 78	100.83	108.93	118.06	127. 8	135. 43	142, 40	155. 10	159, 49	163.88	168.71	178.62	187.96	197.89	215. 29	223. 73	233, 59	243.69	252, 69	277.62	279. 62	283, 18	283, 85	288. 97	291, 10	296 5A

SPECIFICATION TABLE NO. 8 SPECIFIC HEAT OF CADMIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 8]

lemarks								Fe.	
Composition (weight percent). Specifications and Remarks	99.9 Cd.	99.9 Cd.		Analyzed as being a very high purity sample.		99.959 Cd, with 0.02 Al, and Fe, also 0.001 Cu.		99.97 Cd, with 0.022 Zn, 0.01 Pb, 0.002 Cu, and 0.0001 Fe.	99.99 Cd; sample supplied by Johnson, Matthey and Co.
Name and Specimen Designation									
Reported Error, %	0.10	0.4		1.0				0.05-0.1	
Temp. Range, K	12-320	298-543	513-688	70-298	10-373	348-923	10-594	193-383	1.5-20
Year	1953	1957	1956	1923	1924	1926	1928	1936	1956
No.	84	41	281	189	282	268	283	182	284
Curve No.	-	64	m	*	S	9	7	60	on .

DATA TABLE NO. 8 SPECIFIC HEAT OF CADMIUM

[Temperature, T, K; Specific Heat, Cp, Cal g^1K^1]

	o ^a	CURVE 8*(cont.)		240.10 0.009 X 10 -					983 1E E 407			313.15 5.564							363. In p. 121	and the second	а.	5.000 x 10-			5.792		3.461	1.014 X 10-7				9.235	1.157 x 19-2									
	C _p	CURVE 7*(cont.)																5.214 373		5 211	5 338					5.454	5.472	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5			5.641 16			5.819	5.934	0.000	6.174	6,6/3	* 5	1	5.272 x 10-1	21 176 4
	H	CURVE	5		2 5	9	20	0 0	3	8 2	01.	120	130	140	150	160		96	7		220	230	240	250	260	270	08.2				360	380	004	3	200	990	165(8)	Ec (1)	CHRVE		193, 15	203 15
,	ဝီ	CURVE 4*(cont.)	9 4.41 x 10-2	4.43	4	•	•	0 4.58	•	4	4	4		0 5.56		CURVE 5*		7 74		2.76					5.50		CIRVE 6*	ï	5.51 x 10-2		5.57	5.91	 	6.20	6. 17	6 17	6.17	1 9	:	CURVE 7*	ı	1.913 x 10-9
	F	8	551 x 10-2 80.0	82.59		87.70	89.91	90.00	92.39	94.70	97.08	99.37	100.00	298.00		- ,	9	20.0		40.0	0.09	0.08	120.0	200.0	273.2	313.2			70T	373	423	473	523	576	623	213	873	x 10-7 923			•	9
	Т	CURVE 2 (cont.)	r,	S.	5.	5.0	5.0	5.0	5.0	5.7	5.7	5.756	5.7	2.0			, r	143	5	9	9.		•	•			CURVE 3*		5.82 x		5.02		ė v		•	CIRVE 4*		4.15		7		•
	r	-1			330			300	376	380	380	400	410	420)		84	470	480	490	200	510	220	530	2 2	Ś			513	550	36C(8)	Jec (1)	8	9	Š			59	22	77		
	T Cp	CURVE 1	2 3.488 x 10-3	5.267		•••			30 2.052				3,383					110 4.916	•	•			160 5.159	170 5.199			210 5.327			5.403	500 0.423				298.16 5.537*		310 5.565	w		CURVE 2		298.16 5.527 x 10-7*

SPECIFICATION TABLE NO. 9 SPECIFIC HEAT OF CALCIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 9]

	:
Composition (weight percent), Specifications and Remarks	Purest commercial metal; traces of Fe, N ₂ , Si and CaCl ₂ . 0.1 Ba, 0.05 each Al, Fe, Mg, Mn, Si, Sn and Sr.
Reported Name and Error, % Specimen Designation	
Reported Error, %	e
Temp. Range, K	10-201 1.5-20 22-62
Year	1930 1957 1916
Ref. No.	186 212 221
Curve No.	- 2 6

SPECIFIC HEAT OF CALCIUM [Temperature, T, K; Specific Heat, C_p , Cal $g^{-l}K^{-1}$] DATA TABLE NO. 9

г	CURVE 2 (cont.)	4 1.270 × 10 ⁻⁴		2	່ຕ່	*	8 7.037	9, 422	-	2		4	18 7.096"	g,		CURVE 3	1 070	3 1.210 A		નં લ	Ni (9	8	ر د د	ຕໍ່		0			62.0 (.363													
	OI	•		_		•			_	-	-	-	_	84			•				••	••	•	••																			
ပ္ခ်	_		X OI			5.8	•	6.03		9.0		17.7	1 01 x 10 2		2.08		3.438	4.252	5,180	6.846	7.959	8,847	9.678	1.047 x 10 ⁻¹	1,115	1, 173	1,226	1.261	1.306	1,334	1.367	•	4	1.442	1.448	1.480	CURVE 2	ł	2.767 x 10°5			7.514	
۴	CURVE			⁻. ˈ		٠.	13.02		15.34	٠,	17.43	10.75	•		27 60		34.80	38, 80	43.30	52.20	59, 60	67. 70	75.70	83,50	92.70	102.20	111.50	118.40	128.60	138, 80		157.00	168.00		189.40	200.80	COL		1.5	N	2.5		3.0

Not shown on plot

SPECIFICATION TABLE NO. 10 SPECIFIC HEAT OF CERIUM

(Impurity <0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 10]

the same reported in Figure and Table No. 10	Composition (weight percent), Specifications and Remarks	>99.92 Ce, s 0.05 Cu, s 0.02 Si; and s 0.01 La. 0.08 Er, 0.074 O ₂ , 0.072 C. 0.034 F, 0.022 H ₂ , 0.018 Ag, 0.018 Fu, 0.018 Th, 0.015 Fe, 0.01 Ta, 0.004 O ₂ , 0.072 C. 0.034 F, 0.022 H ₂ , 0.005 Ag, 0.001 Su, 0.001 Su, 0.004 Ia; 60% α Ce and 40% β Ce; cycled between 77 and 293 K each warming and cooling period of 1 hr; distilled, remelted and cast into tantalum crucible; cooled to room temperature in 1 1/2 hrs. Same as above. Same as above except 35" α Ce, and 65% β Ce. 0.05 Ca, 0.01 La, and 0.02 Si.	
TO DAME INCOME	Name and Specimen Designation	Expt. I Run I Expt. I Run II and III Expt. II	
	Reported Error, % Spe	<0.14 <1.5 <1.5 <1.5 <1.5	
	Temp. Range, K	298-1373 0.4-4 0.4-3.8 1.2-4 273-1373	
	Year	1960 1964 1964 1964	
	Ref. No.	73 86 86 86 285	
	Curve No.	- N - N - N	

SPECIFIC HEAT OF CERIUM	[Temperature, T. K. Specific Heat, C., Cal g-1 K-1]
	Specific
10	Z
o.	F.
DATA TABLE NO.	[Temperature,

CURVE 1

CURVE 2

0.389, 0.422, 0.447, 0.494, 0.534, 0.534, 0.670, 0.729, 0.729, 0.759, 0.957, 1.135, 1.135,

SPECIFICATION TABLE NO. 11 SPECIFIC HEAT OF CESIUM

(Impurity <0.20% each; total impurities <0.50%

[For Data Reported in Figure and Table No. 11]

Composition (weight percent), Specifications and Remarks	0.302		99.8 Cs stated purity; measured under helium atmosphere.
Name and Specimen Designation			
Reported Error, %			
Temp. Range, K	20-320	273-1423	0.184
Year	1955	1964	1964
Curve Ref. No. No.	176	286	356
Curve No.	-	8	က

DATA TABLE NO. 11 SPECIFIC HEAT OF CESTUM

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

CIIRVE 3 (cont.)	3 (cont.)	7.148 x 10 ⁻⁴	1 000 4 10-3	1.323	1.605	1.937	2.336	2.816	3.347	3.920*		ies 4		1.107 x 10 ⁻⁴	1.315	1.642	2.063	2.591	3.241	4.064	5.073	6.326	7.898	9.733	1.192 x 10 ⁻³	1.448	1.759	2.131	2.555	3.061	3.557	3.987												
T CHRVE	CURVE	2.1302	9 4590	2.6285	2.8182	3.0238	3.2512	3.5012	3.7667	4.0437		Series		1.1779	1.2459	1.3371	1.4374	1.5444	1.6575	1.7799	1.9111	2.0522	2.2053	2.3645	2,5355	2.7183	2.9183	3.1364	3.3691	3.6290	3.8761	4.0880												
C Cp	3 (cont.)	2.920 x 10 4	3.212	* 686.6	190	4.728	5.679	6,645	7.972	9.873	1.265 x 10 ⁻⁵	1.570	1.955	2,394	2.911	3.633	4.643	5, 927	6,909	7.549	9.166*	9.594	1.042 x 10-4	1.205*	1.256		Series 3		1.160 x 10 ⁻⁵	1.465	1.845	2.325	2.955*	3.712*	4.154	5.296	1.180 x 10 -4*	1.475	1.849	2.316	2.906	3.647	4.553	5.706
T	CORVE	0.2832	0.2384	0.3155	0.3339	0.3598	0.3916	0.4190	0,4539	0.4963	0.5480	0.5952	0.6461	0.6951	0.7468	0.8072	0.8801	0.9524	1.0020	1.0340	1.0990	1.1180	1.1460	1.2000	1.2170		Ser		0,5293	0.5800	0.6321	0.6884	0.7503	0.8136	0.8457	0.9181	1.2031	1.2932	1.3883	1.4897	1.6006	1.7195	1.8435	1.9803
Cp	(cont.)	6.0×10^{-2}	9	6.0	6.0	6.0	0.9	0.9	0.9	*0.9	0.9		CURVE 3		Series 1		1.447 x 10 -6	1.511	1.699	1.804	2.084	2.205	2.568	3.041	3.652	4.298	5.095	6.170	7.285	8.927	1.117×10^{-5}	1.344	1.647	2.030	2.561		Series 2	4	1.708 x 10 -6*	1.908	2.117*			2.741
T CTIRVE 2 foot	CORVE	005	8 8	800	006	1000	1100	1200	1300	1400	1423		CUR		Ser		0.1874	0.1923	0.2073	0.2141	0.2351	0.2416	0.2629	0.2883	0.3166	0.3434	0.3719	0.4056	0.4370	0.4755	0.5214	0.5612	0.6059	0.6550	0.7130		2		0.2080	0.2225	0.2361	0.2519	0.2568	0.2739
C _p		3.55 x 10 ⁻²	3.02	4.18	4.27	4.33	4.36	4.39	4.43	4.49	4.54	4.60	4.63	4.98	4.72	4.76	4.80	4.82	4.85	4.86	4.88	4.91	4.94	4.97	5.00	5.06	5.12	5.23	5.28	5.61	5.87	7.37	5.73	5.73		CURVE 2	5 50 - 10-2*	01 Y 60 .0	5.59	5.59*	5.54*	5.54	0.9	6.0
H	31	20	5 P	35	40	45	20	55	09	70	90	8	100	110	120	130	140	150	160	170	180	180	200	210	220	230	240	250		273.15	280	290	310	320	į	5	979 15	٠.	300	301.52	301.52	373.15	373.15	400

* Not shown on plot

SPECIFICAT. N TABLE NO. 12 SPECIFIC HEAT OF CHROMIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 12]

Composition (weight percent), Specifications and Remarks	Chemically pure; ductile; specimen sealed in capsule; density = 448 lb ft ⁻³ at 75 F.	100 Cr.; specimen under argon atmosphere.	99.96 Cr. 0.04 O ₂ .	99.9 Cr.	99.998 Cr; specimen produced by Aeronautic's Research Laboratory, Melbourne.	 1 impurities, mostly chromous oxide with absorbed H₂ and some Ca and Na; electrolytic flakes. 	99. 9 Cr.	99.99 Cr; form of crystals made by vapor decomposition of the iodide.	Electrolytic Cr; after treatment specimen contained 0.65 O ₂ , assumed to be in the form of Cr ₂ O ₃ ; evacuated and heated to 1100 C to remove H ₂ ; corrected for Cr ₂ O ₃ impurities.	99.9 Cr.
Name and Specimen Designation					Ductile Chromium					
Reported Error, %		±0,3	0.7-2.0		0.13	1.0		1.42		
Temp. Range, K	297-1922	800-1500	964-1598	14-274	268-324	273-1073	20-200	1273-2103	56-291	1.8-4.0
Year	1958	1959	1958	1962	1960	1950	1954	1965	1937	1952
Ref. Year No.	01	20	13	22	23	24	25	125	287	288
Curve No.	H	8	က	4	s	9	1	60	•	2

DATA TABLE NO. 12 SPECIFIC HEAT OF CHROMIUM

CP 3 (contd) 1 1.71 * 10-1 1 1.72 * 10-1 1 1.72 * 10-1 1 1.73 * 10-1 1 1.73 * 10-1 2 2.23 * 10-4 4 4.94 5.58 5.58 6.21 1.69 × 10-3 2.24 × 10-3 2.25 × 10-4 3.94 × 10-3 2.24 × 10-3 3.94 × 10-3 3.95 × 10-3
CP Cp (E 3 (condd) 1.70 x 10^{-1} 5 1.71 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.73 1

c _p	CURVE 10" (cont.)	731 808 885	967 2.403 781 2.403 911 2.442	232 4 33	392 2.	57.8 637	709 3.	823 3.	362			·	
H	밁	ผู่ผู่ผู	ผ่ผ่ผ		ຕໍຕໍ	າ ຕ ຕ	ຕຕ	ຕໍຕໍ	່ຕໍ				
ပ္	CURVE 8*	1.544 x 10 ⁻¹ 1.682 1.820	1.958 2.097 2.235	2,373 2,511 2,650 2,691	CURVE 9*	1.219 x 10 ⁻² 1.446	1. 559 1. 636	2.003 2.090	2.415 2.609 3.165	3,415 4,064 4,301	5.820 7.143	8.037 8.668 9.260 9.860	1.008 x 10 ⁻¹ 1.046 1.053 1.066
۲	ฮ	1273 1373 1473	1573 1673 1773	1873 1973 2073 2103		56.1	61.1	66.9 68.0	72.4 74.2 81.6	98.8 93.2 1	105.8 123.1 141.6	162.9 181.6 200.1	244.1 274.0 281.5 291.1

CURVE 10*
1.833 1.432 × 10*
2.020 1.559
2.310 0.752
2.343 1.750
2.451 1.828
2.572 2.173
2.656 2.192

49

SPECIFICATION TABLE NO. 13 SPECIFIC HEAT OF COBALT

(Impurity <0, 20% each; total impurities <0, 50%)

[For Data Reported in Figure and Table No. 13]

Composition (weight percent), Specifications and Remarks	99.95 Co, 0.01-0.06 Fe; deposited electrolytically; density = 551 lb ft ⁻³ .	< 0.01 impurities.	96.95 Co, 2.50 Fe, 0.25 Cu, 0.20 Ni, 0.08 Si, 0.01 Mn; data corrected for impurities; density = 551 lb ff ³ .	Sealed in argon.		99.9 Co. with the principal impurity Fe: hexagonal closed packed; sample supplied by African Metals Corporation.
Name and Specimen Designation		Electrolytic				
Reported Error, %				1.0		~ 2
Temp. Range, K	448-1673	273-1073	14-270	413-1073	273-1473	0.3-1
Year	1940	1950	1952	1959	1932	1959
Ref. No.	93	24	94	31	164	223
Curve No.	-	8	ო	•	20	ø

DATA TABLE NO. 13 SPECIFIC HEAT OF COBALT

[Temperature, T, K; Specific Heat, Cp, Calg⁻¹ K⁻¹]

	ဝီ	CURVE 6* (cont.)	Series 6	485 5.76 × 10-6		0.510 5.48																																					
	H	밁		•	· •	ه ه	•																																				
	ပီ	CURVE 6* (cont.)	Series 2	5.68 x 10-6	5.60	5.56	5.52	5.43	5.31	5.48	5.07	4.91	6.79	0. to	35.35		Series 3		1.03 x 10-	9.65 x 10-6		Series 4		9.53 × 10-	69.6	1.37 × 10	7.42	5.56	6,69	5.03	5.35	4.14	3.97	4.02	.30	00	Series 5						
	T	CURVE	Seri	0.565	0.578	0.586	0,593	0.599	0.604	0.625	0.640	0.655	0.670	0.020	0.669		Seri		0.327	0.360		r ₂		0,336	0,349	0.370	0.46	0.489	0.530	0.583	0.637	0.696	0.756	0.898	0.999		Ser		0.548	0.552	0.565		
-1 K-1]	ပိ	(contd)	2. 09 x 10 ⁻¹	1. 50	L 75	1, 56	1, 42	1, 35	1, 33	1. 29	L 29	1. 34 1. 34 1. 35	1.50	. 4e	7.	1.62		, S.		1.055 x 10-1	1.094	1.160	1.228	1.318	1.416	1.00	1.781	1.945	2.040	2, 120	2. 195		ا ف	- W		4.55 x 10-4		4.70	4.99	5.11	4.91		
at, Cp, Calg	۲	CURVE 4 (contd)	733	743	745	758	763	164	765	768	773	22 E	993	973	1023	1073		CURVE		273.15	373.15	473.15	573.15	673.15	773.15	073 15	1073.15	1173.15	1273.15	1373, 15	1473.15		CORVE	Series 1		0.612	0.624	0.625	0.637	0.646	0.641		
[Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1]	ပ္ရ	CURVE 3 (contd)	8, 186 x 10 ⁻² 8, 255	8, 611	8, 729	8, 825	8, 942	9.0 11	9, 056	9, 126	9. 12/	9. 22.1	9.402	9, 475	9, 543	9.611	9. 682	9, 743	9, 789	9.830		9.911		VE 4	1 10 × 10-1	1 1 1 1	1 10	1, 12	ក រោះ	1, 13 ⁺	L 15	1 30	1.22	1, 22	1, 22	1.27	1. 29	1, 36	1, 52	1.62	1. 76	1.91	2. vo
[Temperature	۲	CURVE	160, 67	177.64	183, 51	187.85	194. 82	200.40	200.58	205.86	202. 34	211,33	221.86	227. 08	232, 84	237.98	243, 50	249.31	254, 31	259, 52	265, 25	269. 83		CURVE 4	413	423	‡	443	453	473	523	200	673	683	703	108	713	718	719	723	724	725	67)
	ပ္	CURVE 3 (contd)	1,67 x 10 ⁻³	2.09	2, 16	2, 24	2, 46	2.63	2, 56	3.16	77.5	3 23 *	300	3, 89	4, 72	6. 50	7. 99	1, 0'r x 10-2	1.48	1, 82	2. 17	2.44	2.73	3.02	3 528	3 801	4. 142	4, 327	4. 455	4. 629	4.960	5 576	5.885	5, 998	6. 458	6. 697	6.949	7. 130	7.320	7, 554	7, 739	7.909	ð
	T	CURVE	22.36	24. 10	24. 75	24.90	25. 72	25. 73	26. 18	27.67	27.72	28.23	28.62	29, 92	31,60	35, 16	37, 59	41.24	46.96	50.81	. 65 16 16 16 16 16 16 16 16 16 16 16 16 16	57.67	79	64.32	70.53	73.86	78, 28	81, 35	82, 59	85. 23	89.51	28.50	103.84	109, 21	114, 56	119. 50	124. 51	129, 17	134, 20	140.02	145, 34	150.48	eo 'eey
	ပ်	CURVE 1	1, 13 x 10 ⁻¹			1.23	1.24	1.26	1.37	2 ·	2 ·	1. 50	1,68	1.74	1, 80	1.87	ま	2, 05		CURVE 2		9.83 × 10-	1-01 x 90 T	# FT - L	1 25	1.20	1, 27	1.36	1.42	35 1	1. 52	200	1.36	1.47	1,60		VE 3		5, 60 x 10-4	5. 89	7.26	9 3 6 6	ŗ,
	H	CUR	4	523	573	623	\$	713	873		500.		1123	1173	1223	1273	1323	1373		5		273. 15	373	£73	673	883	169	693	869	733	753	773	873	973	1073		CURVE		14, 27	14, 85	16, 36	16.96	19. 61

SPECIFICATION TABLE NO. 14 SPECIFIC HEAT OF COPPER

(impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 14]

1						
Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	60	1960	20-300	<2.0		99.999 Cu; sample-supplied by American Smelting and Refining Co.; heavily cold worked
٠	đ	1050	102 996			below foun temperature with hydraulic press until strength increased 50%.
. m	, =	1958	366-1310			Electrolytic tough-pitch copper; cold drawn; under helium atmosphere; density = 40 lb ff?
4	11	1961	366-544		Calibration Specimen	
us.	12	1962	533-1089	s 5.0		100.0 electrolytic concer.
•	-	1961	292	±5.0		
7	7	1959	5-298		ОРИС	99.96 Cu, 0.001-0.01 Ag, 0.001-0.01 Sb, <0.001 each, Bi, Ca, Fe, Mg, Ni, Pb, and Si; oxygen free high conductivity copper.
	15	1959	323-1273	1.0		99.9 Cu.
•	16	1961	0.4-30	1.0	High purity copper	99.999 Cu, < 0.0001 each Se and S; sample supplied by the American Smelting & Refining Co.
2	17	1960	421			
Ħ	•	1960	20-300	<2.0	1 (a)	Commercially pure cold rolled copper; sample supplied by the American Smelting & Refining Co.
21	•	1960	20-280	<2.0	I (b)	Same as above.
ន	60	1960	20-290	<2.0	н	Lighter commercially pure cold-rolled copper; sample supplied by the American Smelting & Refining Co.
7		1960	20-300	<2.0		99. 999 Cu.; annealed; melted by induction heating under high vacuum and cooled slowly for 4 hrs.
15	18	1956	363-873	±0.5	Electrolytic copper	99.99 Cu, major metallic impurities are Ag and Fe.
91	16	1961	0.4-30	1.0	0.05 Fe dilute copper alloy	99.949 Cu, <0.0001 each Se, and S; melted and cooled to room temperature.
17	16	1961	0.4-30	1.0	0. 10 Fe dilute copper alloy	99. 899 Cu. < 0. 0001 each Se, and S: melted at 1300 C; annealed for 72 hrs at 870 C to homogenize; cooled rapidly to room temperature.
18	19	1962	473-973		Copper powder compact first heating	99. 8 Cu; reduced for 3 hrs. at 250 C in dry and purified hydrogen stream; heated under 10°4 mm Hg vacuum at 400 C until degassing from powder is completed.
21	18	1962	513-893		Copper powder compact second heating	Same as above.
8	•	1941	15-300			99.96 Cu; single crystals; melted and solidified 5 days in a nitrogen atmosphere; density = 558.91 ib ft?

SPECIFICATION TABLE NO. 14 (continued)

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
21	21	1956	811-1311		QQC 576	Electrolytic tough pitch; density = 551.4 lb ft ⁻³ .
ដ	37	1962	284-300	07 '0		99,999 Cu; annealed.
ឌ	37	1962	284-303	0, 10		99.999 Cu; cold worked.
77	38	1961	727-1783			
22	101	1958	337-946			Specimen's surface plated with platfoum black.
56	105	1948	589-794			99.92 Cu; capsule,
72	55	1930	95-215	1.5	Recrystallized copper	Cold deformed; recrystallized for 10 hrs at 1000 C under nitrogen atmosphere.
28	22	1930	84-183	1.5	Compressed copper	Deformed by hydraulic press sidewise.
53	154	1956	273-1338		QQC 502	Electrolytic: tough pitch.
8	8	1954	373-1183			
31	268	1926	373-1723			Electrolytic copper.
ĸ	289	1927	373-1073			0.1 Ni; vacuum melted.
ន	170	1931	291-973		Electrolytic copper	
ಸ	290	1936	573-1173		Electrolytic copper	Sample melted and allowed to solidify.
જ	291	1933	203-389	0.02		>99.5 Cu; cold rolled.
98	261	1934	54-294			Hard drawn wire sample from Bell Telephone.
33	261	1934	53-293			San, the anneale: 16 hrs at 400 C in high vacuum.
38	167	1936	1.2-20			99.9 Cu.
8	262	1937	373-764			
2	292	1937	29-194	0.05		Commercially pure sample; cold rolled.
#	263	1939	373-1273			
4	293	1941	82-273			99.92 Cu, with 0.02 Fe, 0.01 C, and 0.003 S impurities.
\$	294	1952	2.1-4			99.60 Cu, with principal impurity Pb, and traces of Fe, Ni, and Ag.
\$	295	1955	90-300		Sample I	99.999 Cu, single crystal; before deformation copper was annealed at 400 C.
\$	295	1955	90-300		Sample II	Polycrystalline; before deformation copper was annealed at 400 C.
\$	296	1955	1. 1-4. 8	. 05		99, 999° Cu, with a trace of Ag; sample was supplied by the American Smelting and Refining Company; annealed 3 hrs at 1000 C under vacuum of 1 x 10° mm Hg, and allowed to cool in vacuum to room temperature at 200 C per hr.

CAL TO A CONTRACTOR

SPECIFICATION TABLE NO. 14 (continued)

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, % Spe	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
4	223	1959	0.4-0.5	သ		
\$	297	1959	2.7-5		OFHC copper	Annealed at 300 C for 1 hr.
\$	298	1963	77-1357			
8	82	1963	0. 1-1.1			99. 999 Cu. specimen supplied by American Smelting and Refining Co.; sample was amealed
51	299	1964	0.1-1.0	1-3		AN ARCHITECT BOLLS AL GOO C.
22	300	1966	1-9	0.1		Single crystal; resistance ratio Ran = some some
ន	300	1966	1-24	0, 1		99.999 Cu. polycrystalline sample supplied by American Smelting and Redning Co.: annealed 3 1/2 hrs at 650 C in a vacuum by induction heating and heavily standard: the
						pressure before heating was 5 x 10° mm Hg, pressure during heating increased to a maximum 6 x 10° and decreased to 2 x 10° mm Hg.
\$	300	1966	1-27	0.1	Standard 19th Annual Calorimetry Conference Sample	Chill cast sample; heavily etched.
88	300	1966	1-24	0.1	·1	Cold worked sample; prepared from amealed sample; heavily etched.

DATA TABLE NO. 14 SPECIFIC HEAT OF COPPER

			[Tem	erature, T, k	[Temperature, T, K, Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]	, Cal g ⁻¹ K	1.]				
H	c _p	H	Cp	۲	ပ	۲	ပ	H	ပီ	H	ິ
CURVE	VE 1	บีI	CURVE 2	리	CURVE 6*	5	CURVE 9	CUB	CURVE 11*	Öl	CURVE 12
21	2.06 x 10-3	288	9.08 x 10-2	295	9.70 x 10-2	0.4	1. 05 x 10-6	21	2. 08 x 10-3	21	2.08 x 10-3
25	3.60	288	9.30			0, 5		25	3.62	25	3.64
30	6.37	375		밁	CURVE 7	0.7	1, 88.	30	6.39	30	6. 40
35	- 01 x 00 T	3	9, 52		*	6.0	2.46	35	1.003 x 10-2	35	L 001 x 10-
7	L 41	200		n ș	4.72 × 10-	11	3.09	9	1,410	40	1, 412
2	60	000	27.6	Q :	Z. Z0 x 10	7.7	3. 49	45	78.1	45	1. 860
2 :	2, 317	0.5	3 6	12	6.61	13	3, 77	20	2,313	20	2, 359
2 3	2. 736	551	2.72	20	L 79 x 10-3	1.5	4.50	22	2, 784	22	2, 784
9	3.24	298	2 3	40	L 39 x 10 ⁻²	1.5	4. 53 _±	09	3. 236	09	3.244
65	3.676	20	9.96	09	3, 266	2.0	6.58	65	3.667	65	3, 586
70	4, 087	701	L 06 x 10 ⁻¹	80	4. 926	2.5	9.35	20	4. 079	20	4. 089
75				9	6. 109	3.0	1, 28 x 10-6	75	4, 471	75	4. 460
8		ଧ	CURVE 3	120	6. 892	3.0	1. 26	98	4. 838	8	4. 833
8	5, 179	253		140	7.452	3, 5	1, 69	82	5, 176	82	5, 173
8		366	9, 50 x 10-z	160	7. 932	4.0	2, 20	8	5, 478	90	5, 364
99	5, 773	4.17	9.60	180	8, 295	4.0	2, 19	95	5. 755	95	5, 763
3	6.018	289	96 · 6	200	S. 595	5.0	3. 55	100	5.998	100	6.013
977	6.467	200	1. 01 × 10-1	220	8. 798	6.0	5, 46	110	6. 465	110	6. 470
021	9.800	811	1.05	240	8. 94.5°	7.0	. S.	120	6.846	120	6. 859
130	7, 195	922	1.08	260	9.037	8.0	1, 141,x 10-C	130	7. 181	130	7, 195
140	7.466	1033	ដ :	280	9, 115	0.6	1, 569	140	7.472	140	7. 474
25	7.705	7	81 7 7	290	9, 152	10.0	2, 103	120	7.710	150	7, 715
097	876.7	1255	7 :	298, 15	9, 180	12.0	3. 547	160	7. 916	160	7. 924
170	8, 097	1311	1.27			14. 0	5.614	170	8, 094	170	8, 100
180	8. 250			읽	CURVE 8	16.0	8. 470	180	8. 251	180	8, 255
061	8, 380	Σl	CCRVE 4			18.0	1, 232 x 10 ⁻³	190	8, 380	190	8, 385
200	8, 513			323	9. 20 x 10-2	20.0	1, 737	200	8, 500	200	8, 505
012	8, 617	366	9. 34 × 10-	373	9.40	22. 0	2.384	210	8, 612	210	8, 610
720	50.00	300		473	9. 90	27.0	3, 176	220	8, 711	220	8, 705
230	& 793	422	₹. 6.	573		26.0	4. 100	230	8, 801	230	8, 791
240	8. 870	450		673	1.83	28, 0	5, 149	240	8, 884	240	8, 864
250	2 3 4 7	478	9. 3 .	773	1, 06	30.0	6, 325	250	8,950	250	8, 941
260	9.019	202	3 6.6	873	1, 09		•	260	9.008	260	9, 015
270		833	9. 3¢	973	1, 12	COL	CURVE 10*	270	9, 071	270	9,084
273. 15	9, 103	Z	9.34	1073	1.14			273, 15	9.090	273, 15	9, 103
280	9, 139			1173	1, 17	921	9, 15 x 10 ⁻²	280	9, 125	280	9, 145
290	9. 183	ଧ	CURVE 5	1273	1, 19			290	9, 172		
298, 15	9. 219	1						298, 15	9, 207		
300	9. 227	533	9.40 × 10-2					300	9, 215		
		118	1, 01 x 10-1								
		1089	F. 08								

	T o	CURVE 20 (contd)	1. 52 8. 971 x 10 ⁻³	21 1, 789*		53.34 2.671		70, 12 4, 100				90, 73 5, 529 95 78 5, 829		. 72 6.388		117. 86 6. 810		128.99 7.167				156.91 7.869	20		179.36 8.247	7.72 8.344	195. 81 8. 492	201, 39 8, 552*			218, 90 8, 719 224, 23 8, 780	66 8,818*			245.98 8.977				256. 61 9. 095 272 18 9 1.2	69	1. 59 9, 177	21
	ບິ		x 10 ⁻¹ 33.	. 1	48	2	3	22	75							111	123	128	140	' x 10 ⁻¹ 146	151	156.	291	174	179	3 5	361	201	207	212	22.	229	236	240	245		6.30 x 10-4 256				2. 943 283.	
	H	CURVE 18 (contd)	573 1.06	-		53 1.05		i -				93 1, 22				58 1.28		PI BVE 19		1, 17		53 1. 18			633 1, 20						13 1.22				CURVE 20						23.35 2.943	
	ပ္ရ	(contd)*	1. 734 × 10 ⁻³							x 10-6		3 3						L 22 x 10"	93		06	200			1. 212 x 10 ⁻⁴ (10-3	2 386			277	426		<u>91</u>	100	10 x 10 1	15	21	60
(continued)	H	CURVE 16 (contd)*	20.0			28.0		CURVE 17*		0.4	€ 1			1.2 7.	87	1.5	മ	2 co		۰	6			٥						18.0			4	ຜ	9		CURVE 18	•	- ii	1 1		-1
DATA TABLE NO. 14	္ပရ	CURVE 15 (contd)*	9.96 x 10 ⁻²	1, 003 x 10 ⁻¹		1,006	1,011	1, 015	1.018	1, 017	1, 019	1, 022 1, 025	1, 027	1. 035	1,041	1, 051		T. 067	E 16*		1.94 x 10-4	2.31	3,95	4.78	5.30	5.73	6.70	9. 25	1, 24 x 10 ⁻⁶	1. 59	202	75.	2.58	3.96	5. 89	8, 59	1, 185 x 10-4	L. 616	3, 577	5, 639	8, 552	L 239 x 10-
DATA T	L	CURVE	553		593	603	633	643	663	673	8	3 2 2	1 22	753	793	833	873	200	CURVE 16*		4	o c	. o	نا ا	8	ים מ	o ro		2	•	5 10		•		0	•	0 0		• •		16.0	•
	ပိ	CURVE 14 (contd)*	2. 776 x 10 ⁻²		4.075	4, 471	5, 173		5, 768		6.478	7.184	7.474	7,716	7.915	8, 086	8,242	8, 304 8, 497	8, 602	8.698	8, 780	8, 853 8, 927	8, 999	9.067	9.086	9.119		9, 200	*	CURVE 15	9 42 x 10-2	9.53	9, 57	9.61	9.65	9.68	9.72	9.76	, o	9.87	9.90	3
	L	CURVE	55	65	20	75	8 8	8	92	8	110	130	140	150	097	170	200	200	210	220	ខ្ល	250	260		273. 15	200	298. 15	300		CUR	5,63	88	393	403	423	433	4 53	4 73	\$ 50 50 50 50 50 50 50 50 50 50 50 50 50 5	513	523	2
	ပ္	* .	41 x 10-3	. 0	003 x 10-1	418 865	325	792	248	- 68 <u>-</u>	093	407 861	195	502	788	25	481	7. 206	496	726	935	173	115	30	33	7.7	181	55	029	5 c	152	197		4		78 x 10-1	.	N 4		05 x 10-2	856	309
		CURVE 13	4.4	6. 42	4	- a	2	2.7	3.2	3.6	4	4	4	d	5,7	and a	6	0 1	~	۲.	٠,	6 00	æ	80	8, 635	0 0	8	80	9.0	9.093	, 0	6		CURVE 14		1	2. 08	3. 62	96.6	1, 405	1.8	4

* Not shown on Plot

THE Color of the					DATA	14	(continued)					
The property of the property	H	ď	H	ပ္	H	တီ	٢	ပ္	Н	ပိ	T	ပ္ခ
1	CURVI	2 20 (cont.)	CURVI	E 23 (cont.)*	CURVI	E 27 (cont.)*	CURVE	30 (cont.)	CURVE 32	2* (cont.)	CURVE 35	*(cont.)
1. 1. 1. 1. 1. 1. 1. 1.	294, 76	9, 213 x 10-1*	288,31	8, 890 x 10-2	136.68	7, 428 x 19 ⁻²	703	9.650 x 10-2	673	1 028 x 10-1	36 166	2-01 - 001 0
COMY C 2.1. 2.2. 1.7. 2.2. 1.7. 8.2. 1.7. 8.1. 1.0. 7.2. 8.1. 1.0. 7.2. 9.1. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 7.2. 1.0. 1.0. 2.0. 1.0. 1.0. 1.0. 2.0. 1.0. 1.0. 1.0.	300, 15	9. 191	290, 29	8, 929	154.92	7, 850	723	9,715	773	1.050	245 86	8 876 A LO
Cumy East Cumy East Cumy East Cumy East Cumy East Cumy East East Cumy East East Cumy East		*	291. 78	8, 912	174.97	8, 180	743	9, 771	873	1.073	256.66	8.952
1002 k 10 ⁻¹ 286.7		KVE 21	293. 27	8, 923	204. 10	8, 575	763	9, 828	973	1.096	267.36	9.019
Third		1000 - 000	62.62	0, 100	÷	o. (42	8 3	. o.	1073	1.120	278.70	9.081
	978	1. 042 x 10 ·	236.74	8, 932	5	RVE 28	203	* 275		100	289.24	9.142
	145	1 118	300 21	9 953	83 83	5 063 × 10-2	643	1 008 10 ·	CORN	ž!	299.00	9, 191
CHINESE CHIN	1311	1 156	301.70	35.0	87.8	5 241	250	1 01	100			-
Link E		3	303 19	056	2.23	5 710	200	1 019	201.15		CURV	36
6.868 x 10 ⁻¹ CURNE 24 113 to 5 7 40 1 113 to 5 7 40 1 92	CUF	1VE 22*			119, 55	6 853	200	1 024	373.15	50.0	;	\$-00 O
R. 868 x 10 ⁻¹ 580			COL	RVE 24*	139, 05	7. 491	923	1.030	573 15	8 3	56.79	2. 129 x 10 -
8.65 6.60 9.652 × 10-2 185.11 6.313 965 1.042 777.15 1.04 977.15 1.04 977.15 1.04 977.15 1.04 977.15 1.04 977.15 1.04 1.05	283.27				145, 43	7,646	25	1. 436	673 15		20.16	2 300
8. 885	283.81	8, 869	069	9, 638 x 10-2	183, 11	8, 313	963	1.042	773. 15		60 63	4 199
8.645 800 9.8 6 9.8 6 9.8 6 9.8 6 9.8 6 9.8 6 9.8 6 9.8 6 1.033 1.053 1	283.89	8, 853	200	9. 662		4	983	1,048	873, 15	1.06	23.53	5 033
8 871 900 L 0.11 x 10 ⁻¹ 773 1 0.63 CURVE 3 ⁻¹ 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63 1 0.73 1 0.63	284.36	8, 845	800	9.886	CO	RVE 29	1003	1.053	973, 15	1.09	101.50	6.116
8.64 1000 L GGS 27.3 9.4 of x 10 ⁻¹ 1045 L GGS CURYE 25 10.0 10.05 L GGS	284, 46	8.871	006	L 011 x 10-1			1023	1.053			126.30	7.096
8. 894 1100 1 065 3 60 1 071	285, 05	8. 854 854	1000	1. 033	273	9.40 x 10-2	1043	1, 065	CURV		153, 50	7.918
8. 877	285.34	æ .	1100	1, 056	366	9, 50	1063	1, 071			190,30	8.363
R. 5774 CURVE 25* 709 1,000 1120 1,082 67.715 1,000 240.0 R. 5774 CURVE 25* 700 1,01x 101 1,083 777.15 1,000 273.00 R. 577 56 1,01 1,03 1,105 1,105 1,073.15 1,050 273.30 R. 574 465 9,0 1,04 1,14 1,105 1,073.15 1,072 293.30 R. 584 565 9,0 1,144 1,18 1,105 1,073.15 1,072 273.30 R. 895 566 1,04 10.7 1,29 77.0 1,05 1,113 1,07 273.30 R. 896 674 1,07 37.3 8,40 1,07 37.3 1,04 10.7	285, 62	8. 876	1210	1.078	477	9.60	1083	1. 077	573, 15	9.880 x 10-2	213.40	8.669
R. SETT CUNIVE 23 TOO 10.1 × 10 ⁻¹ 11.33 1.088 773.15 1.030 265.10 R. SETT 3.56 3.60 × 10 ⁻² 4.06 1.01 × 10 ⁻² 1.133 1.088 773.15 1.030 259.30 R. SETT 3.56 3.40 1.02 1.13 1.105 1.099 97.15 1.052 294.30 R. SETT 465 3.40 1.144 1.18 1.105 1.099 97.15 1.103 259.30 R. SETT 465 9.40 1.144 1.18 1.109 97.10 × 10 ⁻² 294.30 1.103 27.30 R. SETT 1.04 1.04 1.07 3.13 1.23 3.70 × 10 ⁻² 2.80 3.22 3.22 R. SETT 1.04 1.07 3.73 8.40 9.70 × 10 ⁻² 3.90 9.10 9.70 9.70 1.07 3.73 1.13 3.73 3.10 3.70 3.73 3.10 3.70 3.70 3.70 3.70 3.70	285.04	S. 574		4	288	9.90	1103	1, 082	673.15	1.009 x 10-1	240.40	8.870
Eff1 337 9,60 x 10 ⁻³ 9,21 1,03 1,034 573.15 1,051 279.30 Eff1 465 9,40 1,03 1,13 1,094 973.15 1,002 247.30 279.30 8,674 465 9,40 1,144 1,18 1,183 1,094 973.15 1,092 247.30 279.30 8,674 465 9,40 1,144 1,18 1,183 1,093 977.11 1,113 1,072 247.30 1,093 1,072 1,072 247.00 1,073 1,113 1,113 1,113 1,113 1,113 1,113 1,113 1,113 1,113 1,114	280.63	2 20 20 20 20 20 20 20 20 20 20 20 20 20	3	KVE 25	3 3	1, 01 × 10 ⁻¹	1123	1,088	773.15	1.030	261.00	8.999
8 862 3 56 9 40 103 113 1 105	288.34	8.871	337	9 60 x 10-2	4 22	1.03	1143	1. 084 1. 000	873. 15	1.051	279.30	9.084
8.873 400 9.60 1144 1.18 CURVE 31* 1773.15 1.13 CURVE 25* 8.874 465 9.70 124 CURVE 31* TT3.15 1.13 1.13 CURVE 35* 53.29 8.896 664 9.90 131 1.27 9.70 10-2 CURVE 35* 57.72 CURVE 36* 57.72 57.72 CURVE 36* 57.72 57.72 CURVE 36* 57.72 57.72 CURVE 36* 57.72	288, 81	8 862	326	9.40	1033	130	1183	1 105	1073 15	1.072	294.30	9.174
6.8674 465 9.70 1256 1.24 CURVE 31* CURVE 32* CURVE 31* CURVE 32*	289.80	8, 879	400	9.60	114	1 18	3		1173, 15	1.113	21010	****
8,895 565 9,99 1311 1,27 773 9,70 x 10 ⁻² CURVE 35° 53.29 8,896 664 9,99 1311 1,27 773 9,70 x 10 ⁻² Sertes 1 60,56 8,896 675 1,04 x 10 ⁻² 1,04 x 10 ⁻² 473 9,70 x 10 ⁻² Sertes 1 60,56 8,896 677 1,04 30,24 9,20 9,180 172.29 8,900 946 1,07 373 8,640 × 10 ⁻² 773 1,124 309,74 9,200 94.19 8,900 590 423 8,735 973 1,131 309,74 9,200 192.30 8,900 627 1,10 31 8,800 1773 1,213 309,74 9,79 9,90 8,91 443 8,901 1773 1,230 374,31 9,473 220 9,67 8,94 734 1,11x1 1,1x1 1,1x1 1,1x1 1,1	290, 29	8.874	465	9.70	1255	1, 24	CURY	E 31*			CORA	
8,896 604 9,90 1.29 373 9,70 x 10 ⁻² Series 1 57.72 8,896 676 1.04 x 10 ⁻¹ 1.04 x 10 ⁻¹ CURVE 30 373 9,70 x 10 ⁻² Series 1 60.56 8,896 676 1.04 x 10 ⁻¹ CURVE 30 573 1.043 x 10 ⁻¹ 29.86 9,180 x 10 ⁻² 72.39 8,890 96 1.07 373 8,440 x 10 ⁻² 673 1.063	291, 78	8. 895	565	9. 99	1181	1, 27			CURVI	E 35*	53.29	2.720 x 10-2
8,896 676 1,04 x 10 ⁻¹ CURVE 30 473 9.98 Series 1 60.56 8,895 675 1,034 x 10 ⁻² 298.66 9.180 x 10 ⁻² 472.29 8,895 1,07 373 8,640 x 10 ⁻² 773 1,034 x 10 ⁻² 298.66 9.180 x 10 ⁻² 472.29 8,906 946 1,07 373 8,640 x 10 ⁻² 773 1,124 309.74 9,230 99.20 8,906 589 9,60 x 10 ⁻² 423 8,795 973 1,131 331.68 9,377 152.80 8,917 589 9,60 x 10 ⁻² 463 8,920 1773 1,213 342.56 9,407 209.60 8,917 589 9,60 x 10 ⁻² 483 8,981 1,731 1,210 342.56 9,407 209.60 8,917 566 9,90 483 8,981 1,320 374.31 9,490 289.10 8,946 573 9,40 1,220 1,220 374.32 241.30	293, 27	9. 89 .	70	9. 90	1338	1. 29	373	9.70 x 10 ⁻²		1	57.72	3.072
8,885 781 1,033 CURVE 30 573 1,034 x 10 ⁻² 298.66 9,180 x 10 ⁻² 772.29 8,897 875 1,07 373 8,640 x 10 ⁻⁷ 673 1,063 298.66 9,180 x 10 ⁻² 94,19 8,909 946 1,07 373 8,640 x 10 ⁻⁷ 773 1,124 309,74 9,230 94,19 8,909 423 8,735 1,131 320,74 9,280 123,10 8,906 589 9,60 x 10 ⁻² 463 8,960 1073 1,131 342.56 9,367 182,20 8,906 589 9,60 x 10 ⁻² 483 8,961 1773 1,250 352,40 9,473 267,50 8,916 627 1,01 x 10 ⁻¹ 503 9,443 1,270 374,51 9,443 267,50 8,946 1,19 523 9,105 1,520 378,33 9,490 291,90 8,946 2,21 1,01 x 10 ⁻¹ 523 9,220 1,722	293. 42	8,898	919	1, 04 x 10 ⁻¹			473	9.08	Serie	8 1	60.56	3.348
8.897 875 1.07 673 1.063 298.66 9.180 x 10 ⁻² 94.19 8.900 946 1.07 373 8.640 x 10 ⁻² 673 1.134 328.66 9.180 x 10 ⁻² 94.19 8.900 946 1.07 373 8.735 873 1.170 330.74 9.280 152.30 99.20 8.950 5.96 9.90 443 8.860 1073 1.213 331.68 9.377 152.80 8.910 5.96 9.90 463 8.920 1173 1.213 331.68 9.377 182.20 8.910 677 1.01 x 10 ⁻¹ 503 9.45 1.236 1.376 9.477 209.60 8.924 794 1.99 5.23 9.045 1.236 1.336 3.479 3.479 3.479 3.477 8.924 794 1.9 5.23 9.045 1.220 3.73 3.430 3.430 3.430 3.430 3.430 3.430 3.43	294. 75	8, 885	781	1.03	CO	RVE 30	573	1.034 x 10-1			72.29	4.300
8,900 946 1,07 373 8,640 x 10 ⁻⁷ 773 1,124 309,74 9,230 99,20 8,900 99,200 8,735 1,131 300,74 9,230 99,20 8,900 2,900 1073 1,213 30,74 9,280 123,10 8,900 1073 1,213 342,56 9,367 1,250 357 1,280 1,273 1,213 342,56 9,37 1,182,20 1,193 1,250 353,40 9,407 209,60 8,20 1,173 1,250 354,179 244,170 209,60 8,20 1,173 1,250 376,18 9,443 241,770 1,250 376,16 9,479 241,770 209,60 6,270 1,10	294. 75	8. 897	875	1, 07		2000	673	1.063	298.66	9.180 x 10-2	84. 19	5.052
8,909 CURVE 26 403 8,735 873 1,131 320,74 9,280 123,10 8,909 CURVE 26 423 8,795 873 1,170 331,68 9,280 123,10 8,906 5,90 9,60 x 10 ⁻² 463 8,920 1073 1,250 345,18 9,407 122,80 8,91 5,90 463 8,920 1173 1,250 355,40 9,407 209,60 8,91 5,90 463 9,045 129 1,310 364,18 9,407 209,60 8,94 9,40 1,33 1,210 364,18 9,403 241,70 209,60 8,94 9,40 1,23 1,220 379,36 9,490 298,10 8,94 9,40 1,22 1,220 379,36 9,490 298,10 8,94 9,40 9,220 1,723 1,220 379,36 9,490 293,00 8,877 x 10 ⁻² 122,11 6,627 6,63 9,46	296. 24	900	976	1.07	373	8. 640 × 10 ⁻²	773	1.124	309.74	9,230	99.20	5.995
8, 950 CURVE 26 423 8, 795 1, 170 331, 68 9, 327 152, 80 8, 950 589 9, 60 x 10 ⁻² 463 8, 920 1773 1, 213 342, 56 9, 367 188, 20 8, 966 9, 66 1073 1, 213 342, 56 9, 367 188, 20 8, 917 596 9, 90 463 8, 920 1773 1, 213 342, 56 9, 407 209, 60 8, 917 556 9, 90 465 1296 1, 336 374, 91 9, 479 241, 70 8, 946 1, 19 523 9, 105 1523 1, 220 378, 33 9, 490 288, 10 8, 977 113, 21 6, 627 633 9, 285 CURVE 32* Series 2 Series 2 8, 877 x 10 ⁻² 663 9, 463 3, 470 x 10 ⁻² 9, 470 x 10 ⁻² 9, 470 x 10 ⁻² 9, 770 x 10 ⁻² 8, 600 8, 877 x 10 ⁻² 653 9, 463 3, 730 1, 004 x 10 ⁻¹ 223, 05 8, 700 </th <th>286. 23</th> <th>808</th> <th></th> <th>*</th> <th>403</th> <th>8, 735</th> <th>873</th> <th>1.131</th> <th>320.74</th> <th>9.280</th> <th>123, 10</th> <th>6.994</th>	286. 23	808		*	403	8, 735	873	1.131	320.74	9.280	123, 10	6.994
8, 966 589 9, 60 x 10 ⁻² 443 8, 860 1073 1,213 342,56 9, 367 188,20 8, 916 596 9, 60 x 10 ⁻² 463 8, 920 1173 1,250 342,56 9, 367 188,20 8, 917 596 9, 90 483 8, 920 1173 1,250 3407 9, 407 209,60 8, 917 596 9, 90 483 8, 981 1270 374,18 9, 407 209,60 8, 924 1, 19 523 9, 105 1523 1, 220 378,33 9, 490 281,70 8, 946 2, 245 9, 158 1623 1, 220 379,36 9, 496 291,90 8, 957 132,110-2 603 9, 285 1, 220 379,36 9, 496 291,90 8, 895 129,92 7, 214 663 9, 463 373 9, 470 x 10 ⁻² 203,16 8, 700 8, 895 134,62 7, 369 683 9, 592 573 1, 004 x	297.73	8.950		RVE 26	53	8, 795	973	1.170	331.68	9.327	152.80	2.7.2
Q. 900 O. See See See See See See See See See Se	237. 73	8. 920		-0.	3	8.860	1073	1.213	342.56	9.367	188.20	8.311
8, 917 3596 3, 90 483 8, 981 1273 1, 310 364.18 9, 443 241.70 8, 940 627 1, 01 x 10 ⁻¹ 503 9, 045 1296 1, 236 374.31 9, 479 267.50 8, 946 6, 924 1, 19 523 9, 105 1523 1, 220 379.36 9, 496 291.90 8, 927 CURVE 27 563 9, 285 1,720 379.36 9, 496 291.90 VE 23 94. 61 5, 732 x 10 ⁻² 63 9, 285 1,720 379.36 9, 496 291.90 VE 23 94. 61 5, 732 x 10 ⁻² 63 9, 285 1,720 379.37 9, 470 x 10 ⁻² 291.90 8, 867 13. 21 6, 67 9, 463 9, 470 x 10 ⁻² 39, 470 x 10 ⁻² 203.16 8, 481 x 10 ⁻² 8, 895 134. 62 7, 369 683 9, 592 473 9, 780 223.05 8, 700	23. 22	96.0	200	9. 60 x 10-	7	8, 920	1173	1.250	353.40	9.407	209.60	8, 626
8,940 627 1,01 x 10 ⁻¹ 503 9,045 1296 1,336 374.91 9,479 267.50 8,924 794 1,19 523 9,105 1523 1,220 378.33 9,490 286.10 8,946 2,497 543 9,158 1623 1,220 379.36 9,496 291.90 NE 23 9,461 5,732 x 10 ⁻² 603 9,285 1720 389.07 9,521 293.00 NE 23 13.21 6,627 6,03 9,407 CURVE 32* Series 2 8,481 x 10 ⁻² 8,481 x 10 ⁻² 8,600 8, 862 129.92 7,214 663 9,529 473 9,780 223.05 8,700 8, 895 134, 62 7,369 683 9,592 573 1,004 x 10 ⁻¹ 223.05 8,700	233. 52	8. 9I.7	980	3. 20	3	8, 981	1273	1.310	364.18	9.443	241.70	8.883
8, 924 794 1, 19 523 9, 105 1523 1, 220 378, 33 9, 490 288, 10 8, 946 2, 446 543 9, 158 1623 1, 220 379, 36 9, 496 291, 90 8, 927 CURVE 27* 563 9, 285 1720 379, 36 9, 496 291, 90 VE 23* 94, 61 5, 732 x 10 ⁻² 603 9, 285 CURVE 32* Series 2 293, 00 8, 877 x 10 ⁻² 122, 11 6, 967 643 9, 407 373 9, 470 x 10 ⁻² 203, 16 8, 481 x 10 ⁻² 293, 00 8, 882 129, 92 7, 214 663 9, 529 473 9, 780 212, 46 8, 600 8, 895 134, 62 7, 369 683 9, 592 573 1, 004 x 10 ⁻¹ 223, 05 8, 700	299. 72	9.940	627	L 01 x 10-1	503	9.045	1298	1.336	374.91	9.479	267.50	9.048
8, 927 CURVE 27* 543 9, 158 1623 1, 220 379, 36 9, 496 291, 90 VE 23* 94, 61 5, 732 x 10 ⁻² 603 9, 285 CURVE 32* 389, 07 9, 521 293, 00 VE 23* 94, 61 5, 732 x 10 ⁻² 603 9, 285 CURVE 32* Series 2 293, 00 8, 877 x 10 ⁻² 132, 11 6, 627 643 9, 463 373 9, 470 x 10 ⁻² 203, 16 8, 481 x 10 ⁻² 8, 882 129, 92 7, 214 663 9, 529 473 9, 780 212, 46 8, 600 8, 895 134, 62 7, 369 683 9, 592 573 1, 004 x 10 ⁻¹ 223, 05 8, 700	300.70	8. 924	\$	1, 19	523	9, 105	1523	1.220	378,33	9.490	288, 10	9, 116
N. 927 CURVE 27 563 9, 220 1723 1, 220 389, 07 9, 521 293, 00 VE 23* 94, 61 5, 732 x 10 ⁻² 663 9, 285 CURVE 32* Series 2 Series 2 8, 877 x 10 ⁻² 113, 21 6, 627 643 9, 463 373 9, 470 x 10 ⁻² 203, 16 8, 481 x 10 ⁻² 8, 882 129, 92 7, 214 663 9, 529 473 9, 780 212, 46 8, 600 8, 895 134, 62 7, 369 683 9, 592 573 1, 004 x 10 ⁻¹ 223, 05 8, 700	302, 20	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	25	9, 158	1623	1, 220	379.36	9.496	291,90	9, 136
VE 23* 94.61 5.732 x 10 ⁻² 353 3.283 CURVE 32* Series 8,877 x 10 ⁻² 122.11 6,627 623 9,463 373 9,470 x 10 ⁻² 203.16 8,882 129.92 7,214 663 9,529 473 9,780 212.46 8,895 134.62 7,369 683 9,592 573 1,004 x 10 ⁻¹ 223,05	363. 69	8, 927	3	HVE 27	563	9. 220	1723	1.220	389.07	9.521	293.00	9.131
8, 877 x 10 ⁻² 122, 11 6, 967 643 9, 463 373 9, 470 x 10 ⁻² 203, 16 8, 882 129, 92 7, 214 663 9, 529 473 9, 780 212, 46 8, 895 134, 62 7, 369 683 9, 592 573 1, 004 x 10 ⁻¹ 223, 05	CIRVI	* 22 °	19 78	5 729 × 10-2	200	9.285		****				
8, 877 x 10 ⁻² 122, 11 6, 967 643 9, 463 373 9, 470 x 10 ⁻² 203, 16 8, 882 129, 92 7, 214 663 9, 529 473 9, 780 212, 46 8, 895 134, 62 7, 369 683 9, 592 573 1, 004 x 10 ⁻¹ 223, 05		1	113.21	6. 627	889	9. 407	COR	20 7	Series	7 8		
8. 882 129. 92 7. 214 663 9. 529 473 9. 780 212. 46 8. 895 134. 62 7. 369 683 9. 592 573 1. 004 x 10 ⁻¹ 2.23, 05	283. 86	8, 877 x 10-2	122, 11	6, 967	£.	9, 463	373	9.470 x 10-2	203, 16	8.481 x 10-2		
a. 850 L34. 62 7. 369 683 9. 592 573 1. 004 x 10 ⁻¹ 2.23, 05	285.34	8. 882	129.92	7.214	663	9, 529	473	9.780	212.46	8.600		
	200.00	0.000	134. 62	7.369	9	9, 592	573	1.004 x 10-1	223.05	8.700		

THE RESIDENCE HOROVALING

DATA TABLE NO. 14 (continued)

r o	CURVE 46* (cont.)	3.781 1.97479 x 10-4				4.601 2.77599	4.790 3.04306		Series 2					1.285 3.73694	1.465 4.38592	1.737 5.37895					2.915 1.19240			3,480 1.64002		4 041 9 29461		20000				Series 3		1.169 3.20856 x 10-4	1,208 3,52077						- 104		2 977 1 30 148	
Т	CURVE 43*		•										3, 639 2, 1561		CURVE 44*		300 9.20		CURVE 45*		90 4.12 × 10-2	300 9.55	#37 Atm15	CONVE 46	- weilies		1.144 3.29508 x 10-4									2.375 8.76431	2.570 9.70468	2.772 1.12469 x 10-						
T Cp	CURVE 40* (cont.)			171.63 8.122			194.29 8.430	#17 Might	CCAVE 41				56.6				1073 1.16		1273 1.27		CURVE 42	89 1 5 00 5 10-2	5 40		104.9 6.14			130.1 7.24				173, 25 8, 29					235.0 8.99							
r G	CURVE 38* (cont.)	Series 2		11 444 3 118				14 689 6 952		CITOTOP 30#	COUVE 33	2-01 - 00 0	50.0					673 1.37 X 10-:		CITOTIC ACC	COUNTY TO	40	1.0	-		59.24 3.199	ຕໍ	4	20.0	, n			ñ.				119.38 6.836		-	132.97 7.271	7.	144.24 7.577	7.	
o ^{d.}	CURVE 38*	Series 1	1 171 2 577 2 10-6		1 477 4 584			ns				100		0C=		2 200 2 200 2 201	3.818 1.229		3,164 1,443	3 573 1 203				4.093 2.502							0.001	3.140 1.65/ X 10 1	11 221 6.400		15.115 5.957		14.239 5.341		nii-		18, 124 1, 306	18.910 1.495		

DATA TABLE NO. 14 (continued)

ڻ ه	CURVE 51* (cont.)		Series 3					5.036															1. 335		- 60170	A01 - 727 1 11						2 877		Series 5		51 1,565 x 10-6			3 100		2.400		3	Series 6			2.451
۲	CURV		Ø		9. 1273	0.140	0.1754	0.192	0.2096	0.3276	0.2470	0.2711	0 2943	0.3208	0 2516	0.3872	0.4126	0 4505	7 4064	E-100	0.02.0	0.01	0.700	6	8	0 5401	0.595	0.00	0.0051	7064	208.0	1.0221		ð	\$	0.585	0.637	0 6972	400.0	0.074	0.0140	0.985	E.	ď		0.8171	0.888
ပီ	CURVE 50* (cont.)	2007	1.666 x 10-	1.848	2.058		3.065	3, 178		CURVE 51*		Series 1		3.411 x 10-7	3,830	4,336	4.919	5.710	6.324	6.910	7.513	8 330	9.319	1.026 x 10-6	1, 126	1.233		Series 2		3.383 x 10-7	3.890	4.343	4.861	5.366	6.011	6.568	7.254	7.929	8.695	9.605	1 067 - 10-6	1 173	910	1.278	7.40		
۴	CURVE	1000	0.6187	9.6825	0.7528	T. 0000	1.0736	1.0992		COR		Ser		0. 1318	0.1457	0.1651	0.1876	0.2179	0.2406	0.2626	0.2861	0 3178	0.3544	0, 3893	0.4261	0.4653		Seri		0, 1313	0.1285	0.1658	0.1855	0.2047	0.2292	0.2503	0.2762	0.3018	0.3316	0.3653	11010	0.4433	4010	0.4816	0.0260		
ტ	CURVE 50* (cont.)		Series 2	2 667 - 10-1	4 149	7 778	4 536	1.000	4.831	4.984	5.439	6.033	6.353	6.677	6.996	7.320	7.696	8.174	8.490	9.080	9.340	1.002 x 10-6	1.086	1.109	1.209	1.363		Series 3		2.613 x 10-7	3.472	3.690	3.938	7.921	8.937	1.008 x 10	2.338	2.460	2.858		Series A		1 246 - 10-6	1 408	1 519	1 500	L. 044
Ļ	CURVE	71.6		0 1380	0 1546	0 1672	0.130	601.0	0. 1552	0. 1825	0.2072	0.2274	0.2392	0.2516	0.2637	0.2763	0.2898	0.3085	0.3203	0.3426	0.3523	0.3780	0.4085	0.4171	0.4540	0.5035		Seri		0.1004	0.1302	0.1388	0.1500	0.2991	0.3370	0.380	0. 24.	0.8902	1.0129		3		0 4879	0.5264	0 5652		7.0
o ^d	49* (cont.)	9 508 x 10-2	9.632	9.742	9.852	9.978	1.007 × 10-1	1 020	1.001	1.001		25.5	1.031	1.114	1.138	1. 162	1.176		2		ies 1		2.458 x 10 ⁻⁷	2.498	2.650	2.791	2.819	2.840	2.836	3.110	3.121	3.171	3.177	5.380	3.420	3.356	3, 856	3.965	4.24	4.604	5.071	5.623	6.301	7.064			
H	CURVE 4	97	65	200	220	009	650	9	3 5	8	3 8	9		901	87	1300	1357		CURVE 50		Serie		0.0966	0.0973	0.1020	0.1065	0.1074	0.1077	1.1078	0.1166	0.1171	0.1187	0.1190	0. 1500	0.12/6	0.1041	0. 1451	0.1507	0.1586	0,1735	0.1911	0.2118	0.2368	0.2661			
తి	E 47*	2.26 x 10-6	2. 19	2.44	2.35	2.51	2.46	2.76	3.0	2 6	100	8.0		4.0	3.0	1	2 40		1. 07712 x 10	1. 32956	1.43233	1.68555	1.90903	2. 12779	2.40006	Z. 51967	2.74001	2. 324.14	3. 18067	3.39629			2-01-000 7	2.020 x 10		100.0	0.4.7	7.916		8.514	8.703	8.861	8.971	9. 112	9.207	9.364	
H	CURVE	0.362	0.366	0.370	0.376	0.377	0.377	0.393	9070	408	000	0.508			0.0		CURVE 48		2.700	2.274	3, 151	3.385	3.615	3.846	4.089	4.72	4. 256	4.511	4.656	4.786		CORVE 48			35		140	99	20	200	S	240	28	280	300	350	i.

TO THE REPORT OF THE PARTY OF T

0.9847 1.0872	CUR'TE 51* (cont.) 0.9847 2.748 x 10** 1.0872 3.062	CURVE 52" (cont.) 2, 232 7, 836 2, 276 8, 066 2, 367 8, 602	7.836 x 10 ⁻⁴ 8.066 8.602	CURVE 53* (cont.) 1.286 3.944 1.337 3.961 1.368 4.017	3.944 x 10-4 3.944 x 10-4 3.961 4.017	CURVE 53* (cont. 3.710 1.888 3.715 1.993 3.866 2.047	7 (cont.) 1.888 x 10-4 1.893 2.047	CURVE 53* (cont.) 12.038 3.549 12.095 3.601	Cp 3.549 x 10-4 3.601
CURVE 150 172 113 113 113 113 113 113 113 113 113 11	ကြီး လူလူလူလူလူလူ 🛧 🛧	4 4 4 4 4 4 4 4 6 6 6 6 4 6 6 6 6 6 6 6	8.905 9.6400 9.6410 1.004 x 10-4 1.078 1.118 1.231 1.358 1.431	1.379 1.396 1.396 1.500 1.511 1.515 1.671 1.670	4, 108 4, 161 4, 556 4, 568 4, 568 5, 015 5, 249 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12, 652 12, 737 13, 022 13, 022 13, 672 14, 391 14, 592 14, 592 16, 643 15, 643	5. 221 4. 128 4. 492 5. 069 5. 422 6. 347 7. 870 7. 870
	4, 213 4, 258 4, 316 4, 453 4, 453 4, 712 4, 826 4, 826 4, 826 4, 826 5, 004 5, 157	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 254 2, 338 2, 338 2, 338 2, 338 2, 338	5.613 6.025 6.025 6.105 6.246 6.246 6.944 7.063 7.064 8.428 8.428	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.670 5.203 5.203 5.873 6.726 6.736 7.235 7.297 1.126 x 104 1.230	16.412 16.412 17.199 17.593 17.593 19.415 20.276 20.57 5 21.334 22.345 22.355 22.355	9.217 9.217 1.069 x 10-1.151 1.222 1.222 1.436 1.575 1.883 2.118 2.188 2.505 2.505 2.505
	5. 257 5. 435 5. 435 5. 757 5. 790 6. 142 6. 484 6. 547 7. 164 7. 164	5. 669 6. 242 6. 242 6. 604 7. 035 7. 306 7. 306 8. 044 8. 044 8. 430 9. 443 CURVE	4.754 5.895 6.925 6.925 1.026 x 10 ⁴ 1.148 1.302 1.504 1.775 3.776 x 10 ⁴	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9.064 9.681 1.012 x 10-4 1.027 1.123 1.176 1.200 1.303 1.323 1.405 1.684 1.684 1.763	8. 869 8. 947 9. 148 9. 377 9. 803 9. 807 10. 305 10. 305 11. 559 11. 559 11. 559	11.526 1.526 1.734 1.734 1.734 1.734 1.734 1.734 1.734 1.734 1.315 1.315 1.333	CURVE 54* 1.312 3.3 1.322 3.3 1.322 4.1 1.466 4.4 1.466 4.4 1.502 4.1 1.502 4.1 1.504 4.1 1.508 4.1	2.3867 x 10 ⁴ 3.3867 x 10 ⁴ 3.3867 x 10 ⁴ 4.320 4.320 4.468 4.468 4.762 4.762 4.7763

SPECIFICATION TABLE NO. 15 SPECIFIC HEAT OF DYSPROSIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 15]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	28	1962	0.6-2	<2.0	Run I-A	99.86 Dy, 0.08 O ₂ , 0.03 H ₂ , 0.03 Ta; vacuum distilled; remelted in vacuum and cast into tantalum crucible.
64	88	1962	0.4-3	< 2.0	Run I-B	Same as above.
n	88	1962	0.4-3	<2.0	Run I-C	Same as above.
4	88	1962	7-1	< 2.0	Run II-A	Same as above.
S	88	1962	3-3.96	< 2.0	Run II-B	Same as above.
9	8	1962	2-4	< 2.0	Run III	Same as above.
1	301	1966	298-2000	< 2.0		0.04 N ₂ , 0.03 Ca, and Ni, 0.02 Fe, 0.007 Si, 0.006 Mg, 0.003 Al, and 0.002 O ₂ ; prepared by metallothermic reduction of the fluoride with calcium and purified by distillation.

DATA TABLE NO. 15 SPECIFIC HEAT OF DYSPROSIUM

			4. 14 x 10 -6	4.14	4.08	4.07	4. 12	4. 20	4.34	4. 52	4.74	5.02	5. 72	6. 14	6. 603	7. 114	7. 428	4. 123	4. 123	7 243	7 349	7,342	7.342																			
	re neat, cp,	CURVE	298.15	300	400	200	009	200	900	006	1000	1200	1300	1400	1500	1600	1657	1657	1662	1200	1800	1900	2000																			
7 E	T C C T C C	CURVE 4 (contd)	7.697 x 10-6*	8, 207	8, 729	9.346	L 011 x 10-	1. 090	1, 151	1. 182	1, 175	1, 209	1, 250	1, 302	1, 372	1.502	1, 566	1. 626	L. 033	a avenue	2	1.392 x 10-4	1, 457	1, 521	1, 589	1, 655	9 941	CONVED	1, 154 x 10-4*	1, 158	1, 159	1.260	1, 320	1, 390	1, 465	1, 54 ાં	1.629	L. 722	1 917	1. 31.		
E J	T	CURVE	1, 705	1. 784	1. 8663	L. 951g	2. 04.1	Z. 135	2, 232,	2. 333,	2.4404	2, 670.	2, 787	2, 906	3.0242	3. 267	3,389	3.512,	3.041	917		3.065	3, 188	3, 313	3, 441,	3.575	610	5	2, 294,	2. 420,	2. 552,	2. 822.	2, 957,	3.094	3, 235,	3, 380,	3. 530	3.689	2. 000 4. 004	1. 00±1		
	ပ	CURVE 2 (contd)	6.366 x 10-6 *	6. 767	7, 363	8.260	9.410	L. 079 x 10	1, 173	L. 173	7.261	CURVE 3	İ	1, 870 x 10-4	1, 699	1. 533	1.374	1. 087*	0 640 × 10-6	0.040,A 10	131	7,314	6. 705	6.307	6.095	6.03	6. 120	6.630	7, 080	7.651	8, 409	1.090 x 10-4	1, 151	1, 169	1, 252		CURVE 4	6 288 × 10-6	6 455*	6.642	6. 939*	7.276
	H	CURV	1.3982	1.510_1	1. 639	1.00	L. 9543	2, 114,	2.316	2. 956 9.00 9.00 9.00 9.00	2. 8429	CO	!	0. 426	0, 458,	0. 493	0.532	90.00	0.679	0.0132	0. 773	0.847	0.928	1, 015,	1, 107,	1, 200,	1. 294	1.481.	1, 585,	1. 6954	1.8174	2, 130	2, 331,	2, 567	2. 820		밁	1 365	1 :21	1. : 85.	1, 555	1. 629,
	ပ္	CURVE 1	1, 204 x 10 ⁻⁴	1. 170	L 123	180 7	L 028	9.081 x 10 =	8, 706	2 331	7.810	6, 978	6. 632	6.354	6. 167	. Con	6. 032	6.113	6.510	90.	7. 422	8, 145	9, 334	1, 111 x 10-4	1, 162		CORVEZ	1.884 x 10-4	1, 710	1, 527	L 335	1, 025	8, 865 x 10-6	7, 832	7. 086	6. 558	6.208	0.0	6 201*	6,489*	6, 905	6. 132
	H	히	0. 582,	0. 5942	0.610	0. 6279	0.040	0. 710	0. 731,	200	0. 733	0, 888	0.943	1.008	1.060	100. 100.	1. 1324	1. 6134	1 449	2.6	1.657	1. 783,	1.946	2, 1882	2. 4924	;	51	0.424.	0.455	0. 494,	0. 5429	0.650	0. 722	0. 7967	0.872,	0.9562	1. 945,	1 23 1	1 322	1. 439,	1. 549,	1, 289,

SPECIFICATION TABLE NO. 16 SPECIFIC HEAT OF ERBIUM

,...npurity < 0. 20% each; total impurities < 0. 50%)

[For Data Reported in Figure and Table No. 16]

Composition (weight percent), Specifications and Remarks	/ O 10 each Ca Me Si and Y	יייי מייייי מייייי מיייייי מייייייי מיייייי	Same as above.	Same as above.	0.04 F ₂ , 0.02 Fe and 0.02 Mg, 0.013 N ₂ , 0.01 Cr, 0.005 St, 0.004 C, 0.003 O ₂ , and 0.002 Ca: prepared by metallothermic reduction of the fluoride with calcium and purified by	dietillation
Name and Specimen Designation						
Reported Error, %					<2	
Temp. Range, K	1	16-60	15-64	60-325	298-1900	
Year		1955	1955	1955	1966	
Ref. No.		æ	95	£	301	
Curve F		-	81	67	•	

DATA TABLE NO. 16 SPECIFIC HEAT OF ERBIUM

	$_{\rm p}$	CURVE 3 (contd)	4. 018 x 10-2*	4. 024	4.031	4 OKO*	4.048		# ₄	4.02 x 10-2		4.06	4. 11	4.25	4.35	4.46	4.59	4.73	28.4	5.25	5.46	5.69	5.93	6.18	5.53	5.53	6.6															
	4	CURV	301.86	306. 59	311.29	320.66	325.32		CURVE	298, 15	300	400	200	962	000	900	1000	1100	1300	1400	1500	1600	1700	1795	1795	1800	1900															
	$_{\mathbf{p}}^{\mathbf{c}}$	CURVE 3 (contd)	3.691 x 10-z*	3.697	3 713	3.720	3, 723	3. 722 [#]	3. 731	3, 744 1, 744	3, 739	3. 755	3, 743 3, 770 4,00	3.769	3. 784	3. 788	3, 803	3. 308	3.836	3.850	3, 859	3, 868	3.881	3, 883	3. 893	600	3 911	3.921	3. 929	3, 933	3.050	3 950	3, 962	3. 975	3, 973	3. 990	3.991	3. 998 998 998	4.007	4.014	4.020	
ī	H	CURV	143.91	146, 53	150.49	152.27	154, 43	156. 23	158,34	162, 23	164, 10	166. 11	168, 02	171.91	173, 81	175, 77	177. 62	103.61	187.67	192, 44	197. 20	201.94	206.66	211, 35	216.04	220, 70	232. 49	237. 08	241.66	246. 23	250.78	259.84	264, 34	268, 83	273.30	277.77	282. 03	286. 27	290.69	297, 12	299. 49	
eat, Cp, Calg ⁻¹ K	$_{\mathbf{p}}^{\mathbf{q}}$	CURVE 3 (contd)	4.666 x 10 ^{-2*}	4. 701	4, 133	4. 770	4.788*	4. 784	4. 787	4.787	4, 787*	4. 788	4.787	787	4. 786*	4, 715	4.615	4.404	4. 036	4. 032 [*]	3, 858	3, 593	3.540	3, 523	3. 523	3.519	3.514	3, 514	3, 515	3.514	3.517	3.533	3, 553	3, 569	3, 584	3, 596	3.616	3, 635	3.661	3.675	3.682	
; Specific H	H	CURV	80, 59	81.44	83 97	2.33	83.47	83.49	83.58	8. 8. • 9.	84.05	84.21	20.00	8.52	84.68	2.	85.00	85. Ib	85.51	85.60	86.30	86. 82	88. 11	89.41	89.63	90,87	93.07	94, 59	96. 49	96.51	102 27	105.61	108.93	112. 23	115, 50	119, 23	123.43	127. 59	135.71	139, 87	142.55	
[Temperature, T, K; Specific Heat, C_p , $Cal\ g^{-1}\ K^{-1}$]	Сp	CURVE 2 (contd)	3, 520 x 10^{-2^*}	3, 711	4.05×	4. 067	4. 149*	4.027	4, 157	4. 055	4.048	4.081	4. 05.4	4. 107	4.075	4.080	4. 103 4. 101	#: 101 4 115*	4. 135	4. 132	4. 138	4. 165	4, 170	4. 167	4. 205	CIBVE 3		4. 116 x 10-7*	4. 152	4. 204	4. 226	4, 310	4.370	4.372	4.41	4. 449	4.528	4. 512	4.500.	4.618	4.653*	
5	H	CCR	41.34	44.28	50 07	50, 27	52, 19	53, 35	53.63	54. 75	54.81	56.08	56. 15	56.98	57.44	57.48	58.78	50.00	60.08	60, 10	60, 11	61.40	61, 41	61.42	62. 72	ָ	51	59.62	60.82	62.83	65.96	66.66	69.01	69.68	72.01	72.38	74. 94. 24. 95.	74.93	77. 79	78.82	80, 26	
	Cp	CURVE 1 (contd)	4. 115 x 10-2*	4. 128 4. 156	4. 168	4, 129*	4. 135	4, 095	4. 097 4. 101	10.	4. 139	** 444	CONVE	847 x	1, 074 x 10-2	1, 253	1, 395 1, 906	1 641	L 774	1, 902	2.365	1, 937	2. 785	2. 155	2, 104	2 207	2, 146	2. 026	2. 035	2.065	2, 119	2, 189	2, 191	2, 277	2. 372		2. 472	2.672		3, 110	3,317	
	H	CUR	51.50	51,61	53.36	54.99	55, 09	56. 73	56. 83	58, 57	60, 29	į	31	15.21	15. 79	16. 93	10.49	18.40	18.90	19, 23	19.65	19. 67	20.01	20.54	20.71	21.59	22. 01	22, 13	22. 53	23.00	24. 19	24.56	24. 57	25. 49	26. 29	26. 50	26.98	28.62	32.49	35, 38	38, 33	
	C _p	CURVE 1	L. 111 x 10-1	1.233	1.356	1. 525	1, 731	L. 629	2 250	2, 227	2.662	2, 609	2 571	2, 852	L 754	2, 237	2.040	2 052	2, 281	1.818	2. 029		1. 934°	2, 069	2,007	101	2, 093	2, 115	2, 134	2, 157	2, 230	2, 242	2, 492	2, 775	3, 013	3.267	3,518	3, 101	3, 959	4.002	4.043	
	H	OI	16.01	15.79	17.60	18, 09	18.34	18.46	16.88	19, 16	19.44	19, 77	26.61	20.34	20,39	20.46	20.70	21 15	21, 22	21, 23	21.87	21.99	22. 02	22. 27	22. 60	22. 98	23.48	23.65	24.00	3 2	24.98	25.06	27. 16	30.42	25.01	37.61	41.34	45. 22	48.01	49, 71	49.84	

C. FATTER STREET

SPECIFICATION TABLE NO. 17 SPECIFIC HEAT OF EUROPIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 17]

Composition (weight percent), Specifications and Remarks	>99.971 Eu, <0.02 Sm, 0.019 O ₂ , 0.009 Gd, 0.0045 C, 0.003 N ₂ , and 0.0012 H ₂ ; prepared by reduction of sintered Europium oxide with Lanthanum metal; cast into 1/2-inch rods from which 3/4-inch long samples were prepared; sealed under helium in tantalum crucibles.	0.079 C, 0.06 Mg, 0.026 H ₂ , 0.023 N ₃ , <0.01 Ta, 0.008 Ag, 0.006 Ce, 0.003 F, 0.003 Sm, and 0.001 each Al, La, Mn, Nd; polished in glove box.	Same as above.
Name and Specimen Designation		Run I & II	Run III & IV
Reported Error, %		<1.5	<1.5
Temp. Range, K	298-1373	0.4-4	3-25
Year	1961	1964	1964
Ref. No.	8	8	86 205
Curve No.	н	81	m 4

DATA TABLE NO. 17 SPECIFIC HEAT OF EUROPIUM
[Temperature, T. K. Specific Heat, C., Calgetter]

					[6 ido i	,			
H	တိ	۲	တိ	۲	င္စ	٠	ა	н	ရ ၁
CURVE	<u></u>	CURVE 2	(cont.)	CURVE 3 (cont.)	(cont.)	CURVE 4 (cont.)*	cont.)*	CURVE 4 (cont.)*	(cont.)*
298 15	4.26 x 10-2	000	4 461#2 10-6	1 913	*300 0	0100 21			
300		0.000	F 1464	1 206	100 - 101	15. 3840	1.460/6 X 10 -	17.5520	1.30540 x 10-2
350	4.33	1.017	6.003*	1.407	1.335	15 9070	1.00101	10.4720	1. 39931
400	4.40	1.089	7.073*	1.516	1.601	16 1160	1 66559	21 5060	1.340/3
450	4.47	1.168	8.399*	1.640	1,933	16. 2390	1.53085	23 9090	2 03759
200	4.53	1. 255,	1.004 × 10-4	1.769	2.307	16.3760	1.31643	0000	
503.15	4.54*	1, 352,	1.208	1.903	2.727	16, 5290	1.25435	Series 3	er
503, 15	4.66	1.460	1.459	2.043	3.194	16.7250	1.24663		,
220	4.70	1.577	1.757	2. 189,	3.710	17.0170	1.26176	4,5273	1.48124 x 10-3
8	4.76	1.702	2.111	2.342	4.234	17.4460	1.29343	4.9243	1,73050
650	200	1.835	2.513	2,503	4.913	18, 1340	1.36307	5.6156	2, 14410
100		1.973	2.960	2.677	5.621	19, 1520	1,47399	6.5253	2,82619
220	5.05	2.115,	3,451	2.863	6.411	20.5710	1.63675		
900	5.19	2.263	3.993	3.057	7.290	22,4580	1.85970		
920	9.36	2.419	4.577	3, 255,	8.179	24.7570	2.15025		
8	5.55	2,586,	5.247	3.446	9.070				
3	5.74	2.76	5.986	3.629	606.6	Series	7		
1000	5.97	2.9543	6.799	3,823,	1.093 x 10-3				
1050	6.22	3.147	7.675	4.029,	1.196	3, 1337	7.58503 x 10-4		
(s)1090.15	6.43	3, 342	8.588		,	3.4585	9, 10708		
(1)1090.15	5.99	3, 538,	9.511	CURVE	**	3,7854	1.07300 x 10-3		
1100	5.99*	3.734	1.049 x 10-1		I	4.1222	1.2501		
1150	5.99	3.929	1.147	Series 1	1	4.4452	1.43003		
1200	90					4.7913	1.63218		
1250	8.0	CURVE	<u></u>	3.0185	7.06823 x 10-	5, 2535	1.92005		
1300	200		1	3.3602	8.63597	5.8776	2.34279		
1350	50.0	0.360	3.396 × 10-	3, 6959	1.02793 x 10~	6.5306	2.81138		
1373.15	S.	0.380	3, 149*	4.0253	1. 19763	7, 1054	3.28580		
CITRATE	8		2 7304	1266.4	1.37772	7.7068	3,80559		
	1	0.462	***************************************	4.0903	1.3/2/8	8.4037	4.46105		
0.383	3 135 x 10-44	495	2.501*	5.4756	2 06679	9.22/0	5, 234,05		
36	3.020*	0.530	2.458*	6 0171	2 44968	11 0950	7 43580		
0.417	2 833*	0.568.	2.476*	6.7256	2 97650	11 7890	8 45330		
0.446	2.661+	0.607	2, 553*	7.4764	3.60234	12 5440	9 54195		
0.478	2.539*	0.446	2.674*	8, 1672	4.22518	13.2960	1.07000		
	2.474*	0.684	2,852*	8, 8367	4.88127	13, 9750	1.18187		
0.549,	2,461*	0.726	3.076*	9, 5328	5,62654	14.5900	1.29358		
	2.506*	0.768	3.363*	10, 2930	6,50888	15, 1520	1.40845		
0.626,	2.609*	0.814	3,732*	11, 1380	7.57085	15,6000	1.51638		
0.665	2,757*	0.865	4.196*	12,0420	8.82504	15,8910	1.60051		
	2.954*	0.922	4.810*	12.9660	1.02021 x 10-2	16, 1160	1.64731		
	3, 202*	0.986	5.593*	13.8450	1.15729	16.3540	1.36717		
0.789	3, 520*	1.0551	6.551*	14.4920	1.27468	16.6270	1,24253		
0.836,	3,926*	1.130	7.737*	14.9530	1,36291	16,9830	1.25624		
S. C.									

SPECIFICATION TABLE NO. 18 SPECIFIC HEAT OF GADOLINIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 18]

Composition (weight percent), Specifications and Remarks	<0.3 Ta, 0.1 Sn. <0.1 Y, <0.04 Ca, and <0.01 each Fe, Mg, Si.	Sample I: 0.14 O ₂ , 0.1 Y, 0.05 Fe, 0.02 Mg, 0.02 Si, 0.013 C, 0.008 F, 0.005 Ca, and 0.005 N ₂ . Sample II: 0.041 O ₂ , 0.01 C, 0.0082 F ₂ , 0.0048 N ₂ , 0.0045 Fe, 0.0025 Ca, 0.002 Y, and 0.0003 Si, prepared by metallothermic reduction of the fluoride with calcium and pu, lied by distillation; the data is based on the combined values of Sample I Sample II.
Name and Specimen Designation		
Reported Error, %	0.1-1	<2.0
Temp. Range, K	16-358	300-1700
Year	1954	1966
Ref. No.	217	301
Curve No.	-	N 89

DATA TABLE NO. 18 SPECIFIC HEAT OF GADOLINUM

٠			70																																				
1. K		*	x 10-2																																				
C _p . Cal	c _o	CURVE 2 (cont.)	4.70	2. 4	5.09	5.25	5.42	5.61	200	4.30	5.65	5.65	5.65																										
ific Heat,	H	CURV	800	1000	1100	1200	1300	1400	1533	1533	1585	1600	1700																										
Temperature, T. K: Specific Heat, C _p , Cal g⁻¹K⁻¹ ,	ပ္ခံ	\sim	8.720 x 107*	8.528	8, 147*	6.519*	6.405	6, 110	5 871	5,658	5.660*	5.505	5. 498	5,390	5,333	5.28/	5.183	5, 164	5.099	5,080	5.063	4,989	4.993	4.927	4.000	4.769	4.788	4, 751	4.730	4 667	4.644		E 2*	!	4.37 x 10-7		4.45	7. °	8
Tempera	۲	CURVE 1 (cont.	290.66	291.75	292, 30	293, 23	293, 54	294.39	295.85	297.93	207, 95	300.26	300.43	302.64	303.90	305.02	308.78	309,97	312.49	313,75	315.03	317.59	318, 80	323.90	334 24	337, 33	339, 47	342, 43	247.74	352 70	357, 82		CURVE		300	400	200	3 6	3
	ဝီ	CURVE 1 (cont.)	5.082 x 10 ⁻²	5. 177	5, 219*	5. 263	5, 305	5,350	5. 442	5, 489*	5, 540	5. C47*	5.644	5.706	9. (0/	9. 94. 1. 90. 7	5.978*	6.062	6. 144	6. 220	6, 338	6. 442	6, 564	6.851	7 192	7,313	7.417	7.508	7 794	2 839	7, 893*	7.980	8,053*	8, 152	8. 205	8,381	8.363	0.047	6.0
	۲	CURVI	160, 18	169.01	173,36	177.67	181.94	186.18	194.51	198.62	202, 69	206.72	210.87	215.42	219.91	224. 33	233.08	237, 36	241.57	245.74	249. 83	253. 87	257. 84	266.31	274 43	276. 44	278.42	279. 62	200.04	282.95	284. 61	285.41	286.27	287.05	287.63	288.65	288, 70	200 21	430.67
	ပို	CURVE 1	2.976 x 10 ⁻³	6.303	7.578	9.261	1.156 x 10 ⁻²	1.388	1.876	2, 120	2.329	2.661	2.860	3.029	3.173	2.530	3, 532	3, 692	3.801	3.910	4.006	4.099	4.180	4.247	4.356	4.416	4.477	4.532	4.300	4.683	4.725	4.764	4.805	4.84 4.84	4.880	4.924	4.962	7. 331 5. 032	6.000
	H	D)	15.10	19.96	21.51	23.45	26.05	28.66	34.28	37.31	40.19	45.10	48.43	51.54	04.40	69 89	62.97	67.16	71.19	75, 10	78.90	82.59	86.21	88	29.96	100.52	104.78	108.97	117.18	121.21	125, 19	128, 69	132, 59	136.46	140.28	144.08	147.0	157.69	100.00

THE PERSON OF THE PERSON

SPECIFICATION TABLE NO. 19 SPECIFIC HEAT OF GALLIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 19]

Composition (weight percent), Specifications and Remarks	99.999 Ga; sample supplied by the Eagle-Picher Co.
rted Name and r, % Specimen Designation	56
Reported Error, %	
Temp. Range, K	0.4-4
Year	1958 1928
Ref.	218
Curve No.	- 8

DATA TABLE NO. 19 SPECIFIC HEAT OF GALLIUM

[Temperature, T, K, Specific Heat, Cp. Cal g⁻¹ K⁻¹]

T C	CURVE 1 (cont.)		577, 1.	.2.	815, 2.	867, 2.	6	6	6	64	ei ei	4, 378, 3, 164	77	CURVE 2		15 4.87 X 10 5	F	4. 66	ini		Ġ	100 6.70					200 8.40											
တီ	CURVE 1 (cont.)	3. 442 × 10-6*		3.853	4.004	4.412	4. 535							5. 482		3. 363	630	2.612*	2, 705	2.770*	2.845	3, 205	3.342	3. 432		4. 491		5.639	7 439*		9.084		9. 393	101		1. 179	1.310	
H	CURVE	0.861			0. 925g	0.961	0.976	1.012	1. 028	1.041	1.052	1.056	1.061	1. 070 1. 074	- 00 -	1.031	1 194	1 125	1. 150	1. 177	1. 199	1. 327	1. 359	1. 385	1.630	1.683	1.940	1.951	2 287	2, 308		2. 577	2. 610	2. 638	2.854	2.892	3.049	
ပိ	CURVE 1	2. 516 x 10-7	2. 550*	2. 609		3. 133	3.261	3. 798	4. 124	4. 186*	4. 309			5.687	976		7 576		7.953*	9. 982	119*	1. 035 x 10-6		1. 063	2. 173	1. 251	1. 440	1. 474	1.656	1. 765		2. 029			2, 389	2 500*		
H	5	0.353,	0.353	0.3567	0.360	0.3712		0. 392 ₄		0. 403	•	Ŧ	4	438		460	482		0.488	0.510	0. 513	0. 537	0. 540	0.543		0. 575	0. 602	00 0 0 0 0 0 0	635	0.655	0.674		0. 696	0. 721,	0. 736g	200	0. 788,	•

SPECIFICATION TABLE NO. 20 SPECIFIC HEAT OF GERMANIUM

(Impurity <0.20% each; total impurities <0.50%

[For Data Reported in Figure and Table No. 20]

8 302 1934 10-200 9 303 1963 12-273 < 2.0 Single crystals.	

DATA TABLE NO. 20 SPECIFIC HEAT OF GERMANIUM

				Table 10	2 6	CIFIC DEAL	SPECIFIC REAL OF GENERALIUM				
				Lember	[lemperature, I. K. Specific Heat, Cp, Calg' K']	inc Heat, Cp,	Calg' K'				
H	c _p	H	ď	L	c _p	H	c _p	H	ာ့	۲	ဝီ
밁	CURVE 1	CURVE	CURVE 1 (contd)	CURVI	CURVE 1 (contd)	CURVI	CURVE 1 (contd)	CURV	CURVE 2 (contd)	CURV	CURVE 4 (contd)
2.461	•	17, 588	1, 927 x 10 ⁻³	82, 75	3.778 x 10-2	213.92	7. 087 x 10-z*	210	6.97 x 10-2	06	4. 02 x 10-2
2.675	2. 432	18, 051		84, 36	3, 858	217.34	7, 125	220		100	+
2, 971	3.219		2, 307	85, 97	3, 938	222. 82	7. 189*	230	7, 13	120	5, 19*
3, 175	4. 143	18, 628	2, 343	87.50	4.010	226, 53	7.207	240	7. 20	140	5, 87
3.481	5.397		2, 515	89.06	4.095	230, 21	7. 240*	250	7.27	160	6. 45
3.713	6.716		2, 792	90. 70	4, 153	233, 87	7, 281	260	7.33		
3.961		**	3, 107	92, 22	4.211	237, 50	7. 299*	270	7.40	CO	CURVE 5
4.364	1, 093 x 10-F	21. 449	3, 731	93.98	4. 29	241, 11	7, 335	280	7.45	1	
4, 471	1, 152	23, 186	4.672	95.46	4, 359	244, 70	7.368*	290	7, 49	20	3.086 x 10-1
4.814	1.483	24, 548	5.441	97, 17	4. 430	246.40	7.368*	300	7.53	25	5, 761
4 . 963	7 812	25. 86	6. 204	98, 76	4, 499	249.98	7.402			30	8, 796
5.283	1. 992	27. 22	7.016	100, 27	4.558	253, 51	7, 424	CC	CURVE 3	35	1, 182 x 10-2
5, 503	2, 253	28, 46	7.756	103, 23	4.672	257, 02	7, 459	1		40	T 480
5. 774	2. 638	29. 87	8. 632	106, 87	4.824	262, 81	7.489*	296. 1	7.65 x 10-2*	10.7	1, 765
6.024	3.014	31, 16	9.420	110, 39	4.953	268, 85	7, 522	294.6	7.50	20	2.062
6. 284	3, 461	32.68	1.034 x 10 ⁻²	113. 82	5, 072	272. 84	7. 545	335, 8	8. 12	52, 5	2, 199
6. 506	3. 859		L 109	117, 17	5, 190	276.81	7.567	363.2	8.28		2,312
6, 784	4. 472		1.219	120.44	5, 302	280, 72	7, 589	380.0	8, 32	9	2, 591
7. 131		36.93	1, 291	123.84	5.410	280.90	7. 596	452.6	8, 62	65	2, 865
7.510	6. 430	39.00	1.413	127.36	5, 518	284.80	7.610	501.9	æ. æ.	70	3, 138
7.974	7. 930		1, 497	130.81	5,618	286, 55	7. 627	548. 1	8, 93	75	3, 405
8.465	25	42, 43	1, 609	134, 18	5, 716	288.66	7. 639	568.7	9. 05	80	3.667
2 X	L 233 x 10	£ 23	1. 708	135, 93	5, 755	292, 38	7.654	599. 9	9, 45	82	3.911
9. 434	1. 521	45. 89	1. 807	139, 22	5.847	292. 48	7.658	631.9	8.98	06	4. 131
10.006	1, 916	47. 87	1.919	142. 42	5, 934	296. 23	7.687	681. 4	9. 12	92	4, 350
10, 442	2, 313	49.37	2.001	145.75	6, 010	296. 24	7,575	720.9	9, 29	901	4. 558
11, 015	2, 897	51.90	2. 145	149. 23	6, 098	300, 01	7. 726	836. 7	9.38	105	4. 773
11,458	3, 415	53, 59	2, 234	152.66	6, 164	300,05	7.713	852. 7	9.49	110	4. 957
12, 011	4. 186	55, 63	2,346	156, 05	6.238			883.9	9. 26	115	5, 141
12, 366	4. 837	57, 15	2, 431	159, 39	6,304	55	CURVE 2			120	5.313
12, 471	4. 902	59.02	2, 534	162, 69	6,377		1	CO	CURVE 4	125	5. 480
12, 902	5, 767	60,39	2.610	166, 06	6, 430	80	3.65 x 10 ⁻²			130	5, 629
13.008	5. 875	62, 35	2, 719	169, 50	6, 490	96	4.09	s	9.64 x 10-6	135	5, 771
13. 478	6. 813	63.76	2, 795	172, 90	6.547	100	4. 50	! ~	4. 82 x 10-6	140	5, 914
14, 002	8. 029	65. 81	2.908	176, 26	6, 606	110	4.88	10	2.48 x 10-4	145	6, 027
14, 536	9.321	67.30	2,988	178.49	6.645	120	5, 18	15	1, 13 x 10 ⁻³	150	6. 134
15, 002	1, 053 x 10-1	69, 22	3, 084	183, 82	6. 721	130	5.48	20	3.06	155	6. 230
15, 192	1, 117	70. 73	3, 158	189, 31	6. 792	140	5, 74	25	5, 39	160	6.307
15, 579	1, 216	72.54	3, 255	192.91	6.841	150	6.01	30	3	165	6.389
15, 945	1.34	74. 07	3, 335	196. 48	6.886	160	6.23	\$	1, 90 x 10-2	170	991.9
15.961	1.354	76.00	3.431	200.02	6. 934	170	6. 43	20	2.00	175	6. 538
16, 578	1. 552		3, 507	203.54	6.977	180	6.60	09	2. 59	180	6.610
16, 979	1. 696	79.38	3.605	207.02	7.012	190	6. 74	20	3.09	185	6,680
17, 579	1, 931		3. 693	210.49	7.051	200	6.86	90	3, 57	190	6.741
										195	6. 810
										200	6. 877
	OF CALL										755 H 125

		107																																											
ပ္	£ 10 *	7.69 x 10-2	200	8.31	8.40	8.53	8.72	8.95	9.20	9.45	9.46	80.0	6	60	:																														
H	CURVE 10*	298.15	904	009	200	800	900	1000	1100	1200	(s)1210	0121(1)	1400	1500																															
Q .		x 10-3	× 10-2	2															7 0 X X				1.180 x 10-2	6.	66	2 :	c c	6	2	2	72	23 1	3.5	- 1		11	24	*	Z \$		2 2	10	27	œ ;	* =
ပ္	* 8 H	1.2	0.0	3.0	4.1	4.7	5.0	7.0	6.8	5.1	4.0	0	9 6		7.4		#6 3		2 -	3.00	5.77	8.81	1.18	1, 479	1.769	2.050	3, 120	3.629	4.112	4.550	4.937	5.2	0.00 v	6.114	6.321	6.501	6.667	6.824	6.971	7 219	7.317	7.401	7.472	7.530	7.584
H	CURVE	018	8 8	40	20	09	20	75	8	8	00:	077	140	180	200		CURVE	ç	3 4	20 20	25	30	35	40	45	3 8	20 02	08	8	100	110	120	140	150	160	170	180	061	200	220	230	240	250	260	273.2
<u>a</u>	* 취	324 x 10-2																																											
င်္	CURVE 7 (contd)*	2, 324	2. 889	3, 174	3,443	3, 697	3.941	4. 185	4, 399	4.614	4. 815	200.00	5 369	5, 517	5,654	5, 785	5.915	6. 028	6. 230	6.308	6.391	6, 468	6, 539	6.611	6.690	0. 142	6.878																		
H	CURVI	55	6.5	70	75	&	82	06	95	001	65.	115	120	125	130	135	140	140	155	160	165	170	175	180	55	196	200																		
d,		.091 x 10-3		183 x 10-2																																	100	. 01 x	5. 70 A	x 10-2	1.481				_
٠,	CURVE 6	3.091	8 796	1, 183	1,480	L. 765	2.062	2. 199	2, 319	2. 597	2.000	0. 1% 9. 4.19	3.680	3.917	4. 149	4, 363	4. 582	4. 784	5 154	5.331	5.498	5.634	5. 778	5.914	6. 027	6. 200	6.307	6.389	6.466	6. 538	6.610	6.680	6.811	6.876	*	CURVE 7		3. UBL	9. 70 A	1.183	1.48	1, 766	2,062	2.200	Not shown on Plot
H	미	250	30	35	40	45	20	52.5	22	09	0 6	2 4	2 6	8 80	3	95	100	100	115	021	125	130	135	140	145	155	160	165	170	175	180	200	195	200		밍	6	20	6 6	32	9	45	200	52.5	Not show

SPECIFICATION TABLE NO. 21 SPECIFIC HEAT OF GOLD

(impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 21]

1	1					
Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	8	1952	16-309			99.99 Au; single crystal.
8	101	1958	400-1164			Pure; specimen's surface plated with platinum black.
က	268	1926	373-1498			
•	202	1928	15-213			
S	290	1932	473-1236			Specimen was in a perfectly pure state.
•	306	1965	1-5	0.5		99.99° Au, with traces of Cu, Fe, Mg, Si, Snand Ag, sample supplied by J. Bishop and Co.; vacuum melted from gold sponge; annealed under vacuum of 1 x 10° mm Hg for 4 hrs at 950 C and cooled in vacuo at the rate of 200 C per hr.
7	306	1963	13-273	<0.5		99.99 Au.
®	184	1966	3-30	₹0.5		Semiquantitative spectrographic analysis: <0.00005 Ag. 0.00003 Mg. 0.00002 St. <0.00002 Ct. and <0.00001 Fe: large crystals: spaced condition

DATA TABLE NO. 21 SPECIFIC HEAT OF GOLD

ဝီ	CURVE 7 (cont.)*	3.050 x 10-4	3.065	3. 059	or Ea		-		1.890 x 10-6	2, 257	2, 595	2.948	3, 374	3, 930	4. 528		8 2		2, 173 x 10 4	2, 560	2.917	3.319	3. 833	4.472	5, 360	6. 231	7. 354	8.685	1. 014 x 10 -	L. 75	1. 337	1 715	1 951	2, 196	2.516	2.918	3. 294	3,675	4. 122	4.691	5.364	6.001	6.704	7,653	6.691	9.696	1.085 x 10-3
H	CURVE	266.86	271.75	272. 92	CIRVE	and a	Series 1		3. 12	3, 32	3.50	3.67	3.86	4.08	4.30		Series 2		3.28	3.49	3.66	3.84	4.9	4.30	4.57	4. 82	5. II	5.42	5. 73	6.03	6.30	9 6	7.18	7.48	7, 83	8, 23	8.58	06.80	9.25	4	10.07	10.44	10, 82	11.31	11.80	12. 23	12.67
d'o	CURVE 7 (cont.)*	1.576 x 10-2	1. 756	1.952	2, 050	2, 056	2.159	2, 167	2, 261	2, 354	2, 436	2. 508	2. 574	2.616	2. 661	2. 704	2. 706	2.771	2, 790	2.819	2.843	2.874	2.883	2.901	2.914	2.922	2. 341	2.942	2.955	106.3	2 979	2.976	2.984	2,988	2,996	3.001	3.009	3.012	3,022	3, 021	3, 035	3, 030	3.030	3. 035	3.048	3, 053	3.045
H	CURVE	45.28	50. 52	57.45	61.57	61.62	06 99	66.90	72, 32	78.26	83. 77	89. 26	94. 72	100.91	106.54	112. 16	117. 78	124. 42	130, 28	136. 11	141.90	149.49	155.68	161. 82	167.89	176.08	107.40	188.84	201 75	200 50	208.02	208.82	214. 50	216.78	220, 47	222. 84	229. 52	231.96	236. 11	238. 47	247.44	244, 80	248, 54	250.81	258.54	260, 28	265.37
d S	CURVE 6 (cont.)*	2 2	700 0	2. 184	2, 257	1. 772	3,410	4.077	5, 230	989.9	8.640	1.041 x 10 4	1.255	1. 527	1.801	2. 124	2. 511	2.999	3. 530	4.049	4.417	4.819	5. 377	6.099	**	CORVE		1. 122 x 10 °	1.135	1 255	1. 533	1. 526	1.594	2.008	2. 160	2, 297	2. 338	2, 623	2.962	3, 112	3.302	3, 515	4.240	6.030	9.584	1.154 x 10-2	1.364
H	CURVE	Series		1, 257	1, 292	1.189	1.563	1.695	1.883	2, 097	2, 295	2.489	2.673	2.880	3.084	3, 289	3.469	3.694	3.893	4.098	4.282	4.461	4.670	4.843		COR		12. (1	13.5	13.00	14, 06	14.08	14.30	15.65	16.04	16.41	16.52	17.32	18.00	18.49	18.65	19. 42	20.85	24.49	31, 20	35. 44	39. 99
c _p	CURVE 4 (cont.)*	1. 178 x 10-2	1.04	2, 115	2, 262	2, 409	2, 528	2. 631	2.879	2.960	3.004	*	CORVE 5		3.175 x 10-	3, 264	3.390	3, 554	3, 755	3. 826		CURVE 6		38 J	FO 190 .	2. 160	320	9 767	2. F.		5, 764	7.548	8.713	1. 173 x 10-6	1.385	1.635	1.965	2, 313	2, 721	3, 193	3. 775	4.240	4.627	5. 154	5. 763	6.344	
H	CURVE	35. 70	4.00	63.60	72.70	82, 50	94. 50	105.00	147.50	176. 50	212. 50		COR		473	673	873	1073	1173	1236		CUR	,	Series 1	100	1. 100	2.5	1.31	1 575	1 816	1.984	2, 185	2,370	2, 597	2, 772	2.971	3, 179	3, 381	3.581	3, 779	3, 982	4. 169	4.371	4. 563	4. 759	4. 926	
ပ်	VE 2	3.20 x 10-2	30	3.30	3.10	3.30*	3.30	3.30	3.40	3. 40	3.50	3.60	3.50	3.60	3.50	3.60	3.60	3.80	3.90	1		1	3.38 x 10 *	3.42	3. 4E	3.40	9 6	000	20.5	4. 10	4.27	3.49	3.49	3.49	•	VE 4		1.812 x 10~	2.016	2.021	2.188	2.838	2.965	3.970	4. 579	6.356	1. 017 × 10 ⁻²
F	CURVE	400	3 5	465	465	465	565	265	* 09	100	676	9/9	10,0	970	9,0	2	1017	1090	1164		CURVE	č	373	#13 573	673	773	073	673	1073	1173	1273	1373	1473	1498		CURVE		14.96	15. 29	15.43	15. 73	17.65	18.02	20.33	21.70	24.90	32. 20
ဝီ	IVE 1	2.04 x 10 ⁻³	5. L3	6.14	8.48	1. 129 x 10 ⁻²	1. 363	1. 558	1.760	1.951	2. 102	2.73	6. 330	2.432	2. 22.	2.602	2. 666	2.708	2.74	2, 783	2.817	2.632	2.87	2.030	9 934	2.944	2 966	2 974	2, 980	2, 966*	2.982	2.986*	2.992	2.995*	3.000	3.006*	3.016	3.021*	3.027	3. 032	3, 039	3.045	3.045	3.054	3.065	3.088	3.091
H	CURVE	15.81	21 16	24. 70	29, 19	34. 76	40.12	45.17	20.98	57. 41	63.85	20.00	10.20	65.67	93.19	100.82	108.65	116.89	125.05	133.54	142, 25	150.88	108.00	176 19	107	192.70	209 70	205.46	211, 14	211, 30	219.92	220. 50	228, 60	230.01	237.38	239.82	246.12	249.95	253.81	259.68	263. 63	269. 96	272. 47	280.20	288. 41	298.46	309.02

DATA TABLE NO. 21 (continued)

c _p	CURVE 8 (cont.)*		7.872	72 1 000 2 10 4	1. 126		46 1. 434	70 1.592	6 1.774	1 2.046	4 2.420			6 3.617		8 4.706	5,335									9 1.649	_	49 1.958																		
T	히	4.9	5.24	ų v	່ທ່	6.20	6.4	6.7	96.9	7.31	7.74	8.16	8.51	8.86	9.26	9.68	10.01	10.49	10.89	11.38	11.93	12.44	12.94	13,49	14.07	14, 59	15.07	15.4																		
o ^d	CURVE 8 (cont.)*	2.599 x 10 ⁻³	2. 782	3 144	3. 327	3. 511	3.740	3, 994	4. 257	4.552	4.842	5. 133	5. 414	5. 717	6.021	6.347	6.717	7.073	7.450	7.822	8, 159		8.840		Series 4		1.573 x 10-6	1.891	2, 164	2, 471	2.813	3.279	3. 656	4. 029	4. 550	5, 096	5.610	1.462	1.940	2, 330	2.712	3, 108	3.611	4. 194	4.915	5, 851
4	CUR	17.14	17.58	18.41	18.83	19.23	19.71	20.27	20.84	21.44	22. 02	22. 58	23, 16	23, 74	24, 33	24.98	25.68	26, 36	27.06	27.76	28.46	29. 16	29.87		Š		2. 92	3. 11	3.27	3.44	3.61		3.98	4. 14	4.31	4.49	4.65	2.87	3.14	3, 37	3.56	3.75	3.96	4. 18	4, 43	4. 72
ဝီ	CURVE 8 (cont.)*	Series 2 (cont.)	1-00 - 001 -	1. 356		1. 679	1.822		2.088							3.047				3, 845	4.045	4. 244	4. 437	4. 437	627	4.841	5.087	5.344				6. 544		7. 166	7. 533			8. 538	8. 798		ies 3		1. 813 x 10 ⁻³	1.985	2. 196	2.403
H	CURV	Serie	;	13.66	14. 23	14.68	15. 10	15.49	15.84	16.21	16.57	16.91	17.24	17.55	17.88	18.21	18.59	19.00	19.47	19. 96	20.40	20.81	21.22	27. 22	21.62	22.01	22. 47	23.01	23. 57	24. 15	24. 74	25.35	25.95	26. 53	27. 19	27.87	28. 54	29. 19	29. 76		Series		15, 10	15. 56	:3.13	16.66

^{*} Not shown on plot

SPECIFICATION TABLE NO. 22 SPECIFIC HEAT OF HAFNIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 22]

Composition (weight percent), Specifications and Remarks	99.95 Hf, 0.05 Zr, 0.02 Fe, 0.015 C 0.0065 Si, 0.0043 Mo, 0.0018 O ₂ , 0.0007 Ni, <0 0005 N ₂ , 0.0003 Cu, 0.0001 W, and <0.0001 H ₂ .	2.8 Zr, 0.020 Fe, 0.010 Ni, and 0.008 Oz, corrected for impurities.	99 9 Hf, and 0.01 other impurities; prepared by Van Arkel iodide process.	
Name and Specimen Designation				
Reported Error, %		4.0		
Temp. Range, K	6-348	298-1346	1-20	13-210
Year	1964	1963	1957	1934
Ref. No.	8	307	308	302
Curve No.	1	7	က	4

DATA TABLE NO. 22 SPECIFIC HEAT OF HAFNIUM

o ^d	E 3 (cont.)*	1.843 x 10-4	2,006	2, 252	2. 465	2.695	2, 997	3, 345	3.647	4. 140	4. 622	5. 289	5.978	6.835		3. L36	1. 033 X 10 °	1 389	1.630	1.871	2, 157	2.471	•	CURVE 4		2.0 x 10 x	2.4.4.10-2	0.0	2	4.0		6.2	5.0	3.0	3.0	3.1	3.2	4.	4.5				
۲	CURVE	9. 16	9.47	9.75	10.0	10.35	10.70	11.06	11.45	11. 83	12. 28	12. 72	13.25	13.75	14. 30	15.31	10.01	16.95	17, 70	18.48	19.25	20.15			1	ឌ	9 6	9 9	28	9	20	75	90	8	200	110	150	200	210				
c _p	CURVE 2 (cont.)*	3.854 x 10-2	3.955	4.062	4. 162	4. 263	4.364	4.471	4. 521		VE 3		4.555 x 107	4.881	1 200	1 220	9 300	300	9.973	1. 126 x 10 4	1.171	1. 434	1.412	1. 664	1. 692	1. 798	1.900	2.247	2.247	3.059	3.642	4. 292	4.964	5. 575	6.465	7.171	8.012	8. 796	T 003 x 70 .	1. 104	1. 233	1.361	1.490
H	CURVE	78	800	906	1000	1100	1200	1300	1350		CURVE		1.25	L 29	- 1	- 6	. 6	2.20	2, 25	2.5	2, 56	2.90	2. 93	3, 25	3.28		3 .	3 3	3.92	4.62	4.96	5.30	5.65	5.95	6. 22	6.50	6.80	7. 12		7.00	26.0	07 0	200
ပ ^ဇ	(cont.)	2.456 x 10-2	2.462	2,594	2.600	2.695	2.784	2.846	2.867	2. 863	2.916	3.002	3.032	3.03	3 173	3 208	3 237	3.264	3,270	3.286	3.294	3.307	3,325	3.342	3.360	3.363	36.	3.414	3, 425	3, 438	3.452	3.460	3,485	3, 493	3.499	3.508	į	VE 2	2 448 - 10-2	2. 445 2. 445	2 559	S. 500	3.653
H	CURVE 1 (cont.	79.59	79.93	87.25	87.56	95, 14	103, 26	108.62	111.40	111.41	117.22	125. 15	143.90	152.41	164 49	175.81	186.93	197, 89	200,73	207.97	211.62	217.16	226.25	235, 23	244. 12	252.94	269 30	278.03	286.69	295.93	305.74	315.48	325, 15	333, 76	341.34	348.55		CURVEZ	31 000	300	8 8	3 3	005
တီ	CURVE 1	4. 99 x 10°5	4.99	28.	6.78	1, 014 x 10-4	1, 182	1,586	1.961	1.972	2.936	3.059	161.4	4.439	936	8 477	1.062 x 10 ⁻³	1, 204	1.583	1, 615	2, 150	2.246	2, 867	3.064		J. 023	4 995	5,218	6. 278	6.688	7. 738	8, 222	9. 720	1. 012 x 10 .	1.181	1.240	1.364	1.471	288	2 094	2, 182		2.282
H	CO	5, 82	5.85	6.74	7.00	7.92	8, 17	8, 70	9.45	9.56	20.00		27. 17	13.50	1	8	15.85	16.46	17.84	17.95	19.65	68 .69	21.56	52.06	2 :	36.25		8	29.05	38.86	11.92	2	2.5					20.23			00 2		177

A STATE OF THE PARTY OF

SPECIFICATION TABLE NO. 23 SPECIFIC HEAT OF HOLMIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 23]

Composition (weight percent), Specifications and Remarks	0.2 Si, 0.15 Ca, <0.2 Fe, <0.1 Ta, <0.05 Dy, <0.02 Y, <0.01 Mg, Fr, and Tm; sample prepared by ion exchange separation and reduction of anhydrous fluoride with Ca; sublimed at 7500 C and 10 ⁻⁵ mm Hg vacuum.	Hexagonal closed packed.	0.21 O ₂ , 0.07 Na, 0.07 C, and 0.005 H ₂ ; sample supplied by Research Chemicals Inc.	0.03 Ca, 0.012 N ₂ , 0.005 Al, Cr, Fe, and Mg, and 0.002 O ₂ ; prepared by metallothermic reduction of the fluoride with calcium and purified by distillation.	0. 21 O ₂ , 0. 007 C, 0. 007 N ₂ , and 0. 005 H ₂ .
Name and Specimen Designation					
Reported Error, %	0.3-2		0.2-3	81 V	0.6-2.0
Temp. Range, K	15-300	0.1-0.7	0.3-4.0	298-1800	3-24
Year	1957	1964	1962	1966	1966
Ref.	219	220	258	301	380
Curve No.	-	81	က	4	ıo

DATA TABLE NO. 23 SPECIFIC HEAT OF HOLMIUM

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1} \, K^{-1}$]

٠. ٦	10-1		458 x 10 ⁻² 451 454 563 7* 246 x 10 ⁻² 292 324 386	241 x 10 ⁻² 277 x 10 ⁻² 392 392 475 566 475 669 669
T CDRVE 1 (cont.)	8. 034 x 10 ⁻³ 9. 246 1. 025 x 10 ⁻²⁴ 1. 093	4 1.282* 0 1.424* 1 1.498* 6 1.499* 2 1.550* Series 6*	1 1.438 x 10 ⁻² 7 1.451 9 1.454 2 1.563 Series 7* 1 6.246 x 10 ⁻² 4 6.324 8 6.386 Series 8*	6. 241 x 277 277 382 282 382 382 382 382 382 382 382 382
T CURVI	13.35 14.55 15.61 16.69	17. 64 18. 40 19. 10 19. 71 20. 26 20. 92	18. 91 19. 47 20. 10 20. 82 20. 82 126. 71 127. 25 127. 84 128. 48	126, 76 127, 23 127, 23 129, 01 129, 01 130, 13 130, 13 131, 24 131, 79 132, 42 133, 14 133, 88 134, 63
T C _p CURVE 1 (cont.)	3. 955 x 10-2* 3. 920* 3. 874* 3. 862*	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CURVE	127. 46 139. 51 142. 38 145. 51	149, 28 154, 12 159, 16 163, 73 168, 07 176, 68 180, 96	189-45 189-45 197-88 202-06 206-23 216-59 211-15 224-20 232-82 231-28 241-72 241-72	250.98 260.17 264.17 254.55 268.91 277.75 287.11 291.77 296.42 301.03
T Cp CURVE 1 (cont.) Series 3 (cont.)	3. 203 x 10 ^{-2*} 3. 412* 3. 593* 3. 771*	5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	Series 4 5.607* 0 5.621 x 10-2* 3 5.965* 5 6.117* 1 6.147* 5 6.305*	6, 310* 6, 434* 6, 464* 6, 540 6, 649* 7, 6825 7, 3337 7, 126* 7, 1060*
CURVE	43.90 47.43 50.71	98. 33 7.7. 33 8.7. 33 8.7. 92 91. 92	97.64 101.87 105.80 110.23 114.68 118.89 121.85 123.81 125.75 126.75	127.98 128.50 129.04 129.56 130.02 130.49 131.39 132.42 132.42 133.13 134.85 134.85
T Cp CURVE 1 (cont.) Series 2 (cont.)	1. 285 x 10-2* 1. 367 1. 512 1. 586* 1. 586*	1. 497 1. 572 * 1. 623 * 1. 689 * 1. 732 * 1. 758	1.815. 1.865. 1.865. 1.941. 2.066. 2.205. 2.205. 3.364.	443 x 10 ⁻³ 459 x 10 ⁻³ 487 487 487 553 567 655 652 652 755 752 899 777 899 899 899 899 899 899
T CURV			T.	1. 443 y 1. 459 4. 459 4. 459 4. 459 4. 459 4. 455
	17. 53 18. 13 18. 81 19. 67	200 200 200 200 200 200 200 200 200 200	Ľ,	18.85 20.11 20.01 21.32 21.32 22.50 23.85
Cp E 1 (cont.) 8 1 (cont.)	3. 836 x 10 ⁻²⁴ 17. 53 3. 831 18. 13 3. 830 18. 81 3. 830 19. 50 3. 820 20. 50		24, 85 25, 31 25, 31 26, 68 27, 69 29, 68 31, 34 31, 34	18.85 1.1 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
T Cp CURVE 1 (cont.) Series 1 (cont.)	17. 10-24 17. 18. 18. 19. 19. 20. 20.	. 822 2 822 3 828 3 828 3 828 3 846 4 846	3. 851* 3. 854* 2. 858* 2. 858* 2. 858* 3. 865* 3. 865* 2. 86 66 3. 872* 3. 872* 3. 896 3. 8997 3. 8992 3. 990	16.85 1. 19.48 1. 19.
CURVE 1 CURVE 1 (cont.)	3. 836 x 10 ⁻² * 17. 3. 831 18. 3. 830 18. 3. 830 19.	17.2.\$1 3.822 176.58 3.825 180.74 3.828 184.88 3.829 189.00 3.832 197.96 3.835* 202.54 3.843 206.85 3.846	605 210, 89 3, 851* 24, 85 812 215, 16 3, 854 25, 31 993 215, 16 3, 854 25, 31 803 222, 70 3, 858* 25, 75 330 227, 19 3, 865* 26, 16 467 231, 64 3, 871* 27, 18 663 236, 08 3, 872* 27, 69 844 244, 92 3, 896* 28, 66 219 249, 32 3, 896 29, 68 219 253, 71 3, 897* 31, 34 473 253, 71 3, 892 31, 34 567, 45 3, 990* 3900 3900	3.906* 3.910 3.913 3.913 3.923 3.923 3.923 3.927 3.927 3.927 3.927 3.927 3.927 3.927 3.927 3.927 3.927 3.927 4.058 x 10 ⁻³ 3.963 2.1148 x 10 ⁻³ 40.39 2.22

DATA TABLE NO. 23 (continued)

ဝီ	CURVE 4 (cont.)*	4.90 x 10 4	5.60	6.02	6. 494	7.015	7. 591	7. 597	4. 062	4.062	6.375	6.375		CURVE 5*		les I	1000 2						ies 2								œ ·				22 2 240			20 4.251		ဗ	æ	-	႕	•	
H	CURVI	1100	1300	1400	1500	1600	1700	1701	1701	1743	1743	1800				Series	9 0545	3. 03.0	3.59	96	4, 0739		Series		3. 1423	3. 4022	3, 6878	3.9587	4. 2846	4. 7093	5. 1655	5. 6606	6. 2162	6. 7863	7.0017	A 6381	3994	10, 3020	11.3500	12.5400	13.8350	15, 2450	16.77	18. 5120	
ပီ	CURVE 3 (cont.)	Series 2	9.0600 x 10-3*	8. 9600*	8.7571*	8. 5238*	8. 2586*	7. 9384*	7.5746*	7, 1993	6. 7834*	6. 3660*	5. 9299*	5. 4980*	5. 06187	4. 0033	3 8068	3.4113	3 0439	2 6881	2, 3592	2. 0592	1. 7767	1, 5317	1.3260	1. 1680*	1.0274	9. 1005 x 10-4	8. 2021	7. 4630*	6. 9558	6.6660	6. 6515	** 4	CONVE 4	4 14 x 10-2	4. 14	4.06	4. 03	2	4. 12	4.24	4.41	4.63	
H	CURV	8	0.4471	0, 4735	0.5032	0.5361	0.5702	0.6054	0.6422	0.6808	0.7218	0.7652		v °617	0.9159	0. 8740	1 1107	1 1901	1 2788	1 3787	1, 4921	1. 6217	1, 7713	1. 9369	2. 1117	2, 2925	2.4878	2, 7089	2, 9559	3, 2287		3. 8353	4. 1533	Č	3	298 15	300	904	200	009	700	800	006	1000	
င်	CURVE 2 (cont.)	Series 3 (cont.)	9.55 x 10-3*	9. 39*	8.80*	8.97	8.48	6.83		CURVE 3	•	Series 1	The second second	9. 5309 x 10-5	9.3426	9. 1/49 0 0001	8 7513*	8 5166*	8 1238*	7.8224	7. 5413	7. 4326	6. 7602*	6. 4008	6.0154	5. 5951	5. 1821	4. 7691	4. 3691	3, 9214	3. 5040	3. 1388	2. 7867	2. 4592	1 9576	1.5984	1.3636	1. 1579	9. 8396 x 10-4			6. 7819	6. 5645		
H	CURV	Serie	0.399	0.443	0.489	0.517	0.558	0.690		50		<i>3</i> 3		0.3817	0.4066	0.4682	0 4985	0.5311		0 6008	0.6375	0.6753	0.7152	0.7583	0.8040	0.8529	0.9057	0.9625	1.0246	1. 0939	1. 1705	1. 2558	1. 3515	1. 4589	1 7930	1.8876	2, 0796	2, 3047		2,8795		3,6295	4.0497		
တီ	CURVE 2 (cont.)	Series 2	3.13 x 10-3	3.61	4. 42	5.33		5. 84	6. 29	7. 07	7.41	7.41	8. 01*	ه. ه د د	27.0		Series 3		3. 03 x 10-3		3.59	4, 13	5.48	5.26	5. 83*	6.30	6.80	7.00	7. 90	3 .	8.48	# 00 0	80 . 80 .	\$ 5 5 6 \$ 5 5 6	8 62	62	*16.6	9.74*	1. 03 × 10-2*	9.87 x 10-3	9.64	9. 2e*	9. 75*	9. 27	
۲	CUR	ď	0.061	0.063	0.071	0.078	0.086	0.091	0.097	0.105	0.114	0. 123	0. 133	0. 146	0. 162	. 404	J.	5	0.061	0.065	0.070	0.073	0.078	0.086	0.091	0.099	0.108	0.117	0. 128	0. 138	0. 152	0. 163	0. 175	0. 186	0 203	0.213		0, 239			0.284	0.308	0.338	0.366	
ထီ	CURVE 1 (cont.)	Series 11 (cont.)*	5.815 x 10-2	5. 866	5.913	5.967	6. 027	6. 097	6. 174		Series 12*	21	5. 505 x 10 ⁻²	5. 598	5. 820	CITRVE 2		Series 1		7.75 x 10-1	8.00	8.64	9. 12	9.03	8.91	9° 64	96 ·	88.6	96 .6	1. 02 x 10-2	1.00 1.00	10. 00 x 10 a	* 0	0.00	72	9.45	9.38	8.93	8.67	8. 67	8. 03	7.25	6.88	6. 75	
H	CURVE	Series	106.39	109. 13	111.84	114.68	117.82	121.09	124.31		Serie		2. 49	97. 22	106. 69	CITE		3		0. 120	0. 133	0.152							0. 228	0. 238	0. 252	200	0.308	0. 330	360	0. 424			0.501	0.534	0.575	0.617	0.670	0.716	
ď	CURVE 1 (cont.)	Series 8 (cont.)*	4. 017 x 10-4	3.975	3. 925	3. 896	3.870		Series 9		3.911 x 10-4	4. 160*	4. 362*	4. 545	4. 723	# 700 ×		5 384*		5 602*	5. 739*	5. 766*	5. 829*	5. 849*	5. 955*	6.024*	€. 089*		Series 10	•	4. 002 x 10-27	4. 232	4. 444	4. 622	F. 019*	5. 203*	5.385	5, 513*		Series 11*		5. 641 x 10-2	5. 708	5. 767	
۲	CURV	Serie	135, 64	137. 05	138.87	141. 51	144. 67		Ser		57.21	62, 19	66. 83	71. 22	75. 40	03.40	86.45	90.53	1 2	97 40	100.73	104.03	107.23	110. 57	114. 62		120. 79		Seri		58.90	63.92	68.61	73.63	91.01	85.90	90 37	94. 68		Seri		98. 68	101.35	103.80	*

ď	CURVE 5 (cont.)*	≓.	1.215		-	Series 6	1.134 x 10-2	1.183			1.201																													
H	COR	17.749	18.211	19.095	19.514	8	16.542	16.855	17.158	17.457	17.756																													
ဝီ	(cont.)*	Series 2 (cout.)	1 488 x 10-2			•	6.836 x 10-4	7.428	732	1.066 x 10-5	1.320	2.00	2.507	3.076	3.623	4.733	5.882	7.296	883	1.056 x 10-2				1.635	1.784	:	200 - 200	3 6	8 435	1.008	1.176	1.255	ıo.	8.385 x 10-7	9.140				1.164	
H	CURVE 5 (cont.)*	Series	20.5100	22.4830	24.2620	Series	4.4014	4.8322	5.3828	5.9430	6.5040	7 6992	8.3191	9.0147			11.8550		14.4470	15.8370	17.2760	19.0010	20.9680	22.8740	24.6060	Series	11 222	19 954	14 055	15.403	16.894	18.536	Series	14.017	14.661	15.253	15.804	16.320	16.810	71.600

SPECIFICATION TABLE NO. 24 SPECIFIC HEAT OF INDIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 24]

Curve No.	Ref.	Curve Ref. Year No. No.	Temp. Range, K	Temp. Reported Ni Range, K Error, % Speci	Name and Specimen Designation Composition (weight percent), Specifications and Remarks	ifications and Remarks
1	11	1961	353-600		.nl 999.999	
81	8	1965	0.1-4.1	1.0	99. 999 In; sample supplied by the American Si vacuum cast; single crystal.	99.999 In; sample supplied by the American Smelting and Refining Co.; H = O magnetic field; vacuum cast; single crystal.
e	82	1965	0.08-4.1	1.0	99.999 In; sample supplied by the American Si field; vacuum cast; single crystal.	99.999 In; sample supplied by the American Smelting and Refining Co.; H = 1000 Oe magnetic field; vacuum cast; single crystal.
4	155	1952	12-273		99.8 In; heated slowly under vacuum to 185 C; cooled slowly to room temperature.	C; cooled slowly to room temperature.

DATA TABLE NO. 24 SPECIFIC HEAT OF INDIUM

[Temmerature T K: Secrette Heat C Cal will

			L)	emperature,	emperature, T, K: Specific Heat, Cp, Cal g [K1]	t, Cp, Calg	'K' ¹]				
۲	ဝီ	H	ပ္ခံ	H	ပ္ရ	H	တိ	H	ပ	۲	ပ
CURVE	VE 1	CUR	CURVE 2*	CURVE 2 (cont.	2 (cont.)*	CURVE	CURVE 2 (cont.)*	CURVE	CURVE 3 (con.)	CURV	CURVE 3 (cont.)*
353,71	5.719 x 10-2	0. 105,	5.37 × 10"	0.3792	1, 496 x 10 ⁻⁷	2.715	8.218 x 10°5	0. 200	7, 897 x 10 ⁻⁷	1 952	3 018 x 10"5
353.71	5.716		6. 45	0.379	1, 507	2, 811	9.176	0.211	8.269	2.056	3,443
373.95	5.837	0. 113,	6.20	0.400	1.740	2.945	1.047 × 10"4	0.221	8. 62(2. 120	3.728
391. 73	9.00		6.85	0.4175	1.962	3,049	1 224	0.2362	9, 149	2.225	4.248
415.81	* 280 9		7. 14	0.454	2.569	3, 296	1.465	0.243	1 016 - 1076	2.303	4.648 5.936
415, 89	6, 154		9.41	0.476	2.997	3, 565	1, 635	0.270		2 496	5 797
421,28	6. 203	0, 140,	1.049 x 10"	0.4932	3,341	3,710	1, 834	0, 290	1. 123	2, 599	6. 459
421.41	6. 189	0.1412	1.057	0.5091	3.612	3.862	2.088	0. 299	1, 161	2, 842	8,335
421.64	6. 203		1.097	0.5191	3, 855	3,985	2.277	0.300	1, 165	2, 935	9, 167
423. 42	6. 264	0.151,	1. 228	0.5223	3.965	4.158	2.612	0.3207	1, 252	3.079	1.050 x 10-4
423.48	6. 239	0.1524	1.240	0.560	4.867		*	0, 329,	1, 290	3, 189	1, 168
425, 43	6.279	0. 1603	1.403	0.563,	5.010		CURVE 3	0.330	1, 293	3,289	1.273
425, 55	6.235	0. 160	1.386	0.618	6.744			0.3535	1.394	3,449	1,473
-	6.272	0. 163,	1.492	0.664	8. 705	0.085	5.749 x 10-1	0, 362	1, 433	3, 536	1,583
(a) 428, 90	6.351	0.164,	1.476	0.6821	9.502	0.086%	5.714	0.365,	1.447	3,720	1.824
•	6.384	0.167	1.574	0.761	1.396 x 10°	0.08714	5, 731	0, 3997	1, 609	3.818	2,005
429, 89	6.353	0. 168,	1.628	9. 9. S.	1.989	0.088	5.747	0.401	1,616	4.009	2,311
430.07	6.325	0. 1841	1.942	0.891	2.404	0.092_{31}	5, 735	0, 435,	1,786	4, 145	2,579
430, 73	6.260	0. 192 ₈	2.210	0.9501	3.025	0.095_{32}	5. 837	0. 439	1.808		
430.85	6.279	0. 196,	2.350	0.975	3.247	0.095 ₇₅	5.743	0. 472g	1.984	CO	CURVE 4
431.03	6.217	0.211,	2.848	1. 022,	3.826	0.098	5, 735	0.4773	2.010		1
434.41	6, 105	0.213	2.964	1.206	6.705	0.099	5.687	0.523,	2, 273	12, 09	6. 578 x 10-1
2.43	6.186 	0. 232,	3, 722	1. 222	7.117	0. 105	5.847	0.5763	2, 598	12. 51	6.623
438.30	6, 159	0. Z3	3.957	1.274	3.041	0. 105	5.691	0.6563	3, 162	13.00	7. 506
50.00	6. 104	0. 250g	4.525	1.361	1.038 X 10 .	0. 116	5.712	0.7216	3, 672	13. 25.	7. 796
459.97	6. 146	0.2581	4.942	1.	1 26 9	0.117	5.770	0. 795	4.315	13. 17	7. 796
440.00	* 167 *	0.00	3.000	1.579	1 613	130	20.1.0	0.8721	5. 052	3	8.368
450 07	4 151	900	100.0	1 630	1 780	130	5 064	1.210		14. 10	0.210
459 11	6 124	283	6. 415 6. 415	1 767	2 296	0 134.	6. 103	1.244	1.020 x 10 -	14. 23	0,000
459.25	6, 128	0.287	6 711	1.866	2, 725	0.142	6.216	1 351	1 22	15. 69	9.00
499, 28	6, 135	0.306	8,035	1,919	2, 937	0.142	6. 207	1 409	1 353	15.64	000
499, 48	6.076	0.317	8.922	2.044	3, 582	P. 157	6.621	1.474	1.500	15.92	L 049 x 10-2
598, 01	6.113	0.322,	9, 488	2.092	3, 795	0. 165	6.813	1, 533	1.647	16, 12	
598, 15	6. 121*	0.324,	9.496	2, 230	4. 636	0.170	6.927	1,608	1,854	16. 22	1.052
682.21	6.087	0.3402	1.097 x 10 ⁻¹		5,010	0.172_{5}	6.988	1,661	2,012	16.82	1.149
	6.096	0.3494	1. 180		5, 805	0.1824	7, 294	1,746	2, 265	17.33	1.206
200	6.036	0.363	1.331	2.506	6.478	0. 190	7.550	1.800	2.448	17.81	1, 264
900.76	6. 108	0.368	1, 359	2.591	7.096	0. 190g	7.567	1.894	2.789	18, 16	1, 245

CURVE 4 (contd) CURVE 4 (contd) 1. 155 x 10 ⁻² 69, 52 4.464 172 x 10 ⁻² 1. 1515 x 10 ⁻² 1. 151	2 8 2 1 2 2 1 2 2 8 8 8 8 8 8 8 8 8 8 8	4.426 x 10 ⁻²			
69. 23		4, 426 x 10 ⁻²	CURVI	E 4 (contd)	
4.484* 4.480 4.580 4.587 4.587 4.588 4.588 4.588 4.688 4.688 4.688 4.710 4.688 4.710 4.886 4.886 4.886 4.886 4.886 5.110 5.114 5.118 5.118 5.218 5.218 5.228	69 64 64 64 64 64 64 64 64 64 64 64 64 64	4. 484	166,98	5. 251 x 10 ⁻²	
4.480 4.510 4.510 4.527 4.527 4.527 4.626 4.612 4.626 4.627 4.652 4.633 4.652 4.710 4.633 4.633 4.633 4.710 4.633 4.633 4.633 4.710 4.856 4.856 4.856 4.856 4.856 5.110 5.114 5.116 5.118 5.218 5.218 5.228	77 77 77 77 77 77 77 78 78 78 78 78 78 7	***	172, 02	5, 293	
4. 527 4. 527 4. 527 4. 620 4. 630 4. 630 6. 730 7. 114 7. 103 7. 103	447. 447. 848. 848. 848. 848. 848. 848.	4.480	176.83	5.319	
4. 568 4. 568 4. 612 4. 620 4. 612 6. 612 6.		4. 527	187.69	5.320	
79.34 4, 532 197.91 80.48 4, 612 201.47 80.48 4, 612 201.47 81.10 4, 616 204.31 82.40 4, 652 207.17 84.26 4, 652 207.17 84.26 4, 652 207.17 87.74 4, 710 223.79 87.74 4, 710 223.79 88.26 4, 683 221.14 87.74 4, 710 223.79 88.27 4, 683 221.21 89.23 4, 775 223.79 89.21 4, 775 250.28 89.22 4, 775 250.28 89.43 4, 775 250.28 89.54 4, 775 250.28 80.59 4, 846 4, 846 100.50 4, 846 4, 846 100.50 4, 846 4, 846 114.75 4, 996 114.76 118.70 5, 661 114.76 118.70 5, 661 114.76 120.51 5, 114 4, 896	5.69 9.99 9.99 9.99 9.99 9.99 9.99 9.99	4, 568	192, 44	5, 327	
80.48 4 612 201.47 80.8 4 612 201.47 81.95 4 620 202.96 81.10 4 652 207.17 84.26 4 652 207.17 84.26 4 652 207.17 84.26 4 652 207.17 84.26 4 653 217.34 87.74 4.710 223.34 88.26 4 634 223.75 88.26 4 634 223.75 88.26 4 634 223.75 89.21 4.75 224.68 89.22 4 775 223.32 89.22 4 775 223.32 89.23 4 775 224.68 102.42 4 856 267.44 95.28 4 770 269.21 106.50 4 932 114.75 4 996 114.75 4 996 114.75 4 996 114.75 5 061 118.70 5 061 119.80 5 061 126.52 5 103 126.52 5 103 127.41 5 114 48.67 5 132 48.50 5 238	8.99 9.99 9.99 9.49 9.49 9.49 9.49 9.49	4, 592	197.91	5.354	
80, 95 4, 620 202, 96 81, 10 4, 616 204, 31 82, 6 4, 652 207, 17 84, 26 4, 652 207, 17 86, 10 4, 672 223, 94 87, 74 4, 710 223, 94 88, 26 4, 684 223, 94 89, 28 4, 710 258, 32 99, 21 4, 711 258, 32 99, 28 4, 770 258, 32 98, 28 4, 770 262, 98 98, 28 4, 770 262, 98 98, 28 4, 976 102, 42 4, 986 114, 75 4, 996 118, 70 5, 061 118, 70 5, 061 119, 90 5, 063 122, 79 5, 061 123, 61 5, 113 137, 41 5, 179 143, 68 5, 103 143, 68 5, 103 144, 67 5, 236 143, 88 5, 103 144, 67 5, 118 144, 67 5, 239	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	4.612	201, 47	5.376	
83.46 4, 652 84.26 4, 655 84.26 4, 655 87.10 4, 672 87.10 4, 672 87.10 4, 672 87.10 4, 672 88.26 4, 655 90.83 4, 750 91.12 4, 751 91.12 4, 751 92.21 258, 32 94.52 4, 850 95.28 4, 770 96.59 4, 934 114.16 4, 994 114.75 4, 996 118.70 5, 061 119.80 5, 061 122.72 5, 103 122.87 5, 103 123.61 5, 114 135.61 5, 132 143.88 5, 061 143.88 5, 061 143.88 5, 105 143.88 5, 105 143.88 5, 105 143.88 5, 105 144.87 5, 132 144.87 5, 133 144.87 5, 133 144.87 5, 133 144.88 5, 105 144.88 5, 105 145.88 5, 105 145.88 5, 105 146.24 5, 229	1. 8. 4. 4. 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	4. 620	202, 96	5.362	
86, 26 4, 656 212, 14 86, 10 4, 672 223, 94 87, 74 4, 710 223, 94 88, 26 4, 684 223, 75 87, 74 4, 710 223, 75 89, 26 4, 683 24, 68 90, 83 4, 751 254, 32 91, 12 4, 751 258, 30 95, 28 4, 770 262, 98 96, 24 484 2770 262, 14 96, 25 4, 825 101, 71 4, 856 110, 71 4, 856 110, 70 5, 061 114, 16 4, 994 114, 75 5, 061 119, 80 5, 035 1124, 88 5, 061 125, 52 5, 103 125, 52 5, 103 126, 52 5, 103 127, 41 5, 173 143, 88 5, 061 143, 88 5, 061 143, 88 5, 061 144, 67 5, 185 144, 67 5, 185 145, 88 5, 185 145, 88 5, 185 145, 88 5, 185 146, 75 5, 185 146, 75 5, 185 147, 88 5, 185 148, 88 5, 185 188, 88 5, 185 188, 88 5, 185 188, 88 5, 185 188, 88 5, 185 188, 88 5, 188 188, 88 5,	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4. 616	204, 31	5,407	
86. 10 4. 672 217. 14 86. 10 4. 672 223. 75 87. 69 4. 684 228. 75 87. 69 4. 684 228. 75 88. 26 4. 683 241. 68 90. 83 4. 750 256, 28 91. 12 4. 750 258, 30 91. 12 4. 751 258, 30 94. 52 4. 850 267, 44 95. 28 4. 770 269, 21 96. 69 4. 918 277, 72 106. 50 4. 918 108. 50 4. 925 108. 50 4. 927 114. 16 4. 996 118. 70 5. 061 119. 90 5. 063 122. 79 5. 061 126. 52 5. 103 127. 41 5. 114 137. 41 5. 179 163. 73 5. 23 165. 43 5. 23	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.652	207. 17	5.388	
86, 10 4, 672 223, 75 87, 69 4, 672 223, 75 87, 76 4, 674 223, 75 87, 76 4, 674 223, 75 87, 76 4, 684 223, 75 87, 76 4, 684 223, 75 87, 76 88, 24, 76 92, 22 1, 4, 75 1, 25 2, 25 8, 30 87, 22 1, 4, 75 1, 25 2, 25 8, 30 87, 22 1, 4, 75 1, 25 2, 25 8, 30 87, 24 1, 68 87, 69 4, 814 277, 25 87, 24 89, 25 87, 24 89, 27 100, 50 4, 914 277, 25 87, 24 89, 27 100, 50 4, 914 277, 25 87, 24 114, 75 4, 99, 41 114, 75 4, 99, 70, 114, 75 4, 99, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 70, 114, 7	86.10 87.69 87.74 88.26	4. 67.0	212.14	5, 385	
86, 26 4, 684 225, 75 86, 26 86 87 4, 710 4, 684 225, 75 86, 28 8, 26 4, 683 87 74 4, 710 4, 235, 79 86, 26 88 4, 683 87 74 4, 683 87 75 8	87.74 88.26	4.072	227. 34	5. 422	
87.74 4.710° 235.79 88.26 4.693° 241.68 90.83 4.750 256.28 91.12 4.751 258.32 92.21 4.751 258.33 94.52 4.850 267.44 95.28 4.870 269.21 96.50 4.814 272.72 102.42 4.856 106.50 4.925 114.75 5.694 114.75 5.694 112.79 5.061 113.80 5.0635 112.88 5.061 113.61 5.132 113.61 5.132 114.38 5.014 115.61 5.132 115.88 5.081 116.89 5.0835 117.41 5.132 118.67 5.185 118.67 5.185 118.67 5.185	87.74 88.26	4 684	229 75	5.432	
88, 26, 4, 693* 241, 68 90, 83 4, 750 254, 32 91, 12 4, 751 92, 21 94, 52 4, 770 96, 28 4, 770 96, 28 4, 770 96, 28 100, 42 102, 42 108, 86 4, 924 114, 16 4, 994 114, 75 112, 79 112, 79 113, 113 113, 60 1130, 61 1130, 6	88.26	4.710	235, 79	5.443	
90. 83 4, 750 256, 28 92. 1. 2, 4751 258, 32 92. 1. 2, 4751 258, 33 95, 21 4, 751 258, 33 95, 21 4, 751 258, 33 95, 28 4, 52 4, 850 21 4, 770 262, 21 86, 89 4, 770 263, 21 86, 89 4, 925 100, 71 4, 856 100, 50 4, 927 100, 50 4, 927 118, 70 5, 061 118, 70 5, 061 118, 70 5, 061 119, 90 5, 055 1124, 88 5, 061 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1130, 1126, 88 5, 061 1126, 88 5, 185 1146, 88 5, 185	00	4, 693	241.68	5, 464	
91.12 4, 751 254.32 5. 92.21 4, 775 252.30 5. 93.21 4, 775 252.30 5. 94.52 4, 850 267.44 5. 96.59 4, 770 269.21 5. 96.69 4, 814 277.72 5. 102.42 4, 856 100. 269.21 5. 103.50 4, 918 277.72 5. 114.16 4, 996 114.16 4, 996 114.16 4, 996 114.16 119.90 5. 112.4.88 5.061 112.8.52 5.103 112.8.52 5. 113.5.61 5, 113 5. 114.67 5, 114 4. 115.61 5, 113 5. 116.74 5, 118 5. 117.41 5, 173 5.218 116.2.33	30.00	4, 750	250, 28	5, 504	
92.21 4.791 258.30 5. 94.3.11 4.755 262.08 5. 95.28 4.775 262.08 5. 95.28 4.775 262.08 5. 96.28 4.775 262.08 5. 102.42 4.856 1102.42 4.856 1104.50 4.918 114.75 4.996 118.70 5.061 118.70 5.061 118.70 5.061 118.70 5.061 126.52 5.103 126.52 5.103 127.41 5.113 137.41 5.132 143.88 5.061 144.88 5.061 126.52 5.103 127.41 5.132 143.89 5.061 126.52 5.103 127.41 5.132 143.89 5.061 163.97 5.114 163.97 5.116 162.43 5.280	91 12	4, 751	254, 32	5, 513	
95, 24 95, 28 96, 28 96, 28 96, 28 96, 29 101, 71 102, 42 106, 50 108, 50 108, 50 118, 75 118, 70 118, 70 118, 80 119, 80 119, 80 119, 80 110, 81 110, 81 111, 80 111, 80 112, 81 113, 81 114, 81 115, 81 116, 81 117, 81 118, 81 119, 81 119, 81 110, 81 110, 81 111, 81	92, 21	4. 791	258.30	5. 509	
95. 28	1.5.	4 773	262, 08	5, 50I	
96. 69 4. 814* 98. 25 4. 825 101. 71 4. 866 106. 50 4. 918 106. 50 4. 918 114. 75 4. 996 118. 70 5. 061 112. 79 5. 061 112. 88 5. 061 1130. 51 5. 1103 1130. 51 5. 1103 1130. 51 5. 1104 1137. 41 5. 179 162. 43 5. 239	95, 28	4. 770	269.21	5 537	
98, 25 4, 925 100, 71 4, 886 100, 50 4, 886 108, 86 4, 927 118, 16 4, 994 118, 75 4, 996 118, 70 5, 061 119, 80 5, 061 122, 79 5, 061 122, 88 5, 061 120, 97 5, 110 120, 97 5, 110 130, 51 5, 110 137, 41 5, 132 143, 86 5, 240 162, 43 5, 240	96.69	4. 814	272. 72		
101, 71 102, 42 108, 86 114, 16 114, 16 119, 70 119, 70 126, 52 126, 52 130, 51 148, 67 153, 32 162, 43	98, 25	4, 925			
102.42 108.56 114.16 114.76 1119.70 112.79 126.52 126.52 126.52 137.41 143.88 143.88 143.32 162.43	101, 71	4. 856			
106, 50 114, 16 114, 16 114, 16 111, 10 112, 10 122, 17 122, 17 123, 97 137, 41 143, 88 143, 88 153, 32 162, 43	102, 42	4. 856			
114, 18 114, 18 114, 18 119, 90 129, 97 129, 97 130, 51 137, 41 143, 88 143, 88 153, 57 162, 43	106, 50	4. 918			
114,75 118,70 119,80 120,87 129,87 130,51 137,41 143,67 153,32 162,43	114 16	726.4			
118, 70 119, 80 122, 79 126, 52 129, 97 130, 51 137, 41 143, 64 148, 67 162, 43	114, 75	4.998			
119, 80 122, 79 126, 52 129, 97 130, 51 137, 41 143, 88 148, 67 153, 32 162, 43	118, 70	5, 061			
122.79 124.88 126.52 129.97 130.51 137.41 148.61 153.32 162.43	119, 80	5, 035			
124.88 129.52 130.51 137.61 137.41 148.67 153.32 162.43	122, 79	5, 061			
129.92 130.93 130.93 135.61 137.41 148.68 153.32 162.43 5.	124. 88	3. 061 1.			
130.51 135.61 137.61 137.41 148.67 153.32 162.43 5.	129.97	5, 110			
135.61 137.41 148.88 5.5 153.32 162.43 5.	130, 51	5.114			
137.41 5 143.88 5 143.88 5 153.32 5 162.43 5	135.61	5, 132			
143.88 148.67 153.32 162.43	137,41	5, 179			
148.67 5. 153.32 5. 162.43 5.	143.88	5,185			
ທີ່ຕໍ	148.67	5.218			
'n	153, 32	5.240			
	162.43	5. 239			

SPECIFICATION TABLE NO. 25 SPECIFIC HEAT OF IRDIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 25]

	Composition (weight percent), Specifications and Remarks	99.96 Ir, 0.0 X Pt type metals, traces Ag, Cu, Fe; cast. Sample in purest form.
	Reported Name and Error, % Specimen Designation	
	Reported Error, %	
	Temp. Range, K	11-276 273-1973 406-781
	Year	1955 1931 1933
	Ref. No.	215
ı	Curve No.	- 8 6

DATA TABLE NO. 25 SPECIFIC HEAT OF IRIDIUM

K-7
F.
Cal
တိ
Heat,
Specific
Х
Ė.
[Temperature,

a,	H	ပ္မီ	H	တို
CURVE 1	CURVE	CURVE 1 (cont.)	CUR	CURVE Z
9. 10 x 10-6	108. 42	2. 272 x 10-2		3.07 x 10-2
1. 13 x 10-4	118.19	2. 40	473, 15	3.22
1.43	123.04	2.443	573.15	3, 29
3	129.05	2. 515	673.15	3, 37
2.10	134.09	2. 569	773, 15	1.4
8 3	139.19	2.618	873. 15	3,52
8 9	143.62	2.632	973, 15	20 m
2.92	149. 52	2. 687	1073.15	3.66
	155. 10	2. 702	1173, 15	e,
3.76	160.95	2. 742	1273. 15	3.81
8 .	166. 22	2. 760	1373, 15	3, 89
4.66	172.32	2. 795	1473. 15	3.96
5.91	177.71	2.824	1573. 15	4.03
7.31	184. 22	2. 853	1673, 15	+
7.01	189.67	2, 890	1773 16	4
7.66	198 51	2 911	1072 16	36
9	199 45	* ****	1079	
5-01 × 890 1	100 07	9 999	10.00	20
1 130	2000	******	-	•
1 286	206. 45	2000	COR	CORVES
	200	40.0		
9 026	207.00	6.810	406.28	3.34 × 10
4. 900	208.20	2. 343	431.15	3.36
4. 33I	217.15	2. 939	481.08	3. 43
5. 968	213.83	2.84.	531. 11	3.50
7. 929	218.19	2.957	579.91	3.56
9. 813	219.17	2.948*	630. 57	3.63
1. 100 x 104	223.96	2,980	681.20	3.69
1. 149	226.03	2.981	731, 39	3.76
1.215	230.72	3.002	781.33	3.84
1.353	232.93	3.017		
1.303	236. 71	3.014		
1.406	240.27	3.027		
1.42	243. 47	3.027		
1. 491	247.35	3,050		
1. 580	249. 53	3.056		
1.666	253. 43	3.055		
1 741	95.6 A.9	3 087		
1. 822	260 68	2 050*		
3	269.00			
900	206. 10	* 500 c		
900	200.13	3.030		
2.000	269. 48	3.061		
2, 153	273. 45	3. 131*		

SPECIFICATION TABLE NO. 26 SPECIFIC HEAT OF IRON

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 26]

Composition (weight percent), Specifications and Remarks	39, 99 Fe; annealed; density = 491, 59 lb ft ⁻¹ .	99, 94 Fe, 0, 031 N, <0 308 Si, <0, 005 C, 0, 004 Cu, <0, 004 S, 0, 003 Mn, 0, 002 P, <0, 001 O; annealed at 1190 C in dry hydrogen until O; content was below 0, 001 %.	Impurities, 0.004 P, 0.004 Si (insol.), 0.003 Al (sol.), 0.0026 S, 0.002 Si (sol.), 0.001 C, 0.001 N ₂ , <0.001 Al (insol.), 0.0006 O ₃ , and 0.00001 H ₂ .	99.99 Fe.	99.75 Fe, nominal composition.		99,75 Fe, nominal composition; measured in an argon atmosphere.	Impurities 0, 10 N ₂ , 0, 03 C, 0, 01 O ₂ , <0.0005 Ni, 0.0001 Cu, <0.0001 Ag, <0.0001 Mg, <0.0001 Na, and <0.0001 Si; sample supplied by the Johnson, Matthey and Co. Lid: furnace under vacuum.	Impurities, 0.016 C, 0.009 S, <0.005 Mn, <0.005 Si, <0.602 P, and traces of Al, Cu, and Ni.	Same as above.	99.945 Fe. 0.031 Ni. 0.008 Si. 0.005 C. 0.004 S. 0.004 other metals, 0.002 P. and 0.001 other non metals.	Same as above.	> 99.9 Fe.	0.1 Mn, < 0.1 Ni, 0.04 Cu, 0.01 C, 0.005 Si, and 0.003 P; melted under vacuum.	Same as above.			0.004 P, 0.004 Si (insol.), 0.003 Al (sol.), 0.0026 S, 0.002 Si (sol.), 0.001 C, 0.001 N, <0.001 Al (insol.), 0.0006 O, 0.00001 H.	> 99.9 Fe.	Pure from.	Pure troa.	99.88 Fe, with small amounts of C, Si, Mn, and S.	100.0 Fe; specific heat corrected for carbon content.
Name and Specimen Designation			α and γ iron		Armco fron		Armeo iron	High purity iron	Electrolytic iron	y - iron	solid iron	a - iron				Electrolytic iron	Electrolytic iron	γ - iron		γ - iron	a - iron		
Reported Error, %	±2.0	0.3			3.0-5.0	<2.4		<2.0	s 0.9	€.0≥			2.0			1.5			2.0				
Temp. Range, K	273-1523	54-295	1073-1673	373-1223	618-973	553, 623	800-1071	298-1323	353-1173	1013-1218	298-1809	1184-1665	346-1198	1.5-20	1, 7-20	17-206	343-1208	1198-1623	978-1193	20-1663	20-1663	73-198	273-1523
Year	1949	1943	1963	1940	1965	1961	1959	1960	1967	1967	1962	1962	1946	1939	1939	1930	1964	1963	1946	1963	1963	1925	1926
Ref. No.	26	27	28	29	30	11	31	32	æ	33	*	*	104	82	82	22	8	28	104	310	310	311	312
Curve No.	-	81	က	4	w	9	4	80	•	2	=	2	ដ	7	15	91	17	81	21	8	12	ជ	ង

SPECIFICATION TABLE NO. 26 (continued)

014							
Surve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks	
2	268	1926	373-1903			99.70 Fe, 0.110 Cu, 0.073 Mn, 0.042 Si, 0.040 C, 0.029 P, and 0.006 S.	•
25	289	1927	373-1273			Chemically pure specimen; vacuum melted.	
26	313	1929	1123-1833		Electrolytic iron		
72	164	1932	273-1873				
28	314	1935	30-220				
23	315	1935	298,65			Annealed,	
8	316	1938	378-1773		Electrolytic	Heated several times at 900 C to expel H ₂ gas.	
31	201	1939	1.2-20			Very pure sample, 0.015i; pressed and sintered in hydrogen at 1350 C for 9 hrs., sintere again above 1400 C for 16 hrs; density = 7.25 g cm ⁻¹ .	sinter
Ŋ	317	1945	1, 5-20			0, 1 Mn, 0, 1 Ni, 0, 04 Cu, 0, 01 C, 0, 005 Si, and 0, 003 P.	
S	318	1964	1181-1193			99.99 Fe; annealed.	
*	319	1958	293-1030				
38	320	1959	1.8-5.3			Pure Iron,	
8	-	1961	295	# 2		Specimen probably in pure state.	
37	318	1954	1175-1196			99.99 Fe; annealed.	
88	318	1954	1174-1193			Same as above.	

		ပ္ရ	ont.)	565 _# x 10 ⁻¹	2.691,	935	9 994	2,353	2,270	2.116*	2.059	1.961	1.930	1.895	1.874	. 927	608	1, 795		01	376 x 10"1	1,382	1,387	1. 390	393*	1.398	*60	415	420	£3.*	437*	#	449	455	453 467*	486*	488	496			
		۲	CURVE 9 (cont.)	4		1038					1083					1143 1.		_		CURVE 10		1023				1053				1113	-		, i	1153 1.	-i -	-	;	-			
				x 10.1																																					
		ပ္ရ	CURVE 9	1. 127 x	1.150	1.175	1 219	1.238	1.254	1.272	1.295*	1, 337	1.352	1.377*	1.393	1.413	1.457	1.479	1.512	1.530	1.586	1.597	1.616	1.636	1.669*	1.679	1,713	1.734	1.750*	1.815	1.835	1.869	1.910*	1.949	1. 995*	2.084	2, 145	2.212	2.280	2.371*	?
		H	51	353	373	413	433	453	473	493	533	553	573	593	613	653	673	693	713	733	773	783	793	803	813	2 2	36	853	863	288 883	893	903	913	923	933	953	863	973	983	1003	2004
AT OF IRON	Cal g 1 K 1]	ပ္	CURVE 7 (cont.)	2. 82 x 10-1	2.73	9 76	96	2.99		CURVE 8	1 04 v 10r l	1.08	1, 14*	1.20	1.25	1.30	1.40	1.44	1.50	1.57	1.74	1.89	2.15*	2.38	2.65	3.91	3,85	2.13*	1.59	1.73*	1.66	1.4	1.46	1.48	P0						
SPECIFIC HEAT OF IRON	c Heat, Cp.	H	CURVE	1034	1050	1051	1065	1071			998	323	373	423	514	573	623	673	723	773	873 873	923	973	1003	1023	1033	1042	1043	1053	1123	1173	1173	1723	1273	1323						
E NO. 26 SP	H	္မီ	CURVE 5	1.40 × 10-1	1.50	1.66	1.87	2.04	CURVE 6		1.22 x 10"1	1. 49	CURVE 7		2.05 x 10 ⁻¹	2.07	2.08	2.10	2.11	2.07	2.11	2.08	2.12	2 13*	2, 14	2. 16	2. 14	2.14	2.18	2.22	2.18	2.27*	2.22	2.28	2.27	2, 32	2.31	2.38	3.90	3,46	
DATA TABLE NO.	[Temperature,	۲	D)	618	723	823	923	973	CI		553	623	CI	1	800	905	912	912	921	927	927	936	936	3	951	951	096	967	196	976	136	066	966	966	1006	1006	1014	1021	1023	1026	
		္ပင္	CURVE 2 (con.)	9.318 x 10-2		9,687	9. 863	1, 003 x 10 '	1. 032	1,046	1.056	1.066	CURVE 3		2, 125 x 10 ⁻¹	2.022	1. 936	1.814	1.783		CURVE 4	1 14 " 10" 1*	1. 14 X 10	1.32	1, 43*	1.60	8.8	2.49	2.00	1.89	1. 01	1.72	1, 69	1.90	2.68	1.37	1.39	1.37	•		
		H	SI	206.2	216.0	225.9	236.6	246.3	266.1	276.1	285.8	295. 1	CO		1073	1098	1123	1173	1673		키	373	473	573	673	773	873	1033	1053	1073	1113	1133	1153	1173	1183	1193	1203	1223			
		ပို	E 1	1.04 x 10-1		1.08	1.14	1.24	 *	1,58	1.80	1.95	2.70	3, 18	1. 99	1.74	1.57	1.36	1.40	1,45	1. 49	1. 53 1. 56	1. 36	E 2	1	1.655 x 10 ⁻²	9 179	2.519	2, 835	3.189	4.165	4.824	5.483	6. 111	6.670	7.150	7.567	8,299	8, 591	8, 849	9.118
		H	CURVE	273.15	8	323	373	22	573	773	873	22.5	23	1033	1073	1123	1173	1273	1323	1373	1423	1693	3	CURVE		. Z. 6	6.7°	65.6	69.4	٤.٤ د.د	38	95.1	105.0	115.3	125.5	135.5	1.65.3 1.65.3	166.0	176.3	186.0	196.5

Not shown on plot

(continued)

56

DATA TABLE NO.

CURVE 37 (cont.)*

1185. 6 1.56 × 10 ⁴

1187. 0 1.78

1187. 0 1.78

1187. 9 1.52

1189. 6 1.44

1191. 0 1.36

1192. 4 1.34

1193. 5 1.34

1196. 2 1.32

CURVE 38*

1176. 4 1.54

1177. 3 1.57 × 10 ⁴

1177. 3 1.57 × 10 ⁴

1177. 3 1.56

1177. 1 1.56

1177. 1 1.56

1187. 8 1.56

1189. 2 1.56

1189. 2 1.56

1189. 2 1.57

1189. 2 1.67

1199. 2 1.67

1199. 2 1.67

1199. 2 1.67

1199. 3 1.37

SPECIFICATION TABLE NO. 27 SPECIFIC HEAT OF LANTHANUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 27]

Composition (weight percent), Specifications and Remarks	Spectroscopically pure, < 0.09 Ca, < 0.02 rare earth, < 0.01 Be, < 0.002 Fe; hexagonal	close packed and cubic closed packed crystal structure: > 99.76 La. 0.2 Nd, < 0.10 Ta, < 0.05 Ca, 0.0455 O ₂ , < 0.03 Ce, < 0.03 Pr, < 0.02 Mg, 0.015. C, < 0.01 Cr, 0.0033 H ₂ , 0.0013 N ₂ ; prepared by metallothermic reduction of	and of the little and the country of
Name and Specimen Designation			
Reported Error, %			0.4-2.0
Temp. Range, K	5-180	298-1373	3-25
Year	1961	1962	1967
Surve Ref. Year No. No.	35	36	42
Curve No.	1	8	n

DATA TABLE NO. 27 SPECIFIC HEAT OF LANTHANUM

_
K-1
1 20
Cal
Ĝ
Heat,
Specific
¥
Ŧ,
Temperature,

	<u>a</u> !	cont.)*	1.8481 x 10 ⁻³	2.4288	3.2920	5 0477	6, 1304	7.4604	9.0761	1.0845 x 107	1.2787	1.4737	1.6543		п		1.017 x 10-4		1.661	2.1542	2.7531	3,1186	3,1858	3.0217	2.6667	2.8880	3,4725	3.7204	3.8001	4.1504	5.0896	6.6139	9.1896	1.2380 x 103	1.6155	2, 1647	2,8259	3,5804	4.4661	5.4714	6.6879	8, 1573	9,8193	1.1645 x 10.7	1,3562	1.5408	
		CURVE 3(cont.)*	9.8187	10.743	13 099	14.019	15, 168	16.522	18,095	19.776	21.604	23.415	25.001		Series II		3.2151	3.4837	3,7855	4.1277	4.4800	4.6930	4.7745	4.8574	4.9475	5.2522	5.6310	2.8000	5.9092	6.1582	6.5730	7.1277	7.8876	8.6433	9.4025	10.344	11,316	12,301	13,366	14.483	15.748	17.206	18,808	20.533	22.329	24.039	
ć	a	CURVE 2 (conta)	5.91 x 10-7*	5.91		5.91			5 ₩	I .		9.159 x 10	1.161 x 107	1.388	1.601	1.8075	2.0045	2, 1953	2.3815	2.5609	2.7316	2.8952	3.0423	3, 1580	3, 1660	2.8708	2.6069	2.7189	2.8538	3.0262	3, 1994	3.3799	3,5380	3.6862	3.7818	3.8293	3,9336	4.1137	4.2937	4.4570	4.8649	5.9962	7.6566	9.4942	1.1984 x 10 ⁻³	1.4866	
۲		COKVE	1200	1250	1350	1373, 15			CURVE 3	Series I		3, 1058	3,3601	3, 5660	3,7408	3,8938	4,0306	4.1541	4.2671	4.3715	4.4682	4.5587	4.6448	4.7268	4.8071	4.8919	4.9845	5.0991	5,2310	5.3523	5.4667	5.5750	5.6783	5.7764	5.8714	5.9650	6.0564	6.1445	6.2290	6.3098	6.4855	6.9215	7.4575	7.9665	8.5701	9.1686	
d	•	CURVE 1	1. 83 x 10-4	2, 3	20 . e	L 87 x 10-3	5, 72	1, 06 x 10 ⁻²	2.02	2.70	3. 18	3.48	₹	1 .06	4.21	4.30	4.38	4. 46		CURVE 2		4. 50 x 10-2	4.51	4.60	4.69	4. 79	. 88	4.97	5°.	4.74	4.78	4.88	4. 99	5, 10		5, 32	5.4	5.56	5. 69	5.81	£.	6.05	6.80	6.80	6.80	5.91	
F		히	4.5	e e	p od	9	51	20	30	9	3	9	8	700	120	140	160	180		티		298, 15	300	320	3	450	200	220	583, 15	583, 15	909	650	200	750	800	820	006	950	1000	1050	1100	1141, 15	1141, 15			(I) 1193. 15	

SPECIFICATION TABLE NO. 28 SPECIFIC HEAT OF LEAD

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 28]

cifications and Remarks			uum furnace; cooled over a period of 4 day		g state.				in an atmosphere of hydrogen.		ig, and 0, 0002 Bi; smoothed.			0.01 Al. Ca, Cr, Cu, Fe, Mg. Si, Ag, an		
Composition (weight percent), Specifications and Remarks	99. 9 Pb		99. 999 Pb; melted and crystallized in a vacuum furnace; cooled over a period of 4 days	99, 9999 Pb; single crystals, normal state.	99, 999 Pb; single crystals, superconducting state.	99. 977 Pb, 0. 02 Fe and 0. 003 Cu.			Merck's C.P. grade: granular form; fused in an atmosphere of hydrogen.		99. 997 Pb, 0 0009 Cu, 0. 0007 Sb, 0 0006 Ag, and 0. 0002 Bi; smoothed.		99. 99 Pb; normal state.	>99.9 Pb, 0.001 - 0.1 Bi, <0.05 Na, and <0.01 Al, Ca, Cr, Cu, Fe, Mg, Si, Ag, and Sn.	99. 999 Pb.	
Name and Specimen Designation	Lead wire	9 %														
Reported Error, %	< 5.0			±2.0	±2.0				1.0							
Temp. Range, K	273-588	293-793	15-300	0.44	0.4-4	348-1023	323-773	14-78	627-732	2-16	203-493	273-601	1-77	298-1200	1-40	
Year	1963	1961	1941	1965	1965	1926	1927	1927	1927	1930	1936	1947	1962	1964	1966	
Ref.	ო	39	103	2	2	268	289	274	214	276	182	193	322	323	324	
Curve No.	=	8	က	4	9	9	7	•	6	10	11	21	13	7	15	

				Temper	ature, T.K;	Specific Heat, ([Temperature, T,K; Specific Heat, Cp, Cal g'1K'1]					
F	ტ	H	c _p	۲	တီ	H	ပ်	Т	ပ	۲	ပ	
CURVE	7 2	CURVE 3(cont.)	(cont.)	CURVE 4 (cont.)	(cont.)*	CURVE	CURVE 5 (cont.)*	CURVE	- 1	CO	CURVE 11*	
273 15	2 00 4 107	69 69	2 671 - 107	1 546	1 97 - 10			;				
323	3.6	75.82	2.704	1.680	1.50 A 10		2.25 x 10 °	14.45	7.7 × 10 °		2.963	963 x 10 ⁻²
373	3.09	80.39	2.730	1.716	1, 59	2.514	200	20.37		223	2.972	
423	3.15	86.13	2.760	1.819	1.82	2.529	3.5	56.61	2.55	233	2 989	
473	3.23	90.96	2.770	1.907	2.03	2.662	4.28	68.63	2.69	243	2.998	
523	۳. ۳.	96.00	2.795	1.583	2.24	2.818	4.97	78.00	2.77	253	3.008	
ž :	3.41	101.77	7	2.046	2.41	2.821	5.40			263	3.017	
58.3	5.4° E	107.54	2.846	2.238	3.01	3.00	6.45	CURVE	ф 6	273	3.027	
	3	190 39	2007	2.440	5.73	3.158	7.58				3.037	
CURVE	4	127.72	2.875	2.889	2 . 4 2 . 4 2 . 4	3.595	8.80 1 13 x 10 ⁷⁴	627	3.39 x 10 ²		3.048	
		135.26	2, 893	3, 129	7.55	3 880		2	2.00	202	3.058	
293	3.05 x 107	143.40	2.914	3.376	9.49	4.117	1.81	55.	38	333	2.068	
343	3.10	151.63	2.918	3,700	1.26 x 10 ⁻⁴	4.45	2.41	169	3.5	333	2.000	
383	3.16	160.03	2.929	4.072				692	3.35	343	3 101	
4 3	3.20	167.97	2.938	4.41	2.25	CURVE	/E 6*	732	3,35	353	3, 111	
493	3.25	176.40	2.962				ı			363	3 120	
533	3.29	184.48	2.967	CURVE	2*	348	2.68 x 107	CURV	CURVE 10*	373	3, 132	
593	×	192.61	2.963			373		Series	18	383	3, 142	
Z	27.	200.75	2.975	۰. 363	1.04 × 10 ⁻⁷		3.01				3, 154	
200	8.	209.04	2.987	0.379	1.13	473	3.20	9. 6	3.38 × 10-3			
743	2 .	217.61	3.007	0.395	1.34	523	3.42	12.15			CHRVE 12*	
793	4.75	226.00	3.008	0.434	1.69	573	3.66	14.84	7.53			
		234.99	3.029	0.472	2.22	828	3.26	15.73	8.88	273	3.00	x 102
CURVE	E .	244.07	3.032	0.498	2.56	723	3.26			373		
:		252.58	3.054	0.526	3.01	823	3.26	Series II	11 84	473	3.43	
14. 16	7.53 x 10 °	260.98	3.061	0.588	4.18	923	3.26				3.68	
15.74	888	203.44	2000	0.667	2.5	1023	3.26	2.20	2.78 x 104			
16.95	1.038 x 107	284.66	3.095	0.00	36.0	TIBLE	ř	3.55	¥.	5	CURVE 13*	
18.77	1.164	292.60	3.078	0.768	30	100	1	4.4	3.40	e e	168 1	
19.06	1.191	299.91	3.098	0.827	1.15 x 10 ⁻⁶	323	3.12 x 10 ⁻²	- K	7	64 21		10.
20.11	1.287			0.900						65.18		
22.74	1.467	CURVE	*	0.964	1.81	423	3.29	Seri	Series III	66.82	2.69	
23.08	1.492			1.067	2.53	473	3.38				2.69	
23.62	1.579	0.431	1.66 x 10	1.098	2.70	523	3.46	2.98	1.39 x 10 ⁻⁴		2.71	
27.06	1.737	0.485	1.93	1.175	3.37	573	3.56	3.56	1.69	76.80	2.77	
27.78	1.780	0.545	2.19	1.272	4.25	009(8)	3.62	4.06	2.41			
32.85	2.034	0.616	2.58	1.357	5.11	(1)600	3.88	4.61	4.32	Se	Series II	
37.79	2.200	0.741	3,35	1.408	5.76	633	3.75	4.73	4.12			
42.87	2.325	0.908	4.57	1.578			3.66	5.48	6.42	14.37		x 10 ⁻³
48.23	2, 435	1.004	5.43	1 723	1.06 x 10	773	3.70	6.16				
27.22	2.527	1.168	7.19	1.753	1.12			7.61	1.75 x 10 ⁻³		8.16	
58.85	2.576	1.282		1.958	1.59			8.46	2.24	14.66	8.21	
2.2	2.023	1.414	1.05 x 10 °	2.032	1.76			9.44	3.02	15.99	5.46	

SPECIFIC HEAT OF LEAD

DATA TABLE NO. 28

	**	x 102												x 10 ⁻⁶		x 107			x 10 ⁻³				x 107			
ပီ	CURVE 14 (cont.)*	3.46	3.45	3.43	3.41	3.39	3.37	3,35	3.34	3, 32		CURVE 15*		2.9	7.4	1.7	3.73	7.65	1.27	1.86	3.27	7.98	1.30	1.63	1.93	2.32
۲	CUR	800	850	906	950	1000	1050	1100	1150	1200		ວ	1	8	m	4	10	•	7	6 0	9	15	92	25	8	40
	* .	x 10 ⁻³					x 10 ⁻²											× 10					x 10 ⁻⁴			
رم	F		9	22	2	Ī	80	8	=	₹.	9	90								_	_			=	2	.9
Ū	CURVE 13(cont.)*	6	9.	ě.	6	6	-	1.0		1.1	1.1	1.18	1.2	1.25		Series III		1.23	1.31	 	2.21	2.8	1.0	:	۔	_

	x 10.																	
CURVE 14*	3.08	8 8	3.11	3.14	3.17	3.20	3.22	3.25	3.28	3.31	3.3	3.36	3.39	3.39	3.53	3.51	3.50	3.48
5	298.16	325	350	375	904	425	450	475	200	525	220	575	900	(a) 600.6	(1)600.6	650	92	750

SPECIFICATION TABLE NO. 29 SPECIFIC HEAT OF LITHIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 29]

İ						
Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
l						
-	20	1960	22-165	< 2.0		99.95 Li, 0.02 N, 0.01 Ca, 0.01 K, 0.005 Na, and 0.001 Fe; cooled to 4 K.
7	20	1960	22-165	< 2.0		Same as above; cooled to 20 K.
က	20	1960	96-135	< 2.0		Same as above; not annealed
*	20	1960	60-165	< 2.0		Same as above; annealed at 300 K.
S	20	1960	90-300	< 2.0		Same as above: cooled to 85 K.
9	20	1960	22-160	< 2.0		Same as above; cooled to 20 K.
7	20	1960	90-300	< 2.0		Same as above; cooled to 85 K.
®	51	1969	21-170	< 2.0		99.3 ⁶ LJ, 0.70 ⁷ LJ; cooled to 20 K.
ø	51	1959	90-170	< 2.0		Same as above; cnoled to 85 K.
10	51	1969	180-300	< 2.0		99.3 °Li, 0.70 ¹Li.
11	314	1935	15-300			
12	325	1950	459-773	± 10		
13	326	1950	473-773	± 10		Impurities: 0.1 Ca, 0.1 Si. < 0.1 Hg, < 0.1 P, and < 0.01 each Al, B, Cr, Cu, Fe, K, Na, and Ni; specimen supplied by The Maywood Chemical Co.
14	327	1961	773-1273	1.0		
15	328	1955	298-1200	0.3-0.5		Impurities: sample 1, 0.028 O ₂ , 0.003 N ₂ , 0.0036 Fe, 0.0006 Ni, 0.029 Ca, and 0.016 Na, sample 2, 0.003 Na, 0.001 Ca, 0.006 Fe and 0.0003 Ni.

DATA TABLE NO. 29 SPECIFIC HEAT OF LITHIUM

	ď	CURVE 10	7.68 x 10-1	7.90	80°0	8, 28	8.47	. 65 65	0 00 0 00 0 00	9, 10	9. 22	9. 26	ر ان	* c	3 5		CURVE 11*		6.48 x 10	1.37×10^{-2}	2.44	8.93 8.93	96.0	0.20 1 11 x 10-1	17	2.06	2.71	3.34	3.88 88	4.39	5.24	5.58	5.88	6.14	6.38	6.74	7.09	7.42	7.61	7.8	8.01	8.16		
	H	δl	180	190	002	210	220	230	250	260	270	273, 15	280	2000	300	ĺ	ົວ	•	15	20	25	36	9	45	20	09	70	80	06	9 :	120	130	140	150	160	180	200	220	240	260	280	300		
	ď	CURVE 7 (contd)	8. 32 x 10-1*	10° 00° 00° 00° 00° 00° 00° 00° 00° 00°	# # L	, 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70	Ø. 57	0 4000		1, 57 x 10 ⁻²	2.46	4.07	 2	1 11 x 10-1*	1.39*	1, 71	2.04	2.38	2.71	3, 05	3.39	3. 73	4 43	16.4	5, 63	5. 82	6. 15	6.52	8 3	7. 46		CURVE 9*		4. 07 x 10 ⁻¹	4.37	4	5, 17	5. 63	6.08	6.47	6. 82	7. 13	2.43	
	T	CURVE	273, 15	280	067	298. 15	300	1		21	25	30	g 9	45	20	55	09	65	70	75	08 k	6 9	2 5	100	110	120	130	140	001	170		cni		3	36.5	3	110	120	130	140	150	160	170	
Cp. Calg-1 K-1]	d O	CURVE 6*	1. 74 × 10 ⁻²	2.49	7. 14	0.17	0. 30	1. 12 × 20-7	1. 72	2.04	2.37	2.69	3.02	3.65	3.86	4. 25	4.60	5. 56	5.54	5.80	6. 10	6.54	5	CURVE 7		3. 96 x 10-1*	4. 22	4.46	7. 32		6. 03	6.34	6.61	*	*.05	67.7	7. 42	7. 56	7, 71	7.84	7. 96	\$ 0.0	# TO C	3
specific Reat,	T		22	52	000	Ç (2 :	Ç C	22.0	09	65	2 2	0 0	8 %	06	95	100	110	120	130	140	160	2	CO	1	90	92	100	011	200	140	150	160	170	081	190	200	210	077	230	240	250	220) i
[Temperature, T, K; Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]	Сp	CURVE 4 (contd)	5. 78,x 10 ^{-1*}	5. 95 11*	0. 11 6. 25*	*****	****	, o	*6. 29		CURVE 5	*1-01 - 00 6	5. 31 A 10 .	* 74.	4. 70*	4. 92	5. 13	5.33	5.52	5. 70		. o.	6.33	*91.9	6.60	6.72	6.85	6.95	9 6	7.42	7, 57	7.71	7.83	. 93	5 6	0° TO	67.0	8, 32	30,00	20° C	96.5	8. 58		
[Ter	(CURV	027					160			ଧ	8	9	100	105	110	115	120	125	027	145	145	150	155	160	165	170	175	201	200	210	220	230	240	000	007	07.2	273, 15	087	280	298, 15	300		
	$_{\mathbf{p}}^{\mathbf{q}}$	CURVE 2 (contd)	3.65 x 10-1	3. 30 ♣ 25 ♣	* 60 *	* 20 5	, c	* 55	5.58	5.68	5.80	. 40 41.	6.26	6,39	6.52	£99.9	08.9		CURVE 3	41-01 90 4	4. 26 X 10 X	5.46	33	5,30	5.41	5. 56	5. 72	. 98 88	7 anding	- ONA	2.08 x 10 ⁻¹	2.40	2, 72	3,0	***************************************	******	3. 40	4. 24 	, o	5. I4			5.42	;
	H	CC	98	9 4 8	2 2	105	120	115	120	125	130	140	145	150	155	160	165	,	0 1	90		105	110	115	120	125	130	137	•	-	9	65	92	2 8	2 4	3	3 8	2 5	3 .	105	110	611	125	ì
	od d	CURVE 1	1, 69 x 10 ⁻²	2. c.	3	. o	1 11 4 10-1	1.39	1, 71	2.8	2.36	2.68	32	3.64	3.95	4. 26	4. 60	5.28	5. 52	5. 5.	60.0	8 8	5.98	6. 15	6.31	6.45	96.56	0 e		CURVE 2		1.73×10^{-2}	2. 46 5. 66	3 5	***	1 13 - 10-1*	A ****	*: 	***	****	****	* 69.	**************************************	
	H	OI	22	9 8	3 8	3 4	4.5	200	55	09	65	5 12	2 2	82	8	92	8	105	110	130	125	120	135	140	145	120	155	165	2	0		75	5 52	2 6	3 4	7	2	2	3 6	9	9 6	5 5	2 2	V .

ď	VE 15(cont.)*	9.984 x 10 ⁻¹	9.975	9.967	9.958	9.950	150.0	9.832		•		9.898																																
H	CURVE	200	750	800	820	006	000	1000	000	1100	1150	1200																																
ტ	VE 12*	1.4 x 10°	1.3	2.5	1.0	104		101	5 5		1.1	1. 14	VE 14*	9.62 x 10"1	62	9.62		29.0	9.62	9.62	VE 15*	8.491 x 10 ⁻¹	8.501	8.645	828	9.040	9.270	9.510	9.749	976	1.011 x 10°	•		0.142	1.038	1.03	1.029	1.001	1.021	1.01	1.014		1.002	1.001
H	CURVE	459	573	673	773	3/10/12	5	743		5/3	673	773	CURVE	773	800	006	1000	1100	1200	1273	CURVE	298.16	300	320	340	360	380	400	420	440	(8)453.7	3,453.7	400	480	200	020	950	000	900	000	070	050	000	000

The values for curve lave presented here 4.184 times too high.

SPECIFICATION TABLE NO. 30 SPECIFIC HEAT OF LUTETIUM

(Impurity < 0 20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 30]

mp. Reported Name and Composition (weight percent). Specifications and Remarks	0.1-2.0	< 2.0
Reported Error, %	0.1-2.0	< 2.0
Temp. Range, K	5-340	296-1936
Year	1960	1966
Ref. No.	158	301
Curve No.	-	8
		10

DATA TABLE NO. 30 SPECIFIC HEAT OF LUTETIUM [Temperature, T, K: Specific Heat, C_p Cal $g^{-1}K^{-1}$]

T CURVE 2 (cont.)*	6.00 x 10 ² 6.48 6.48
T	1900
T C _p	20

	x 10-2															
CURVE 2*						3.75										5.63
	298.15	300	400	200	909	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700

^{*} Not shown on plot

SPECIFICATION TABLE NO. 31 SPECIFIC HEAT OF MAGNESIUM

[For Data Reported in Figure and Table No. 31]

Composition (weight percent), Specifications and Remarks		99, 95-99, 98 Mg.		99.99 Mg.	Pure: polycrystalline; degassed at 500 C in high vacuum.	Small amounts of Al, Fe. and SiO ₂ .	Small amounts of Al, Fe, and SiO2; commercial product; cast in sticks.	Impurities: 0.035 Mn, 0.02 Si, 0.018 Fe, and 0.006 Al.		99. 93 Mg.	99, 96 Mg; sample supplied by the Dow Chemical Co.	0.043 Mn.	0.013 Fe.	Sample 1: 99.956 Mg, 0.044 Si, sample 2: 99.918 Mg, 0.082 Si, sample 3: 99.10 mg,	and 0,22 Si; data is average of the 3 samples.
Name and	Specimen Designation												Sample 1	Sample 2	
Reported	Error, %				0.1		1.0	1.0					3.0	3.0	
Ę	Range, K		700-1100	298-543	12-320	190-300	75-289	373-873	11-228	291-773	273-873	2-4	3-13	3-13	80-290
	Year		1965	1957	1963	1960	1918	1924	1930	1931	1935	1952	1967	1957	1960
	Ref. No.		45	47	48	49	170	179	186	187	208	294	329	329	49
	Curve No.		-	8	က	4	ß	9	7	00	0	10	11	12	13

DATA TABLE NO. 31 SPECIFIC HEAT OF MAGNESIUM

	1	= ([Tempera	ıture, T, K; S	pecific Heat,	[Temperature, T, K; Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]				
H	ဒီ	←	c _p	H	ဝီ	(-	ပိ	H	C _p	٠	္
OI.	CURVE 1	CURVE	CURVE 3 (contd)	CURVE	4 (contd)	CUR	CURVE 7 (cont.)*	CURVI	CURVE 10 (cont.)*	CURVE	CURVE 12(cont.)*
200	2. 92 x 10 ⁻¹	490	2.660 x 10 ⁻¹	298, 16	2. 439 x 10-1*	48.7	5.469 x 10 ⁻²	2,778	4.85 x 10 ⁻⁵	10 63	F-01 - 10- 3
150	2, 98	200	2.671	300	2. 442		6.242	2.896			
800	3.05	510	2.681	310	2, 456		7.089	2.957		2.5	6.63
000(1)	 2	520	2.690	320	2. 467		9.104	3.054		12.27	7.36
(L) 950	3.5	02.5	2.644		*.	86.7	1,335 x 10 ⁻¹	3.150		12.62	7.82
1000	3.24	543 16	2 711	200	0	93.2	1.458	3.223	5.80		
1050	2 20		<u>:</u>	190	1-01 2 001 0		1.529	3,301	6.21	CURV	CURVE 13*
1100	35.	CIRVE	7 4 7	200	2. 133 X 10 ·		1.595	3,351			1
	;	5		007	27.73		1.727	3.410		80	1.229 x 10 ⁻¹
0	CURVE 2*	13	6, 58 x 10 ⁻⁴ *	220	2.283	124.2	1.820	3.469	6.78	&	1.377
		11	L 07 x 10 ⁻³	230	2,308		1.986	3 571		100	1.506
200	2. 92 × 10 ⁻¹	16	1, 73	240	2, 331		1.209	3.631	7.65	130	1.023
150	2.98	18	2.67	250	2, 352		2.135		3	120	1.130
800	3.05	20	3.5.	260	2, 372		2.150	SIL	CIRVE 11*	071	1.000
820	3. 13	25	7, 73	230	2, 407		2.191			150	1.300
006(8)	3.21 e	8 3	1, 40 x 10 ⁻²	300	2, 442		2.245	3, 14	5.2 x 10 ⁻⁶	160	2.021
350		e i	2. 26			228.4	2.270	4.55			2.064
098(1)	3. Lg	2 :	3.30	CURVE	/E 6*			5.60	1.33 x 10 ⁻⁴		2, 101
0001	3.24	Ç.	4, 426				CURVE 8*	6.44			2, 140
1100	2.53	2 2	5.623	373	2.57 × 10 1			7.22	2.18	200	2.176
2011		9 6	1 007 2 10-1	473	2.68	291	2.42×10^{-1}	7.89	2.60	210	2.209
(c sangua	2 6	1, 02 / X 10 -	573	2.79	373	2.22	8.47	3.11	220	2.240
זנ	CONTE	8 8	1 400	673	2.89	473	2.67	9. 10	3.76	230	2.267
208 16	8 2 444 × 10-1*	8 8	1 544	273	3:	573	2.76	9, 71	4.28	240	2.290
300	i ai	011	1. 667	8/3	3.11	673	2.87	10.30	4.26	250	2.309
310	2, 461	120	1, 772	Tall	CITEVE 7*	2	3	11.8		092	2.326
320	2, 473	130	1.862			į	CTDVE OF	11.33	6.30	270	2.341
330	2, 485	140	1.941	11 31	5 3 × 10 ⁻⁴		1	19 97	6.0	087	2.354
340	2, 498	150	2.006	11.43			2 413 x 10 ⁻¹	12.21	0.40	290	2.364
350	2.511	160	2, 062	14, 14	1.1 x 10 ⁻³	n	2.518				
360	2. 523	170	2. 111	14.28			2.624				
370	2. 335	22	2. 154	16.94	2.0	573	2.729		CURVE 12*		
380	2.546	190	2, 193	17.24	2.1	673	2.834				
390	2. 557	200	2, 229	19.50	3.1	773	2.939	3, 14	5.3 x 10 ⁻⁵		
00	2.567	210	2, 257	19.64	3.0	873	3.045	4.55			
410	2. 577	220	2, 283	21.7	4.61			5.60	1.27 x 10 ⁻⁴		
024	2. 38/	230	2.303	24.3			CURVE 10*	6.44			
3 5	2.031	040	2, 331	27.1	1.01 × 10.1			7.22	2.08		
450	2.607	250	2, 352	30.2	1.45	2.040		7.89	2.70		
760	2 627	220	2,3/2	31.2	2. 19	2.20	3.57	8.47	3. 19		
470	2, 638	280	2. 330	37.6	2.86	2.364		9.10	3.52		
480	2,649	280	2, 425*	41.7	3.78	2.538	4.19	9.71	4.24		
S No	5656	1	; ;	7.05	£70.4	70.7		10.30	4.71		

SPECIFIC HEAT OF MANGANESE SPECIFICATION TABLE NO. 32

(Impurity < 0, 20% each: total impurities < 0, 50%)

[For Data Reported in Figure and Table No 32]

	ifications and Remarks	50 C in 10-4 mm Hg vacuum.		nous sulfate in the presence of sulfites	e of silica glass.	,			99.95, 0.01 each C. Cu. and Fe; 0.001-0.01 O. 0.001 Si, 0 001 N and 2.00 $\rm H_2$ per 199 g; density = 454 lb $\rm ft^3$	adding 0, 06 Cu.			or imparities)	99.9 Mn: sample A. degassed by heating to 850 C under 10 ⁻⁵ mm vacuum and cooled slowly.	Traces of Mg. and Ca: standardized Mn from Johnson Matthey and Co Ltd. Lab. No 4135; annealed at 1120 C for 16 hrs under argon atmosphere followed by rapid quenching.	Same composition as above; obtained from β – Mn by heating to 1100 C followed by slow cooling to room temperature and afterwards held at 600 C for 3 hrs followed by slow cooling to room temperature	> 99.9 Mn; a - phase body centered cubic crystal structures: sample supplied by the Bureau of
	Composition (weight percent). Specifications and Remarks	99.9 Mn; prepared by heating gradually to 550 C in 10 ⁴ mm Hg vacuum.	< 0.01 impurities, mainly Mg.	99.9 Mn. prepared by electrolysis of manganous sulfate in the presence of sulfites	99. F Mn. 0.03 - 0.07 St samples in capsule of silica glass.	Same as above.	Same as above.	Same as above.	99, 95, 0, 01 each C. Cu. and Fe; 0, 001-0, 0 density = 454 lb ft^3	Same as above; γ - manganese stabilized by adding 0, 06 Cu.			98, 94 Mn. 1, 06 Mn O ₂ , 0, 24 O ₂ (corrected for imparities).	99.9 Mn: sample A. degassed by heating to	Traces of Mg. and Ca: standardized Mn from Johnson Matthey and Co Ltd. Lab. Nannealed at 1120 C for 16 hrs under argon atmosphere followed by rapid quenching.	Same composition as above; obtained from β to room temperature and afterwards held temperature	> 99.9 Mn; a - phase body centered cubic cm
	Name and Specimen Designation	γ - manganese	Electrolytic	γ - manganese	8 - manganese	ィ - manganese	γ - manganese	6 - manganese	ν - manganese	γ - manganese	Powdered manganese	Powdered manganese		Electrolytic	β - manganese	o - manganese	
	Reported Error, %																5.0
	Temp. Range, K	54-301	273-1073	54-237	1000-1374	298-1000	1374-1410	1410-1517	11-273	13-273	16-22	16-18	54-290	300-1450	12-20	12-20	0,64-3.1
	Year	1945	1960	1945	1946	1946	1946	1946	1964	1964	1940	1949	1939	1945	1965	1965	1969
	Ref. No.	330	24	330	57	57	57	57	28	28	29	9	221	331	332	332	223
1	Curve No.	-	73	ဗ	4	S	9	7	œ	o	10	11	12	13	7	15	16

DATA TABLE NO. 32 SPECIFIC HEAT OF MANGANESE

[Temperature, T.K; Specific Heat, Cp. Cal g 1K1]

ပ္ခ) 6		2.74 × 10 °	2 2 2	2 67	20.0	3.70	1.32	1.056 x 10 c	1.430	1.797	2.206	3.082	3.295	3.855	3.862*	4.285*	4.680	5.064	5.466	5.779	6.123	6.121*	6.494	6.747	6.787*	7.100	7.406	7.916	8.076	8.309	8.526	8.688	8.942	9.094	9.265	9.423	9.563	9.771	1.001 x 10 ⁻¹	1.016	1.032	1.045	1.046*	1.057	1.071	1.072*		
H	CURVE		20.00	24.00	96.04	300	21.02	01.37	36.35	41.01	45.17	49.55	58.67	61.71	66.48	66.77	71.34	75.67	79.86	84.72	89, 13	93.51	93,83	98.37	102.90	103, 11	107.69	112.22	121.43	126.14	130.74	135.94	140.76	145.48	150.76	155.61	160.39	165.60	170.42	181.84	186.87	191.84	198.81	198.98	204.18	209.44	210.32		
$c_{\mathbf{p}}$	8 (cont.)	201 102	9.001 X 10 -	0 860	#500 6	2000	1 004 × 10 1		1.008	1.012	1.016	1.021	1.021	1.045	1.049	1.945*	1.059	1.063*	1.064*	1.070	1.082*	1.074*	1.089*	1.091	1.085*	1.100	1.112	1.107		E 9		6.57 x 10 ⁻⁴	9.72		1.03 x 10 3	1.11	1.15	1.14*	1.16*	1.41	1,44	1.51	1.51*	1.85	1.86*	1.99	2.08		
T	CURVE	301	190.33	196	199 55	901 99	204 73	000	21.007	208.52	211.21	213.97	216.61	226.18	228.97	231.34	234.41	237.20	239.62	244.95	246.58	250.76	252.37	256.15	259.81	263.67	269.58	273.00		CURVE		12.90	13.20	13.25	13.46	14.44	14.51	14.55	14.67	16.18	16.32	16.73	16.78	18.39	18.47	19, 11	19.46		
ပ်	8 (cont.)	\$ 206 × 10 B	5.601	5.588	5.706*	5 613*	20.00	5 910	0.010	100.0	b. I/4*	6.203*	6.451	6,514*	6.560	*009.9	6.675*	6.818*	6.815	7.024	7.035*	6.929	6.888*	6.793*	6.840*	6.867	€. 886*	6.973*	6.933	.896.9	7. 184	7.424	7.657	7.803	8.120	8, 335	8, 524	8.711	8.759	8.848	8.890*	9.046	9. 101¢	9.172*	9.277	9.387*	9.419		
F	CURVE	8	85.50	86.18	87.00	87 03	88.52	90 10	90.75	20.10	91.35	91.69	60.3		95.58	96.02	96.20	97.82	97.92	98.06	99.99	101.96	104.01	104. E	105.46	106.09	108.25	109.99	110.09	110.40	114.67	119.96	124.58	129.60	135, 33	140.25	145.77	151.14	152.03	156.18	157.23	161.74	162.38	166.73	168.84	174.18	179.30		
သိ	7	2.06 x 10 ⁻¹	2.06	2.06		90 (4)	1	7.55 x 10 4	2 60 1	3	0.00	9.02	1 03 - 10-3	. 01 x co	1.0.	1. 19	1.12	1.22	1.39	1.43	1.46	1.53	1.70	1.867	1.915	1.929	2.372	3.231	4.709	6.336	8.759	1. 148 x 10 *	1.449	¥ 000 0	2.230	6.000	2.738	2.963	3, 140	3.429	3.615	3.808*	4.188*	4,350	4.678*	4.776	5. 133		
T	CURVE	14 10	1500	1517		CURVE		10,74	10.87	11 95	10 00	22.22	2 5	25.25	13.40	3. i	13.98	14.50	15.62	15.86	16.20	16.53	17.92	18.70	18.81	₹.5 5.5	21.13	24.02	£0.12	31.27	35.29	39.20	42.33		56.16	99. F4	26.53	28.36	61.03	£. 54	62.69	67.62	71.43	72.99	76.37	77.55	81.02		
ტ	3 (cont.)	3.772 x 107	4.271	4.651	4.997	5,350	6.080	6.725	7.349	7 815	211	8 729	60.00	396	9.796	269.6	9.936	1.017 x 10 1	1.040	1.065	1.080	1.099		4		. 64 × 10 ·	1.65	8 5	1.01	1.03	u L	1	1 144 ~ 10-1	1 146 TO 10	1 24 1	310	1 300	000	7	1.519	1.583	1.646	1.950	1.950	1.950				
F	CURVE	66.4	71.8	76.1	80.3	æ.	94.7	104.5	115.2	124 3	135.0	145.9	155.5	165.6	175.0	175.3	135.6	196.1	205.9	216.5	226.3	236.5		CORVE		0001	1300	1300	1374	F) (7	3/10/10	COR	298 15	300	400	200	900	000	300	200	006	1000	1374	1400	1410				
ပ်		2.512 x 107	2.898	3.288	4.120	4.884*	5.330	5.786	6.168*	6.486	6.526*	6.383	6.441	6.597	1 00 9	1 200	4.05	9.10	77 8.6	1.04.2.10-1	1 050 I	1.039	1.012	1 103	1.102	1.114	1.13	1. 147				1.111 x 10 h	1.200	1 274	1.336	1 398	1 458	1 530	1. 350	CIO.1	107.1				2.572 x 10 •	2.918	3,330		41.1
Ĥ	CURVE	54.2	58.2	62.1	70.3	8.77	82.2	86.5	7.06	93.3	95.9	98.4	101.2	104	111 5	120 2	140.0	173.6	100.7	130.4	222.0	241.9	951.1	260 9	271.0	280.8	291.0	301.3		CITEVE	1	273.15	373	473	573	67.3	773	84.3	200	2000	10/3		CORVE).To		The same

DATA TABLE NO. 32 (continued)

Г	CURVE 16 (cont.)*	0.828 1.269 x 10 ⁻⁴	-	0.843 1.503										1.419 2.518										;									•														
T Cp	CURVE 14*	12 1.13 × 10 ⁻²	1.16	14 1.26				18 1.78				CORVETS		12 3.46 X 10 *		15 5 10							CURVE 16*		0.635 1.350 x 10 4	0.640 1.163	-	_	-	0.675 1.184	0.005 1.300		_	_		0.733 1.444		0.737 1.514			· -					_	
T Cp	CURVE 12(cont.)*	96.9 6.371 x 10 ⁻²							153. 1 9. 137												282.0 1.127	285.9 1.125	289.8 1.126		CURVE 13*		-			1.388								1.948		0 1.948							
	CURVE 10 (cont.)	2.550 x 10 ⁻³	2.588	20.59 2.721 11	200	100	3 886	0000	3.018		CHEVE 11 10		1,771 x 10 3		1.867*	1.951*	1.966	2.029		2.080	2.122	2.228	2.235*			2.545	2.474*	2.596	20.55 2.725* 500	2.880	2.5	2.894*	3.012*	3.122 B	22.48 3.167 1100		CURVE 12* 6 1374		2.483 x 10 ⁻²	2.791	3, 159 6	3.554	3.961	4.631	5.178	5.698	
o d	3 (cont.)	x 10 ⁻¹		1.085					1.127	1 130#	1 139						1. 167	1. 175*	1. 177*	1.186		CURVE 10 18.	•	K 10.3		1.798	1.920*	1.877	1.929	1.888#	1.980*	2.000*	2.055*	2.050	2.181*	2.162	2. 131	2.228		2.304*	2.303*	2.335*	2.417*		2.401* 80.4		
H	CURVE	214.48	215.77	218.97	324 66	200 70	930 14	234 47	238.01	330	243 95	247 75	249.60	253.66	255.00	259.29	262.73	267.38	268.63	273.38		5		15.90	15.91	16.03	16.67	16.85	17.10	17.25	17.41	17.57	17.73	17.79	17.80	18.27	18.51	18.75	18.99	19.23	19.31	19.35	19.87	19.96	19.97	20.14	

SPECIFICATION TABLE NO. 33 SPECIFIC HEAT OF MERCURY

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 33]

Composition (weight percent). Specifications and Remarks Vacuum distilled. Electrolytically purified: twice distilled under low pressure of current air. Trace of Sn; purified. Very pure. 99.999 Hg; sample supplied from Johnson, Matthey and Co. < 0.01 each Cu and Ni, and 0.00001 non volatile impurity, mostly silver; sample was distilled 3 times. 0.0006 max.total impurity; specimen from Mallinckrodt.	Name and Specimen Designation P sample	Reported Error. % 1.0 1.0	Temp. Range, K 19-282 3-92 314-416 196-285 4-90 1-20 234-773	No. Year No. 333 15.72 334 1923 214 1927 335 1980 336 1948 284 1966 337 1961	Ref. No. 333 334 214 335 336 336 336 337 338 337	Curve No. 1 1 2 2 3 4 4 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 7
			61-243	1911	423	o,
						5
0. 0006 max. total impurity; specimen from Mallinckrodt.		0, 1-3, 0	15-318	1953	338	60
tilled 3 times.						
< 0.01 each Cu and Ni. and 0.00001 non volattle impurity, mostly silver; sample was dis			234-773	1961	337	2
99.999 Hg; sample supplied from Johnson, Matthey and Co.			1-20	1966	284	9
Very pure.			4-90	1948	336	s.
Trace of Sn; purified.	P sample	1.0	198-285	1930	335	4
Electrolytically purified; twice distilled under low pressure of current air.		1.0	314-416	1927	214	က
			3-92	1923	334	2
Vacuum distilled.			19-282	15,2	333	-
Composition (weight percent), Specifications and Remarks	Name and Specimen Designation	Reported Error, %	Temp. Range, K	Year	Ref.	Curve No.
	70000					İ

DATA TABLE NO. 33 SPECIFIC HEAT OF MERCURY

[Temperature, T, K; Specific Heat, Cp, Cal g 1K1]

	ဝီ	CURVE 8 (cont.)	1.765 x 10.7	9.054	2, 182	2.294	2.397	2.495	2.582	2.707	2.749	2.793	2.834	2.915	2.9.3	2,973	2.998	3.025	3,049*	3.072	3, 123	3, 141	3, 174	2.501	3.230	3.50	3,328*	3,365	3,391		6 3	1	2.670 x 107*	2.665*	2.685*	2.688*	2.715*	2.770*	2.808*	2.830*	2.94.94	2.875*	3.210
	۲	CURVE	30.20	3.5	41.60	46.20	51.16	56.53	62.27	73.21	78.68	84.48	20.00	103.84	110.84	117.69	124.52	131.52	138.81	146.32	161.89	170.04	178.00	100.00	12.42	211.39	219.79	228, 13	241.86		CURVE	9	61.5	62	65	99	69	79	28	98	06	a 3	107
	တိ	CURVE 8 (cont.)	5.346 x 107	3.375	3.378		28 II.		3.344 x 10 ·	=		3.306 x 10 ⁻²	10 to 10 to	. <u>*</u>	3.387 x 102	3,383	3,372	3,363	3,360	3,355	3,353	3,346	3,338	200.0	3.332	3.321	3.316		Series V*		3.340 x 102	3.372	3,397		Series VI	3579	8.868 x 10 ⁻³	9.855	1.089 x 102		1,353	1.477	1.013
	Ŧ	CURVE	222.94	249.35	255, 80		Series	000	288.00	Series III		325, 89	1	Serie	242.17	248.18	254.32	261.79	268.04	274.22	280.50	286.50	293.03	64.069	304 99	311.35	317.77		Serie		222.46	229.09	239.02		Serie		14.90	16.28	17.90	19.84	22.02	24.31	\$.72
[Temperature, T,K; Specific Heat, Cp, Cal g 1K1]	c _p	CURVE 6 (cont.)	8.48 x 103	1.13 x 10 ²	1.26		E 7	10 000 c	3, 3, 3 X 10 T	3,338	3.324	3.321*	3 200	3,288	3.278*	3,269	3.261*	3.254*	3.248	3.243*	3.239	3.236	3.234*	2020	3.233	3,236	3.234*	3.237*	3.240*	3.244*	3.248	3.254*	3.260	3.266*	3.259		œ (4)	Series I*		3.243 x 10 2	3.264	3.289	170.6
Specific Hea	H	CURVE	14.0	18.0	20.2		CURVE	766	4.54 5.54	273	293	298	333	353	373	393	413	433	453	473	793	513	553	2 2	593	610	613	633	653	673	693	713	733	753	773		CURV	Serie		197.57	203.71	209.92	72.079
mperature, T, K;	ď	CURVE 4 (cont.)	3.29 x 10 ²	3,32*	3,35	3,39*	3,37*	3 26*	*98*	3.38	3.37	3.39	5.0	/E 5	l		1.0 x 10 ³	3.4	4.4	5.28	6.53	8.58	1.23 x :0: 1 59	20.	2.30	2.47	2.64	2.75	2.83*	2.89		9	1	1.41 x 10 m	3.05	1.15 x 10*	4.99	9.97	1.80 x 10 ⁻³	2.59	4. L7	0.01	•
Te	H	CURVE	217.6	222.9	227.4	229.2	229.7	931.0	232.4	232.7	(s) 233.8	(1) 236.5	7.007	CURVE		3.5	4	9	œ	10	2 :	e 6	20 22 32	2	0.4	20	09	10	08	8		CORVE	9	2:5	T.5	2.0	3.0	4.0	5.0	6.0		12.0	ì
	ပီ	CURVE 2 (cont.)	2.17 x 10 ²		2.38*	2,55*	2.66	*02.0	6.13	2.78	2.83	2.80	80.7	VE 3		3.32 x 107	3.33	3.29*	3.33	3.27	3.28	3.31	3.29	1000	3,32*	3.32*	3.29*	3.32*	3.30	3.32	3.29		VE 4	200 0	3.20 X 10 ·	****	3.24	3.24	3.25	3.29*	3.27	3.24	3.0
	Н	CURVE	36.6	43.0	45.0	52.9	62.0	62.0	0.00	80.5	86.0	87.5	34.0	CURVE		314	343	343	373	374	374	415	378	326	376	376	376	376	416	416	430		COKAE	9 501	197.0	199.4	7.102	207.5	208.1	208.6	209.9	212.9	
	ይ	1 2	1. 123 x 10 ⁻³	1.404	1.724	1.866	2.035	381	2.550	2.790	2.891	2.983	3.24.1	3.421		E 2	Series I		5.519 x 10 ⁻³	5.738	6.202	104.0	7 388#	7 897				5.24 x 104	1.35 x 10 ⁻³		5.0	0.10.		7.18	. 20	7.83	1. 12 x 10 =	1.26	1.41*	1.73	8 3	1: 0 0: 0	
	H	CURVE	18.7	22.6	27.5	30.3	7 K	45.0	6.25	67.9	87.5	109.4	191 7	281.8		CURVE	Serie		9.78	10.17	10.89	10.05	12.55	13 35		Series		3.45	5.37	9.70	10.17	11.00	11.03	12.35	6.99	13.35	18.7	20.3	20	27.50	20.0	24.2	•

^{*} Not shown on plot

The state of the s

T Cp CURVE 9 (cont.) 206 3.215 x 209 3.260* 214 3.290* 228 3.310* 230 3.305 233 3.475* 233 3.490 236 3.567 238 3.545 238 3.545 238 3.545 249 3.545

SPECIFICATION TABLE NO. 34 SPECIFIC HEAT OF MOLYBDENUM

[For Data Reported in Figure and Table No. 34]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	11	1960	300-2800	1.7		
8	15	8	1100-2200	. 6		99 98 Mr. and O. O. MoO. sample surelied by Messess Hand Allena Dlane
. et	62	1962	973-2673	+		Dollahed surfaces make necessary and emena attention of most of the California
. •	. 8	1961	200-350	i i		rousieu suriace, unier vacuum and argon aunosphere.
· vo	2	1963	1200-2100	۷. دن. ۵	wire sample	99.93 Mo, 0.01 each C and Fe, 0.005 O ₂ , 0.001 H ₂ , 0.001 N ₂ , and 0.02 distilled residue; sample supplied by Metallwerk Plansee, Reutte Austria; outgassed and mounted in evacuated (1 x 10 ⁻⁶ mm Hg) glass envelope.
9	10	1968	478-1866			Sample supplied by the Climax Molybdenum Co.; measured under an atmosphere of 95% argon and 5% hydrogen; density = 640 lb ft ⁻³ at 75 F.
7	65	1961	200-2860	4.0		
∞	99	1961	473-1273			
o	67	1960	1550-2180	± 10.0		
01	89	1962	273-2673			
11	69	1959	13-271			99. 9696 Mo. 0. 004-0. 006 Fe. 0. 002 O. 0. 002 Si. 0. 0001 H, and 0. 0001-0. 0003 Co. Cu. Mg. Ni. and W; sample rods formed by powder metallurgy.
21	20	1934	273-1873			Pure; heated at 1400 C for 4, 8, and 12 hrs.
13	11	1960	1089-1700		Mo-9-8	99.90 Mo, <0.005 Fe, and <0.003 C.
14	11	1960	1089-1700		Mo-11-5	Same as above.
15	71	1960	1089-1700		Mo-11-10	Same as above
16	72	1965	1250-1600	0.09		99.9 Mo: gample supplied by the Fansteel Metallurgical Corp.; annealed at 1425 K.
17	101	1958	400-946			Specimen's surface plated with platinum black.
18	213	1926	16-275			
19	339	1929	233-523	2.4		
20	340	1962	298-2650			99.9 Mo; sample supplied by the Fansteel Metallurgical Corp.
21	175	1953	1-10			Same as above.
22	341	1964	0.4-4		Mo-1	Very pure molybdenum single crystals; zone-refined; normal state.
23	341	1964	0.44		Mo-2	Ultra pure molybdenum single crystals; zone refined; normal state.
24	341	1961	0.4-0.9		Mo-2	Ultra pure molybdenum single crystals; zone refined; superconducting state.
36	24.5	1001			No. 1	Titles ones and the formation of the for

DATA TABLE NO. 34 SPECIFIC HEAT OF MOLYBDENUM

CURVE 1 300 5.25 7 400 6.72 100 6.72 100 7.21 7 2000 8.15 2000 1.35	C C D C D C D C D C D C D C D C D C D C	CURVE 3 (c 2373 2573 2573 2573 2573 2573 2573 2573	CURVE 5 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 7.12 x 10 ⁻² 7.12 x 10 ⁻² 7.12 x 10 ⁻² 8.14 8.34 CURVE 6 8.34 CURVE 6 6.5 x 10 ⁻² 8.6 6 6.5 x 10 ⁻² 8.6 6 6.6 6 6.7 6 6.8 6 6.9 6	T CURVE 200 5 5 300 6 6 600 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6 6 600 6	CURVE 7 CURVE 7 CURVE 7 CURVE 7 CURVE 7 CURVE 7 CURVE 8 CUR	T, K: Spec x 10 ⁻² x 10 ⁻² x 10 ⁻²	T CURVE 9 (cont. 2040 9. 2110 9. 2180 9. 2180 9. 2180 9. 2180 9. 2180 9. 2180 9. 2180 9. 273. 15 5. 373 6. 373 6. 373 6. 373 6. 373 6. 373 6. 373 7. 7. 7. 1273 6. 373 7. 1273 8. 1373 1. 2573 9. 2273 9. 2273 9. 2273 9. 2273 9. 2273 9. 2273 9. 2273 9. 2273 9. 2273 1. 257	T C _p T T C _p CURVE 7 200 5.30 × 10 ⁻² 250 5.70 × 10 ⁻² 250 6.29 600 6.39 700 7.40 700 6.39 700 7.40 700 7.40 700 7.64 700 7.64 700 7.64 700 7.64 700 7.64 700 7.64 700 7.64 700 7.64 700 7.64 700 8.36 700	T CURVE 19, 46 623.16 63, 51, 18, 28, 69, 61, 18, 28, 11, 18, 28, 61, 18, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61	CURVE 11 (cont.) 19. 46	CURVE 11 (cont.) 221. 86 5. 560, 222. 589 231. 45 5. 589, 236. 95 5. 568, 236. 95 5. 682, 241. 36 5. 701, 256, 31 256, 31 256, 256, 31 257, 31 257, 3	CDRVE 12 (Cont.) 86 5. 560 x 10 ⁻² 55 5. 589 x 10 ⁻² 55 5. 589 x 10 ⁻² 56 5. 588 x 10 ⁻² 57 5. 58 x 10 ⁻² 58 5. 720 x 10 ⁻² 58 5. 720 x 10 ⁻² 58 5. 720 x 10 ⁻² 59 5. 837 x 10 ⁻² 50 5. 837 x 10 ⁻² 50 5. 881
		1478 1589 1700 1811 1866	స. గ. ఇ. ఇ. ఆ. ని త	CURVE 1550 1690 1830 1970 9	6 4048	x 10°2	14.38 15.27 16.10 16.71 18.34 19.24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	201.37 202.63 202.63 207.25 208.03 212.53 212.74 212.74	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CURN 1088.9 1144.4 1200.0 1255.5 1311.1 1366.6	CURVE 13* 9 7.28 × 10 ⁻² 4 7.32 0 7.38 5 7.46 1 7.56 6 7.66

			x 10*																																								x 10-6	}			
	ပ	(cont.)*	2.32 x	2.49	2	2.69	2.77	2.86	2.2	3.09	3.01	3.09	3. 16	3,31	3.31	3.44	1	3.59	3.61	3,69	3,71	3.86	3.79	3.99	3.96	4.14	66.5	1:	1.41	4.26	4.36	4.36	4.46	5.08	5,43	6.15	7.42	8.27	8.37	8.79	9.42	8			1,16	1, 17	
	H	CURVE 23 (cont.)*	0.5265	0.5610	0.5773	0.5941	0.6129	0.6223	0.6461	0.6581	0.6715	0.6815	0.6948	0.7045	0.7221	0 7483	0.7527	0.7573	0.7767	0.7897	0.8101	0.8210	0.8327	0.8533	0.8620	0.8754	0.8964	0.9026	0.9116	0.9284	0.9358	0.9475	0.9687	1.100	1.174	1.331	1.565	1.661	1.736	1.846	1,958	2.085	2, 140	2.288	2.344	2.393	
			x 10.4																	x 10°																		x 10°									
	ပ္	(cont.)	3.66	3.76	3.89	4.01	3.96	4.11	4.24	4.26	4.33	4.86	5.18	5.78	6.50	2.5	8.05	2	9.47	1.0	1.09	1.12	1.14	1, 19	1.30	C	1.42	1.41	::	1.52	1.63	1.84	1.88	1.88		23*		1.63	1.81	1.88	1.88	1.91	2.07	2.23	2.18	2.29	
	Ħ	CURVE 22 (cont.)	0.7947	0.8313	0.8470	0.8656	0.8830	0.9050	0.9269	0.9405	0.9538	1.085	1.155	1.276	1.407	1.617	1.717	1.811	2.000	2.176	2.241	2,314	2.346	2.410	2.624	2.695	287.2	2.785	200	2.92.	3,108	3,387	3,428	3.460		CURVE 23*		0.3587	0.3926	0.4129	1,4151	1.4324	0.4537	0.4846	0.4929	0.5091	
_			x 10°			x 10.											x 104					.61 x 10 4																									
(continued)	ဝီ	21⁴	7.21	7.55	7.73		1.51	1.59	1.5	1.69	2.08	2.91	2.70	2.0	6.6	7				*25	ŀ	1.61	1.64	1.71	1.73	100	1 . 30	1.95		2.12	2.16	2.21	2.27	2.43	2.47	2.25	2.59	2.69	2.79	2.86	2.96	3.06	3.09	3.14	3.21	3.44	3.46
8	H	CURVE	1.339	1.392	1.420	2.412	2.523	2.741	2.878	2.980	3.478	4.495	4.603	4.700	9.179	9.429	9.910	10,445		CURVE 22*		0.3622	0.3714	0.3604	0.4034	0.4346	4443	0 4475	0.4679	0.4926	0.5098	0.5188	0.5280	0.5598	0.579	0.5925	0.6020	0.6186	0.6272	0.6443	0.6607	0.6793	0.6859	0.7025	0.7208	0.7546	0.7624
DATA TABLE NO.			10 2														102																					10.1									
DATA	ဝီ	*	5.64 x	5.89	5.97	60.9	6.13	6.12	6.14	6.16	6.20	6.24	6.25	6.32	*06	3	6.150 x 102	6.254	6.369	6.483	6.608	6.744	6.890	7.036	7.192	8000	020.	7 . 600	0000	8.286	8.495	8.714	8.933	9, 162	9.402	9.652	9.902	1.016 x	1.043	1.057							
	H	CURVE	233	273	298	323	348	373	398	423	118	473	498	523	ATTENT SOF		298.16	400	200	900	200	800	006	1000	1100	200	7100	1400	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2650							
			10.4										1	× 10 ×								<u>-</u> 0	, K	Ę		1 1013	2			x 102																	
	ပ္ရ	cont.)	7.964 x	8.074	8, 106	8.156	8.243	8.256	8,338	8.410	1	Ĕ.			6.45	6,49	6.81	6.78	6.65	7.09		18#		ĸ,	9.6			2.45	7.70	1.28 x		1.98	2.49	3.8	3.27	3.52	3.78	3.99	4.57	5.31	5.36	5.39	5.62	5.76	5.89		
		CURVE 16 (cont.)										CURVE 17*										CURVE	711.00	15.97	7.97	20.00	20.25	20.10	20.00	56.0	64.3	69.5	79.4	1.6	98.6	105.6	8.8	120.4	H.6	200.2	206.1	9.1	18,6	274.7	18.4		
	H	밁	1450	1489	1500	1518	1547	1550	1575	1600		Ο.	•	400	565	6	676	78	8	976				-	- ·	N 6	M C	, .	, .	o vo	•	•	-	o,	9	2	=					20	23	27	23		
		~ .	x 103								x 10.														x 10.								100						9 x 10	7.506	9	9	0	00	9	20	
	ပ္	13 (cont.	7.57	7.98	8.07	8.14	8.21		E 14		7.42	7.52	2	7.75	8 8	80	8.19	8.30	8.41	8.51	8.63		CURVE 15*		 S	5.5	8 8	9.00		8.26	8.29	8.31	8.29	8.27	8.23		CURVE 16*		7.45	7.50	7.576	7.626	7.70	7.758	7.83	7.875	
	H	CURVE 13 (cont.	1422.2	1533.3	1588.9	1644.4	1700.0		CURVE 14		1088.9	1147.4	1200.0	1255.5	1311.1	1422.2	1477.8	1533.3	1588.9	1644.4	1700		CURY		1088.9	114.4	1200.0	1211	1966	1422.2	1477.8	1533.3	1588.9	164.4	1700.0		CURY		1250	1271	1300	1322	1350	1370	1400	1416	

DATA TABLE NO. 34 (continued)

င့ ၁	5 (cont.)*	7.47 x 10°	7.65	8.05	8.07	8.32	8.17	8.60	9.07	9.19	9.27	9.69																																			
H	CURVE 25 (cont.)	0.8125	0.8223	0.8323	0.8426	0.8514	0.8641	0.8708	0.8890	0.8946	0.9061	0.9065																																			
တီ	f (cont.)*	6.63 x 10°	6.93	7.20	.45	29.1	2.30	8.10	8.30	8, 57	8.69	20.6	8.87	9.22		£ 25*		1.33 × 10°		1.62	1.74	1.81	1.95	2.15	2,32	25	2.77	3.01		5.0	2.61	3.91	4.10	4 48	4 68	96.7	5.26	5.38	5.58	5.73	5.83	5.98	6.30	6.65	6.90		7.47
۲	CURVE 24 (cont.)	0.7600	0.7755	0.7918	0.9078	0.8123	0.8212	0.8470	0.8568	0.8659	0.8756	0.8820	0.8857	0.8917		CURVE 25*		0.3771	0.4062	0.4130	0.4261	0.4289	0.4446	0.4626	0.4811	0.4997	0.5150	0.5350	erec.o	0.0100	2002	0.0330	0.6270	0.6420	0.6558	0.6683	0.6890	0.6985	0.7083	0.7174	0.7242	0.7365	0.7614	0.7742	0.7845	0.7938	0.8031
	*	x 10°																				•	× 10																								
တိ	CURVE 23 (cont.)	1.17	1.23	9 5	1.63	3	1.42	1.46	1.53	1.59	1.62	1.65	1.72	1.73	1.77	1.8	1.81	1.85	1.89		CURVE 24*		1.47	1.65	1.81	1.9	5.7	6.50	5 6	5 2		0.00	3.46	3	3.69	3.76	4.19	4.33	4.61	4.8	4.83	5.21	5.43	5.63	5.80	5.98	6.50
H	CURVE	2.417	2.468	2.323	2.370	140.7	2.807	2.908	3.020	3.072	3,089	3, 180	3.242	3.281	3,389	3.443	3.448	3.+97	3.562		CUR		0.3787	9004.0	0.4173	0.4340	6704-0	0.4715	0.100	0 5996	0 5296	200	0.5591	0.5689	0.5771	0.5844	0.6189	0.6299	0.6393	0.6517	0.6603	0.6778	0.6875	0.7009	0.7105	0.7244	0.7502

The Party Constitution of

INCOME FOR ST

SPECIFICATION TABLE NO. 35 SPECIFIC HEAT OF NEODYMIUM

[For Data Reported in Figure and Table No. 35]

	gnation (weight percent), Specifications and Remarks	0, 052 Fe. 0, 025 Mg. and <0.05 rare earth metals.	> 99, 78 Nd. 0.1 Ca. < 0.04 Pr. < 0.03 Sm. < 0.02 Si. < 0.02 Ta. and < 0.01 Fe.	 13 O₂. 1.12 Ta. 1.07 N₂. 1.065 Fe. 1.05 Na. 0.055 C. 0.015 AI. 0.045 B. 0.045 Ba. 0.002 Gd. 0.002 K. 0.015 Ni. 0.015 Y. 0.012 H₂. and traces (total 0.0028) Cu. Cr. Er. Ia. Ia. Ia. Mg. Sc. Sr. and Zn: vacuum distilled: remelted in vacuum and cast into tantalum crucible; machined in argon atmosphere. 	Same as above.	99.5 Nd, traces of Fe. St. and AJ.	Impurities: 0.2 Ta, 0.1 Ca, 0.04 Pr. 0.03 Sm, 0.02 St. and 0.01 Fe.
21 P	Name and Specimen Designation			Expt. I	Expt. II		
	Reported Na Error, % Specii		0.14	< 1.5	< 1.5		
	Temp. Range, K		298-1373	0.4-4	0.4-4	373-973	273-1373
	Year	1881	1960	1964	1964	1936	1958
	Ref. No.	38	73	84	87	321	285
	Curve Ref. Year No. No.	1	8	m	•	2	9

SPECIFIC HEAT OF NEODYMIUM Specific Heat, Cp. Cal g^-1 K^-1] 6. 56 5.22 6.18 6.86 7.085 7.245 7.335 6.669 7.169 CURVE CURVE 273.2 323.2 373.2 473.2 473.2 473.2 673.2 673.2 673.2 673.2 173.2 173.2 173.2 173.2 373 473 573 623 673 723 823 873 923 9. 607 × 10⁴
9. 180
8. 830
8. 831
8. 829
9. 460
1. 151
1. 031 × 10⁴
1. 151
1. 303
1. 695
1. 963
1. 963
1. 983
2. 237
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 575
2. 576
2. 576
2. 577
2. 577
2. 577
2. 577
2. 577
2. 577
2. 578
2. 888
3. 428 1, 231 x 10⁻³
1, 606
1, 700
1, 848
2, 156
2, 522
2, 925
3, 397
3, 983 [Temperature, T, K; 35 CURVE 3 (contd) DATA TABLE NO. CURVE 4* 0.398, 0.424, 0.0.424, 0.0.424, 0.0.424, 0.0.424, 0.0.550, 0.0.550, 0.0.550, 0.0.550, 0.0.424 2. 184 2. 303 2. 371 2. 477 2. 687 2. 919 3. 163 3. 723 3. 723 H 5. 48 x 10⁻²
6. 6. 84 x 10⁻²
6. 6. 48 x 10⁻²
6. 7. 7. 7. 47
7. 7. 38
7. 7. 38
7. 7. 38
7. 7. 38
8. 98
8. 98
8. 98 x 10-4 CURVE 2 (contd) S CURVE 3* 0.396, 0.423, 0.6423, 0.6423, 0.6423, 0.6423, 0.6423, 0.6423, 0.6423, 0.6923, 650 750 800 800 800 800 900 1000 1100 1135, 15 1136 1250 (s) 1297, 15 1300 1300 1373, 15 \$\\ \alpha \\ \a $_{\mathbf{p}}^{\mathbf{c}}$ CURVE 2 CURVE 1

SPECIFICATION TABLE NO. 36 SPECIFIC HEAT OF NEPTUNIUM

[For Data Reported in Figure and Table No. 36]

	Composition (weight percent), Specifications and Remarks	0.34 Ca and 0.22 U.	< 0.5 each Ce, La, Nd, Pr, Sm, Sc, Na, Ti and Yb, < 0.4 each B, Li, and Zn, < 0.05 each Cr, Mn. Fe, Co, Ni, Y and Zr. 0.01-0.1 Th and 0.03 Dull 3.
	Name and Specimen Designation		
	Reported Error, %		
	Temp. Range, K	333-480	8-320
	Year	1959	1965
	No.	425	426
,	No.	-	~

DATA TABLE NO. 36 SPECIFIC HEAT OF NEPTUNIUM

[Temperature, T,K; Specific Heat, Cp. Cal g'1 K'1]

ပ္	2 (cont.)	2.89 x 10 ²	2.82	2.95	3.6		3, 13	3.14	3.19	3.26	3.32	3,33	3.42	3.51																													
H	CURVE	210	220	230	250	260		273, 15	280		298.15	300	310	320																													
చ	VE 1	3, 14 x 102	88.5	2.48 2.48	2 2	!	VE 2	l y	2.5 x 104	4.2	7.13	1.15 x 10°	1.75	2.51	81.18	2 2	1 00 1 102	•	1.36	1.51	1.65	1.76	1.87	95.i	7.7	2.11	2.0	7.	2.2	5 5	6.58	2.5	7.5.2	10.9	8 2	•	7	2, 6	2.13	7. 2	2.5	, . E	•
H	CURVE	333	375	404	1 8		CURVE		60	9	12.5	21	17.5	2	10	3 %	3	45	3	55	\$	9	21	5.5	8 9	8	2 :	9	3		3 :	9		9 5	25.		1 1	3		170	200	200	}

SPECIFICATION TABLE NO. 37 SPECIFIC HEAT OF NICKEL

[For Data Reported in Figure and Table No. 37]

Ref.	1	Temn	Reported	Name and	
No.	Ida	Range, K	Error, %	Specimen Designation	Composition (weight percent), Specifications and Remarks
25	1936	325-922			0. 10 Fe. 0, 07 Mg. 0, 003 S. Sl. and trace Mn. aged for 3 hra at 680 C and cooled slowly.
53	1565	770-1437	1.0		99.97 Ni, 0.0008 As, 0.0006 Fe, <0.0004 Si, <0.0003 Cr, <0.0003 Cu, 0.0001 Mn, remelted several times; heated several times to 1100 C and cooled slowly.
53	1965	423-1423	1.0		Same as above.
-	1961	296	±5.6		
20	1969	800-1500	± 0.3		Sealed in argon.
18	1966	323-883	± 0.5	Electrolytic nickel	99.95 Ni, <0.05 Co, and the rest Al, Cu, Fe and Si.
38	1961	466-1584			
7	1954	673-1123			99.9 NI.
22	1930	18-189	1.5	Electrolytic nickel	Cold deformed; recrystallized for 10 hrs. at 1000 C under nitrogen atmosphere.
92	1962	13–303	1.5.1		0.014 C., 0.0018 Co., 0.0009 Cu, and very slight trace Al. B. Ca., and Fe; annealed for 2 hrs at 900 C in H; heated for 5 hrs. at 1000-1100 C in 2 x 10^{-6} mm Hg and 5 hrs. in 8 x 10^{-6} mm Hg vacuum; cooled in vacuum to 800 C in 1 hr. and then to 100 C in 17 hrs.
101	1958	337-1164			Specimen's surface plated with platinum black.
55	1930	15-204	1.5	Electrolytic nickel	Cold deformed; recrystallized for 10 hrs. at 1000 C under nitrogen atmosphere.
268	1926	373-1903			99.920 Ni, 0.06 Fe, 0.013 Cu, and 0.007 Si.
342	1928	98-735			Pure.
164	1932	273-873			
343	1934	86-726	< 2.0		0.03 impurities.
315	1935	297.9		Electrolytic nickel	Forged amealed,
¥	1935	1-19			99.81 Ni, 0.083 Fe, 0.04 C, 0.037 Mg, and 0.017 Cu,
345	1936	10-26			
182	1936	203-383	0,1		99.69 Ni, 0.13 Fe, 0.10 Si, 0.03 Cu, and 0.03 C.
183	1936	373-773	0.2-1.0		Same as above.
346	1936	373-1273			Pure.
347	1938	333-873	≤2.0	Semple II	0.031 Fe, 0.025 C, 0.007 Cu, 0.0004 S and negligible amount of Co; Mond pellets; melted under vacuum of <10 ⁻³ mm Hg and hammered into suitable shape.
347	1938	333-873	\$ 2.0	Sample III	0.04 Fe, trace of C and O ₂ , and negligible amount of Co; pressed powder; prepared by sintering a block of pressed powder in vacuo at 900 C; cooled at rate of one degree C per minute to room temperature.
	52 53 54 18 18 18 18 18 18 18 18 18 18 18 18 18		1936 1955 1955 1956 1958 1958 1958 1958 1956 1956 1956 1956 1956 1956 1956 1956	1936 325-922 1965 770-1437 1966 423-1423 1961 296 1966 323-883 1964 673-1123 1964 673-1123 1964 673-1123 1962 13-303 1962 373-1164 1968 337-1164 1972 273-873 1973 273-873 1976 10-26 1976 10-26 1976 373-1773 1976 373-1773 1976 373-1773 1976 373-1773	1936 325-922 1965 423-1423 1.0 1961 296 ± 5.0 1963 800-1500 ± 0.3 1964 673-1123 ± 0.5 1965 323-863 ± 0.5 1966 323-863 ± 0.5 1967 466-1594 1.5 1968 337-1123 1.5 1969 13-204 1.5 1978 377-1164 1.5 1978 373-1903 1.5 1978 96-735 2.0 1938 207-873 2.0 1936 10-26 0.1 1936 10-26 0.2-1.0 1936 373-1773 0.2-1.0 1938 333-873 < 2.0

SPECIFICATION TABLE NO. 37 (continued)

tions and Remarks				o. 0.001 Mn, and 0.0003 S.			
Composition (weight percent). Specifications and Remarks	Cathode nickel.	99.91 Ni.	99.51 Ni.	Impurities: 0.02 Fe, 0.01 C, 0.002 Si, 0.001 P, 0.001 Mn, and 0.0003 S.	-	99.979 Ni, 0.01 Cu, 0.01 Fe, and 0.001 S.	99.85 Ni, 0.14 Fe. and trace of Co.
Name and Specimen Designation	Sample IV						Mond nickel
Reported Error, %	≤ 2.0					≤2.0	
Temp. Reported	333-410	291-813	813-1280	82-273	293-643	2-4	309-670
Year	1938	1938	1939	1941	1968	1962	1962
Curve Ref. Year No. No.	347	177	348	293	319	349	320
Curve No.	25	56	12	28	29	30	31

DATA TABLE NO. 37 SPECIFIC HEAT OF MICKEL

X 10 ⁻¹ 810.9 866.5 922.0 977.6 1033.1 11088.7 11144.3 11199.8 11255.3 1255.3 1255.3 1255.3 1256.4 0 CURVE 673 7723 7723 7723 7723 7723 7723 873 923 973 973 973 973 973 973 973 973 973 97	т ср	H	$_{\mathbf{p}}^{\mathbf{q}}$	H	^d	H	^d ပ	H	င္	H	ဝီ
1,004 × 10 ⁻¹ 59.9 1.299 × 10 ⁻¹ 56.5 1.278 × 10 ⁻¹ 32.0 1.063 × 10 ⁻¹ 36.6 1.296 1.296 × 1.297 1.094 1.113 1.094 × 10 ⁻¹ 1.094 × 10 ⁻¹ 1.094 × 1.295 1.295 1.113 1.094 × 1.295 1.295 1.113 1.094 × 1.295 1.113 1.094 × 1.113 1.094 × 1.295 1.113 1.094 × 1.113 1.	CURVE 1	CURVE	; 2 (cont.)	CURV	E 3 (cont.)	CO	₹VE 6	CURVE	7 (cont.)	CURVE 10	01.0
1,101 966.6 1,336 658 1,347 363 1,113 966.5 1,118 1,100 966.6 1,316 658 1,317 365 1,113 966.5 1,118 1,18	2 1.	939.	ĭ	635	1, 378 x 10 ⁻¹	323	1. 083×10^{-1}	810.9	1 281 x 10-1	12.95	6.13 x 10-4
1100 100.00 100	7	9.996	1. 336	638	1.347	363	1. 113	866. 5	1, 294	14.68	6.30
1119 1000.0. S 1.379 644 1.300 440 1.161 977 971 1.114 1000.0. S 1.379 645 1.200 440 1.161 977 971 1.116 1.100 1.200	 2	984. 6	1. 336	643	1.318	383	1. 139	922. 0	1.307	16. 71	8.86
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		1030.8	1.379	648	1.303	403	1. 161	977.6	1.319	19.46	1.28 x 10-3
1, 100		1000	1.011	653	1.231	423	1.181	10.53	T 332	22. 78	1. 82
136	; ~	1128 6	1.365	673	4. Zi3	443	1. 198	1144	1.345	26. 37	2. 71
		1141.0	1.366	693	1.269	463	1.210	1100 x	1 271	30. L4	4. 0Z
1.219 117.8 1.256 542 1.292 1310 1310 1227 1.410 1.256 543 1.241 1.242 1.405 1.256 543 1.341 1.266 1.341 1.241 1.242 1.422 1.424	-	1176.4	1.368	713	1. 255	503	1. 265	1255.3	1.383	37.86	7.80
1.277 123.2 1.406	-	1178.8	1.395	733	1. 256*	523	1. 292	1310.9	1 396	42.93	1. 102 × 10-2
1.257 1.22.4 1.429 773 1.260° 563 1.349 1422.0 1.267 1202.4 1.429 773 1.294° 558 1.392 1422.0 1.267 1202.4 1.444 923 1.294° 588 1.392 1.541 1.268 1.377 1.404 973 1.294° 588 1.392 1.534 1.271 1.404 973 1.294° 588 1.470 CURVE 1.310 1.455 1.552 1023 1.346° 668 1.470 1.305 CURVE 3 1.273 1.386° 628 1.470 1.306 473 1.226° 628 1.536 673 1.404 443 1.226° 1.273 1.436° 628 1.254 7.23 1.404 443 1.226° 1.273 1.440° 648 1.276 973 1.404 443 1.226° 1.273 1.440° 648 1.276 973 1.407 443 1.226° 1.273 1.440° 648 1.276 973 1.407 443 1.226° 1.273 1.440° 648 1.276 973 1.407 443 1.226° 1.273 1.440° 648 1.276 973 1.206 533 1.245° 1.226° 1.236° 1.236 1.236 1.207 533 1.326° 2.95 1.2 × 10 ⁻¹ 7.43 1.256 1.236 1.208 533 1.326° 990 1.27 × 10 ⁻¹ 683 1.276 2.2 30 1.208 533 1.440° 1.900 1.37 × 10 ⁻¹ 683 1.276 2.2 30 1.208 613 1.440° 1.900 1.36 646 1.207 1.263 1.209 630 1.246° 1.200 1.36 646 1.201 1.27 1.200 630 1.256° 1.256° 1.256 1.256 1.256 1.200 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.460 1.200 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.200 1.460 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.300 1.200 1.300 1.300 1.300 1.300 1.300 1.300 1.300 1.200 1.300	7	1222. 4	1. 406	753	1. 256	543	1.318	1366.5	1, 409	48, 93	1, 537
1.250 1.272. 4 1.401 823 1.257 518 1.372 1477. 6 1.276 1.287 518 1.372 1477. 6 1.277 1.206. 6 1.413 1.206. 6 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.411 1.506. 0 1.506	નં .	1243.0	1. 429	773	1. 260	563	1.349	1422.0	1, 422	54.89	2.043
1.295 1.300	-i ·	1272. 4	1. 401	823	1. 267	578	1.372	1477.6	1, 435	62. 12	2.644
1,295	⊣ -	1306.6	1. 473	873	1. 294	588	1. 392	1533, 2	1 447	69. 74	3, 292
1.310 1437, 1.542 1.543 1.346 618 1.470 1.477 1.346 618 1.470 1.477 1.346 618 1.470 1.477 1.346 618 1.470 1.477 1.346 618 1.470 1.477 1.346 618 1.470 1.477 1.346 628 1.486 673 1.346 673 1.346 628 1.546 773 773 1.346 618 1.415 628 1.546 773 773 1.346 618 1.415 628 1.449 773	-i -	1340.2	1. 434	923	1.311	598	1. 411	1584.0	1.459	75.91	3.810
1.31 147.0 1.34 618 1.470 CURVE 1.345 1.353 1.363 624 1.470 CURVE 1.345 1.345 628 1.496 626 1.536 673 1.345 1.345 1.353 1.415 628 1.496 673 1.223 1.436 673 1.234 773 1.404 453 1.206 1.327 1.436 628 1.459 773 1.404 463 1.206 1.373 1.440 638 1.275 223 1.404 463 1.206 1.373 1.440 638 1.275 823 1.404 463 1.206 1.373 1.440 648 1.275 773 1.404 463 1.206 1.373 1.440 648 1.275 823 1.241 463 1.226 1.440 648 1.275 823 1.275 1.250 523 1.236 1.27	- i -	1.161	1. 402	973	1.328	809	1. 437		***	82. 22	4.318
1.365	-i -	1435.4	1.542	1023	1.346	618	1.470	CURV	20	88.52	4.771
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i	0.1011	3.3	1193	1.360	+7 0	1. 430	643	1 -07 2 10-1	95. 13	5. 226
1. 389 1. 404 1. 453 1. 415*	. 81	CIR	75.3	1173	#262	628	1. 524	793	1. 210 X 10 -	102.07	5.682
1.404 453 1.198* × 10 ⁻¹ 1273 1.436* 638 1.332 823 823 1.440 463 1.206* 1.206* 1.220* 1.240* 648 1.275 923 823 1.245 1.226* 1.226* 648 1.275 923 1.245 1.226* 1.226* 648 1.275 923 1.246 1.220 1.245 1.226* 648 1.275 923 1.246 1.256 1.256 1.256 1.255				1223	1, 415*	628	1.469	773	1, 273	116 23	6.470
1.440	٠ ٠	453	8	1273	1.436*	638	1.332	823	1. 288	123 62	6.655
4 1.460 473 1.220° 1373 1.490° 658 1.275 923 1.487 483 1.220° 1373 1.490° 658 1.275 923 1.248 483 1.220° 1.245° CURVE 4 1.270 973 1.240 503 1.259° CURVE 4 7.25 1.270 973 1.250 533 1.226° 2.95 1.2 × 10 ⁻¹ 743 1.250 1123 1.249 553 1.333° CURVE 5 763 1.251 17.70 1.249 553 1.333° CURVE 5 783 1.251 17.70 1.249 563 1.333° 600 1.27 × 10 ⁻¹ 743 1.253 17.70 1.249 563 1.344° 1000 1.37 843 1.255 17.70 1.256 583 1.440° 1.400° 1.34 843 1.271 30.75 1.240	i 0	463	1. 208	1323	1. 460	648	1. 290	873	1, 305	131.77	7, 165
1. 1	-i	473	1. 220	1373	1. 490	658	1. 275	923	1.326	139. 64	7.488
1.290 1.245 1.245 1.245 1.255 1.255 1.023 1.255 1.25	-i -	483	1. 232	1423	1. 525	899	1.270	973	1.348	147.50	7.778
1.250 1.259 1.275 1.27	٥.	193	1. 245		4	683	1.255	1023	1.367	155.38	8.046
# 1.250 523 1.270 1123 1.250 1123 # 1.250 523 1.302** 295 1.2 x 10** 723 1.250 1123 # 1.243 543 1.323** CURVE 783 1.251 CURVE # 1.249 553 1.333* 800 1.27 x 10** 783 1.251 17.70 0 1.249 563 1.354* 800 1.27 x 10** 823 1.255 17.70 2 1.256 583 1.401* 1100 1.37 863 1.269 22.30 2 1.256 583 1.401* 1100 1.34 863 1.271 30.75 3 1.266 583 1.401* 1100 1.34 863 1.271 27.20 3 1.466 1.300 1.42 1.400 1.42 1.400 1.42 1.400 1.42 1.400 1.42 1.400 1.42 1.400	.	203	1. 259	CUI	VE 4	703	1. 249	1073	1. 379	163, 33	8. 276
4 1 25 1.25 <th>e u</th> <th>523</th> <th>1.276</th> <th>200</th> <th>1-01</th> <th>723</th> <th>1.250</th> <th>1123</th> <th>1. 385</th> <th>171.37</th> <th>8.501</th>	e u	523	1.276	200	1-01	723	1.250	1123	1. 385	171.37	8.501
8 1.243 543 1.323* CURVE 5 783 1.251 CURVE 5 4 1.249 553 1.323* CURVE 5 783 1.251 1.770 0 1.249 563 1.353* 800 1.27 × 10 ⁻¹ 823 1.259 22.30 2 1.251 573 1.368* 900 1.29* 843 1.259 22.30 2 1.256 583 1.401* 1000 1.31 863 1.267 27.20 8 1.266 593 1.401* 1100 1.34 883 1.271 30.75 603 1.421* 1200 1.34 883 1.271 30.75 1MVE 613 1.448* 1300 1.42 84.90 1.27 84.90 1.18VE 613 1.448* 1300 1.46 466.0 1.201 10-1 87.00 1.110 1.249* 1.500 1.50 466.0 1.201 10-1	, 4	533	1.308	0.67	T. Z X 10 .	1 65	1.250	2012	*0*	179.48	8.710
4 1,249 553 1,338* 800 1,27×10 ⁻¹ 803 1,255 12.75 17.70 0 1,249 563 1,35* 800 1,27×10 ⁻¹ 823 1,259 22,30 0 1,256 583 1,36* 900 1,39* 843 1,263 22,30 8 1,266 583 1,401* 1100 1,34 883 1,267 27,20 8 1,266 593 1,401* 1100 1,34 883 1,271 30,75 603 1,421* 1200 1,34 883 1,271 30,75 1MVE 613 1,467* 1400 1,46 618 1,467* 1,400 1,46 618 1,477 84,90 1,119 625 1,512* 1,50 1,50 4,77.6 1,204 1,34 1,44,40 1,266 1,567 629 1,57 533.1 1,217 144,40 1,20 1,266	8	5.5	1. 323*	CIB	VE 5	783	1. 251		2	196 03	9.030
0 1.249 563 1.353*** 800 1.27 x 10 ⁻¹ 823 1.259 22.30 0 1.251 583 1.36*** 900 1.29*** 843 1.263 22.30 2 1.256 583 1.36*** 1000 1.31 843 1.267 27.20 2 1.256 593 1.401*** 1100 1.34 863 1.267 27.20 2URVE 603 1.421** 1200 1.34 863 1.271 30.75 2URVE 613 1.46** 1300 1.42 CURVE 7 84.90 6 1.233 x 10 ⁻¹ 623 1.46** 1500 1.50 466.0 1.201 x 10 ⁻¹ 85.00 1.319 627 1.512** 477.6 1.204 139.32 6 1.26* 629 1.567 588.7 1.217 144.40 1 1.20 1.20 1.20 2.20 1.776 1.776 1<	7 *	553	1. 338			803	1. 255	17.70	9. 499 x 10 ⁻⁴	204. 43	9 240
0 1.251 573 1.368* 900 1.29* 843 1.263 24, 60 2 1.256 583 1.344* 1000 1.31 863 1.267 27, 20 8 1.266 593 1.421* 1100 1.34 883 1.271 27, 20 URVE 613 1.424* 1300 1.42 CURVE 7 84, 90 618 1.467* 1300 1.46 466.0 1.201 85, 00 6 1.213 10.1 623 1.466* 1.50 466.0 1.201 139, 30 6 1.213 1.25* 1.504 1.50 1.50 477.6 1.204 139, 32 1.214 625 1.534* 1.217 144, 40 144, 40 1.204 1.504 1.504 1.217 144, 40 1.204 1.504 1.204 1.204 177.76 2 1.204 1.204 1.204 177.23 4	•	563	1. 353	800	1. 27 x 10 ⁻¹	823	1. 259	22, 30	1, 562 x 10 ⁻³	212, 96	9, 393
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-i 0	573	1. 368	900	1, 29*	843	1. 263	24.60	2. 138	221.33	9.516
8 1.266 593 1.401 1100 1.34 883 1.271 30.75 CURVE 2 603 1.421 1200 1.38 1.271 30.75 CURVE 2 613 1.448* 1300 1.42 CURVE 7 84.90 6 1.23 x 10 ⁻¹ 623 1.496* 1500 1.56 477.6 1.201 x 10 ⁻¹ 87.40 1 1.319 625 1.512* 1500 1.50 477.6 1.204 139.32 2 1.265 629 1.567 629 1.567 144.40 4 1.304 630 1.588 1.243 177.6 4 1.304 630 1.588 1.243 175.23 4 1.304 630 1.588 1.243 175.23 8 1.311 633 1.420 1.265 1.88.51	2	583	1. 384	1000	1.31	863	1. 267	27. 20	2. 826	229, 59	9. 635
URVE 603 1.421* 1200 1.38 CURVE 613 1.448* 1300 1.42 CURVE 7 84.90 618 1.467* 1300 1.46 466.0 1.201×10 ⁻¹ 85.00 1.319 625 1.512* 1500 1.50 477.6 1.201×10 ⁻¹ 87.40 1.265 627 1.534* 567 588.7 1.217 144.40 4 1.304 630 1.568 631 1.558 177.5 8 1.31 633 1.420 1.568 1.255 188.51	8	293	1. 401	1100	1.34	883	1. 271	30, 75	4. 268	238. 59	9.761
UNIVE 2 613 1.448 1300 1.42 CURVE 7 84.90 6 1 233 x 10 ⁻¹ 623 1.467 1400 1.46 466.0 1.201 x 10 ⁻¹ 85.00 1 1 212 625 1.512* 1500 1.50 477.6 1.204 139.32 2 1 262* 627 1.534* 567 588.7 1.217 144.40 4 1 304 630 1.568 631 1.558 175.23 9 1 294 633 1.420 44.3 1.243 175.23 1 231 633 1.420 1.265 1.88.51		603	1. 421	1200	1.38			32.25	4.802	238, 75	9.767*
6 1 233 x 10 ⁻¹ 623 1.496 1500 1.50 466.0 1.201 x 10 ⁻¹ 85.00 1.319 625 1.512 1500 1.50 466.0 1.201 x 10 ⁻¹ 87.00 1.310 1.3		613	1. 448	1300	1. 42	5	TVE 7	84.90	4. 493 × 10-2	247.95	9.913
1.23 x 10 / 623 1.496 1.500 1.50 466.0 1.201 x 10 ⁻¹ 87.40 1.21 x 1.22 1.512 x 1.534 1.534 1.534 1.39 32 477.6 1.204 1.39 32 1.217 1.44.40 1.39 32 1.44.40 1.44.40 1.44.40 1.20 1.71.76 1.230 1.71.76 1.71.	,		1.40	1400	- 4 6			82.00	4. 512	247.96	9.917
2 1.514 1.39.32 2 1.252 627 1.534* 1.217 1.44.40 1.265 629 1.567 1.57 1.44.40 1.204 1.217 1.44.40 1.204 1.217 1.44.40 1.204 1.217 1.44.40 1.204 1.217 1.44.40 1.204 1.217 1.44.40 1.204 1.217 1.44.40 1.204 1.208 1.71.76 1.204 1.208 1.256 1.88.51 1.311 6.33 1.420 755.4 1.268			1.4%	1200	1. 50	466. 0	1. 201 × 10 ⁻¹	87. 40	4. 624	256. 73	1.004 × 10-1
2 1.202 1.534 144.40 0 1.265 629 1.567 171.76 4 1.304 630 1.598 1.243 1.75.23 0 1.206 631 1.558 1.255 188.51 8 1.311 633 1.420 755.4 1.265 188.51		625	1.512			477.6	1. 204	139. 32	7. 498	265. 59	1. 016
4 1.265 6.29 1.567 171.76 4 1.304 6.30 1.598 1.243 1.75.23 4 1.200 6.31 1.558 1.255 1.88.51 8 1.311 6.33 1.420 1.268 1.268		627	1. 534			533.1	1.217	144.40	7.687	274.81	1.028
4 1.304 630 1.598 1.75.23 8. 0 1.290 631 1.558 1.256 188.51 8. 8 1.311 633 1.420 755.4 1.268	0	629	1. 567			588.7	1. 230	171. 76	8. 525		1.040
0 1,290 631 1,558 1,255 188.51 8. 8 1,311 633 1,420 755.4 1,268	•	630	1.598			644.3	1.243	175.23	8.608	293, 99	1.056
8 1.311 633 1.420 755.4	0	631	1.558			699. 8	1, 255	188. 51	8.912	302.98	1. 073
	8	633	1.420			755. 4	1. 268				

	۵	*1		1.771 x 10rd		19	3 8	00	2 2	3 6	0 -	To	3 8	0 9	0 10	2 6	2 2	0.5	99	26	2	4	2 2	2 :	21	1.017 x 10"	2.6	מ				× 19																			
	ပ	Coont	^	1.7	1 80	2 119	100	7	2 703	0.00	0 0	2.361	2000	2 169		2. 100	2.0.0		6.660	7.392	7.443	8.074	8.533	9.453	9.521	9 7	1.073	1:1	E	5		3.9	3.9		4.3	4	4.					0.0	9.0	6.3	6.3	7.2	7.5	7.5	9.0	9.0	
	۴	CURVE 18 (cont.)*	Series IV	5.72	4	9.5	40			10.7	00.	26.0	0.00	17.0	9.00		10.00	3.62	14.54	14. œ	15.41	10.10	16.46	17.07	17.59	18.08	18.49	19.02		CURVE 19		10.0	10.2	10.6	10.8	10.8	11.6	11.7	7.77	2.5	6.5	6.51	13.2	13.5	13.6	14.6	15.0	15.1	16.7	16.8	
	С	(cont.)*	9 969 4 100	1.015 x 10-4	1.049	1.092	119		=	•	3 160 . 100	. 100 X 10	3 134	216.6	185	. 144 E 144	1 040 . 104	1.090 L	 	011.1	1.175		1.252	007.1	1.277	1,310	1.05/	200.1	1,366	ļ	Ħ	•	9.487 x 10-	1.003 x 107	1.032	1.058		1 959	1 306	1 223	1 301	1901	1.430	1.487	1.562	1.671	1.805	1.891	1.925	1.942	1.942
	H	CURVE 18(cont.)*	2 15	3.26	3.37	3.46	3 57		Soriog II	201108	•	1.10	1.10	1.1	1. 14	1.17	7.40	6.0		5.63		60.00	3.97	5 .	4.05	7.5	4.20	4.20	4.31		Series III		3.11	3.26	3,37	3.51	3.70	4 03	20.4	4.10	77.7	7	4.03	4.70	4.86	5.01	5.28	5.45	5.62	5.75	5.86
37 (continued)	ပ္ခံ	(cont.)*	1 417 x 10r1	1,442	1,392	¥	1.360	1 316	1.31	330	6.06.1	3.00	1.286	1.307			1	2 1,172	0.0 × 10 0		1 03 × 10r1		1.011	<u>E</u>	<u>-</u>	1 07 × 1011		3	^{i≘}].	-	3	2.964 × 10°	3.117	3.475	3.300	90T +	017.	5 059	5 214	5 949	6 594	6 677	70.0	470.0	7.082	6.859	8.312	8.772	8.584	9.249	
	۲	CURVE 16 (cont.)*	634	6:4.7	635.0	638.1	640.6	643 2	646.2	6.059	661.9	683 9	684	726.2		Corioe II		0 90	2000	2.707	255 8		4.067	3/10/17	CORVE	9 200	6.169	TUGILO	CORVE 18	series I	;	1.1	1.14	67.1	1.31	1.41	1 53	1 67	1 77		80.6	20.00	2.2	62	2.43	2.50	2.71	2.81	2.85	3,00	
DATA TABLE NO.	$_{\mathbf{p}}^{\mathbf{q}}$	CURVE 14 (cont.)*	1.577×10^{-1}	1.450	1.445	1,425	1.371	1.360	1.330	1.290	1.278	1, 126	1.252	1.265	1.265	1.272	1.278	220		CHRVE 150		1 080 4 10 1	1.133	1 937	1320	1.245	1.255	1 260	1.500	160	South 16	-	1 057 2 107	1 07 X 10 1	1 072	1 070	1.148	1.230	1.258	1.290	1,332	1 380	1 409	1 466	1.465	1.400	1.92	1.557	1.587	1.432	
	T	CURVE	627	628	628	679	6:30	6:30	631	633	23.3	1.9	638	735	64×	459	13.7	7.3.3		CHRI		1.26	373	473	573	673	773	873		Ē	202	Serie	906	200	296	0.962	385.0	452.2	479.9	510.2	546.3	568 6	579 6	0.00	601.0	610	010	629.3	627.4	631.4	
	ပီ	(cont.)	8.222 x 107	8.474	×. 692	×, ×66	9.079	9,252		* 13*	l	1.11 × 10"		1.22	1.31	#	1, 2:3	1.24	1.26	9: -	1.32	7.	1.36	68: 1	1.42	1.81	1.81	1.83		‡ ₽1 3	5	E E . 1072	. Of X	0.6	25.6	1.010 x 1071	1.062	1.075	1,092	1,093	1,140	1.198	1 315	1 350	1 301	1 470	1.543	1.01	1.300	1.577	
	۲	CURVE 12 (cont.)	159,91	168.74	178.49	185,57	18.81	204.05		CURVE 13*		37:	473	57:3	1.92	773	873	97:3	1073	1173	1272	1373	1473	1573	1673	1773	1823	1903		CIRVE 14	200	90	195	202	227	257	283	294	323	325	389	447	530	555	576	613	200	060	626	070	
	ပ္ခံ		1.10 x 10 ⁻¹		1.17	1.10	1.25	1.25	1.40	1.43	1.33	1.30	1.30	1.29	1.27	1.23	1.27	1.30	1.32	1.35	1.31	1.36	1.31	1.39	. K		E 12*	1	7 913 x 104	1.066 x 10 ⁻³	1.652	2 436	3.286	4.381	6.013	7.898	9.601	1.438 x 102	2, 129	3, 109	3.727	4.319	5.030	5.783	6.340	6 813	2 976	2 600	7.013	CTR.	
	H	CURVE 11*	337	326	400	400	465	465	565	565	5 09	633	633	929	781	781	875	875	346	946	1017	1017	1090	1090	1164		CURVE 12*		15.05	18.06	22.11	25 20	28.00	31.30	34,55	37.70	40.93	47.10	5.70	67.13	74.73	82,30	92.95	104.00	114.33	123.96	133 38	141 71	149 96	06 '617	L

(continued)
37
Š
BLE
IN TA
ź

			į	2														1	2													10-1	2											10.						
	ပ္ရ	(cont.)	1 650	1 578	600	1 420	2000	065.7	1.335	1,310	1.294	1,275	1,265	1.260	496	81.	-	1 164	1 220	1.630	1 440	1 4 97	1 530	1 556	1.300	1.241	1 339	1.006	1.010		=	1 000 - 10-1	1.129	1.202	1.289	1,385	1.404	1,383	1,342	1,337		H		1.268 x	1.322	1.315	1.305	1.305	1.297	
	T	CURVE 25 (cont.)*	634	635	836	637	200	000	543	648	553	563	573	683	CT TO THE	SOLIDE L	T salles	00 100	467.4	# .00.	600	810 F	697 F	631.9	636 p	641.8	640 2	662	*.2		Series	334 1	364.9	429.6	498.€	576.4	534.5	638.4	644.2	651.3		Series		484.8	659.7	568.4	583.8	0.669	730.0	
		ଧ											_	_	-			·																				_						•	117				-	
	ص	nt.)*	269 x 10-1	1.275	281	1.286	1 293	1 201	100	1.307	1.315	324			060 v 10-1	080	1.096	119	1.128	145	154	1.165	1 177	1, 187	196	1.204	213	222	931	1 243	256	586	283	1.296	1.310	325	340	354	1,369	1,385	1.400	1.419	1.441	1.454	1.470	1.487	1,498	511	1,534	
		CURVE 24 (cont.)*	-	i -:		-	-	: -	⇉ .	∹ .	.: .		100	CURVE 25"	-	- 1	;	-	-	-	-	-	-	-	-	:	-	: -	-	-	i -	-	:;	-	1.	-	;	-	-	.;	-	1.	1.		ij	1	1,	1		
	H	CURV	793	803	813	823	833	273	2 6	25.0	2	873		5	333	313	353	363	373	383	363	403	413	423	433	443	453	463	473	483	493	503	513	523	533	543	553	563	573	583	593	603	613	618	623	627	629	631	633	
í.			10-1																																															
(continued	တိ	(cont.)*	1.191 x 10 ⁻¹	1, 199	1.207	1,215	1, 225	1.236	1 240	1.248	7.200	1.275	1.289	1 310	33	1.348	1,363	1.379	1.405	1.426	1.454	1.471	1.495	1.508	1.524	1.547	1.563	576	1.470	1.395	1.373	1,352	1,338	1,308	1.290	1.280	1.271	1.264	1.260	1.257	1.255	1.253	1.252	1.252	1,252	1.254	1,256	1,259	1.264	
5	H	CURVE 24 (cont.)*	433	143	53	163	173	283	200	3 3	200	2 6	523	25.5	22	563	573	83	593	8	613	118	623	25	627	629	90	30.8		8	83	35	37	13	. <u>.</u>		2 i	73	22	83	ಜ	13	SS.	8	43	SS S	8	73	8	
DEE NO	•	ਗ਼			4	4	4			4. r		יה	ייני	.,	, u	· w.	L C	43	· Lea	•	Ψ.	•	•	•		•	•					•		•	•	9			•				_		_	-	.~	-		
MIN INBLE NO.	ပ္	ا <u>ت</u> ات	1.492 x 10-1	\$	20	1,543	62	98	60	30	2 2		330	1.312	1,302	1.282	1,269	19	1.256	52	51	51	53	57	26	1.265	1.270	1.276	81	87	1.293	1.299	0.2	1.311	1.317	322	324				1.066 x 10"	88	90	21	36	46	28	20	181	
•	O	CURVE 23 (cont.)*	1.4	1.504	1.5	1.5	1.562	1.586	1 460	1.490	1 384	1 264			1,3	1.2	1.2	1.261	1.2	1,252	1.251	1.251	1.253	1.257	1.260	1.2	1.2	1.2	1.281	1.287	1.2	1.2	1,305	1.3	-		1.5	1	CURVE 24		1.0	1.088	1.106	1.1	1, 136	1.146	1.158	1.1	1.1	
ļ	H	CURVE	623	625	627	629	630	631	630	3 2	25.4	6.34	643	2.8	653	663	673	683	693	703	713	723	733	743	753	763	773	783	793	803	813	823	833	8	823	200	8/3		5	9	343	353	363	373	200	383	403	413	423	
			10-1																	Ē																														
¢	S.	*ZI	1.128 x 10	1.189	1.252	1.318	1,385	1.448	1.261	1.267	1.281	1 205	1.230	1.324	1,339	1.354		23*	1	1.055 x 10 ⁻¹	1.079	1.096	1.111	1.125	1.138	1.149	1.160	1.170	1.180	1,188	1.197	1.205	1.214	1.225	1.236	1.243	1.506	1.00	1.23	1.310	127	1. Sec.	355	1.571	1.388	1.407	1.428	1.45	1.470	
12		CURVE 22*	373	23	473	ឌ	573	618	633	673	773	873	2 2	2 22	23	2		CURVE		333	343	353	363	373	383	393	103	413	123	33	143	153	463	173	2	200	513	200	3 2	255	2 9	2	200	2 9	283	593	603	613	8 2	
	H		8			523	2	9			-	à		1073	1173	1273				ဗ	ਲ	Ř			ਲ	ñ	¥	•	4	*	4	#	₹ :	4	₩ :	7	5 4	5 4	ň			i n	7 .	n i	2		3	80	9	
	٠	* 김	۲ ×	1	× 10-					_		مريع ال						3	9.252 x 10"	-	2	29		11 x 10-1	5	-	2	=	29	54	<u>ක</u>	2	T	₹ :	•	r 4	2			1 100						_			•	
C	o ^a	CURVE 19 (cont.)*	0	•	_	1.2	1.5	1.6	1.6	1.70	1.99			2.55	2.6		CURVE 20		9.2	9.427	9.582	9.732	9.876	1.001	1.015	1.027	1.039	1.051	1.062	1.072	1.033	1.08	1.10	1.114	1.124	146	4	STOUT STA	77.7	. 13	4 :	1.10	3.2	5 8	5 T	25	17	1.26	1.2	
ŧ	H	CURV	17.0	17.0	18.9	19.0	21.2	21.5	21.6	22.1	23.4	23.00	24.5	25.6	25.9		팅		203	213	223	233	73	253	260	273	283	293	303	313	323	333	35	353	3 6	200	3		3	2000	5/5	3	2.5	3	573	573	675	723	713	

ပို	CURVE 31*	308.7 1.070 x 10 ⁻¹											506.7 1.290												÷	670.2 1.270																				
H	•	8 8	35	40	43	46	49	49	ß	2	2	3	20 20	2	2	55	23	8	62	62	8	62	3	3	3	67																				
င်	E 29*	1.06 x 10 ⁻¹	1,115	1, 133	1.154	1.177	1.201	1.225	1.250	1.274	1.301	1.328	1.358	1.416	1,443	1.483		E 30#									_						0.04		1.043			1.211								
H	CURVE 29*	293	373	393	413	433	453	473	493	513	533	553	573	613	833	64 3		CURVE		1.776	1.843	1.894	1.943	1.993	2.057	2, 139	2,235	2.346	2.438	2.508	2,603	2.728	2 069	3.201	3,305	3.436	3,607	3,752	3.864	3,990	4, 114					
್ಷ	6 (cont.)*	1.301 x 10 ⁻¹	1.307		2		1.057 x 10°	1.052	1.060	1.057	1.074		27.2	1.359 x 10°1	1,339	1,350	1.378	1.393	1,398	1.406	1,438	1.462	1.446	1.471	1.484		E 28*		4.29 × 10-	4.46	5.08	5.47	9.6	7, 10	7.73	8.18	8.47	8.75	9.10	3.54	99.6	9.78	8.6	9.90	9.95	
۲	CURVE 26 (cont.)*	730.4	813.3		Series IV		287.1	287.3	291.4	292.9	308.2		CURVE	697.6	800.7	813.4	891.1	976.5	982.2	1044.5	1116.1	1191.9	1175.4	1232.6	1279.6		CURVE	2:	81.75	83.55	92.45	98.30	119 10	130.68	145.91	157.49	165.62	176.65	191,30	213.67	223.41	231.29	240.20	253, 10	273,20	

SPECIFICATION TABLE NO. 38 SPECIFIC HEAT OF NIOBIUM

[For Data Reported in Figure and Table No. 38]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	74	1958	2-11	< 5.4 4.6	Nb-1, Run I	99.8 Nb, major impurity Ta; annealed; strain free, superconducting state; zero magnetic field.
8	75	1968	454-1882	< 2.9		Sealed in helium.
က	70	1934	273-1873			
→	2	1963	1400-2350	× 4.0	Wire sample	99.8 Nb, 0.08 Ta, 0.05 N ₂ , 0.05 O ₂ , 0.02 C, 0.02 Fe, 0.02 Ta, 0.02 Zr, 0.01 Ni, and 0.01 W; sample supplied by the Fansteel Metallurgical Corp.; outgassed and sealed in < 1 x 10 ⁻⁶ mm Hg glass envelope.
S	92	1960	11-271			97.708 Nb, 0.122 Ta, 0.08O4.0.03 Sl, 0.023 Tl, 0.02 Ni, 0.01 C, and 0.007 Fe.
9	125	1965	1273-2593	± 1.26		99, 83 Nb; powder metallurgy product of 20-mil sheet.
7	2	1968	9-29	< 5. 4	Nb-1, Run II	99.8 Nb. major impurity Ta; annealed; strain free; superconducting state; zero magnetic field.
60	7.4	1958	5-11	<5.4	Nb-1, Run III	99. 8 Nb. major impurity Ta; annealed; strain free; normal state; 2640 gauss magnetic field.
6	74	1958	5-11	< 5.4	Nb-1, Run IV	99, 8 Nb. major impurity Ta; annealed; strain free; normal state; 3000 gauss magnetic field.
10	7.4	1958	1.4-11	<5.4	Nb-II, Run I	99. 8 Nb. major impurity Ta; annealed. strain free; superconducting; zero magnetic field.
==	2	1958	1, 3-9	< 5.4	Nb-II, Run II	99, 8 No. major impurity Ta; annealed; strain free; normal state; 4130 gauss magnetic field.
12	351	1963	2.6-10.5			99.8 Nb; annealed; strain free; superconducting; zero magnetic field.
13	352	1964	0.5-9			<0.075 Ta, 0.0075 Si, 0.0054 N ₂ , 0.0034 O ₂ , and 0.0025 Fe; single crystal.
71	351	1953	3.2-8.6			99.8 Nb; annealed; strain free; normal state.

10.5* 5.575 x 10⁻² 6.938 7.301 7.665 8.028 8.391 8.754 9.117 9, 481 9, 844 1, 021 × 10⁻¹ 1, 057 1, 129 * 10 6. 118 x 1 6. 118 7.118 x 1 7.729 6.780 5.027 5.298 CURVE 5 (cont.) CURVE 6 CURVE 7 8, 804 8, 932 9, 712 9, 951 10, 300 228.03 231.91 233.76 233.76 233.76 243.73 244.35 244.35 244.35 244.35 244.35 244.35 244.35 244.35 244.35 244.35 246.53 256.03 266.72 266.80 833 x 10⁻² .008 .123 CURVE 5 (cont.) SPECIFIC HEAT OF NIOBIUM 5. 637 6. 637 6. 638 6. 6. 641 6. 641 6. 64 [Temperature, T.K; Specific Heat, Cp. Cal g-1 K-1] 65, 33 65, 37 72, 65 69, 75 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 74, 20 89, 99 95, 58 89, 99 107, 34 10-2* 6.67 x 10⁻⁴
7.7.32*
8.72*
8.72*
9.9.15*
1.13*x 10⁻³
1.13*x 10⁻³
1.15*
1.15*
1.15*
1.20*
1.20*
1.20*
1.20*
1.20*
1.20*
1.20*
1.20*
1.20*
2.10*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2.20*
2. ည 38 7. 85. 7. 86. 10, 4. 6. 8. 8. 8. 8. 8. 8. 8. 8. 9. 07. 9. 07. 9. 07. DATA TABLE NO. CURVE 10.98 111.22 111.34 111.34 12.58 12.58 12.68 13.77 13.96 14.11 15.73 16.02 16.02 16.02 16.02 17.73 18.51 18.51 18.53 18. 1400 1500 1600 1700 1900 2000 2100 2200 2300 6.430 × 10²
6.510
6.510
6.634
6.683
6.777
6.875
7.198
7.198
7.316
7.437
7.564
7.695
7.852
8.1118
8.267 CURVE 2 (cont.) 8. 20 8. 36 8. 36 8. 75 8. 75 8. 75 8. 85 9. 07 CURVE 3 155 x 10 4 1.52 1 1.52 1 2.08 6 3.08 6 4.5 3.645 5.52 6 6.52 1 6.28 x 10⁻² 6.45 6.55 6.71 6.77 7.00 ္ပရ CURVE 1 CURVE 2 2. 033 2. 040 2. 297 2. 297 2. 425 2. 425 2. 423 2. 423 3. 690 3. 690 3. 690 4. 009 4. 009 4. 009 5. 726 5. 728 6. 729 6. 729 7. 697 7. 697 7. 697 7. 697 7. 697 7. 697

Not shown on plot

	c o	3(cont.)*	1.181 x 104	1.398	1.641	1.914	2.219	2,561	2.939	3.357	3.818	4.325		E 14*		7.481 x 10-6	1, 110 x 104	2,056	4.032																											
(continued)	۲	CURVE 13 (cont.)*	4.5	5.0	5.5	6.0	6.5	7.0	7.5	0.8		0.6		CURVE 14*		3,233	3.996	6.144	8.63																											
DATA TABLE NO. 38	ပ	CURVE 11 (cont.)	4. 12 x 10 -5*		4.65	5.3I	5. IS	5.51	5, 53	6.46	6.63	7.09	7.23	8.30	8.36	9. 33	9.34	1.08 x 10 4	1.322	1.310	1.512	1,515	1.912	2.415	3.170	4.243	1			1.257 x 10°	2000	9. 170	1. 147 x 10*	T. 909	4. 702	5. 854		3	101 + 101		3.6	4 20	30	6.67	8.19	68.68
DATA	۲	CURV	1.967	2.217	2. 229	2.402	2.418	2. 296	2.613	2.940	2,954	3, 250	3,258	3, 579	3,583	3,933	4. 436	4, 439	4.819	4.877	5, 392	5.392	6.059	6. 887	1.921	9. 110		CORVE		2.563	3.110	4.282	4.675	9.77.0	U2#-1	10.475	271	COUNT	4			7.0		0	2	4.0
	ပ ^ဇ	CURVE 10 (cont.)	2.54 x 10 6*	2.56	4.31	4. 3Z	7. 22	7.18	1.02 x 10	1.03	1.61	1.63	2.63	2.66	4.28	4.32	6. 14	6.07	8, 59	8, 52	1.216 x 10 C	1. 212	1.631	1.637	2.381	2.390	3.618	3.628	5. 130	6.312	7.062	5.285	5.360	8.		CURVE 11	*******	2. 33 X 10	Z. 45	2.5	2.70 40#	, 40 40 40 40 40 40 40 40 40 40 40 40 40 4	***	**************************************	*114	
	T	CUR	1.863	1.865	2.081	2.082	Z. 314	2.318	2.519	2,525	2,788	2.794	3,146	3, 149	3.602	3,603	3,928	3, 929	4.344	4.348	1.804	4. 809	5.300	5,305	6.015	6.017	6.923	6.923	7.857	8.468	9. 7	9.927	10.015	11. 132				1.33	1, 353	1.467	1.401	1.620	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 774	1 961	
	ం	CURVE 7 (cont.)	6.283 x 10-4	7. 195	G. 140	9. 194 	1.060 x 10 ·	1.258	1.487	1.700	1.947	2.323	2. 843	3, 253	3.944	4.598	5, 574	6.708	8.066		CURVE 8		2.091 x 10	1.913	101	0.00	3, 262	1.891	F. 518	2.652	0.0		CORVES	4 040 - 300 4	TO A TO	Z. 962	4. 32g	5. 5. 4. 4. 5.40	0.030	OT TUBE	NA. AV	2 2 x 10rt*	400	1.40 × 19 °	1.36	
	H	CUR	10.757	11.406	12.034	12. 740	13.538	14, 594	15.648	16, 654	17.680	18,903	20, 138	21,574	22.979	24, 323	25.859	27.724	29.450				5.078	5.125					9, 138	121			3	200	0.50	7.313	9.001	3.030	10.11	TIL	3	1 467	1 469	1 729	1 732	}

Not shown on plot

SPECIFICATION TABLE NO. 39 SPECIFIC HEAT OF OSMIUM

[For Data Reported in Figure and Table No. 39]

Specifications and Remarks	
Composition (weight percent),	
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	
Year	
Ref.	
Curve No.	

273-1873

163 1931

DATA TABLE NO. 39 SPECIFIC HEAT OF OSMIUM

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}\,K^{-1}$]

c_p

CURVE 1

273.15 3.099 × 10⁻²
373.15 3.146
473.15 3.146
673.15 3.240
673.15 3.240
773.15 3.240
1073.15 3.355
973.15 3.476
1173.15 3.476
1173.15 3.655
11773.15 3.655
11773.15 3.655
11773.15 3.854

Not shown on plot

THE PERSON NAMED IN

SPECIFICATION TABLE NO. 40 SPECIFIC HEAT OF PALLADIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 40]

marks					
Specifications and Re					
Composition (weight percent). Specifications and Remarks	Higi purity.			Heated slowly to 120 C.	
ported Name and ror, % Specimen Designation					
9 H	0.05				
Temp. F Range, K	30-278	273-1811	273-1773	14-268	2-22
Year	1963	1932	1936	1947	1948
Ref. No.	156	164	165	166	336
Curve Ref. No. No.	-	8	က	4	2

DATA TABLE NO. 40 SPECIFIC HEAT OF PALLADIUM

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1} \, K^{-1}$]

H	ပီ	T	ပီ	•	ر م	•	ٿ	-	2
CURVE		CURVE	CURVE 2 (cont.)	CURVE	CURVE 4 (cont.)	CURVE	CURVE 4 (cont.)	CURVE	CURVE 5 (cont.)*
	•								
2	6. 708 × 10 -	673. 15	6.334 x 10 ⁻²	17, 45	1.561 x 10 -	115. 53	4. 401 × 10 ·	18	1.74 x 10-3
	X	773. 15	6. 534	17, 49	1. 568	120. 16	4.491	20	
41.87	1.3197	873. 15	6. 717	19, 50	2, 054	124. 73	4, 572	22	2.87
28	1. 601	973. 15	6.885	19.62	2.051*	129, 18	4.661		
20	1.918	1073, 15	7.037	19.94	2.218	134, 49	4, 754		
73	2. 143	1173. 15	7, 173	20, 37	2, 360	138, 77	4.820		
25	2, 408	1273, 15	7. 294	22.51	2 946	143 67	4 × × 6 4		
78	2.644*	1373, 15	7.398	22 69	3 002	149 94	4 969		
8	2 887	1473 15	7 487	24 03		10.01	5 095		
2 4	* 00 6	1570 15		20.10	200	10.01			
2 1	3. 030 th	1010. 10	1. 000	20.07	4. 050	103.03	9. 091		
2	3. 212	16/3. 15	010	25. 32	4. 29/	164. 95	5. 134 T		
. 38	3. 432	1773, 15	7.657	26, 23	4. 501	170.26	5. 191		
9.	3. 628	1793. 15	7. 664*	27, 83	5. 191	179, 53	5. 279*		
94, 53	3.842	1803, 15	7.641*	33, 20	8, 024	185, 76	5, 321		
79	4 037*	1810 15	7 640	28 57	1 124 × 10 ⁻²	191 05	080. 9		
4.5	4 179			41.00	1 210	100 00	00000		
1	717 :	1		41.00	ere T	130.03	9. 382		
. 42	4. 331	5	CURVE 3	44, 59	1, 523	201. 18	5, 378		
. 57	4. 563*			47, 90	1. 711	201.87	5, 404		
. 85	4. 666	273, 15	5, 838 x 10 ⁻²	50.07	1, 898	205.34	5, 455		
140.34	4. 798*	373, 15	5, 959	57, 50	2.261	206.95	5 455		
82	4.909	473 15	080 9	57.92	2 290	910 59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
00	5 021*	573 15	£ 202 \$	61.55	2 440	915. 70	5 597		
75	\$ 101*	67.9 15	\$ 257.0	20.50	0000	000	170.0		
2	100	013.13	0.324	7550	2. 523	527. 09			
	D. 193	113. 15	0.447	65.08	2, 675	226.04	5. 581		
3	5. 261	873. 15	6. 570	67.38	2. 804	230, 15	5, 595		
. 55	5.344	973. 15	6.694	72. 14	3, 009	237, 31	5. 598		
200.85	5. 372	1073, 15	6.819	75. 10	3, 140	242, 16	5.628		
. 12	5. 403**	1173, 15	6. 944	76.66	3.215	249, 17	5.664		
216.55	5. 466	1273, 15	7.069	78.82	3.281	253.02	5. 699		
225.88	5. 506	1373, 15	7, 195	80.70	3.310*	258.67	5.717		
235, 12	5.560*	1473, 15	7, 321	81.42	3, 405	263.68	5, 731*		
	5.614	1573, 15	7.448*	83.61	3. 463	268 44	5 748		
		1673, 15	7.576*	84. 43	3, 474				
262.36	* 469.5	1773 15	7 704	85 34	* 596 8	CHEVE	t.		
28	5 726*			28.67	2 649		t		
277 59	5 720	CITRVE	VF 4	80 77	2 679	·	6 10 × 1/r-6		
				00 00	2 76E	٠,			
2	UE 9	10 20	101 : 200 0	96.00	9		<		
CONTR	3 2	20.00	9. 397 X 10.	95. (1	\$	۰ ۵	01.2		
	į	14.84	1. 144 × 10 °	95. 95	3.871	œ	3,37		
273. 15	5. 377 × 10-2	14.90	1. 207	97, 35	3. 951	90	2.06		
373. 15	5.640	16, 82	1. 440	101, 63	4.040	21	7.12		
15	5,887	16.97	1. 414	105.82	4, 157*	14	9.93		
4	8 118	17 99	262 1		4				
	C. T. E								

*Not shown on plot

SPECIFICATION TABLE NO. 41 SPECIFIC HEAT OF PLATINUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 41]

	1					
Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	orted , Name and or, % Specimen Designation	Composition (weight percent), Specifications and Remarks
	1					
7	66	1939	273-1873	,		
1 2	100	1965	338-727			Thermocouple grade; tested at pressure of 5 x 104 mm Hg.
က	101	1958	337-1164			Specimen's surface plated with platinum black.
+	167	1936	1.1-20		٠	C9, 95 Pt.
2	168	1957	11-274		•	99.94 Pt. 0.03 Rb, 0.01 Pd. trace of Ag, Ca, Cu, Fe, and Mg.
9	169	1962	296-2043	. 0.3		99.99 Pt; measured in argon atmosphere.
4	213	1926	18-208		•	
60	261	1933	473-1373			

DATA TABLE NO. 41 SPECIFIC HEAT OF PLATINUM [Temperature, T, K; Specific Heat, C_p, Cal g⁻¹ K⁻¹]

r d	CURVE 5 (cont.)	138. 04 2. 742 x 10-2	બં લ	144 29 9 767	5. E. C.	3.6	23 2	11 2.	59 2.	36 2.	34 2.	6	6	લં		oi o	67 2.	7	101 94 2 065	• •	4 6		1		6	206. 16 3. 004	က	က	က	က	215, 32 3, 015	ri .		218.87 3.040	i c	i c	7	m	229. 54 3. 051	က်	13 3.	235. 45 3. 073	237. 31 3. 090	
T Cp	CURVE 5 (cont.)	22 1.		58 19 1 565	9 9	3 3	46	33		91	65, 26 1, 778	82		13	65	* 6			03. 30 2. 231		1 8	75				3						117. 24 2. 559						127. 36 2. 653		11	77	8 2.	60 2.	
T Cp	CURVE 5	10.63 3.51 × 10 →	78 18	23	27	24	88	95 5.		89 7.	14 7.	8 3	57	 	٠.	16.24 1.007		;	; - ; ;	i –	59	84	65 1.	19.78 1.804	00	0.1	63 2.	66 2.	ب ج	88	25 25		31. 36 3. 894			20	'n.	_; •		⊣ .	70	٦.	53. 58 1. 432	
т	CURVE 4 (cont.)	Series 2 (cont.)	1, 187 9, 098 x 10-6			247	982	363		Series 3		N C	Ni c		1,008 2,134 9 400 3 166		2 515 1 136	i –	901	484 3.	828 4.	960	ı,	c,		ທ່	ດ ເ	6	5. 227 6. 981		Series 4	261	ic	501 2	240 3.	432	700	20.5	515 7.	so .	292 T	017 1.	171	20, 298 1, 844
T Cp	CURVE 3 (cont.)	565 3.13 x 10-2								875 3. 53*	875			1190 3 77	1194 5 13		CURVE 4		Series i		55	٦.		1,410 1,855		2.024 1.714				2.33/ Z.369		3 035 9 467		3. 603 3. 807			.	'n		Series 2		1. 133 9. 519 x 10		
Т	CURVE 1	273.15 3.136 x 10-2 323 3.180				673 3, 419					1173 3.670				1573 3.987			1873 4.177		CURVE 2		338 3.08 x 10 ⁻²				533 3.50			710	727 3 79	5	CIRVE 3		337 2.87 x 10 ⁻²		400 3.31				46E 9.90		ri (3. 32	

* Not shown on plot

^{*}Not shown on plot

SPECIFICATION TABLE NO. 42 SPECIFIC HEAT OF PLUTONIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 42]

	Specifications and Remarks				
	Composition (weight percent), Specifications and Remarks				99.95 Pu
	Reported Name and Error, % Specimen Designation				
	Reported Error, %		± 5.0	5.0	5.0
	Temp. Range, K	338-400	295-385	211-819	303-944
	Year	1962	1968	1968	1964
1	No.	171	122	123	124
,	No.	-	8	m	*

DATA TABLE NO. 42 SPECIFIC HEAT OF PLUTONIUM

CURVE 1 338 3.8 x 10 ⁻² 369 3.4 369 3.4 369 3.4 4.1 400 4.1 4.1 400 4.1 4.1 400 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	CURVE 363 377 377 377 377 377 377 377 377 377	CURVE 3 (cond) 4, 13 x 10 ⁻¹ 4, 13 x 10 ⁻¹ 4, 14 * 4, 49 * 4, 49 * 4, 49 * 1, 1017 x 10 ⁻¹	T CURVI 540 552 554 551 551 551 551 552 553 593 600 600 600 619 619 623 623 634 641 641 641 655 662 662 663 663 663 663 663 663 663 663	T CP CURVE 3 (contd) 4. 69 x 10 ⁻² 4. 58 x 10 ⁻² 4. 58 x 10 ⁻² 4. 58 x 10 ⁻² 5. 68 8 x 30 x 10 ⁻² 7. 39 8 x 30 x 10 ⁻² 7. 39 8 x 30 x 10 ⁻² 8. 23 x 10 ⁻² 8. 23 x 10 ⁻² 7. 28 8 8 8 8 4 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 55 x 10 ⁻² 8. 56 x 10 ⁻²	CURV 732 734 734 734 734 734 734 734 734 734 734	T Cp CURVE 3 (contd) 8, 68 × 10 ⁻² 8, 68 × 10 ⁻² 7, 50 7,	T T 344 344 344 346 346 346 346 346 346 346	CURVE 4 (contd) CURVE 4 (contd) Curve	CURV 431 432 438 444 440 441 442 443 444 444 444 444 447 447 447 447 447	CO HRVE မှာ မေတြကို မေတြကို မေတြကို မေတို့မှာ မေတိုမှာ မေတို့မှာ မေတိုမှာ မေတို့မှာ မေတိ့မှာ မေတို့မှာ မေ
317 325 335 336 343 343 343 352 354 4, 13 358 4, 13	508 508 516 516 523 523 533	: 4 4 4 4 4 4 4 :	706 715 723 723 725 729 730	6.5.4.4.4.5.0 6.5.9.10 6.6.6.9.10	329 333 334 341 341	- ီ- မီးမီး-ီ-ီကီတီ- - ကို ကို ကို ကို ကို ကို ကို ကို ကို ကို	416 417 417 421 425 425 425	*ီမ ီ မီနီမီနီနီ မ ီ မီ ကြော် က်က်က်တ်က်က်က်	507 509 511 511 515 521 522 522 522	യ്യ പെസ്യ്ച്യ ഒരു ഇത് പെസ്യ്ച്യ ഒരു

Not shown on plot

	$_{\mathrm{p}}^{\mathrm{c}}$	CURVE 4 (contd)	3.5 x 10-7	*	3, 5	3.5	3.7	3.5	3.9	4. 1	3, 7,	<u>ئ</u>	2, 44 x 10 ⁻¹	7, 75	. 86 *	1.35	×	~ *.	***				. 4	*2*	4,1	4.2*	4. 0*	4. 1,	4. 1.	ř															
	T	CURVE	888	068	892	894	895	897	901	903	902	206	606	910	912	914	916	816	920	776	200	266	931	933	935	937	939	940	275	Ę															
(continued)	o _d	CURVE 4 (contd)	3.7 x 10-2	3.6	3.5	3,5	3.6	3,5	3, 4**	3, 4	, 10.	3.6*	"ດ"	3,5	3, 6										3.5	3°	3.6*	3. 4.	 **	***	#**************	o*e	4										, o		3.6
42	۲	CURVI	190	792	1 8	196	798	800	\$	802	807	608	811	813	815	718	616	920	822	928	803	529	832	8	835	837	628	841	943 645	270	670	850	852	854	826	828	980	862	90 8	600	98	678	882	38 8	988
DATA TABLE NO.	င္မ	CURVE 4 (contd)	3.7 x 10-2*	3.7	ຫ້ ເຕັ	8.	3.6	3.7.	3.7	3. 9. 1.	. s.	3.8	3, 9	4 . 0	2,4	7.7	o •	***	n c	, c	· ·	,** ™ ™ •	, 6	7.8	9.0	1, 26 x 10 ⁻¹	1.64	2. 17	2.34	7 5 2 10-2*			່ວ	3.5		3. 5	4,4	3,5	***	n*.	o to	n. 	3.4*	3. 4 *	3.4
	H	CURVI	702	107	106	406	710	712	714	715	717	719	723	725	727	62)	200	732	736	738	240	74.9	1	745	747	749	751	753	755	750	760	762	164	992	168	170	772	774	07.7		701	783	785	787	189
	ď	CURVE 4 (contd)	3. 8 x 10-r*		တ ်	, s		ໝໍ້ ຕໍ	. n						* ຕໍ່ເ		n #6	ກ້. ຕ້າ	ດີແ ຕໍ່ຕ	*oc		- * -	**************************************	, e.	3.9	 	8.	න . ආ		* œ	* • •	່າຕ	. e.	3.7	່ໝ້ ຕໍ	່ ຜ *	ໝໍ້ ຕໍ່	***	ກ [‡] ດ	o*o	ກ້າ	o 61	30		
	₽	CUR	614	919	618	620	622	624	626	627	629	631	633	635	537	600	15	740	3	848	650	652	459	929	657	629	199	663	665	689	671	672	674	676	678	680	682	200	9 9	100	699	689	697	669	100
	c _p	CURVE 4 (contd)	3.6x 10-r*		• [*]	.e.	, e	3.6	3.6	ر دن	ب ب	ອີ	٠, ۲	L 1	, i	- 0	o¶.	-¶.	- *	· **	· 6		* * * **	0	0.4	* 0 *	4.1	4 0	4 u	* œ	1 16 × 10-1	9.4 x 10-2	L 077 x 10°	6. 0 x 10-2	2.0	7.7	4.1	ກ ເ ຕໍ່ເ	n a	o*o	ດີແ ກໍ່ຕ	**	4.0	3.7	3.7
	H	CUR	526	528	230	532	23.	536	537	539	17	25	545	247	2	000	7	200	555	260	295	49	266	567	269	57.1	573	575	570	581	200	200	286	588	290	282	294	960	000	200	109	607	609	611	612

SPECIFICATION TABLE NO. 43 SPECIFIC HEAT OF POTASSIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 43]

Composition (weig percent). Specifications and Remarks	Kahlbaum's purity; melted under vacuum.	Kahlbaum's purest potassium; distilled.	Spectroscopic traces of Al. B and Si, triple distilled under high vacuum,	99.995 K	0.0035-0.004 O ₂ ; under argon atmosphere.		Melted in vacuum and filtered into distillation bulbs.	< 0.01 Na; specimen from Pure Metal Research Committee of the United Kingdom and prepared by Imperial Chemical Industry.	99, 96 \pm 0.02 K. 0.61-0.1 Rb. 0.003-0.3 Ca, 0.001-0.1 each Cr. Fe, and Na, and 0.003-0.002 Cu; 95 K sample supplied by the Mine Safety Appliance Co.; triple distilled.	Impurities: 0,01-0,1 Na. 0,001-0,01 Ca, and <0.001 each Al. Cr. Fe, Mg. Rb, Mn, and Si; sample supplied by Baker Chemical Co.: prepared by triple distillation.	99.99 K (stated purity). 0.2 Na (analyzed); measured under argon atmosphere.
Name and Specimen Designation											
Reported Error, %	۰ ۲		0.1				1.0		0, 15-0, 5	2.0	0.3-1.5
Temp. Range, K	69-287	203-609	11-323	1,5-2.0	273-1423	15-277	363-454	30-330	11-322	273-1073	0.3-4
Year	1918	1939	1957	1967	1963	1926	1927	1965	1954	1952	1964
Ref.	170	171	259	173	174	213	214	176	172	353	356
Curve No.	-	2	က	*	S	9	7	œ	6	10	11

DATA TABLE NO. 43 SPECIFIC HEAT OF POTASSIUM

[Temperature, T. K; Specific Heat, C_p , Cal $g^{-1} K^{-1}$]

			41, 98	45.82	49,80	54.14 1.313			69. 67 1. 411	76. 32 1. 433					105.35 1.519				129.99 1.560	136.81 1.568									37	38						227. 18 1. 680**		CURVE 4		1.5 7.74896 x 10 ⁻⁵		2.5 3.06890
$c_{\mathbf{p}}$	CURVE 3 (cont.)	Series 4 (cont.)	s5 1, 733 x 10 ⁻¹			54 1.767			Series 5			-			10 1.552	 	30	n	71 1.585									14 1.6437		Series 6		12 2, 148 x 10 ⁻²	62 2.818		99 4, 734							29 1. 121
Ср Т			1.799 × 10 ⁻¹ 263, 85	5 269.31	9 274.87							1. 651 × 10 ⁻¹ 109, 03				130.	135.	141.	146.									196.14				655 x 10 ⁻¹ 11. 12	2 12.62	7 14.64	16, 99			4 25.03				38.
٢	CURVE 3 (cont.)	Series 2 (cont.)		300, 63 1, 802	306. 08 1, 530	311, 69 1, 846	317, 33 1, 866	322, 80 1, 894		Series 3						·		⊣	100	-i	i	-i	258, 92 1, 725	-	- i	-	281. 02 1. 763	286. 62 1. 778	31	Series 4		-	ij	- i	-		-	-	⊣	247.30 1.709	85 1.	258, 36 1, 725
c _p	CURVE 2 (cont.)	Series 2 (cont.)	1. 977 x 10 1*	1. 970	2, 000	1. 993*	1. 955	1.985	2. 003	1.995*	2. 039	2, 028	2. 026	2. 054 1.	2. 073	2.048	2. 054	2. 053	1. 993	1. 996	2. 021	1. 998	2. 038	2. 045	2. 025	2. 064		CURVE 3		Series 1	4	1.802 x 10 ⁻¹				1.870		Series 2				1. 784
⊢	CUR	Ser	317.2	318.3	322. 8	323.7	324. 5	327. 7	328, 7	328. 9	329, 5	329. 9	330. 4	330. 6	330. 8	330.8	330.9	331. 2	331.5	331. 5	331.8	332. 0	332. 4		333.	333. 5		01		J 2		295. 09	300, 32	305, 68	311. 50	317.61		J		279.91	284. 92	290. 08
တီ	CURVE 2 (cont.)	Series 1 (cont.)	6 2.009 x 10 ⁻¹	-	8 2.017*	0 2, 039			1 2.034	9 2,006	7 2.000	4 2,003*	6 2.013	6 2.031	1. 966	0 1.973°		7	-i ,	.7	5 2.075		Series 2		4 1.670 x 10 ⁻¹	_	7 1.772*			0 1.867	6 1.923*	4 1.891	1 1.862*	1	-	- i	<i>-</i> ز	-	⊣	-	5 1.951	3 1. 956"
H	ซีไ		396.	397.	417.	419.	436.	437.3	455.	455.	416.	477.	200.	501.	525.	526.			575.	10-1 605.	609					204. 1								305.	308.						312.	313.
т	CURVE 1	68.6 1.47 x 10 ⁻¹ 72.3 1.47	0	79.8 1.50	87.0 1.52	-	80	7 1.	n	2	5 1.	5 1.	-i -	286. 7 1. 82		CORVEZ		Series 1		7	N	Ni (334.8 2.056	Ni (335. 5 2. 082	N .	N	336. 0 3.388	N ·	o	2	337. 3 2. 045*	64	6	સં	2	ć,	6i	7	8	.7	377.8 2.033

^{*}Not shown on plot

DATA TABLE NO. 43 (continued)

o	CURVE 9 (cont.)	Series 6 (cont.)	1.614 x 10-1	1.631 1.628	1. 635	1.641	1. 649 1. 645	1. 661	1. 666	1.674 1.679	0	101	1.698 x 10-1	1.822	1.946	1.957	1.941	1.850	1.826	1.819	1.826	1.884	1	≓ .	-	3.577 x 10-6	3,855	4.148	3,418	3, 708	4.069	4.342	4.699	5,111	5.611	6, 131	6.736	7.384
H	CURVE	Series	171. 77			196.38		212. 07		222. 09		CURVE 10*	273. 15	298, 15	323		473				873 973			CORVE	Series I	0.260			0.250_{1}				0.327					
o ^d	CURVE 9 (cont.)	Series 5 (cont.)	1. 612 x 10 ⁻¹	1. 616 1. 623	1. 629	1. 635	i. 641	es 6	6-00	2. 13 x 10 - 2. 80	3.68	4. 72	6.85	7.89	8.87	9.75	1. 120	1. 179	1. 226	L. 2/2	1.348	1. 384	1. 410 1. 432	1 457	1. 477	1. 491	1. 505	1.517	1. 530	1, 539	1. 048	1. 558	1. 567	1.576	1.585	1. 592	1. 599	1. 607
H	CURVE	Series	168.36	179.36	184.82	190. 42	196. 14	Series 6		12. 62	14. 64	16.99	22, 16	25.03	28. 10	31.36	38. 29	41.98	45.82	49.80	59.06	64. 32	69. 67	61.0	87, 32	93. 62	100.05	106.35	112. 46	118, 43	124.51	129.99	135, 81	141.74	147.57	153. 52	159. 61	165. 63
d _o	(cont.)	(cont.)	702 x 10-1	. 716	1. 724	1, 731	1. 743 1. 751	1. 762	. 777	4		1. 653 x 10 ⁻¹	1. 666	. 670	828	1.685	1. 700	1. 708	. 716	731	742	. 752	. 766				1.512 v 10 ⁻¹	1. 524	1. 534	× 5	Te: ::21	. 558	7. 567	. 575	. 583	. 591	1. 601	I. 607
۲	CURVE 9 (cont.)	Series 3 (cont.)	242.54						286. 62 1	Series 4							241.80		252.85	256.36	269, 31	274.87	280.54 1		Series 5		103, 73			119.82			135.80	•	•		157. 46	
ď	(cont.)	70 x 10 ⁻¹	·4.*	1, 75*	1. 76*	1. 79°	1.81*	1.84*	1.88*	5	* 6		•	. 801 x 10 ⁻¹	1.813	1. 830	869		2	763 v 10-1	1. 771	1. 783	1. 798 1. 806	828	84	864	892			1-01	T. 650 x 10 -	355	1. 661	999 .	1.672	1. 677	1.688	L. 693
	30	1 1	1. 73*	- [- -ii				-	-i -	i	Ю	9		_	-	-i -	i -i		*	-					i -i	٦i	i.			9	9 .	_	-i	_				
н	CURVE 8 (cont.)	240 1.7	ii -			290	300		320		CURVE	Corrigo	201100	295. 09 1			317.61 1.		Series 2	279 94			300 63 1		i	⊣	. -i	0000000	Series 3		202. 1/ L. b		211.31 1.			226. 44	231. 69	237. 10
C _p		x 10 ⁻¹ 240 1.	260 1.	273. 15	280			310	320	200				295.09	300, 32	305, 68	317. 61	x 10-1*			284. 92	290.08	295, 34	306.08	311.69 1.	317.33 1.	322. 80 1.			0000	202. 11	206. 63	211. 31	216. 26	221. 34			
	CURVE 6 (cont.)	240 1.	50 1.49 260 1.	1. 58 273. 15		1. 66 1. 66	220.00 1.71* 300	1. 69* 310		7. 10	CURVE 7		1.96	295.09	300, 32		317. 61	x 10-1*	40 1.16 Series	1.52	1, 32* 284, 92	1, 10* 290, 08	1. 41 295, 34 1. 46 300 63	1 49*	311.69 1.	1. 52 317. 33 1.	1. 54 322. 80 1.	L. 55	. 58 	1.59	1. 51 202. 1/	1. 62	1. 63* 211. 31	1.64 216.26	1. 65* 221. 34	1. 66	- 00°	F. 69.1
T Cp	CURVE 6 (cont.)	x 10 ⁻⁴ 64, 10 1, 38 x 10 ⁻¹ 240 1, 71, 80 1, 41 250	x 10 ⁻³ 92.50 1.49 260 1.	140.40 1.58 273.15	201.10 1.66* 280	z 10 ⁻² 214 50 1.66	220.00 1.71*	225. 50 1. 69 ⁴ 310	232.10 1.70 320	7. 10	CURVE 7	1 99 × 10=1	409 1.96	454 1.97 295.09	300. 32	305, 68	317. 61	x 10-1*	1. 16	1.52	1, 32* 284, 92	1, 10* 290, 08	1. 41 295, 34 1. 46 300 63	1 49*	1. 51* 311. 69 1.	1. 52 317. 33 1.	1. 54 322. 80 1.	130 L. 55	7.08	1.59	1. 51 202. 1/	1. 62	1. 63* 211. 31	190 1.64 216.26	200 1.65* 221.34	210 1.66	- 00°	F. 69.1
ď		10 1.38 x 10 ⁻¹ 240 1.80 1.41 250 1.	31195 x 10 ⁻³ 92.50 1.49 260 1.	140.40 1.58 273.15	201.10 1.66* 280	247, 80 L. 66	1. 68789 220.00 1.71*	2. 53184 225. 50 1. 69* 310	1.70 320	5. 11483	6. 03550 CURVE 7	1 99 × 10=1	409 1.96	15 1.81g 454 1.97 295.09	1. 916	305, 68	1.87 ₂ 30 9.46 × 10 ⁻² 317.61	1.84 ₆ 35 1.06 x 10 ^{-1*}	1. 16	1.87. 50 1.27*	15 1.92s 55 1.32* 284.92	2.004 60 1.10* 290.08	1. 41 295, 34 1. 46 300 63	2.36.	15 2.44 100 1.51* 311.69 1.	110 1.52 317.33 1.	1. 54 322. 80 1.	130 I. 55	3. 10 X LU 140 L. D8	4. 58 L50 L. 59	17. 707 T. 017 T. 007. 11	6.88 170 1.62 206.63	7. 42 180 1. 63* 211. 31	05 9.59 190 1.64 216.26	00 1.07 x 10 ⁻¹ 200 1.65* 221.34	20 1.164 210 1.66	- 00°	L. 55 Z.50 L. 69

Not shown on plot

T C _D	CURVE 11/cont.)*	1,527, 7,793 x 10-6	645. 9.474	758	1,339		2, 420, 2, 778				3.766, 1.097 x 10-3	030, 1.364	Saries VI		1.142. 3.837 x 10-5	203, 4.349			1.588. 8.631		1.232		2.058- 1.740					9	3.414, 8.075	9.817		4.101, 1.444						
т	CURVE 11 (cont.)*		0.265. 3.649 x 10-6	288, 4,021	7					1.239		Series III	0.480, 7.897 x 10-6	525		612, 1.150	0.661, 1.310	769.	829. 1.	892. 2.	•	Series IV		0.723. 1.535 x 10-6	1.759	0.890, 2.296		1.013, 2.995			1.218, 4.517	1.238, 4.704	Series V	1.160. 3.985 x 10-6	4.636		;	

*Not shown on plot

SPECIFICATION TABLE NO. 44 SPECIFIC HEAT OF PRASEODYMIUM

(Impurity < 0.20% each; total impurities < 0.56%)

[For Data Reported in Figure and Table No. 44]

Composition (**c1.5n! percent), Specifications and Remarks	0.04 Ni, 0.029 F. 0.015 C. 0.011 O ₂ . 0.008 H ₂ . 0.004 N ₂ . 0.003 Na, 0.002 Ta, 0.0015 Fe, and trace amounts (total 6.036) of Ag. Al. B. Ca. Cu. Er. Gd. K. La. Li. Lu. Mn. Mo. Sr. V. and Y: vacuum distilled; remelted in vacuum and cast into tantalum crucible; machined in argon atmosphere.	Impurities: 0.1 each Ce. La. Nd. and Ta. 0.05 Ca. 0.02 Sl. and 0.01 Fe.	< 0.3 Si, < 0.1 Ca, < 0.1 La, < 0.1 Nd, < 0.1 Ta, < 0.05 Ca. < 0.01 Fe and < 0.01 Mg	< 0.25 Mg, < 0.07 Fe, and 0.05 Ca.
Name and Specimen Designation				
Reported Error, %	<1.5			
Temp. Range, K	0.4-4	273-1071	273-1373	2.5-170
Year	1964	1958	1962	1954
Ref.	28	285	36	35
Curve No.	1	64	က	~

DATA TABLE NO. 44 SPECIFIC HEAT OF PRASEODYMIUM

Cal g -1 K-1]
_
Ċ
Heat,
Specific
¥
Ė
Temperature,

ဝီ	VE 4	1.77 x 10-4	5. 5. 5. 68	1.03 x 10-3	1.92	3.05	4.33	5.68	6.99	1.43 x 10-2	3.26	3.50	4.16	4.39	4.44	4.49	4.47	4.45	4.43	4.40	4.41	4.45	4.40	8 3	5.4	19.4															
H	CURVE	2.5	n 4	S	9	7	œ	6	10	15	0.20	8 8	40	20	55	3	2	8	6	50.	207	105	071	140	160	170															
Ср	(cont.)	6.07 x 10-3	6.54	6.79	7.07	7.35		ຶ່	•	4.577 x 10	4.584	4.811	4.939	5.067	5.209	5.358	5.514	5.677	5.85	6.032	0.210	6.415	170.0	7 047	7 146	6.521	6.521*	6.521	6.521*	6.521	7.288	7.288	7.288	7.288*	7.288						
H	CURVE 2 (cont.)	823.2	923.2	973.2	1023.2	1971.2		CURVE		298.15	95.	9	450	200	220	009	650	100	750	0 0	200	200	000	990	1071 5	1071.5	1100	1150	1200	1205.15	1208.15	1250	1300	1350	1373.15						
T Cp	CURVE 1 (cont.)	Series 3 (cont.)	0. 5209 1. 544 x 10-4						0.8824 8.679							1. 6482 1. 163		1. 3613 1. 479							•	4.0565 5.416		CURVE 2			4.72	373.2 4.78	•							773.2 5.86	
ဝီ	CURVE 1	Series 1	2.899 x 10-4	2. 409	2. 122	1.895	-i	٠i .		1 120	i 0	80	8. 561		8. 456	8. 652		Series 2	4.00	9. 404 A	1 000 × 10-4	1. 107 I	1 224	1.378	1, 578	-	2. 149	2. 538	2.989	3.511	3. 991	4. 500		Series 3	100	3. 018 x 10	2. 692	2.398	2.144	1. 925	1. 725
	ଧ	Ø	3585	3972	4276	4578	4973	5483	3	3	7765	8452	9173	9912	8010	1577	•	ň	9400	3519	4693	5822	7183	8748	0543	2607	4879	7241	9615	2024	960	7416		Ž,	2	390	3/31	3981	4249	4534	200

*Not shown on plot

SPECIFICATION TABLE NO. 45 SPECIFIC HEAT OF RHENIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 45]

Composition (weight percent), Specifications and Remarks				99.9 Re; prepared by reducing ammonium per tenate at 500-600 C in $\rm H_2$; sintered at 1000 C; cooled in $\rm H_2$	99.942 Re, 0.015 Al, 0.014 Sh, 0.01 Ca, Si, 0.005 Mg, 0.0004 Mo, 0.0005 Cu, and 0.0 X Au; swaged; drawn; annealed for 2 hrs. at 1750 C.	99.98 Re; powder metallurgy product of 20-mil sheet.	99, 8 Re; powder form; under helium atmosphere.
Name and Specimen Designation							
Reported Nam Error, % Specime	< 2.4	4.0	± 10.0			± 0.35	
Temp. Range, K	860, 1400	300-3120	1410-2720	20-300	1400-2600	1273-2643	68-77
Year	0961 21	1961	1962	1953	1956	1965	1963
Ref. No.	17	65	67	86	106	125	175
Curve Ref. Year No. No.		8	က	.	ro.	9	1

DATA TABLE NO. 45 SPECIFIC HEAT OF RHENIUM [Temperature, T, K; Specific Heat, C_D, Cal g⁻¹ K⁻¹]

				[Temp	[Temper ture, T, K; Specific Heat, Cp, Calg-1K-1]	pecific Heat,	Cp, Cal g ⁻¹ K ⁻¹]
H	င်း	Н	c _p	H	ပ္	H	ပိ
딍	CURVE 1	CURVE	CURVE 3 (cont.)	CURVE 4 (cont.)	4 (cont.)	CURV	CURVE 7 (cont.)
860 1400	3.40 x 10 ⁻² 3.96	2610	4.6 x 10 ⁻² 4.6*	288.30 300.01	3. 303 x 10 ⁻² 3. 301 *	70.00	1. 665 x 10 2**
5	CURVE 2	27.2	•	CURVE 5	E 5	70, 90	1, 799 1, 756
300	3 32 x 10-2	CURVE 4	*	871	2 10 - 10-2	76.90	1.874**
8	3.38	20, 39	8. 480 x 10-4	1500	7. 29	01.77	1. 767
200	3.43	22.00	1, 090 x 10-3	1600	7.48		
8	3. 49	24.89	1.691	1700	7.64		
88	 	28.80	2. 437	1800	7.82		
2 2	 	31, 74	3.349	0061	7.98		
1000	3.68	39.98	5.824	2100	8 28		
1100	3.72	43.96	7.820	2200	. œ.		
1200	3.77	48.89	9.677	2300	8.58		
1300	3.81	53, 82	1.155 x 10 ⁻²	2400	8.70		
1400	3.84	55. 42	1. 207	2500	8.83		
1500	3.88	62. 26	1, 465	2600	8.98		
300	 	56.27	1. 527	į	•		
1800	. c	75.30	1. 083	CURVES	2		
1900	8 8	77 39	1 860	: 973	2 589 v 10-2		
2000	80.	80 05	1 912	1373	2 674		
2100	60	84.00	2,005	1473	3.767		
2200	4. 12	92.86	2, 210	1573	3, 859		
2300	4.21	103.04	2.360	1673	3.952*		
270	4.31	112, 19	2. 502	1773	1.04		
2500	4. 42	121. 82	2. 621	1873	4. 137		
2600	Z :	131. 01	2.714	1973	4. 229		
2000	÷. 4	139.85	2. 792	2073	4. 322		
2000	7 . C	150.41	6.00	2173	4.414		
3000	6. 10	164. 92	2.958	2373	* 599*		
3100	96.9	173.88	2. 997	2475	4. 692		
3120	7. 19	183.64	3.096	2573	4.784		
		193. 20	3.064	2643	4.877		
3	CORVE 3	202. 65	3.114		e G		
1410	3, 20 x 10-2	222.30	3, 200	A COL	1		
1630	3.40	233. 62	3.213	68.00	1. 692 x 10-2		
1980	3.0	244.81	3.265	68.60	1.751*		
2010	0	255.86		69.00	1. 735		
2250	4.2	266. 79	3. 286	69.40	2. 057		
2370	4.6	277. 59	3.319	69. 70	1. 713		

Not shown on plot

SPECIFICATION TABLE NO. 46 SPECIFIC HEAT OF RHODIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 46]

d Remarks	'e, cast.
, Specifications and	ss of Ag, Cu, and F
Composition (weight percent). Specifications and Remarks	99.9 Rh, 0.0 X Pt type metals; traces of Ag, Cu, and Fe; cast.
Reported Name and Error, % Specimen Designation	
Reported Error, %	
Temp. Range, K	10-269
Year	1955
Ref.	107
Curve No.	F: 0

DATA TABLE NO. 46 SPECIFIC HEAT OF RHODIUM

				[Temperatu	[Temperature, T, K; Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]	eat, Cp. Cal	g-1 K-1]	
H	ď	۲	ʻ,	۲	$c_{\mathbf{p}}$	۲	od o	
CURVE	IVE 1	CURVE	CURVE 1 (cont.)	CURVE	CURVE 1 (cont.)	CURVE 2 (cont.	(cont.)	
10.28	1. 681 x 10-4	74. 26	2. 476 x 10 ⁻²	197.39	5. 235 x 10-2	1373, 15	8. 074 x 10 ⁻²	
11.78	2. 031	78.66	2. 683	198, 59	5. 258	1473, 15	8. 119	
12.08	2. 118	92. 79	2.864	199, 32	5. 221*	1573, 15	8. 092	
14.28	2 964*	94. IO	3. 022	202.90	5. 267			
16.66	4 033	93.69	3 204	204.01	5.070*			
16. 82	4. 179	95.53	3,353*	208 09	304*			
19.09	5.384	97. 97	3, 450	210.29	5.380			
19. 14	5, 743	100.15	3, 505	211.25	5. 322*			
19. 19	5. 763*	101, 24	3. 536 ²	213.62	5. 325*			
21. 22	7. 706	104. 67	3.666	216.47	5.363*			
21. 75	8. 590	102.01	3. 690*	216.75	5.390*			
22. 05	8. 756	107. 67	3. 779	219, 29	5. 437*			
23. 38	1. 060 x 10-		3. 797	222. 29	5. 435			
24. 29	1. 219	110.84	3, 834*	222. 48	5. 462**			
24. 53	1. 276	113, 81	3. 953	225. 10	5. 463*			
25. 64	1. 460	115, 33	3. 974*	228, 22	5. 498*			
27. 12	1.748	117. 53	4. 024	228, 99	5, 465*			
27. 16	1.811	119.48	4. 064*	230, 97	5. 559*			
28. 75	2. 177	121. 57	4. 100	234.88	5. 495*			
29. 62	2. 437	124.35	4. 183*	234.98	5. 511			
30.5	2.619	125. 65	4, 247	241. 18	5. 550*			
37. U.S.	3. L30	128.92	4, 332	241.67	5. 543			
32.05	3. 176	131. 55	4.356	247.65	5. 575			
34. 87	4. 137	133. 40	4. 393	247.75	5. 573*			
35. 22	4. 236	136. 29	4. 464*	254. 59	5, 652*			
38. 25	5. 586	138, 57	4. 492	254. 74	5, 585			
38. 52	5. 679	141.64	4. 546	260.87	5. 713			
12.64	7.686	143.25	4. 606	261.76	5. 656			
44 . 18	8. 493	146.50	4. 634	267.28	5.648*			
5. 4 5. 4 5. 4 5. 4	9. 766	148.68	4. 664	268. 66	5.661			
50.43	1. 199 x 10 -:	153. 93	4. 767					
20.75	L. 235	158.71	4. 774	COR	CURVE 2			
55.60	1 479	164.05	1.05		2-01 - 000 3			
20.00	1 550	120. 12	4. 000	61.77	5. 693 X 10 -			
60.00	200	110, 12	4. 964		6. 026			
20.02	1. (3)	170.59	4. 967		6. 203			
62. 47	1.873	175. 28	5.012		6.415			
62. 32	1. 942	176.99	5. 035		6.650			
65. 12 25. 35	Z. 016	181.40	5.076	773, 15	6. 899			
65.69	Z. 015	182, 92	5.090	873. 15	7. 150			
56.21	2.083	187. 16	5. 131	973. 15	7, 393			
	2. 167	189. 95	5. 179	1073. 15	7.618			
56.68	2. 244		5, 178		7.814			
	2. 238	196.07	5. 202*	1273. 15	7. 969			

* Not shown on plot

SPECIFICE TION TABLE NO. 47 SPECIFIC HEAT OF RUBIDIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 47]

Composition (weight percent), Specifications and Remarks	Order of magnitude of impurities 0.4.
Reported Name and Error, % Specimen Designation	
Reported Error, %	
Temp. Range, K	25-300
Year	1955
Ref. No.	176
Curve No.	-

SPECIFICATION TABLE NO. 48 SPECIFIC HEAT OF RUTHENIUM

(Impurity < 0.20% each; total impurities < 0.50%)

For Data Reported in Figure and Table No. 48]

Femp. Reported Range, K. Error, 7,
Year 1959

DATA TABLE NO. 48 SPECIFIC HEAT OF RUTHENIUM

ıl g ⁻¹ K ⁻¹]	c _p	CURVE 2 (cont.)	8, 17 x 10 ⁻²	s. 06*	7.81	6.64	6.65	7.30	1.40	7. 4 3	1 075 x 10 ⁻¹	8, 50 x 10 ⁻²	5, 66																													
leat, C _p . Cr	H	CUR	1313	1323	1333	1343	1373	1473	1573	1573	1773	1823	1873																													
[Temperature, T. K; Specific Heat, $c_{ m p}$, Cal $g^{-1}K^{-1}$]	ວື	CURVE 1 (cont.)	5.335 x 10 ⁻² *	5, 343	5,362	5.360	38.5	3.396	97.4.14 10.4.16	5. 400	5.43	5,449	5.441	5.471	5. 490	5, 488	5, 521	5.528	5.53	5.552	3.366	5.562	5,562	. 594.	5.621	5,620		CURVE 2		5.51 x 10 *	, c.	66.5	6.15	6.31	6.48	6.64	6. 30	96.9	7.12	7.57	7.92	8.12
[Temperati	L	CURVE	226.34	228,68	228, 87	231.50	233, 96	234.06	900 14	239, 55	242. 42	244, 60	245, 30	248, 15	249.79	251.24	253, 50	255.92	257.25	259.60	201.04	262.94	265, 12	22.507	270, 80	272, 48		CUR		273	473	573	673	773	873	973	1073	1173	1273	12.83	129:1	1303
	ບີ	CURVE 1 (cont.)	3,411 x 10 ⁻²	3,536	3, 703	3.821	3.967	4.070	4.100	4.401	4.491	4.556	4.661	4.727	4.809	4. 865	4.922	4.998	5.037	5.06¢	000.0	3.086 0.086	5.080	5.099	5,115	5, 115	5, 141	5. 129	5.154	5, 161 5, 167	5 175	5.217	5.219	5.233	5.223	5,242	5.269	5.274	5.280	5.288	5.290	5.298"
	H	CURVI	106.01	110.71	115.60	120.35	125.39	136, 03	140.4	145.60	150, 59	155, 81	160, 83	166.15	171.20	176.20	181.59	136.67	191.71	195.01	100.00	150.41	198 16	199.16	200,41	202.08	202, 94	203.80	205. 45	207.67	208 70	210.56	212.78	212.80	213.68	215,84	217.74	217.97	218.69	220.90	222.98	22:3.77
	ပ ^α	CURVE 1	1,217_x 10-4*	1.276	1.276	1.346	1.514	1. 404 1. 610*	1.613	1.959	2.117*	2, 127*	2.246	2,701	2.820	2.919	3, 127	3.681	3.661	3. 4 08	4,041	3.026	1.56 × 107	1.951	2.989	4.296	900.9	7.965	1,054 x 10 ⁻²	1.177	1 421	1.456	1,694	1.695*	1.946	1.950*	2.195	2.442	2, 635	2.851	3.061	3, 232
	T	55	11, 39	11.46	11.61	11.90	12.68	12.81	15.05	14.55	14.8	14, 85	15, 39	16.67	17.06	17.30	17.80	19, 03	19.09	19.51	20.42	21. 59	27.80	31.65	35, 68	39, 62	44.02	48, 41	53.08	57. 21	6.09	61.55	66, 11	66, 23	70.82	71,00	76.07	81.16	86.08	91, 13	96.01	101. 23

SPECIFICATION TABLE NO. 49 SPECIFIC HEAT OF SAMARUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 49]

Composition (weight percent), Specifications and Remarks		$> 99.71 \text{ Sm}, \le 0.20 \text{ Eu}, \le 0.05 \text{ Ca}, 0.01 \text{ Fe}, \le 0.01 \text{ La}, \le 0.01 \text{ Mg. and } \le 0.01 \text{ Si.}$	Sample supplied by the Johnson, Matthey and Co.; evaporated on to thin tantalum strip.	0.04 H ₂ , 0.02 C, and 0.008 O ₂ ; vacuum distilled.	Same as above.	0.2 Eu, 0.05 Ca, 0.01 Fe, 0.01 La, 0.01 Mg, and 0.01 Si.	
Name and Specimen Designation							
Reported Error, %		0.14	±2.0	< 2.0	<2.0		
Temp. Range, K		298-1398	2-20	0.4-4	1.0	273-1398	20-360
Year		1960	1967	1962	1962	1958	1969
Ref. No.	i	73	109	151	151	285	356
Curve No.		-	8	က	•	ĸ	•

				[Temp	[Temperature, T, K; S	pecific Heat	Specific Heat, Cp, Cal g-1 K-1]				
H	o ^c	H	င္မ	H	ပီ	H	c _p	۲	ပ္	H	ပီ
CURVE	<u>15 1</u>	CURV	CURVE 2 (cont.)	CURV	CURVE 3 (cont.)	CURVE	CURVE 3 (cont.)	CURVE	D)	CURVI	CURVE 6(cont.)*
298. 15	4. 496 x 10-2	71	1, 86 x 10-2 8 98 x 10-3	Seri	Series 1B*	Series	Series 2 (cont.)	273.2	4.17 x 10-3	80.0	5.120 x 10-
350	5. 028	91	8.71	0.3951	9-01 × 698 6	9 9935	4 889 × 10-6 *	343.2	4.78 7.91	85.0	5.354
97	5 491	2	2.0	0.4950	0 360	2000	***************************************	4.000	14.	2.0	5.578
450		8	1 02 x 10-2	0.4608	7 997	2.45.9	1, 155 X 10 4	463.2	30.07	95.0	5.790
200	5.986	19	1.11	0 5004	6 413	3 7691	1 630*	4.0.4	60.4	0.001	6.038
550		20	1. 20	0.5454	5, 650	3 9703	1 939	573.2	80.9	102.0	6.177
909	6, 385			0, 5964	5. 00 4			623.2	6.46	101	6.449
650	6, 545	COL	CURVE 3	0,6536	4, 500	CUR	CURVE 4	673.2	6.61	101	6.489
100	6.684	l		0, 7171	4.057			723.2	6.74	104.6	6.543
750	6.817	Ser	Series 1A	0.7864	3, 753	0.4460	7, 538 x 10 ⁻⁵ *	773.2	6.87	104.8	6.626
800	6. 930			0.8604	3, 543	0.4769	£. 796 [*]	823.2	6.98	105.0	6,683
820		0.3890	9.597 x 10-	0. 9377	3, 424	0, 5151	6. 063	873.2	7.08	105.2	6.704
3 3	7. L37	0. 4208	8. 4 54	1, 0169	3, 375	0.5626	5.368	923.2	7.17	105.4	6.635
000	7. 223	0.4550		1, 0966	3, 380	0.6161	4. 782	973.2	7.26	105.6	6.355
9901	7 389	0. 4938	6. 561	1. 1755	3, 432	0.6756	4.319	1023.2	¥.	105.8	5.953
1100	7.463	0.5879		1 3283	3.516	0. 7408	5.874	1199 9	7.42	106.0	5.427
1150	7, 537	0.6443	4. 534	1, 4074	3.750	0.8848	3 580	1173 2	2.5	104.5	4.691
1190, 15	7. 589	0, 7071	* 088*	1.4975	3, 929	0.9608	3.512	1190.2	2.59	107.5	4.519
1190, 15	7. 463	0,6577	4, 437	1, 5998	4, 151	L 0376	3, 504	1190.2	7.46	108.0	4.397
1200	7, 463	o. 7217	4. 030	1, 7224	4, 457		3, 547	1223.2	7.46	110.0	4.311
1250	7, 463	u. 7913	3, 736	1.8575	4.825	1, 1891	3.624	1273.2	7.46	115.0	4.230
	7. 463	0.8657	3, 532		5, 244	1, 2764	3, 745	1323.2	7.46	120.0	4.192
(8) 1345. 15	7. 463	0. 9437	3, 396	2, 1583	5. 790	1, 3743	3, 931	1345.2	7.46	130.0	4.170
1345. 15	9. 47.T.	1, 0234		2, 3357	6, 468		4. 162	1345.2	9.34	140.0	4.168
1206 15	2.4(1	1, 1033		2, 5321	7.374		4. 454	1373.2	e	150.0	4.179
1000. 10		1. 1689	3. 445 2. EEO	2. 7456	8.460	1, 7172	4.813	1398.0	¥.	160.0	4.200
CURVE	22	1 2717	2.601	2 1047	1 147 - 10-4	L. 6556	3.0	1	*	170.0	4.224
•	4 99 v 10-6	1 4669	3 863	2 4218	1 250	2. 0142	0,000	CORVE		180.0	4.246
, es	!	1.5743	4.089	3 6877	1 645	9 3879	7.435	000	1 149 × 10-2	200.0	4.670
•	1.73 x 10-6	1 7009	4 391			5000	610	20.00	1 598	200.0	300
'n	1	1.8416	4. 777	Ser	Series 2	2.8188	1 005 x 10-4	30.0	2.067	220.0	4.253
9	92	1, 9892	5, 208				1.188	35.0	2,507	230.0	4 405
2	1. 19 x 10-3	2, 1518	5, 742	1, 6332	4, 271 x 10 ⁻⁵		1.431	40.0	2.906	240.0	4 440
∞		2, 3316	6. 413	1, 7542	4, 567	3, 5642	1, 756	45.0	3.267	250.0	4.486
o (2.86	2. 5314	7. 295	1,8852	4.917	3, 8294	2, 144	50.0	3,588	260.0	4.529
9	61 .	2, 7484	8, 389	2, 0240	5, 314			55.0	3,887	270.0	4.562
# :	3 . 6 .	2, 9741	9, 765	2, 1834	5, 832			0.09	4.165	273.15	4.575
1 :	201 102	3, 2004	L 141 x 10~	2, 3003	6.502			65.0	4.418	280.0	4.607
3 2	2 00 X 10 2	3. 4400	1.331	2, 5580	7, 363			70.0	4.661	290.0	4.655
								75.0	000	11	700

*
Not shown on plot

T Cp CURVE 6(cont.)*

4.702 x 10-1 4.750 4.796 4.841 4.885 4.928 4.971 300.0 310.0 320.0 330.0 350.0

SPECIFICATION TABLE NO. 50 SPECIFIC HEAT OF SCANDIUM

[For Data Reported in Figure and Table No. 50]

Composition (weight percent), Specifications and Remarks	0.05 Cu, 0.02 Pb, 0.01 Al, 0.01 Fe, 0.01 Ti, and 0.01 Y; crystalline.	0.092 Cu, 0.06 Fe, 0.043 Ca, 0.026 Si, 0.024 N ₂ , 0.019 Cu, 0.015 Ni, 0.014 Al and 0.009 Mg, prepared by metallothermic reduction of the fluoride, with calcium and purified by distillation.
Name and Specimen Designation		
Reported Error, %	0.3	
Temp. Range, K	53-296	298-1812
Year	1962	1966
Ref.	157	301
No.	-	64

DATA TABLE NO. 50 SPECIFIC HEAT OF SCANDIUM

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1} K^{-1}$]

T q	CURVE 2 (cont.)*	1000 1.66 x 10 ⁻¹ 1100 1.72 1200 1.73 1400 1.95 1500 2.03 1608 2.13 1608 2.351 1700 2.351 1812 2.351	
ပ	CURVE 1	3. 819 x 10 ⁻² 4. 377 4. 377 5. 114 6. 6. 6. 28 7. 16. 2	1.55 1.55 1.55 1.55
۴	Eno	\$2.54 \$6.175 \$6.46 \$6.46 \$6.46 \$7.08 \$1.17 \$7.112 \$6.46 \$1.17 \$1.17 \$6.01 \$1.14 \$1.17 \$1.16 \$1.16 \$1.17 \$1.16 \$1.17 \$1.16 \$1.17 \$1.16 \$1.17 \$1.16 \$1.16 \$1.17 \$1.16 \$1.17 \$1.16 \$1.17 \$1.16 \$1.17	8 8 7 6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

SPECIFICATION TABLE NO. 51 SPECIFIC HEAT OF SELENIUM

[For Data Reported in Figure and Table No. 51]

Specifications and Remarks	99. 999 Se. 0. 00009 Fe. 0. 00004 Cu, 0. 00001 Pb. and 0. 00001 Te; kept at 130 C under vacuum for one week. Purified from Mallinckrodt grade Se. 0.2 Te; glass. 0.2 Te; crystals.
Composition (weight percent), Specifications and Remarks	99, 999 Se. 0, 00009 Fe. 0, 00004 Cu, o vacuum for one week. Purified from Mallinckrodt grade Se. 0. 2 Te; glass.
Name and Specimen Designation	
Reported Error, %	< 2. 0
Temp. Range, K	15-300 98-278 50-299 54-297
Year	1953 1932 1937
Ref. No.	357 358 358
Curve No.	- 21 to 4

DATA TABLE NO. 51 SPECIFIC HEAT OF SELENIUM

		-	ئ	۲	5
	í.	•	ď	•	Ω,
CURVE 1		CURVE	CURVE 1 (cont.)	CURVE	E 4*
97 5.	686 x 10-3	275.27	7. 572 x 10-2*	54.4	3.528 x 10-2
9	586	281.82	7. 622 *	56.1	3.627
7.	687	288. 25	7. 638	58.7	3,744
17 8.	726	294. 85	7. 663	20.	3.822
87	030 x 10-2	300, 30	7.643	63.4	3.844
-i -	6			0.09	4.067
72 77	537	CORVE	2	72.9	4.744
ii	269	98	7.50 × 10-2	77.6	4.778
i	52	100.8	3	7.77	4.777
8	137	103.6	7.90	82.8	4.965
4	370	112.5	7.73	92.4	5,255
38 2.	609	141.1	8.36	99.5	5.499
11 2.	98,	141.5	8.26	110.0	5.783
c,i	985	153.8	8.18	119.3	5.983
62 3.	116	207.9	8.51	133.9	6.299
က	278	276.9	.6.	147.0	6.543
82 3.	474	277.1	8.98	155.4	6.631
က်	734	278.3	9.00	174.5	6.958
က်	973			191.5	7.044
	140	CURVE	in in	202.7	7.134
*	236		ı	223.2	7.221
4	481	49.9	3.693 x 10-2	240.9	7.315
÷	664	52.5	3.766	261.2	7.409
~ i	801	55.5	3.883	272.7	7.423
'n.	41	56.2	3.889	296.5	7.538
87. 97 5. 1	129	58.1	3.996		
o o	121	59.5	4.037		
<i>•</i> •		63.3	4.214		
<i>•</i> •	431	68.2	4.449		
6	513	71.9	4.602		
179 77 6 7	207	78.3	4.810		
.	331	200.0	9.133		
	288	110.6	0.70		
	120	139.0	950		
7	187	156.7	5.54		
7	164	162.7	6 715		
,	7	177 4	6 874		
91	157	188.4	6.985		
	385	205.0	7.100		
249, 10 7, 324	77	216.2	7.224		
60	121	227.3	7.199		
268.19 7.4	081	249.0	7.649		

SPECIFICATION TABLE NO. 52 SPECIFIC HEAT OF SILICON (Iripurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 52]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Des. gnation	Composition (weight percent), Specifications and Remarks
-	7	1959	80-310	<7.0		Single crystals.
м	9	1959	8-300	< 0.5		Hyper pure grade; single crystal slabs; sample supplied by du Pont; broken into 3 mm size; evacuated to a pressure of 10 ⁻⁴ mm Hg; sealed with a small amount of helium gas.
က	42	1964	295-723	< 3.0	Si-4-690-2	St. n-type: 0.003 ohm-cm resistivity.
4	111	1963	273-1373	0.5	44	Si. p-type; single crystal; 1070 ohm-cm resistivity at 300 K; orientation (1.1.1).
S.	112	1960	1200-1900			Highest purity.
9	7	1964	29749	<3.0	Si-4-690-1	Si. n-type: 0.003 ohm-cm resistivity.
7	177	1930	61-296			99.7 Sl; sample supplied by the Electro Metallurgical Co. of New York.
s 0	178	1952	1,7-100			Impurity concentration 1.5 x 10 ⁻¹ B
6	359	1965	60-300			> 99. 999 SI,

SPECIFIC HEAT OF SILLCON Specific Heat, Cp. Cal g⁻¹ K⁻¹]

22

DATA TABLE NO.

[Temperature, T, K;

349 x 10⁻¹ 376 402 428 454 476 503 525 546 ဌ 2.886 3.466 4.128 5.171 6.032 7.694 8.694 9.822 CURVE 5 CURVE 6 CURVE 7* 227.4 3335.4 4412.5 375.5 440.2 275.6 259.0 259.0 266.5 266.0 266. 61.2 65.1 75.0 75.0 98.8 98.8 1116.7 129.8 1133.6 1200 1300 1400 1500 1690 1700 1800 1, 698 x 10^{-1*}
1, 696*
1, 703*
1, 705*
1, 705 c CURVE 2 (contd) CURVE 3 CURVE 4 296. 63 296. 73 298. 41 300. 33 295. 2 315. 7 328. 6 3343. 1 3343. 1 3344. 6 416. 6 414. 6 521. 4 521. 4 629. 1 629. 1 273 373 473 573 673 773 873 973 1173 1173 ည CURVE 2 (contd) 186. 40
1188. 08
1189. 94
1191. 49
1191. 49
1191. 48
1191. 48
1194. 86
1196. 69
1196. 69
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 199
1197. 1 10-1 S CURVE 2 (contd) 62, 71 65, 10 68, 27 68, 27 68, 27 72, 16 69, 24 72, 16 73, 33, 27 73, 33, 27 74, 57 75, 57 75, 57 76, 57 77, 57 78, 57 7 H 8, 601 1, 192 x 10-1 1, 234 1, 464 2, 969 3, 395 5, 675 6, 775 6, 775 7, 743 1, 118 1, 253 1, 362 1, 765 1, 610 1, 866 Cp CURVE 2 (contd) 14, 941 115, 940 116, 941 117, 250 118, 650 118, 650 118, 680 118, 104 S CURVE 1 CURVE 2 7.720 8.122 9.465 9.465 9.9471 10.834 11.908 11.908 12.535 12.535 12.535 13.635 13.635

Not shown on plot

ntinned
8
22
_
ç
_
-
LE
PLE
APLE?
TARLE
A TABLE
TA TABLE?
LTA TABLE
DATA TARLE
DATA TABLE

		10-1			
ტ	(cont.)*	6.94 x 16 6.93 7.05 7.14			
н	CURVE 9 (cont.)	273.15 280 290 298.15	}		
ပ္	CURVE 8 (cont.)*	1.786 x 10-4 2.636 3.401 4.252 5.442	6.888 8.674 2.228 x 10-3 4.337 7.313 1.105 x 10-3 1.514 2.449 2.469 3.963 4.413	4.813 5.238 5.765 6.029 VE 9*	1111122222323234444777777796999
۲	CURVE	11 16 11 14 11 11 11 11 11 11 11 11 11 11 11	2 9 8 8 8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9	80 85 95 100 <u>CURVE</u>	66 90 90 110 110 110 110 110 110 110 110 1
ტ	7 (cont.)*	1.062 x 10 ⁻¹ 1.075 1.101 1.109	1.212 1.259 1.272 1.309 1.329 1.355 1.477 1.477 1.508 1.577		7. 6. 469 6. 469 7. 236 8. 071 9. 952 1. 214 × 10 ⁴ 1. 466 1. 165 5. 704 6. 444 6. 444 6. 444 6. 444 6. 444 7. 249 8. 120 1. 105 × 10 ⁴ 1. 403
H	CURVE 7 (cont.)	157.1 158.8 161.4 164.3	179 186.9 198.9 198.9 199.5 205.2 213.6 237.5 237.5 241.4 246.4 258.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

SPECIFICATION TABLE NO. 53 SPECIFIC HEAT OF SILVER

[For Data Reported in Figure and Table No. 53]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	101	1958	337-1090			Specimen's surface plated with platinum black.
2	52	1936	325-925			Inquartation silver; heated under reduced pressure in argon.
က	103	1941	15-298			99.99 Ag; melted and crystallized in nitrogen and cooled over a period of 5 days.
•	179	1924	373-1173	<1.0		Melting sample.
ß	180	1932	273-1073	s 0.2		Pure oxygen free silver.
9	181	1934	2-5			
1	182	1936	193-393	± .03		99.98* Ag. 0.0095 Cu, and 0.0018 Fe.
60	183	1936	373-773	< 1.0		Same as above.
on .	178	1952	1,4-2.5			99.999 Ag; single crystal.
10	2 81	1966	3-30	< ± 5. 0		99.999 Ag. 0.0005 - 0.00005 Fe, < 0.00005 each, Ca and Mg, < 0.00002 Cu, and 0.0001 - 0.00001 Si; large crystals; cast by Consolidated Mining, Smelting and Refining Co., Ltd.; annealed condition.
==	268	1926	373-1573			Electrolytic silver.
12	360	1932	1-20			99, 95 Ag; sample supplied by Zilverfabriek.
13	296	1965	1-5	0.5		99.98 Ag. 0.01 Cu, and 0.01 total, Fe, Pb, Mg, and Mn; sample supplied by Handy and Harman Co.; annealed under vacuum of 1 x 10 ⁻⁶ mm Hg or 4 hrs. at 700 C; cooled under vacuum at rate of 200 C per hr.

DATA TABLE NO. 53 SPECIFIC HEAT OF SILVER [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

H	o o	H	ပီ	H	ď	H	ပီ	H	o o	Ħ	ပီ
CURVE	<u>/E 1</u>	CURVE	IVE 3	CURVE	CURVE 3 (cont.)	CURV	CURVE 3 (cont.)	CURVE	VE 5	CURVE	CURVE 7 (cont.)*
337	5. 497 x 10 ⁻² 5. 405	Series	ies 1	Series	Series 1 (cont.)	Ser	Series 7	% E-3	Series 1*	203. 15	5. 3561 x 10-3
356	5. 201		3. 340 x 10-2	282, 54	5. 650 x 10-2*	16, 99	2.271 x 10-3*	273, 15	5, 540 x 10-2	223, 15	5. 4230
400	5. 405	67. 94	3. 529	288.11	5. 665	18.99	3. 282*	373. 15	5, 682	233, 15	5. 4517
400	5. 405*			291. 37	5. 594*	21. 28	4.468	473.15	5. 822	243. 15	5. 4780
007	5. 701	78. 13	3. 922	292, 26	5.612*	23. 78	6. 054	573. 15	5. 958	253. 15	5. 5043
465	5.905	83. 28	4. 069	297.81	5. 652	27. 29	8. 788	673, 15	6.091	263, 15	5. 5282
465	5.805	76 S	4. 202	,	•	31. 32	1. 157 x 10 ⁻²	773. 15	6. 220	273. 15	5. 5473
565	6. 100	93. 63	4, 325	Series 2	es 2	35. 56	1.519	873. 15	6. 347	283. 15	5, 5688
565	6. 202	98. 88	4. 453	3		40.07	1.869	973. 15	6. 469	293, 15	5. 5880
709	6.304	104. 06	4. 556	15.34	1.418 x 10-5	45.16	2, 238	1073. 15	6. 590	303. 15	5. 6047
7 6	6. 304	109.09	4. 651	21. 60	4, 459	49.80	2. 557			313, 15	5, 6238
979	6. 499	114. 24	4. 717	24. 48	6. 276		2002	Ser.	Series 2	323, 15	5.6405
9,0	0.001	119. 53	4. 797	28. 50	9. 243	3	Series 8			333, 15	5. 6573
191	6. 397		4. 829	33.00	1.300 x 10-4	;		623, 15	5. 966 x 10-z	343.15	5. 6716
181	6. 499	130.55	4. 895	33.63	1.746	14. 22	1. 242 x 10 ⁻³	673. 15	6.041	353, 15	5. 6883
200	6.507		4. 302	25.00 20.00	2. 131	15.85	L. 595	773. 15	6. 220	363. 15	5. 7027
6.0	6. 291	145 44	5. 014 F 046	43.00	47C .7	16. 23	2. 837	873. 15	6.377	373. 15	5. 7170
976	£ £01*	140.50	9.0	93. 4	679.7	21.69	4. 737	973. 15	6. 491	383, 15	5. 7290
2 .	700.0	154 40	5. TO	98.89	3. 112	25.27	7. 036	1073, 15	6.678	393. 15	5. 7409
1017	6. 499*	150.45	5. 121	1		78. 61	9. 493	1173. 15	276		**
1000	6 400	154 96	5. 130 F 917		Series 3		4	1223. 15	0.910	3	CORVEST
1090	466 ¥	170 37	5 227	91 91	1 771 2 10-8	8	Series a	Ş	9 041	31.020	2-00-000-0
		175 58	5 257	2 6	2 994	14 64	1 296 v 10-3	5	CONVER	499 15	5. 7679 A LU
CITRVE	VE 2	180.96		23.60	1 509	14.04	1. 320 A 10	1 671	\$-01 ~ 370 G	423. 13	2, 1012
		186.45		61. 80	4. 390	16. 13	2 976	1. 0/1	3. 846 X 10 °	4/3, 15 699 16	5. 8234
324. 75	5. 63 x 10-2	192.04	5 355	Sorios A	4 -0	91 90	4 946	6. 031	7 220	523. 13 E79 1E	3, 550 /
361.35	5.67	197.96	5 374	1100	- 60	25.93	7 843	2 535	1 009 x 10-6	693 15	5. 9512
381, 85	5.69	203, 43		15.03	1.595 x 10-3			2 766	1 229	673 15	6 0708
425, 15	5. 73	209, 10	5. 422	17.06	2.401	CUE	CURVE 4	2, 950	1.388	723, 15	6. 1186
467.95	5. 78	215.06		19, 30	3, 430			3.079	1.543	773, 15	6. 1903
522, 15		220.86	5. 446	22.00	5. 025	373. 15	5.72 x 10 ⁻² *	3.218	1. 694		
572. 25	5.89	226. 50	5. 465*	24.98	6.981	473, 15	5.86*	3.344	1.864	CUR	CURVE 9
626. 85	96 6	232. 30				573. 15	6. 02*	3. 452	2. 003		1
672.65	6.00	238. 25	5.511	Seri	Series 5	673. 15	6. 15*	3, 534	2. 089	Ser	Series 1
722. 45	5 6	244. 03	5. 539			773. 15	6. 30	3. 635	2. 236		The second second
090 000		243. 65	5. 552	15.07	1. 567 x 10-3"	873. 15	6. 44	3. 836	2.544	1.4	2. 985 x 10-6
60.770	17.0	255. 40	5. 567	17.07	2. 233	973, 15	6.57	4. 020	2, 824		3.354
020.00	9.40	200.30	0.086	18. 83	3. 226	1073. 15	6. 72	4. 537	3, 759	9 ;	3, 756
014. 30	6.6	265.83	5. 58G			1173, 15	6.85	4. 733	4.094	1.7	4. 192
990. 45	12.0	27.T. 20	5.616	Ser	Series 6			4. 921	4. 647	 	4. 665
	6. 53	276.83	5. 635	:					4	6.1	5. 176
				14. 43	1. 409 × 10"*				CURVE 7	o .	5. 728
				20.11	2 900			100	2-01 - 19-6 a	7 0	6.323
				70. 11	o. 900			130. 13	9. 3139 X 10	7 7	* nn
Not shown on plot	n on piot										

	* 4			2.346 x 10-	•	40				. ~	6	_	1.079 x 10-6						. ~																						
ပိ	13 (cont.	= =		2.34	2,739	2.945	3, 111	4.092	5.417	6, 153	7,733	9.421	1.075	1.283	1.507	1 750	2 038	***	2	3 162	3 332	3,809	4.321	4.788																	
۲	CURVE 13/cont.)*	Series II		1.212	1.319	1,380	1.431	1.676	1.966	2.087	2.294	2.507	2.667	2.881	3.084	3 279	3 492	3 711	3 900	4.088	4. 199	4.487	4.690	4.864																	
ပ္ရ	cont.)*	>		Z. Z68 x 10-	2.506	3, 155	8.696	1.284 x 10-6	2.774	3.078	4.557	5.815		*E	1		2. 903 x 10-6	2.375	2,530	2.630	2.767	3.534	4,436	5.349	7.283	7.263	8.499	1.012 x 10-6	1,188	1.389	1.671	1.868	2,269	2.714	2.962	3,468	3.620	.013	542	1.961	
۴	CURVE 12 (cont.)*	Series IV						2.837						CURVE	Series		1,158					1.546								2.875			3.618						4.766	4.926	
c _p	*1	9.127 × 10-4	201 x 102	1.010	1.290	1.569	1.768	2.045	2,351	2.734	3, 112	3,425	3,999				2.522 x 10-4	3.627	3,956	6. 191	.760	9.799	.527 x 10-6	2.052	2.799	. 42	1.324	5.676	8.320	. 640 x 104	3,153	1.802	.688								
۴	CURVE 12 (cont.)*											19.439 3.	20,314 3,		Series 田		1.394 2.					2.514 9.	_			64	•	5,358 5,	5.984 8.	8.480 2.	8.988 3.		11,330 6.								
o ^d	*11	5.80 x 10-1	6.01	9.16	6.51	6.60	6.80	7.01	7.17	7.41	6.92	6.92	6.92	6.92		12*			3.993 x 10-4	5.591	6.177	7.178	8.579	1.118 x 10-3	1,530	1.909	2.243	2.379	2.819	2,981	3.221	3,309				4.202 x 10-	5. 482	7.401			
H	CURVE 11*							973		1173			1473			CURVE	Series 1		9.705					13.562	15,110			17.476				19.422		Series 1				11,862			
o ပ	CURVE 9 (cont.)	Series 2	60	1. 582 X 10	8. 293	_	9.864		IVE 10		1, 428 x 10 ⁻⁵	2.940	5. 339	8. 870	1. 383 x 10-4		2, 929	4 058	5.468	7. 208	334	L 186 x 10-3	1, 484*	1. 834*	2, 225*	2. 662*	3, 140*	3.661	4. 226*	4. 823*	5. 453	6. 121*	6.814	7. 527	8. 264	9. 017*	9. 789*	1. 057 x 10 ^{-2*}			
H	CURV	8		2.5	,	7.	2.5		CURVE		m	4	s	•	7	•	•	10	=	12	1	14	15	16	11	18	19	20	21	22	ឌ	24	25	26	27	28	29	30			

SPECIFICATION TABLE NO. 54 SPECIFIC HEAT OF SODIUM

[For Data Reported in Figure and Table No. 54]

Composition (weight percent), Specifications and Remarks	High purity; sealed in helium; cooled to 2 K.	same as above, control to 20 K; annealed at 300 K.	Office and according to 75 K	outline as above, cooled to the second to th	on the second of	99, 99 Na; technical grants	Kahibaum's purity, menced under the control of the	0, 001 - 0, 01 h, and 0, 0001 - 0; 000 of	99, 990 NG.	Naniosum s purity.	Nanicaum 8 per ny.	tubing.	Pure metal, hydrogen free.	and the state of were block murity; self annealed for several days at room temperature.	no as the made were stress of the stress of	> 22, 32 (44, mater, part at gent at a gent at
Name and Specimen Designation																
Reported Error, %	>2.0	< 2.0	< 2.0	≤ 2.0	< 2.0	s 2.0	<1.0	1.0				1.0		± 0.1		5.0
Temp. Range, K	21-80	21-60	21-80	40-65	40-300	373-673	65-294	273-1173	1.5-20	87-124	17-118	394-451	2-25	55-320	1.5-20	0.4-2
Year	1960	1960	1960	1960	1960	1969	1918	1950	1967	1920	1926	1927	1948	1954	1965	1959
Ref.	113	113	113	113	113	•	170	185	173	267	213	214	336	361	362	223
Curve No.	-	73	က	*	S	ဖ	7	60	0	10	11	12	ដ	14	15	16

DATA TABLE NO. 54 SPECIFIC HEAT OF SODIUM

[Temperature, T, K; Specific Heat, Cp, Calg⁻¹ K⁻¹]

			x 10-1																						x 10-3			x 10-						. 10 x	× 10-			-	x 10-1							
	တီ	/cont.,*			2.64	2.67	2.69	2.71	2.74	2.75	2 77	9	86	200		2.87	2.30	2.92	2.93	2.96	2.99		15*			6.31			: 2	2.91	4.28	15.0			X 92.2		4.61			1.67	2,33	3,09	3,91			
	۲	CURVE 14 (cont.)*	160	170	180	190	200	210	220	230	240	250	000	220	273.15	780	290	298, 15	300	310	320		CURVE 15*		1.5	1.8	2.0	2.5	3.0	3.5	4.	4.0	0.0	0.0			9 6	0.01	0.21	14.0	16.0	18.0	20.0			
	ပ္ရ	(cont.)	6.74 × 10-2		1.07 × 10-1	1.34	1.65	1.86	2.45		12*	41	2 27E = 10-1	3 107	101 0	ŧ,	1	2.39 × 10-4		5,87	1.17 × 10-3		5,39	4.05	4.35		1.09 x 10-2		2.35	3.09	3.91	6.31	4	71	1 74 - 10-1		3 5.3	2.01	2.15	2.26	2.34	2,40	2.44	2.48	2.52	2,55
<u>.</u>	T	CURVE 11 (cont.)	26.17	29.40	34.56	41.40	49.50	58,10	117.60		CITRUE	CONTRACT	204			CHRVE 13*		7	ຕ	4	2	9	7	80	6	10	12	14	16	18	20	22		CORVE 14	**	3 6	3 8	2 ;	0	8	100	110	120	130	140	150
Specific Hear, Cp, Cal g ' K '	ပီ	8 (cont.)	2. 999 x 10 ⁻¹	3.004	3. 031	3.080		E 9	1	3.871 x 10-6	6 916	1 152 4 104	1 805	2 684	3 828	7, 134	1.214 x 10 ⁻³	1.949	2.914	4. 219	5. 698	9, 482	1.509 x 10-2	2.210	2, 953	3. 697		CURVE 10*		2.29 x 10-1	2.31	8.0	2.33	00.0	2.43	9 4E	2.43	· · · · ·	7.4.7		CURVE 11*		2.58 x 10-2		5.25	
Specific near	H	CURVE 8 (cont.)	873.15	973. 15	1073, 15	1173, 15		CURVE 9		1.5	5 0			o un			6.0	7.0	8.0	9.0	10.0	12. 0	14.0	16.0	18.0	20.0		CURV		87.0	67.6		91.0	4.10	103.2	0001	191 0	200	124.0		CURV		16,95	20.04	23,25	
Lemperature, I, K;	c _p	CURVE 5 (cont.)	2, 913 x 10 ⁻¹	2. 935	2.940		VE 6		3, 20 x 10 ⁻¹		3.20	3 20	3 20	3.20	3.20		VE 7	ĺ	1. 966 x 10 ⁻¹	2 027	2. 075	2.092	2. 210	2. 305	2. 619	2. 606	2. 675	2. 684	2. 797	2.949	2. 953		2 2	#1-01 220 0	2. 866 X L)	100	3 124	. 164 0 0 0 0 0	3. 258	3, 309	3. 306	3. 201*	3. 117	3.056	3.016	
9 7	H	CURVE	290	298, 15	300		CURVE		373, 15	423, 15	473, 15	523 15	573 15	623, 15	673, 15		CURVE		64. 6	67.9	71.1	74.2	84.6	94. 8	156.8	159.0	181.7	183.8	234. 7	292. 1	293. 5		CORVE	31 040	298 15	2000 16	348 15	20.000	370.95	370.95	373, 15	473.15	573. 15	673. 15	773. 15	
	ဝီ	VE 4	1. 288 x 10-r*	1, 463*	1,673	1. 831	1,870	1, 935		VE 5		1. 291 x 10-r*	1.458*	1.608	L 739*	1.846*	1, 935	2, 013*	2, 082	2, 147*	2, 208	2, 256	2, 296	2, 330	2, 391	2,448	2, 495	2. 535	2, 569	2. 601	2. 628	200	2000	2 799	2 743	2 767	2 789		2, 613			2, 866	2, 886			
	H	CURVE	40	45	20	55	09	65		CURVE		40	45	20	55	90	65	20	75	90	82	8	92	100	110	120	130	140	001	097	0.7	200	200	910	220	030	24.0	950	007	760		273, 15	280			
	o d	CURVE 1	4. 328 x 10-2	6, 172	8, 599	L 087 x 10 ⁻¹	1. 287	1, 466	1, 651	1, 855	1.940	1.994	2.047	2, 107	2, 170		CURVE 2	100	4. 454 x 10 ⁻²	6. 290	8, 673	1. 095 x 10-17	1.300	1. 506	1.686	L 747	1.84		CURVES	M. 0	4. 367 X 10-	*00**	1 087 × 10-F	1 207	1.466*	1 639*	1 914	1 016*	976 7	7.365	2. 026		2, 153			
	۲	티	21	25	9	35	4 0	45	20	55	9	65	70	75	80		_ଅ	1	21	22	ಣ	32	9	45	20	22	9	į	키	ë	12	3 6	35	9	4.5	20	3 2	9	9 4	00	2 1	2	8			

.01	
2.911 3.152 3.561 1.093 5.929	1
0.493 0.517 0.579 0.649 0.721 0.883	
	.493 2.911 x .517 3.152 .579 3.561 .649 4.093 .721 4.004 .821 5.929

x 10-									x 10-5						
38	428				2.553									٦.	III 88
403	.408	411	.415	.422	.456	. 492	.515	600	.264	. 520	. 648	.83	. 935	. 989	Series

x 10				
2.593 x	2.797	3.626	3.458	4 048
0.417	0.454	0.536	0.588	0 633

4 . 050 . A	2.797	3.626	3.458	4.048	4.629	4.917	5.818	-
175.0	0.454	0.536	0.588	0.633	9.706	0.758	0.799	

4.917	5.818	5.508	6.231	6.186	6.823	**
0.758	0.799	0.828	996.0	0.879	0.892	0000

				6.579		
0.892	906.0	0.918	0.936	0.956	0.976	1.001

SPECIFICATION TABLE NO. 55 SPECIFIC HEAT OF STRONTIUM

(Impurity <0.20% each; total impurities <0.50%

[For Data Reported in Figure and Table No. 55]

Composition weight percent), Specifications and Remarks	d 0.05 Si.
weight percent),	Mn, 0.2 Ca, an
Composition	0.5 each Ba, Fe, and Mn, 0.2 Ca, and 0.05 Si.
Name and Specimen Designation	
Reported Error, %	2.0
Temp. Range, K	1.5-20
Year	1957
Jurve Ref. Year No. No.	7
Curve No.	-

တီ

CUR\ 1

2.05 x 10-5 3.33 x 10-5 5.07 1.06 x 10-1 1.36 6.90 6.90 1.05 x 10-1 1.05 x 10-1 1.05 x 10-1 1.05 x 10-1 1.03 x 10-

SPECIFICATION TABLE NO. 56 SPECIFIC HEAT OF TANTALUM

_
53
No.
Table
and
Figure
Ę
Reported
Data
For

Composition (weight percent). Specifications and Remarks	99.90 Ta, 0.05 Nb, 0.02 W, 0.015 C, 0.015 O ₂ , 0.01 each Fe. Mo, Si, Ti, and Zr, and 0.005 N ₂ ; sample supplied by the Fansteel Metallurgical Corp.; outgassed and sealed in <1 x 10 ⁻⁸ mm Hg glass envelope. 99.9° Ta, 0.04 Nb, 0.613 Fe. 0.01 W, <0.01 each C. Si, and <0.005 Mo; sample supplied by the Fansteel Metallurgical Corp.; annealed.	99. 9 Ta; sealed in vacuum; degassed for 2 hrs. at 2150 C. Sealed under vacuum of 2 x 10^4 mm Hg. > 99. 654 Ta, 0.05 Nb. <0.0% each Ti, W, 0.014 O ₂ , 0.005 C, 0.004 Fe, and 0.003 Mo. Same as above.	Sample supplied by the Fansteel Metallurgical Corp.; stabilized by heating 3 to 6 hrs. in vacuum at 1400 C and slowly cooling. 99.9 Ta; sample supplied by the Fansteel Metallurgical Corp.; annealed in vacuum of 1 x 10°5 to 1 x 10°6 mm Hg for 24 hrs. at 1800 - 2400 C; zero magnetic field, super-	conducting. Same as above; 1930 gauss external magnetic field. Same as above; 237 gauss external magnetic field. Same as above; 454 gauss external magnetic field. Same as above; 557 gauss external magnetic field. Pure wrought Ta; sheared in lengths of 0.5 cm; washed consecutively with HCL solution. NaOH, distilled water and alcohol; dried near 100 C.	0.067:1 ratio of hydrogen to tantalum; made from sample A by heating to 710 C in vacuum (10-5 mm Hg at room temperature to 2 x 10-4 at 710 C) and then admitting vacuum (10-5 mm Hg at room temperature to 2 x 10-4 at 710 C) and then admitting to 10-5 mm Hg 0.0958: I ratio of hydrogen to tantalum; made from sample B by evacuating to 10-5 mm Hg at room temperature; heating to 700 C, and admitting additional hydrogen.
Name and Specimen Designation	Wire	Tan 9-4 Tan 10-22 Tan 10-29		Sample A	Sample B
Reported Error, %	4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	< 10 1.0 1.0	< 0.2		
Temp. Range, K	100-3200 100-3195 1200-2400 12-539	1200-1700 1273-2939 1200-2900 1089-1700 1089-1700	573-1173 273-1873 1.3-24	1.4-5.4 1.6-4.5 1.3-3.2 1.5-2.3 53-295	80-295
Year	1960 1961 1963	1962 1961 1963 1960 1960	1929 1934 1958	1958 1958 1958 1958	
Ref.	17 65 65 64 64	115 116 117 711	201	204 204 204 364	36 36
Curve No.	- 4 m 4	∾ ஸ் ⊢ீறை ஜ	1 1 2 E	4 4 9 4 4	19 19 20

SPECIFICATION TABLE NO. 56 (continued)

Composition (weight percent), Specifications and Nemarks	Prepared by pumping hydrogen from sample C at 720 C, pumping continued until pressure had fallen to 2 x 10 ⁻⁴ mm Hg at 720 C and during cooling to room temp. 0, 0284: Irratio of hydrogen to tantalum; prepared by dehydrogenating sample D at 700 C. 99.85 Ta, 0.11 C, 0.037 H ₂ , and 0.005 Fe. > 99.95 Ta, and traces of Cu, Fe, Nb and Si; sample supplied by Nederlandsche Siemens N. V.
	Sample D had fallen to 2 x 10 ⁻⁴ mm Hg at 720 C and had fallen to 2 x 10 ⁻⁴ mm Hg at 720 C and 0. 0294: Iratio of hydrogen to tantalum; prepared by 85 Ta, 0.11 C, 0.037 H ₂ , and 0.005 Fe. > 99.95 Ta, and traces of Cu, Fe, Nb and Si
Reported Name and Error, % Specimen Designation	<i>ω</i> ων
Temp. Range, K	80-295 80-295 53-320 11.4-4.3
Year	1940 1940 1941 1955
Curve Ref. Year No. No.	36.4
Curve No.	ដ ងនេះន

DATA TABLE NO. 56 SPECIFIC HEAT OF TANTALUM

	c _p	cont.)	201 × 10-2	101	4, 130	159	4. 188	4 217*	4 236		4.4	,	3. 667 x 10 ⁻²	3, 705	3, 743	00.0	0.010	200	930	3,968	4, 006	4.043	4.080	4.118	4. 156	4. 193	4. 231	4, 269	. 306		×ι	4 18 v 10-2	02	3.87	3, 76*	3, 79*	3,95	4.19	4.41	4.60	4.75	£. 87	4. 93	
	H	CURVE 6 (cont.	2373 15	2473, 15 4							CURVE 7*				1400											2600		2800 4			CORVE	1088 9						1422. 2 4			•		1700.0	
	ď	CURVE 4 (cont.)	3 463 x 10-2*	3, 467	3, 472*	3.476	3, 479*	3 484*	3.488	3, 492	3, 496	3, 500	3, 504	3.508	3.512	3 510	3 593	3.527	3, 531	3, 535	3, 539	3,541		VE 5		3, 20 x 10-2	3, 51	3, 65	3, 72		***	CIRVE		3, 753 x 10-2*	3, 782*	3,811*	3,840*	3,870*	3, 898	3.927	3, 956	3, 985	4, 014	4.043
-1	H	CURVE	445	450	455	460	465	470	475	480	485	490	495	200	202	515	250	525	530	535	240	543, 16		CURVE		1200	1300	1400	1500	1600	7.00	SIL		1273, 15	1373, 15	1473, 15	1573, 15	1673, 15	1773, 15	1873, 15	1973, 15	2073, 15	2173, 15	2273, 15
Specific Heat, C., Cal g-1 K-1	ွပ်	4 (c	3. 254 x 10-2#	3, 262	3, 270*	3, 278	3.284	3.291*	3, 298	3, 305	3, 309	3, 311*	3, 319	3. 325	3, 332	ie			3, 353	3, 357	3, 36Z*	3, 367	3, 371*	3, 376	3, 381*	3, 386	3, 390		3,400	7 7	3.41	3.415	3,418	3, 421	3, 425		•	3. 435		3,442	3. 446	•	3, 455	3, 459
Specific H	H	CURVE	235	240	245	250	255	260	265	270	273, 16	275	280	282	296	298 16	300	305	310	315	320	325	330	335	340	345	350	355	360	365	375	380	385	390	395	400	405	410	415	420	425	430	435	440
[Temperature, T, K;	С	VE 4 (cont.)	3, 487 x 10 ⁻³	3, 885	4. 736	5, 560	7. 798	1.008 x 10-2	1, 231	1.432	1. 623	1. 793	1. 945	2. 075	2, 195	2.403	2.486	2, 555	2.618	2, 675	2, 731	2, 778	2, 832	2,861	2, 89	2, 930	2, 962	2,986	3,011	3, 035	3,078	3,096	3, 113*	3, 129	3, 144	3, 158	3. 172	3, 184	3. 196	3. 208		3, 227	3, 236	3, 245
Ę	H	CURVE	25	36	28	30	35	40	45	20	55	09	65	200	0 0	90	06	95	100	105	110	115	120	125	130	135	140	145	150	951	165	170	175	180	185	190	195	200	205	210	215	220	225	730
	d S	CURVE 2 (cont.)	3.95 x 10-2*	* 00 *	4. 05 [‡]	4.11*	4. 17 [‡]	4, 24	4, 33	4. 42	4.51	4.60	7.72	* 8	25	5,58	6.02	6.80		CURVE 3		3, 70 × 10-2	3, 74	3, 77	3, 82	3.86	3.91	3.97	2 6 7	90.4	4. 22*	2.2	4.36*		CURVE 4		4.090 × 10-4	6.355	7, 903	9.671	1.382 x 10-1	1.868	2.48	3, 117
	H	CUR	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2200	2000	2900	3000	3100	3195		2		1200	1300	1400	1500	1600	1700	1800	1900	365	8 22	2300	2400		밁		12	1	S	16	18	2 6	77 7	\$
	ပီ	CURVE 1	2. 52 x 10 ⁻²	2, 89	3, 10	3, 15	3, 30	3, 35	3, 42	3, 55	3.67	3.69	3.75	90.0	00	4.05	4, 10	4. 15	4, 25	4. 39	4.75	5, 10	5,67	6,67		CURVE 2		2, 74 × 10 °	, 20 	3 19*	3, 28*	3, 35*	3, 40*	3, 45		3, 55	3.60	3,65	3.70	3, 75	980	, ec.	3, 30	
	۲	COL	100	150	200	250	300	904	200	009	900	1000	1200	291	1700	1800	1900	2000	2200	2400	2600	2800	3000	3200		5		201	120	35.	900	400	200	900	200	800	000	000	200	2007	200	200	Met	

	T O	CURVE 14 (cont.)	Series 2	1 429 1 1210 - 10-5 *									4.271 4.5262	4.690 5.1672	5.031 5.8415	1.031	SI JAMES	CONAC 13	Series 1		-						3,06/ 4,4433 3,949 5,1949					Series 2			1,962 1,2656			2,619 2,9843 2,840 3,6972*	
(Continued)	ع ص	CURVE 12 (cont.)	Series 2 (cont.)	4 445 6 4770 × 10 ⁻⁵	4.688 5.2943						7.366 1.2600				12 203 6 1244								24, 323 3, 4822		CURVE 14	5	Series 1	1 491 1 1974 × 10 ⁻⁵				3, 126 2, 8130			ī,	ທ່	5.392 6.5710		
DATA TABLE NO. 56	T C	CURVE 13 (cont.)	Series 1 (cont.)	5, 702 7, 3502 × 10 ⁻⁵	266		7.365 1.2545		8.698 1.9260					10, 447 3, 1236					1,8038		21.941 2.5670	Series 2		1, 253 3, 2053 x 10 c	1,381 3,0948							252	403					4. 110 8. 7926 4. 259 9. 5110*	
	T C	CURVE 12*	273, 15 3, 322 x 10 ⁻⁷	က်က	3.						ຕໍ		ກໍເ	1573 15 3.873					CURVE 13		Series 1				1.448 3.9790 1.650 6.5765													5, 168 6, 1730	
	T C	CURVE 9	105a,7 3,96 x 10 ⁻²	•	2	1311.1 4.59	•	•	•	•	÷	•	1700.0	or average		1088.9 3.66 x 10-2*				•	•	ege i		•	1700 0 4 12		CHRVE 11		573 3.5795 x 10 ⁻²			823 3.7189					1150 0.0000		

Not shown on plot

x 102 × ļ 21/cont 8888 55CURVE 283 283 283 283 283 283 283 x 10° <u>2</u> 20(cont.)* 3.50 3.47 3.45 CURVE 21* 270 275 280 285 290 295 H /continued j j cont.)* 4.4.2 2.2.2.2 82.2.2.2 14.4.2.2 2.3.3 2.3.3 2.3.3 2.3.3 26 CURVE DATA TABLE NO 260 275 275 275 280 285 290 295 3 ž × (cont.) CURVE 19 2 \vdash 10-10-2 1.3374 x 1 1.9674* 2.7688* 4.0012* 6.2946* (cout.) 18 CURVE 17 (CURVE 2.284 5.5817 x 10° 7.6818 1.0058 x 10°* 1.2711* 1.6082* 2.016* 2.5256* 3.0230* 3.9820° 8.5107* 7.9026* 7.9026* 5.2225* 7.7315* 1.847 x 10-4* 5.6922 x 10-5* 4.4488* 4.8909* × 10-6 x 10° 3 7.9028 1.0003 3 1.2435 1.2435 1.5695 1.9840 2.5256 3.4057 7.7978 3.0948 1,3595 y 1,9177 2,7301 4,0012 6,3022 URVE 15 (cont.) Series 2/cont.) Series 1 Series I Series 3.064 3.238 3.399 3.536 4.234 4.523 1.334 1.500 1.648 1.796 1.954 2.123 2.299 2.299 2.586 2.707 2.844 3.033 3.254 1.334 1.505 1.505 1.654 1.956 1.956 2.122 2.22.29 2.445 2.445 2.544 2.545 3.030 3.030 1.583 1.875 2.144 2.285 2.335 H

(continued)
98
2
TABLE NO.
BLE

inued)	Т	CURVE 25(cont.)*	2 238.69 3.266 x 10-2	3,267	245. I7 3. 282																																									
DATA TABLE NO. 56 (continued)	т	CURVE 25 (cont.)*	55.04 1.623 x 10-2		67 88 3 613															138 59 9 437									105 55 3 152										_						233. 12 3. 252	
DATA	c _p	CURVE 24 (cont.)*	4.213 5.990 x 10 ⁻⁵		Sories III	111 sal 136		3,320 5,189									4.007 5.130	0.4.0	0.7.0	4, 736						CURVE 25		2. CO X 10-2	11.60 3.769	5.941	5.770	6.416	9.318	1.027 x 10 ⁻³	1.364	1.460	1.517	2.016		3,266	4.019	5.687	7.278	9.295	42.54 1.119 x 10-2	
	C _p 1	CURVE 23/cont.j	4.22 × 10 ²		5. 4 3.5	4.19					3.92			series i		4.255 x IV"	5 140	5.305	510	7.3.C . X	9,727	1.000 x 10-5	1, 039	1. 1.13			2 010	2.0.2	2.697	3,355	4.515	7.599	5, 775		Series II		01 X CIE C	6.007	6.289	6.687	7.533	7.560	8.632	8.069	7.129	
	F	CURVE	0-2	276	0,40	285	z	295	300	310	320		5	ser	•	1. 396	1 467	1.502	1 69 1	1.671	1.712	1,717	1.783	1.891	1.971	2 100	201.7	0 340	2.406	2.746	3,039	3,652	4.017	74	Ser	207 0	0.430	3,300	3,575	3,634	3,798	3,849	3,960	4.024	4.031	
	್ತ	CURVE 22 (cont.)*	3,34 × 1	3,35	the state of	CURVE 25	×		1.74	1.90	2.06	2.19	2.30	2,39	2.48	2.55	2.63	20.0		70.7	2.91	2.96	3.01	3.05	3.09	 	3.17	77.0	87° E	8.5	3.39	3.43	3.48	3,53	3,58	3.5	3,69	3.74	3, 79	3,85	3,89	۳. ۳.	3.99	4.03	4.08	
	H	5	290	295	(71	S	55	8	65	20	75	2	82	6	95	100	200	115	120	125	136	135	140	145	2	150	201	170	175	180	185	190	195	200	202	210	215	220	225	230	235	240	245	250	

SPECIFICATION TABLE NO. 57 SPECIFIC HEAT OF TELLURIUM

[For Data Reported in Figure and Table No. 57]

Composition (weight percent), Specifications and Remarks		0.2 Se (estimated).
	0.2 Se.	0.2 \$
Name and Specimen Designation		
Reported Error, %		
Temp. Range, K	54-292	14-301
Year	1987	1935
Ref.	358	367
Curve No.	1	8
Ref. No.		

DATA TABLE NO. 57 SPECIFIC HEAT OF TELLURIUM [Temperature, T.K; Specific Heat, Cp. Cal g'K-1]

T Q	CURVE 2 (cont.)	178.48 4.569 x 10-3+ 188.95 4.569 x 10-3+ 220.44 4.634* 221.0 4.655* 223.71 4.679* 223.80 4.677* 225.62 4.679* 226.28 4.781* 259.64 4.757* 259.64 4.757* 259.80 4.828* 301.27 4.820	
တီ	1	2. 922 x 10 ² 3. 044 x 10 ² 3. 044 x 104 3. 055 x 3. 065 x 3. 065 x 10 ² 4. 161 4. 294 4. 591 4. 597 4. 605	નું નું નું ત્યું નું છે છે એ એ એ એ એ એ એ એ એ એ એ એ એ
۲	CURVE	54.0 67.4 67.4 72.3 76.0 76.0 111.6 111.6 1128.5 1128.5 1189.4 178.4 178.4 178.4 178.4 178.4 178.5 189.6	222.2 222.2 222.3 222.0 220.3 220.3 23.3 24.4 25.40 25.40 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9

SPECIFICATION TABLE NO. 58 SPECIFIC HEAT OF TERBUM

(impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 58]

Composition (weight percent), Specifications and Remarks		0. 14 C, 0. 12 O ₂ , 0. 02 n ₂ , and 0. 01 iv; sample supplied by the vacuum distilled.	Hexagonal closed packed.	0, 06 Ca, 0, 05 Sl, 0, 04 Fe, 0, 025 Mg, 0, 01 each Al, Ni, Ny, 0, 004 Cu, 0, 003 Oz, and 0, 001	Cr; prepared by metallothermic reduction of the linoride with calcium and pur med 3	distillation.
Name and Specimen Designation						
Reported Error, %	± 0.1	< 2.0		6,	4	
Temp. Range, K	13-347	0.4-4	0.05-0.9	000 1000	730-1-067	
Year	1967	1962	1964		200	
Ref. No.	118	68	000	7	301	
Curve No.	1	87	c	•	4	

7. 245 x 10⁻²
7. 634
8. 163
8. 730
8. 938 1, 082 x 10⁻¹ 1, 125 128 x 10⁻² 125 142 200 280 764 L 026 x 10⁻¹ L 066 Series 6 (cont.)* ပ္ခ CURVE 1 (cont.) 7.588 7.786 7.985 7.985 8.212 8.517 8.883 9.063 9.121 9.142 Series 7* Series 9 Series Series 201. 91 205. 71 209. 07 211. 42 213. 56 215. 65 217. 53 219. 33 220. 50 221. 07 222. 20 226.92 226.30 226.80 203. 85 209. 68 215. 19 218. 61 219. 59 220. 26 221 00 221 43 221 84 222 48 223 34 225 29 7, 914 8, 234 8, 876 8, 870 9, 032 9, 112 9, 113 1, 111 1, 128 1, 133 1, 110 1, 110 1, 110 1, 110 1, 110 1, 110 1, 110 8, 721 x 10⁻² 8, 938 9, 030 9, 217 9, 583 1, 010 x 10⁻¹ 1. 024 × 10⁻¹
1. 102
1. 102
1. 103
1. 089
9. 482 × 10⁻²
6. 519
5. 462
5. 054
4. 835 7.732 x 10⁻² CURVE 1 (cont.) Series 4 Series Series 210, 91 212, 81 215, 65 215, 55 219, 73 220, 23 220, 23 221, 94 221, 94 221, 43 222, 64 221, 43 227, 4 226.14 227.12 227.74 228.05 228.55 231.46 236.43 241.66 220, 69 220, 94 221, 42 221, 77 222, 90 224, 62 225, 96 . 124 x 10-2*
1.142 x 10-2*
1.233 x 233 x 2590 x 10-5
1.118 x 10-1*
1.1124 x 10-1*
1.1079 x 10-029 x 10-2* SPECIFIC HEAT OF TERBIUM 9 821 _k 10⁻² 8 8.21 k 10⁻² 8 1.20 k 10.20 pecific Heat, Cp, Cal g^1 K^1] CURVE 1 (cont.) Series 3 220, 32 221, 73 224, 53 224, 53 225, 56 227, 33 227, 34 228, 10 227, 84 228, 45 228, 45 228, 45 228, 45 228, 45 228, 45 228, 40 228, 4 [Temperature, T, K; 28 CURVE 1 (cont.) Series 2 (cont.) DATA TABLE NO. , 396 x 10⁻² * 5, 561 * 6, 794 * 6, 994 7, 288 8, 242 9, 078 1, 077 × 10⁻¹
1, 118
1, 118
1, 118
6, 603
6, 603
6, 105
7, 772
7, 733
7, 742
7, 891
7, 891
7, 891
7, 893
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833
7, 833 1, 946 1, 525 1, 312 1, 036 × 10⁻² 291 560 . 014 x 10⁻³ CURVE 1 (cont.) Series 1 (cont.) 9.690 183, 05 1189, 31 1199, 37 1199 15.08 16.37 17.87 19.77 21.68 23.76 23.76 28.30 0.5 x 10-3 0.5 x ည CURVE 1 Series 1

Not shown on plot

DATA TABLE NO. 58 (Continued)

ပ္မ	*1	3.71 × 10-3	2 29	75	202	0	9	2 3		: =	8.02 x 10-4	25	<u>.</u>			70.75	- OT W 21	<u> </u>	2 2	. 75		2	=	*	9	9	55	26	83	197	172	172	72	91	16	191	161	1						
Ŭ	CURVE 3(cont.)*		3.22					25.					1 4.47		CURVE 4*	-		4. Ib	4	7.	4.71	4.90	5.11	5.3	5, 59	5.86	6. 15	6.456	6.783	6.997	4.172	4.172	4.172	6.991	6.991	6.991	6	}						
H	CURV					0.355	0.387	0.425	0.483	0.544	0.619	0.75	0.89		팅	709 15	200	8 8	200	009	700	900	900	1000	1100	1200	1300	1400	1500	1560	1560	1600	1630	1630	1700	1800	1900							
o d	CURVE 2 (cont.)	Series 1B (cont.)	1, 041,x 10 ⁻⁴	1.090	1. 163	1. 256 1. 256	T. 360	Series 2		1, 954 x 10 ⁻³	1, 732	1, 635	1. 635	1, 537	1. 442*	1. 343	*	L. 174	* a	1	6.11 x 10-3		6.86	7.07	7.23	8.32	8.38	8.42	7.65	7.5	7.56	7.53	7.49	7.47	7.16	7.10	8.83	6.42	5.88	5.73	5.05	4.93	4.53	4.02
H	CURV	Series	3, 0973	3, 3503	3.6120	3.8550	2000	Ser		0.3742	0,3873	0.4011	0.4158	0.4314	0.4480	0.4658		0. 5050	CURVE		0.0459	0.0485	0.0508	0.0549	0.0584	0.0667	0.0742	0.0877	0.0982	0.101	0.113	0.120	0.130	0.134	0.138	0.149	0.149	0.162	0.178	0.190	0.201	0.213	0.231	0.248
ပ္	CURVE 2 (cont.)	Series 1A (cont.)	1. 482 x 10 ⁻⁴	1.364	1. 263	1. I'V	1 056	1 026	1, 017	1. 024	1, 063	1. 107	1, 189	1, 303	1.451	Series 18	}	1.360 × 10	1, 269	1, 182	1, 098	1. 018	9. 426 x 10	8.645	7. 922	7. 229	6. 569	5. 931	5, 335	4. 773	4.245	3, 750	3, 292	2, 874	2, 493	2, 156	1,860	1.608	1.403	1. 243	1. 129	1.065*	1, 020	1, 015*
Ħ	CURV	Series	1, 6808	1, 7927	1. 9140	2. 070	2 2723	2, 5540	2, 7391	2, 9388	3, 1645	3, 4101	3.6685	3. 9428	4. 2322	ir S		0.4681	0. 4872	0, 5077	0, 5297	0.5534	0. 5791	0.6070	0, 6373	0.6705	0. 1069	0. 7472	0. 7918	0.8416	0.8974	0.9603	1, 0318	11134	1.2071	1, 3152	1. 4402	1, 5848	1,7511	1,9398	2, 1498	2, 3771	2, 6154	2. 8579
ပီ	CURVE 1 (cont.)	, m.*	8, 668 x 10-2	8. 791	OTE S	3 6	695		21 1	•	4. 331 x 10-1	4, 330	4. 335	4.331	4.318	13*		4.331 x 10-2	4.323	4, 316	4, 307	4, 314	4.313	4.314		22		*.	H	1, 304 x 16-2	L 135	9. 907 x 10	90	7. 488	6, 399	5, 397	4. 534	3, 832	3, 231	2, 735	2, 352	2, 039	L. 793	1, 622
۲	CURVE	Series 11*	219, 91	220, 36	220, 81	200	225 08		Series 12		319, 40	326.05	332, 68	339. 27	345, 86	Series 13*		307.81	314.61	321.40	328, 18	334. 94	340.84	346.75		CORVE 2		Series 1A		0. 4796	0. 5202	0.5625	0. 6069	0,6580	0, 7173	0, 7873	0.8659	0. 9492	1. 0425	1, 1454	1, 2498	1,3670	L 4755	L 5780

SPECIFICATION TABLE NO. 59 SPECIFIC HEAT OF THALLIUM

(Impurity <0.20% each; total impurities <0.50%)

[For Data Reported in Figure and Table No. 59]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	186	1930	11-249			Traces of Al and Fe.
8	187	1931	291-773	±3.0		
က	188	1834	1.9-2.4			Zero magnetic field.
*	188	1934	2.0-2.2			33.6 gauss magnetic field.
S	368	1938	15-301	> 5.0		~ 99.98 TI; sample supplied by the American Smelting and Refining Co.; density = 11.878 g cm ⁻³ at 20.7 C.
•	369	1934	1,3-4.1			
1	370	1957	2.4-4.1			99.999 TI; sample supplied by the A.D. Mackay, Inc.; zero magnetic field; superconducting
80	370	1967	1.2-4.1			Same as above; 200 oersteds; normal state.
•	370	1957	1.1-2.3			Same as above; superconducting; zero magnetic field.

SPECIFIC HEAT OF THALLIUM 28 DATA TABLE NO.

	c _o	*_1		1.038 x 10-6	27				3 x 10-8	89 6	v C	o oco	က	2	7.9	9 9	× 10.4		6 0	9	-	80	7	9	en :	0 (2 6			*	9	x	9	2 2	2 :	9	0	23	=	9	
	0	cont	3	1.0	1.1	ŧ	-		5.63	5.92		7.58	7.7	8.4	8.81	9.50		1.02	1.08	1.06	1.11	1.18	1.17	1.26	1.23	-	1.40	1.43	1.61	1.74	1.8	1.83	1.89	2.02	2.10	2.19	2.20	2.32	2.41	2	
	H	CURVE 6 /cont.)*	Series	1,310	1,338	Trair	Series		2.413	2.443	2.575	2.659	2,706	2.766	2.814	2.881	0 077	2.977	3.030	3,038	3.080	3,117	3, 142	3, 196	3.203	3,258	3, 321	3 447	3,521	3,585	3.649	3.677	3,739	3.794	3.841	3,895	3.938	3.983	4.043	4.143	
	ပ္	CURVE 6 (cont.)*	4.088 x 10-5	4.34	4.702	4.910	5.241	5,612	6.053	6 202	9.757	1.199 x 10-4	1.197	1,413	1,640	1.039	2.632				1.813 x 10-6	:, 553	4.367	6.059	5.402	5.260	2.001	5.784	6.092	5.911	6.219	6.503	5.926	5.764	0.121	5.896	6.204	6.493	6.513	6.945	6.9/3
	۲	CURVE	2.058	2.073	2.140	2.103	2.204	2.270	2.291	2.328	2,898	3,145	3.147	3,348	3.515	3 943	183		Series II		1.590	1.957	2.098	2.190	2.208	2.230	0 970	2.288	2.304	2,320	2,335	2,350	2.368	2.384	2.401	2.420	2,439	2.456	2.479	2.500	Z.519
IN LABLE NO. 39 SPECIFIC REAL OF INALLOW Temperature, T. K. Specific Heat, C . Cal g ⁻¹ K ⁻¹	ູ່	CURVE 5 (cont.)*	3.053 x 10-2	3.047	3,039	3.017	3, 109	3,096		== == == == == == == == == == == == ==	2.464 x 10-2	2.536	2.567	2,601	2.000	9 958	3,020	3,024	3,024	3,035	3,064	3.055	3,093		111 s	E-04 : 404 F	0 964	1.262 x 10-2	1.509	1.742	1.949	2.092	2.231	2.314	204.7	2.435	45	ام		1000 100	3.876
ecific Heat,	H	CURVE	251.97	261.01	269.73	288 34	298,35	300,53	C	Series II	49.98	53, 13			130 14	146.45	186.23	214.21	223.42	233,72	242.04	269,33	281.50		Series III	,	14.50	20.39	23.99	27.85	31.87	35,99	39,33	43.82	40.04	52,81		CURVE	Serie		2.012
T, K; S	్టి	CURVE 4	4.744 × 10 ⁻⁵	4,932	6.444	7.012	988 6	1,034 x 10 ⁻⁴	6.004 x 10-5	4, 557	4. 6.31	CURVE 5	1 63 1	2.591×10^{-2}	2.625	2.038	2 733	2.754	2.766	2.786	2.816	2.834	2.858	2.866	2.883	2.894	2,905	2.921	2,369	2,957	2.976	2.980	2,996	3,001	3.015	3.006	3.007	3.004	3.031	3,031	3,023
Temperature.	۴	CO	2,081	2,091	2. 107	2. 111	2.113	2, 124	2, 130	2, 170	2.213		200	58.27	60.77	24.13	72.03	76.25	80.60	83,85	88.38	92.81	97.05	101.85	107.10	112.57	118.65	125.24	139.04	146.73	154.41	162.04	169.85	178.25	186.34	193,64	201.99	211,03	219.11	227.22	235.43
	ပ	cont.)	941 x 10 ⁻²	2.955	3.014	178 100	102		~	201 202	3.17	21	30	53	20 0	2 4	2 0	90	4.00	00	11		ကျ		3.551 x 10°	3,739	3.981	4 598	4.789	5,030,	.620	5, 118	5, 329	5.828	126	6.146	239	6.385	5.886	8/8	
	۲	CURVE 1 (cont.)	132, 80 2.	8			249.00 3		CURVE 2		301, 15 3.				493, 15 3, 58	2 4				15	773.15 4.11		CURVE 3				2.034			2, 158 5,		229	262	279	299	315				2, 404 5.	
	ပ		776 x 10 ⁻³	31					7.	7.633	01	29	90	9.664	49 - 102	1.030 × 10	3 28	67	02	1, 202*	ន	95	75	7.4	. 819	600	10	88	87	2.427	32	57	11	2.603	99	9	9. 3	2.820*	101	200	916
	S	CURVE 1	4	5,231	5.378	5.83	6. 449	7.026	7.594	1.0	8.010	8, 529	8.808	9.6	, c	-	1.089	1, 167	1.202	1.2	1,323	1,505	1.554	1.774		2.0	2.001	2.288	2,387	2.4	2.5	2.5	2.614	2.6	2.668	2.706	2.7	Z . C	80.00	2. 638	2.916
	H	5	11, 18	11,40	11.98	12.04	13.22	13.94	13.98	14.86	15.32	15.66	16.08	17.50	19.78	18.36	18.80	19.86	20.60	20.70	21.70	23.60	25.00	27.50	29.20	33.00	26.30	40.60	44.90	47.20	52.30	27.00	59, 20	61.40	96. 10	69.00	77.50	3.5	96.20	116.50	123.20

DATA TABLE NO. 59 (continued)

ပ္ရ	(cont.)*	9.20 × 10-6	9.93	1.14 x 10-6	1.21	1.43	1.66	1.87	1.96	2.11	2.24	2,33	2.63	2.81	3.20	3.39	3.55	4.37	5.13	5.14	5,65	28.	5.73																								
H	CURVE 9 (cont.)*	1.206	1.230	1.281	1.324	1.397	1.487	1.540	1,565	1.620	1.658	1.675	1.758	1.798	1.888	1.937	1.988	2.099	2,216	2.224	2.282	2,309	2.342																								
ဝီ	CURVE 9 (cont.)*	9.00 x 10-6	1. 39 x 10 ⁻⁵		1.14	1.16	1.29	1.4	1.49	1.52	1.61	1.66	1.70	1.71	1.83	1.84	2.15	2.46	2.55	2.74	2.86	2.39	2.99	3.20	3.20	3.44	3.60	3.58	3.97	3,99	4.24	4.53	4.88	5.06	5. IS	97.50	3.5	0.60	5.32	5.62		5.9		口 果		8.42 x 10°	8.71
H	CURVE	1.194	1.274	1.294	1.296	1.312	1,365	1.377	1.396	1.438	1.465	1.485	1.485	1.504	1.547	1.548	1.644	1.693	1,733	1.775	1.804	1.839	1.845	1.887	1.900	1.942	1.976	F. 987	2.055	2.063	2.118	2.153	2.177	2.217	2.233		2.00	107.2	2.2/0	2.284	2.307	2.332		Series I		1.150	1.150
రి	CURVE 8 (cont.)*	1.80 x 10-6	1.95	1.97	2.01	2.06	2.11	2.24	2.81	2.75	2.93	3.19	3.50	3.59	4.03	4.08	4.49	2.4	5. 19	5.33	5.68	5.77	6.31	6.46	6.85	6.80	7.73	8.71	1.04 × 10-	1.11	1.25	1.39	1.52	5 .	5 5	1. 33		2 4 6	64.7	2.71		CURVE 9*	Series I		8.71 × 10-6	7.88	8.01
H	CURV	1.568	1,587	1.622	1.634	1.657	1.667	1.710	1.839	1.849	1.887	1.966	2.020	2.032	2.112	2, 131	2.203	2.211	2,313	2.353	2.408	2.465	2.492	2.543	2.567	2.591	2.701	2.85	3.001	3.095	3. 194	3.306	3.443	3.570	2 720	2 841		1.000	2	4.187			Se		1.160	1.161	1.180
ပို	CURVE 7 (cont.)*		5.53 x 10-5	5.58	5.97	6.07	6.12	6.70	6. 80	7.49	7.24	7.98	8.71	8.6	9.60	1.02 x 10-	1.63	1.09	1.13	1.25	1.37	1.51	1.69	1.79	2.05	2.28	2.50	2.79		CURVE 8*	- 1	9.93 x 10-	1.01 x 10.1	1 03 x 10-6	1.05	8 -	13	9 5	7: 13	1.27	F. 7	3 5 (3:	1.74	1.71	1.78	1.81
H	CURVI		2,396	2.407	2.438	2.482	2.488	2.566	2.570	2.649	2.654	2.740	2.835	2.885	2.931	2.967	3.012	3.054	3.101	3,188	3.302	3.425	3,568	3,655	3.824	3.933	4.05	4.196		5		727	1.230	1.609	1.054	1 257	1 314	1 226	1. 000	1.377	1.406	1.469	1.518	1.539	1.542	1.561	I. 567

SPECIFICATION TABLE NO. 60 SPECIFIC HEAT OF THORIUM

(impurity $<\!0.20\%$ each; total impurities $<\!0.50\%$

[For Data Reported in Figure and Table No. 60]

Composition (weight percent), Specifications and Remarks	0, 02 Zr, 0,0075 C, 0,00583 O_2 , <0,005 Si, 0,003 Al, 0,002 Ca, <0,002 each Be, Fe, Mg, Mn, and Ni, 0,00035 H ₂ , and 0,00033 N; annealed at 100 C for at least one hr. under 10^{-5} mm Hg pressure; cooled to room temperature at 40 C per hr; arc melted; cleaned with hot nitric acid in sodium fluosilicate.	99. 61 Th.	0. 06 O_2 . 0. 04 N_2 . 0. 025 Si, and < 0. 01 other metals.	
Name and Specimen Designation	Crystal bar			
Reported Error, %	2.0	< 2.0		
Temp. Range, K	308-1334	323-973	20-300	
Year	1960	1959	1963	
Ref. No.	119	1	120	
Curve Ref.	1	81	၈	

				DATA T	DATA TABLE NO. 60	SPECIFIC HEAT OF THORIUM
				[Tem	[Temperature, T, K;	Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]
H	og.	H	ဝီ	۲	С _р	
CURVE	E1	밁	CURVE 3	CURV	CURVE 3 (cont.)	
298, 15	2, 83 × 10-2	50	4. 765 x 10-	235	2, 734 x 10-2	
323, 15	2.85	ន្តន	- 73	240	2, 741	
373, 15	, v.	35.50	1. 053 x 10	245	2, 748	
473, 15	3 5	2	145	255	2. 760	
523, 15	3, 07	45	L 608	260	2, 767	
573, 15	3, 12	20	1.74	265	2, 773*	
623, 15	3, 17	22	1.856	270	2, 780 *	
673, 15	3, 23	09	L. 951	275	2, 786	
723, 15	3, 28	65	2, 035	280	2, 793	e
773, 15	3,33	20	2, 101	285	2. 799 *	
823, 15	8, % 4, %	e 6	2 159	290	2, 805	
923 15		2 00	9 961	20 36	9 914	
973, 15	3, 57	8 8	2,301	300	2, 317*	
1023, 15	3.64	98				
1073, 15	3, 71	100	2, 362			
1123, 15	3.80	105				
1173, 15	3.89	110				
1223, 15	3, 99	115	2,40			
1273, 15	4.11	120 13.	2,463			
TVOTE	6 4	130	505			
CON	41	135	2.523			
323, 15	2, 50 x 10 ⁻²	140	2,540,			
373, 15	2,68	145	2, 555			
523, 15	3, 15	150	2, 570			
573, 15	3.30	155	2, 583			
623, 15	5 40 50	160	2, 596			
013, 13	3	COT	2,000			
773.15	3, 60	176	2, 621			
10.10	2000		4 650			
873 15	2 20 20	185	2 652			
923, 15	3,88	190	2 661			
973, 15	3.90	195	2.670			
		200	2,678			
		202	2, 687			
		215	2, 703			
		22	2.711			
		225	2,718			
		230	2, 727			

SPECIFICATION TABLE NO. 61 SPECIFIC HEAT OF THULLUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 61]

e and Composition (weight percent), Specifications and Remarks	0.4 Ta, 0.02 - 0.005 Fe, <0.01 Mg, and 0.02 rare earth; cast and machined; data corrected for impurities.	0.05 Mg, 0.02 Ca, 0.02 Cr, 0.01 Fe, and 0.0002 Si; prepared by metallothermic reduction of the fluorides with calcium and purified by distillation.
lame and Composi	0.4 Ta, 0.02 - (0.05 Mg, 0.02 C reduction of
Reported Na Error, % Specin	0.1	<2.0
Temp. Re Range, K	12-352	298-1900 <
Year	1961	1966
Ref. No.	126	301
Curve R	-	81

DATA TABLE NO. 61 SPECIFIC HEAT OF THULLUM

[Temperature, T, K, Specific Heat, Cp, Cal g⁻¹ K⁻¹]

H	ပီ	۲	ဝီ	H	င္ခ်	H	od O	۲	ပိ	H	ပ
티	CURVE 1	CURV	CURVE 1 (cont.)	CURV	CURVE 1 (cont.)	CURV	CURVE 1 (cont.)	CURV	CURVE 1 (cont.)	CURV	CURVE 1 (cont.)
8	Series 1	Serie	Series 1 (cont.)	Serie	Series 2 (cont.)	Serie	Series 4 (cont.)	Serie	Series 7 (cont.)*	S	Series 11*
12.20	2. 701 x 10 ⁻³	296.84	3.821 x 10-2	139, 30	3.645 x 10-2*	19.46	1.316 x 10-2	86.56	3. 542 x 10-2	73 61	3 471 x 10 ⁻²
13.36	4. 152	306.95	3.830*	147.23	3.658*	21.46	1. 666	88.07	3,548	78.49	3. 497
15.04	6. 142	317.01	3.836	157.71	3.675*	24.03	2. 120	89. 58	3.551	83, 01	3, 525
16.74	8. 559	327.03	3.845*	167.47	3.700*	27. 12	2.641	91.08	3, 552	87.66	3.544
18. 71	1. 174 x 10 ⁻²	336.99	3.852	177.67	3. 734*	32, 06	3, 395	92, 58	3, 556	92, 38	3, 553
20.99	1. 563	346.89	3, 860	188. 18	3.742*	36.94	4. 079			99.49	3. 567
23. 19	1. 965			199. 18	3. 747*	40.64	4, 523	3	Series 8*	109, 23	3, 588
25.66	2. 395	S	Series 2	209, 97	3. 754*	43, 96	4.868			119, 42	3.610
29. 18	2.979			220, 16	3. 762*	48, 25	5. 244	166.50	3. 682 x 10 ⁻²	129. 63	3. 629
27.00	3.002	15.08	5. 01 × \$10 .c	230.29	G. 769	51.47	5. 504	167.91	3.688	=	
20.05	1. 102	15. 80	1.321	240.89	3. 7.73	27.04	5.583	169. 99	3. 698	Ser	Series 127
42, 18		17.76	1. 007 x 10-	251. 43	3. 793	53. 4	5. 649	172.06	3.704		
46. 35	5. C/2	20.07	1.410	261.91	3. 791	53.81	5. 678	174. 12	3, 711	140. 21	3. 639 x 10-z
20.21	D. 387	22. 23	1.802	272. 32	3. 799*	54, 25	5. 705	176. 18	3. 717	146.65	3. 650
93. 85	0.000	24. 93	2. 277	282. 69	3. 808	54. 72	5. 733	178.23	3. 722	152. 75	3. 659
38. 32	3. 637	28. 49	2.883	291. 21	3. 813*	55. 19	5. 707	180. 28	3, 732	157.98	3. 667
61.76	3. 433		3. 542	301. 47	3. 821*	55. 50	4. 211	182, 32	3. 735	163, 13	3.674
69. 29	3. 458	69	4. 301	311. 66	3. 829	55, 73	5. 450*	184, 36	3. 738	168.29	3. 684
1	3.482		4. 639	321. 80	3. 838	26.04	4. 935			173.40	3. 708
82. 50			5.006	331.87	3.846	26. 36	4. 263	8	Series 9*	178.47	3, 723
92. 98	3. 558	20.09	5. 387	341, 91	3. 853	56. 72	3. 539	83.41	3.527 x 10 ⁻²	185. 51	3, 733
103. 21	3. 577	53.08	5. 622*	351.88	3.863*			86.61	3, 546	188. 54	3, 736
113.28	3. 598	53. 58	5. 660*				4	89. 76	3, 552	196. 15	3. 739
123, 17		54. 08	5. 696*	æ	Series 3	å	Series 5*	93. 57	3, 556	206.34	3, 746
132. 92	3. 637	54. 57	5. 722					97. 50	3. 564	216, 46	3, 753
141. 74	3. 651	55. 12	5. 698*	51.95	5. 511 x 10-3	49, 40	5.311 x 10 ⁻²	101.56	3, 571	226. 52	3, 761
151. 26	3. 666	56.20	4. 569	52. 79	5. 59 *	49.88	5, 351				
161. 08		26.96	3, 507	53, 60	5. 657**			Ser	Series 10*	Ser	Series 13*
171, 19	3. 709	57.81	3, 437	54. 26	5. 702*	8	Series 6*				
182. 05		58. 67	3. 422*	54. 68	5. 722	53.05	5. 5.59 x 10 ⁻²	159, 15	3.673 x 10-2	65. 14	3.443 x 10-2
193.33		29. 65	3, 419	54.92	5. 728	53.54	5. 637	162.03	3.680	76.92	3. 488
204. 08	3. 752	61.54	3. 421*	55.31	5. 660*	54. 03	5. 671	166.09	3.689	82.99	3, 519
	3. 759	66.60	3, 447	55. 82	5. 281			170, 12	3.704	87.81	3, 538
	3. 766	71.65	3, 468"	56.51	3. 967	8	Series 7*	174, 12	3, 722	93. 69	3. 551
	3. 773	78. 77	3, 503					178.10	3, 729	99. 29	3, 559
	3. 780	87.89		Š	Series 4	79. 46	3, 499 x 10 ⁻²	182.07	3, 735	105.24	3, 571
255. 81	3. 786	98.23				80.43	3, 505	186.02	3, 740	111.02	3. 586
266. 16	3. 806		3, 590*	15.09	6. 345 x 10-3	81.97	3. 521	190, 11	3.742	116.68	3. 607
	3.804	120.43	3.612*	16.62	8. 558*	83. 52	3. 529	194.31	3.744		
286. 66	3.811	131. 27	3. 632*	18.21	1, 110	85.04	3, 534				

5.30 x 10⁻² 5.85 5.85

ပ္

SPECIFICATION TABLE NO. 62 SPECIFIC HEAT OF TIN

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 62

186 1866 0.1-1.0 1.0	Curve No.	No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
186 1965 0.1-1.1 1.0 189 1923 70-101 1.0 190 1924 22-26 White tin 191 1832 1-20 White tin 192 1932 273-505 White tin 193 1947 323-523 White tin 194 1965 1.5-4.0 1.0 Grey tin 196 1966 1.6-1.6 1.3 Grey tin 197 1961 0.6-1.6 1.2 197 1961 0.6-1.6 1.2 198 1969 1.1-4 1.2 198 1956 1.1-4 1.2 198 1966 1.1-4 1.2 198 1960 0.4-4.3 Tin I 371 1960 0.4-3.8 Tin I 371 1960 0.4-4.1 Tin II		82	1965	0, 1-1, 0	1.0		99.9995 Sn; polycrystalline; sample supplied by Cominco Products inc.; zero magnetic field; vacuum cast.
189 1823 70-101 1.0 190 1824 22-286 White tin 191 1822 1-20 White tin 192 1832 273-565 White tin 193 1947 323-623 White tin 194 1852 7-100 1.0 Grey tin 194 1855 1.5-4.0 Grey tin 195 1966 1-4 1.3 197 1961 0.6-1.6 1-2 198 198 1.1-4 1.2 196 1956 1.1-4 1.2 196 1956 1.1-4 1.2 196 1966 0.4-4.3 Tin I 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	81	82	1965	0, 1-1, 1	1.0		99, 9999 Sn; polycrystalline; sample supplied by Cominco Products Inc.; H = 1000 Oe, magnetic field; vacuum cast.
190 1924 22-286 White tin 190 1924 16-284 Grey tin 191 1932 1-20 White tin 193 1947 323-623 White tin 193 1947 323-623 White tin 194 1952 7-100 1.0 Grey tin 195 1956 1.5-4.0 1.3 Grey tin 196 1968 506-800 1.2 1.2 197 1961 0.6-1.6 1-2 1.2 198 1938 1.5-4 1.2 196 1938 1.5-4 1.2 196 1956 1.1-4 1.2 196 1956 1.1-4 1.1-2 196 1956 1.1-4 1.1-2 196 0.4-4.3 1.1-1 271 1960 0.4-4.3 Thi I 371 1960 0.4-4.1 Thi I	က	189	1923	70-101	1.0		Good quality.
190 1924 16-284 Grey thn 191 1932 1-20 White tin 192 1932 273-505 White tin 193 1947 323-623 White tin 43 1962 7-100 1.0 Grey tin 194 1965 1.5-4.0 Grey tin 195 1966 1.6-1.6 1.3 197 1961 0.6-1.6 1-2 198 1938 1.5-4 196 1956 1.1-4 196 1956 1.1-4 196 1956 1.1-4 196 1956 0.4-4.3 271 1960 0.4-4.3 271 1960 0.4-4.1 371 1960 0.4-4.1 371 1960 0.4-4.1	•	190	1924	22-286		White tin	
191 1832 1-20 192 1832 273-505 White tin 193 1947 323-623 White tin 193 1947 323-623 Grey tin 194 1955 1.5-4.0 Grey tin 195 1956 1-4 1.3 Grey tin 196 1961 0.6-1.6 1-2 197 1961 0.6-1.6 1-2 198 1938 1.1-4 1-2 196 1966 1.1-4 1-2 198 1960 0.4-4.3 Tin I 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	6	190	1924	16-284		Grey tin	
192 1932 273-505 White tin 193 1947 323-623 White tin 193 1947 323-523 1.0 Grey tin 194 1965 1.5-4.0 Grey tin 195 1966 1.4 1.3 196 1868 506-800 Grey tin 197 1961 0.6-1.6 1-2 198 1938 1.1-4 1-2 196 1966 1.1-4 Tin I 198 1838 2.8-3.9 Tin I 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	•	191	1932	1-20			Kahlbum's purity; 0.01 Fe and trace Cu.
193 1947 323-623 183 1947 323-523 43 1962 7-100 1.0 Grey tin 194 1955 1.5-4.0 Grey tin 195 1966 1-4 1.3 196 1961 0.6-1.6 1-2 197 1961 0.8-2 1-2 198 1338 1.1-4 196 1938 1.5-4 196 1.1-4 197 1960 0.4-4.3 771 1960 0.4-4.3 771 1960 0.4-4.1 771 1960 0.4-4.1	7	192	1932	273-505		White tin	Purest thi: sample supplied by E. Merck.
183 1947 323-523 43 1962 7-100 1.0 Grey tin 194 1965 1.5-4.0 Grey tin 195 1966 1-4 1.3 196 1968 506-800 197 1961 0.6-1.6 1-2 197 1961 0.8-2 1-2 198 1938 1.1-4 196 1956 1.1-4 198 1898 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	60	193	1947	323-623			Tin, heating.
43 1952 7-100 1.0 Grey tin 194 1955 1.5-4.0 Grey tin 195 1956 1-4 1.3 Grey tin 196 1858 506-800 1-2 197 1961 0.6-1.6 1-2 198 1936 1.1-4 1-2 196 1938 1.5-4 1-2 196 1938 2.8-3.9 Tin I 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	o	193	1947	323-523			Tin, cooling.
194 1955 1.5-4.0 Grey tin 195 1956 1-4 1.3 Grey tin 196 1858 506-800 1-2 197 1961 0.6-1.6 1-2 198 1936 1.1-4 1-2 196 1936 1.5-4 1-2 196 1936 1.1-4 Tin I 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	10	43	1962	7-100	1.0	Grey tin	< 0.05 total impurity, coarse powder; under 10th mm Hg helium atm.
196 196 1-4 1.3 196 186 506-800 197 1961 0.6-1.6 1-2 197 1961 0.8-2 1-2 198 1938 1.1-4 1.5-4 196 1938 1.5-4 196 1966 1.1-4 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	11	194	1965	1.5-4.0		Grey tin	99.8 Sn; powdered form.
196 1868 506-800 197 1961 0.6-1.6 1-2 198 1908 1.1-4 196 1908 1.5-4 196 1908 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	2	195	1956	1	1.3		99, 999° Sn: zero magnetic field; superconducting; 4.2 K the residual resistivity is 0.002 at room temperature.
197 1961 0.6-1.6 1-2 197 1961 0.8-2 1-2 198 1938 1.5-4 196 1956 1.1-4 198 1938 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	ដ	196	1968	506-800			99.9 Sa., 0. 06 Pb., 0.02 Cu. 0.01 Bi, 0.005 Sb., 0.002 Ni, 0.001 Ca., 0.001 In, 0.0005 Cd, and 0.0005 Ag; sample supplied by the American Smelting and Refining Co.; moiten state.
197 1961 0.8-2 1-2 198 1938 1.5-4 196 1938 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	7	197	1961	0.6-1.6	1-2		99.990± 0.002 Sn; normal state; 500 gaues magnetic field.
196 1938 1.1-4 196 1956 1.1-4 196 1958 2.6-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	15	197	1961	0.8-2	1-2		99.990± 0.002 Sn; superconducting; zero magnetic field.
196 1938 1.5-4 196 1956 1.1-4 196 1938 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin I	16	198	1938	1.14			99.992 Sn. 0.01 Fe. and trace Cu; superconducting; zero magnetic field.
196 1956 1.1-4 198 1838 2.8-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	17	198	1938	1.5-4			Same as above; normal state; 299, 0 gauss magnetic field.
196 1938 2.6-3.9 371 1960 0.4-4.3 Tin I 371 1960 0.4-3.8 Tin II 371 1960 0.4-4.1 Tin II	18	196	1956	1.14			99, 999' So; 800 oersteds; normal state; 4,2 K the residual resistivity is 0,002 at room temperature.
371 1960 0.4-4.3 Tin I 371 1960 0.4-4.1 Tin II	19	198	1938	2.8-3.9			99.992 Sn. 0, 01 Fe, and trace Cu; normal state; 138,6 gauss magnetic field.
371 1960 0.4–3.8 Tin I 371 1960 0.4–4.1 Tin II	20	371	1960	0.4-4.3		Tin I	99.999 Sn; sample supplied by the Consolidated Mining and Smeiting Co. of Canada, Ltd.; self annealed at room temperature; superconducting; zero magnetic field.
371 1960 0.4-4.1 Tin II	21	371	1960	0.4-3.8		Tin I	Same as above; normal state; 500 cersteds.
	ង	371	1960	0.4-4.1		Tin II	99. 999 Sn; sample supplied by the Consolidated Mining and Smelting Co. of Canada, Ltd.: annealed in air for one hr. at 200 C; superconducting; zero magnetic field.

SPECIFICATION TABLE NO. 62 (continued)

marks		
Composition (weight percent), Specifications and Remarks	Same as above; normal state; 500 oersteds.	99.989 Sn, 0.008 Cu, and 0.003 Fb.
Reported Name and Error, % Specimen Designation	Tin II	
Reported Error, %		± 5.0
Temp. Range, K	0.6-4.2	295 348-873
Year	1960	1961
Curve Ref. No. No.	371	1 268
Curve No.	ន្ត	% %

DATA TABLE NO. 62 SPECIFIC HEAT OF TIN [Temperature, T. K; Specific Heat, C_p , $Cal\ g^{-1}K^{-1}$]

7E 1 CUR 58 1 Seri 3.191 x 10 ⁻⁹ 0.1770	VE Se	CURVE Series	T Cp CURVE 1 (cont.) Series 3 (cont.)	CURVI Series	T C _p CURVE 2 (cont.) Series 2 (cont.) 2402 8.590 x 10 ⁻⁷	T CURV 75. 11 77. 71 80. 00	T Cp CURVE 3 (cont.) 11 3. 993 x 10 ⁻² 71 4. 069* 00 4. 103	25 52	CURVE 6 Series 1 :0 3.749 x 10-2
0, 2009 0, 2014 0, 2174 0, 2279 0, 2288	5.890 1.0824 8.7.076 8.081 8.315#	0, 9203 0, 9564 1, 061 CUR	23 7.334 14 8.601 1 1.307 x 10 ⁻⁴ CURVE 2	0, 2438 0, 2594 0, 2652 0, 2888 0, 2925	8. 685* 9. 295 9. 539 1. 037 × 10 4 1. 049*	80.34 86.00 88.90 90.00	4. 111* 4. 221 4. 271* 4. 305*	13. 264 13. 818 14. 564 15. 154 16. 020	852 300 368 362 362 246
0. 2338 0. 2340 0. 2345 0. 2525 0. 2564		5.rri 0. 09263 0. 09474 0. 09517	Series 1 69 3.252 x 10 ⁻⁷ 74 3.313* 17 3.339*	0.3198 0.3592 0.3550 0.3948	1. 153 1. 339 1. 281 1. 441	91. 20 93. 56 96. 21 100. 00 101. 00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15, 924 17, 924 18, 628 19, 304 19, 740 20, 170	6.862 7.613 8.301 8.517 9.110 1.015 x 10-2
2883 284 302			3.532 3.536* 3.800 4.114 4.199*	397 433 440 488	Series 3 3 1.440 x 10-4* 9 1.596 8 1.611* 5 1.812	22. 4 26. 9	CURVE 4 1.07 x 10 ⁻² 1.58	3. 652 4. 553	2 456 815
0.3082 0.3242 0.3287 0.3367 0.3543 0.3543	2 1.723 x 10-6* 2 1.959* 7 2.032* 3 2.479* 5 2.676* 6 2.886*		4, 354 4, 668 4, 770 5, 010 5, 145 5, 230	0. 5137 0. 5264 0. 5423 0. 5681 0. 6260 0. 6374	1. 901 1. 960* 2. 128 2. 376 2. 424*			3. 084 3. 910 4. 755 5. 520 6. 232	Series 3 4 5.257 x 10 ⁻⁶ 6.226 5 1.077 x 10 ⁻⁴ 0 1.719 2 3.696
0.3900 0.4058 0.4112 0.4419 0.4434		0. 1485 0. 1603 0. 1625 0. 1652 Seri	5 5.240 3 5.632 5 5.733* 2 5.840 Series 2	0.6932 0.7637 0.8199 0.8393 0.8941 0.9341	2. 568 * 3. 216 3. 309 * 3. 572 3. 915		5. 28 CURVE 5 5. 90 x 10 ⁻³ 6. 36 8. 90	6. 458 7. 002 7. 206 7. 726 8. 676 9. 742 10. 492	4, 554 4, 140 7, 291 1, 451 x 10-3 2, 255
0.4837 0.5150 0.5383 0.5749 0.5826 0.56170	ଦ୍ଦ୍ଦ୍ରୀ ନାନା	0. 1780 0. 1821 0. 1865 0. 1966 0. 2003	6. 325 x 10 ⁻⁷ 6. 452* 6. 639 7. 034 7. 106*		4. 243 4. 249* 4. 708 CURVE 3	26. 31.5 31.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	1. 16 × 10 ⁻² 1. 41 × 1. 43 2. 36 2. 36	11, 480 12, 250 13, 460 15, 300 17, 174	2. 497 3. 252 4. 252 5. 971 7. 754
7016 7879	2.316	0. 2182 0. 2204 0. 2301	7. 820* 7. 880* 8. 232	69. 63 70. 00 72. 39	3. 909*	69.5 92.5 106.2 283.7	5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2. 292 2. 292	Series 4 0 1.580 x 10 ⁻⁵ 2 1.641

DATA TABLE NO. 62 (continued)

(-	ဝီ	H	ပိ	H	င် ဝ	H	ပီ	H	ပီ	H	ပ္
CURV	CURVE 6 (cont.)	CURV	CURVE 8 (cont.)	CURVE	CURVE 12 (cont.)	CUR	CURVE 13	CURVI	CURVE 15 (cont.)	CURVE	CURVE 16 (cont.)
Serie	Series 4 (cont.)	473.15	6.65 x 10-2	1.177	1.892 x 10-6	206	6.4 x 10-2	0.928	6.91 x 10-7	2, 837	3. 151 x 10-6
		523, 15	M.	1.208		510	6. 06*		7	2,881	277
2. 453	2.055 x 10-	573. 15	5. 92	1, 229	2, 275	550		0.980	8.05	3.215	4, 364
2. 630	2.361	623, 15		1. 263	2. 442	009	5.86	1. 003	9. 28	3.270	4. 507*
906	100 7	į		L. 289	2. 726	900	9 6	1. 025	1. 03 × 10 -	3.600	6. 436
C. 480	1.021	31	CORVES	1, 312	2.816	3	5.68	1.048	1.05	3. 633	6. 605*
3. 596	5.762		•	1.367	3.301	800	5. 50	1.070	1. 20	3, 775	5.021
3.885	5. 151 A 453	323. 15	5. 52 x 10 -	1. 400	3. 583		:	1. 093	1.35	3. 794	5. 063*
	2	493 15	200	1 597	F. 677	3	CORVE 14	1. 114	. 48 8		
198	Series 5	439, 15	6.50	1.685	448	0 604	2 223 x 10-6	1.128	***		CORVE IV
		458, 15	6. 42*	L 782	8, 213	0.632		1 210	2 12*	3	Carine 1
1. 373	4.617 x 10-6	473. 15	6. 72	1.876		0.655	2, 457	1. 236	2.408		
1.511	4. 608	523. 15	6.00	1. 962	1. 097 x 10 4	0.673	2. 537	1, 255		1. 537	7. 389 x 10-6
1. 510	3.033			1. 985	1. 115	0.692	2. 590	1.308	2. 86*	1.548	7. 549
Z. 110	1. 358 x 10	5	CURVE 10	2. 072	1. 280	0. 710	2.688*	1. 405	3.71	1.068	4. 912
2.064	1. 263			2, 270	1. 620*	0. 727	2.769	1. 570	5.24	1.067	4. 920*
2. 537	2. 227	7	3.622 x 10-4	2, 371	1.820	0.742	2. 775	1.640	£. 54	1, 273	5, 788
3.073	3. 869	0 0	6. 066	2, 470	2. 063*	0.757	2.88	1, 741		1, 280	
3, 279	4. 675	•	9. 351	2, 572	2. 323	0.769	2.92*	1.845	7 0	1 305	5 687
3.486	5. 485	10	1. 356 x 10 ⁻³	2.690	2.615	0. 783	90.6	1. 937	1.08 x 10-6*	1.307	5 729*
3, 687	5. 510	7	2. 367	2, 763	2.856*	0. 798		2, 057	1. 25*	1, 425	6.656
3. 853	4. 933	15	4. 195	2, 877	3. 180*	0.817	3, 10		i c		6.555*
3. 786	8. 257	20	7. 523	2, 980	3, 523	0.840	3. 22	CUB	CURVE 16		8.291
	6. 454*	25	1. 070 × 10-2	3.082	3, 905*	0.865	3.36			1. 528	7.692*
4. 420	8. 072	30	1. 348	3, 176	4. 227	0.881	3.38*	1, 143	2. 106 x 10-6	1.810	1.018 x 10-6
		9	2. 696	3. 268	4. 630*	0.912	3. 5.	1. 145	2. 022*	1.811	1.000
5	CURVE 7	70	3. 126*	3.369	5, 113	0.930	3.58*	1, 335	3. 454	1.985	1.288*
		80	3.404	3.462	5. 536*	996 0	3 79		5 213	1 998	1 179
273	5. 3929 x 10-2	8	3. 665	3, 568	6. 039	0.989	3.91*		5. 392	2. 077	1.281*
293	5. 4393*	100	3.917	3, 679	6. 623	1.021	4. 13	1, 753	8, 172	2, 094	1. 296*
323	5. 5156			3, 699	6. 663*	1,057	£.33	1. 920	1.112 x 10-6		1.446
373	5, 6609	50	CURVE A1	3.711	6. 663*	1. 079	4.45*	1, 927	1. 095*	2, 238	1.446*
423	5. 8287			3, 723	5. 958*	1, 118	4. 63*	2.015	1. 289		
3	5. 9792	1.5	1.389 x 10-6	3, 734	4.892*	1, 183	5.01*	2.027	1, 272*	Ser	Series 2
473	6. 0191	2.0	3.281	3, 748	4. 751*	1, 245	5. 32	2. 111	1.407		
202	6. 1527	2.5	6. 462	3, 760	4. 791*	1. 470	6. 83	2. 125	1. 466	2. 521	1. 904 x 10-6
		9	1. 117 × 10-	3, 773	4.871	1, 653	8. 19	2, 273	1. 761	2. 525	1.862
	CORVE 8	9	1.824	3, 799	4. 992			2.456	2, 249	2. 760	2.266
		4.0	2. 999	4. 003	5. 858*	COR	CURVE 15	2.474	2. 165	2. 780	2. 266
323, 15	5. 50 x 10-2	CO	CURVE 12	4.112	6. 462*		Section of the	2. 484	2, 148*		2.241*
373. 15	5.80	1		4. 191	6. 904*	0.800	3.85 x 10 ⁻⁷	2.550	2, 392	3.076	2, 595
423, 15	6. 16	8	Series 1	4.341	7.871	0.832	4. 63	2. 562	2, 527	3, 108	2.907
439, 15	3	1, 122	1. 632 × 10-6	9	Series 3	0.875	5. 58	2.717	2. 721		3.547
458. 15	6. 40	1. 148		}		0.893	6. 12	2, 730	2.856	3, 383	3, 783
				1. 122	1.633 x 10-					3, 595	4, 280
				1, 148	1. 820						4. 533
Not abov	"Not shown on plot			1. 177	1. 893						5. 106*
				1. 208	2. 122						

DATA TABLE NO. 62 (continued)

ပ္ရ	25*	6.21 x 10-2	6.81	7.03	7.40	5.20	5.20	5 20	5.20	5.20																																				
H	CURVE 25*	348	423	448	498	523	623	723	823	873																																				
ပို	CURVE 22/cont.,*	5.238 x 10-6	6.256	6.611	6.699	6.829	6.860	5.291	4.958	4.797	5.034	5.005	4.989	5.413	890.9	6.816		23*	1	2.365 x 10-6	2.912	3,389	3.930	4.243	4.329	5,110	6.208	7.268	8.643	1, 155 x 10 ⁻⁶	2.316	3.631	4.583	5.373	6.432	7.138		24*	32	5.7×10^{-2}						
н	CITR VE	3.365	3.579	3.644	3.668	3.678	3.695	3.706	3.719	3.722	3.737	3.749	3.765	3.857	3.986	4.148		CURVE 23*		0.6182	0.7340	0.8374	0.9474	1.0129	1.0189	1.1748	1.3582	1.5166	1.6965	1.9983	2.596	3, 383	3.665	3.878	4.069	4.240		CURVE 24*		295						
ပ္	CURVE 21/cont.)*	2.883 x 10-6	3.327	3.670	4.036	4.243	4.887	5.464	6.072	7.175	9.707	1.314 x 10-6	1.575	1.832	2.426	3.007	3.765	4.131	5.219		. 22*	1	3.156 x 10-8	3.271	3.793	5.652	7.951	1.342 x 10-7	2.265	2.678	7.561	1.023 x 10-6	1.234	1.566	2.320	3, 389	4.719	6.725	1.061 x 10-	1.628	2.291	2.934	3.544	4.128	4 703	
H	CURVE	0.7575	0.8303	0.9067	0.9778	1.0329	1,1502	1.2391	1.3461	1.5163	1.819	2.161	2.377	2.555	2.903	3.170	3.387	3.574	3.874		CURVE 22*		0.4060	0.4061	0.4233	0.4798	0.5350	0.6112	0.7021	0.7393	0.9180	0.9923	1.040.	1.1078	1.2193	1.3571	1.4954	1.6616	1.9302	2.221	2.511	2.744	2.938	3, 101	3.244	,
ပ်	CURVE 20/cont.)*	1.024 x 10 ⁻⁷	1.888	1.993	2.353	2.798	3, 339	4.002	4.711	5.975	7.276	8.943	1.257 x 10-6	1.696	2.187	2.887	3.94	5.659	7.617	1.019 x 10-6	1.250	1.464	2.004	2.673	3.228	3, 833	4.381	4.881	5.336	5.813	6.367	4.806	5.311	6.801	7.945		\$ 21*	****	1.484 x 10	1.60	1.612	1.89	2.275	2.588	2.830	
۲	CURVE 2	0.5727	0.6678	0.6874	0.7117	0.7407	0.7712	0.8047	0.8326	0.8804	0.9217	0.9630	1.0490	1.1307	1.2069	1.2985	1.4172	1.5744	1.7272	1,8961	2.028	2.138	2.404	2.655	2.837	3.007	3.153	3.280	3,393	3.495	3.589	3.729	3.838	4.15	4.389		CURVE 21*		0.4026	0.4237	0.4374	0.4847	0.6042	0.7062	0.7319	
^d	CURVE 18 (cont.)	2 (cont.)	1. 097 x 10-6	L. 200	1. 192	1. 291	1.389	1. 528	1. 657	1.820	2.002	2. 116	2.354	2, 555	2. 783	3.00 4	3. 282	3, 605	3.826	4. 229	4.551	4. 934	5, 397	5.840		E 194	•	2.233 x 10-6	2.376	2.494	3.657	3.631	4.398	4.600	4.870	5.080	5.291	5.611		E 20*		3.884 x 10°	4.12	6.299	A 552	1
H	CURYE	Series 2	1.973	2. 065	2.061	2, 156	2. 259	2, 369	2. 474	2. 569	2.680	2. 766	2.885	2. 983	3. 080	3, 180	3, 272	3, 382	3.466	3, 577	3.682	3. 781	3.880	3.982		CURVE 1		2.781	2.904	2.951	3.382	3.402	3.628	3.691	3.747	3.784	3.848	3.940		CURVE 20*		0.4274	0.4449	0.5021	70.00	
ပီ	CURVE 18 (cont.)	Series 1 (cont.)	8. 518 x 10-4	9.062	9.948	1. 083 x 10-6*	1, 180	1.081*	1. 172*	1. 265	1. 434	1. 567	1. 683	1. 845	2. 016	2. 122	2.350	2. 539*	2. 759	2. 972	3.242	3. 564*	3.806	4. 209*	4.571*	5.034*	5.518*	5. 961		5 2		4. 692 x 10-6	4. 254	5. 215	5.356	5, 538	5, 759	6. 263	7. 028	6. 927	6.967	8. 578	9. 162	1.005 x 10-6	1 089	
H	CURVE	Series	₹. 686	1. 763	1.857	1.965	2.073	1.980	2.069	2, 166	2. 266	2.373	2.476	2. 570	2.681	2. 767	2.886	2. 985	3.082	3, 184	3. 277	3.388	3, 473	3. 584	3.689	3. 787	3. 887	3. 985		Series 2		1. 130	1. 164	1. 200	1. 235	1.270	1, 306	1. 403	1, 495	1.474	1.587	1, 682	1, 758	1.851	1.958	
တိ ရ	CURVE 17 (cont.)	Series 3	2. 233 x 10-4*	2.376	2. 494	3. 657	3. 631*	4. 396*	4. 600*	4. 870	5. 080	5. 291	5, 611		Series 4		1. 47 x 10~	5, 11	1. 23 x 10-6	2. 22	3. 59	5. 73	7. 18		Series 5		3.84 × 10-4	7, 14	1. 18 x 10-6	1.80		CURVE 18		Series 1		4. 692 x 10-6	4.954	5. 185	5. 336	5.518	5. 739*	6. 242	6.988	6.887	6.927	
H	CURV	8	2. 781	7 2 3	2. 951	3. 382	3, 402	3. 628	3. 691	3. 747	3.784	3. 848	3. 20		9		7	1.5	2.0	2.5	3.0	3.5	3.7		96		-		2.0	2.5		5	CHILD	2		1. 130	1. 164	1. 200	1, 235	1. 270	1, 306	1.40	1.498	1.476	1.590	

SPECIFICATION TABLE NO. 63 SPECIFIC HEAT OF TITANIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[Fir Data Reported in Figure and Table No. 63]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	127	1969	298-1400	± 1.6		
64	160	1965	343-1103	±5.0		0,0055 O ₂ , 0,002 other metals, 0.0015 C, 0.001 N ₂ , and 0.0008 H ₂ .
က	129	1963	599-1066	s 6.0	Filament No. 2	\leq 0.2 C, few tenths percent maximum O ₂ , N ₂ , and Fe: sample supplied by the Driver-Harris Co.; sealed under vacuum.
*	129	1963	758-1150	s 6.0	Filament No. 3	Same as above.
10	130	1968	868-1348	≠5.0		Commercial grade; sealed under vacuum.
9	81	1961	294-1923			99, 705 TN, 0,08 Fe, 0,07 Sl, 0,05 C, 0.03 N2, 0.02 O2, 0.005 H2, and 0.04 other impurities.
2	132	1944	54-295			98.75 Ti, 0.5 Si, 0.27 Fe, and 0.15 V; data corrected for impurities.
60	133	1966	422-978	+ 18		99.9 Ti.
	134	1967	323-1233		Iodide titanium	0, 032 C, 0.03 Fe, 0.011 O ₁ , 0.0067 H ₂ , 0.001 Cu, and 0,0007 N ₂ ; under 0.01 µ Hg vacuum.
91	134	1967	433-1223		Iodide titanium	Same as above.
11	134	1967	363-1113		Iodide titanium	Same as above.
ដ	134	1957	333-1033		Iodide titanium	Same as above.
ដ	135	1966	311-1033		Ti 75 A	99.75 Ti, 0.131 O ₁ , 0.07 Fe, 0.06 C, 0.048 N ₂ , and 0.0068 H ₂ ,
7	136	1963	15-306			0,0082 Mn, 0,007 Si, 0,0066 Al, 0,02 total of Cu, Pb, N ₂ , and Te; prepared by lodide process; annealed under high vacuum at 800 C.
97	128	1966	6-16			> 99. 95 Ti; annealed.
16	308	1967	1-21			~99.9 Ti; hexagonal close-packed structure.
17	200	1968	14-272			
18	199	1936	473-1090			Purest ductile titanium; prepared by the Van Arkel loddle process.
19	372	1966	4-15	< 2.0		99.95 - 99.99 Ti, sample supplied by the Foote Mineral Co.
20	310	1962	15-1900	0.2		99, 96 T1, 0, 0062 Mn, 0, 007 St, 0, 0066 Al, Cu, Pb, N ₂ , and Te; sample supplied by the New Jersey Zinc Co.
21	203	1966	5-18	<1.0		99, 95 - 99, 99 Ti, impurities total <. 005 of Al, Ca, C, Cr, Cu, Fe, Mg, Mn, Ni, Nj, Si, and Sn; prepared by admitting hydrogen to tube of titanium; annealed at temperatures <500 C with final anneal at 180 C; cooled slowly to room temperature.
ជ	340	1952	298-1900	0.2		99.96 Ti, 0.0082 Mn, 0.007 Si, 0.0066 Al, Cu, Pb, N ₂ and Te; sample supplied by the New Jersey Zinc Co.

DATA TABLE NO. 63 SPECIFIC HEAT OF TITANIUM [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹]

•	<u></u>	411 x 10-f*					*	*		•		e	œ*		*	*-	***		1,	. f	5,		F-05	æ,	.	.		.		*				L. 370 x 10 ⁻¹		-	60	8 2	*	
ပ်	CURVE 9 (cont.)	1.411	1. 424		ı.	Η.			1.463	_	_		1.488			1.507				1. 52	1. 53			1. 588	1. 62	-i -		1.841	1. 637	1 502*	i	CURVE 10*		1.37	.,	ij	4	ਜ	- i	1. 454
Ħ	CURV	563. 15	603, 15	623. 15	643.15	663, 15		703. 15	723, 15	743. 15			803. 15	843.15	863, 15	883.15	903. 15	923. 15	943.15	963. 15	983. 15	1003.15	1023. 15	1043.15	1063. 15	1083.15	CT .0011	1173. 15	1913 15	1233 15		CUR		433.15	473.15	513.15	553.15	593. 15	633.15	673. 15
္ဌ	00	Series 1	1. 17 x 10 ⁻¹	1.30	1.37	1. 51	- 25 - 1	1.78	1.613*	1. 43	1. 66	1.76	z. 60	Series 2		1. 132 x 10 ⁻¹	1. 221	1.341	1.469	1.468	1. 672	1.740	1. 725	1. 778"	L. 892	1. 838		CORVES	1 397 v 10-1	1.387	1.400	1. 404*	1.359	1. 357	1.363	1.369	1. 379*	1.388	1. 394	1. 404
H	CURVE	Ser	422.0	477.5	533. 1	588.7	644.2	699.8	755.3	810.9	866.4	922. 0	977. 5	Ser		422.0	477.5	533. 1	588.7	644.2	699.8	755.3	810.9	866.4	922.0	977.5		3	323 15	343, 15	363, 15	383, 15	403.15	423, 15	443.15	463.15	483.15	503. 15	523. 15	543.15
່ວ	CURVE 6 (cont.)	1. 672 x 10 ⁻¹ *	1. 672	1.672	1. 672	1. 672	1.672	1. 672		/E 7		2. 668 x 10-	3.00e	3.998	4.472	4. 921	5.390	5.714	6. 474	7. 223	7. 860	8. 478	S 880	9.428	3.627	1. 018 x 10 ·		1.073	1.118	1. 137	1. 156	1. 171	1. 186	1. 201	1. 217	1. 232	1. 242	1. 249		
T	CURVE	(8) 1273. 15 1373. 15	1473, 15	1573, 15	1673. 15	1773. 15	1873. 15	1923. 15		CURVE 7		g :	51.1	62.9	70.5	75.1	80.1	80 i	92. 7	102.9	112.7	123. 2	133.3	143.4	103.0	174.8	101	194. 4	204.7	214.6	224.9	235.0	244.9	255. 5	265. 7	276. 1	285.8	295. 1		
ပ	CURVE 5 (cont.)	2. 17 x 10 ⁻¹	3. 19	4. 50	5. 18	4. 96	3.82	2.89	2. 19	1. 78	T. 61	1. 50	1. 47 1. 45*	1.45	1. 46*	1.44*	1. 4.	1.44	1.44	1. 46*	1.44	1.45		/E 6	1-0.	1. 246 X 10 -	1.00	1. 294 1. 369	1.434	1. 515	1. 599	1, 682	1.750	1. 827	1. 833*	1. 840*	1.856*	1. 864	1. 672*	L. 672*
H	CURVE	1128.15	1148.15	1158.15	1168.15	1178.15	1188.15	1198, 15	1208. 15	1218. 15	1228. 15	1238. 15	1258 15	1268, 15	1278. 15	1288, 15	1298. 15	1308, 15	1318. 15	1328. 15	1338. 15	1348. 15		CURVE 6	9	301.09	201.00	482 15	569 15	676. 15	784. 15	891.15	978. 15	1075. 15	1083. 15	1093. 15	1113.15	1123. 15	1153, 15	(p) 1173. 15
ဝ	VE 4	1. 76 x 10 ⁻¹	1.62	1.82*	1. 9£	1. 72	2.23	1.85	1.80	1.90	\$ S	2 6	2. 02	VE 5		1. 54 x 10 ⁻¹	1. 49	. 52 	1.55	1. 567	3.		1. 57	 	1.00	1.58*	****	1.50*	1. 62	1. 62*	1.64*	1 62*	1.62*	1. 63	1.66	1, 67	1. 70*	1. 74	1.82	5 .
H	CURVE	708	890	1023	1060	1150	1152	1223	1254	1277	250	1245		CURVE		868. 15	878, 15	888. 15	898. 15	908. 15	918. 15	928. 15	938. 15	948.15	950.15	978 15	9000	998 15	1008, 15	1018.15	1028, 15	1038, 15	1048, 15	1058, 15	1068.15	1078. 15	1088, 15	1098. 15	1108.15	CT 3111
ပ်	VE 1	9. 985 x 10 ⁻² 1. 009 x 10 ^{-1*}	1. 363	1. 529	1. 620	1. 677	1. 714	1.740	1. 761	1. 776	100	1 663	1.663	1.663		VE 2	1.00	1. 37 X 10 ·	1.41	1.40	,	\$ 3	5 3	 		VE 3		L 68 x 10-1	1, 80	1.82*	1. 77	1.85	1.97	1.73	1.96	1. 91	1.82	8 8	2 6	
۴	CURVE	(x) 298.15 300	400	200	909	92	800	906	1000	1100	2311 (6)		1300	1400		CURVE	4.	243.15	376. 15	527. 15	000 15	822. 13	200.	1102 15	1	CIRVE		599	809	609	756	171	773	200	911	925	1022	9907		

^{*}Not shown on plot

1.527 1073.15 1.613 533.15 1.339 248.05 1.186° 2.05 3.74 20.95 1.97 * 1.532 1113.15 1.640 588.71 1.385 259.30 1.204° 2.28 4.26 20.95 1.97 * 1.539 644.26 1.441 2.71, 73 1.224 2.45 4.43 CURVE 17 1.539 644.3
--

			10-3						10-3	<u>z</u>				0.3							x 10-1																											
(continued)	ပ်	CURVE 21(cont.)*	7.504 x 10 ⁻³	8.228	8.971		11 1		4.905 x 10-3	6.437 x 10-4	7.485	8,433	9.530	1, 103 x 10 ⁻³	7.744	8.567	9, 186		22*	ļ		1.24	1.30	1,36	1.42	1.48	1.51	1.60	1.66	1.69	1.72	1.75	1.49	1.49	1.49	1.49	1.59	1.68	1.8.1		2.19	•						
63	۲	CURVE	16, 590	17.157	17.722		Scries II		3,895	4.427	4.990	5,459	5,959	6.513	16.672	17.236	17.802		CURVE 22*		298.16	300	400	500	009	100	800	900	1000	1050	1100	12.	1154	1200	1300	1400	1500	1600	1700	1800	1900							
DATA TABLE NO.	င်	O(cont.)*	6.789 x 10-2	7.480	8.115	8.800	9.267	9.716	1.014 x 10-1	1.048	1.077	1.168	1, 133	1.155	1.156	1.170	1, 186	1.204	1.224	1.234	1.242	1.244	1.254		21*	1		7.135 x 104	8.383	9.430	1.068 x 10-3	1.232	1.402	1.612	1.816	2.016	2.255	2.520	2.789	3,114	3,443	3,802	4.236	4.630	5.104	5.698	6.162	701.0
	۲	CURVE 20 (cont.)*	94.758	104.492	114.763	127.074	137.652	148.701	160, 373	172.744	185.705	198.459	212.404	215.286	224.524	234.026	248.048	259.296	271.726	233, 322	293, 571	299.576	305,510		CURVE 21*	Series		4.837	5.406	5.931	6.457	6.993	7.537	8.097	8.665	9.229	9.787	10,349	10.914	11.484	12.049	12.614	13, 180	13.749	14.322	14.893	15.457	10.10
	c _p	*61.3	7.38 x 10-5	8.58		1.12 × 10.	1.26	1.42	1.59	1.77	1.97	2.19	2.41	2.55	2.92	3.20	3.51	£.	4.18	4.56	4.95	5,39		6, 39	6.94		*02		9.541 x 10-	1. 167 x 10 ⁻³	1.399	1.695	1.875	2.438	3.106	4.006	5.428	7.292		1.231 x 10-2		2.265	2.818	3.282	3.911	4.537	5, 196	
	H	CURVE 19*	4.0	4, r		o o	9.0	6.0	7.0	7.5	8.0	8.5	9.0	9.2	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0		CURVE 20*		15,439	17.362	18.754	20.045	21.311	22.872	24.60	26.708	29, 323	32,232	35.264	38,666	43,540	49.044	53,890	57.999	63.946	70.273	76.999	
	ပ္ခံ	17 (cont.)	8.787 × 10 ⁻²	9.071	9.539 0 601	*******	3.500	1 000 x 10	1.029	1.053	I. 068	1.084	1.097	1.111	1.116	1.122	1.133	1.136	1.137	1.14	1.145	1.151	1.162	1.170	1.171	1.180	1.183	1.189	1. 192	1.196	1.201	1.211	1.210	1.219	1. 220 ±	1.227	1.225		CURVE 18		1.353 x 10 ⁻¹	1.440	1.474	1.492	1.529	1.622	1.807	
	H	CURVE 17 (cont.	126.71	132.62	146 59	159 70	150 00	130.30	104.88	173.50	179.98	186.20	192, 29	08.861	201.18	203. 83	207.55	210, 19	210.80	213.57	216.26	218.04	224.32	229.97	230. 24	230.37	238.52	242.38	244.79	248.07	250.62	250.03	203. 32	265.44	200.00	271.76	26.172		CURV		473	573	673	773	873	973	1073	.000

SPECIFICATION TABLE NO. 64 SPECIFIC HEAT OF TUNGSTEN

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 64]

1 12 1862 533-3033 5.0 99.9914 W, 0.003 Fe, 0.002 Si, 0.002 Cy, 0.001 Cu, H ₂ . Ni, N ₁ , and P ₁ sample supplied by Union Carbide Muetala Co. 3 17 1862 2273-2873 4.1.2 99.90 W, residuals WC; out gassed and sealed in c. 1 x 10 ⁴ mm Hg at 1.05 atm. 4 67 1862 2273-2873 4.0.2 99.90 W, residuals WC; out gassed and sealed in c. 1 x 10 ⁴ mm Hg at 1.05 atm. 5 116 1961 1273-2883 1.0 99.95 W, powder metallurgy; sealed under vacuum. 6 138 1962 2673-3083 4.0.5 50.96 W, degassed at 2150 C for 2 hrs; sealed under vacuum. 6 138 1962 2673-3083 4.0.5 50.99 W, degassed at 2150 C for 2 hrs; sealed under vacuum. 7 139 1962 2673-3083 4.0.5 50.99 W, degassed at 2150 C for 2 hrs; sealed under vacuum. 8 69 1956 1089-1700 4.0 50.99 W, degassed at 2150 C for 2 hrs; sealed under vacuum. 9 1962 2673-3083 4.0 50.5 50.95 W, degassed at 2150 C for 2 hrs; sealed under vacuum. 10 10 10 10	Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
64 1963 1200-2400 \$\sigma\$2.0 Wire sample 137 1962 2273-2673 \$\sigma\$1.2 67 1962 1550-2880 \$\sigma\$1.0 116 1961 1273-2893 \$\sigma\$1.0 139 1962 2673-3093 \$\sigma\$0.5 139 1962 2673-2600 \$\sigma\$1.2 69 1959 12-273 \$\text{W-1}\$ 90 1962 1500-2200 \$\sigma\$4.0 90 1958 13-78 0.5 \$\text{W-1}\$ 90 1958 13-78 0.5 \$\text{W-1}\$ 90 1958 13-78 0.5 \$\text{W-1}\$ 201 1953 273-1873 \$\sigma\$1.0 \$\sigma\$1.0 202 1953 2-20 \$\sigma\$0.5 \$\sigma\$0.5 203 1957 4-15 2.0 \$\sigma\$0.0	-	ជ	1962	533-3033	<5.0		99.9914 W, 0.003 Fe, 0.0026 Si, 0.002 C ₂ , 0.001 Cu, H ₂ . Ni, N ₂ , and P; sample supplied by Union Carbide Muetals Co.
137 1962 2273-2673 ≤1.2 67 1962 1550-2890 + 10.2 116 1961 1273-2893 1.0 138 1962 2673-3093 ≤0.5 139 1962 273-2600 ≤1.2 69 1959 12-273 W-1 90 1968 13-78 0.5 W-1 90 1958 13-78 0.5 W-1 90 1958 13-93 0.5 W-2 201 1953 600-3100 <1.2 X-2 202 1953 273-1873 + 0.5 X-2 203 1953 2.20 + 0.5 X-2 203 1953 2-20 + 0.5 X-2	64	2	1963	1200-2400	<2.0	Wire sample	99.90 W, residuals WC; out gassed and sealed in $< 1 \times 10^{-6}$ mm Hg glass envelpe.
67 1962 1550-2890 + 10.2 116 1961 1273-2893 + 10.2 138 1962 2673-3093 < 0.5 139 1962 273-2600 < 1.2 71 1960 1089-1700 < 4.0 140 1962 1500-2200 < 4.0 90 1958 13-78 0.5 W-1 90 1958 13-93 0.5 W-1 201 1958 373-1173 44 1952 273-1873 + 0.5 W-2 202 1953 2.2 + 0.5 W-2 203 1953 2.2 + 0.5 203 1953 2.2 + 0.5 203 1953 2.2 + 0.5	က	137	1962	2273-2673	s 1.2		99.95 W; powder metallurgy; sealed under 10.2 - 10.3 mm Hg at 1.05 atm.
116 1961 1273-2893 1.0 138 1962 2673-3093 ≤ 0.5 139 1962 273-2600 ≤ 1.2 69 1959 12-273 *** 140 1962 1089-1700 < 4.0 *** 90 1958 13-78 < 0.5 *** 90 1958 13-93 < 0.5 *** 201 1963 600-3100 < 1.2 *** 201 1929 373-1173 *** < 0.5 *** 202 1950 1.5-2.9 < 0.5 *** < 0.5 203 1953 2.20 < 0.5 *** < 0.5 203 1953 2-20 < 0.5 < 0.5 < 0.5 < 0.5 203 1953 2-20 < 0.5 < 0.5 < 0.5 < 0.5 203 1953 2-20 < 0.5 < 0.5 < 0.5 < 0.5 203 1957 4-15 < 0.5 < 0.5 < 0.5 < 0.5	4	29	1962	1550-2880	+ 10.2		
138 1962 2673–3093 < 0.5 139 1962 273–2600 < 1.2 69 1959 12–273 71 1960 1089–1700 < 4.0 140 1962 1500–2200 < 4.0 90 1958 13–78 0.5 W-1 90 1963 600–3100 < 1.2 201 1929 373–1173 < 4.12 202 1950 1.5–2.9 ± 0.5 175 1953 2-20 ± 0.5 203 1957 4-15 2.0	ĸ	116	1961	1273-2893	1.0		99.8 W; degassed at 2150 C for 2 hrs; sealed under vacuum.
139 1962 273-2600 <1.2 69 1959 12-273 71 1960 1089-1700 <4.0 W-1 140 1962 1500-2200 <4.0 W-1 90 1958 13-93 0.5 W-2 80 1963 600-3100 <1.2 W-2 201 1929 373-1173 202 1950 1.5-2.9 ± 0.5 175 1953 2-20 ± 0.5 203 1957 4-15 2.0	9	138	1962	2673-3093	< 0.5		99.95 W, 0.05 impurities; polished surface.
69 1959 12-273 71 1960 1089-1700 140 1962 1500-2200 <4.0	7	139	1962	273-2600	<1.2		Same as above.
71 1960 1089-1700 140 1962 1500-2200 <4.0 90 1958 13-78 0.5 W-1 90 1958 13-93 0.5 W-2 80 1963 600-3100 <1.2 W-2 201 1929 373-1173 4.0.5 A-2 202 1950 1.5-2.9 ± 0.5 A-0.5 175 1953 2-20 2.0 A-15 2.0	60	69	1959	12-273			99.9917 W, 0.002-0.006 Fe, 0.002 Si, and 0.0001-0.0003 Cu, Mg, Mo. and Ni; sample rods prepared by powder metallurgy.
140 1962 1500-2200 <4.0 90 1958 13-78 0.5 W-1 90 1958 13-93 0.5 W-2 80 1963 600-3100 <1.2	6	11	1960	1089-1700			99.9 W, and < 0.02 R ₂ O ₃ .
90 1958 13-78 0.5 W-1 90 1958 13-93 0.5 W-2 80 1963 600-3100 <1.2 W-2 201 1929 373-1173 * 202 1950 1.5-2.9 \pm 0.5 175 1953 2-20 203 1957 4-15 2.0	10	140	1962	1500-2200	<4.0		Sealed under argon atmosphere.
90 1958 13-93 0.5 W-2 80 1963 600-3100 <1.2	11	8	1958	13-78	0.5	W-1	99.99 W, and traces of Ag, Cu, Fe, Mn, Ni, and Si.
80 1963 600-3100 <1.2 201 1929 373-1173 164 1932 273-1873 202 1950 1.5-2.9 ± 0.5 175 1953 2-20 203 1957 4-15 2.0	ដ	06	1958	13-93	0.5	W-2	99.985 W. 0.01 Na ₂ O, and 0.005-0.008 Ni.
201 1929 373-1173 164 1932 273-1673 202 1950 1.5-2.9 ± 0.5 175 1953 2-20 203 1957 4-15 2.0	13	80	1963	600-3100	<1.2		< 0.05 impurities; prepared by powdered metallurgy.
164 1932 273-1873 202 1950 1.5-2.9 ± 0.5 175 1953 2-20 203 1957 4-15 2.0	7	201	1929	373-1173			
202 1950 1.5-2.9 ± 0.5 175 1953 2-20 203 1957 4-15 2.0	15	2	1932	273-1873			
175 1953 2-20 203 1957 4-15 2.0	16	202	1950	1.5-2.9	₹0.5		99.9 W.
203 1957 4-15 2.0	11	175	1953	2-20			99.9 W; sample supplied by Fansteel Metallurgical Corp; under helium atmosphere.
	18	203	1957	4-15	2.0		99.9 W, and < 0.02 H ₂ O ₃ .

DATA TABLE NO. 64 SPECIFIC HEAT OF TUNGSTEN

				Tempera	Temperature, T. K. Spec	fic Heat, Cp	Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]				
۲	$c_{\mathbf{p}}$	H	$^{\rm d}_{ m D}$	T	c _p	1	$_{\mathbf{p}}^{\mathbf{q}}$	Т	$_{\mathrm{p}}^{\mathrm{c}}$	H	c _p
CURVE	VE 1	CURVE	/E 5	CURVE 7 (cont.	7 (cont.)	CURVE	CURVE 8 (cont.)	CURVE 8 (cont.	8 (cont.)	CURVE	CURVE 11 (cont.)
533. 1	3, 1 x 10-2	1273	3, 606 x 10 ⁻²	1100	3.642 x 10 ⁻²	43 00	5 918 x 10-3	68 656	2 055 × 10-2	66 66	F07 2 10-
810.9	4	1373	3.650	1200	3, 701	48, 50	7. 066	243, 10	3, 056	23.88	
1088.7		1473	3. 693	1300	3. 761	53, 94	8, 903	248, 71	3.081	25, 52	9, 953
1366. 5	. 5	1573	3. 737	1400	3.821	59, 40	1, 069 x 10 ⁻²	250, 22	3, 075	27.33	1, 278 x 10-3
1644.3	6	1673	3, 780	1500	3, 882	59, 80	1.084	254, 97	3, 095*	29, 35	1. 621
1922. 0	ص ا	1773	3.824	1600	3, 943	64. 47	1.240	255.98	3.093	31, 60	2, 089
2199. 8	4	1873	3, 868	1700	4. 005	65, 57	1. 265	260, 78	3, 102	34.01	2.714
2477. €	4.7	1973	3.911	1800	4.067	70, 83	1.420	262. 77	3, 101	36.91	3, 524
2755.4		2073	3. 955	1900	4. 130	74.51	1. 522	268, 65	3.112	39, 05	4.144
3033. 1	T. Z x 10_1	2173	3. 498	2000	4. 193	79.97	1. 664	273, 84	3, 111	41.43	4.803
E		2773	4. 042	2100	4. 257	85, 29	1. 782		4	43, 74	5, 461
NO.	7 7 4	2473	4. 086	3200	4. 321	91.31	1.921	CURVE	E 9	45.90	6. 222
1200	3 65 × 10-2	2573	4 173	2400	4. 300	101 00	2. 030	9 0000	6=174	48. 02	6. 935
1300	3 70	2673	4.216*	2500	4.450	101.99	2. 114 2. 206	1088.9	3.571 x 10-2	52.09	8. 322
1400	74	2773	4.260	2600	4. 589#	113 74	2. 203	1300	4.034	57. 66	1. 055 X 10 ⁻²
1500	2 79	2873	* 304 *	7007	4. Jos	110.74	2. 233	1200.0	3. 617	62. 22	1. 216
1600		0000			,	113, 40	2. 363	1255. 5	3.640	64. 11	1.261
1200	200	C697	4. 332	CORVE	<u>ء</u>	125. 05	2. 435	1311.1	3. 662	68. 18	1. 339
300			· !	;		130.67		1366.6	3, 686	73. 21	1. 526
0001	***	CURVE 6	E 6	11.81	9.410 x 10-	137, 97	2. 562	1422. 2	3, 709	75. 26	1, 586
0061			***	11.87	9.355	144. 02	2. 628	1477.8	3. 731	77. 54	1.617
2002	8:	2673	4. 216 × 10-2	12. 46	1.066 x 10-4	149.89		1533.3	3, 754		
2100	¥ .	2723	4. 238	12. 57	1. 093	155.81	2. 702	1588.9	3. 778	CURVE 12	E 12
2200	7	2773	4. 260	14. 07	1. 479	163, 16	2. 751	1644. 4	3, 800		1
2300	4.33	2823	4. 282 *	14. 24	1. 572	169.36	2. 790	1700.0	3, 823	Series 1	8.1
2400	*	2873	4, 304 *	14.46	1. 626	175.38	2.818				
		2923	4. 325*	14. 65	1.681	182, 89	2. 852	CURVE 10*	E 10*	13.54	1. 474 × 10 ⁻⁴
CORVE	VE 3	2973	4. 347	14.82	1. 729	189, 29	2.882	1		15. 73	2, 257
0000		3023	4.369	15.92		195. 41	2. 900	1500	3.726 x 10 ⁻²	19. 22	3.894*
2273	4. 367 x 10	3073	4.391	16.51		198. 67	2. 911	1600	3, 797	20, 83	5, 395
2373	4. 432	3093	4. 400	17.05	2. 611	201, 36	2. 932*	1700	3.867	22.37	6.744
24/3	4. 400 000		!	17.62	2.877	202, 10	2. 920*	1800	3, 938	24.03	8. 267*
25/3	4. 963	CURVE	/E 7	18.03	3. 100	204.38	2.941*	1900	4.009	25.97	1. 082 x 10 ⁻³
26/3	4. 680			18.38		207.70	2. 949*	2000	4.079	28, 13	1, 420
		273, 15	3.171×10^{-2}	19.06	3, 595	209. 94	2.964	2100	4. 150	30, 42	1, 838
CURVE	VE 4	298. 15	3. 184	19. 42	3.878	213, 17	2.974*	2200	4. 221	32. 79	2, 295
		300	3. 185*	20. 23	4.411	215, 33	2.975*			35.08	2.910
1550	3. 1 x 10-2	400	3. 241	20. 44	4. 520	219, 42	2.988*	CURVE 11	E 11	42.61	5,042
1810	3.7	200	3. 297	20. 50	4. 629	222, 53	3.006		1	47.16	6.548
2080	4. 2	009	3. 353	22. 44	6.402	225, 11	3.014*	13.07	1.452 x 10 ⁻⁴	51.09	7, 908
2340	4. 5	200	3.410	25.85	1. 045 x 10-3	228.57	3.022*	15. 16	2. 382	56. 10	9. 779
2610	4.7	800	3.467	29.74	1. 707	230.61	3.024*	17.03	2, 225	60, 14	1, 121 x 10 ⁻²
2880	8 .	006	3. 525	33.74	2. 568	234. 27	3. 037	18.80	4.313	65.07	1. 260*
		1000	3, 583	38. 22	3. 761	237.34	3.046*	20, 33	4. 259	72.95	1, 491*

*Not shown on plot

	ပ	CURVE 18 (cont.)	Series 2 (cont.)	1, 326 x 10 ⁻⁵ *	1, 599*	1. 924	2.275	2.652	3.120	4. 212*	4.758	5, 330	6, 110	6, 773	\$ 580 °	#869.6	1.062 x 10-4	1, 180*	1, 301	1, 431	1.581	1, 895																				
	T	CURVE	Series	5, 187	5.675	6, 154	6.628	7. 101	8 045	8.519	8.988	9,451	9,921	10, 435	11.439	11,922	12.413	12,909	13, 404	13,901	14,394	14.889																				
	ပ	CURVE 17 (cont.)	Series 2 (cont.)	1.01 x 10 ⁻⁶	1,32	1.40		Series 3	3.26 v 10 ⁻⁶	4. 12	5,35	4.87	4.97	1.07 x 10 °	CIRVE 18		Series 1								2.997							3.412 1.049 x 1074							Series 2		9. 10 x 10 *	
	H	CURV	Seri	3.75	4.02	4.18		ď	2 27	2,50	2.72	2.73	2.92	4.04	10	31	Š		4.431	4.980	5.484	5.980	6.473	6.958	7, 433	8 383	8, 857	9,334	10,316	10.814	11.304	12, 359	12, 939	13,448	13,949	14,448	14,926		3 3	c	3.978	,
(Continued)	ပ္ရ	CURVE 17	Series 1*	1.90 x 10 ⁻⁴	1.75	1.77	1. 2	2.19	2.23	2, 15	2.09	2.17	2.31	2.30	2.27	1.88	2.03	2.53	2.82	2.69	2.34	2.47	3.22	3.29	3.40	4.37	4.71	4.42		Series 2	1-01 42 0	3.38 10°	4, 15	4.61	4,25	5.07	6.64	7.29	7.29	8.81	0.78	3.0
64	T	CUR	Ser	15.19	15.27	15.37	15.47	15.54	15 73	15.84	15.94	16.04	16.14	16.24	16.40	16, 53	16.68	16.83	17.50	17.67	17.83	18.02	18.26	18.57	2 £	19.51	19,84	20, 13		Ser	90 0	2, 13	2.29	2,34	2,39	2.48	3, 10	3, 19	3.26	0.04 0.04	2.47	5
DATA TABLE NO.	ပိ	E 16	es 1	5.999 x 10°	6,391	7.180	6.826	7 245	7.588	8.376	9.056	9.546	9.954	6	1	4, 73	5.30	5, 33	5,744	6.076	6.282	6.641		20	4 35	4.54	4.75	4.77	4.82*	5,35	7 136*	7, 451	8,642	1.047 x 10 ⁻⁴	1, 229	5, 16 x 10 ⁻⁵	5,33*	5.771*	5.444			
	۴	CURVE 16	Series 1	2.063	2, 140	2, 229	2, 273	2, 320	2, 430	2, 675	2, 738	2, 895	2, 955	Coming	1130	1,686	1, 793	1.849	1, 953	2.027	2. 128	2, 135	C	series 3	1 533	1, 593	1.614	1,655	1, 633	1. 823	2 263	2, 464	2,806	3,093	3,505	1, 792	1.848	1.974	1, 825			
	c d	CURVE 14	3,252 x 10 ⁻² 3,274	3,297	3,320	3.342	3,365	3.410	3, 433	3,456	3,478	3.501	3.524	3.569	3,592	3,614	•	CURVE 15*		3, 199 x 10 2	3.247	3.295	3,343	0.031				3,626	3.672	3.718		3, 855		ຕໍ								
	H		373	473	523	573	623	793	773	823	873	923	973	1023	1123	1173		밍		273, 15	373, 15	4/3. 13	573. 15	773 15	873, 15	973, 15	1073, 15	1173, 15	1273. 15	1373, 15	1573 15	1673, 15	1773, 15	1873, 15								
	ပ္ရ	CURVE 12 (cont.)	1.634×10^{-2} 1.740	1,879	1.978		2.8	1 534 v 1074	2.061	2, 801	3.796	5, 167	Citation 13	IVE IS	3.353 x 10 ⁻² *	3,381	3,410	3, 438	3,467	3.496 5.65	3,525	5.00 4	5.000	2.042	3.761*	3.821*	3.882	3.943	4.005	4.067	4 193*	4.257*	4.321*	4.396*	4.450*	4.516	4.582	4.649	4.716	4.700	4. 920) :
	۲	CURVE	78.07	88, 18	93, 22		Series 2	13 65	15,35	17.00	18.90	21.24	2110	3	009	650	200	750	000	900	200	1000	0001	1300	1300	1400	1500	1600	1700	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	3000	3100))

Not shown on plot

SPECIFICATION TABLE NO. 65 SPECIFIC HEAT OF URANIUM

(Impurity <0.20% each; total impurities <0.50%

[For Data Reported in Figure and Table No. 65]

	Year Temp. Reported Name and Composition (weight percent), Specifications and Remarks	1 1960 6-348 < 5.0 α-uranium ~99, 99 U, 0, 6018 C, 0, 6015 C ₂ , 0, 5012 Si. 0, 6005 Al. 0, 6005 N ₂ , 0, 6002 Cr. 0, 6002 Fe, 0, 6001 Mg, annealed for 0, 5 hr. at 600 - 650 C in a vacuo and cooled slowly to room temperature; sealed under helium atm.	7 1969 323-873 < 2.0 99.72 U.	2 1947 298-1300 99.71 U; sealed under helium in silica glass bulb.	9 1956 373-1073 0.1 C. 0.046 Sl. 0.017 N ₂ , 0.01 Ni. 0.0095 Fe, 0.0035 Cr. 0.0007 Mn. 0.0005 Cu. and 0.0002 Co.	1 1947 273-1173 99.96 U. 0.015 C. 0.003 N ₂ . 0.002 O ₂ . and 0.0005 H ₂ ; capsulated in Nichrome V.	i 1942 15-298 Uzzs 99.71 U; cased and cleaned.
	ear Ra			•••	••		
	Ref. Yo.	141	7	142	143 1	141	145 1
100	Curve No.	-	61	က	<u>*</u>	S	•

		Сb	6 (cont.)	2. 740 x 10-2*	2. 143 9 750 #	* 130	# 1-2 c	707.7																																							
		H	CURVE 6 (cont.	273. 02	200.10	201.00	907 71	11.167																																							
SPECIFIC HEAT OF URANIUM	p, Cal g ⁻¹ K ⁻¹]	c _p	VE 6	1.815 x 10-3	9 703	000	5.087	* 588.4	0.000	1. 063 x 10-2	1.241	1.415	1. 567	1.685	1. 777	1.868	1.956	2. 019	2. 081	2. 130	2. 182	2. 237	2. 283	2.324	2. 348	2. 303 2. 303	6. 535	2. 446 °	2.467	2.488	2, 505*	2. 524	2.543	. 558 * 558 * 5	2.585*	2.606	2.618	2. 635	2.644	2. 661	2. 666	2.680	2. 695	2. 706	2. 720	2. 724	
есіғіс не	ic Heat, C	Ħ	CURVE	15.38	10.01	20.00	93 91	27.55	31 10	35, 32	40, 10	45, 25	50.49	55. 53	60.63	65. 78	71.57	75.99	81.52	87.05	95. 96	98.93	104.81	111.00	132 40	190 93	134 50	140 90	147.06	153, 35	159.76	166.65	173.61	180.04	192 57	198.47	205, 12	211.07	217.76	224.89	231.88	238. 73	245, 59	252. 89	259, 36	266.32	
DATA TABLE NO. 65 SP	[Temperature, T, K; Specific Heat, Gp, Cal g ⁻¹ K ⁻¹]	Т	CURVE 3 (cont.)	(γ) 1045 3. 822 x 10 ⁻²				CHRVE 4		373, 15 2, 78 x 10-2	N,			773. 15 3. 92						1063.15 3.40*	1073, 15 3, 40		CURVE 5		Q 20. 15 2. 13 X 10 -	4 0			523, 15 3, 257	573, 15 3, 388	15	က	723. 15 3. 846	773. ID 4	873.15	923.15 4	941.15 4.	(8) 941.15 4.	973. 15 4.		1047.15 4.	(y) 1047. 15 3.	1073. 15 3.	1123, 15 3.	1173, 15 3, 843*		
		Ср	cont.)	cont.)	2 518 x 10-2	2 544	2.563	2, 586	2.606	2. 626	2.651	2. 664	2.684	2. 701	2. 717	2. 743	2.754	2. 777	2. 789	2. 806		81		2.68 x 10-6	3.45	3 62	3 7 8	3	4, 10	4. 25	4.40		اء ا	9 758 - 10-2*	2. 760 *	2.951	3. 230	3.543*	3.873	4. 212"	4. 555	4.676	4.360	4. 360	4.360	4. 300	
		H	CURVE 1 (cont.	Series 3 (cont.)	167 755	177 AOA		331	324	322	307	222	154	120		2	285. 104	294. 998	304. 950	314.904		CURVE		323. 15	3 12	2 12		15		823.15	873. 15		CURVE 3		300							935			1000	CENT	
		c _p	1	. 1	2 779 x 10-2	2 793*	2.815*	2. 834	2, 853*	2. 868		23		1. 134 × 10~	1. 596	7. 521	4.411	7. 394	1. 206 x 10-s	1. 790	2.508	3.357	. 555 575	5.478	8 285	9 915	1. 160 x 10-2	1. 325	1. 465	1. 573		e .	1 556 - 10-2*	1. 665	1. 768	1.875	1.971	2. 065	2.150	2. 219	2. 280	2.336	2, 384	2. 425	2.460	7. 403	on plot
		H	CURVE	Series 1	300 104	307 465	317. 478	327. 514	337, 489	347. 549		Series 2		5. 703	7. 204	3.00	10.784	12.64	14.648	16, 653	18. 645	20.662	26.00	27. 490	30. 297	33, 432	36.911	40.832	45, 148	49.741		Series 3	49 590	54. 470	59, 986	66. 134	73. 049	80. 640	88. 873	98. 141	108.041	128.131	128. 225	138, 123	147.980	101.100	Not shown on plot

The Control of the Co

SPECIFICATION TABLE NO. 66 SPECIFIC HEAT OF VANADIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 66]

ı						
Curve No.	Ref.	Year	Tecap. Range K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	146	1961	479-1894	3.0		99.74 V, 0.073 O ₂ , 0.048 Fe, 0.043 N, and 0.042 C; hot rolled; annealed; sealed under helium atm.; density = 378 lb ft ⁻³ .
87	147	1962	298-1485	1.7	3	99.8 V, 0.1 C, 0.07 O ₂ , and 0.03 N ₂ ,
က	148	1961	25-340			99.8 V, 0.05 Fe, 0.01 Hf, 0.01 Nb, 0.001 each Co, Cr. Mg, Ni, and Si, <0.001 Mn, and 0.0001 Cu; carbothermic vanadium powder; annealed in vacuum for few hrs. at 800 K.
4	10	1934	273-1873	≤ 0.2	1	Purest vanadium; sample supplied by the Vanadium Corp. of America.
S	373	1936	54-297		74	> 99.5 V; sample supplied by the Vanadium Corp. of America; pellets of -8 to + 35 mesh; density = 6.009 g cm ⁻³ at 22.5 C.
φ	374	1954	1,2-5			Annealed in vacuo (pressure $< 3 \times 10^6$ mm Hg) for 3 hrs. at 850 C and then cooled slowly at about 50 C per hr.

DATA TABLE NO. 66 SPECIFIC HEAT OF VANADIUM

*
Not shown on plot

SPECIFICATION TABLE NO. 67 SPECIFIC HEAT OF YTTERBIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 67]

Composition (weight percent), Specifications and Remarks	> 99. 92 Yb, < 0. 06 Ca, < 0. 05 Ta, 0. 0225 O ₂ , < 0. 02 Mg, 0. 0117 C, < 0. 01 each Fe, Si, and Y, 0. 0035 H ₂ , < 0. 002 Er, < 0. 001 each Cr, Lu, Se, Tm, and 0. 0001 N ₂ ; cast into 1/2 inch dia. rods from which 3/4 inch long samples were prepared; sealed under helium atm, in tantalum crucible.	99.9432 Yb, 0.026 O ₂ . 0.01 Y. 0.0083 H ₂ , 0.005 Er, 0.003 Lu. 0.002 Tm, 0.0015 F, and 0.001 Sc.	99. 877 Yb, 0. 05 Ta, 0. 032 O; 0. 02 Er, 0. 01 H; 0. 01 Y; and 0. 001 Sc.	0. 12 O ₂ , 0.06 Ca, 0.046 H, and 0.007 N,	Same as above; specimen prepared by Research Chemicals.
Name and Specimen Designation		Sample 1	Sample 2		
Reported Error, %		<3.0	< 3.0	0.5	< 1.5
Temp. Range, K	298-1373	13-341	14-335	3-25	0.4-4
Year	1961	1964	1964	1966	1963
Ref. No.	36	149	149	205	375
Curve No.	-	N	က	4	S

DATA TABLE NO. 67 SPECIFIC HEAT OF YTTERBIUM

	c _p	3 (cont.)	(cont.)	3.146 x 10-2 *	3, 253*	3, 285 *	3, 459		83		3. 557 x 10-2	3.572	3. 594	3. 605	3 640*	3.655*	3, 669*	3.688*	3, 707 *	3, 743	3. 761*	3, 827		*	8-01 07 3	5. 40 X 10 S	* 000	1, 026 x 10-2	1. 242*	1, 481*	1.691*	1.885*	2.061*	2, 225*	2.413	2.577		8.5		3. 727 x 10-2*	3. 750 ₹	3.777	3.818*	, of a
	H	CURVE 3 (cont.	Series 2 (cont.)	74.65	86.54	92. 75	99. 11		Series 3		203. 61	212. 65		232. 06	251 10	261. 22	272. 07	282. 84	293. 52	304. 13	315.38	327. 29		Series 4	11	15. 25	17.03	19.08	21, 37	23.96	26. 58	29.32	32.07	35.03	38.90	43.37		Series 5		298. 62	305, 57	314. 76	325.06	359. 34
	$c_{\mathbf{p}}$	CURVE 2 (cont.)	s 10	4. 25 x 10 ⁻³	5. 77	7.33	9. 13	1, 075 x 10 ⁻²	1. 233	1. 432	1. 669	1.892		11 8	1. 789 x 10-2*	2, 058*	2. 253 *	2.414*	2. 548 %	2.684*	2.802*	2.901*	2. 987	3.072	3 300 *	3 254*	3 290*		/E 3		es 1		3.566 x 10-1*	3.648*	3.678*	3. 657	3.722	3.757*		2 2		2. 946 x 10-4	3.021	3. 600
	Н	CURVE	Series 10	12. 76	14. 28	16,06	17.86	19. 56	21.24	23. 43	26.31	29. 40	C	Series 11	28.00	31, 99	35.49	38.94	42.75	47.01	51. 57	56. 50	61.80	67.56	60 03	86.47	9.5		CURVE		Series 1		266.96	273.35	283. 23	294. 02	306.54	319.91		Series	i	58.72	63.14	76 .00
Specific Heat, Cp. Cal g ⁻¹ K ⁻¹]	o ^d	CURVE 2 (cont.)	Series 7 (cont.)	1, 298 x 10-2	1. 517	1. 736	1.961	2, 174	2.384	2. 559	2.714	2.852	*050	600.0	80		3.413 x 10-2 *	3, 432*	3, 452	3. 467	3, 482	3.500*	5. 02a	3.546*	3.459*	3.575*	3, 588*	3.602*	3.617*	3.627*	3. 645*	3.653*	3. 674	3, 740*	3. 778*		o 1		3. 515 x 10-7"	3.579*	3. 583			
fic Heat, C	Ţ	CURVE	Series	22. 01	24.39	27. 26	30.47	34. 12	38.36	42.98	48.06	25.30	67 16	01.10	Series 8		126.13	133, 52	140.77	149.21	158.82	168. 25	100.00	201 36	210 39	221, 53	232. 49	242.36	252, 31	262, 32	272.25	282, 11	292. 07	318.09	333. 29		Series	3 13010	219, 12	228.76	238.30			
[Temperature, T, K; Speci	c _p	CURVE 2 (cont.)	Series 4 (cont.)	3.305 x 10-2*	3. 322*	3, 356*	3, 351*	3. 363*	3. 380*	3. 413*	3. 434	5. CA.			3, 434 x 10-2*	3. 456*	3, 474	3. 488	3. 503	3.540	3, 558	3.570	200	3.612	3.617	3.63	3. 652*	3.669*		9 96		3. 648 × 10-7 *	3. 660*	3. 682*	3. 706	3. 739*	1	28 7		4. 71 x 10 ⁻³	6.40	7 5	1 130 - 10-2	A. 200 11 AV
[Temper	۲	CURVE	Series	97.68	100.42	103, 36	106.76	111.90	118.80	126. 22	133.53	140.12	Corios 5		134.15	142.34	151. 44	160.34	169. 10	197.36	207. 40	217.47	997 50	247.48	257.43	267.30	277.08	286.80		Series 6		275. 78	285. 47	295. 08		322. 57	2 -12	Series 7		13. 33	10. 14	10.65	20.00	3
	c _p	CURVE 2 (cont.)	Series 1 (cont.)	3. 430 x 10-2	3.452		Series 2		3. 254 × 10-2*	3. 289	3.320	3 387 #	3 417*		Series 3		3.663 x 10 ⁻²	3.664	3.673	3.713	3.750	3.75	Sariae 4		2. 917 x 10-2*	2.946*	2.964*	3.010*	3.041*	3. 043*	3.086	3.108	3, 130	3.151	3. 173*	3. 185	3. 218	3. 236	3. 254	3.267	2.200	5. 30° 4	3.203	3
	H	CURVE	Series	131.35	139. 47		Seri	3	87. 08	94. 18	100 00	117 92	127 33		Seri		280. 19	290. 41	300.38	312.56	326. 63	340. 55	Ser		57. 42	58.86	60.52	62. 43	64. 50	66. 59	68. 71	70.86	73.05	75. 27	#	3.00	87.83	. 15 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	36.53	98.43	00.00	90.00	96.04	
	c _p	<u>/E 1</u>	3.56 x 10-2	3.77	3.95	4 . 08	4.18	1.24	7 .	3.91	7 -	51 7	4. 25	4.31	4.34	4.36	4.36	4. 35		*****	200	\$ 8 * u	5.06*	5.06*	5.08	5.08*	5.08	5.06*	5.08		2		7 22	-	2. MIN X 10 -	3	3.00	3. LD3	25.52	3.272	9 241	3 373	3.403	
	۲	CURVE	298. 15	350	2	450	200	550	553. 15	553. Ib	8 4	200	250	800	820	8	950	0001	1033. 15	1053. 15	0001	1097 15	1100	1150	1200	1250	1300	1350	1373. 15		CURVE					20.40	90.00	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25. 25	2 2	8 9	114 49	123	

$c_{\mathbf{p}}$	CURVE 5(cont.)*	Series 1 (cont.)				9336		•	Series II		1.802 x 10-6								2 779	0 000	3.215	3.492					5.511				9.928										36	200		
۲	CURVI	Series	2,7992	3.0023	3.2097	3.4137	3 8576		Sei		0,3697	3864	0.4051	0.4268	0.4514	0.4781	0.5058	0,5360	0.0000	6422	0.6811	0.7217	0.7652	0.8123	0.8645	9226	9820	1238	2044	2924	3909	4957	6308	200	2000	2.0013	2782	7000	2.1076	2.8215	2404		7836	3.9959
$c_{\mathbf{p}}$	CURVE 4 (cont.)	Series 2 (cont.)	1. 025 x 10-3*	1. 299*	1. 630 2. 037	2. 02.	3 063	3.771	4. 615		7. 137*	8. 899	1. 067 x 10 ⁻² *	1.217*	1. 335	I. 456		h .	- 8	1.959 x 10-6	2.004	2.086	2.214	2.395	2.634	3 202	3.666	4.097	4.573	5. 126	5.760	6.443	1.232	9.156	1 031 x 10-5	1 100	1.180	1 400	1.906	2.086	9 710	3.240	3, 867	;
۲	CURV	Serie	8.016		9. 503		11 510	12, 401	13, 403					21. 340		23.871	· ento	COKVE T	136	0.4275	0.4428	0.4651	0.4959	0.5353	0.5823	0.6530	0.6915	0.8090	0.8727	0.9403	1.0109	1.0848	1.1615	1 2000	1.3600	1.4200	1.5201	1.0000	1.7020	7.8087	2 2351	2.4120	2 6012	•
d O	CURVE 4	Series 1	6. 082 x 10-6	7.800	1. 010 A 10 1	1 597	1. 966		3.003	3. 750	4. 662	5. 724	6. 973	8. 493	1. 041 × 10~	1.281	1. 582	2.341		3, 369			5.854	7.077	0.419	1 106 × 10-2	233*	1.371*	1. 519*		Series 2	400	9. 883 X 10 -	1 144 104	•			2 606		4 202	5.224	6. 479	8. 101	
H	3	Se.	3.099	3. 404	4 082	4 401	4. 726				6. 262					0.00	9. 211	10 489	11, 174					16. 060	16 64				24, 529		3	070	3. 677			4 560		5 249					7, 445	

* Not shown on plot

SPECIFICATION TABLE NO. 68 SPECIFIC HEAT OF YTTRIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 68]

Composition (weight percent), Specifications and Remarks	0.5 total of Ca., Cr., Dy., Gd., Mg. 0.44 Ta., 0.025 N ₂ and 0.015 C; after heat capacity measurements, chemical analysis showed 0.97 YOF, and 0.44 Ta; data corrected for impurities.	98.7. Y: <1.0 Ta, <0.05 each Ca, Er, Ho, Yb, <0.01 each Fe, Gd, Si, <0.005 each Dy, Mg, 0.025 O ₂ , 0.007 N ₂ , 0.0077 C, and 0.1 F; obtained as crystals by distillation; pressed into 1/2 inch dia. rod; scaled under reduced pressure of helium in two concentric tantalum crucibles.
Name and Specimen Designation		
Reported Error, %	0.3	
Temp. Range, K	5-340	296-1950
Year	1960	1961
Š. č.	158	36
Curve F	-	N

DATA TABLE NO. 68 SPECIFIC HEAT OF YTTRUM [Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T O	CURVE 2 (cont.)	1000 8. 457 x 10 ⁻⁷	80	æ	80		œ		6	တ်	1450 9.402*	6		6	1650 9.818	9.930	ï	1.007	6	413*	. 15 9.413	1803.15 1.158 x 10 ⁻¹	1850 1.158		ı.			
ပ္ရ		1.609 x 10 ⁻⁴	167	2.118 x 10 ⁻³		1,418 x 107		3.268	3.968	4.515	4.941	5.284	5,553	5.836	6.212	6. 429	6.604	6.730	6. 826	6.912	6.984	7.035	7.054	7.110	7.116	7.169*	7.218	6 3.
Н	CURVE 1	50	91	33	8	8	\$	3	99	20	86	8	100	120	140	160	180	200	220	240	260	273, 15	280	298, 15	300	320	340	CITR

	141 x 107	141*	231	321	411	501	591	681	771	872	962	170	153	255	356
1			-		-	-	7	7	۲.	-	7.	8	æ	œ	80
	298, 15	300	350	8	450	200	550	909	920	200	150	90	850	906	950

Not shown on plot

SPECIFICATION TABLE NO. 69 SPECIFIC HEAT OF ZINC

(impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 69]

Composition (weight percent), Specifications and Remarks		Pure commercial product, urganization and production of the produc	Kehlhaum's purity.	Some 2n: fined in hydrogen atmosphere.	og 987, 0,009 Pb. 0,004 Cd, 0,0014 Fe, and 0,001 Cu.	on o 2 and 0.1 Ph; powder specimen.	Sold Addy and Street The Street T		12 300	99, 999, 241,	oo ooo 7" sammis surplied by the American Smelling and Refining Co.; superconducting;	source magnetic field; sample maintained at 340 C for 40 hrs. and then returned to recommend to the sample maintained at 340 C for 40 hrs.	99, 999 Zn; sample supplied by the American Smelting and Refining Co.; normal state; sample maintained at 340 C for 40 hrs. and then returned to room temperature in 60 hrs.	20 0 00 Ec and 0 022 St.	99. 346 Zn, 0.00 re, and 0.00005 each Cd, Cu, Sn, and 0.000006 As; melted at 650 - 700 C	for 1 hr.; cooled flushed with helium and outgassed again at 700 C for 5 min, outgassed for 1 hr.; cooled flushed with helium at 300 - 380 C; under helium meited again and then per-	again under vacuum for the same again the same of the		Large single crystals.
Name and Specimen Designation																			
Reported Error, %							₹0.5	₹ 0.5		0.2-0.7	< 3.0							1	∓ 2.0
Temp.	278-498	373-673	21-202	1-21	373-673	193-393	1.5-4	1,5-3,4	2-20	12-273	1.2-2.4	0.44.2	0.7-3.9	10-373	348-1073	12-320			296
Year	1924	1924	1928	1932	1935	1936	1960	1950	1965	1969	1959	1968	1958	1924	1926	1966			1961
Ref.	206	179	207	161	208	182	202	202	208	210	211	216	216	282	268	376			1 377
Curve	-	. 01	က	*	20	•	5-	6 0	9	01	1	21	ដ	7	21	9			17

		ల్	CURVE 9 (cont.)	Series 2 (cont.)	3.90 x 10-6	4.88	6.34	8.29	1.17 x 10 ⁻⁴	1.51	2.00	3.00	5.31	6.05	8.00	1.01 x 10-3	CITRUE 10	2	1.381 x 10 ⁻³	2.856	2.877	3.644	4.000	4.248	4. / 15	5.272	5.654	5.844	6.503	6.873	7 333	7.464	8.224	8.366*	8. 437	8.738 559	
		L	CURVE	Series	4.65	5, 10	5,54	5.86	6.62	7.07	7.64	8 93	9.81	10.5	10.9	11.5			12.05	15.09	15.18	16.34	90.71	17.61	18.30	18,67	19, 15	19.23	20. 22	20.24	20. 97	21.17	21.92	21.99	22.21	22. 55	<u>:</u>
		ం	CURVE 9	Series 1		ຕ		7.777		ı.	Z	vi ศ	່ທ່	5,83	9.80	8, 16	1 20 T	1.30	1.65	1.59	2.20	2.08	2.78	9.50	5. 45	5.03	5, 22	6,35	6.37	7.38	Series 2		6			2.2.	
		۲	티	υX	4.63	5.02	5. 47	o. 6	6.62	7.07	7.59	3 8	9.8	10.2	10.5	11.0	12.1	12, 4	13,2	12, 5	14.4	14.0	7.01	0.01	17.7	18, 1	18.4	19.2	20.1	18. O	<i>3</i> .	í	2.8	2.6	e, e	4.08	ľ
F ZINC	g-1K-1]	ပ္ရ	(cont.)	9. 87 × 10 ⁻⁵ 1. 03 × 10 ⁻⁴	1, 294	1, 412	1.524	1 958	2,003	2, 180	2, 325	7. (2)	оо ы	i	4.33 x 103	4. 97 **	20.5	6.38	6.09	5.31	2 :		6.10	*	** ***	6.95	6.55	7.63	*; *;	8 5	1.29 x 10-4	1.27	1. 48	1.46	2.027	4. 00±	
SPECIFIC HEAT OF ZINC	. cp. cal	۳	CURVE 7 (cont.)	2,529	2,799	2, 881	2.967	2.992	3, 483	3,570	3.667	7.012	CURVE		1.515	1.520	1,692	1.777	1,793	1.585	1.543	1.090	1.910	1.910	1.921	2.005	2.008	2.052	2.221	2.230	2.831	2.823	3.034	3.022	3.498	J. 23.	
DATA TABLE NO. 69 SPECIFI	[Temperature, T, K; Specific Heat, $_{ m p}$, Cal ${ m g}^{-1}{ m K}^{-1}$]	D _Q	CURVE 6	193 8, 712 x 10 ⁻² 203 8, 793*	oci	æ		53 0 007	263 9. 147*		9.238						363 9.546*		6	393 9. 654	2 411 4110	CONVE	1 544 5 00 5 1076	; -		5.	ຜ່		1.766 5.37		1,820 6,30				2.1/8 /.95	2.509 1.03	
VO	T.	L C	CURVE 4	3, 763 x 10 ⁻⁶ 3, 931	3,747	7, 235	6.975	1. 155 x 10		2.005	4.313 2.921 2	9, 246	9. 474	6. 305 x 10 ⁻⁴		1.542 x 10 ⁻³		1,702	2. 163		6.500 3.805							20.160 7.750	0.762 8.530	21.374 9.645		CURVE 5				3 1.133	
		ပ္	CURVE 1	x 10-2				47.6			CITRATE 2		x 10.2		1.0431 x 10-1		CURVE 3		7.09 x 10 ⁻³	6.21	1.38 x 10 -	2.319	2 863	3.454	4.006	4. 458	5.188	5.736	6.447	7.146	7.482		8, 109	8.290	2 5	8.706 673	
		H	OI	278 291	363	393		453	13	498	C	ч	373	473	573	2	O	1	2	21.90	3 6	2	38.9	43.9	49.2	2.2	2	71.8	8 8	104.1	114.7	124.7	140.9	2.8	178 6	201.9	

	ບ໌	CURVE 12 (cont.)	203 4 1016	2.347	2, 431	2.512	2.643	2.837	3.031	3,210	3.488	3.729	3.806	4.581	4.625	5,985	6.062	604.8	8,775	1.203 x 10 ⁻⁵	1.243	1.276	1.506	1.601	1.671	1.974	2.201	2,300	2, 537	2.673	2.852	Z. 994	;	<u>=</u>		3.525 x 10"	3.645	3.777	4.029	4.153	4.369	4. 439	4.486
	۲	CURVE	0 9053				0.9915	1. 0790	1.1410	1, 1950	1.2880	1, 3310	1.3700	1.5630	1.5770			3220	2,3520				3, 1260	3.2140	3,2950	3,5410			3.9400	4.0430	4. 1450	4. 2390		CURVE 13					0.7866	0.7981	0.8196	0.8244	0.8352
	ပ	CURVE 12 (cont.)	1 448 × 10 ⁻⁶	1. 492	1.649	1,729	1.824	1.883	1,923	2.011*	2.124	2,263	2,395	2, 464	2, 636	2,749	2.914	2.998	3, 141	3, 236	3.386	3, 437	3.587	3,660	3, 737	3.916	4.051	4.058	4.080	4. 161	4.241	4.230	4 201	1.091	****	4.464	2.2.6	3.735	2.733	2.735	2.336	2.311	2, 303
	H	CURVE	0.4900	0,4970	0.5163	0.5278	0.5387	0.5474	0.5556	0.5651	0.5762	0.5982	0.6087	0.6191	0,6393	0.6537	0.6672	0.6809	0,6938	0.7047	0.7168	0 7283	0.7389	0.7440	0.7579	0.7712	0.7826	0.7851	0.7948	0.7952	0.8063	0.000	0.010	0.0632	0.000	0.8396	0. 6432	0.8492	0, 8591	0.8627	0.8735	0.8891	0.8892
	ပ	CURVE 10 (cont.)	8.958 x 10 ⁻²	8.981	8.980	9.041	9.026	9.059	9. 100	9.143*	9. 131	9. 185	9, 152	9. 159*	9.183		CURVE 11	1	2, 699 x 10 ⁻⁶	3.064	3.462	3, 896	4.369	4.884	5.442	6.046	6. 700	7.405	. 165	8.981	9. 856	CITE VAR 13			1. 013 x 10 ·		1.052			_ `		1.338	
(continued)	۲	CURVE	229, 75	232, 09	236, 25	239.31	242, 34	248.73	251.63	254, 58	258, 27	262.28	266, 16	269, 77	272.95		CUR		1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2		Z. 4	a contract of		4907	0.4504	0.4236	0.4553	0.4273	0.4365	0.4458	0.4654	0.4735	U. 4910
DATA TABLE NO. 69	ပ ^ရ	CURVE 10 (cont.)	128.50 7.901 x 10 ⁻² *	16 7.	132.63 8.043					142.19 8.144														180.47 8.651						196. 61 8. 750	190.22 0.762					203.78 6.781 208 11 8 963*	. 1			o o	o c	223.36 8.924	o i
	٦ م	CURVE 10 (cont.)	75.77 5.917 x 10 ⁻² *	9	76. 67 6. 041	•	ق	ģ	9	φ.																90.18 6.656				*10.7 7.054	•	•	•	•	•		•	- •	- (- •	124 50 7 809*	
	٦ م	CURVE 10 (cont.)	23. 32 9. 882 x 10 ⁻³	16 1.068 x		24. 26 1. 075		≓		29.34 1.684				35.68 2.435	37.24 2.631				45, 33 3, 544			•	53.14 4.317	•	71	56.58 4.644	•	55. 54 4. 848		61.84 0.004	i v		75					74 23 5 862			, n	75.29 5.954	

Not shown on plot

A STEEL STANFARM

	oª.	۲	ဝီ	۴	c _p	H	တိ
URVE	CURVE 13 (cont.)	CURVE 16"	\$ 16#	CURVE	CURVE 16/cont.)*	CURVE 17*	E 17*
8463	4.153 x 10"	Series	1	Serie	ΔI	295 15	8 8 8
125	3,536	207.25	8.804 x 10-2	11.59	1.130 x 10-1		
9689	2,369	210.13	8.809	12.93	1.590	CURVE 18	E 18*
8761	2.311	214.02	8.816	14.21	2.150		
9946	2,336	218.93	8.847	15.90	3.320	1.85	5.76 x 10-6
9104	2, 362			18.44	5.270	1.92	
9405	2,450	Series II	=	20.95	7.530	1.98	6.33
0540	6.877			23, 36	1.007 x 10-2	2.04	2.
0440	4.009	216.41	8.836 x 10-2	25.48	1.241	2.10	6.9
0660	7, 141	221.69	8.851	28.87	1.637	2.16	7.19
990	9.799	226.96	8.888	33, 16	2.152	2.24	7.74
5480	1,002 x 10*	232.21	8.920	37.52	2.666	2.32	8.27
090	1.057	237.43	8.958	41.79	3, 151	2.40	99
780	1, 104	242.63	8.991	45.99	3,607	2.46	9.073
200	1.693	247.80	9.018	50.23	4.038	2.52	9.425
3640	1.817	252.95	9.047	54.71	4.451	2.58	1.268 x 10-6
4520	1.916	258.08	9, 102	59. 19	4 833	2 63	1 007
9510	2, 475	263.20	9, 147			2.70	1 067
9730	2,680	268.27	9, 168	Series V	Λ.	2.80	1.158
		273.32	9.197			2.90	1.244
CURVE	: M.	278.36	9.214	65.32	5.340 x 10-2	3.00	1,329
	The state of the s	283.80	9.241	70, 13	5.661	3.11	1.432
	5.507 x 10-	289.62	9.272	75.65	5.996	3.22	1.544
	4.650 x 10-1			81.33	6.320	3.34	1.674
	1.392 x 10-	Series III	日			3.44	1.782
	2.646			Series VI	I VI	3.55	1.927
	28.	80.81	6.280 x 10-2			3.71	2. 129
	6.287	84.43	6.493	159,39	8.389 x 10 ⁻²	3.89	2.390
	7.756	87.94	6.650	164.33	8.449	3.99	2.569
200	8.827	91.89	6.816	169.90	8.512	4.03	2.619
	9.209	96.31	6.976	177.10	8.582	4.09	2.739
62	9.546	101. 12	7.146	185.24	8.663	4.15	2,839
		106.33	7.313	193, 38	8.730	4.16	2.878
CURVE 15*	£ 15*	111.40	7.463	201.26	8.778	4.18	2.890
	10 miles 20	116.37	7.594				
	9.40 x 10-	121.24	7.715	Series VII	IA 1		
		125.47	7.810				
	1,02 × 10-1	130.18	7.912	297.55	9.296 x 10-2		
	1.07	134.83	8.006	304.34	9.332		
	1.24	139.42	8.085	311.84	9.362		
	1.24	143.96	8.163	319,30	9.388		
	1.24	148.74	8.246	2			
	7						
		1000	0.011				

Not shown on plot

SPECIFICATION TABLE NO. 70 SPECIFIC HEAT OF ZIRCONIUM

(Impurity < 0.20% each; total impurities < 0.50%)

[For Data Reported in Figure and Table No. 70]

No.	No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
~	128	1954	20-200	< 5.0		99.5 Zr
81	146	1961	528-1863	3.0		99.95 Zr, 0.029 Fe, 0.017 C, 0.0045 Hf, and <0.031 all other elements; sealed under helium atmosphere; density = 405 lb fr ²
8	134	1957	323-1063		Zr - 300 ppm H alloy	99.966 Zr, and 0.03 H; homogenized 14 days at 1300 C; sealed under 0.01 µ Hg vacuum.
•	134	1967	363-883		lodide zirconium	0.022 C, 0.015 O ₂ , 0.013 Fe, 0.0075 N ₂ , 0.007 Hf, 0.0004 K, 0.0035 H ₂ , 0.003 each Na, Ni, 0.0018 each Si. W. 0.0014 Cu, 0.0007 Cr, 0.0006 Ca, 0.0005 each Mg, Pb, 0.0004 each Al, Sn, 0.00035 Mo, 0.0002 Ti and 0.0001 Co; homogenized 14 days at 1300 C; sealed under 0.01 µ Hg vacuum.
s	134	1867	363-1223		Indide zirconum	Same as above.
•	134	1967	543-863		Indide zirconium	Same as above.
7	134	1967	333-743		Iodide arreonium	Same as above.
•	134	1967	353-1073		lodide zirconfum	Same as above.
•	134	1957	333-673		lodide ztroonium	Same as above.
10	134	1967	593-1253		Iodide zirconium	Same as above.
=======================================	134	1967	333-1213		Iodide zirconium	Same as above.
ជ	134	1967	393-1033		Iodide zirconium	Same as above.
ដ	134	1967	413-973		lodide zirconium	Same as above.
1	159	1950	298-1400			2. 15 Hf; sample supplied by the Foote Mineral Co.; corrected for impurities.
31	150	1967	323-1154			99.91 Zr, 0.03 Fe, 0.02 C, and 0.0145 Hf.
91	378	1950	53-298			2. 15 Hf; corrected for impurities.
11	379	1961	14-298			0.35 Fe, 0.05 Hf, 0.02 C, 0.004 Ny, and ~0.005 others; pellets; annealed under vacuum
18	報	1961	296-1800			for 15 min, at 800 C; corrected for Fe impurity. Same as above.

Not shown on plot

DATA TABLE NO. 70 SPECIFIC HEAT OF ZIRCONIUM

DATA TABLE NO. 70 (Continued)

	a ၁	CURVE 18(cont.)*	7.968 x 10-2	8.144	8.496								•																																
	H	CURV	1500	1200	1800																																								
	ပ	CURVE 17/cont.)*	5.717 x 10-2	5.809	5.980	6.040	6.116	6.189	0.233	6.341	6.373	6.393	6.398	6.461	6.434	6.481	6.500	0.557	1 20.0	6.473	6.564	6.549	6.568	6.578	6.584	6.582		18*		6.591 X IU-	6.800	6.972	7.127	7.271	7.542	7.800	8.048	8.291	8.534	8.775	8.880	7.339	7.439	7.616	7.791
	H	CURVE	142.59	149.94	165.96	173.99	183.07	191.77	199.90	215.00	221.10	227.40	234.19	239.89	245.00	250.43	255.74	201.35	970.30	274.16	278.18	282.00	286.07	290.11	293.81	298.23		CURVE 18*		300	350	400	450	200	009	200	800	900	1000	1100	v 1143	B 1143	1200	1300	1400
(Commen)	ల్	6(cont.)*	5.670 x 10-2	5.802	6.040	6.146	6.218	6.289	0.300	6.473	6.521	6.557	6.624	6.668	6.717	6.741	6.762	***	<u>.</u>	1.041 x 10-3	1.644	2.280	3.376	4.440	5.722	7.093	9. 198	1.151 x 10-2	1.450	2 03a	2.311	2.669	3.068	3,423	3.727	3.998	4.297	4.526	4.745	4.946	5. 130	5.277	5.419	5.520	5.615
	H	CURVE 16(cont.)*	136.1	156.0	166.1	176.0	186.2	196.1	2.00.3	226.2	236.4	246.0	256.7	266.4	276.4	286.6	296.8	TO THE PARTY OF TH	CONTRACT	14.38	16.51	18.86	20.93	23.06	25.46	27.98	31.07	25.00	31.00	44 97	48.52	53.59	58.91	64.62	70.33	76.04	82.86	89.22	95.48	101.97	108.61	115.03	122.09	128.70	135.50
	ဝီ	F 14	6.8 ¥ 10-	, co	7.7	7.96	8. 14	8.32	3.47	8.76	. 00	7.97	7.97	7.97	7. 97	7. 97	7. 97	. a.	15		6.91 x 10-2*	7.17	7.72	7.64	7. 93		8.51	* 60	4.06.	9 70	2	*9T 3		2.651 x 10-2	2.894	3,150	3,436	3.709	3,956	4.154	4.325	4.709	5.001	5.258	5.449
	H	CURVE 14	298	8 8	200	009	200	800	306	1100	1135	1135	1150	1200	1250	1300	1350	2041	CIRVE 15		323, 15	423, 15	523, 15	623.15	723. 15	823, 15	923. 15	1023.15	1190 15	1154 15		CURVE 16*		53.2	56.8	8.09	65.6	9.02	75.4	79.8	2.1	8.3	104.5	115.0	124.1
	ဝီ	CURVE 11 (cont.)	8. 309 x 10-2 *	8. 472 1. 048 v. 10-1	7. 553 x 10-2		6.901	E 12 *	7 140 10-2	7.175	7, 175	7.109	7. 178	7. 248	7. 265	7. 299	7.370	7 462	7.573	7, 700	7.821	7.911	7.980	8. 046	*	CURVE 13	8-00	7. 104 x 10 ⁻²	7 199	7 157	7.210	7.269	7. 291	7.342	7. 465	7. 553	7.657	7.768	7.834	8. 016					
	H	CURVE	1053, 15	1123 15	1173, 15	1193, 15	1213, 15	CURVE 12*	30 16	433, 15	473.15	513, 15	553, 15	593, 15	633, 15	673. 15	713.15	703.15	833.15	873.15	913.15	953, 15	993. 15	1033, 15		CURV		413.15	409 15	533 15	573, 15	613, 15	653, 15	693. 15	753. 15	813, 15	853, 15	893, 15	933. 15						
	ပီ	CURVE 9 (cont.)	7. 143 x 10-2	21.7	7. 216		E 10	* 2-01 - 10-6	7 260 4	7, 301	7. 339	7.341	7. 263	7.477	7. 600	27.7	7.020	* 107 *	8 493 *	1, 007 x 10 ⁻¹ *	8. 030 x 10-2	7. 504 *	7.418	7.462	7. 497			7 000 - 10-8	F 891	7 026 *	7.127*	7.112	7. 110	7. 169	7.213	7. 258	7.310	7.403	7.506	7.604	7. 726	7.877	7. 996	*	
	H	CURVE	613.15	653.15	673. 15		CURVE 10	203 15	625. LD	673. 15	713.15	753, 15	793. 15	833. 15	873. Ib	913. 15	903. LD	1023 15	1073.15	1113, 15	1173.15	1193, 15	1213. 15		1253. 15		CURVE 11	30 16	273 15	413, 15	453.15	493. 15	533, 15	573. 15	613.15	653, 15	693, 15	33.15	773. 15	813.15	853, 15	893. 15	933. 15	873.15	1013. 13

*Not shown on plot

SPECIFICATION TABLE NO. 71 SPECIFIC HEAT OF BISMUTH + LEAD Bi + Pb

[For Data Reported in Figure and Table No. 71]

Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation (weight percent)	S6.5 Bit 43 5 Bit
Reported Error, %	1.5-2
Temp. Range, K	323-773
Year	1959
Ref.	7
Curve No.	7

DATA TABLE NO. 71 SPECIFIC HEAT OF BISMUTH + LEAD, Bi + Pb

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

တီ	RVE 1	2.98 x 10	3.32	3.50	3.5	3.55	3.55	3.55	3.56	3.55	3.55	
H		323	373	423	473	523	573	623	673	72	773	

SPECIFICATION TABLE NO. 72 SPECIFIC HEAT OF CADMIUM + MAGNESIUM, Cd + Mg (MgCd)

[For Data Reported in Figure and Table No. 72]

Composition (weight percent), Specifications and Remarks	82. 5 Cd, 17. 5 Mg; sealed in Pyrex tube containing one half atm. of pure helium; held 10 days at 325 C, then held 2 days at 225 C and finally allowed to cool slowly to room temperature.	50.52 ±0.04 at % Cd; stored in desicator for 5 yrs; before measurement series 1 MgCd sample was held at room temperature for 6 days; series 2 MgCd sample held in furnace at final temperature for 30 hrs.
Name and Specimen Designation	MgCd	Mgcd
Reported Error, %	:	
Temp. Range, K	10-304	293-547
Year	1952	1957
Curve Ref. No. No.	415	363
Curve No.	-	81

DATA TABLE NO, 72 SPECIFIC HEAT OF CADMIUM + MAGNESIUM, Cd + Mg (MgCd)

g-1K-1]
3
ڣ
Heat,
K; Specific
H.
emperature,
<u></u>

$_{\mathbf{p}}^{\mathbf{q}}$	(cont.)	(cont.)	1.083 x 10 ⁻¹	1.031	1.078		14	1	8.97 × 10 •	9.00	60.6	9.14		15		8.90×10^{-2}	8.97	8.98≑	9.04*	*80.6	9.15≉																							
H	CURVE 2 (cont.)	Series 13 (cont.)*	533.60	538.07	546.99		Series 14		208.21	308.28	313.28	318.26		Series 15		293.01	298.06	303.09	308.12	313.11	318.07																							
С ^р	CURVE 2 (cont.)	Series 9(cont.)*	9.86 × 10-2	9.92	1.01 × 10-1	1.01	1.02	3 3		1.05		Series 10*		1.046 x 10 ⁻¹	1.357	1.067	1.080	1.090	1.104	1.119	1.133	1.149	1.167		Series 11		1.167 x 10-1*	1.187*	1.208*	1.229	1.253*	1.279	1.308*	1.344*	1.381*	1.430*	1.480*	1.548*	1.633*	1.711		Series 13*		1.089 x 10 ⁻¹
t	CURVE	Series	373.99	378.69	388.03	392.68	397.31	401.92	406.50	415.59		Ser		411.36	416.99	422.60	428.14	433.63	439.11	444.56	449.95	455.27	460.52	J.	Seri		461.48	466.70	471.85	476.92	481.94	486.89	491.77	496.54	501.25	505.85	510.34	514.69	518,87	521.90		Seri		529.10
တိ	CURVE 2 (cont.)	Series 4	1.112 x 10 ⁻¹ *	1 137	1.149*	1 161*	1.178		0	1.346 x 10-1	1.371*	1.414*	1.457		9 80		1.443 x 10 ^{-1*}	1.508*	1.577	1.668*	1.0%	1.095*		88 88		8.99 x 10 -4*	*****	80.6	9.13*	9.19*	9.24	9.29*	9.34	9.40*	9.46		Series 9*		9.50×10^{-2}	9.57	9.63	89.68	9.78	
H	CURVE	Seri	442.28	450.84	455.05	459.26	463.45	9	Series 3	496.18	499.96	503.66	507.26	100	Series 6		506.90	511.35	515.65	519.78	528.87	534.38		Series 8		302.64	307.65	312.63	317.57	322.50	327.41	332.31	3:77.21	342.08	346.90		Seri		350.01	354.86	359.69	364.50	369.26	
ტ	CURVE 1 (cont.)	Series 3 (cont.)	8.865 x 10-**	8 966*	9.015*	9.063*			8 839 x 10-2*	8.858*	8.881*	8.902*	8.947*	8.993*	9.037	9.082		VE 2		es 2		9.65 x 10 ⁻²	9.72*	9.78≑	9.86	9.93*	9.99≑	1.00% × 10-1	1.013		cs 3		1.008 x 10-1#	1.016	1.023^{*}	1.032	1.041*	1.049*	1.058≉	1.067*	1.075	1.086		
F	CURVE	Series	278.69	290.25	295.97	301.65		Series 4	974 69	277.79	280.24	283.09	288.36	293.60	298.80	303.98		CURVE 2		Series 2		360.14	364.89	369 62	374.32	378.9	383.61	388. 22	392.84		Series 3		389. 56	394.18	398.76	403.30	407.81	412.33	416.82	421.27	425.71	430.15		
ဝီ	CURVE 1 (cont.)	Series 2 (cont.)	2.033 x 10 %	6.261	9.348	1.258 x 10-2	1.559	1.330	\$ 969	3.387*	3.782*	4.169*	8.339	8.386	8.435	8.472*	8.510	8.548	8.587*	8.627*	8.663	8.741	8.783*	8.829*	8.868		Series 3		8.176 × 10-2	8.238	8.295	8.345	, m.	8.438	8.481*	8.522*	8.563*	8.599*	8.639≑	8.681*	8.722	8.764 ₽	8.807	
H	CURVE	Series	13.08	18.43	21.41	24.33	27.15	26.30	41 12	46.04	50.93	55.91	206.15	212.07	217.92	223.70	229.42	235.09	240.72	246.29	251.80	262.73	268.11	273.45	278.76	•	Ser		188.17	194.24	200.39	206.59	212.72	218.84	224.94	231.03	237.10	243.11	249.12	255.09	261.03	266.95	272.85	
္မ	VE 1	Series 1	1.024 x 10 ⁻³	2.589	4.828	7.768	1.074 x 10 ⁻²	1.301	2 047	2,519	2.939	3.340	3.719	4.086	4.441	4.798*	5.135	5.449#	5.758	5.801*	6.119*	6.356	6.504*	6.653*	200	6.924	7.047	7.167	7.277*	7.382*	7.480	7.575*	7.666	7.841	7.831*	₹2001	7.982	8.051*	8.116*		Series 2	•	1.156 x 10 ⁻³	
H	CURVE	Ser	10.78	13.97	16.87	19.93	22.69	97.09	31.52	36.37	40.93	45.48	50.08	54.83	59.79	65.03	70.56	76.29	82.19	83.10	90.30	95.96	100.30	104.65	109.08	113.63	118.29	123.08	127.96	132.95	138.02	143.18	148.44	153.78	159.22	164.81	170.50	176.30	182.19		Ser		11.22	

SPECIFICATION TABLE NO. 73 SPECIFIC HEAT OF CADMIUM + MAGNESIUM, Cd + Mg (Mg₂Cd)

[For Data Reported in Figure and Table No. 73]

Composition (weight percent), Specifications and Remarks	60.64 Cd, 39.36 Mg, impurities < 0.01; annealed 47 days at 345-350 C; machined strain relieved 2 days at 350 C.	24. 98 Cd.
Name and Specimen Designation	MgsCd	MgsCd
Reported Error, %		
Temp. Range, K	12-320	291-552
Year	1954	1955
Curve Ref. No. No.	*	381
Curve No.	7	8

DATA TABLE NO, 73 SPECIFIC HEAT OF CADMIUM | MAGNESIUM, Cd | Mg (Mgcd)

			DALA LABLE NO.	3	SPECIFIC HEAT OF	CADMIUM	STECIFIC HEAT OF CADMIUM MAGNESIUM, CO ME	S (M
				Temp	Temperature, T, K; Specific Heat, $C_{\rm p},~{\rm Cal}~{\rm g}^{-1}K^{-1}$	fic Heat, Cp.	, Cal g^1K-1]	
H	ď	T	$c_{\rm p}$	ı	ပီ	L	$c_{\mathbf{p}}$	
밁	CURVE 1	CURVE	CURVE 1 (cont.)	CURVE	CURVE 2 (cont.)	CURVE	CURVE 2 (cont.)	
12	1.1 x 10 ⁻³	205	1.198 x 10 ⁻¹ ¢	Series	Series 2 (cont.)	Seri	Series 4	
16	3.4	215	1.213	378.89	2.247 x 10.13	313.87	1.693 x 10 ⁻¹ *	
18	5.0	220	1.219	384.51	2,316	318.88	1.846	
20	9.9	225	1.226	390.03	2.389*	323.65	2.011	
22	8.4	230	1.231	395.42	2.480	:128.12	1.918	
ន	8.6	235	1.237	400.66	2.601	332.54	1.9333	
7 2	1.03 x 10 ⁻²	240	1.241	405.69	2.751	504.77	. 896	
9 6	1.22	245	1.247	410.24	3.444	511.20	1.914	
5 5	1.66	255	1.252	426.35	2.801	00.710	1.905 I	
35	2.26	260	1.262	437 94	1.302	5.00	1 500	
4	2.89	265	1,266*	444.24	1.943			
45	3.52	270	1.270*			Series 5	38.5	
20	4.15	275	1.273	Series 3	cs 3			
22	4.78	280	1.275		6	489.51	1.905 x 10 ⁻¹ *	
9	5.38	285	1.277	334.90	1.942 x 10 ⁻¹	495.92	1.904	
0 0	9.30	230	1.278	339.87	. 966	502.30	1.907	
2 1	69	282	1.279	344.76	1.995	508.65	1.917	
e 8	7.30	298.16	1.281÷	415.44	4.661	514.97	. 903	
200	05.7	200	7.282	418.57	5.236	521.33	. 301	
6 6	27.0	300	1.322	421.41	5.841	69.729	1.904	
200	01.0	010	1.383	42.1.48	6.704	522.96	- 506. 1	
200	2.00	310	1.466	442.81	1.946	540.30	1.911	
201	\$1.0 0	250	1.566	447.80	1.936		1	
210	9.01	Cubue	6 22	452.95	1.924 ·	Series 6	38.5	
112	9.23	201	7 2	400.88	1.923		1000	
130	200			465.95	.016.1	3.03	. 01 x c/8.1	
125	9.10	ocrics 1	. S. 1	471.04	1.912			
130	1.018 x 10 ⁻¹	291.57	1.641 x 10 ⁻¹	481 21	1 906			
135	1.038*	297.20	1.646*	486.93	1.903			
140	1.055	302.81	1.652*	493.31	1.904			
145	1.071	308.34	1.669	506.15	1.901			
001	1.086	344.35	1.987	512.55	1.912			
150	6111	343.30	2.016	519.02	1.903			
201	1.116	37.13	2.046	525.48	1.908			
155	1.124*	359.04	2.076	531.89	1.915			
176	1 1 400			538.35	1.906			
200	1.140	Series 2	7 85	044.79	1.919*			
100	1.100			551.15	1.919			
200	1.166	358.36	2.073 x 10 1#					
201	1.1.4	263.16	2.105					
200	1.187	367.30	2.147					
,			6.100					

SPECIFICATION TABLE NO. 74 SPECIFIC HEAT OF CADMIUM + MAGNESIUM, Cd + Mg (MgCd₃)

[For Data Reported in Figure and Table No. 74]

Composition (weight percent), Specifications and Remarks	< 0.01 impurities for each metal; magnesium prepared by National Lead Co.; cadmium prepared by Anaconda Mining Co.	74. 98 \pm 0. 04 at % Cd; stored at room temperature in desicator for 7 months under He atm.	74. 98 Cd.	77. 2 at % Cd.	Same as above; additional heat treatment.	75. 9 at % Cd.	73.0 at % Cd.
Name and Specimen Designation	MgCd ₃	MgCd,	MgCd,	Alloy No. 1	Alloy No. 1	Alloy No. 2	Alloy No. 3
Reported Error, %							
Temp. Range, K	12-320	202-280	295-553	307-384	308-368	299-378	300-370
Year	1954	1957	1955	1958	1958	1958	1958
Ref. No.	48	363	381	382	382	382	382
Curve No.	٦	2	က	4	ro.	9	-

DATA TABLE NO. 74 SPECIFIC HEAT OF CADMIUM + MAGNESIUM, Cd + Mg (MgCd₃)

	ტ	CURVE 5	8.0 x 10-2*	*	*9.6	*6.00	9.1*	₽.6	8.6	1.01 x 10.1	1.13	1.25#	1.30	1,33	1.32*	1.30*	1.23	1.13*	1.03	9.0 x 10-2	8.0	7.5	7.4*	7.3	7.1	**	CURVE 6*	8 3 4 10-2		3.4	8.5	8.6	8.6	8.8	9.0	9.1	4.6	9.7	1.02 x 10-1	1.07	1.13	1.20	1.60
	H	밁	308.2	312.9	316.1	317.8	320.4	322.4	325.5	327.2	331.5	4	334.9	341.5	344.2	346.1	349.0	351.1	353 4	356.1	358.9	361.2	364.0	365.3	368.1	į	ဂ	2 006	303.0	305.4	307.2	310.1	313.1	315.3	317.7	320.1	322.0	325.3	327.1	330.4	332.2	334.5	2.000
	$_{\mathbf{p}}^{\mathbf{q}}$	CURVE 3 (cont.)	Series 5		1.492		CURVE 4		8.1×10^{-2} *	8.1*	# # *	* *	4	*2.0	8.5*	8.7	8.7*	8.7*	8.7*	8.9	9.1*	9.5	9.5*	6.6	1.06 x 10-1*	1.15	1.24	1.40	7	96	2.03	1.08	9.2 x 10-2	8.2	8.1*	7.9*	7.9*	7.8*	7.8				
	H	CUR	ď	341.19	351.23) I		307.2	310.0	312.8	317.4	320.2	322.4	325.1	327.3	330.2	332.7	335.1	337.0	339.6	341.4	344.4	346.4	348.3	351.7	353.1	357.8	350.3	362.2	365.1	366.9	368.9	372.1	374.7	376.6	379.0	381.7	384.1				
, Cal g-1K-1]	Сp	CURVE 3 (cont.)	Series 1 (cont.)	7.856 x 10-2*	*906.2	7.857*	7.890*	7.895*	7.937*	7.955	6 90		7.721 x 10-2*	7.729*	7.733*	7.756*	7.775*		es 3		$1.070 \times 10^{-1*}$	1.372*	1.433*	1.653	1.486*	9.350 x 10 ⁻²	7.922	7 605*	7 607*	7.836*	7.790*	7.872*	7.891*		68 4		1.467 x 10-1*	7.668 x 10-z*	7.697*	7.712*	7.705*	7.705*	. 070.1
c Heat, Cp	T	CURVE	Series	519.00	524.64	530.24	535.91	541.55	547.32	552.90	Sorios 2		475.72	481.37	487.02	492.59	498.11		Series 3		341.19	345.23	351.73	355.08	357.84	361.36	300.01	377.91	383 61	516.08	521.66	527.29	532.90		Series 4		347.80	456.31	462.03	467.71	473.40	40.08	5.5
[Temperature, T, K; Specific Heat, Cp, Cal g^1K^1]	ر _ه	2 (cont.)	7.90 x 10 ⁻² 8.02	8.20	8.44	8.81		Æ 3		es 1	7 793 x 10-2*	7,830	7.988*	8.095*	8.310	8.653*	9.139*	9.029	9.814*	7.622	7.606*	7.599	7.601*	7.583	7.588*	7.589*	7.537	7.617*	7 650*	7.671*	7.642	7.657*	7.664*	*699*	7.680*	7.688*	7.735	7.742*	7.752*	7.754	1.784	7.887	610.1
Tempe	۲	CURVE 2 (cont.)	304.88	309.80	314.67	319.43		CURVE 3		Series 1	995 91	299.72	304.16	308.53	312.84	317.57	322.67	323.99	328.81	376.51	382.22	387.93	393.62	399.33	405.01	410.73	410.47	427 93	433 64	439.34	445.03	450.71	456.40	462.09	467.77	473.47	479.23	484.83	490.61	496.35	502.02	513 36	010.00
	a C	CURVE 1 (cont.)	6.48 x 10 ⁻² 6.53*								7.06										.16					8.86	CITRUE 9#	2 7 4 7 7	202 71 6 50 × 10-2													283.83 7.66	
	£-	티	205	210	215	220	225	230	235	240	240	255	260	265	270	275	280	285	290	295	298.16	300	302	310	315	320			200	208.51	214.24	219.95	225.57	231.15	236.70	242.24	247.73	255	268.91	279	284.74	289.85	5,
	å	CURVE 1	2.0 × 10 ⁻³	5.0	8.9	8.7	1.06 x 10-2	1.16	1.26	1.57	5 × 1	2.41	2.83	3.22	3.55	3.84	4.12	4.35	4.55	4.74	4.91	5.08	5.22	5.33	5.44	5.53*	5.71*	2.78	5 86*	5.92	5.98*	6.03	6.08*	6.13	6.18*	6.22	6.25	6.29	6.32*	6.34	6.36	6.58 6.43	2
	H	히	12	16	18	20	22	23	24	56	8 6	35	40	45	20	22	9	65	20	75	9	82	8	95	9 5	105	115	120	125	130	135	140	145	150	155	160	165	170	175	180	180	195	7

T Cp	365.6 7.1 x 10 ⁻² 365.4 7.0 367.6 7.0 369.8 7.0	
T Cp CURVE 6 (cont.)*	338.4 1.40 x 10 ⁻¹ 341.7 1.51 343.3 1.70 346.3 1.68 348.2 1.53 350.1 1.08 356.1 1.08 356.1 1.08 356.4 7.6 370.2 7.4 372.3 7.3 374.3 7.3	CURVE 7* 300.4 8.5 x 10 ⁻² 302.5 8.5 302.5 305.8 8.7 300.7 8.9 312.3 9.1 312.3 9.1 312.2 9.9 320.4 9.5 320.4 9.5 320.4 1.06 320.4 1.09 320.4 1.14 327.4 1.09 330.5 1.25 342.3 1.25 345.1 1.25 346.2 1.09 354.0 9.7 x 10 ⁻² 356.0 8.7 356.0 8.7 356.0 9.7

SPECIFICATION TABLE NO. 75 SPECIFIC HEAT OF CHROMIUM + ALUMINUM Cr + Al

[For Data Reported in Figure and Table No. 75]

Specifications and Remarks	Composition (weight percent), or 1100 C for 72 hrs. etched with 10-20% HCl.	91.94 Cr, 8.01 Al; annealed under vacuum at 1100 Crs, 12
	Name and Specimen Designation	Cr(90) Al(10) Cr(80) Al(20) Cr(70) Al(30)
	Reported Error, % Spe	2 2 2 8
	Temp. Range, K	1.4-4.5 1.7-4.3 2.3-4.6
	Year	1962 1962 1962
	Ref. No.	349
	Curve Ref.	3 2 1

DATA TABLE NO. 75 SPECIFIC HEAT OF CHROMIUM + ALUMINUM, Cr + Al

_
Cal g 1K-1
64
CF
ئى
Heat,
Specific
X
F,
Temperature,

Т	CURVE 2 (cont.)	3.694 1.24 x 10 ⁻⁶	.841 1.31	3,953 1.41	•	4.176 1.53	4.296 1.61		CURVE 3		2.359 1.59 x 10 ⁻⁵		2.691 1.99	2.751 1.88		8	8	ςi	8	'n	.117	344	459 3.9	567 4																				
g.	CURVE 1	1.401 1.30 x 10 ⁻⁵	1.498 1.37	1.613 1.49	-	-	049	163 1.	173 1.	268 2	412	437	572	. 683	2.824 2.600	3.003 2.784	260 3	3.529 3.329	3.743 3.556	3.970 3.825	4	T	4		CURVE 2	1 733 4 77 - 10-6	2 22	 888	202	211 6	336 6	498 7	504 7	2.648 7.72	655 7	761 8	795	886	200	141	3 288 1 04 + 10 -5	1.10	3.551 1.16	

SPECIFICATION TABLE NO. 76 SPECIFIC HEAT OF CHROMIUM + IRON Cr + Fe

[For Data Reported in Figure and Table No. 76]

Composition (weight percent), Specifications and Remarks	80 at % Cr, 20 at % Fe; induction melted from electrolytic Cr and Fe flakes; alloy kept at molten state 3 min for homogenization; annealed 3 days at 1170 C under 92He-8Hg gas mixture.	95 at % Cr, 5 at % Fe; same as above.	90 at % Cr, 10 at % Fe; same as above.	85 at % Cr, 15 at % Fe; same as above.	82 at % Cr, 18 at % Fe; same as above.	72 at % Cr, 28 at % Fe; same as above.	63 at % Cr, 455 at % Fe; same as above.	77.2C+ 37 44.5C, 22.8 Fe; homogenized for 4 days at 1350 C under helium atmosphere; air cooled to room temperature.
Name and Specimen Designation								Cr _{0.784} Fe _{0.216} Sample No. 80 Cr
Reported Error, %								± 0.5
Temp. Range, K	1.9-3.9	1.7-4.2	1.8-4.0	1.7-4.3	1.74.3	1.8-4.2	1.94.2	298-1400
Year	1959	1959	1959	1959	1959	1959	1959	1959
Ref. Year No.	320	320	320	320	320	320	320	222
Curve No.	1	7	ဗ	•	s	9	7	ø¢.

DATA TABLE NO. 76 SPECIFIC HEAT OF CHROMIUM + IRON, Cr + Fe

	c _p	CURVE 8 (cont.)	1.51 x 10 ⁻¹	1.5/	3.5	1.03	2																																				
	H	CURVE	1000	1200	200	1400	2																																				
, Cal g ⁻¹ K ⁻¹]	c _p	CURVE 6 (cont.)	1.824	1.890	*******	2.003	2.236	2.312		CURVE 7	6 969 × 10-5	6,433*	6.759	7.128	7.696	8.223	8.452*	8.740	9.918	9.378	9.586*	9.867*	1.027 x 10 ⁻⁴	1.063*	1.114	1.171	1.209*	1 360*	1.309	1.326*	1.361	1.419*	1.479		CURVE 8	Ì	1.11 x 10-1	1.17	1.23	1.28	1.34	1.40	1.46
lic Heat, C _r	H	CURVE	3.378	3.498	9.714	3 786	4.105	4.219			1 957	2.016	2.104	2.22	2.386	2.528	2.601	2.681	2.781	2.847	2.919	2.997	3.093	3.202	3.313	3.426	3.515	2 670	3.761	3.846	3.934	4.055	4.187		CUB		298.15	48	200	009	100	800	205
[Temperature, T, K; Specific Heat, C_p Cal $g^{-l}K^{-l}$]	c _p	CURVE 4 (cont.)	1.704 x 10-4	1.830	CHBVE	NVE 3	1.309 x 10 ⁻⁴	1.362*	1.395	1.431*	1.47	1.592	1.654	1.741	1.830	1.944	2.049	2.110	2.210	2.527	2.646	2.778	2.897	2.931*	3.008	3.115	3.158*	3.233	CURVE 6	100	9.571 x 10-5	1.034 × 10 ⁻⁴	1.048	1.091	1.134	1.210	1.272	1.351	1.454*	1.534	1.598*	1.724	1.762
[Tem	H	CURVI	4.124	4.292	1110	3	1.746	1.813	1.869	1.913	9 024	2.098	2.187	2.288	2.413	2.560	2.676	2.782	3 . 5	3.339	3.505	3.635	3.809	3.897	3.987	4.078	4.182	1.320	COI	į	1.865	1.917	1.980	2.051	2.133	2.237	2.361	2.531	2.708	2.853	2.971	3.153	3.288
	c _p	CURVE 3	9.480 x 10 ⁻⁵	3.870±	1 053*	1 089	1.125*	1.151	1.162*	1.221	1.242	1.371	1.446	1.504	1.626	1.703	1.721*	9.885 x 10 ⁻³	2 014	2.158	2.313		CURVE 4		6.347×10^{-5}	6.663	6.842*	7 315#	7.585	7.907	8.329	8.673	8.982	9.431	1.003 x 10-4	1.019	1.109	1.167	1.249	1.336	1.426	1.552	1.630
	۴		1.875	1.926	9 057	2.116	2.170	2.217	2.267	2.335	2.403	2.575	2.691	2.818	2.979	3.100	3.183	3.289	3.580	3.761	3.964		CC		1.744	1.827	1.876	1 993	2.042	2.131	2.206	2.293	2.392	2.502	2.619	2.744	2.874	3.026	3.191	3.367	3.580	3.817	3.485
	c _p	CURVE 1	1.401 x 10 ⁻⁴	1.520	27.5	1.631	1.681	1.755	1.853	1.985	2.160	2.325	2.400	2.463*	2.536	2.624	2.679*	2.723	2.885		CURVE 2		6.392 x 10 ⁻⁵	6.50e*	6.616	6.761*	7.104	7 518	7.592*	8.125	8.608	*669*8	9.017	9.372	9.785	1.042 × 10 ⁻⁴	1.075	1.127	1.174	1.230	1.267	1.299*	1.331
	H	5	1.946	2.063	9 199	2.267	2.345	2.438	2.565	2.755	2.30	3.205	2 310	3.378	3.501	3.599	3.659	3.730	3.929		CO		1.753	1.791	1.877	1.920	1.981	2.00	2.256	2.399	2.524	2.633	2,753	2.883	3.021	3.172	3.298	3.460	3.654	3.834	3.968	4.068	4.168

SPECIFICATION TABLE NO. 77 SPECIFIC HEAT OF CHROMIUM + MANGANESE Cr + Mn

[For Data Reported in Figure and Table No. 77]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	88. 97 Cr, 10.3 Mn; induction melted. 79.6 Cr, 20.4 Mn; same as above. 68 Cr, 32 Mn; same as above. 59.6 Cr, 40.4 Mn; same as above.
Name and Specimen Designation	Cra, pMna, 1 Cra, pMna, 2 Cra, pMna, 3 Cra, pMna, 4
Reported Error, %	
Temp. Reported	1.34.3 1.34.1 1.34.4 1.54.2
Year	1959 1959 1959 1959
Surve Ref. No. No.	297 297 297 297
Curve No.	- 0 n +

DATA TABLE NO. 77 SPECIFICHEAT OF CHROMUM + MANGANESE, Cr + Mn

Т	CURVE 3 (cont.)	3.721 2.110 x 10 ⁻⁴ 3.908 2.193 4.158 2.327 4.278 2.398* 4.407 2.481	CURVE 4 1.484 1.476 x 10 ⁻⁴ 1.562 1.554 1.600 1.558 1.665 1.599		
c _p	CURVE 2 (cont.)	7.594 x 10 ⁻⁵ 7.786 8.069 8.328 8.606	9.056 9.355 9.355 1.009 x 10-4 * 1.075	1. 1. 1. 1. URVE 3	8.800 × 10 ⁻⁵ 9.233 9.233 9.626 1.047 × 10 ⁻⁴ 1.101 1.152 1.165* 1.203 1.203 1.204 1.204 1.305 1.315 1.315 1.315 1.316
C _p T	1 CUR	x 10-5	1.796 2.854 1.873 2.957 1.943 3.120 2.069 3.212 2.132 3.274 3.428 2.300 3.599	. 6. 6. 4. 8. 6. 6. 4. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ŀ	CURVE		1.680 1.752 1.809 1.918 2.073 2.073 2.2073	¥ 65 52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	226 CURV 403 220 220 220 CURV 413 230 230 230 230 230 230 230 23

*Not shown on plot

PECIFICATION TABLE NO. 78 SPECIFIC HEAT OF COBALT + DYSPROSIUM, Co + Dy (DyCo₅)

[For Data Reported in Figure and Table No. 78]

Composition (weight percent), Specifications and Remarks	Almost pure DyCo ₅ ; prepared by levitation melting to fuse together stoichiometric quantities of component metals; Dy sample contained 0. 2 Ta, 0. 1 Ca; Co sample contained spectroscopic traces of metallic impurities.
Name and Specimen Designation	DyCo
Reported Error, %	\$2.0
Temp. Range, K	11-466
Year	1961
Ref. No.	383
Curve Ref. No. No.	-

DATA TABLE NO. 78 SPECIFIC HEAT OF COBALT + DYSPROSIUM, Co + Dy (DyCos)

[Temperature, T, K; Czweific Heat, Cp. Cal g ⁻¹ K ⁻¹]	Ср Т Ср	nt.) CURVE 1 (cont.)	nt.) Series 5 (cont.)	180 x 10-2 328.37 8.749 x 10-2*	333.53		Series 6		333.81 8.801 x 10-2*	339,92	346.01			364.26	370.36	382.69	666 388.82 8.677*		815* Series 7		389.04	395.17	401.29	407.41	413.52	154 425.70 8.773*	**************************************		309* 435.29 8.830 x 10 ⁻²	441.36		459.51	465.56	900	204 201 31				355 x 10-2*	210*	591*	1 6
emperature,	ပ်	RVE 1 (cont.	ries 5 (cont.)				Series 6												Series 7								0	o garrag														
L	T	CO	Se						333.	339.	346.	352.	358.				388.				389.	395.	401.	407	413.	425.			435	441	453.		•						*			
	o _a	CURVE 1 (cont.)	Series 2 (cont.)	1.180 x 10-2	1.579	2.049	2.541	3.001	3.404	3.748	4.035*		Series 3	•	7.517 x 10-2*	7.601*	7.666	7.741*	7.815*	7.861	7.924*	7.979*	8.040	*980.8	8.115*	8.154	8.209	8 974	*608		Series 4		8.318 x 10-2*	8.355*	8.406		Series 5		8.355 x 10-2*	8.519*	8.591*	
	H	CURVE	Series	31.87	36.94	42.67	48.66	54.46	59.67	64.28	96.89		Seri		181.94	188.15	194.31	200.47	206.68	212.98	219.42	225.90	232.50	239.07	245.62	252.12	208.09	271.74	278.32		Seri		281.51	288.08	294.63	100	Seri	1	290.58	307.57	312.81	
	$_{\rm p}^{\rm c}$		Series 1	.086 x 10-2	4.300	1.541	4.764	4.987	5.074*	5.258	5.424	5.601	5.772	5.936	*860.9	6.258	6.398*	6.529	*099.9	6.776	*068.9	7.0	7. 5.**	7.7)	4.562.7	7.371	7 597	7.587	7.682	7.736	7.802		Series 2		1.126 x 10 °	2 012	2.650	3.357	4.251	5.366	6.333	
		CURVE 1	2	4	4	-		•																																		

^{*} Not shown on plot

SPECIFICATION TABLE NO. 79 SPECIFIC HEAT OF COBALT + IRON Co + Fe

[For Data Reported in Figure and Table No. 79]

Composition (weight percent), Specifications and Remarks	93. 5 Co, 6. 5 Fe (99. 9 Co and 99. 99 Fe); prepared by electrical induction neating of	constituent
Name and Specimen Designation	Face centered cubic	
Reported Error, %	2	
Temp. Range, K	0.4-1.4	
Year	1959	
Ref. No.	223	
Curve No.	-	

^c	CURVE 1	4.764 x 10 ⁻⁵ 3.827	4.283	3.937	4.434	4.418*	3.514	3,318	4.19	3.945	3.673	3.485	3.115	3.571	3.245	3.424	3.371*	3.343	3.213	3.253	2.960	3.082	2.997	2.899	2.854	2.773	2.785*	2.712	2.687*	2.659*	2.659	2.504	2.822	2.809	2.871	
H	8	0.463					0.511				0.571						_*			0.721		0.757		_	0.859	0.896	0.890	0.962	0.965	0.967	0.990	1.119	1.141	1.203	1.311	

* Not shown on plot

SPECIFICATION TABLE NO. 80 SPECIFIC HEAT OF COBALT + NICKEL Co + NI

[For Data Reported in Figure and Table No. 80]

Composition (weight percent). Specifications and Remarks	99. 5 Co, 0.36 Ni, 0.07 Si, 0.025 C, 0.01 Mn, 0.01 P, 0.01 S, 0.01 V, < 0.01 Cr, 0.004 Op
Name and Specimen Designation	
Reported Error, %	2.0
Temp. Range, K	300-1700
Year	224 1964
Ref.	224
Curve R	-

H

CURVE 1

300 350 450 450 550 650 650 650 750 800 850 900 1100 11100 11300 1

ENGLISHED FRANCISCO

Not shown on plot

SPECIFICATION TABLE NO. 81 SPECIFIC HEAT OF COPPER + ALUMINUM Cu + Al

[For Data Reported in Figure and Table No. 81]

No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
7	225	1959	433-757	0.8	Cu + 15. 9 at. % Al alloy	92.6 Cu, 7.4 Al; quenched from 500 C.
0	225	1959	383-748	8 .0	Cu + 15. 9 at. % Al alloy	92. 6 Cu, 7.4 Al; quenched from 900 C.
က	102	1962	323-573	3-5	CuAl	54.09 Cu, 45.91 Al; melted; kept in kiln for 1 hr; cast in steel form; preheated to 200 C.
4	385	1962	328-478	± 0. 5	16. 8 atm % Aluminum-copper alloy	92. 04 Cu, 7.91 Al; prepared from: 99.999* Cu, <0.0002 As, <0.0002 Te, <0.0001 Sb, <0.0001 Pb, <0.0001 Ni, <0.0001 Se, <0.0001 Sn, <0.0001 Sn, <0.0001 Se, <0.0001 Sn, <0.0000 Sh, <0.00007 Fe, <0.00005 Cr, <0.00003 Ag, <0.00001 Bl, <0.00001 Si; and 99.99 Al; molten for about 20 min; homogenized in hydrogen 5 days at 850 C.
ß	384	1962	388-618	±0.5	Same as above	Same as above.
9	384	1962	398-723	±0.5	Same as above	Same as above.
2	384	1962	378-858	±0.5	Same as above	Same as above.
60	384	1962	358-468	±0.5	Same as above	Same as above.
on .	384	1962	328-883	±0.5	Same as above	Same as above.
92	384	1962	358-598	±0.5	Same as above	Same as above,
11	384	1962	328-598	±0.5	Same as above	Same as above.
12	384	1962	318-558	±0.5	Same as above	Same as above,
13	384	1962	328-588	±0.5	Same as above	Same as above.
7	384	1962	338-608	±0.5	Same as above	Same as above.
15	384	1962	348-608	±0.5	Same as above	Same as above,
16	384	1962	358-608	±0.5	Same as above	Same as above.
11	384	1962	318-638	±0.5	Same as above	Same as above.
18	387	1962	338-608	±0.5	Same as above	Same as above.
19	394	1962	883-913	±0.5	Same as above	Same as above.
20	384	1962	763-963	±0.5	Same as above	Same as above.
21	384	1962	363-463	±0.5	Same as above	Same as above.
22	384	1962	578-643	+0 5	Same as above	Same on obvious

DATA TABLE NO. 81 SPECIFIC HEAT OF COPPER + ALUMINIM Cu + Al

	Т	CURVE 10 (cont.)*	418 9 1 087 × 10-1		,					.,	.,	508.2 1.116						578.2 1.212	91			CURVE 11*					_				418.9 1 089				458.2 1.106								_		
	т ср	CURVE 9 (cont.)	3.2 1.063 x 10 ⁻¹ *	388.2 1.074*	398.2 1.071			1.	1	~	2	408.2 1.123* 478.9 1.125*			508.2 1.186*	518.2 1.225	2	-												703.2 1.239*	-i -			-	1	_		883.2 1.287		CURVE 10*		358.2 1.058 x 10 ⁻¹		398.2 1.083	
Cal g ⁻¹ K ⁻¹]	ď	CURVE 7 (cont.)	2 1.093 x 10 ⁻¹ 378.	1.098	1.096	1.099	1.103	1.106	1.108	1.112	1.127	1.139	1.237	1.251	1.222	1.215	1.214	1.213	1.218	1.222	1.222	1.228	1.274		CURVE 8* 60		1.062 x 10 ⁻¹	1.058	1.069	1.073	1.084	1.082	1.088	1.093	1.092	1.096	1.101		CURVE 9			1.032*	1.039*	1.050	1 040#
[Temperature, T, K; Specific Heat, Cp. Cal g ⁻¹ K ⁻¹]	C _p	CURVE 5 (cont.)	1.218 x 10 ⁻¹ * 438.2	1.218 448.2	1.215* 458.2	•	1.223 478 2	488.2	CURVE 6* 496.2		1.086 x 10 · 518.2	1.031 528.2											1.169 858.2						1.213 378.2							1.239 458.2	468.2	CURVE 7*		1.081 x 10 ⁻¹				1.090 358.2	
[Temper	C _p 1	CURVE 3 (cont.)	1.960 x 10 ⁻¹ 568.2	2.167 578.2					CURVE 4		1.053 x 10 · 398.2		1.056* 428.2												1.112* 548.2		CURVE 5	2.876							1.106* 703.2			•				1.190 398.2		1.241* 418.2	
	C _p	CURVE 1 CURVI	1.090 x 10 ⁻¹ 373.15	1.094 423.15							4.000 9 860 ± 10-2# 228 2		x 10-1						1.200		1.220 438.2		CORVEZ 458.2	468.2	x 10 '		1.00	200	1.006 x 10 ⁻¹ * 398 2												1.200 518.2		CURVE 3	548.2	יייר א נישא ו
	۲	밍	433.15	453.15	473.15	479.15	493.15	503.15	513.15	523.15	265.15	553.15	563.15	573.15	593.15	613.15	633.15	653.15	673.15	713.15	757.15	į	3		383.15	403.15	423.15	440	453.15	463.15	473.15	483.15	493.15	503.15	523.15	200	583.15	623.15	663.15	708.15	748.15		티		323.15

Not shown on plot

DATA TABLE NO. 81 (continued)

H	ပ္ခံ	H	od o	H	c _p	H	c _p	H	ပ္ရ	Н	o ^d
CURVE	CURVE 11 (cont.)*	CURVE	CURVE 13 (cont.)*	CUR	CURVE 15*	CURVE	CURVE 16 (cont.)*	CURVE	CURVE 18 (cont.)*	CURVE	/E 21
558, 2	1. 233 x 10-1	418.2	1.044 × 10 ⁻¹	348.2	1.025 x 10 ⁻¹	538.2	1. 206 x 10 ⁻¹	358.2	1.028 x 10 ⁻¹	363.2	9.460 x 10 ⁻²
568. 2	1. 222	428.2	1.054	358.2	1. 022	548.2	1. 223	368.2	1.021	383.2	9.613
578.2	1. 222	438.2	1.061	368. 2	1.013	558. 2	1.217	378.2	1.028	403.2	9.711
588. 2	1. 220		1.065	378.2	1.025	568.2	1.218	388. 2	1.041	423.2	9. 713
598. 2	1. 229	458. 2	1.072	388. 2	1. 039	578.2	1.219	398. 2	1.041	443.2	9. 792
		468. 2	1.065	398. 2	1.041	588.2	1.241	408.2	1.048	463.2	9.835
CURVE 12	E 12	478.2	1.072	408.2	1.051	598. 2	1. 221	418.2	1.049		
6	1-00	488. 2	1.078	418.2	1.056	608.2	1. 222	428.2	1.060	CURVE	/E 22
318.2	1. 260 × 10-1	7 00 0	1.084	428. 2	1. 063		4	428. 2	1.060		1
328.2	1.042	508.2	1.092	438.2	1.060	COR	CORVE 17	438.2	1.068	578.2	1. 008 x 10 ⁻¹
240.4	100:1	2000	1.122	440.2	1.055	9	100	440.2	1.085	500.5	1.013
258 2	250	536.2	1.140	456.2	1.000	318.2	1. 02 x 10 .	456.2	1. 107	623.2	1.017
368.2	1.053		1 913	7.00.7	1.001	2.020	1.000	400.7	1.133	940.6	1.061
370.4	750:1	7.02	1 001	7.07.0	1.107	2.86. 2	1.026	418.2	1. 140		
2000	1.00	2.900	1. 221	488.2	1. 122	348.2	1.027	488.2	1.156		
			1.211	496.2	1.135	338.2	1.023	298.2	1.168		
296.2	1.018	2.676	1. 217	208.2	1. 140	378.2	1. 027	208.2	1. 174		
408. 2	1.083	588. 2	1.2.7	518.2	1.156	388. 2	1. 039	518.2	1.182		
418.2	1.082		3	528. 2	1.178	398. 2	1.042	528.2	1. 189		
428.2	1.085	CURV	CURVE 14*	538.2	1. 212	408.2	1.047	538.2	1. 202		
438. 2	1. 096			548.2	1.215	418.2	1.063	548.2	1.217		
448.2	1.092	338.2	1.044 x 10 ⁻¹	558. 2	1. 220	428.2	1.057	558.2	1.216		
458.2	1. 100	348.2	1.049	568.2	1.217	438.2	1.063	568.2	1. 216		
468.2	1.099	358.2	1.055	578.2	1.218	448.2	1.088	578.2	1. 215		
478.2	1.106	368.2	1.049	588.2	1.217	458.2	1,116	588.2	1. 221		
488.2	1, 103	378. 2	1.057	598. 2	1.217	468.2	1, 134	598.2	1. 219		
498. 2	1. 105	388. 2	1.058	608.2	1. 222	478.2	1.148	608.2	1. 219		
508. 2	1. 107	398. 2	1.055			488.2	1. 161				
518.2	1. 129	408.2	1.055	CUR	CURVE 16*	498.2	1.171	CURI	CURVE 19*		
528. 2	1.153		1.048			508.2	1, 179				
538. 2	1. 201		1.054	358.2	1.027 x 10 ⁻¹	518.2	1.180	883.2	1.258 x 10 ⁻¹		
548.2	1. 226	438.2	1.063	368.2	1.017	528.2	1. 205	903.2	1. 261		
558.2	1. 224		1.065	378.2	1.022	538. 2	1. 217	923. 2	1.271		
568.2	1.217		1.061	388. 2	1.043	548.2	1.219	943.2	1.271		
	1.216		1.066	398. 2	1.044	558.2	1. 217	963, 2	1.276		
588. 2	1. 219		1.076	408.2	1.055	568. 2	1. 220				
			1.087	418.2	1.055	578.2	1. 223	CURY	CURVE 20		
CURVE 13	E 13*	508.2	1.100	428.2	1.068	588. 2	1. 223		11		
		518.2	1.125	438.2	1.060	598. 2	1. 225	763. 2	1. 264 x 10 -1"		
328. 2	1, 043 x 10-1	528.2	1.154	448.2	1.058	608.2	1. 221	783.2	1.254		
338.2	1.041	538. 2	1, 197	458.2	1.062	618.2	1. 224	803.2	1.258*		
348, 2	1.048	548.2	1.218	468.2	1. 077	628.2	1. 224	823.2	1. 264**		
358, 2	1.054		1. 223	478.2	1.103	638. 2	1. 233	843.2	1.268*		
368. 2	1.0	568.2	1. 219	488.2	1.119			863. 2	1.274		
378. 2	1.049	578.2	1.220	498.2	1. 132	CUR	CURVE 18*	883.2	1. 273*		
388. 2	1.054	588.2	1.218	508.2	1, 141			903. 2	1.278*		
398. 2	1.050	598. 2	1.219	518.2	1, 155	338. 2	1.040 x 10 ⁻¹	923. 2	1. 293		
408.2	1,061	608.2	1. 223	528.2	1.180	348.2	1.026	943.2	1. 291*		
Wat shop	Not shound on plot							963. 2	1. 298		
TOTAL BUILD	An on piot										

SPECIFICATION TABLE NO. 82 SPECIFIC HEAT OF COPPER + GALLIUM Cu + Ga

[For Data Reported in Figure and Table No. 82]

Composition (weight percent), Specifications and Remarks	from 99. 99 Ga, 99. 999 Cu.																	
Composition (weight	94. 18 Cu, 15. 90 Ga; prepared from 99. 99 Ga, 99. 999 Cu.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	
Name and Specimen Designation	17. 2 atm % Gallium-copper alloy	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	Same as above	
Reported Error, %	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	±0.5	
Temp. Range, K	348-438	783-963	373-573	448 -963	403-583	338-568	348-583	638-883	338-578	328-598	328-568	378-568	338-578	338-623	328-578	328-953	348-663	
Year	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	1962	
Ref. No.	384	384	384	384	384	384	384	384	384	384	384	384	384	384	384	384	384	
Curve No.	1	8	က	•	S	9	7	œ	6	10	77	12	ដ	11	15	16	11	

DATA TABLE NO. 82 SPECIFIC HEAT OF COPPER + GALLIUM Cu + Ga

CURVE 4 (cont.) CURVE 6 (cont.) CURVE 6 (cont.) 528.2 1.Cc3.x 10 ^{-1*} 418.2 9.58.2 1.049* 428.2 9.58.2 1.049* 428.2 9.58.2 1.049* 428.2 9.58.2 1.050* 448.2 9.58.2 1.050* 448.2 9.58.2 1.050* 468.2 9.58.2 1.050* 468.2 9.58.2 1.050* 468.2 9.58.2 1.050* 468.2 9.58.2 1.060* 469.2 9.58.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.59.2 1.060* 469.2 9.69.3												
Curry E 10 10 10 10 10 10 10	H	రి	H	ပ္	۲	င္မ	H	$_{ m p}^{ m q}$	H	တီ	H	ဝီ
8.35	CUR	7	CURVE	. 4 (cont.)	CURVE	6 (cont.)*	CURVI	5 8 (cont.)*	CURVE	10 (cont.)*	CURVE	12 (cont.)*
State Stat	348. 2	9.254 x 10-2		1.0°3 x 10-1*	418.9		863.9	1-01 v 901 1	458.2	750 ×	408 2	0.452 × :0-
8.322 8.432 8.432 8.432 8.432 8.432 8.432 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.432 8.434 8.434 8.432 8.434	358.2	9.376*	538. 2	1.049*	428.2		883.2	1.111	468.2	•	418.2	01 V CM 16
State Stat	368.2	9.362	548.2	1.047	438.2	9. 704			483.2	60.00	+28.2	9.381
9.509 5.68.2 1.086 4.58.2 9.68.2 1.086 4.58.2 9.68.2 1.087 4.58.2 9.68.2 1.087 4.58.2 9.67.1 4.68.2 9.67.1 4.68.2 9.67.2 1.087 4.68.2 9.67.2 1.087 4.68.2 9.67.2 1.087 4.68.2 4.68.2 9.57.2 1.095 4.68.2 9.57.2 1.095 4.68.2 9.57.2 1.095 4.68.2 4.68.2 9.57.2 1.095 4.68.2 4.68.2 9.57.2 1.096 4.68.2 4.68.2 9.57.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 1.096 4.68.2 9.50.2 <th>378.2</th> <th>9.469*</th> <th>558. 2</th> <th>1.050*</th> <th>448.2</th> <th>9, 751</th> <th>CUR</th> <th>IVE 9*</th> <th>498. 2</th> <th>×</th> <th>438.2</th> <th>9, 467</th>	378.2	9.469*	558. 2	1.050*	448.2	9, 751	CUR	IVE 9*	498. 2	×	438.2	9, 467
9. 572 583 1.066 468.2 9. 871 348.2 9. 254 × 10 ⁻⁶ 518.2 1.065 468.2 468.2 9. 871 348.2 9. 254 × 10 ⁻⁶ 518.2 1.065 468.2 468.2 468.2 468.2 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.064 468.2 1.064 468.2 1.064 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.065 468.2 1.064 468.2 1.064 468.2 1.065 468.2 1.065 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1.066 468.2 1	388, 2	9. 536	568.2	1.052	458.2	9.802			508.2		448.2	9, 472
2 2 5.612	413.2	9. 572	583. 2	1.056	468.2	9.871		254	518.2	1.065	458.2	9, 457
Name	428.2	9.632	603.2	1.062	478.2	9.871	348.2	281	528.2	1.055	468.2	9, 630
Name	438.2	9.711	623. 2	1.067*	488.2	1.034 x 10 ⁻¹	358.2	9.362	538.2	1.049	478.2	9.661
1.00 1.00			643.2	1.065	438.2	1. 067	368. 2	9.367	548. 2	1.046	488.2	9. 766
1, 134 x 1, 134 x	CUR		663. 2	1.068	508.2	1.061	378.2	9.431	558. 2	1.049	498.2	9, 935
1,147 10 173, 2 1,094 5,82 1,043 198, 2 8,65 5,65 5,65 1,057 5,18, 2 1,18 1,18 1,13 1,13 1,18			713.2	1.078	518.2	1.053	388. 2	9.560	573.2	1.053	508.2	1.021 x 10
1.142	783.2	1.134 x 10-1	733.2	1.081	528.2	1.043	398. 2	9. 565	588.2	1.057	518.2	1.045
1.155 773.2 1.096 556.2 1.045 418.2 9.601 CURVE 1** 568.2 1.045 418.2 9.601 CURVE 1** 568.2 1.046 568.2 1.045 418.2 9.601 CURVE 1** 568.2 1.046 568.2 1.045 418.2 9.602 328.2 9.354 × 104* 588.2 1.106 568.2 1.106* 418.2 9.682 9.682 9.354 × 104* 588.2 9.354 × 104* 588.2 9.354 × 104* 588.2 9.354 × 104* 588.2 9.354 × 104* 588.2 9.469 9.354 × 104* 588.2 9.469 9.354 × 104* 588.2 9.469 9.354 × 104* 588.2 9.469 9.354 × 104* 588.2 9.469 9.354 × 104*	803.2	1. 142*	753.2	1.086*	538. 2	1.052	408.2	9.615	598. 2	1.059	528. 2	1.048
1.166	823. 2	I. 155	773.2	1.091	548.2	1.045	418.2	9.601			538. 2	1.047
1.261 842.2 1.106 568.2 1.054 448.2 9.689 9.68	843.2	1. 168"	798.2	1.096*	558.2	1.051	428.2	9.661	CUR	/E 11*	548.2	1.045
1.183° 65.3 1.114° 1.106° 1.184° 1.186° 1.1	863.2	1. 181	823.2	1.106	568. 2	1.054	438.2	9.682			558.2	1.048
1,210 883.2 1,114 CUINVE 1** 468.2 1,068 × 10** 1,389 1,289 1,281 1,389 1,289 1,289 1,289 1,289 1,289 1,289 1,289 1,289 1,389 1,289 1,389	883. 2	1. 193	843.2	1.1067			448.2	9.699	328.2	9.324 x 10-2	568.2	1,051
1,2277 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 883.2 1,127 1,0	903. 2	1. 210	863. 2	1.114	CUR	VE 7*	458.2	1.068 x 10 ⁻¹	338. 2	9.359		
1.243 903.2 1.135 348.2 9.257 × 10 - 488.2 9.823 378.2 9.469 338.2 9.451 9.823 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.491 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.653 9.882 9.853 9.852 9.653 9.882 9.853	923. 2	1. 227	883. 2	1. 121			468.2	9.768 x 10-2	348.2	9.398	CUR	VE 13*
1.261 95.3.2 1.134* 358.2 9.555 4488.2 9.683 373.2 9.491 373.2 9.491 378.2 9.491 3	2.5	1. 243	903. 2	1. 125	348, 2	9.257×10^{-2}	478.2	9.823	358.2	9.469		
Name	963. 2	1.261	923. 2	1. 134	363. 2	9.352	488.2	9.983	373.2	9. 491	338. 2	9.374 x 10
Curact C			943.2	1.132	383. 2	9.505	498. 2	1.027 × 10-1	388. 2	9.653	348. 2	9.331
9. 339 x 10 ⁴ 10.0 c	200	2		1. 132	403.2	9.584	508.2	1.050	398. 2	9,610	358. 2	9.352
9.572* 403.2 9.574* 550.2 1.033 418.2 9.572 378.2 9.534*** 403.2 9.54 × 10** 463.2 9.641 550.2 1.006 × 10** 568.2 1.042 428.2 9.718 386.2 9.534*** 433.2 9.541 503.2 1.006 × 10** 568.2 1.043 438.2 9.718 438.2 9.718 438.2 9.718 448.2 9.718 9.	377 9	0 200 v 10-5#	915	*** E**	443.2	9.010	2.010	1,036	408.2	9.637	368.2	9.324
9.536* 403. 2 9.534 × 10 ⁻³ 483. 2 1.006 × 10 ⁻¹ 580. 2 1.043 488. 2 9.716 338. 2 9.534 9.637* 423. 2 9.577 503. 2 1.049 568. 2 1.041 488. 2 9.716 338. 2 9.716 9.637* 443. 2 9.577 10 ⁻³ 503. 2 1.049 568. 2 1.041 458. 2 9.768 418. 2 9.718 10.042 9.638. 2 1.044 563. 2 9.735 10.049 568. 2 1.041 458. 2 9.768 418. 2 9.768 11.049 9.633. 2 1.022 × 10 ⁻¹ 583. 2 1.049 578. 2 1.041 458. 2 9.768 148. 2 9.768 11.049 9.759 × 10 ⁻⁴ 583. 2 1.049 578. 2 9.324 10.045 10.042 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.044 148. 2 9.324 11.049 583. 2 1.045 11.049 583. 2 1.045 11.049 583. 2 1.045 11.049 583. 2 1.045 11.049 583. 2 1.047 638. 2 1.066 × 10.43 11.049 588. 2 9.436 588. 2 1.044 148. 2 9.504 11.049 588. 2 9.400 773. 2 1.076 778. 2 9.504 778. 2 9.505	202.2	9. 590 A 10	103		443.2	97.70	526.2	1.038	418.2	9.620	378.2	9.321
9.637° 453.2 2.54×10 503.2 1.000×10 558.2 1.041 448.2 9.718 438.2 9.718 9.730 443.2 9.641 553.2 1.049 558.2 1.041 448.2 9.718 438.2 9.718 9.730 443.2 9.641 553.2 1.049 558.2 1.041 458.2 9.768 448.2 9.768 448.2 9.718 428.2 1.044 458.2 9.768 448.2 9.718 448.2 9.718 428.2 1.044 458.2 9.711 458.2 9.711 458.2 9.814 478.2 9.814 478.2 9.816 478.2 9.945 448.2 9.945 448.2 9.945 448.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.945 478.2 9.759 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 553.2 1.049 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040 558.2 1.040	412.2	9. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	400	2007 11 10-2	7 00 7	1 000 : 10=1	200.2	1.045	7.07	200.0	388.2	9.319
9.700 443. 2 9.641 503. 2 1.049 568. 2 1.041 458. 2 9.762 418. 2 9.763 418. 2 9.763 1.045 648. 2 9.763 418. 2 9.763 1.045 648. 2 9.763 418. 2 9.764 1.045 648. 2 9.764 1.045 1.045 648. 2 9.764 1.045 1.045 648. 2 9.764 1.045 1.045 648. 2 9.764 1.045 1.045 648. 2 9.741 458. 2 9.743 448. 2 9.741 458. 2 9.741 458. 2 9.741 458. 2 9.741 458. 2 9.742 1.045 653. 2 1.049 553. 2 1.049 553. 2 1.049 553. 2 1.049 553. 2 1.045 653.	423.2	9. 350	403.2	9. 554 × 10 ·	403.2	1.006 × 10 ·	248.2	1.042	438.2	9.718	398. 2	9. 247
9.816 463.2 9.735 543.2 1.048 563.2 1.048 563.2 1.048 563.2 1.049 568.2 9.321 x 10 ⁻⁴ 468.2 9.416 468.2 9.448.2 9.321 x 10 ⁻⁴ 468.2 9.424 568.2 1.044 498.2 I.049 CURVE 6** 653.2 1.060 x 10 ⁻¹ 348.2 9.412* 558.2 1.044 498.2 I.049 CURVE 6** 653.2 1.060 x 10 ⁻¹ 348.2 9.412* 9.531* 1.044 4	453.2	9.730	443.2	9.51	593.9	1.059	500.2	1.043	448.2	9.732	408.2	9.33
1.044 10 ⁻¹ 483.2 2.713 374.2 1.049 378.2 1.045 488.2 9.771 478.2 3.7	473 9	916 0	1637	120	260.6	1.000	200.0	1.01	400.0	9. 100	2.014	9. 290
1.046 503.2 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.054 1.052 1.054 1.054 1.054 1.052 1.054 1.054 1.054 1.052 1.067 1.067 1.067 1.067 1.067 1.063 1.063 1.063 1.063 1.063 1.063 1.063 1.063 1.063 1.063 1.064 1.065 1.063 1.063 1.063 1.064 1.065 1.063 1.064 1.065 1.063 1.064 1.065 1.065 1.06	403.2	1 014 2 10-1	403.2	9. (30	243.2	1.048	2.876	1.040	468.2	9. 771	428. 2	9.386
1.046 523.2 1.067 2083.2 1.054 CURVE 8* 238.2 9.321 × 10 ⁻⁴ 498.2 9.945 448.2 1.046 543.2 1.046 543.2 1.046 563.2 1.067 568.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.051 548.2 1.050 558.	7.00	1. 01 A 10 1	200.7	8.014	203.2	T. C.		40	478.2	9. 826	438. 2	9.448
1.049 5.43.2 1.067 1.067 1.067 1.067 1.068 1.069 1.0	213.2	96.	503.2	1.022 × 10 ·	583.2	1.054	XIOS I	VE 10	488. 2	9.945	448.2	9, 489
1,049 563.2 1,045 1,045 1,045 1,043 1,043 1,045 1,04	25.5		523.2	1.067		**			498. 2	1. 010 × 10-1	458. 2	9. 551
URVE 4 CURVE 6* CURVE 6* 653.2 1.060 x 10 ⁻¹ 348.2 9.334* 318.2 1.062 478.2 9.759 x 10 ⁻⁴ * 663.2 1.060 x 10 ⁻¹ 348.2 9.412* 528.2 1.048 498.2 9.759 x 10 ⁻⁴ * 663.2 1.063 368.2 9.412* 528.2 1.048 498.2 9.759 x 10 ⁻⁴ * 663.2 1.063 368.2 9.412* 558.2 1.049 508.2 9.759 x 10 ⁻⁴ * 338.2 9.221 x 10 ⁻⁴ 663.2 1.073 378.2 9.595 558.2 1.049 518.2 9.749* 338.2 9.23 1.073 378.2 9.591* 568.2 1.050 518.2 9.740* 743.2 1.082 9.630 CURVE 12* 548.2 51.65 9.823* 368.2 9.361 418.2 9.630 278.2 548.2 578.2 1.020 x 10 ⁻⁴ * 448.2 9.630 388.2 9.610 x 10 ⁻⁴ 578.2 1.063* 448.2 <th< th=""><th>500. 6</th><th>1. CT</th><th>243.2</th><th>1. C.</th><th>200</th><th>VE 8</th><th></th><th>9.321 x 10-2</th><th>508. 2</th><th>1.043</th><th>468. 2</th><th>9.658</th></th<>	500. 6	1. CT	243.2	1. C.	200	VE 8		9.321 x 10-2	508. 2	1.043	468. 2	9.658
URVE 4 588.2 1.048 488.2 9.759 x 10-4* CURVE 6* 663.2 1.060 x 10* 348.2 9.431 528.2 1.044 498.2 9.759 x 10-4* 2.759 x 10-4* 663.2 1.063 358.2 9.436 538.2 1.044 498.2 9.759 x 10-4* 338.2 9.221 x 10-4* 663.2 1.073 378.2 9.456 558.2 1.044 498.2 9.749* 338.2 9.221 x 10-4* 723.2 1.073 378.2 9.505 558.2 1.049 518.2 9.749* 348.2 9.235 7423.2 1.076 338.2 9.501* 558.2 1.049 518.2 9.827* 358.2 9.405 408.2 9.501* 578.2 578.2 1.020 x 10-4* 408.2 9.541 448.2 9.653 1.044 498.2 558.2 1.049* 448.2 9.690 388.2 9.565 578.2 578.2 1.063* 408.2 9.653 448.2 </th <th>200</th> <th>£ .</th> <th>203.2</th> <th>. 040</th> <th>0</th> <th></th> <th>338. 2</th> <th>9.324</th> <th>518.2</th> <th>1.062</th> <th>478.2</th> <th>9. 517</th>	200	£ .	203.2	. 040	0		338. 2	9.324	518.2	1.062	478.2	9. 517
9.759 x 10 ^{-4*} CURVE 6* 663.2 1.063 356.2 9.436 538.2 1.044 498.2 9.759 x 10 ^{-4*} CURVE 6* 663.2 1.068 368.2 9.412* 538.2 1.044 498.2 9.759 x 10 ^{-4*} 338.2 9.221 x 10 ^{-4*} 703.2 1.068 368.2 9.412* 548.2 1.051 508.2 9.749* 338.2 9.221 x 10 ^{-4*} 723.2 1.076 388.2 9.591* 568.2 1.049 518.2 9.787* 358.2 9.400 763.2 1.087 408.2 9.610 568.2 1.050 528.2 9.957 368.2 9.467 803.2 1.087 418.2 9.620 CURVE 12* 548.2 548.2 1.048* 498.2 9.541 823.2 1.097 428.2 9.680 388.2 9.610 x 10 ⁻⁴ 578.2 1.063* 408.2 9.647 398.2 9.565 9.565 9.565 1.063* 408.2 9.680			999. 7	3	0.38. 2	1. 060 x 10 ·	348. 2	9.3/1	2.820	1.048	488.2	9. 924
9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.759 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-4* 9.750 x 10-49 9.750	COR	VE 4		***	663. 2	1.063	358. 2	9. 436	538. 2	1.04	498.2	1.013 x 10
9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.755 x 10.49 9.757 x 10.60 9.757 x 10.60 9.757 x 10.60 9.757 x 10.60 9.823 x 10.60 9.823 x 10.60 9.823 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 9.823 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.557 x 10.60 1.020 x 10 ⁻⁴ 9.555 x 10.60 1.020 x 10 ⁻⁴ 9.750 x 10 ⁻⁴ 9		10000	5	IVE 6	683. 2	1.068	368. 2	9.412	548.2	1.051	508.2	1.025
9.745 348.2 9.221 x 10 753.2 1.076 3388.2 9.591 568.2 1.050 528.2 9.282.2 9.235 1.050 538.2 9.842 9.235 1.050 538.2 9.845 9.842 9.235 1.087 408.2 9.645 2.0400 2.04VE 12* 548.2 9.857 1.088 418.2 9.620 CURVE 12* 573.2 1.088 418.2 9.620 577 578.2 9.610 x 10** 578.2 1.048 448.2 9.647 378.2 9.640 388.2 9.565 9.565 9.785 1.004* 448.2 9.792 398.2 9.496	7.00	9.759 X 10	0		703. 2	1.073	378. 2	9, 505	558. 2	1.049	518.2	1.051
9.787 348.2 9.235 743.2 1.082 398.2 9.615 538.2 538.2 9.832 9.833	458.2	S. 749	338. 2	9. 221 x 10 -	723. 2	1.076	388. 2	9. 591	568.2	1,050	528.2	1.037
9. 823 358.2 9. 400 763.2 1. 087 408.2 9. 630 <u>CURVE 12*</u> 5.48.2 9. 957 358.2 1. 088 418.2 9. 620 <u>763.2 1. 088 418.2 9. 620</u> 573.2 1. 020 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	468.2	9. 787	348. 2	9. 235	743. 2	1. 082	398. 2	9.615		4	538. 2	1.049
3.557.2 3.568.2 3.568.2 3.568.2 3.650 3.768.2 3.650 3.768.2 3.	478.2	9. 823	358. 2	9.400	763. 2	1.087	408.2	9. 630	CUR	/E 12"	548.2	1.048
1.020 x 10 - 378.2 9.467 803.2 1.097 428.2 9.677 378.2 9.610 x 10 - 578.2 1.048 393.2 9.541 823.2 1.099 438.2 9.680 388.2 9.565 9.565 1.063* 448.2 9.792 398.2 9.496	488.2	9. 957	368. 2	9.381	783.2	1.088	418.2	9.620			573. 2	1.050
1.063* 408.2 9.541 823.2 1.099 438.2 9.680 388.2 1.063* 448.2 9.663 843.2 1.104 448.2 9.792 398.2	498. 2	1. 020 x 10-r	378.2	9. 467	803. 2	1.097	428.2	9.677	378.2	9.610 × 10-	578. 2	1.053
1.003 408. 2 9.663 843. 2 1.104 448. 2 9.792 398. 2	208.2	1.048	393. 2	9.54	823. 2	1.099	438.2	9.680	388. 2	9. 565		
	2.816	T. 963	408.2	9. 663	843.2	1. 104		9. 792	398. 2	9. 496		
	*											

DATA TABLE NO. 82 (continued)

T q	CURVE 18 (cont.)			553.2 1.046*	593. 2 1. 056*																																					
ဝီ	CURVE 16 (cont.)	1.111 x 10 ^{-1*} 1.105*	1. 130*	1.138	7. 141	CURVE 17	1-010	1.056 × 10-2	9. 185	9.204*	9.309*	9. 290	9.510*	9.087	1 003 × 10-1	1.015*	1.021	1.024*	1.024*	1. 038*	1.033*	***************************************	*****	1.055	1.057*	1.059*	1.062*	1.068*	1. 069**	1.070		CORVE 18	8.915 x 10-2	8.822	9, 159	9.419	9. 484	9.861	1. 009 x 10 ^{-1*}	1.004	1.028	
۴	CURVE	843. 2 868. 2	913.2	933. 2	3.00.6	CUR	946	348.2	368.2	378.2	388. 2	398. 2	408.2	418.2	438.9	453.2	468.2	478.2	488.2	498. 2	508.2	516.2	538.2	552.2	568.2	583. 2	603.2	623.2	643. 2	663. 2	į	COR	348. 2	363. 2	398. 2	428.2	438.2	448.2	458.2	468.2	488.2	
္မ	CURVE 15 (cont.)*	1. 027 × 10 ⁻¹ 1. 032	1. 0.00	1.045	1.049	1.050	1. 053	CITRVE 16		9. 288 x 10-4	9. 226*	9.159*	9.104	9. 163	* 500 6	9,319*	9. 536*	9. 543*	9.716	9, 921*	1.009 x 10-1	0.081 2.10-2	1.008 x 10-f*	1 055	1.034*	1, 037	1.045*	1.047	1.054	1.058	1.062	*690	1.071*	1.076	1.080*	1.084	1. 090	1.092	1.097*	1. 101	1.108*	
H	CURVE	498. 2 508. 2	528.2	538.2	558. 2	568.2	578.2	CITTE		328.2	338. 2	348.2	358. 2	378 2	388	398. 2	408.2	418.2	428. 2	438.2	448.2	456.2	478.2	488 2	498. 2	508.2	523. 2	543.2	563. 2	583. 2	603.2	643.2	663. 2	683. 2	703.2	723.2	743.2	763. 2	783. 2		823.2	
ပိ	CURVE 14*	9. 128 x 10-1 9. 168	9. 092	9. 159	9.302	9. 429	9.410		9.842	9.988	1.007 x 10 ⁻¹	1. 003	1.018	1.00	1.046	1.034	1. 043	1.043	1.044	1.047	1.052 1.056	1 050	3	CIRVE 15*	1	9. 238 × 10-2	9, 211	9, 113	e. 183	9.118	- C - C - C - C - C - C - C - C - C - C	9.204	9, 567	9. 491	9. 106	9,861	1.006 × 10 -1	1.011	1.014	1.022	1.026	Not shown on plot
H	CUR	338.2	368. 2	378. 2	398. 2	408.2	418.2	438.2	448.2	458.2	468.2	478.2	488.2	508.2	518.2	528. 2	538. 2	548.2	558. 2	568.2	583. 2	623.2		CIIR		328. 2	338. 2	348. 2	358. 2	268. 2	000	398.2	408.2	418.2	428. 2	138.2	448.2	458. 2	468. 2	478. 2	89. 2	* Not sho

SPECIFICATION TABLE NO. 83 SPECIFIC HEAT OF COPPER + IRON Cu + Fe

[For Data Reported in Figure and Table No. 83]

And the second of the second o	Specifications and Neural No	99. 799 Cu, 0.2 Fe, <0. 0001 Se, <0. 0001 S; melted at 1300 C; annealed for 72 hrs at 870 C; cooled rapidly to room temperature.	
	Composition (weight percent). Specifications and nemarks	99. 799 Cu. 0.2 Fe, <0.0001 Se, <0.0001 cooled rapidly to room temperature.	Same as above.
	Name and Specimen Designation	0.2% Fe Dilute copper alloy	0. 2% Fe Dilute copper alloy
	Reported Error, %	-	
	Temp. Range, K	0.4-4.0	3-30
1	Year	1961	1961
	Ref.	16	91
	Curve No.	-	8

ပ္

CURVE 1

CURVE 2

SPECIFICATION TABLE NO. 84 SPECIFIC HEAT OF COPPER + MAGNESIUM Cu + Mg

[For Data Reported in Figure and Table No. 84]

Composition (weight percent), Specif. ations and Remarks	Prepared by melting together 99, 99 Cu and resublimed grade 99, 98 Mg under an atmosphere of argon; after casting specimen was scaled under pure helium and held 17-24 hrs at 200-200 C below the melting temperature.
Name and Specimen Designation	MgCup-x
Reported Error, %	
Temp. Range, K	1.7-4.0
Year	1966
Ref.	385
No.	-

SPECIFICATION TABLE NO. 85 SPECIFIC HEAT OF COPPER + MANGANESE Cu + Mn

[For Data Reported in Figure and Table No. 85]

composition (weight percent). Specifications and Remarks	er-Harris Co.
Composition (w	87 Cu, 13 Mn; from Driver-Harris Co.
Name and Specimen Designation	Manganin
Reported Error, %	1
Temp. Range, K	2.5-4.0
Year	1963
Ref.	386
Curve No.	-

DATA TABLE NO. 85 SPECIFIC HEAT OF COPPER + MANGANESE Cu + Mn

[Temperature, T, K; Specific Heat, $C_{p^{\rm i}}$ Cal $g^{-1}\,K^{-1}]$

T CURVE 1

2, 50 4, 71 x 10 4 2, 75 5, 35 3, 00 6, 00 3, 25 6, 69 3, 56 7, 1 3, 75 8, 17 4, 00 8, 99

SPECIFICATION TABLE NO. 86 SPECIFIC HEAT OF COPPER + NICKEL Cu + Ni

[For Data Reported in Figure and Table No. 86]

					LI OI Data nepol	La or base archoi cou in a figure and a face for a
Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	25	1930	15-201	1.5	Constantan	60 Cu, 40 Ni.
8	387	1940	1.2-4.2		Cu ₅₀ Ni ₃₀	79. 73 Cu, 20. 27 Ni; prepared from 99. 99 Cu and 99. 98 Ni; small amounts (0. 01-0. 04% Al) added to alloy, melts as deoxidizers; melted; held at 200 C below melting temperature for 1 to 2 hrs and slowly cooled.
က	387	1940	10-20		Cu ₈₀ Ni ₂₀	Same as above.
*	387	1940	1.1-4.3		Constantan	CugNi40: 59. 84 Cu and 99, 98 Ni; small amounts Al added as deoxidizer; melted; held at 200 C below melting temperature for 1 to 2 hrs and slowly cooled.
S	387	1940	9-20		Constantan	Same as above,
9	388	1956	1.8-4.0	7		65 Cu, 35 Ni; specimen supplied by Westinghouse Corp; annealed and cold worked after annealing capsule contained specimen.
2	388	1956	1.6-4.2	1		Same as above; annealed; solid sample.
90	388	1956	1.4-4.2	7		65 Cu. 35 Ni; specimen supplied by Ford Motor Co.; annealed; solid sample.
6	388	1956	1.3-4.2			60 Cu, 40 Ni; specimen supplied by Westinghouse Corp; annealed in argon atmosphere for 24 hrs at temperature 30 C below solidus curve.
10	388	1956	1.6-4.1			75 Cu, 25 Ni; same as above.
11	388	1956	2.1-4.2			90 Cu, 10 Ni; same as above.
12	389	1966	0.05-0.15			54, 48 Cu, 2, 67 Mn, 0, 17 Fe. 0, 01 C, < 0, 02 Zn, < 0, 01 Si, < 0, 005 Pb, remainder Ni; specimen from Driver-Harris Co.
13	349	1962	1.4-4.3	? > 3	Ni(45) Cu(55)	56.92 Cu, 43.01 Ni; annealed under vacuum at 1100 C for 72 hrs; etched with 30 ml HNO ₃ and 20 ml CH ₂ COOH.
14	349	1962	1.4-4.3	52	Ni(48) Cu(52)	54.09 Cu, 45.80 Ni; same as above.
15	386	1963	0.3-4.0	7	Constantan	57 Cu, 43 Ni.

DATA TABLE NO. 86 SPECIFIC HEAT OF COPPER + NICKEL Cu + Ni

	ပီ	CURVE 8 (cont.)	4.713 x 10 4	4.865*	5.021*	5, 147	5. 047	5. 562	5.549*	5, 651	5. 923*	6.313	6. 727	3.	VE 9		4.800 x 10-6	4.997*	5. 192	5.002	5.083*	5.329	5.660	0.01	6.080	6.473	6.649	6.871	6.946*	7. 289	7.315*	7, 632	7.687*	7. 935	8.343	8, 531	8.913	9.095	9.399*	9. 536	90 .0 0 .0 0 .0	1.033 × 10-4	
	H	CURVE	2.868	2.982	3,068	3.108	3, 139	3, 285	3.428	3, 454	3.613	3.818	4.021	4.1.0	CURVE		1. 297	1.374	1,383	1.427	1.469	1.617	1.766	7. 020	1.946	2, 097	2, 192	2, 311	2, 352	2.515	2.540	2, 718	2, 735	2. 918	3.078	3, 227	3, 339	3, 398	3, 540	3,600	3, 726	3,959	
	$_{\rm p}^{\rm q}$	VE 7	3.326 x 10 €	3.828	4.015	4, 184	4. 296	4. 619	4.870	5. 097	5.414	5.677	5.410	6. 706	6.839	7. 237	7.305	1. 102	IVE 8	ı	2. 521 x 10-6	2.704	2. 793	5. 010 0. 010#	3 628	3, 216	3.114	3, 253*	3. 288	3.366*	3.371*	3. 405	3. 433*	3,381	3, 497	3. 560*	3.651	3, 787	3, 900	4. 197	4.320	4. 592*	
	H	CURVE	1.654	1. 972	2,080	2, 197	2. 297	2. 521	2, 709	2.816	3.04;	3. 146	5. 5. L	3, 822	3.914	4.017	4.087	7. 1.1.	CURVE		1.427	1. 545	1.585	1.000	1 739	1,806	1.815	1.843	1.857	1.900	1.922	1.937	1.977	1, 983	2.014	2.034	2.096	2, 226	2.319	2.541	2. 627	2.813	
Cal g -1 K -1]	ဝီ	VE 5	4.02 x 10-4	4. 59	5. 53	6.00	0.8I	7.87	8.34	9.04	9.64	1.06 x 10 -	1.13	1.30	1.40	1. 52	1.65	7.03	CURVE 6		2. 796 x 10 4	2.893	3, 159	4 000	4.326	4. 404 *	1.430	4.683	5.073	5.359	5.492*	5. 550	5.610	5.852*	6.023		5. 976	6.305*	1.318	6.470			
c Heat, Cp,	H	CURVE	9.75	10.66	12.07	12. 51	13.40	14, 43	14.84	15.37	15.91	16.47	17.55	18.07	18.61	19, 10	19.68	20.31	CUR	200	1.806	1.844	1. 906	6.00	2, 738	2, 823	2,950	2.994	3, 254	3, 405	3, 487	3, 531	3, 534	3.631	3.664	3, 722	3,885	3.967	3.996	4.009			
K; Specifi				84 x 10-6								ŧ.	_*	- T- T- T- T- T- T- T- T- T- T- T- T- T-	**	4	_			x 10-6*	* ·	to*	* *		7.64	ı ic		2	m.			k .	ŭ.		1.02 × 10-4				*~	5	24"	97	
	Q.			4 ×	0	0	?	xo 4	. 63	Ġ,		ကျေး	vo .	• •			_			3										9	9	77	3	0	0	9	-	S				N	
rature, T,	ပ္ရ	4.	eries J	n	'n	5.12					7.27	7, 43	7.45	, 0 , 3	. 6.	8.2	9.5	9 solios 9		6. 73	6.9	7.3	4.6			2	œ	8.4	8.5	8.86	90.6	9.33	9.63	9.80	1.02	1.06	1.11	1.15	1.18*	1. 22	1.2	÷	
[Temperature, T, K; Specific Heat, Cp, Cal g^1 K^1]	т	CURVE 4	Series 1	1.170 3.84 x	က်			1.897 6.34	_		2. 20 7. 27			2.43 (.64 9.55 7.80				Ceries 9		07					2.50 7.6															ij	નં ,	4. 28 L.	
[Temperature, T,		CURVE 4	3.014 x 10 4 Series 1	1, 170 3.	1.221 3.	1.575	1. 704		1.991	2. 10	2. 20	2.27	2.34		2.66	2.76				× 10 ★ 2.07	2, 17	2. 26	2.33	77.7	2,50	2.69	2.77	2.85	2.94	3.02	3. 10		3.36	3.49	3.60	3.72	3.83	3.92	4.01	ij	નં .	4	
[Temperature, T,	H	4.		3.154* 1.170 3.	3. 296 1. 221 3.	3.328*	3.536 1.704	3, 776 1, 809 3, 888 1, 897	3,872* 1.991	3.984 2.10	4,016* 2.20	4.160	4.208 2.34	2. 1 5.	4. 496 2. 66	4.640* 2.76	4, 704 3, 26	CHRVE 3		3.125 x 10 - 2.07	3, 424	3.712	4. 032 2. 33	77.7	2,50	6.640 2.69	7.136 2.77	7.696 2.85	8, 256 2, 94	3.02	9, 712	1.045 x 10 ⁻³ 3.25	1.104 3.36	3.49	1.341 3.60	1.451* 3.72	1.488* 3.83	58 1.621 3.92	1.741 4.01	56 1.930 4.10 1.	નં .	4	
[Temperature, T,	Ср	CURVE 4	3.014 × 10-	3.37 3.154* 1.170 3.	3,43 3,296 1,221 3,	3.51 3.328* 1.575	3.67 3.536 1.704	3, 776 1, 809 3, 888 1, 897	x 10-2 3.82 3.872* 1.991	355 3.88 3.984 2.10	3.91 4.016* 2.20	3.97 4.160 2.27	3.99 4.208 2.34	4. 352 2. 43 4. 384*	4.13 4.496 2.66	4.18 4.640* 2.76	4.23 4.704 3.26		155	10.57 3.125 × 10 2.07	10.98 3.424 2.17	3.712	4. 032 2. 33	74.7 064.4 57.71	5. 152 2. 50	14. 10 6. 640 2. 69	14.53 7.136 2.77	14.98 7.696 2.85	15.42 8.256 2.94	15.90 9.040 3.02	16.37 9.712 3.10	256 16.81 1.045 x 10 ⁻³ 3.25	17.31 1.104 3.36	17.82 1.219 3.49	226 18.28 1.341 3.60	18.70 1.451* 3.72	307 19.10 1.488* 3.83	19.58 1.621 3.92	20.07 1.741 4.01	598 20.66 1.930 4.10 1.	693* 4.19 1.	4	

*Not shown on plot

DATA TABLE NO. 86 (continued)

ဝီ	CURVE 14 (cont.)	5.067 × 10-6*	5.041	5.907	6. 134	6.375	6.889	7.090	7.358*	7.697	8. 131	8.511	8.868	9. 132	1 020 - 101	1.032 A 10 -	1.00	1 161	1.214	1. 275	1, 309*	1.345	1.385*	1.419		E 15	401 100 0		20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	8	5. 57	7.24	8.89	1.06 x 10 4	1. 22	1.39	1.55	1.71	1.88	2.04	2.21	2.37	2. 53		
H	CURVE	1.444	1.620	1. 726	1.813	1.884	2.062	2, 125	2.207	2.319	2.454	2. 571	2.678	2. 790	2.343	3 319	3 493	3.55	3.716	3,885	3.998	4.087	4. 191	4. 295		CURVE 15	00.0	9.00	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3, 25	3.50	3.75	4.00		
ပ္ရ	E 12	4.78 x 10-6	6.6	7.89	8.08	9.58 × 10 4	1.03 x 10	1.16	1.30	1.07	9.92 x 10-	80 i	7.10	8.41	1.41	5.74	<u>*</u>	E 13		5.392 x 10-6	5.554	5.786	5. 993	6. 333	6. 766	7.188	7.0.7	196	484.8	8.754	9.064	9. 583	1.008 x 10-	1.076	1. 108	1, 164	1. 210	1.254*	1, 285	1.330		E 14		4.89 × 10-	
ħ	CURVE 12	0.054	0.067	0.067	0.069	0.070	0.076	0.078	0.082	0.087	0.093	0.104	0.112	0. 113	0.122	0 147		CURVE 13		1.406	1.464	1.537	1.615	1. 732	1.893	2.044	2 370	2.404	2, 540	2.663	2, 788	2.943	3, 152		3, 567	3, 733	3, 923	4.072	4.182	4.304		CURVE 14		1.384	
ပိ	CURVE 10 (cont.)	Series 2 (cont.)			1.723							2.660					i et	*		4		CURVE 11				1.119					ij			7								2.672			
H	COL		6	2.055	2.084	2, 125	2, 213	2. 322	2.661	2.850	3. 025	3.067	3. 210	3.469	3 580	3 740	3.947	4.018	4.070	4.095		Οl		2.141	2. 223	2, 289	2 418	2. 493	2, 564	2.632	2.697	2. 797	2.916	3.024	3, 125	3, 221	3, 311	3.400	3.511	3,663	3, 828	3.970	4.090	4. 168	
ပ္	CURVE 9 (cont.)	1,077 × 10-4*	1.090		91 02	CORVE 10	Series 1	1.172 x 10 ⁻⁵	1.302	1.384	1.364	1.439	1.403	1.501	1 575	1.577	1.659	1,780	1.829	1.881*	1.926	2.011*	2.114	2. 236	2. 449	2. 641	3 061	3, 342	3. 532*	3. 635	3.877	4.105		Series 2	•	1. 421 x 10 4	1.500*	1.506	1.525*	1.527*	1.602	1. 539	1.621	1.672	
Ħ	CURVE	4. 063	4.170		É	COR	Ser	1.581	1.625	1.656	1.686	1.753	1. 136	1.819	1 879	1.895	1.982	2, 115	2, 178	2. 213	2. 261		2. 453		2. 798	3 153	3.391	3, 535	3.706	3.835	3.953	4.091		Seri		1.806	1.848	1.856	1.883	1.893	1.923	1.955	1.986	2. 023	-

* Not shown on plot

SPECIFICATION TABLE NO. 87 SPECIFIC HEAT OF COPPER + ZINC Cu + Zn

[For Data Reported in Figure and Table No. 87]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	25	1941	310-892		Brass	51.8 Cu, 48.17 An, 0.03 Pb, and traces of Fe; β-phase; measured in argon atmosphere at reduced pressure.
8	390	1962	1.44.2			51.45 Cu, 48.65 Zn; prepared from 99.999 Cu and 99.999 Zn by induction melting under argon atmosphere; annealed and quenched to insure presence of β -phase.
က	390	1962	1.4-4.2			53.09 Cu, 46.92 Zn; same as above.
•	390	1962	1.4-4.2			54. 51 Cu, 45. 49 Zn; same as above.
G	390	1962	1.4-4.1			56.76 Cu, 43.24 Zn; same as above; annealed for 20 min at 830 C; quenched twice from 810 C.
9	391	1967	298-800		Alpha Brass Alloy No. 1	79.75 Cu, 20.22 Zn, 0.015 Fe, 0.01 Ni, 0.003 Pb.
1	391	1967	298-800		Alpha Brass Alloy No. 2	70, 42 Cu, 29, 445 Zn, 0.05 Fb, 0.045 Sn, 0.02 Fe, 0.02 Ni.
60	391	1967	298-800		Alpha Brass Allo: No. 3	65. 18 Cu, 34. 815 Zn, 0. 002 Fe, 0. 002 Ni, 0. 001 Pb.
o o	418	1959	328-590	< ±4.0		64. 80 Cu and 35. 20 Zn; annealed and homogenized for several days; cooled from 700 C; measured under H ₂ atmosphere.
10	418	1959	331-595	< ±4.0		64. 80 Cu and 35, 20 Zn; annealed and hom-genized for several days; heated for 200 hrs below 200 C; measured under H ₂ atmosphere.
==	418	1959	332-641	< ±4. 0		69. 89 Cu and 30, 11 Zn; annealed and homogenized for several days; cooled from 700 C; measured under H ₂ atmosphere.
12	418	1959	325-629	< ±4. 0		69. 89 Cu and 30, 11 Zn; annealed and homogenized for several days; heated for 200 hrs below 200 C; measured under H ₂ atmosphere.
E	418	1959	332-632	< ±4. 0		69. 89 Cu and 30. 11 Zn; annealed and homogenized for several days; cooled from 700 C; is _isured under H ₂ atmosphere.
7	418	1959	326-686	< ±4.0		69. 89 Cu and 30. 11 Zn; annealed and homogenized for several days; heated for 300 hrs below 230 C; measured under H ₂ atmosphere.
15	418	1959	367-669	< ±4.0		75.52 Cu and 24.48 Zn; annealed and homogenized for several days; cooled from 700 C. measured under H ₂ atmosphere.
16	418	1959	323-662	< ±4.0		75.52 Cu and 24.48 Zn; annealed and homogenized for several days; heated for 200 hrs below 200 C; measured under H ₂ atmosphere.
11	418	1959	325–661	<±4.0		80. 29 Cu and 19. 71 Zn; annealed and homogenized for several days; cooled from 700 C; measured under H ₂ atmosphere.
18	418	1959	330-673	<±4.0		80. 29 Cu and 19, 71 Zn; annealed and homogenized for several days; heated for 200 hrs below 200 C; measured under H ₂ atmosphere.

A THE THE STREET WERE THE STREET

SPECIFICATION TABLE NO. 87 (continued)

Curve Ref. No. No.	Ref. No.	Year	Temp. Range, K	Reported Error, % Sp	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
19	418	1959	380-684	< ±4.0		80.29 Cu and 19.71 Zn; annealed and homogenized for several days; heated for 300 hrs below 200 C; measured under H ₂ atmosphere.
20	418	1959	327-626	<±4.0		89. 72 Cu and 10. 28 Zn; annealed and homogenized for several days; cooled from 700 C, measured under H ₂ atmosphere.
12	418	1959	337-598	< ±4.0		89.72 Cu and 10.28 Zn; annealed and homogenized for several days; heated for 200 hrs below 200 C; measured under $\rm H_2$ atmosphere.
22	417	1961	16-301	±0.5	Alloy No. 1	90.05 Cu, 9.93 Zn, 0.005 Fe, 0.003 Fb, and 0.001 Bi; vacuum annealed for 24 hrs at 500 C and furnace cooled.
ឌ	417	1961	17-298	±0.5	Alloy No. 2	79.75 Cu, 20.22 Zn, 0.015 Fe, 0.01 Ni and 0.003 Pb; same as above.
አ	417	1961	16-303	±0.5	Alloy No. 4	65. 18 Cu, 34. 81 Zn, 0. 002 Fe, 0. 002 Ni, and 0. 001 Pb; same as above.

DATA TABLE NO. 87 SPECIFIC HEAT OF COPPER + ZINC Cu + Zn

6	¢	í		[Temperatur	[Temperature, T, K; Specific Heat, C _p , Cal g ⁻¹ K ⁻¹]	feat, Cp, Cal	g-1 K-1]				
H	တိ	H	ပ္	H	တီ	H	ဝီ	H	ပ္ရ	H	ပ္ခရ
CURVE	<u>12 1</u>	CURVE	CURVE 2 (cont.)	CURVE	3 (cont.)*	CURVE	2.5*	CURVE	***************************************	CURVE	CURVE 9 (cont.)*
310.4	9. 20 x 10-2	2. 922	1.615 x 10-6	3, 301	2.153 x 10 ⁻⁶	1, 441	5.098 x 10-4	298.15	9.05 x 10-2	490.65	1.07 x 10 ⁻¹
346.1	9.26	2.982	1.692	3.370	2, 268	1.466	5. 232	400	9.43	501.15	1.07
369. 3	₹ 6	2. 998	1.70	3, 433	2, 359	1.490	5. 369	450	9.62	510.45	1.07
410.0	4.6	3.083	1.808	3.611	2.673	1. 596	5. 923	200	1.11 × 10-1	521.85	1.07
413.0	9.00	3. 160	1.902	3.685	2. 825	1.694	6. 529	550	1.00	536. 45	1.07
473.5	1.006 x 10 ⁻¹	3.325	2. 140	3 882	3 191	2.56	9.836	960	1.01	546.45	1. 07
497.8	1.028	3.400	2, 284	3, 955	3, 382	2, 120	9.561	200	90-1	571 35	1.02
523. 6	1.070	3.401	2. 266	4.035	3. 544	2, 120	9. 494			590, 15	1.07
547.2	1.111	3. 429	2, 263	4. 126	3. 738	2. 242	1.049 x 10-6	CURVE	∞	CURVE	2 10*
597.1	1. 221	3.578	2, 518*	CHRVE	4.8	2.345	1, 149 1, 210	208 15	4 05 × 10 -#	201.06	101 -0
617.8	1.278	3.650	2, 667			2. 435	1 263	400	9.41*	230.05	9. 9 X TO
640.7	1.351	3,716	2.801*	1.394	4.690 x 10-6	2, 567	1,375	450	9. 76	347.45	1.00 × 10-1
652.3	1.441	3.764	2.870	1.425	4.839	2.660	1.474	483	1.09 x 10-1	356. 45	1,00
678.6	1. 528	3.764	2.882	1.455	5.062	2, 751	1.583	200		362.45	1.00
694.3	1. 632	3, 827	2.966	1.482	5, 155*	2.834	2.048	220	1.00	373, 25	1.00
200	1.762	3.892	3, 128	1.554	5. 507	2.916	1.800	009	1.02	382. 45	1.00
7.50	1. 804	3.965	3. 283	1. 737	6.633	3.002	1.905	100	1.06	391.05	1.00
746.0	2. 457	3. 995	3.342	1.917	7.780	3.097	2.042	800	1. 09	401.45	1.00
757.0	1.044	4. 027	3,369	1.925	7, 710	3.175	2.153			410.85	1.00
774 4	200	4.091	3.553	1.987	8.241	3. 237	2.266	CURVE	6	422, 25	1.01
200	1.500	4. 190	3. 162	1.995	8.256	3, 324	2. 422		•	432, 55	1.01
818.7	1 159	TIMENT	VF 3*	2, 108	9.039 1.039 v. 10-4	3.385	2. 526	328.05	9.9 × 10-1	446.65	5
848.4	1.150			9 347	1.053 X 10 -	2 530	2.010	350.75	ກ່ວ	455.55	8 8
873.3	1.154*	1 443	4 881 × 10-6	2 470	1 211	0.019	9 000	250. 13	D t	404. 43	F. 03
892. 1	1.160	1. 533	5, 308	2, 573	1.315	3.655	3.032	363.05	- t-	480.75	i. 14
		1.663	6.025	2,667	1, 420	3, 656	3.032	373. 45	9.6	485.75	1.15
CURVE	E 2	1.755	6. 533	2.756	1.514	3, 734	3.175	377.95	2.6	493.65	1.13
		1.911	7, 513	2.832	1.608	3,814	3, 400	382, 55	9.4	500.95	1.09
1.380	4. 466 x 10 •	1.991	8.059	3.005	1.810	3,888	3.511	389, 85	9.2	507.05	1.08
1. 500	5. UZO	2. 026	6.274	3.093	1.939	3.961		396. 85		516.85	1. 07
1. 657	5. 90 F	2. 115	0.913	3.178	2.053	4.039	25.5	405.05		531. 65	1.07
1,776	6. 525	2 245	1 079 × 10-6	3 230	9 200	- TTO	• 100	410.00	-	543.40	. c
1.906	7. 292	2.460	1.183	3 399	2. 401	CIRVE	4	417.35	o o	557.25	. c.
2.011	8.082	2, 581	1.294	3.476	2, 534			424 65	1 02 × 10 ⁻¹	584 05	1.01
2.099	8.622	2,658	1.372	3.536	2.642	298 15	9 08 x 10-2	400 05	1.05 1.0	20.00	
2, 258	9. 765	2.761	1, 474	3.602	2, 765	400	9.41	434, 35	1.06		5
2, 359	1.065 x 10-6	2.840	1, 564	3.675	2, 863*	450	9.72*	437, 95	1.06	CURVE	£ 11*
2.468	1, 153	2.912	1.657	3, 743	3, 034	200	1.01 x 10 ⁻¹	442.85	1.06		L
2. 568	1.244		1, 745	3, 891	3, 351	513	1.05	450.05	1.06	332, 15	9.9 x 10-
2.667	1.331	3.078	1.860	3.966	3. 520	550	1.01	460, 15	1.06	342, 55	8
2. 754	1. 428	3.158	1.969	4. 039	3. 676	009	1.00	466.75	1.06	356, 15	
2.838	1. 523	3. 245	2. 087	4.192	4.093	200	1.04		1.06	367.75	
*						200	 8	482, 55	1.06	380. 55	9.6

*Not shown on plot

DATA TABLE NO. 87 (continued)

		x 10-1						г													10-1																	
ဝီ	CURVE 17 (cont.)*	1.04 x 1	3 3	1.04	1.05	1.06	E 18*	1	9.8 × 10-2	6	8.6	တ တ ်	n on	6		ன எ			6.6	ன எ	1.01 × 10-1	1.03	1.06	1.08	1.07	1.05	3 3	3	1.0	\$:	1.03	3 3	5 3	3	3	1.05	1.05	1.05
H	CURVE 1	581.45	612, 05	628.05	652.95	661.45	CURVE		330, 15	353, 15	361, 35	370, 25	388.45	396, 65	406.95	419, 45	439, 55	450.35	460.45	471.55	482.75	494. 25	500.95	510.25	524, 45	534. 55	550.35	558.65	566.95	574.85	585. 05	594.05	609. 25	618, 55	631.35	641.95	655.95	673. 05
ပ္	(cont.)*	1.14 x 10 ⁻¹	1.09	1.06	1.05	98.	1.8	1.06	8 8	1.06	1.07	1.07	17*		9.8 x 10-2	ത്ര	o ec	8.6	8.6	. d	0.0	9.5	9.4	n n	4.6	9.7	1.01 x 10 ⁻¹	1.02	1.02	1.02	1.02	1.02	1.63	: -: 3	1.0	1.0	1.0	٠. ع
H	CURVE 16 (cont.)*	514.95	532. 85	541.75	559.05	568.65	588.95	529. 05	614, 55	623.55	643.85	661.95	CURVE 17*		324. 55	334.35	357, 85	385, 15	391.75	398, 15	411.35	420.15	426.35	433.95	447.55	453.65	471.15	476.15	485, 35	492.75	501.35	507.85	522.95	532, 35	541.35	548, 35	558.75	571.35
ပ္	5 (cont.)*	9.6 x 10-2	1.02	1.05	1.06	98		1.06	8 8	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.08	1.09		£ 16 [±]	9.8 x 10-4	8.6	80 (ກອ		ரை எ	n 01	6.6		ை எ		ກ <i>ເ</i>		1. 01	1.03	1.05	1.08	1.1
Н	CURVE 15 (cont.)*	434.85	443.55	449.65	462.75	468.75	483.05	489.35	504.85	512, 55	520, 35	527.45	541, 95	581,45	598, 05	612.85	651, 55	668, 75		CURVE 16	323, 15	330, 25	346.05	366.55	375.05	387. 25	407.85	419, 35	432, 55	444.15	457.05	458.75	478.65	481.75	488.65	489.65	498.45	505. 45
ე <u>ი</u>	(cont.)*	1.05 x 10 ⁻¹	1.05	1.06	***	9 9 v 10-2	9	o 0	1.00 x 10 -1	1.00	1.00	88	1.00	1.00	1.00	1.00	1.05	1.08	1.10	1.10	1.07	1.06	1.06	90-1	1.06	1.06	1.8	1.07	1.07	1. 07	15*	<u>.</u>	9.8 x 10-1		9.7	9.6	9.5	n 4
H	CURVE 13 (cont.)*	599.25			CURVE 14*	326 35	339.05	346, 55	371.95	393.05	400.05	409. 55	431.75	442.55	453.25	472.95	496, 35	504.55	514.15	518.45	537.75	554. 25	560.45	577.65	587.85	619.25	645.55	658.75	673.45	685. 55	CITEVE 15*	CUNVE	366.75	374.55	386.45	396.35	405. 25	413. 95 425. 25
		Ţ,																																				
ပ်	(cont.)*	1.0 x 10 ⁻¹	1.02	1.05	1.13	1.18	1.13	 	1. 07	1.06	1.07	1.07	1.07	1. 07	1.06	1.08	} i	£ 13*		1.00 x 10 ⁻¹	. 8	1.00	1.00	8.6	9.6	ທິເ	9 69	80.6	1.00 x 10-1	1. 03	3 2	5 5	2	2.	1.05	1.05	1.05	1.05
r C	CURVE 12 (cont.)*	447.45 1.0 x 10 458.05 1.01		474.85 I.05				522.65 1.09	548.65 1.07	-	566. 45 1.07	-				629.45 1.07	i	CURVE 13*		332. 05 1. 00 x 10 ⁻¹			390.55 1.00	் வ்		430.25 9.5	்		463.15 1.00 x 10 ⁻¹		-							585.15 1.05
	CURVE 11 (cont.)* CURVE 12 (cont.)*		466.85	_,	491.75		516.35	1.09 522.65 1.09		556.95 I.	566. 45 1.	-	592.65	602.35	611.75	-i -				- i -	362.25	381.15	≓ •	410.05 9.	422.05		்	456.95	463. 15		× 10-1 487 35 1	495, 65	502.35	519.15			560.15	x 10 - 5/3.35 585.15

* Not shown on plot

DATA TABLE NO. 87 (continued)

	T CURVE 2	T Cp CURVE 20 (cont.)*	T CURVE	T C _p CURVE 21 (cont.)*	T CURVE 2	T C _p CURVE 22 (cont.)*	T	T C _p CURV <u>E</u> 23 (cont.)*	TCURVE	T C _p CURVE 24 (cont.)*
35 1.	36	x 10-1	569. 75 577. 65	1. 02 × 10 ⁻¹ 1. 02	Series 2		41.27	1, 781 × 10 ⁻² 2, 142	161.91 174.47	8. 123 x 10 ⁻² 8. 293
466.05 1.01 475.35 1.01	1.01		589. 45 598. 35	1. 02 1. 02	16. 92 17. 33	7.8 x 10 ⁻² 8.7	48. 62 54. 98	2. 480 3. 098	188.87	8. 447
482.75 1.01	1.01			****	18. 50	1.05 x 10 ⁻¹	64. 57	4.019	216.12	8, 698
497. 05 1. 02	1.02		CORVE 22	77 7	20.26	1.45	78.34	5.039	229.86	8.785
.	1.02		Series 1	11	24.62	2. 78	101. 11	6.289	243.30	8.858
35 1.	1. 02			1	30.59	5, 34	109, 13	6.641	257. 41	8.910
529. 75 1. 03	1.03		15.62	9,6 × 10 4	33,31	6.77	119.50	7.061	271.75	8.94
538.35 1.04			18.3	1.5	41.27	1. 138 x 10°	140.06	7.632	303, 33	3.06
548.05 1.04	1.9		19.40	1.76	44.99	1, 369	150.95	7, 824		
556.95 1.04	: 2		20, 53	2.13	48.62	1, 585	160, 44	8.026		
≓ ,	3		21.90	2. 65	54.98	1.980	169, 29	8, 153		
-	 5		23. 43	3, 34	64. 57	2, 568	190.71	8. 424		
٠,	7		23. 49	3.34	78.34	3, 220	199, 99	8. 547		
602. 65 1. 04	7		25.46	4. 25	89.99	3, 673	220, 22	8, 699		
55 1.	3		27.55	5.52	101. 11	4.019	233, 33	8.818		
613.75 1.04	3 :		29.82	7.06	109, 13	4. 244	243.67	8, 865		
625. 75 1. 05	1.05		32.51	9.01	119.50	4.512	256.00	8.948		
CITEVE 91*			23.00	1. 30 x 10 -	140 06	4.013	266. 64	8, 979		
			59.84	3 403	150.06	5.000	279.86	9. 034		
336.85 9.8 x 10-2	9.8 x 10-7		71. 71	4.391	160.44	5, 129	7 .007	600.6		
65 9.8	8.6		79.85	4. 977	169, 29	5, 210	CIRVE 24*	E 24*		
375.05 9.9	9.9		89. 56	5.614	190. 71	5,383				
385.15 9.9	6.6		99.86	6, 179	199, 99	5, 462	15, 94	1.0 x 10 ⁻³		
396.35 9.9	6.6		109.94	6.647	220, 22	5, 559	18, 25	1.87		
တ်			119, 72	6.970	233, 33	5, 635	21.05	2.98		
ன் (128. 90	7. 254	243. 57	5, 665	2.3. 26	4.19		
429.45 9.9			140 50	7. 532	256.00	5, 718	26.56	6.36		
25 9.			159.88	7. 934	279 86	5 773	39.65	1 12 × 10 -		
6			169, 81	8, 108	298, 17	5, 795	35, 82	1.42		
476.35 9.9	9.9		179.74	8, 263			39, 15	1, 739		
တ်	9.9		190, 22	8, 375	CURVE	23*	43, 01	2, 124		
6	9.9		200, 31	8.477			47.47	2, 576		
503. 25 1. 00 x 10 ⁻¹	1.00 x 10	7_	228.33	8, 753	16.92	1, 2 × 10 ⁻³	55.88	3, 394		
ď	1.00		240, 33	8, 836	17, 33	1.4	61.99	3,962		
ī	1.01		250, 59	8.899	18.50	1,64	70.57	4, 679		
ij	1.02		260, 22	8.977	20.26	2, 27	76.80	5, 146		
<u>-</u>	1.02		270.08	8, 983	21.96	2, 99	86, 73	5, 765		
95 1.	1.03		279.78	9.007	24. 62	4, 35	94. 83	6, 192		
553.95 1.03	1.03		301, 19	9, 103	30, 59	8.36 x 10 ⁻²	108.02	6.767		
ï	1.02				33.31	1.06	121, 17	7. 214		
					37,38	1.41	148.94	7.881		

*Not shown on plot

SPECIFICATION TABLE NO. 88 SPECIFIC HEAT OF GOLD + NICKEL Au + Ni

[For Data Reported in Figure and Table No. 88]

Composition (weight percent), Specifications and Remarks	78. 24 Au, 21. 76 Ni; machined filings nomogenized by heating several hrs at approx 900 C and water quenched.	99. 95 Aug 3Nig, 16; homogenized for more than one wk at temperatures above 50 C.	78.24 Au, 21.76 Ni; machined filings homogenized by heating several hrs at approx 900 C and water quenched.
Name and Specimen Designation			
Reported Error, %			
Temp. Range, K	12-299	800-1250	21-299
Year	1955	1962	1955
Surve Ref. No. No.	226	227	226
Curve No.	1	8	က

DATA TABLE NO. 88 SPECIFIC HEAT OF GOLD + NICKEL Au - Ni

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}\,K^{-1}$,

SPECIFICATION TABLE NO. 89 SPECIFIC HEAT OF HAFNIUM + ZIRCONIUM Hf + Zr

[For Data Reported in Figure and Table No. 89]

	Composition (weight percent), Specifications and Remarks	99.0 Hf; 1 max Zr, 0.1 max Ti + Si, 0.01 max Fe + V + Cu, and 0.0001 max Mg; density = 815 lb ft ⁻³ .
Name and	Specimen Designation	
Reported	Error, %	3.0
Temp.	Range, K	534-1884
	rear	1961
Ref.	No. No. rear	146
Curve	No.	-

DATA TABLE NO. 89 SPECIFIC HEAT OF HAFNIUM + ZIRCONIUM Hf + Zr

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

ပ်	/E 1		014			526	1.047 x 10 ⁻¹	228								
H	CURVE	533	009	688	798	869	696	1163	1237	1320	1472	1552	1628	1799	1883	

SPECIFICATION TABLE NO. 90 SPECIFIC HEAT OF INDIUM + TIN In + Sn

[For Data Reported in Figure and Table No. 90]

Composition (weight percent). Specifications and Remarks	51. 95 In, 48. 05 Sn; prepared by melting 99. 99 In and 99. 998 Sn under reducting atmosphere of N ₂ plus H ₂ .
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	393-758
Year	1962
Ref.	392
Curve No.	1

SPECIFICATION TABLE NO. 91 SPECIFIC HEAT OF LEAD + TIN Pb + Sn

[For Data Reported in Tigure and Table No. 91]

ķs.	
Specifications and Remari	
Composition (weight percent), Specifications and Remarks	60 Sn, 40 Pb.
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	1.5-20
Year	1963
Ref.	393
Curve No.	٦

DATA TABLE NO. 91 SPECIFIC HEAT OF LEAD + TIN Pb + Sn

[Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹]

တ္	<u>/E 1</u>	869	663 x	3, 357												
۲	CURVE	1.5	2.0	2.5	3.0	3.5	4.0	5.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0

SPECIFICATION TABLE NO. 92 SPECIFIC HEAT OF LITHIUM + MAGNESIUM Li + Mg

[For Data Reported in Figure and Table No. 92]

Composition (weight percent), Specifications and Remarks	96.74 Li, 3.26 Mg; body centered cubic phase; prepared by heating lithium (Li sample impurities: 0.058 Ca, 0.056 K, 0.040 N, 0.017 Na, 0.008 Fe), and "spectroscopically pure" magnesium to 800 C in low carbon steel crucible.	Same as above; cooled to 20 K; annealed.	Same as above; not annealed.
Reported Name and Error, % Specimen Designation	0. 95 at. % magnesium alloy	Same as above	Same as above
Reported Error, %	0.3-2.0	0.3-2.0	0.3-2.0
Temp. Range, K	100-300	90-160	21-85
Year	228 1960	1960	1960
Surve Ref. Year No. No.	228	228	228
Curve No.	4	2	က

DATA TABLE NO. 92 SPECIFIC HEAT OF LITHIUM + MAGNESIUM Li + Mg

[Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1]

T C _p	1. 952 x 10 ⁻¹ 2. 262 2. 564 2. 869 3. 170 3. 467
TCURV	0 9 0 2 2 2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
C _p	4. 256 × 10 ⁻¹ 5. 079 5. 079 6. 082 6. 045 6. 045 7. 089 7. 089 7. 513* 7. 513* 7. 982* 7. 982* 8. 204* 8. 218
T	100 110 120 130 140 150 150 170 190 220 220 230 240 250 250 270 270 290 290 298. 15 300

7		4.021								
CON	8	92	100	110	120	130	140	150	160	

2	1.56 x 10-2	2. 43	4.01	%	56	1.08 x 10 ⁻¹	1.35	1 246
CORVE	21	25	30	35	40	45	S	u

^{55 1.646} * Not shown on plot

SPECIFICATION TABLE NO. 93 SPECIFIC HEAT OF MAGNESIUM + SILICON $M_{m{g}} + S_1$

[For Data Reported in Figure and Table No. 93]

Reported Name and Error, % Specimen Designation (weight percent), Specifications and Remarks	99.80 Mg, 0.20 Si.
Temp. Range, K	190-300
Year	1960
Ref. No.	49
Curve No.	٦

DATA TABLE NO. 93 SPECIFIC HEAT OF MAGNESIUM + SILICON Mg + Si

[Temperature, T, K; Specific Heat, C_p , $Cal\ g^{-1}\ K^{-1}$]

ပ္	CURVE 1	2, 188 x 10 ⁻¹	2. 227	2, 260	2, 290	2.31k	2, 338	2,359	2.379	2.415	2, 443
H	5	190	200	210	220	230	240	250	260	280	300

SPECIFICATION TABLE NO. 94 SPECIFIC HEAT OF MANGANESE + ALUMINUM Mn + AI

[For Data Reported in Figure and Table No. 94]

					L'or Data nepo	Live Late helpotted in righte and lable No. 34
Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	229	1958	1010-1283		A-47	64. 4 Mn, 35. 6 Al; prepared from desired proportions of 99. 9 Mn and 99. 99 Al; melted in an induction furnace; annealed for 1 hr at 950 C; slowly cooled to 700 C; annealed again at 950 C for 5 hrs then slowly cooled to room temperature in a vacuum.
64	229	1958	970-1208		A-48	65.3 Mn, 34.7 Al; same as above.
င	229	1958	972-1272		0-49	66.30 Mn, 33.70 Al; same as above.
4	229	1958	970-1233		A-50	69. 1 Mn, 32. 90 Al; same as above.
49	229	1958	1045-1258		A-51	69.0 Mn, 31.0 Al; same as above.
9	229	1958	970-1270		A-52	68.8 Mn, 31.2 Al; same as above.
-	229	1958	970-1258		A-53	70.4 Mn, 29.6 Al; same as above.
•	229	1958	1033-1233		A-54	71. 4 Mn, 28. 6 Al; same as above.
9	229	1958	970-1258		A-55	71.8 Mn, 28.2 Al; same as above.
10	229	1958	1020-1260		A-56	73.2 Mn, 26.8 Al; same as above.
7	229	1958	970-1283		A-57	73.4 Mn, 26.6 Al; same as above.
12	229	1958	970-1283		A-58	73.7 Mn, 26.3 Al; same as above.
ដ	229	1958	970-1295		A-59	77.0 Mn, 23.0 Al; same as above.
14	229	1958	970-1308		A-60	77.3 Mn. 22.7 Al; same as above.
15	229	1958	993-1189		A-49. 5	66.30 Mn, 33.70 Al; same as above.
16	229	1958	1040-1189		A-50.5	67. 1 Mn, 32. 90 Al; same as above.

DATA TABLE NO. 94 SPECIFIC HEAT OF MANGANESE + ALUMINUM Mn + Al

DATA TABLE NO. 94 (continued)

	10-1	10-1		4	
C _p 13 (cont.)	1,490 x 10-1 1,490 1,512* 1,490 E 14	2. 005 2. 207 2. 095 2. 095	2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2. 230 6. 336 7. 678 7. 678 4. 180 8. 324 8. 324 8. 739 8. 739	3,401 3,153 2,153 2,162 2,162 1,712 1,712 1,712 1,712
T Cp	1258, 15 1270, 65 1283, 15 1295, 65 CURVE	970.65 983.15 995.65 1008.15 1020.65 1033.15	1058.16 1070.65 1070.65 1083.15 1095.65 1103.15 1133.15 1145.65 1158.15 1170.65	1195. 65 1203. 15 1203. 15 1204. 15 1210. 65 1218. 15 1230. 65 1238. 15 1243. 15 1243. 15	1248.15 1250.35 1255.65 1255.65 1256.15 1260.65 1270.65 1295.65 1295.65
C _p	1. 692 x 10-1 1. 576 1. 692 1. 692 1. 715	1. 806 x 10 ⁻¹ 1. 806 x 10 ⁻¹ 1. 806 x 10 ⁻¹ 1. 806 x 10 ⁻¹ 1. 808 x 10 ⁻¹ 1. 808 x 10 ⁻¹	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6. 96 6. 96 6. 96 6. 96 6. 96 6. 96 6. 96 6. 96 6. 96 9. 96
T C _p	1233.15 1245.65 1258.15 1270.65 1283.15	970.65 983.15 995.65 1008.15 1020.65	1045, 55 1058, 15 1083, 15 1090, 65 1093, 15 1098, 15 1100, 65 1103, 65	1108, 15 1110, 65 1113, 16 1120, 65 1133, 15 1140, 65 1145, 65 1148, 15	1155, 15 1158, 15 1160, 65 1160, 65 1170, 65 1183, 15 120, 65 1220, 65 1245, 65
C _p	4. 149 x 10 ⁻¹ 5. 911 1. 970 2. 063 2. 063	2. 086 2. 179 2. 179 2. 133 3. 183	2. 967 2. 967 3. 639 3. 083 2. 990 3. 093 3. 199 3. 245	3. 570 3. 964 3. 523 3. 686 4. 941 5. 795 5. 957	5, 192 5, 1937 5, 1937 6, 1938 6, 1938 6, 080 3, 199 1, 947
T C _p	928.15 938.15 970.65 983.15 995.65			1113, 15 1115, 65 1118, 15 1120, 65 1123, 15 1125, 65 1135, 65 1140, 65	
, c	2. 253 x 10 ⁻¹ 2. 229 2. 253 2. 299 2. 299 2. 3946	2. 415 2. 462 2. 485 2. 601 2. 624 2. 624	2. 694 4. 412 2. 992 2. 671 2. 717 3. 208	7. 4. 714 6. 874 6. 386 6. 038 6. 038 5. 783 5. 762 6. 071	
T CURVE 11*	970.65 983.15 995.65 1006.15 1033.15	1058, 15 1070, 65 1083, 15 1095, 65 1103, 15 1105, 65	1110.65 1113.15 1118.65 1118.65 1120.65 1123.15 1128.15 1133.15 1133.15	1140, 65 11440, 65 1150, 65 1155, 65 1158, 65 1160, 65 1160, 15 1170, 15 1183, 15	1220.65 1. 1220.65 1. 1233.15 1. 1245.65 1. 1270.65 1. 1283.15 1. CURVE 12*
C _p	1, 655 × 10 ⁻¹ 1, 678 1, 702 1, 632 1, 632	10* 2. 100 x 10 ⁻¹ 2. 100 2. 217 2. 193 2. 263	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.753 2.766 2.706 1.937 1.727 1.727 1.703
T Cp CURVE 9 (cont.)*	1196. 65 1208. 15 1220. 65 1233. 15 1245. 65 1258. 65	CURVE 10** 1020. 65 2; 1033, 15 2; 1045, 65 2; 1058, 15 2; 1070, 35 2;	1083.15 1095.65 1103.15 1108.15 1110.65 1113.15 1115.65 1120.65	1123, 15 1123, 15 1130, 65 1133, 15 1148, 15 1150, 65 1153, 65 1153, 65 1153, 65 1150, 65	1163. 15 1165. 65 1173. 15 1185. 65 1198. 15 1210. 65 1223. 15 1248. 15 1248. 15
C _p	2. 364 x 10 ⁻¹⁴ 2. 033* 1. 797 1. 820* 1. 797* 1. 797*		2 2 4 1 1 2 2 4 1 1 1 1 2 2 4 1 1 1 1 1	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2	6.154 4.429 3.193 3.193 2.890 2.681 2.681 1.968 1.1968
T CURVE 8 (cont.)	1160, 65 1163, 15 1170, 65 1183, 15 1195, 65 1206, 15	1233. 15 CURVE 970. 65 983. 15 995. 65	1008.15 1020.65 1020.65 1045.65 1070.65 1083.15 1103.15 1106.65 1108.15	111.00 111.00 111.00 112.00 112.00 112.00 113.00 113.00 113.00 113.00	1145, 15 1148, 15 1150, 65 1153, 15 1153, 15 1158, 15 1160, 65 1163, 15 1183, 15

Not shown on plot

1.867 x 10⁻¹
2.211*
2.580
7.371
1.990*

993.15 1040.15 1089.15 1108.15 1138.15

C_P

CURVE 15

2.442 x 10⁻¹ 2.906 2.784 2.027 2.051

1040.15 1089.15 1127.15 1139.15

CURVE 16

SPECIFICATION TABLE NO. 95 SPECIFIC HEAT OF MANGANESE + COPPER Mn + Cu

[For Data Reported in Figure and Table No. 95]

	Composition (weight percent), Specifications and Remarks	83 Mn, 17 Cu; prepared by melting Analar grade manganese and copper together in argon arc furnace.	61.6 Mn, 38.4 Cu; same as above.	. 77.5 Mn, 22.5 Cu; same as above.
	Name and Specimen Designation	Cu-Mn alloy 85 at. % Mn	Cu-Mn alloy 65 at. % Mn	Cu-Mn alloy 80 at. % Mn
	Reported Error, %			
	Temp. Range, K	79-386	79-307	79-320
	Year	1961	1961	1961
	Surve Ref. No. No.	230	230	230
I	Curve No.	-	8	ო

DATA TABLE NO. 95 SPECIFIC HEAT OF MANGANESE + COPPER Mn + Cu

Cal g -1 K -1]

H	ပ်ံ	H	တိ	H	ဝီ	
5	CURVE 1	CURVE	CURVE 2 (cont.)	CURVE	CURVE 3 (cont.)	
79	5. 450 x 10 ⁻² 6. 322	291	1.145 x 10 ⁻¹	270	1.288 x 10 ⁻¹ 1 318	
108	7.373	;				
121	8.014	CURVES	/E 3			
5	9. 457	Series 1				
181	1. 044 × 10 -					
973	1.118	£ 6	5.467 x 10-1			
223	1 250	3	7 070			
287	1.288	115	676.7			
292	1, 286	127	8, 602			
305	1.325	132	8, 833			
310	1.336*	157	9,671			
321	1,384	191	9.991			
326	1.446	181	1.047*			
331	1.475	204	1,099			
334	1.524*	218	1, 134*			
335	1.587	223	1.150			
337	1.647*	240	1 181			
339	1. 799	250	1.215*			
341	1,583	262	1.264			
342	1.489*	281	1.243*			
342	1.423*	261	1.289*			
346	1.343	264	1.297*			
35.	1,305*	265	1.305			
362	1.298*	268	1.305*			
366	1, 284	273	1. 273*			
374	1, 297*	275	1.254*			
386	1, 284	285	1.218			
		287	1.228*			
COL	CURVE 2	295	1. 222*			
		299	1.215*			
79	5.389 x 10-4	300	1, 207			
2	5. 699	306	1, 215*			
92	6. 287	304	1.213*			
66	6.788	310	1, 209*			
100	7.340	320	1. 225			
121	7.962*	314	1. 220*			
135	8, 515	294	1, 231			
145	8, 377	286	1. 234*			
156	9, 240					
169	9.637	Carles 9*	*0*			
178	9.862					
197	1.028 x 10-1	256	1.259 x 10-t			
221	1.060	266	1.318			
77	1,093	272	1.279			
260	1 117	i				
Z-mar	7117					

SPECIFICATION TABLE NO. 96 SPECIFIC HEAT OF MANGANESE + NICKEL Mn + Ni

[For Data Reported in Figure and Table No. 96]

Composition (weight percent), Specifications and Remarks	75 Mn, 25 Ni; annealed under He + 8% H ₂ gas atmosphere at 1000 C for 72 hrs; etched with 30-50% HNO ₃ .	60 Mn, 40 Ni; annealed under He + 8% H ₂ gas atmosphere at 980 C for 72 hrs; etched with 30-50% HNO ₃ .
Name and Specimen Designation	Ni(25) Mu(75)	Ni(40) Mn(60)
Temp. Reported Range, K Error, %	>2	×2
Temp. Range, K	1.4-4.3	1.54.3
Year	1962	1962
Surve Ref. Year No. No.	349	349
Curve No.	7	81

DATA TABLE NO. 96 SPECIFIC HEAT OF MANGANESE + NICKEL Mn + Ni

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1} K^{-1}$]

o ^{ca}	2 (cont.)	5, 599 x 10 4 3, 840 9, 223 9, 625	
•	CURVE 2	3. 883 3. 995 4. 136 4. 293	
o ^a	E 1	4. 862 x 10 ⁴ 5. 070 * 5. 091 * 5. 351 5. 623 6. 4703 * 6. 410* 6. 880 6. 993 7. 353 7. 353 7. 353 7. 354 1. 106 * 1. 106 * 1. 106 * 1. 107 1. 371 1. 417 * 1. 499	3.306 x 10 4 3.306 x 10 4 3.5401 3.860 x 4.184 4.486 4.746 5.044 5.947 7.100 7.336 7.726 8.174
•	CURVE	1. 422 1. 510 1. 510 1. 587 1. 587 1. 676 1. 829 2. 239 2. 239 2. 239 2. 239 3. 313 3. 313 3. 313 3. 313 4. 115 4. 115	CURVE 1.481 1.542 1.644 1.785 1.785 1.785 2.289 2.432 2.432 2.767 2.767 3.397 3.397 3.397

SPECIFICATION TABLE NO. 97 SPECIFIC HEAT OF MOLYBDENUM + TITANIUM Mo + Ti

[For Data Reported in Figure and Table No. 97]

Composition (weight percent), Specifications and Remarks	Helium atmosphere.	Mo - 0.5 Ti - 0.08 Zr Alloy Climax molybdenum, bat. Mo, 0.5 Ti, 0.07 Zr, 0.0290 C, <0.005 Si, <0.002 Fe, <0.001 Ni, 0.0005 Os, 0.0001 Hs; density = 622 lb ft-3
Name and Specimen Designation	0.5% Ti alloy of Mo	
Reported Error, %	0.7-2.9	±5.0
Temp. Range, K	700-1810	475-2697
Year	1960	1963
No. No.	231	232
Curve No.	4	N
Cun.	-	8

DATA TABLE NO. 97 SPECIFIC HEAT OF MOLYBDENUM + TITANIUM Mo + Ti

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T CPP

CURVE 1

700 6.00 x 10⁻²
1144 7.30
1366 7.30
1316 7.30
1589 8.60
1811 9.20

CURVE 2

475 6.484 x 10⁻²
481 6.485 8.60
537 6.486 8.65
539 6.512 6.496 8.65
539 6.512 6.597 8.81
1134 6.987 8.81
1134 6.987 8.81
1135 7.016 8.1
1136 7.218
1136 7.218
1136 7.328 8.1
1136 7.337 8.1
1136 7.412
1136 7.412
11490 7.434 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.061 8.1
1694 8.062 8.062 8.063
1699 8.063 8.063
1699 8.063 8.063
1699 8.063 8.063
1699 8.063 8.063
1680 8.550
2091 1.023 x 10⁻¹
2522 1.074

Not shown on plot

ing the second

SPECIFICATION TABLE NO. 98 SPECIFIC HEAT OF MOLYBDENUM + TUNGSTEN Mo + W

[For Data Reported in Figure and Table No. 98]

fications and Remarks	Harman Salar
Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation	
Reported Error, %	34
Temp. Range, K	
Year	
No.	
No.	

ပ္

553 866 1001 11110 111196 11350 11434 1143

SPECIFICATION TABLE NO. 99 SPECIFIC HEAT OF NICKEL + ALUMINUM, Ni + Al (NiAl)

[For Data Reported in Figure and Table No. 99]

Composition (weight percent), Specifications and Remarks	64.96 Ni, 35.04 Al; prepared from Aluminum Co. of America sample with 99, 99 Al. 0.002 Cu, 0.002 Fe, 0.001 Si; and Vacuum Metals Corp sample with 99.90 Ni, 0.12 Co. 0.005 C, 0.001 N _p . 0.001 S, 0.001 P, 0.001 Mg, 0.005 Si, 0.005 Cu, 0.010 Fe, 0.010 Fe, 0.001 Mn, 0.010 Ca, 0.010 Np, 0.005 Al; alloys formed quenched to room temperature; annealed 3 days at 850–900 C under helium; then brought to room temperature from 6-8 hrs.	67. 64 Ni, 32.36 Al; same as above.	69. 37 Ni, 30. 63 Al; same as above.	71.05 Ni, 28.95 Al; same as above.	73.47 Ni, 26.53 Al; same as above.	95. 20 Ni, 4. 72 Al; annealed under He + 8% H ₂ gas atmosphere at 1200 C for 72 hrs; etched with 30 ml HNO ₂ and 20 ml CH ₂ COOH.
Name and Specimen Designation						Ni(92) AJ(8)
Reported Error, %	0.	0.5	0.5	0.5	0.5	52
Temp. Range, K	1.84.9	1.6-4.9	1.6-5.3	1.9-5.0	1.9-5.8	1.4-4.2
Year	1959	1959	1959	1959	1959	1962
Ref.	#	38	394	385	38	349
Curve Ref. Yo.	-	0	6	•	10	•

DATA TABLE NO. 99 SPECIFIC HEAT OF NICKEL + ALUMINUM Ni + Al

Cal g -1 K -1]
တ်
Heat,
Specific
¥
H
[Temperature,

ပ္ခံ	6 (cont.)	1.131 x 10 +	1 247	1.302	349	1.397	1, 446																																				
۲	CURVE	3. 432	2, 30	3 882	4.009	4.119	4, 242																																				
o ^d	4	7.722 x 10-6	0.100	1.027 x 10-4	1.148	1. 273	1.417	1. 567	1.714	1.869	2.049	2. 233	2. 436	7.5 5		4.711 x 10-6	8.673	1.741 x 10~	1.897	2. 220	2. 559	3.323	3, 786		/E 6		4.728 x 10	5. 035	5, 262*	5.384	5, 790	6. 205	6. 523	6.891	7.218	7.6967	8.091	20.00	8.912	9.392	5. 505 - 10 A	1. 05. X 10 .	
H	CURV	1.955	202.202	2, 567	2.832	3.106	3.384	3.658	3.928	4. 201	4.492	4. 757	5. 030	CUR		1.898	2. 562	3.573	3.808		5.048	5, 428	5. 824	1	CUR	,	1.443	1. 486	1.616	1.668	1, 795	1.925	2. 037	2. 136	2. 239	2.382	2.511	2.632	2. (31	2.004		3.209	;
ပီ	VE 1	5. 000 x 10-6	7 259	8. 204	8.991	1.071 x 10~	1, 152	1.255	1.361	1.470	1.618			5.312 × 10-6	6. 060	6.920	7.757	8. 552	40.00 40.00	1 012 4 10 4	1.068	1.148	1.262	1.352	1. 502	1.607	1.726	7, 861	VE 3	1	6. 209 x 10-6	7.015	7. 933	8.961	1.006 x 10	I. 122	1.261	1.420	1. 555	1 953	2 122	102	STANFO
H	COUR	1.791	200	2.812	3.084	3, 439	3.704	4.053	4.358	4. 633	4. 896		COR	1.637	1.881	2. 138	2. 401	2. 618	2. 692	200.5	3, 130	3,388	3, 658	3.849	4.114	4.378	4.637	. 000	COR		1.664	1.883	2.144	7.	2.698	2. 978	2000			4.620	4 936	200	
	Cp T Cp T	CURVE 1 CURVE 4 CURVE 6 (c	URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432	Cp T Cp T CURVE 4 CURVE 6 CURVE 6 CURVE 6 CURVE 6 S.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.600 x 2.202 8.788 3.567 3.567	Cp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁴ 1.955 7.722 x 10 ⁴ 3.432 5.000 x 10 ⁴ 1.955 7.722 x 10 ⁴ 3.432 5.009 2.202 8.788 3.567 7.259 2.466 9.834 3.723 8.204 2.567 1.027 x 10 ⁴ 3.823	Cp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁶ 1.955 7.722 x 10 ⁻⁶ 3.432 5.000 x 10 ⁻⁶ 2.202 8.788 3.567 7.259 2.466 9.834 3.723 8.204 2.567 1.027 x 10 ⁻⁴ 3.882 8.391 2.832 1.488 4.003	Gp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.009 2.202 8.788 3.567 7.259 2.466 9.834 3.723 8.204 2.567 1.027 x 10 ⁻⁴ 3.882 8.991 2.862 1.148 4.009 1.071 x 10 ⁻⁴ 3.166 1.273 4.119	URVE 1 CURVE 4 CURVE 6 5,000 x 10 ⁴ 1,955 7,722 x 10 ⁴ 3,432 5,000 x 10 ⁴ 2,202 8,788 3,557 7,259 2,466 9,834 3,723 8,204 2,567 1,027 x 10 ⁴ 3,882 8,991 2,832 1,148 4,009 1,071 1,10 ⁴ 3,384 1,417 4,242	Gp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁶ 1.955 7.722 x 10 ⁻⁶ 3.432 5.000 x 10 ⁻⁶ 1.955 7.722 x 10 ⁻⁶ 3.432 7.299 2.202 8.788 3.567 7.299 2.466 9.834 3.723 8.204 2.832 1.027 x 10 ⁻⁶ 3.882 8.991 2.832 1.148 4.009 1.071 x 10 ⁻⁶ 3.364 1.273 4.119 1.255 3.658 1.567 4.242	Cp T Cp T URVE 1 CURVE 4 CURVE 6 T 5.000 x 10 ⁻⁶ 1.955 7.722 x 10 ⁻⁶ 3.432 5.000 x 10 ⁻⁶ 2.202 8.788 3.567 7.259 2.466 9.834 3.723 8.904 2.567 1.027 x 10 ⁻⁶ 3.882 8.991 2.832 1.148 4.009 1.071 x 10 ⁻⁶ 3.384 1.417 4.242 1.361 3.928 1.714 4.242	Cp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 2.202 8.788 3.567 7.259 2.266 9.834 3.723 8.991 2.857 11.027 x 10 ⁻⁴ 3.882 8.991 2.832 11.48 4.099 1.071 x 10 ⁻⁴ 3.384 1.417 4.242 1.255 3.68 1.567 4.242 1.256 1.714 4.242 1.470 4.201 1.869	Cp T Cp T S.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 2.202 8.788 3.567 7.259 2.266 9.834 3.723 8.204 2.567 1.027 x 10 ⁻⁴ 3.882 8.991 2.366 1.148 4.009 1.071 x 10 ⁻⁴ 3.106 1.273 4.119 1.152 3.384 1.417 4.242 1.255 3.588 1.567 4.242 1.470 4.242 1.714 4.242 1.618 4.492 2.049	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7. 722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 567 7. 259 2. 466 9. 834 3. 723 8. 204 2. 567 1. 027 x 10 ⁻⁶ 3. 882 8. 204 2. 857 1. 027 x 10 ⁻⁶ 3. 882 1. 071 x 10 ⁻⁶ 3. 1148 4. 109 1. 152 3. 364 1. 417 4. 242 1. 255 3. 658 1. 567 1. 361 3. 928 1. 714 1. 470 4. 202 2. 049 1. 618 4. 492 2. 049 1. 618 4. 757 2. 233	Cp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 2.202 8.788 3.567 7.259 2.466 9.834 3.723 8.204 2.567 1.102 x 10 ⁻⁴ 3.882 8.991 2.366 1.273 4.109 1.071 x 10 ⁻⁴ 3.106 1.273 4.119 1.155 3.384 1.417 4.242 1.255 3.588 1.567 4.199 1.470 4.292 2.049 1.618 4.492 2.233 URVE 2 5.030 2.436	Cp T Cp T URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 2.202 8.788 3.557 7.259 2.266 8.78 3.557 8.991 2.857 1.027 x 10 ⁻⁴ 3.882 1.071 x 10 ⁻⁴ 3.106 1.273 4.119 1.152 3.384 1.417 4.242 1.361 3.958 1.714 4.242 1.361 3.958 1.714 4.242 1.470 4.201 1.869 4.492 2.049 1.618 4.757 2.233 4.757 2.233 5.332 x 10 ⁻⁴ 5.030 2.436 2.436	Gp T Cp T CURVE 1 5.000 × 10 ⁻⁶ 1.955 7.722 × 10 ⁻⁶ 3.432 5.000 × 10 ⁻⁶ 1.955 7.722 × 10 ⁻⁶ 3.432 7.23 7.23 8.204 8.204 8.204 1.529 1.551 1.52 3.404 1.218 1.255 3.658 1.273 4.119 1.255 3.658 1.714 1.274 4.242 1.361 3.928 1.714 4.242 1.361 4.757 2.233 URVE 2 5.030 2.436 6.060	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7. 722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 1. 955 7. 722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 723 7. 259 2. 466 9. 834 3. 723 8. 204 2. 832 1. 148 4. 009 1. 071 x 10 ⁻⁶ 3. 106 1. 273 4. 119 1. 152 3. 106 1. 273 4. 119 1. 255 3. 658 1. 567 1. 470 4. 201 1. 869 1. 618 4. 492 2. 049 6. 920 1. 898 4. 711 x 10 ⁻⁶ 6. 920 1. 898 4. 711 x 10 ⁻⁶	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 567 7.259 2. 466 9. 834 3. 723 8. 991 2. 466 9. 834 3. 723 8. 991 2. 832 1. 148 4. 009 1. 152 3. 364 1. 417 4. 242 1. 361 3. 928 1. 714 4. 212 1. 361 3. 928 1. 714 4. 242 1. 361 4. 70 1. 898 1. 714 1. 470 4. 201 1. 869 1. 618 4. 492 2. 233 4. 757 2. 233 4. 757 2. 562 8. 673	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 567 7.259 2. 466 9. 834 3. 723 8. 991 1.071 x 10 ⁻⁶ 2. 267 1. 027 x 10 ⁻⁶ 3. 882 1.071 x 10 ⁻⁶ 3. 106 1. 273 1.152 3. 364 1. 417 4. 242 1. 361 3. 928 1. 714 1. 470 4. 201 1. 869 1. 618 4. 757 2. 233 4. 757 2. 233 4. 7757 2. 562 8. 673 8. 552 3. 573 1. 741 x 10 ⁻⁶ 8. 552 3. 573 1. 741 x 10 ⁻⁶ 8. 552 3. 573 1. 741 x 10 ⁻⁶ 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9. 500 9.	Cp T Cp T Cp T T Cp T T CDRVE 6 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 8.901 2. 202 8. 788 3. 567 1.071 × 10 ⁻⁶ 2. 266 9. 834 3. 723 1.152 3. 106 1. 273 1.152 3. 368 1. 477 1.361 3. 928 1. 714 1.470 4. 201 1. 869 1.618 4.757 2. 233 4.757 2. 233 4.757 2. 436 5.312 × 10 ⁻⁶ 7. 722 × 10 ⁻⁶ 3. 436 6.920 1. 898 4. 711 × 10 ⁻⁶ 6.920 1. 898 4. 711 × 10 ⁻⁶ 8.954 3. 805 1. 741 × 10 ⁻⁶ 8.954 3. 806 1. 897	Cp T Cp T Cp T CP T CP T T CP T T T CP T T T T T T T	Cp T Cp T Cp T CPRVE 4 5.000 x 10 ⁻⁴ 1. 955 7.722 x 10 ⁻⁴ 3. 432 5.000 x 10 ⁻⁴ 1. 955 7.722 x 10 ⁻⁴ 3. 432 5.000 x 10 ⁻⁴ 2. 202 8. 788 3. 557 7.259 2. 202 8. 788 3. 723 8. 991 1. 152 3. 364 1. 417 4. 009 1. 071 x 10 ⁻⁴ 3. 106 1. 273 1. 155 3. 658 1. 567 1. 470 4. 201 1. 869 1. 618 4. 492 2. 049 4. 757 2. 269 6. 920 1. 898 4. 711 x 10 ⁻⁴ 6. 920 1. 898 4. 711 x 10 ⁻⁴ 6. 920 1. 898 4. 711 x 10 ⁻⁴ 8. 552 8. 673 8. 552 8. 673 1. 068 5. 048 7. 2. 255 1. 068 7. 048 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Cp T Cp T Cp T Cp T C CURVE 1 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 5.000 × 10 ⁻⁶ 1. 955 7.722 × 10 ⁻⁶ 3. 432 7.259 2. 266 9. 834 3. 723 8.204 2. 567 1.027 × 10 ⁻⁶ 3. 862 8.204 2. 832 1.148 4.009 1. 671 × 10 ⁻⁶ 3. 928 1. 714 1. 255 3. 658 1. 567 1. 361 4. 201 1. 869 1. 618 4. 757 2. 233 GRVE 2 5. 030 2. 436 5. 030 2. 436 5. 030 2. 436 6. 060 6. 920 1. 898 4. 711 × 10 ⁻⁶ 6. 920 1. 898 4. 711 × 10 ⁻⁶ 8. 954 3. 807 1. 741 × 10 ⁻⁶ 8. 954 3. 807 1. 741 × 10 ⁻⁶ 9. 615 4. 249 2. 255 1. 013 × 10 ⁻⁶ 5. 628 1. 489 5. 428 3. 323 1. 488 5. 428 3. 323 1. 488 5. 428 3. 323 1. 488 5. 428 3. 323	Cp T Cp T Cp T C CURVE 4 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 7 CURVE 7 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURV	Cp T Cp T Cp T Cp T T Cp T T Cp T T Cp T T Cp T T T T	CP T CP T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5. 609 7. 259 8. 799 1. 259 1. 152 1. 152 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 361 1. 362 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 362 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364 1. 364	CP T CP T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7. 722 x 10 ⁻⁶ 3. 432 8. 509 1. 723 8. 509 1. 55 1. 55 1. 152 1. 152 1. 155 1. 384 1. 470 1. 4. 201 1. 869 1. 618 2. 312 x 10 ⁻⁶ 3. 10 6 6. 900 1. 898 4. 711 x 10 ⁻⁶ 3. 10 6 6. 900 1. 898 4. 711 x 10 ⁻⁶ 5. 312 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 4. 711 x 10 ⁻⁶ 6. 900 1. 898 6. 913 8. 954 9. 615 1. 148 9. 615 1. 168 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 648 9. 6	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 723 8.204 2. 266 8. 834 3. 723 1. 152 3. 304 2. 257 1. 148 4. 119 1. 152 3. 384 1. 417 4. 242 1. 351 1. 35 3. 368 1. 367 1. 470 4. 201 1. 869 1. 618 4. 492 2. 2049 4. 777 2. 252 8. 673 6. 920 1. 898 4. 711 x 10 ⁻⁶ 5. 312 x 10 ⁻⁶ 2. 562 8. 673 8. 552 3. 573 1. 741 x 10 ⁻⁶ 9. 615 4. 249 2. 255 1. 013 x 10 ⁻⁶ 4. 657 2. 255 1. 168 5. 428 3. 323 1. 168 5. 428 3. 323 1. 352 1. 353 2. 378 1. 362 2. 255 1. 1068 5. 468 2. 950 1. 148 5. 428 3. 323 1. 367 1. 368 1. 367 2. 559 1. 607 2. 1443 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 473 4. 728 x 10 ⁻⁶ 1. 474 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 4. 728 x 10 ⁻⁶ 1. 475 7	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 1. 955 7.722 x 10 ⁻⁶ 3. 432 5.000 x 10 ⁻⁶ 2. 202 8. 788 3. 723 8.204 2. 266 8. 834 3. 723 8.204 2. 257 1. 027 x 10 ⁻⁶ 3. 982 1. 071 x 10 ⁻⁶ 2. 266 1. 273 1. 152 3. 384 1. 417 4. 242 1. 351 1. 352 3. 368 1. 567 1. 361 3. 958 1. 714 1. 470 4. 492 2. 2049 4. 777 6. 050 6. 920 1. 898 4. 711 x 10 ⁻⁶ 5. 312 x 10 ⁻⁶ 2. 255 1. 013 x 10 ⁻⁶ 4. 249 5. 428 2. 225 1. 018 5. 428 3. 323 1. 168 5. 428 3. 323 1. 168 5. 428 3. 323 1. 166 5. 428 3. 323 1. 167	Cp T Cp T Cp T CDRVE 4 CURVE 6 CURVE 6 CURVE 6 CURVE 6 CURVE 1 S 5 6 7 7 7 2 × 10 ⁻⁶ 3. 432 5 6 7 7 2 5 8 7 8 8 3 7 2 3 8 2 5 6 7 8 8 8 2 8 2 8 7 8 8 3 7 2 3 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	Cp T Cp T CURVE 1 5.000 x 10 ⁻⁴ 1.955 7,722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 1.955 7,722 x 10 ⁻⁴ 3.432 7.259 8.204 8.204 1.071 x 10 ⁻⁴ 2.832 1.148 8.991 2.832 1.148 8.991 2.832 1.148 4.992 1.361 1.361 3.384 1.417 4.242 1.355 3.928 1.714 4.242 1.361 3.928 1.714 4.242 2.049 4.717 1.0 ⁻⁴ 4.492 2.233 4.717 1.0 ⁻⁴ 5.030 2.436 6.920 6.920 1.898 4.711 x 10 ⁻⁴ 5.030 2.436 6.920 1.898 4.711 x 10 ⁻⁴ 6.920 1.898 4.711 x 10 ⁻⁴ 6.920 1.898 4.711 x 10 ⁻⁴ 6.920 1.898 4.712 x 10 ⁻⁴ 6.920 1.898 4.713 x 10 ⁻⁴ 6.920 1.898 4.728 x 10 ⁻⁴ 1.968 1.352 1.068 5.048 2.255 1.013 x 10 ⁻⁴ 4.657 2.559 1.068 5.048 2.255 1.148 5.428 3.323 1.867 1.443 4.728 x 10 ⁻⁴ 1.861 1.861 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 2.852 3.344 4.728 x 10 ⁻⁴ 1.861 3.852 3.344 4.728 x 10 ⁻⁴ 1.861 3.852 3.867 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.862 3.	GP T CP T CURVE 1 CURVE 4 E 5000 x 10 ⁻⁴ 1. 955 7. 722 x 10 ⁻⁴ 9. 204 8. 204 8. 204 8. 204 1. 259 1. 152 1. 152 1. 384 1. 152 1. 361 1. 155 3. 384 4. 119 1. 155 3. 384 4. 119 1. 155 3. 384 4. 119 1. 1618 4. 492 2. 049 1. 618 4. 492 2. 049 4. 757 2. 233 URVE 2 5. 312 x 10 ⁻⁴ 5. 312 x 10 ⁻⁴ 6. 060 6. 920 1. 898 4. 711 x 10 ⁻⁴ 9. 613 8. 552 1. 148 8. 552 1. 148 8. 554 9. 618 9. 618 1. 168 1. 168 9. 618 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1. 168 1.	GP T CP T CURVE 1 CURVE 4 E. 000 × 10 ⁻⁴ 1. 955 7. 722 × 10 ⁻⁴ 3. 432 5. 609 7. 259 2. 202 8. 788 8. 204 8. 204 8. 204 8. 204 1. 152 1. 152 1. 152 1. 255 3. 384 1. 417 1. 4. 242 1. 155 3. 384 1. 417 1. 4. 242 1. 1618 4. 492 2. 2049 1. 618 4. 492 2. 2436 6. 920 1. 698 4. 757 2. 233 4. 711 × 10 ⁻⁴ 4. 249 2. 2436 6. 920 1. 698 6. 920 1. 698 6. 920 1. 698 6. 920 1. 698 6. 920 1. 898 4. 711 × 10 ⁻⁴ 6. 920 1. 898 4. 711 × 10 ⁻⁴ 6. 920 1. 1898 6. 940 1. 1898 6. 940 1. 1897 7. 1757 7. 2. 562 8. 673 8. 552 1. 1013 × 10 ⁻⁴ 4. 4657 2. 255 1. 1068 5. 048 2. 950 1. 146 5. 428 7. 786 1. 146 7. 148 7. 148 7. 148 7. 148 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7. 189 7.	GPVE 1 CURVE 4 CURVE 4 E, 000 × 10 ⁴ 1, 955 7, 722 × 10 ⁴ 3, 432 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7, 259 7	Cp T Cp T Cp T C CHAVE 1 CURVE 1	URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 5.000 x 10 ⁻⁴ 1.955 7.220 8.204 8.204 8.204 8.204 8.204 8.204 1.152 1.152 1.155 1.151 1.255 3.368 1.148 4.192 1.253 3.368 1.141 4.201 1.1618 4.492 2.049 1.417 4.242 1.361 1.618 4.492 2.049 4.711 x 10 ⁻⁴ 4.201 1.898 4.711 x 10 ⁻⁴ 6.920 6.920 1.898 4.711 x 10 ⁻⁴ 6.920 6.920 1.898 4.711 x 10 ⁻⁴ 6.920 1.988 8.954 1.068 8.954 1.143 4.728 x 10 ⁻⁴ 6.209 x 10 ⁻⁴ 1.443 4.728 x 10 ⁻⁴ 6.209 x 10 ⁻⁴ 1.955 3.384 6.209 x 10 ⁻⁴ 1.955 3.394 6.209 x 10 ⁻⁴ 1.955 3.394 6.209 x 10 ⁻⁴ 1.955 3.394 6.209 x 10 ⁻⁴ 1.955 3.394 6.205 7.218 8.961 1.006 x 10 ⁻⁴ 2.239 7.218	URVE 1 CURVE 4 CURVE 4 5.000 x 10 ^{-‡} 1.955 7.722 x 10 ^{-‡} 3.432 7.220 8.2466 9.834 1.071 x 10 ^{-‡} 2.267 1.071 x 10 ^{-‡} 3.106 1.071 x 10 ^{-‡} 3.106 1.277 1.255 3.384 1.417 4.242 1.351 1.351 1.351 2.334 1.417 4.242 1.351 1.351 2.338 1.714 3.323 0BVE 2 5.312 x 10 ^{-‡} 5.312 x 10 ^{-‡} 6.060 6.920 1.897 2.255 1.013 x 10 ^{-‡} 6.060 6.920 1.898 4.711 x 10 ^{-‡} 6.260 1.898 4.711 x 10 ^{-‡} 6.260 1.898 1.262 1.013 x 10 ^{-‡} 6.264 2.255 1.014 4.723 x 10 ^{-‡} 6.208 1.148 5.428 3.323 1.262 1.362 1.362 1.363 1.363 1.363 1.363 1.363 1.364 2.255 1.016 1.365 1.068 5.048 2.255 1.017 1.48 5.428 3.323 1.266 5.048 2.255 1.016 1.352 1.262 2.017 x 10 ^{-‡} 2.255 1.786 2.255 1.786 2.255 1.786 2.255 1.786 2.255 1.786 2.255 1.786 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.25	URVE 1 CURVE 4 CURVE 6 5.000 x 10 ⁻⁴ 1.955 7.722 x 10 ⁻⁴ 3.432 7.223 8.204 8.204 8.204 1.071 x 10 ⁻⁴ 9.834 1.152 1.152 1.152 1.152 1.152 1.153 1.153 1.154 1.155 1.154 1.155 1.157 1.255 2.049 1.1757 2.253 0.080 1.618 4.757 2.253 0.080 1.618 4.757 2.255 1.014 2.255 1.014 2.255 1.014 2.255 1.014 2.255 1.014 2.255 1.015 2.255 1.014 2.255 1.014 2.255 1.014 2.255 1.014 2.255 1.015 1.168 2.255 1.014 2.255 1.015 1.168 2.255 1.014 2.255 1.014 2.255 1.015 1.168 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 1.016 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255 2.255	URVE 1 CURVE 4 CURVE 4 CURVE 4 CURVE 4 CURVE 4 CURVE 5.000 × 10 * 1.955 5.009 2.202 8.772 × 10 * 3.422 5.009 1.071 × 10 * 2.202 8.772 × 10 * 3.422 1.071 × 10 * 3.106 1.155 1.155 1.155 3.34 1.174 1.187 1.351 1.351 1.351 1.470 4.420 1.274 4.242 1.351 1.470 4.420 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 4.242 1.744 1.744 1.744 1.744 1.744 1.744 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766 1.766	URVE 1 CURVE 4 CURVE 6 5,000 × 10 ⁻⁴ 1,259 2,265 8,394 1,725 1,159 1,209 2,205 8,394 1,171 1,151 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,402 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,403 1,	URVE 1 CURVE 4 CURVE 4 CURVE 4 CURVE 5. 000 × 10 ° 1. 955 5. 000 × 10 ° 1. 955 7. 259 8. 204 8. 204 8. 204 1. 071 × 10 ° 2. 202 8. 394 1. 152 1. 152 1. 152 1. 152 1. 152 1. 255 1. 164 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 470 4. 422 1. 489 4. 757 2. 233 4. 11 × 10 ° 4 4. 422 1. 436 6. 000 6. 900 1. 608 4. 711 × 10 ° 4 4. 422 1. 436 6. 000 1. 608 4. 423 6. 000 1. 608 4. 423 6. 000 1. 608 4. 423 6. 000 1. 608 4. 423 6. 000 1. 608 4. 423 6. 000 1. 608 4. 423 6. 000 1. 608 1. 408 1. 408 2. 255 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 744 1. 752 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1. 608 1	URVE 1 CURVE 4 CURVE 6 5, 000 x 10 ⁴ 1, 255 5, 000 x 10 ⁴ 1, 255 5, 000 x 10 ⁴ 1, 255 5, 000 x 10 ⁴ 1, 255 6, 000 x 10 ⁴ 1, 255 1, 259 1, 272 1, 259 1, 272 1, 259 1, 272 1, 259 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273 1, 273	URVE 1 CURVE 1 CURVE 2 5,000 × 10 ⁻⁴ 1, 955 1, 259 1, 220 × 10 ⁻⁴ 1, 259 1, 220 × 10 ⁻⁴ 1, 259 1, 220 × 10 ⁻⁴ 1, 259 1, 259 1, 1071 × 10 ⁻⁴ 2, 246 1, 273 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 2, 247 1, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1071 × 10 ⁻⁴ 4, 1072 × 10 ⁻⁴ 4, 1072 × 10 ⁻⁴ 4, 1072 × 10 ⁻⁴ 4, 1073 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴ 4, 1074 × 10 ⁻⁴

SPECIFICATION TABLE NO. 100 SPECIFIC HEAT OF NICKEL + CHROMIUM NI + Cr

[For Data Reported in Figure and Table No. 100]

Ref.	f. Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
233	3 1957	400-800		1.8 at. %	98.4 Ni, 1.60 Cr; prepared from 99.96 Ni, 0.002 S, 0.001 Cu, 0.003 Si, 0.03 Fe; and 99.94 Cr, 0.01 Fe. 0.001 Cu, 0.005 Mo, 0.04 Si, 0.009 Sn; alloys homogenized 2 wks at 1200 C.
233	3 1957	400-800	•	2.5 at. %	97.78 Ni, 2.22 Cr; same as above.
233	3 1957	400-800		4. 4 at. %	96.10 Ni, 3.90 Cr; same as above.
233	3 1957	400-800		11 at. %	90.13 Ni, 9.87 Cr; same as above.
8	1957	800-1500	±0.3	Nig stack out	97.81 Ni, 2.19 Cr; argon atmosphere.
20	0 1959	800-1500	±0.3	Nig secoura ass	96.09 Ni, 3.91 Cr; argon atmosphere.
20	0 1959	800-1500	±0.3	Nie serCra 1100	90.08 Ni, 9.92 Cr; argon atmosphere.
20	0 1959	800-1500	±0.3	Nig seisCra siss	98.39 Ni, 1.61 Cr; argon atmosphere.
234	1963	298-1600		Chromel P	90.0 Ni, 10 Cr; sample supplied by Hoskins Mfg. Co.
395	5 1963	338-598			90.00 Ni, 10.00 Cr; specimen slowly cooled in calorimeter from about 400 C.
395	5 1963	368-618			Same as above; specimen slowly cooled from above 200 C in calorimeter.
395	5 1963	383-843			Same as above; specimen slowly cooled in calurimeter from above 350 C.
395	5 1963	428-898			Same as above; specimen slowly cooled in calorimeter from above 600 C; held at 120 C for approx 1 hr prior to data.
395	5 1963	528-968			Same as above; specimen slowly cooled in calorimeter from above 600 C.
395	5 1963	608-938			Same as above; specimen held at 300 C for 7.5 hrs prior to data.
395	5 1963	658-928			Same as above; specimen slowly cooled in calorimeter from above 600 C.
395	5 1963	598-968			Same as above; specimen slowly cooled in calorimeter from above 600 C.
395	5 1963	338-608			80.0 Ni, 20.0 Cr; specimen slowly cooled in calorimeter from about 200 C.
395	5 1963	398-658			Same as above; apecimen slowly cooled in calorimeter from above 400 C.
395	5 1963	528-978			Same as above; specimen slowly cooled in calorimeter from above 640 C.
395	5 1963	578-978			Same as above; specimen slowly cooled in calorimeter from 700 C.
395	5 1963	628-968			Same as above; specimen slowly cooled in calorimeter from 620 C.
395	5 1963	473-953			Same as above; specimen slowly cooled in calorimeter from above 600 C.
395	5 1963	513-973			Same as above; specimen slowly cooled in calorimeter from above 600 C.
395	5 1963	358-668			95 Ni, 5 Cr; initial run of alloy homogenized at 1200 F for 1 wk prior to machining into specimen.
395	1963	238.618			Commence of the contract of th

SPECIFICATION TABLE NO. 100 (continued)

•	Composition (weight percent), Specifications and Remarks	Same as above; specimen slowly cooled in calorimeter from above 600 C.	Same as above; specimen slowly cooled in calorimeter from above 250 C.	Same as above; specimen slowly cooled in calorimeter from above 575 C.
	rted Name and r, % Specimen Designation			
	Reported Error, %			
	Temp. Range, K	896-809	578-848	896-809
	Year	1963	1963	1963
	Ref.	395	395	395
	Curve No.	27	28	82

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

DATA TABLE NO. 100 SPECIFIC HEAT OF NICKEL + CHROMIUM Ni + Cr

CURVE CURVE		CURVE 800 900 1100 1100 1100 1200 1200 1200 120		T Cp CURVE 9 (cont.) 1400 1.49 1600 1.58 CURVE 10 338.15 1.10 348.15 1.13 358.15 1.13 368.15 1.29 448.15 1.19 448.15 1.19 448.15 1.19 448.15 1.19 458.15 1.29 458.15 1.29 558.15 1.29 558.15 1.25	Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$] T C_p $CURVE 9 (cont.)$ $CURVE 10 (cont.)^*$ $CURVE 11 (cont.)^*$ 1.80^*	T Cp Calg -1 K-1 CURVE 11 (cont.)* 468.15 1.196 748.15 1.201 488.15 1.201 488.15 1.204 508.15 1.224 508.15 1.224 528.15 1.225 588.15 1.255 588.15 1.255 588.15 1.255 588.15 1.255 588.15 1.255 588.15 1.267 608.15 1.267 608.15 1.267 608.15 1.267 608.15 1.267 608.15 1.267 608.15 1.266 608.15 1.266 608.15 1.266 608.15 1.266 608.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 543.15 1.200 643.15 1.201	C C C C C C C C C C C C C C C C C C C	CURVE 13* 42* 15 438.15 1. 438.15 1. 488.15 1. 488.15 1. 558.15 1	C _p 113* 1150 × 10 ⁻¹ 1150 × 10 ⁻¹ 1155 × 10 ⁻¹ 1168 1168 1168 1168 1168 1176 1185 1185 1185 1185 1185 1185 1185 118	CURVE 13 (cont.)* 878. 15 1. 411 888. 15 1. 421 888. 15 1. 422 888. 15 1. 422 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 223 528. 15 1. 224 628. 15 1. 257 668. 15 1. 257 668. 15 1. 257 668. 15 1. 257 668. 15 1. 257 668. 15 1. 257 668. 15 1. 257 678. 15 1. 293 778. 15 1. 293 778. 15 1. 293 778. 15 1. 293 778. 15 1. 293 778. 15 1. 339 778. 15 1. 338 828. 15 1. 336 838. 15 1. 336 838. 15 1. 336 838. 15 1. 336 838. 15 1. 336 838. 15 1. 336 838.	Cp (2001L)* 1.411 x 10 ⁻¹ 1.412
1500	1. 522	700 800 1000 1200 1300	1. 195* 1. 237 1. 280* 1. 366* 1. 408* 1. 451*	398.15 408.15 418.15 428.15 448.15 458.15	1. 148 1. 165 1. 158 1. 158 1. 187 1. 180	763.15 783.15 803.15 823.15 843.15	1.324 1.360 1.406 1.391	828.15 828.15 838.15 848.15 858.15	1.403 1.403 1.395 1.406 1.413 1.403	848.15 858.15 868.15 878.15 888.15 898.15	1, 394 1, 398 1, 398 1, 397 1, 393 1, 406

DATA TABLE NO. 100 (continued)

1. 247 x 10 ⁻¹ 778 15 1. 256 x 10 ⁻¹ 578 15 1. 244 x 10 ⁻¹ 628 15 1. 267 x 10 ⁻¹ 668 15 1. 264 x 10 ⁻¹ 678 15 1. 267 x 10 ⁻¹ 678 15 1. 269 678 1. 269 678 15 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 12 1. 269 678 1. 269 678 1. 269 678 1. 269 678 1. 269 678 1. 269 1. 2	CURVE 14 (cont.)*	· (計	CURVE	g 16*	CURVE 17	17 (cont.)	CURVE 1	ур 18 (cont.)*	CURVE	CURVE 20 (cont.)*	CURVE	T CURVE 21 (cont.)*
Very color Ver	т.	407 x 10-1	658.15	1. 247 × 10-1	778, 15	1.326 x 10-1	578.15	1. 244 × 10 ⁻¹	628.15	1. 261 x 10 ⁻¹	658, 15	1. 267 x 10-1
1.45	-i -	410	668.15	1.255	788.15	1.339	588, 15	1. 254	638, 15	1. 267	668, 15	1. 265
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	507	698 15	1. 251	200 15	1.362	506.15	1.260	648.15	1. 272 1. 976	678.15	1. 286
Very Very	i	419	708 15	1 266	818 15	1 353	000	1. 603	669 15	1.210	600.13	1. 400
VE 16 1	i -i	429	728.15	1.258	828.15	1.366	CHRVE	* 19*	678 15	1.281	708 15	1 299
NEAR 1861 1240 6841 1377 1394 15 147 × 10 ⁻¹ 6841 1300 778 784 15 1294 6841 1377 4041 1154 7181 1300 778 784 15 1302 6841 1375 448.15 1116 778 784 15 1302 788 15 1302 6841 1375 448.15 1116 778 784 15 1300 778 784 15 1302 788 15 1302 788 15 1302 788 15 1303 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 128 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 128 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 15 1304 788 128 1304 788 1304 788 1304 788 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 128 1304 788 1304 1304 788			738, 15	1.270	838, 15	1.370		1	688.15	1 292	718 15	1 290
778.15 1.294 688.18 1.375 448.15 1.115 718.15	IVE 15*		748, 15	1, 280	848.15	1.371	398, 15	1.147 x 10 ⁻¹	698.15	1, 291	728.15	1.311
1,227 x 10 ⁻¹ 768, 15 1,297 1,815 1,197 1,144 1,728, 15 1,300 1,748 1,247 1,444 1,247 1,444 1,248 1,300 1,245 1,245 1,325 1,325 1,325 1,145 1,125 1,335 1,335 1,335 1,345			758, 15	1. 284	858, 15	1.373	408, 15	1, 155	708.15	1.301	738, 15	1.300
1,245 1,715 1,131		237 x 10 ⁻¹	768, 15	1. 297	868, 15	1.372	418,15	1.114	718, 15	1.300	748, 15	1.307
1,246 788.15 1.332 898.18 1.375 448.15 1.146 778.15 1.304 778.15 1.304 778.15 1.304 778.15 1.304 778.15 1.304 778.15 1.304 778.15 1.304 778.15 1.305 778.15 1.30	ı.	235	778, 15	1, 319	878, 15	1.376	428, 15	1, 157	728.15	1, 303	758, 15	1.313
1,347 778.15 1,352 986.15 1,334 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,734 448.15 1,134 778.15 1,133 778.15 1,134 448.15 1,135 1,344 448.15 1,134 778.15 1,134 448.15 1,134 778.15 1,134 448.15 1,134 778.15 1,134 448.15 1,134 448.15 1,134 448.15 1,134 778.15 1,134 448.1	1	246	788.15	1, 332	888. 15	1.375	438, 15	1.164	738, 15	1.304	768. 15	1.320
1,241 908.15 1.334 908.15 1.374 468.15 1.775 778.15 1.315 1.315	-	247	798.15	1, 352	898, 15	1.383	448, 15	1, 178	748.15	1.303	778 15	1.337
1,252 1,313 1,313 1,314 1,315 1,31	-	241	808, 15	1,346	908. 15	1.374	458, 15	1,178	758.15	1 313	788 15	1 359
1,200 622, 15 1,352 928, 15 1,396 478, 15 1,197 778, 15 1,333 998, 15 1,354 98	7	252	818, 15	1.339	918, 15	3389	468.15	1 179	768 15	1 315	708 15	1.305
1,825 648.15 1.356 938.15 1.400 448.15 1.190 778.15 1.354 918.15 1.355 948.15 1.357 948.15 1.391 948.15 1.199 948.15 1.357 948.15 1.391 948.15 1.291 948.15 1.291 948.15 1.291 948.15 1.291 948.15 1.357 948.15 1.391 948.15 1.291 948.15 1.401 988.15 1.401 988.15 1.401 988.15 1.357 948.15 1.284 928.15 1.291 948.15 1.357 948.15 1.284 948.15 1.291 948.15 1.401 948.15 1.291 948.15 1.401 948.15 1.401 948.15 1.291 948.15 1.401 948.15 1.401 948.15 1.401 948.15 1.401 948.15 1.201 948.15 1.40		260	828, 15	1, 353	928, 15	1,396	478, 15	1, 187	778, 15	1.333	808 15	1. 435
1.265 648.15 1.351 948.15 1.391 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.199 948.15 1.213 948.15 1.474 948.15 1.222 948.15 1.357 948.15 1.245 948.15 1.247 948.15 1.247 948.15 1.247 948.15 1.247 948.15 1.247 948.15 1.247 948.15 1.248 948.15 1.248 948.15 1.249 948.15 1.2	-	262	838, 15	1,356	938, 15	1.400	488, 15	1, 190	788, 15	1.354	818 15	1.472
1,270 688.15 1.359 968.15 1.359 508.15 1.202 968.15 1.470 988.15 1.359 968.15 1.359 968.15 1.359 968.15 1.406 988.15 1.213 988.15 1.470 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.359 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.350 988.15 1.456 988.15 1.350 988.15 1.456 988.15 1.456 988.15 1.456 988.15 1.456 988.15 1.350 988.15 1.456 988.15 1.4	ij	265	848.15	1, 351	948, 15	1.391	498.15	1, 198	798. 15	1.401	828 15	1.478
1.273 968.15 1.357 968.15 1.405 518.15 1.213 918.15 1.479 948.15 1.357 968.15 1.357 968.15 1.357 968.15 1.357 968.15 1.359 968.15 1.359 968.15 1.359 968.15 1.359 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.350 968.15 1.4	-	270	858. 15	1, 359	958. 15	1, 399	508, 15	1. 202	808, 15	1.440	838 15	1 486
1.274 878.15 1.357 1.284 528.15 1.213 828.15 1.474 568.15 1.228 828.15 1.476 528.15 1.287 588.15 1.287 588.15 1.288 588.15 1.476 528.15 1.289 588.15 1.476 528.15 1.289 588.15 1.476 528.15 1.289 588.15 1.476 588.15 1.287 588.15 1.286 688.15 1.465 998.15 1.390 928.15 1.376 338.15 1.115 578.15 1.248 898.15 1.465 998.15 1.390 928.15 1.297 338.15 1.117 588.15 1.248 898.15 1.465 998.15 1.349 998.15 1.248 998.15 1.248 998.15 1.465 998.15 1.349 998.15 1.248 998.15 1.248 998.15 1.248 998.15 1.248 998.15 1.248 998.15 1.248 998.15 1.248 998.15 1.249 998.	-	273	868, 15	1, 357	968, 15	1.405	518, 15	1, 213	818, 15	1.470	848, 15	1.467
1.262 388.15 1.359 CUNVE 18* 538.15 1.228 638.15 1.476 5.68 1.220 648.15 1.476 5.68 1.220 648.15 1.468 688.15 1.284 688.15 1.365 1.	-	274	878.15	1.357			528, 15	1, 213	828, 15	1, 474	858.15	1.462
998.15 1.362 1.363 1.364 1.26 × 10 ⁻¹ 548.15 1.220 948.15 1.469 978 978 978 978 978 978 978 1.36 × 10 ⁻¹ 568.15 1.242 988.15 1.465 998 988.15 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.365 1.366	-	262	888.15	1.359	CURV	E 18*	538, 15	1, 228	838, 15	1.476	508.15	1,455
1.287 908.15 1.352 338.15 1.126 × 10^{-1} 588.15 1.242 968.15 1.456 988.15 1.475 988.15 1.475		282	898.15	1.363			548, 15	1.230	848.15	1.468	878.15	1,457
918.15 1.365 348.15 1.126 568.15 1.236 668.15 1.456 998 928.15 1.370 386.15 1.116 558.15 1.248 868.15 1.462 998 928.15 1.370 386.15 1.117 588.15 1.249 888.15 1.462 998 598.15 1.237 398.15 1.138 598.15 1.269 898.15 1.456 928 608.15 1.240 408.15 1.154 998.15 1.460 958 608.15 1.240 408.15 1.271 918.15 1.460 958 618.15 1.241 428.15 1.157 628.15 1.271 948.15 1.477 968 628.15 1.224 428.15 1.177 CURVE 20* 978.15 1.477 968 648.15 1.225 448.15 1.177 CURVE 20* 978.15 1.472 978 658.15 1.252 458.15 1.177 CURVE 20*<	-i	287	908.15	1.352	338, 15	1.126 x 10 ⁻¹	558, 15	1.242	858, 15	1.436	888.15	1.453
928.15 1.370 358.15 1.115 578.15 1.248 878.15 1.462 908.15 CURVE 17* 368.15 1.117 588.15 1.248 888.15 1.462 908.15 598.15 1.137 598.15 1.248 898.15 1.462 938.15 598.15 1.137 508.15 1.249 908.15 1.462 938.15 608.15 1.240 408.15 1.150 668.15 1.244 908.15 1.462 938.15 618.15 1.240 408.15 1.150 638.15 1.271 908.15 1.462 938.15 618.15 1.244 408.15 1.157 648.15 1.271 948.15 1.477 968.15 628.15 1.244 438.15 1.177 658.15 1.273 948.15 1.477 968.15 648.15 1.252 448.15 1.177 CURVE 20* 978.15 1.481 658.15 1.481 648 658.15 <	નં .	294	918.15	1, 365	348, 15	1.126	568, 15	1, 236	868.15	1.456	898, 15	1.442
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٦.	36	928.15	1.370	358.15	1.115	578, 15	1.248	878, 15	1.462	908. 15	1.467
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	303			368, 15	1.117	588, 15	1.248	888.15	1.461	918, 15	1.450
598.15 1.143 608.15 1.254 908.15 1.463 938 608.15 1.27 908.15 1.463 948 948.15 1.463 948.15 1.463 948.15 1.463 948.15 1.463 948.15 1.462 948.15 1.477 968 948.15 1.477 968 948.15 1.477 968 948.15 1.477 968 948.15 1.477 968 968.15 1.477 968 968.15 1.477 968.15 1.477 968.15 1.477 968.15 1.462 978.15 1.462 978.15 1.477 968.15 1.263 968.15 1.477 968.15 1.273 968.15 1.273 968.15 1.263 968.15 1.472 968.15 1.265 468.15 1.189 528.15 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.205 1.213 968.15 1.234 968.15 1.234 968.15 1.234 968.15 1.234 <th>-i</th> <th>341</th> <th>CURVI</th> <th>£ 17*</th> <th>376.15</th> <th>1.138</th> <th>598, 15</th> <th>1. 269</th> <th>898, 15</th> <th>1.456</th> <th>928. 15</th> <th>1.477</th>	-i	341	CURVI	£ 17*	376.15	1.138	598, 15	1. 269	898, 15	1.456	928. 15	1.477
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-i	359			388, 15	1, 143	608, 15	1.254	908.15	1, 463	938, 15	1.462
608.15 1. 240 408.15 1.153 628.15 1. 270 928.15 1. 460 958.15 618.15 1. 241 418.15 1.157 638.15 1. 273 948.15 1. 477 968.15 638.15 1. 244 428.15 1. 1163 648.15 1. 273 948.15 1. 475 968.15 638.15 1. 244 438.15 1. 177 CURVE 20^* 948.15 1. 462 648.15 1. 252 468.15 1. 1195 528.15 1. 205 × 10 ⁻⁴ 978.15 1. 481 688.15 1. 260 478.15 1. 1195 528.15 1. 205 × 10 ⁻⁴ CURVE 21^* 648 688.15 1. 260 478.15 1. 1187 CURVE 20^* 978.15 1. 481 648 698.15 1. 270 498.15 1. 189 538.15 1. 225 678.15 1. 241 678 708.15 1. 274 598.15 1. 224 598.15 1. 242 668 778.15 1. 283 5	⊣	362	598.15	1, 237 x 10 ⁻¹	398, 15	1.150	618, 15	1. 264	918. 15	1.462	948.15	1.471
618.15 1.241 418.15 1.157 638.15 1.271 935.15 1.477 968 628.15 1.244 428.15 1.163 648.15 1.273 948.15 1.475 978 628.15 1.246 428.15 1.172 658.15 1.283 958.15 1.472 978 648.15 1.252 448.15 1.177 688.15 1.283 958.15 1.462 658.15 1.252 458.15 1.179	- i	349	608.15	1. 240	408.15	1.153	628, 15	1, 270	928. 15	1.460	958, 15	1.468
628.15 1.244 428.15 1.163 648.15 1.273 948.15 1.475 978. 648.15 1.248 428.15 1.172 658.15 1.283 958.15 1.472 978.15 1.472 978.15 1.472 978.15 1.472 978.15 1.462 978.15 1.472 978.15 </th <th>4</th> <th>363</th> <th>618.15</th> <th>1. 241</th> <th>418, 15</th> <th>1, 157</th> <th>638, 15</th> <th>1.271</th> <th>938, 15</th> <th>1.477</th> <th>968, 15</th> <th>1.477</th>	4	363	618.15	1. 241	418, 15	1, 157	638, 15	1.271	938, 15	1.477	968, 15	1.477
638.15 1.248 438.15 1.172 658.15 1.283 958.15 1.472 648.15 1.252 448.15 1.177 CURVE 20* 978.15 1.462 668.15 1.261 468.15 1.179 CURVE 20* 978.15 1.481 668.15 1.268 488.15 1.195 528.15 1.205 × 10 ⁻¹ CURVE 21* 658 698.15 1.268 488.15 1.195 538.15 1.215 × 10 ⁻¹ CURVE 21* 668 698.15 1.270 498.15 1.206 548.15 1.223 578.15 1.241 668 778.15 1.274 518.15 1.207 568.15 1.234 598.15 1.254 668 728.15 1.263 528.15 1.207 568.15 1.241 608.15 1.256 698 738.15 1.290 548.15 1.231 588.15 1.241 618.15 1.256 708 748.15 1.290 548.15 1.235 598.15 1.247 628.15 1.255 708 758.15 1.290 558.15 1.237 698.15 1.247 628.15 1.255 708	-	368	628, 15	1. 244	428, 15	1, 163	648, 15	1, 273	948.15	1, 475	978, 15	1.478
648. 15 1, 239 448.15 1.177 CURVE 20* 968.15 1, 462 658.15 1, 252 458.15 1.179 CURVE 20* 978.15 1, 481 628 658.15 1, 261 468.15 1, 1187 CURVE 20* 978.15 1, 481 628 688.15 1, 260 478.15 1, 1189 528.15 1, 215 678.15 1, 241 x 10 ⁻¹ 658 698.15 1, 270 498.15 1, 206 548.15 1, 223 578.15 1, 230 588.15 1, 234 668 708.15 1, 274 598.15 1, 234 598.15 1, 234 668 778 728.15 1, 263 528.15 1, 207 568.15 1, 242 608.15 1, 245 688 748.15 1, 281 538.15 1, 231 598.15 1, 247 628.15 1, 246 698 748.15 1, 293 548.15 1, 237 698.15 1, 247 628.15 1, 251 1, 247 628.	٦,	366	638, 15	1. 248	438, 15	1.172	658, 15	1, 283	958, 15	1.472		
658.15 1.252 458.15 1.179 CURVE 20* 978.15 1.481 628 68.15 1.261 468.15 1.187 CURVE 20* 978.15 1.481 628 68.15 1.261 468.15 1.187 528.15 1.215 CURVE 21* 638 68.15 1.263 528.15 1.215 578.15 1.241 658 708.15 1.270 498.15 1.205 1.230 588.15 1.234 568.15 1.234 668 708.15 1.274 528.15 1.234 668.15 1.234 668 738.15 1.263 528.15 1.234 608.15 1.245 688 748.15 1.281 538.15 1.231 588.15 1.247 628.15 1.245 698 758.15 1.283 588.15 1.237 698.15 1.247 628.15 1.256 708 758.15 1.283 588.15 1.237 698.15 1.247 628.15	-i	371	•	1. 239	448, 15	1.177			968.15	1, 462	CURVE 22*	E 22*
668.15 1.261 468.15 1.187 678.15 1.260 477.15 1.195 525.15 1.205 x 10 ⁻¹ CURVE 21* 678.15 1.260 478.15 1.195 526.15 1.205 x 10 ⁻¹ CURVE 21* 688.15 1.263 488.15 1.196 538.15 1.223 578.15 1.241 x 10 ⁻¹ 708.15 1.270 498.15 1.207 568.15 1.234 598.15 1.234 718.45 1.263 528.15 1.242 608.15 1.245 598.15 1.245 738.15 1.290 548.15 1.231 598.15 1.241 618.15 1.256 758.15 1.293 568.15 1.237 608.15 1.241 628.15 1.256 758.15 1.293 558.15 1.237 608.15 1.251 638.15 1.271		381	⊣	1. 252	458.15	1, 179	CURVE	\$ 70 *	978, 15	1.481		
1,377 678.15 1,260 478.15 1,195 526.15 1,205 x 10 ⁻¹ CURVE 21* 1,372 688.15 1,268 488.15 1,189 538.15 1,215 1,372 688.15 1,270 498.15 1,206 548.15 1,223 578.15 1,234 1,396 708.15 1,274 518.15 1,207 568.15 1,234 598.15 1,234 1,390 728.15 1,263 528.15 1,224 608.15 1,245 1,390 738.15 1,281 538.15 1,231 588.15 1,242 608.15 1,245 1,390 748.15 1,290 548.15 1,237 600.15 1,251 638.15 1,255 1,291 588.15 1,237 600.15 1,251 638.15 1,271	ا	359	668, 15	1. 261	468, 15	1.187		l			628.15	1.254 x 10 ⁻¹
688.15 1. 268 488.15 1. 188 538.15 1. 215 578.15 1. 241 × 10 ⁻¹ 698.15 1. 270 498.15 1. 206 548.15 1. 223 578.15 1. 241 × 10 ⁻¹ 708.15 1. 273 508.15 1. 203 588.15 1. 234 598.15 1. 234 728.15 1. 263 528.15 1. 220 578.15 1. 242 608.15 1. 245 738.15 1. 281 538.15 1. 231 588.15 1. 241 618.15 1. 256 748.15 1. 290 548.15 1. 237 608.15 1. 247 628.15 1. 256 758.15 1. 293 558.15 1. 237 608.15 1. 251 638.15 1. 255	4	377	678.15	1.260	478.15	1.195	528, 15	1, 205 x 10 ⁻¹	CURV	E 21*	638.15	1. 254
698.15 1. 270 498.15 1. 206 548.15 1. 223 578.15 1. 241 x 10 ⁻¹ 708.15 1. 274 508.15 1. 203 558.15 1. 230 588.15 1. 234 718.45 1. 274 518.15 1. 207 568.15 1. 234 598.15 1. 250 728.15 1. 283 528.15 1. 220 578.15 1. 242 608.15 1. 245 748.15 1. 281 538.15 1. 231 588.15 1. 245 618.15 1. 256 748.15 1. 290 548.15 1. 235 598.15 1. 247 628.15 1. 256 758.15 1. 293 558.15 1. 237 608.15 1. 251 638.15 1. 271	-i	372		1. 268	488, 15	1, 188	538, 15	1, 215		1	648.15	1.251
708.15 1.273 508.15 1.203 558.15 1.230 588.15 1.234 718.45 1.274 518.15 1.207 568.15 1.242 698.15 1.250 728.15 1.281 528.15 1.220 578.15 1.242 608.15 1.245 748.15 1.281 538.15 1.231 588.15 1.241 618.15 1.256 748.15 1.290 548.15 1.235 598.15 1.247 628.15 1.255 758.15 1.293 558.15 1.237 608.15 1.251 638.15 1.271	-i	372	_	1.270	498, 15	1.206	548, 15	1, 223	578.15	1.241 x 10-1	658, 15	1.262
718.15 1.274 518.15 1.207 568.15 1.234 598.15 1.250 728.15 1.263 528.15 1.220 578.15 1.242 608.15 1.245 738.15 1.281 538.15 1.231 588.15 1.241 618.15 1.256 748.15 1.290 548.15 1.235 598.15 1.247 628.15 1.255 758.15 1.293 558.15 1.237 600.15 1.251 638.15 1.271	-i	386		1. 273	508, 15	1. 203	558, 15	1, 230	588, 15	1. 234	668, 15	1.270
728.15 1.263 528.15 1.220 578.15 1.242 608.15 1.245 738.15 1.281 538.15 1.231 588.15 1.241 618.15 1.256 748.15 1.290 548.15 1.235 598.15 1.247 628.15 1.255 758.15 1.293 558.15 1.237 600.15 1.251 638.15 1.271	-i	392		1.274	518.15	1. 207	568, 15	1, 234	598, 15	1, 250	678.15	1. 273
5 1.281 538.15 1.231 588.15 1.241 618.15 1.256 5 1.290 548.15 1.235 598.15 1.247 628.15 1.255 5 1.293 558.15 1.237 608.15 1.251 638.15 1.271	-	380	728, 15	1, 263	528.15	1.220	578, 15	1.242	608, 15	1.245	688, 15	1, 280
5 1.290 548.15 1.235 598.15 1.247 628.15 1.255 5.1.293 558.15 1.237 608.15 1.251 638.15 1.271			738, 15	1. 281	538, 15	1.231	588, 15	1, 241	618.15	1.256	698, 15	1, 284
5 1.293 558.15 1.237 608.15 1.251 638.15 1.271			748.15	1. 290	548, 15	1, 235	598. 15	1. 247	628.15	1 255	708 15	1 290
1997 - 41 070			758, 15	1. 293	558.15	1, 237	608.15	1 251	638 15		719 15	1 201
1. 2. 1. 2.			768, 15	1.304	568 15	1 230	910.16		2000	1 1	01.01	1. 691

DATA TABLE NO. 106 (continued)

H	ပ္ရ	H	ပ	H	రీ	H	ం	H	ပ္ခံ	Ŀ	ပိ
CURVE	CURVE 22 (cont.)*	CURVE 23 (cont.)	23 (cont.)*	CURVE ?	CURVE 25 (cont.)*	CURVE 26 (cont.)*	6 (cont.)*	CURVE 28*	£ 28*	CURVE	CURVE 29 (cout.)*
738.15	1, 299 x 10 ⁻¹	893.15	1.467 x 10 ⁻¹	488.15	1. 206 x 10 ⁻¹	598. 15	1, 251 x 10 ⁻¹	578.15	1. 219 x 10 ⁻¹	768.15	1. 297 x 10 ⁻¹
758 15	1.297	913. 15	1.469	498. 15	1.216	608.15	1. 255	588, 15	1. 222	778.15	1.305
768, 15	1.317	953, 15	1, 510	518, 15	1.221	61.61.0	1. 260	598. 15	1. 227	788. 15	1.305
778, 15	1.340			528, 15	1. 206	CURVE 27*	27*	618.15	1.231	808 15	1.309
788.15	1.369	CURVE 24	24	538, 15	1.228			628. 15	1. 239	818, 15	1.302
798. 15	1.418			548, 15	1, 232	608.15	1.247 x 10 ⁻¹	638, 15	1.238	828. 15	1.319
808.15	1.452	513, 15	1. 192 x 10-1*	558, 15	1.241	618.15	1.249	648, 15	1. 237	838, 15	1.325
818.15	1.469	533.15	1, 190*	578. 15	1.249	628.15	1, 252	658, 15	1, 250	848, 15	1.326
828. 15	1.492	553, 15	1.213	588, 15	1. 251	638.15	1. 254	668, 15	1.261	858, 15	1.330
838, 15	1.490	573.15	1. 223*	593, 15	1. 255	648.15	1.258	678.15	1, 261	868.15	1.334
848.15	1.479	593, 15	1, 230	608. 15	1.258	658.15	1.264	688.15	1, 275	878, 15	1.333
858, 15	1.477	613, 15	1, 239*	618.15	1. 259	668, 15	1.269		1, 277	888, 15	1.334
868.15	1.478	633.15	1.243	628. 15	1. 26%	678.15	1. 271	708.15	1, 287	898. 15	1.341
878. 15	1.479	653, 15	1.247	638. 15	1. 262	688.15	1. 282	718, 15	j. 206	908.15	1.330
666.15	1.481	673, 15	1.262	648, 15	1. 2 39	698, 15	1. 287	728. 15	1. 272	918, 15	1.342
696. 15	1.483	683. 55	1.264	658. 15	1. 275	708. 15	1.288	738.15	1. 292	928, 15	1.350
906. 13	1.403	723.15	L. Z.f.	668, 15	1. 286	718.15	1. 292	748.15	1, 295	938. 15	1.348
010.13	1.411	733, 15	1.274		400	728, 15	1.281	758. 15	1.300	948.15	1.343
826. 13	1.400	753. 15	1.280	CURVE 26	36.3	738. 15	1.300	768. 15	1.304	958. 15	1.350
850, 10	1.460	773. 15	1.304			748.15	1.307	778. 15	1.310	968, 15	1.351
200 TO	1.480	793. 15	1.350	338, 15	1. 138 x 10-1	758.15	1.309	788. 15	1.309		
958. ID	1.482	813, 15	1.424	346, 15	1. 142	768.15	1.313	798.15	1.317		
20% To	1.485	833.15	1.470	358, 15	1.150	778. 15	1. 311	808.15	1.314		
	***************************************	653. 15	I. 462	368, 15	1.157	788.15	1.310	818.15	1.314		
COR	CORVEZS	873. 15	1.455	378. 15	1. 161	798. 15	1, 321	828. 15	1.328		
		893, 15	1.446	388. 15	1.160	808. 15	1.316	838. 15	1. 335		
473, 15	1. 175 x 10-1	913, 15	1. 434	398, 15	1.170	818.15	1.313	848.15	1. 332		
493. IS	1. 183	933. 15	1.468		1.175	828, 15	1.327				
513. 15	4	953. 15	1.477	418.15	1.146	838, 15	1.331	CURVE 29*	29*		
533. IS	1. 198	973, 15	1.484	428, 15	1.174	848.15	1.332				
553, 15	1.216			438.15	182	858, 15	1.335	608.15	1. 226 x 10-1		
573. 15	1. 229	CURVE 25	25	448.15	1. 187	868.15	1.335	618.15	1. 229		
593. 15	1. 237			458.15	1. 92	878.15	1.341	628.15	1, 233		
613, 15	1.245	358. 15	1, 129 x 10 ⁻¹	468, 15	1.1.6	888. 15	1. 332	638, 15	1.231		
653, 15	1.251	378 15	1.130	476.15	1.19.	898. 15	1.345	648.15	1. 230		
673, 15	1. 272	388 15	1 147		306	300.13	1. 304	658. 15	1. 244		
713, 15	1. 288	398 15	1 158	508 15	1 200	910.15	1. 331		1. 255		
733, 15	1. 288	408 15	1 165	510.15	1.503	340.10	1.040	678.15	1. 256		
753, 15	1.30	418.15	1, 170	528 15	1.213	938.15	1.351	688. 15	1.2/1		
773, 15	1, 315	428.15	1.174	538, 15	1, 227	958 15	1 338	708 15	1 201		
793.15	1.358	438.15	1, 184	548, 15	1. 233	968. 15	1.357		1.201		
813.15	1.434	448, 15	1, 193	558, 15	1. 231			728 15	1 269		
833, 15	1.483	458, 15	1.194	568, 15	1, 239			738, 15	1 284		
853, 15	1.472	468.15	1.204	578.15	1.2.4			748, 15	1. 292		
873. 15	1.470	478.15	1. 203	588, 15	1.248			758.15	1. 297		
Not show	Not shown on plot										
	•										

SPECIFICATION TABLE NO. 101 SPECIFIC HEAT OF NICKEL + COPPER Ni + Cu

[For Data Reported in Figure and Table No. 101]

	900		i i i i	10000	Di roday and To I I	The transfer of the figure and rate in the control of the control
No.	No.	Year	lemp. Range, K	Keported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	387	1940	1.1-4.0		CuseNise	80. 39 Ni, 19, 61 Cu; prepared from 99. 98 Ni and 99. 99 Cu; small amounts of Al added to alloy melts as deoxidizers; melted; held at 200 C below melting temperature for 1 to 2 hrs and slowly cooled.
8	387	1940	10-20		Same as above	Same as above.
ო	387	1940	1.1-4.2		Cu _{de} Ni _e s	60. 09 Ni. 39, 91 Cu; prepared from 99, 99 Cu and 99, 98 Ni; small amounts of Al added to alloy melts as deoxidizers; melted; held at 200 C below melting temperature for 1 to 2 hrs and slowly cooled.
4	387	1940	10-20		Same as above	Same as above.
2	293	1941	79-273			33.6 Ni, 66.4 Cu.
9	18	1956	323-883	±0.5	90% Nickel alloy	90. 05 Ni, bal. Cu.
7	349	1962	1.6-4.4	52	Ni(90) Cu(10)	89. 25 Ni, 10. 66 Cu; annealed under vacuum at 1100 C for 72 hrs; etched in 30 ml HNO ₃ and 20 ml CH ₂ COOH.
80	18	1956	323-883	±0.5	75% Nickel alloy	75. 07 Ni, bal. Cu.
0	349	1962	1.5-4.3	\$ 2	Ni(55) Cu(45)	53.01 Ni, 46.92 Cu; annealed under vacuum at 1100 C for 72 hrs, etched with 30 ml HNO ₃ and 20 ml CH ₃ COOH.
10	18	1956	308-863	±0.5	50% Nickel alloy	50. 04 Ni, bal. Cu.
11	293	1941	79-273			50.4 Ni, 49.6 Cu.
12	343	1934	83-670	1.5-2	Alloy 1	94. 0 Ni.
13	343	1934	84-634	1.5-2	Alloy 2	87. 2 Ni.
14	343	1934	81-660	1, 5-2	Alloy 3	78. 8 Ni.

DATA TABLE NO. 101 SPECIFIC HEAT OF NICKEL + COPPER NI + Cu

[Temperature, T, K; Specific Heat, Cp. val g⁻¹K⁻¹]

				Temperatu	Temperature, T. K; Specific Heat, Cp. cal g-1 K-1]	Heat, Cp. Ca	ig-1K-1]				
Ħ	ტ	H	c _p	H	ဝီ	H	္မ	T	င်္	۲	ပိ
CURVE	VE 1	CURVE 3 (cont.	3 (cont.)	CURVE 5 (cont.)	cont.)	CURVE 7 (cont.)	(cont.)	CURVE 8 (cont.)	(cont.)	CURVE	임
1.109	3.037 x 10-6	2. 20	5.98 x 10-6	220, 10	8.80 x 10-2	1, 711	4 94 x 10-4	503 15	1 133 v 10-5*	208 15	2 500 - 10-2
1.109	3.007*	2.36		273, 20	9.03	1.802	5. 22*	523, 15	1. 139	323 15	9 200 6
1.860	5.353		6. 52			1.894	5. 47*	543, 15	1.141*	343, 15	9. 930
2.170	6.024	2.4	6. 57	CURVE	9 3	2.017	5.84	563, 15	1, 145*	363, 15	1.008 x 10-1
2.200	6.091+	2. 76	7. 53			2. 130	6.16*	~	1, 150	383, 15	
2.220	6.158*	2.80	7. 58	323, 15	1. 100 x 10-1	2, 221	6.40	~	1, 153*	403, 15	1.036
2.250	6.225	2.82	7. 43	343, 15	1.112*	2, 332	6.80	~	1, 155*	423, 15	1.042
2.260	6.242	3.00	7.85	363, 15	1.128	2.419	7. 26	_	1.166*	443, 15	1.048
2.280	6.273	3.08	8.11	383, 15	1.154	2.623	7. 70		1, 173*	463.15	1.054
2.320	6.458	3.25	8.65		1, 181	2.747	8.05	_	1.176	483, 15	1.059
4.300	10010	3, 38	. o	423, 15	1. 210	2.889	8.48	-	1.187	503, 15	1.068
2.430	5.594	 	57 56 56 56	443. 15	1.224	3.080	9.02	723.15	1. 195*	523, 15	1.076
2.490	6 728*	3.76	100 4 10 1	470 15	1 370	0.040	100		1. 203	943, 15	1.081
2 520	300		1. 02 A 10 1. 11	400 15	1.210	3.572	1. 07 × 10 ×	763, 15	1.211	563, 15	1.086
3	7.000	3. 32	****	488, 15	1.276	3, 721	1.13	783, 15	1.217	583, 15	1.091
900		3 :	CT .1	496.15	1. 298	3.912	1. 19	803. 15	1. 223*	630.15	1.096*
2.900	36.	4.12	1.18	508.15	1.311	4.078	1. 25	823.15	1. 226	623. 15	1, 103
2.020	2,272	4.24	1. 26	518, 15	1.317	4, 209	1.31	843.15	1.231*	643, 15	1, 113*
27.5	26.792			528, 15	1.316	4.351	1.35	863, 15	1.237*	663, 15	1, 122
3.280	9.240	CURVE	4	538. 15	1. 284*			883.15	1.243	683, 15	1, 128*
2.4	1 025 4 10 4		7	548.15	1. 245	CURVE 8	∞] ∞			703, 15	1, 136
5	1 027*	10.15	4.48 × 10 *	558.15	1. 229			CURVE	اري اور	723.15	1.143*
95	1 159*	10.92	8 3	268.15	1. 225	323. 15	1.045 x 10-1	•		743.15	1. 149
3.970	1.164	11.38	5. 27	500 15	1.219	338, 15	1.961	1.464	4. 25 x 10 -	763, 15	1. 153*
		11.96	20.2	500.15	1 919*	040, 10	1.000	1. 515	4.40	783, 15	1.156
CURVE	VE 2	12.40	36	608 15	1.213	250.15	1.0(5)	1.580	4. 55 60 4	803.15	1.160
	1	12.84	48.	623 15	1 212	363 15	1.000	1.070	4.02	043.15	1.163
10.12	4.25 x 10-4	13.63	7.75	643, 15	1 217*	368 15	1.001	1 870	5. 41	040.10	1.10/
11.12	2.00	14.21	8.24		1. 218*	378.15	1.105*	200	5.76	983 15	1.173
11.79	5.34	14.78	8.82	683, 15	1.219*	383, 15	1, 113*	2 139	80.9		•
13.05	6.58	15.41	9.55	703, 15	1, 224*	388, 15	1.115*	2, 239	6.39	CITRUE	=
14.22	7.79	15.78	1.05 x 10-4	723.15	1. 230	398, 15	1, 130	2, 365	6.73		<u>:</u>
15.41	8	16. 29	1.12	743, 15	1. 234*	403.15	1.124*	2, 504	7.18	79.33	3.39 x 10-
16.36	1.02 x 10	16.68	1.18	763.15	1. 239*	408.15	1.126*	2.635	7.62	140.56	7, 55
E	1.10	17.18	1.23	783, 15	1. 242	418.15	1. 129*	2, 756	8.01	156.80	8.01
18.30	3.	18.43	1.48	803.15	1. 251*	423.15	1.126	2.896	8.42	230, 30	8.64
19.8	1.58	18.94	1.55	823, 15	1.251*	428.15	1.126*	3,068	8.97	273, 20	9.19
20.36	1.67	19.49	1.65	843, 15	1, 255*	438.15	1.122*	3, 208	9.31		
		20.14	1.81	863.15	1, 258*	443, 15	1.122*	3.306	9.58	CURVE 12	12
	CURVE 3			883, 15	1. 261	448.15	1.119	3,418	9.87		1
****	3-01 - 000 G	CURVE	2			458.15	1.122*	3, 560	1.04 × 10-4	83, 15	4.600 x 10-2
1.117	2.866 X 10			CURVE	2 2	463, 15	1.123	3, 736	1.10	196.55	9.400
1.610	4 11	7.00	4. 53 x 10 •		***	468.15	1. 122	3,911	1.16	293. 55	1.080 x 10-1
1.655	1.11	145.61	7.60	1.576	4. 58 x 10 -	478.15	1.124	4.042	1.21	296. 55	1.081
2.12	5.60	113.99	8. ID	1.638	4. 73	483, 15	1.124	4.158	1.25	325. 55	1.115*
								4. 295	1. 31		
Not abo	Not shown on plot										

H	ပ	۲	o ^d
CURVE 12	12 (cont.)	CURVE	CURVE 14 (cont.)*
391.45	1. 186 x 10-1	414.75	1.178 × 10-1
486, 55	1, 318	422.65	1, 174
519, 55	1.364	444.65	1, 174
541, 55	1.391	470, 25	1, 155
556. 45	1, 416	518.45	1, 166
561, 75	1.416*	587.05	1, 182
567.05	1.413*	628.95	1. 202
573, 35	1.388	659.95	1, 192
582, 15	1.322		
592, 75	1, 293*		
	1, 282		
	1.278		
655, 35	1.279*		
670, 05	1, 276		

<u> </u>	4.700 x 10-8	1.075 × 10-1	1.107	1.128	1.148	1. 202	1, 205*	1.256	1.286*	1. 289	1. 284*	1, 228	1, 205	1, 208*	1, 212	1. 206
CURVE 13	84. 85 194. 55	293.85													599.85	633.85

**	4.600 x 10-2	9.400	1.061 x 10-1	990	1.130	1.167	1.172	1, 171	
CURVE		197.15	294. 55				396.85	407.65	

SPECIFICATION TABLE NO. 102 SPECIFIC HEAT OF NICKEL + IRON NI + Fe

[For Data Reported in Figure and Table No. 102]

No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
7	387	1940	1.2-4.3	/	FegNiss	85.11 Ni, 14.89 Fe; prepared from 99.98 Ni, > 99.98 Fe, 0.001 C, < 0.01 Si, < 0.01 P, < 0.01 Mn; sintered; prepared by Molybdenum Co. of Reuthe, Germany.
8	387	1940	13-20		Same as above	Some as above.
m	387	1940	1.2-4.2		FeagNise	80.37 Ni, 19.63 Fe; prepared from 99.98 Ni, >99.98 Fe, 0.001 C, < 0.01 Si, < 0.01 P, < 0.01 Mn; statered; prepared by Molybdenum Co. of Reutte, Germany.
*	387	1940	10-20		Same as above	Same as above.
īΟ	236	1940	473-1673			79.3 Ni, 20.7 Fe.
ø	236	1940	473-1673			69. 76 NI, 30. 24 Fe.
-	349	1962	1.4-4.1	25	Ni(97. 5) Fe(2. 5)	97.5 Ni, 2.38 Fe; annealed under He + 8% H ₂ gas atmosphere at 1100 C for 72 hrs; etched with 30 ml HNO ₂ and 20 ml CH ₂ COOH.
60	349	1962	1.4-4.0	\$2	Ni(95) Fe(5)	95. 15 Ni, 4.75 Fe; same as above.
o	349	1962	1.5-4.2	52	Ni(68) Fe(32)	68. 59 Ni, 31. 35 Fc; same as above.
10	349	1962	1.4-4.1	\$2	Ni(55) Fe(45)	55.72 Ni, 44.16 Fe; same as above.

Pe
+
Ni + Fe
IRON
=
+
=
EAT OF NICKEL + II
OF
H
HEAT (
SPECIFIC
707
S NO.
G
3
9
TABLE
DATA
3

		7 1	6. 29 x 10-6			245			4			2 6 2 6 3 6		ا من	<u>.</u> .		_		. 4		*_	_ 1	t. *	*_	<u>.</u>	L.*												
	ပ္	CURVE 9 (cont.	6. 29	6.65	7. 28	7.56	7.95	CURVE 10	c	2.5	2.74	2.5	3.36	3.55	7 E	3.91	4. 13	4.38	4. 60	5.0	5, 28	5.53	5.62	6.20	6.40	6. 73		7.6	7.86	8. 25								
	H	CURV	3. 427	3, 603	3.874	4.012	4, 159	COL	900	1.449	1.512	1.5%	1.831	1.915	2 011	2, 114	2, 228	2, 359	2. 572	2.674	2,806	2.912	2. 992	3, 206	3,340	3.479	3, 782	3,871	3, 987	4.110								
	C _p	8	3.96 x 10-6	4 05	4.26	4.46	4.68*	5.07	5.36	5. 93	6.15	6.52	7, 18	7. 49	3.0	8.69	8.97	9.42	1.03 x 10 4	1.06*	1, 10	1. 12*	1.18	6	1	2.64 x 10 -	2.89	3.06	3.27	3.50	3.76	£.	4. 20	4. ol	4.71	5 - 5 - 5	5, 45	5.76 5.97
	H	CURVE	1.436	1.475 1.515	1.576	1.657	1. 720	1.862	2.067	2.142	2, 255	2.388	2. 588	2. 702	3 010	3. 122	3, 221	3.352	3,491	3, 716	3,806	3.918	4. 028	CURVE	,	1.533	1.625	1, 741	1.868	1, 998	2.114	2, 222	2,371	2, 525	2.617	2.876	3, 035	3, 170
Cal g -1 K-1	d o	(cont.)	1.407 x 10-1*	1.419	1, 453	1.474*	1.499	1. 556	1.589	1.665*		-1	4.07 x 10-6	4. 22	4, 53	4.57*	4.65	4.86	5, 16	5.40	5.62	5.61*	5.76	6.46	6.84	7. 29	8.06	8.39	8.68	8.97	9. 28	9.65	1,00 × 10 -	1.05	77.10	1.17*	1, 21	1. 26
cific Heat, Cp.	H	CURVE 6 (cont.	1173	1273	1323			1523				CURVE	1.423	1.475	1.568	1, 595	1.632	1.681	1,802	1.877	1.935	1.948	2.007	2, 239	2.355	2,489	2. 730	2.862	2. 968	3.055	3, 151			3. 514				4.108
[Temperature, T. K; Specific Heat, Cp. Cal g - 1K-1]	ď	(cont.)	3.59 x 10-4	4. 10	5, 47	8, 15	1.00 × 10 -	1. 26	œ.		1.167 x 10-1	1.210	1.291*	1.329	1. 400	1.402	1, 408	1.416	1.437	1,450*	1.464	1, 480	1.498 1.518*	1. 539	1. 562	1.587	1.640		9 3		1. 191 x 10 ⁻¹	1. 226	1.263	1,303	1.340	1. 437*	1,388	1.391* 1.398
Temper	Į.	CURVE 4 (cont.)	10.98	12.56	13, 35	16, 31	17.86	20. 71	CHRVE		473	523	623	373	3 5		e .	m c	3 63	e e	e	m e	2 2	m	g :	2 6			CURVE		e	e .		3 :	293	3 22	1023	1073 1123
														•	- [-	6	102	107	117	122	121	132	1.5	147	152	162	167				47	25	20	-				
	ပ	Æ 2	5. 29 x 10-4	7.74	8.87	9.89	1, 10 × 10-3	1.36	33	·1	2. 363 x 10-6			4.09			4. 23		4.85							6.45* 1697		6.86	7.17	7.60				9.11°		75.4		2.98 x 10 ⁻⁴ 3.49
	Т	CURVE 2	13 5.29	15.82 7.74		12	18.51 1.10 x 10 ⁻³	8 8	CIRVE	·1	2.363 x 10-6		858 3.70	3 4.09		15 4.33	4. 23	4.50	47 4.85	4.86*	5. 16	78 5.28		05 5.88	18 6.19	25 6.48 30 6.45*	38 6.67	8			8.06 8.06	95 8.28	6.85			CIRVE 4		10.00 2.98 x 10 4 10.64 3.49
			x 10 ⁻⁵ 13. 13 5. 29	15.82		17.71	18.51	20.06	CIRVE		1, 246 2, 363 x 10 4	446 2.961	1.858 3.70	4.09	2.03 4.18	2.15 4.33	2. 16 4. 23	2.24 4.50	47 4.85	2, 48 4, 86*	2. 62 5. 16	78 5.28	2, 91 5, 60	3.05 5.88	18 6.19	3 30 6 45*	3.38 6.67	3.48	3.61	3, 73 7, 60	8.06 8.06	3.95 8.28	4. 14 8. 85	4.21 9.11	4 . 22			

* Not shown on piot

SPECIFICATION TABLE NO. 103 SPECIFIC HEAT OF NICKEL + MAGNESIUM, Ni + Mg (MgNis)

[For Data Reported in Figure and Table No. 103]

Composition (weight percent), Specifications and Remarks	\sim 99. 92 MgNi ₃ , \sim 0. 01 Fe, \sim 0. 01 Si, \sim 0. 01 Ca, \sim 0. 05 (Al + Cr + Mo); prepared from high purity elements by fusion at 1200 C (composition of Ni: 99.9 Ni, 0.065 O, 0.014 C, 0.018 Co. composition of Ms. 99.9 KeV)
Name and Specimen Designation	MgNi ₂
Reported Error, %	0.1-1.0
Temp. Range, K	10-545
Year	1960
Ref. No.	336
Curve Ref.	-

DATA TABLE NO. 103 SPECIFIC HEAT OF NICKEL + MAGNESIUM, Ni + Mg (MgNis)

				,	
ပိ	a	H	ပ္ခံ	T	ဝီ
CURVE 1		CURVE 1 (cont.	(cont.)	CURVE	CURVE 1 (cont.)
Series 1		Series 1 (cont.)	(cont.)	Series 2	Series 2 (cont.)
2.8	843 x 10~	199, 29	1, 103 x 10-P*	420.68	1.320 x 10-1*
6	436	209, 70	1, 123	426.38	1.324*
4.	F. 128	216.07	1, 135*	432.08	1. 327
7.7	7. 486	217.80	1, 138*	437.76	1.330
1.0	1. 089 x 10~	222. 33	1.146	443.46	1.332
1.5	1. 542	224.02	1, 149*	449.15	1, 333
2.0	029	230, 27	1.159	454.83	1.336*
2,	613	231, 53	1.170*	456.10	1, 336*
3.4	427	242.82	1,178*	461.78	1,338
7	462	249.09	1.187	467, 43	1.366*
4. 6	1. 647	255, 35	1, 195*	473.07	1, 343*
6.689	689	261.61	1, 201	478.76	1, 345
8.594	3	267.90	1. 209*	484.44	1,348*
1.0	050 x 10-2	274. 21	1, 214	490, 11	1,350*
1.2	1. 208	280.54	1, 222*	495. 78	1.353
1.3	1. 399	286.90	1, 228	501.44	1,355*
1.6	1. 664	293, 29	1, 234*	507.12	1.358
2.0	83	299, 83	1.240	512. 79	1.365
4	599	306, 18	1.245*	518.45	1.360*
3.0	079	312, 50	1, 249	524.11	1.357*
3.6	919	318, 81	1,255*	529, 77	1.369
4.2	211			535. 44	1.364*
4.7	726	Series 2	2	541.11	1.365*
5.2	27.1			546 75	1 371
2	797	306 92	1 250 × 10-1*	559 36	1 220*
4	320	308 74	1 246*	550 03	7.0.7
6.7	768	312.83	1.253*	3	
7.]	7, 171	314.67	1.254*	*c sorios	***
7.544	Ŧ	320, 56	1.259*		
7.8	7,882	326. 45	1. 264	310 68	1 250 x 10-1
8.186	98	332, 33	1, 269*	319, 55	1. 257
89	.03	338, 18	1.271	328.37	1.264
8.7	791	344.02	1. 278*	461.76	1.339
9.0	057	349.84	1, 281	465, 92	1.419
9.2	9. 296*	360.54	1.287*	469.63	1.340
9. 521	21	366, 34	1. 291	511.63	1.360
9.6	699 6	372, 12	1.295*	517. 22	1.365
6	9. 926	374, 73	1, 295*	522. 83	1.365
7	. 011 x 10-r*	380, 51	1,300	528. 42	1.365
1.0	1.029	386, 27	1.302*	534.01	1.367
1.0	¥2*	392, 02	1,307	539, 59	1.371
1.0	1.061	403.51	1 315*	545 17	1.26
7	. 076*	409 25	1 310*	1	•••
1.00	2	203.60	210		

SPECIFICATION TABLE NO. 104 SPECIFIC HEAT OF NICKEL + MANGANESE Ni + Mn

[For Data Reported in Figure and Table No. 104]

Composition (weight percent), Specifications and Remarks	80 Ni, 20 Mn; annealed under H + 8% H ₂ gas atmosphere at 1100 C for 72 hrs; etched with 30 ml HNO ₃ and 20 ml CH ₃ COOH.	70 Ni, 30 Mn; same as above. 60 Ni, 40 Mn; annealed under He + 8% H ₂ gas atmosphere at 1000 C for 72 hrs; etched with 30-50% HNO ₂ .	
Name and Specimen Designation	Ni (80) Mn(20)	Ni(70) Mn(30) Ni(60) Mn(40)	MnNi
Reported Error, % Spe	\$25	\$ \$ \$ \$ \$ \$	
Temp. Range, K	1.44.1	1.44.1	0.26-3.78
Ref. Year No.	349 1962	1962	1967
Ref.	349	349	420
Curve No.	-	N 17	•

DATA TABLE NO. 104: SPECIFIC HEAT OF NICKEL + MANGANESE Ni + Mn

al g -1 K -1]
c _p ,
Heat,
Specific
ÿ
Ħ,
[Temperature,

, o	CURVE 4 (cont.)*				5, 508			703 5 068		201-09								1.04x 10			1 146		75 1,230		Series III			5.544					5 6.265								9,651		1,076		
H	5	1, 119	1, 181	1,255	1, 393	1.473	1 -	1 702	1 913	2, 139	2, 233	2.346	2.4	2,511	2.662	2, 789	2.8	2.99	2.0	3.2	3.553		3,775				1,24	1,342	1.4	1,6	1.7	1.7	1, 806	2 0,	2, 18	2.3	2.5	2.68	2.82	2.95	3, 12	3,31	3.48	3.633	3.77
မီ	CURVE 4 (cont.)*	6.372 x 10°		6, 105	6. 126	6.143	5.063 F 754	5, 135	5.642	5,342	5,708	5.788	5.867	5, 895	6.039	6.309	6.429	6.850	7.062	7. 530	8.114	8.824	9,663	1,022 x 10°5	1,001	1,058	1.059		Series II		1.305 x 10°	1, 231	1.135	9.405 x 10°	8,843	8, 231	7,806	7,285	6.894	6, 530	6.307	6, 143	6.015	6, 265	
۲	CURVE	0.957	0.993	1,029	1.062	1.102	310	1 269	1.320	1.404	1, 496	1.524	1, 591	1,703	1,805	1.897	1.973	2.027	2. 140	807.7 9.373	282	2.828	3.016	3, 173	3, 196	3,308	3,370		Ser		0.565	2.0 0.0	0.622	0.688	0.723	0.761	0.800	0.841	0.882	0.924	0,965	1,003	1,041	1.077	
ď	CURVE 2 (cont.)	9.63 x 10-6	1.05 x 10-4	1. 12	1. I7	3 2	*****	36.1	1.41	!	CURVE 3		2.87 × 10-6	2.97	9 :	3.16	3.30	5. 4g	3 65	. 16	4.36	19.4	4.92	5.15	5. 42	5.74	6.08	6.33	6.60	6.93	7.29	7.68	9 6	1	CURVE 4*	188		9.325 x 10-	8, 654	8, 158	7.737	7, 190	6.879	6.652	
H	CURV	2.904	3, 148	334	3. 467	36.	2 830	7	4.073		CC		L. 353	1.450	. 511	1. 578	1.668	1. (30	0 053	2, 184	2. 286	2. 432	2, 569	2.686	2.823		3. 132	3. 250	3, 372	3. 513	3.671	5. 83g	000	:	CC	8		0. 100	25.	0.769	906	0.87	0. 883	0. 920	
ర్షా	IVE 1	5, 68 x 10-6 2		98 4		0, 10				98.7	8, 11	8.45	8.89	9. 39	1. 01 × 10 ×	1.10	-	7									CURVE 2	•	4. 54 x 10-4	4.64			22.5	. 42.	5.62	5.92						7.74		8. 96 0	
H	CURVE	.350	.382	412	1	200		35	850	919	. 980	2, 059	2, 160	2, 269	2. 439	2. 661	2, 819	2. 270		374	3. 574	3, 743	3.887	. 013	. 134		D)		1.363	1.391	1. 439	200	1.601	1,655	1.716	1.796	1.903	1. 95	2.065	2.154	2.249	2, 380	2.570	2.711	

SPECIFICATION TABLE NO. 105 SPECIFIC HEAT OF NICKEL + SILLCON Ni + Si

[For Data Reported in Figure and Table No. 105]

Composition (weight percent), Specifications and Remarks	97. 95 Ni, 1. 92 Si; annealed under vacuum at 1200 C for 72 hrs; etched with 30 ml HNO ₃ and 20 ml CH ₂ COOH.	95. 82 Ni, 3. 97 Si; same as above.
Name and Specimen Designation	Ni(96) Si(4)	Ni(92) Si(8)
Reported Error, %	25	\$2
Temp. Range, K	1.4-4.1	1.54.3
Year	349 1962	1962
Curve Ref. Year No. No.	349	349
Curve No.	-	81

*Not shown on plot

DATA TABLE NO. 105 SPECIFIC HEAT OF NICKEL + SILLCON Ni + Si

[Temperature, T, K; Specific Heat, G_p , Cal $g^{-1} K^{-1}$]

T Cp	CURVE 2 (cont.)	ï	112 1.	-																													
ပိံ	<u>/E 1</u>	4.52 x 10-6	4.72	4. 97	5.32	6		8.76	7.07	7 39	7.85	8 17	 	 				1.39	/E 2	5.098 x 10-6		-	7.117			8. 99 .		1.024 x 10-4	1.086	1.174	1.249	1. 314	1.382
H	CURVE	1.390		1. 535		1. (31	2.022					_					200	4, 146	CUPVE		1.655	1.996			2.368	2. 571				3.345		3.700	3. 961

SPECIFICATION TABLE NO. 106 SPECIFIC HEAT OF NICKEL + TUNGSTEN, Ni + W (Ni,W)

[For Data Reported in Figure and Table No. 106]

Composition (weight percent), Specifications and Remarks	Prepared by reduction of mixture of nickel and tungsten oxides.
Name and Specimen Designation	WIN
Reported Error, %	€.4
Temp. Range, K	298-1100
Year	1962
Ref. No.	397
Curve No.	1

[Temperature, T, K; Specific Heat, Cp. Cal g-1 K-:]

ပ်

CURVE 1

298.15 6.931 x 10⁻²
300 6.936⁴
400 7.202
500 7.469
600 7.469
700 8.001
800 8.267
900 8.533
1000 9.065

SPECIFICATION TABLE NO. 107 SPECIFIC HEAT OF NICKEL + ZINC Ni + Zn

[For Data Reported in Figure and Table No. 107]

ications and Remarks	ті сизсоон.
Composition (weight percent), Specifications and Remarks	79.80 Ni, 20.2 Zn; etched in 30 ml HNO ₃ and 20 ml CH ₂ COOH.
Name and Specimen Designation	Ni(80) Zn(20)
Reported Error, %	5.2
Temp. Range, K	1.3-4.2
Year	1962
Ref. No.	349
Curve No.	1

ပ္

CURVE 1

SPECIFICATION TABLE NO. 108 SPECIFIC HEAT OF NIOBIUM + ZIRCONIUM Nb + Zr

[For Data Reported in Figure and Table No. 108]

	Composition (weight percent), Specifications and Remarks	Before exposure: 99. 2 Nb, 0.5 Zr. < 0. 1 total elements by semi-quantitative emission spectrogram, after exposure: 99. 5 Nb, 0.41 C; sample supplied by General Astrometals Corp; crushed in a hardened steel mortar to pass 100-mesh screen; hot pressed; density at 25 C 27parent density (ASTM method B311-58) 492 lb ft ⁻³ ; true density (by immersion in xylene) 505 lb ft ⁻³ ; after exposure: apparent density = 502 lb ft ⁻³ ; true density = 529 lb ft ⁻³ .
23 255-6	Name and Specimen Designation	
	Reported Error, %	ro A
	Temp. Range, K	533-2200
	Year	1962
	No. No.	237
	Curve No.	-

DATA TABLE NO. 108 SPECIFIC HEAT OF NIOBIUM + ZIRCONIUM Nb + Zr

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

		10-2						
ე <mark>ი.</mark>	1 1	× 009	7.800	8, 100	8. 400	8.600	9.000	400
÷	CURVE	533	811	089	366	3	922	000

SPECIFICATION TABLE NO. 109 SPECIFIC HEAT OF PALLADIUM + SILVER Pd + Ag

[For Data Reported in Figure and Table No. 109]

Composition (weight percent), Specifications and Remarks	Prepared by fusion using high frequency induction furnace; treated with boiling hydrochloric acid to remove surface contamination; degassed by heating to a dull red heat in vacuo for 3 hrs.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.
Name and Specimen Designation	PdAg(4.7)	PdAg(7.8)	PdAg(14.1)	PdAg(26. 1)	PdAg(32. 1)	PdAg(49.6)
Reported Error, %						
Temp. Range, K	10-20	10-20	10-20	10-20	10-20	10-20
Year	1953	1953	1953	1953	1953	1953
Ref. No.	398	398	398	398	398	398
Curve No.	1	8	က	4	2	ø

DATA TABLE NO. 109 SPECIFIC HEAT OF PALLADIUM + SILVER Pd + Ag

[Temperature, T,K; Specific Heat, Cp, Cal g-1K-1]

g S	VE 6	2.186 x 10 ⁴ 4.082 6.804 1.044 x 10 ⁻³ 1.515 2.106*					
H	CURVE	20 # # # # # # # # # # # # # # # # # # #					
cb	7E 1	4.168 x 10 ⁻⁴ 6.186 8.846 1.226 x 10 ⁻³ 1.652 2.175	5.239 x 8.013		3.263 x 10 ⁴ 5.328 8.147 1.185 x 10 ⁻³ 1.656 ⁴ 2.244	3.135 x 10 ⁻⁴ 5.136* 7.916 1.156 x 10 ⁻³ 2.204*	1
H	CURVE	20 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 12	14 18 20 20	CURVE 10 12 14 16 18 20	CURVE 10 12 14 16 16 20	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SPECIFICATION TABLE NO. 110 SPECIFIC HEAT OF POTASSIUM + SODIUM K + Na

[For Data Reported in Figure and Table No. 110]

Composition (weight percent), Specifications and Remarks	78.0 K, 22.0 Na; 0.009 Cl ₂ , 9.006 S, 0.005 Ca, <0.01 alkali oxides; after measurement;	54.0 K, 46.0 Na; after measurement: 43.64 K; (4.9182 g sample),
Name and Specimen Designation	Eutectic mixture	
Reported Error, %	0.4	0.4
Temp. Range, K	273-1073	323-1073
Year	1952	1952
Ref.	353	353
Curve No.	1	8

T C_p

CURVE 1

273.15 2.378 x 10⁻¹
228.15 2.340
373.15 2.306
373.15 2.249
473.14 2.170
573.15 2.123
673.15 2.098
873.15 2.098
873.15 2.093
873.15 2.093

223. 15 2. 657 x 10⁻¹
348. 15 2. 659
373. 15 2. 629
373. 15 2. 603
473. 15 2. 612
573. 15 2. 397
773. 15 2. 373
873. 15 2. 373
873. 15 2. 371
973. 15 2. 371

SPECIFICATION TABLE NO. 111 SPECIFIC HEAT OF SODIUM + POTASSIUM Na + K

[For Data Reported in Figure and Table No. 111]

Composition (weight percent), Specifications and Remarks	46.07 K (45.96 theo.). 55.0 Na and 45.0 K; after measurement: 44.80 K; (4.0182 g sample).
Name and Specimen Designation	Na ₂ K
Reported Error, %	0.5
Temp. Range, K	12-321 323-1073
Year	1957 1952
Ref. No.	259
Curve No.	7 8

DATA TABLE NO. 111 SPECIFIC HEAT OF SODIUM + POTASSIUM Na + K

				1		
				[Tempera	[Temperature, T, K; Specific Heat, C _p , Cal g ⁻¹ K ⁻¹]	g-1 K-1]
н	ď	H	c _p	H	ပ ^ရ	
CURVE	<u>/E 1</u>	CURVE 1 (cont.)	(cont.)	CURVE 1 (cont.)	(cont.)	
Series 1	es 1	Series 2 (cont.)	(cont.)	Series 5*	82 C#	
71. 22	1.761 × 10 ⁻¹	59.43	1.618 x 10 ⁻¹	303, 57	2. 873 x 10 ⁻¹	
80.48	1.843	64.31	1.673		2.861	
86.62	1.886	69. 54	1.744		2.850	
93.16	1.926	74.94	1. 795		2. 836	
105.51	1.950	Series 3	~	321.06	2, 823	
111, 43	2,005		>	Series 6	92	
117. 20	2, 025	197.88	2, 225 x 10-F*			
122, 86	2.044	202, 63	2, 239*	282, 27	5, 632 x 10 ^{-1*}	
128, 41	2, 063	207. 56	2.250*	284, 12	5.697*	
133, 87	2, 077	212, 59	2, 265	286.14	5. 734	
139, 27	2, 092	217.70	2.288*	288.17	5.640*	
144. 58	2, 104	222.90	2,307*	290.42	5. 245*	
149.81	2, 115	228.11	2, 323	293, 19	4.451*	
154. 95	2, 127	233, 34	2.340*	296.65	3, 670*	
160.24	2, 138	238. 60	2, 362	300, 87	3.224*	
165. 66	2, 148	243.89	2, 385			
171.00	2. 160	249. 21	2. 407	CURVE 2	E 2	
101 50	2, 1/1	254. 49	2, 427			
181. 59	2, 183			323	2, 736 x 10 ⁻¹	
186.82	2. 192	Series 4	8 4	348	2.713	
192, 12	2. 207		ţ	373	2.691	
197. 51	2, 220	240.21	2, 363 x 10-F	473	2.613	
202, 84	2. 231	245. 52	2, 386*	573	2, 554	
i		250.80	2, 395	673	2, 513	
Series 2	es 2	256, 13	2. 443*	773	2. 490	
	1	265, 49	2, 487	873	2.485	
12, 19	1.128 x 10 ⁻²	268. 68	2.518*	973	2, 498	
16.35	2 581	275 89	2, 332	10/3	2. 530	
17.84	3, 230	284.91	5 337			
20, 56	4.461	288.17	5, 230			
23.66	5,906	291, 55	4. 736			
26.34	7.116	295, 33	4,028			
29, 34	8.392	299, 71	3, 556			
32, 53	9.633	304, 50	3, 172			
32, 86	9.781	309, 73	2, 963			
36. 60	1, 106 x 10 ⁻¹	315.51				
40.98	1.231	321, 42	2, 819			
45, 57	1.352					
20.03	1. 40¢					
59. 43	1. 549 1. 549					

SPECIFICATION TABLE NO. 112 SPECIFIC HEAT OF TANTALUM + TUNGSTEN Ta + W

[For Data Reported in Figure and Table No. 112]

Composition (weight percent), Specifications and Remarks	Bal. Ta, 9.50 W, 0.087 Nb, 0.02 Si, 0.02 Ti, 0.015 Mo, 0.005 Fe, 0.001 C, 0.005 O ₂ , 0.003 N ₂ ; sample supplied by the Fansteel Metallurgical Corp; density = 1035 lb ft ⁻² .
Name and Specimen Designation	Ta-10W alloy
Reported Error, %	≠5.0
Temp. Range, K	537-2890
Year	1963
Ref.	232
Curve No.	п

င္ပ CURVE

3.233 x 10⁴
3.233 x 10⁴
3.487
3.533
3.668
3.688⁶
3.787
4.128
4.128
4.128
4.128
4.1390⁶
4.154
4.154
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.13⁶
6.1

SPECIFICATION TABLE NO. 113 SPECIFIC HEAT OF THALLIUM + LEAD 71 + Pb (PbTl₂)

[For Data Reported in Figure and Table No. 113]

Composition (weight percent). Specifications and Remarks	55.2 Tl and 44.87 Pb; cast in pyrex tube, annealed for 3 days in CO ₂ atmosphere at a tempera-
Name and Specimen Designation	₩1,
Reported Error, %	
Temp. Range, K	3, 2-5, 9
Year	1935
Curve Ref. No. No.	12
Curve No.	п

CURVE 1

6.575 x 10⁴
8.759
9.451
9.945
1.032 x 10⁴
1.090
1.045
1.071*
1.189*
1.269
1.274*
1.269
1.275
1.275
1.275
1.275
1.287
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.512*
1.514
1.515
2.312 3.170 3.230 3.320 3.020

The second second

SPECIFICATION TABLE NO. 114 SPECIFIC HEAT OF TIN + BISMUTH Sn + Bi

[For Data Reported in Figure and Table No. 114]

Composition (weight percent), Specifications and Remarks	99. 999 Sn, 99. 95 Bi; sample supplied by the McKay Co.; annealed 2 wks at 135 C. Same as above.
Name and Specimen Designation	6 at. % Bi 3 at. % Bi 9 at. % Bi
Reported Error, %	80 80 80 V V V
Temp. Range, K	1.34.8
Year	1955 1955 1955
Ref.	82 82 82 83 82 82
Curve No.	- 2 6

DATA TABLE NO. 114 SPECIFIC HEAT OF TIN + BISMUTH Sn + Bi

, Cp, Cal g -1K -1]	Cp T Cp	cont.) CURVE 3 (cont.)	4.45 x 10* 1.586 8.04 x 10*	1.673	1.757	1.836	1.952	2.096	2.198	2.031	1074	Series IV		1.362	8.91 x 10 4 1.405 7.02	1.452		1.577	1.25		e l		***	6.59 x 10 *	6.75	7.33) or	29.65	1.03 x 104				3.41 x 10-6	3.04	3.10*	3.23	3.48*	3.68	6.21	6.67*	07.70	2.30	7. U. A. U.			1	5.68 x 10
; Specific Heat	۴	CURVE 2 (cont.)		3, 159		3.440	3.644	3, 839	4.065	4.329	4. 592		Series VII		1.590				1.990		CURVE	Series I		3.265	3.574	2. 44. S	3 668	3, 792	3,905		Series II		2.479	2.532	2.612	2.686	2.761	2.043	3.344	2.493	2 007	4 107	1. 101		Series III		1.399
[Temperature, T, K; Specific Heat, Cp, Cal g -1K -1]	T Cp	CURVE 2 (cont.)	2.516 2.09 x 10-6	2.596 2.14*											Series IV		2.558 2.74 x 10 m					2.750 4.45		2.286 5.53		3 830 7 14					Series V						1.990 1.25*		3.675 5.26		Series VI	Series vi		2.558 2.74 x 10	2,638 2,89	2. 731 3. 17*	
	Cp	cont.)		5.59 x 10°					7	1			7.34*		6.93*		7.31				1.03 x 10°				100 - 101						1.66						2.55				5 28 x 1076	1 04 × 10 5		. OT X	4.6		
	T	CURVE 1 (cont.)		1.430	1.510	1.580	1.670		CURVE	Series		3,528	3.642	3.730	3.838	3.947	4.021	4.093	4.145	4.283	4.514	4.721	100	Series II	1001	1 919	1.959	2.041	2.095	2.138	2.186	2.243	2.297	2.357	2.414	2.472	2.534	2.000	(45	Series III	1 280	1 290	7.490	1.740		1.620	1.710
	Ср	~⊩		2.23 x 10°	2.40*	2.70	 2	5.89	3,00	3.52	4.07	4.02	4.27	4.93	5.59	6.35	6.71	24.0	8.18	07.8	9.15	1. 19 x 10 °	4.63		=	3.24 x 1076	36	3.32	3.56	3.40*	4.05	5.67*	6.31	8.74	1.03 x 10	2.38	28.50		3.02	2.40	7.7	2.5	20.2	5.70	7:	7.15	8.75
	F	CURVE		2.427	2.481	2.549	2.605	2.667	2.760	2.848	2.938	3.014	3, 103	3.226	3,335	3,435	3.544	3.668	3.793	200	4.219	4.408	3	Company I	Series	1.260	1.260	1.320	1.380	1.310	1.340	1.430	1.670	1.760	1.850	2.526	2.614	5 6	2.786	2.378	3.245	3.395	3 546	3 717	3. f. L.f.	3.887	4.150

SPECIFICATION TABLE NO. 115 SPECIFIC HEAT OF TIN + INDIUM Sn + In

[For Data Reported in Figure and Table No. 115]

Composition (weight percent), Specifications and Remarks	2.0 in; superconducting.	2.0 In; normal state, 500 gauss magnetic field.	1.0 In; superconducting.	1.0 h; normal state, 500 gauss magnetic field.
Reported Name and Error, % Specimen Designation	Sn 2% In	Sn 2% In	Sn 1% In	Sn 1% In
Reported Error, %				
Temp. Range, K	0.8-1.9	0.6-1.8	0.8-1.8	0.5-2.0
Year	1961	1961	1961	1961
Ref.	197	197	197	197
Curve No.	1	64	က	4

DATA TABLE NO. 115 SPECIFIC HEAT OF TIN + INDIUM Sn + In

T Cp	CURVE 4 (cont.)									1.549 8.07*					2.055 1.16																									
d o	CURVE 3 (cont.)	1.28 x 10 ⁻⁶	1.33	1.41*	1.59	1.81	1.88*	2.099*	2.276	2.299	2.538	2.567*	2.72*	2.88*	3.00*	3.08*	3.40	3.52	3.87	1.61	6.34	7.53	9.42		4 2	1.77 x 10 ⁻⁶	2.119	2.115	2.262	2.518	2.613	2.724	2.80	3 24*	7.46 1.478 6.80 0.828 1.02 x 10 ⁻⁵ 1.738 9.26 0.835 1.800 9.34 0.875 0.909 2.01 x 10 ⁻⁶ 0.864 3.89 x 10 ⁻⁷ 0.963 2.642 0.963 7.53 1.006					
H	CURVE	1.052	1.073	1.098	1.125	1.161	1.183	1.200	1.217	1.244	1.266	1.279	1.292	1.312	1.328	1.348	1.369	1.382	1.394	1.480	1.603	1.713	1.855		כחא	0.505	0.542	0.597	0.623	0.647	0.693	0.741	087.0	0.828	0.835	0.875	0.909	0.928	0.945	
တီ	CURVE 2 (cont.)	2.92 x 10 ⁻⁶	2.60	2.68	2.78	2.82	3.01	3.17	3.19*	3.35	3.39*	3.35*	3.23	3.31*	3.51	3.63	3.67*	3.75	3.38		3.85	3.85	3.99	4.03*	77.7	4,15	4.40*	4.58	4.63*	4.63*	4.60	4.78	57.0	6.80	9.26	9.34		RVE 3		
H	CURVE	0.719	0.737	0.751	0.765	0.778	0.800	0.817	0.827	0.838	0.848	0.858	0.868	1, 63* 0.879 3.31* 1.322 2.88* 1.862 1, 63* 0.889 3.51 1.328 3.00* 2.055 1, 65* 0.899 3.61* 1.328 3.00* 2.055 2, 037 0.999 3.67* 1.369 3.40 2, 227 0.996 3.67* 1.382 3.52 2, 237 0.996 3.69* 1.382 3.62 2, 237 0.997 3.89 1.394 4.60 2, 608 3.89 1.524 5.22 2, 531 0.996 3.69* 1.524 5.22 2, 532 1.024 4.09* 1.855 9.42 2, 585 1.024 4.09* 1.855 9.42 2, 585 1.024 4.09* 1.855 9.42 2, 585 1.024 4.09* 1.855 9.42 2, 585 1.024 4.03* 0.505 1.77 x 10** 4.42 1.085 4.40* 0.507 2.115 3, 15 1.070 4.15 0.507 2.115 3, 15 1.116 4.65 0.647 2.518 4.86 1.126 4.78 0.741 2.724 4.86 1.147 6.80 0.828 3.24* 1.02 x 10** 1.800 9.34 0.805 3.10* 2, 01 x 10** 0.864 3.89 x 10** 0.963 3.81 2, 642 0.943 7.53 1.006 3.97* 2, 105 9.34 1.006 3.97* 2, 105 9.34 1.006 3.97* 2, 106 0.864 3.89 x 10** 0.963 3.81 2, 735 1.006 9.24 1.006 3.97* 2, 735 1.006 9.24 1.006 3.97* 2, 735 1.006 9.24 1.006 3.97* 2, 735 1.006 9.24 1.007 4.11 2, 746 1.007 1.14 x 10*** 1.07** 4.11 2, 746 1.007 1.14 x 10*** 1.07** 4.11 2, 746 1.007 1.14 x 10*** 1.008 3.97* 2, 735 1.006 3.943 7.53 1.006 3.97* 2, 76** 1.007 1.14 x 10*** 1.07** 4.11 2, 746 1.007 1.14 x 10*** 1.07** 4.11 2, 746 1.007 1.14 x 10*** 1.008 3.97* 3, 744 1.007 1.14 x 10*** 1.008 3.97* 3, 744 1.007 1.008 3.97* 3																										
ပီ	CURVE	4.82 x 10 ⁻⁷	5.93	6.72	7.76	9.01	9.40	1.12 x 10-6	1.18	1.30	1.38	1.52	1.64	1.63*	1.77	1.95	2.01*	2.097	127.2	2 331	2.440	2.608	2.727	6.000	03	3.15	3,16*	3.45	3.63	8,73	27.	6.00	57.57	7.46	1.02 x 10 3		WE 2		2.01 x 10 °	
(4	CO	0.837		0.903	0.940	0.974	.000	. 029	. 052	. 072	160	.110	. 138	. 147	. 162	.178	. 193	.207	22.5	245	.258	. 275	. 291	316	329	342	.354	.366	.377	.388	9	588	655	192	. 896		Cd		0.622	600

SPECIFICATION TABLE NO. 116 SPECIFIC HEAT OF TIN + LEAD Sn + Pb

[For Data Reported in Figure and Table No. 116]

Composition (weight percent), Specifications and Remarks	72 at. % Sn, 28 at. % Pb. 64 at. % Sn, 36 at. % Pb. 49. 9 Sn, 48. 8 Pb, < 0. 25 Sb, < 0. 15 Bi, < 0. 05 As, < 0. 001 Al, < 0. 001 Cd, < 0. 001 Fe, < 0. 001 Ni, < 0. 001 Zn; sample supplied by National Lead Co.
Name and Specimen Designation	Pb(28) Sn(72) Pb(36) Sn(64) 50-50 Lead-tin solder
Reported Error, %	
Temp. Range, K	1, 5-20 1, 5-20 20-300
Year	1963 1963 1964
No. No.	393
Curve No.	- 8 6

DATA TABLE NO. 116 SPECIFIC HEAT OF TIN + LEAD Sn + Pb [Temperature, T. K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

Т	CURVE 3 (cont.)	70 3.275		e,	e		ຕໍ	ຕໍ		130 3.822	140 3.869	150 3.910		170 3.978	4	4	200 4.059	4	220 4.105	4	4	4	4	270 4.212*	280 4.233	290 4.253*	300 4.272						
С	VE 1	6.00 × 10 ⁻⁶	8	5.15		1.25 x 104		5.48	1.45 x 10 ⁻³	2.80	4.44	6.18	7.97	9.68	1.14 x 10 ²		VE 2		6.17 x 10°	1.52 x 10 ⁻¹	3.00*	5.24	8.44	1.28 x 104	2.92	5.68	1.49 x 10 ⁻³	2.82*	4.51	6.22*	8.02*	*	1.15 x 10 ⁻² *
Н	CURVE	1.5	2.5	က	3.5	4	ເດ	9	9 0	91	27	11	91	18	20		CURVE		1.5	61	2.5	က	3.5	4	ı,	9	0 0	10	77	11	16	18	20

e	1.097 x 10-				2.379					
CURVE	20	25	30	35	40	45	36	55	9	65

SPECIFICATION TABLE NO. 117 SPECIFIC HEAT OF TIN + MAGNESIUM, Sn + Mg (Mg-Sn)

[For Data Reported in Figure and Table No. 117]

Prepared by melting stoichiometric proportions of 99. 99 Mg samples from Dow Chemical Co. and 99. 9999 Sn samples from Vulcan Materials Co., and cooling slowly while a temperature gradient is maintained over the length of a spectroscopically pure graphite crucible.
Mg.Sn
5-314
1967
391
-

DATA TABLE NO, 117 SPECIFIC HEAT OF TIN + MAGNESIUM Sn + Mg (Mg₂Sn)

[Temperature, T, K; Specific Heat, Cp, Cal g 'K']

			103								1,02 x 10 ⁻¹				1,06 x 10 ⁻¹											1.18×10^{-1}																					
Cp	(cont.)		6.45 x 10 ⁻²	7.00	7.30	×. 17	8.63	9.07	9.50	9. 36	1.02 x		×		1.06 x	1.09	1.10°	ा।	1.13	1.14°	1.16	1.17		Z X		1. 18 x	1.19	1.20			1.2:3																
H	CURVE 1 (cont.)		80.57	87.05	96.10	104.90	113,40	122.40	132, 10	142.60	154, 10		Series X		167.4	183.1	186.4	197.0	207.3	218.1	229.2	240.3		Series XI		253.6	265.7	277.7	289.5	301.0	314.3																
Cp	(cont.)	1.15×10^{-1}	1.16	1.17	1.18	1.19	1.20	1.22	1.22		*		2.006 x 10 ⁻⁵	5.014	1.755 x 104	5.716	8.808		VI		6.853 x 10 ⁻⁵	8,691	1,454 x 107	2,189		IIV		2.358 x 10 ⁻³	3, 595	5, 171	1.070	9.460	1.315×10^{-2}	1.693	2.111	2.634	3,314		ΛШ		3.92 x 10 ⁻²	4.66	5.26	5,73	7 49	,	
H	CURVE 1 (cont.)	222.4	234.0	246.1	258.2	270.2	282.2	294.3	308.4		Series V		5,35	6.63	8.42	10,35	12.39		Series VI		5.85	6.74	7.77	8.82		Series VII		15.74	18.00	20.23	22.55	25.40	29.20	33,36	37.52	42.39	48.69		Series VIII		2.5	61.67	67.19	72,34	77 95		
Сb	E 1	•	1.170 x 10 ⁻⁹	2.173	7.521	2.540 x 10 ⁻¹	6.201	1.050 x 10 ⁻³	1.832	2.721	3,822	5.514	7.708	1.048 x 10-2	1.471	1.833	2.270	2.820		S II		3.66 x 10-2	4.41	2.00	5,53	6.01		шя		6.65 X 10 -	2.33	3 .	8.41	8.87		9.74	1.01×10^{-1}	1.05		18 IV	3	1.06 x 10-1	1.08	1.10	1 12	3:-	1.10
H	Series		4.97	2.66	7.14	8.93	10.85	12.70	14.58	16.43	18.36	20.57	23.31	26.46	30.06	34.41	38.98	44.13		Series II		52.14	59.21	£.73	69.97	75.19		Series III	0	22.30	91.58	8	.40	.8.30	128.30	139.00	150.00	160.90		Series IV		170.0	180.4	190.8	201.7	212.8	0.517

* Not shown on plot

SPECIFICATION TABLE NO. 118 SPECIFIC HEAT OF TITANIUM + MANGANESE Ti + Mn

[For Data Reported in Figure and Table No. 118]

Composition (weight percent), Specifications and Remarks	91. 81 Ti, 7.9 Mn, 0.15 O, 0.03 C, 0.01 W; measured under a helium atmosphere; density = 286 lb ft ⁻⁴ .
Name and Specimen Designation	Ti C110M
Reported Error, %	3.0
Temp. Range, K	497-1816
Year	1961
Curve Ref. No. No.	146
Curve No.	1

DATA TABLE NO. 118 SPECIFIC HEAT OF TITANIUM + MANGANESE T1 + Mn

[Temperature, T, K; Specific Heat, Cp, Cal g-1K-1]

•	ဌ	
1	_	

- T	1.189 x 1									1.256					
CURVE	497	603	650	749	812	898	1051	1176	1246	-	1467	1588	1705	1816	

SPECIFICATION TABLE NO. 119 SPECIFIC HEAT OF TITANIUM + MOLYBDENUM, Ti + Mo

[For Data Reported in Figure and Table No. 119]

Composition (weight percent), Specifications and Renarks	7.54 at % Mo. prepared from 99.92 Ti and 99.9 Mo by melting together in a furnace using "gettered" argon atmosphere, remelted at least six times to promote homogeneity, quenched from region of solid solubility to room temperature.	6.25 at % Mo. same as above. 6.50 at % Mo. same as above. 8.60 at % Mo; same as above.
Name and Specimen Designation	M-6	M-8 M-9 M-10
Temp. Reported Nange, K Error, % Spec	± 1.0	± 1.0 ± 1.0 ± 1.0
Temp. Range, K	1.14.3	1.24.3
Year	1961	1961 1961 1961
Curve Ref. Year No. No.	401	401
Curve No.	-	61 to 4

DATA TABLE NO. 119 SPECIFIC HEAT OF TITANIUM + MOLYBDENUM, Ti + Mo

Characteristics Characteri										
CHRVE CHRVE CORPL CORPLE CORP	F	ე	H	c _p	H	c _p	H	$_{\mathbf{p}}^{\mathbf{q}}$	L	င္ခ
1,004 x 10 ⁻⁴	CO		CURVE	1 (cont.)	CURVE	2 (cont.)	CURVE	; 3 (cont.)	CURVE	4 (cont.)
1.183	121	1.084 x 10 ⁻⁵	4.077	6.232 x 10-4	3,704	9.417 x 10 ⁻⁵ *	2.717	6.864 x 10-5*	2.846	1.658 x 10-4*
1.299	1.14	1.153	4.126	6.340	3.753	9.579	2.817	7.163	2.910	1.549
1.273	1.161	1.209	4.169	6.375*	3.804	9.726*	2.875	7.316	2.935	1.510*
1.361 4.272 6.611 3.984 1.000 x 10 ⁻⁴ 2.973 7.587 ⁺ 2.961 1.589 1.000 x 10 ⁻⁴ 1.000	1.181	1.273	4.227	6.577*	3.859	9.904	2.913	7.416*	2.958	1.492
1.560	. 203	1.361	4.272	6.611	3.898	1.008 x 10-4*	2.979	7.597*	2.961	1.478*
1,783 CURNE 2 3.994 1.035 3.120 8.007 3.028 2,032 1,203 4,005 × 10 ⁻⁵ 1.057 ⁻⁶ 3.218 8.037 3.103 2,032 1,240 4,005 × 10 ⁻⁵ 1.057 ⁻⁶ 3.218 8.930 ⁻⁶ 3.110 3,133 1,224 4,035 4,190 1.113 ⁻⁶ 3.460 8.990 ⁻⁶ 3.219 3,135 1,216 4,196 1.113 ⁻⁶ 3.772 9.906 3.281 4,147 1,416 5,507 4,286 1.135 3.762 9.469 3.218 4,737 1,513 6,286 1,711 9.96 1.077 3.281 4,747 1,416 5,507 4,286 1,135 3.772 9.711 3.394 4,747 1,513 6,285 1,714 3.546 1,008 3.346 3.249 5,280 1,917 7,482 1,135 3.496 1,007 3.349 3.499 6,346 1,218 1,146	. 260	1.580			3.949	1.023*	3.023	7.722	3.004	1.381
2.028 2.028 1.209 4.049 1.056* 3.218 8.321 3.103 2.163 1.209 4.060 x 10** 4.049 1.056* 3.246 8.432 3.110 2.163 1.224 4.050 4.040 1.056* 3.246 8.917 3.194 3.155* 1.224 4.795 4.196 1.112* 3.66 9.406 3.119 4.702 1.319 4.795 4.288 1.132* 3.66 9.406 3.283 4.107 1.416 5.26 1.132* 3.64 9.711 3.384 4.702 1.513 4.726 4.288 1.132* 3.64 9.711 3.384 5.289 1.717 4.285 1.132* 3.541 9.711 3.394 5.280 1.716 5.287 1.167 2.297 x 10* 3.281 1.003 3.449 6.384 1.917 7.822 1.167 2.297 x 10* 3.281 1.003 3.449 6.384	.316	1.793	CURV	/E 2	3.994	1.035	3.120	8.037	3.062	1.297
2.624 1.229 4.090 1.007 3.550 8.942 3.119 2.624 1.229 4.090 1.007 3.450 8.942 3.119 3.153 1.220 4.090 1.113* 3.469 8.917 3.194 3.155 1.306 5.175 4.259 1.113* 3.60 8.996* 3.219 4.772 1.316 5.377 4.259 1.135* 3.60 9.971* 3.329 4.772 1.316 5.377 4.259 1.135* 3.760 9.71* 3.334 5.829 1.766 8.270 1.167 2.937 ×10* 3.949 1.020* 3.349 6.324 1.317 4.26 3.294 4.046 1.029* 3.441 6.324 1.317 4.26 3.294 4.049 4.049 3.949 3.541 6.325 1.317 4.227 1.167 2.944 4.049 3.949 3.543 6.542 2.316 4.239 1.064 </td <th>369</th> <th>2.028</th> <td></td> <td>31.00</td> <td>4.049</td> <td>1.056*</td> <td>3.218</td> <td>8.321</td> <td>3.103</td> <td>1.268*</td>	369	2.028		31.00	4.049	1.056*	3.218	8.321	3.103	1.268*
2.724 1.220 4.030 4.140 1.109 3.450 8.917 3.194 2.155* 1.220 4.030 1.112** 3.450 8.917 3.194 3.155* 1.313 4.736 4.190 1.112** 3.565 9.306 3.201 4.176 1.416 5.377 4.286 1.132** 3.660 9.777 3.393 4.177 1.416 5.377 4.286 1.132** 3.660 9.777 3.393 5.250 1.517 8.022 1.167 2.977 × 10** 3.396 1.010 × 10** 3.393 6.384* 1.771 8.022 1.167 2.977 × 10** 3.949 1.060** 3.449 3.549 1.020** 3.439 6.389* 1.919 8.445 1.247 3.544 4.049 1.039 3.549 6.389* 1.911 3.949 4.048 1.039 3.544 4.048 3.544 4.049 3.544 5.25 2.019 6.465 <t< td=""><th>163</th><th>2.131</th><td>1.209</td><td>4.003 x 10</td><td>4.090</td><td>1.077</td><td>3.324</td><td>8.642</td><td>3.110</td><td>1. 239</td></t<>	163	2.131	1.209	4.003 x 10	4.090	1.077	3.324	8.642	3.110	1. 239
3.155 1.216 4.796 4.736 4.128 1.115 3.50 9.369 3.219 4.155 1.756 4.289 1.125 3.569 9.469* 3.223 4.170 1.36 5.175 4.289 1.135 3.669 9.469* 3.223 4.170 1.416 5.507 4.289 1.135 3.695 9.771 3.289 5.250 1.619 7.465 2.771 3.764 9.771 3.369 6.324 1.766 8.270 1.167 2.949 1.001 3.431 6.324 1.766 8.270 1.176 2.284 3.284 1.039 3.431 6.326 1.766 1.77 4.207 4.048 1.038* 3.543 6.556 1.327 4.207 4.048 1.038* 3.543 4.403 2.234 5.645 1.349 4.148 3.716 4.232 2.241 3.546 3.248 4.232 1.146 3.716	110	2.624	1.240	4.039	4.140	1.089	3.408	8.917	3.194	1.147
3.625 1.369 5.175 4.253 1.1125 3.531 9.300 3.221 4.147 1.369 5.175 4.285 1.135 3.504 9.771 3.281 4.147 1.513 5.507 4.285 1.135 3.606 9.771 3.203 4.147 1.619 7.465 5.171 3.202 3.771 3.203 5.250 1.711 8.022 1.135 3.606 1.010 x 10 ⁻⁴ 3.309 5.350 1.766 3.281 3.281 3.995 1.002* 3.449 6.346 1.371 7.822 1.247 3.504 4.008* 3.505 6.542 2.211 8.829 1.374 4.007 4.048 1.098* 3.543 4.863 2.221 5.845 1.317 4.007 4.048 1.108* 3.544 4.785 2.221 5.845 1.347 4.307 4.048 1.108* 3.549 4.102 2.231 2.843 4	200	9.150	2,2,7	4.330	4.190	1.113*	3.450	* 380	3.219	1.110*
4.702 1.135 5.773 4.789 3.283 4.702 1.513 6.517 4.289 1.135 3.769 3.782 4.702 1.513 6.510 4.289 1.135 3.762 9.771 3.383 5.826 1.619 7.445 4.285 1.137 3.949 1.023 ** 3.344 6.588* 1.711 8.022 1.176 3.281 1.029 1.023 ** 3.443 6.588* 1.717 7.822 1.206 3.281 3.995 1.023 ** 3.443 6.588* 1.917 7.822 1.206 3.949 4.095 1.036 ** 3.515 6.588* 1.917 7.822 1.226 3.644 4.095 1.046 3.515 4.786 2.748 4.095 1.046 1.317 4.232 3.515 3.449 4.095 1.146 3.515 3.515 4.282 2.216 1.348 4.438 4.139 4.139 1.146 3.515	070	3.133	1.319	087.	4.238	1.125*	3.551	9.306	3.261	1.077
4.702 1.133 5.704 9.771 3.309 5.250 1.613 6.510 CURVE 3 3.752 9.771 3.309 5.250 1.613 7.465 CURVE 3 3.752 9.771 3.309 6.324 1.711 8.022 1.167 2.997 × 10°5 3.899 1.001** 3.399 6.324 1.711 8.022 1.167 3.281 3.949 1.001** 3.399 6.386 1.716 1.206 3.281 3.949 1.001** 3.399 6.586 2.116 5.869 1.217 4.048 1.199** 3.549 4.403 2.231 5.465 1.374 4.438 4.190 1.149** 3.546 4.403 2.231 5.465 1.374 4.438 4.190 1.149** 3.546 4.403 2.231 5.465 1.374 4.438 4.139 1.162** 3.546 4.522 2.599 1.374 4.232 1.162 3.744	113	3.625	1.366	9.179	4.259	1.132*	3.605	9.469*	3.283	1.090*
5.250 1.619 7.465 CURVE 3 3.965 1.017 4.139 5.250 1.766 8.270 1.167 2.947 1.029 3.451 1.029 3.431 6.324* 1.766 8.270 1.167 2.947 1.061* 3.491 1.071* 3.439 6.324* 1.89 1.947 3.644 3.949 1.061* 3.431 6.328* 1.917 7.822 1.247 3.644 3.949 1.061* 3.515 4.403 2.234 5.455 1.347 4.207 4.095 1.119* 3.586 4.403 2.234 5.455 1.348 4.438 4.196 1.119* 3.586 4.403 2.324 5.655 1.426 5.160 1.102* 3.712 4.242 2.234 5.655 1.426 1.427 1.166 7.407 3.546 4.244 2.324 4.633 4.634 4.139 4.139 1.167 3.744 3.744	0 0	4.147	1.416	5.507	4.285	1.135	2.704	9.771	3.309	1.056
5.88 1.711 5.62 1.107 3.50 1.00 × 10 3.59 3.59 1.00 × 10 3.59 3.59 1.00 × 10 3.59 3.59 3.59 3.449 3.59 3.449 3.59 3.449 3.549 3.449 3.549 3.449 3.549 <t< td=""><th>2 5</th><th>2 250</th><td>1 510</td><td>40.0</td><td>GILD</td><td>. 42</td><td>201.0</td><td>1 010 - 10 -4#</td><td>400.0</td><td>1.00.1</td></t<>	2 5	2 250	1 510	40.0	GILD	. 42	201.0	1 010 - 10 -4#	400.0	1.00.1
6.345 1.766 8.276 1.167 2.957 x 10*5 3.899 1.022* 3.431 6.598 6.342 1.206 3.281 3.949 1.022* 3.431 6.598 6.598 1.917 7.822 2.2019 6.616 1.209 3.281 3.949 1.001** 3.503 1.001** 3.503 1.001** 3.504 1.008** 3.504 1.	15	5.828	1 711	× 099	400	3	60.0	1.010 × 10	5.333	1.0001
6.321* 1.819 8.445 1.206 3.281 3.949 1.061* 3.569 5.599* 1.917 7.822 1.247 3.604 3.949 1.061* 3.515 5.545 1.247 3.604 3.949 1.076 3.515 3.515 5.545 1.247 3.404 3.949 1.076 3.515 3.515 5.545 1.317 4.207 4.095 1.119* 3.544 3.544 3.242 2.215 5.645 1.383 4.232 4.232 1.162* 3.666 4.438 4.190 1.146 3.516 3.566 4.532 4.232 4.233 4.233 4.233 4.232 1.162* 3.716 4.522 2.569 6.265 1.265 6.465 1.566 7.440 1.212 2.042 × 10** 3.716 4.554 4.555 2.620 6.396 1.666 7.440 1.212 2.042 × 10** 3.945 4.556 4	0.0	6.345	1.766	8.270	1 167	2 987 x 10 ⁻⁵	100.50 100.50	1.023	3.431	1.039
6.58e* 1.917 7.822 1.247 3.604 3.995 1.076 3.515 1.0554 2.019 6.586 1.317 4.207 4.098 1.098* 3.554 4.048 1.098* 3.554 4.048 1.098* 3.554 4.048 1.098* 3.554 4.048 1.098* 3.554 4.048 1.098* 3.554 4.048 1.317 4.207 4.095 1.119* 3.566 4.048 1.322 2.211 5.645 1.328 4.633 4.232 1.162* 3.666 4.055 1.470 5.544 4.032 1.162* 3.712 4.242 2.565 6.050 1.470 5.544 4.232 1.162* 3.712 4.242 2.569 6.262* 1.470 5.544 4.048 1.242 2.042 1.05* 3.714 4.032 2.569 6.396 1.666 7.440 1.212 2.042 1.0* 3.860 4.559* 2.572 6.326* 1.166 7.440 1.212 2.042 1.0* 3.860 4.559* 2.572 6.326* 1.004 1.910 9.655 1.396 3.136 3.945 4.045 1.342 2.304 4.163 5.204 4.012 4.045 1.342 2.306 1.017 1.018 x 10⁴ 1.520 4.012 4.045 1.324 2.306 1.377 2.312 1.377 5.898 4.189 5.388 3.061 7.772* 2.177 7.751 1.018 x 10⁴ 7.772* 2.177 7.751 1.874 7.292 4.163 5.78* 2.400 8.533 2.400	26	6.321*	1.819	8.445	1.206	3,281	3.949	1.061*	3, 503	1.079*
6.542 2.019 6.616 1.289 3.949 4.048 1.098* 3.554 4.852 2.231 5.545 1.337 4.207 4.095 1.119* 3.554 4.603 2.231 5.545 1.348 4.633 4.633 1.162* 3.666 4.212 2.324 5.665 1.348 4.633 4.232 1.162* 3.666 4.222 2.324 5.665 1.349 4.633 4.232 1.162* 3.666 4.322 2.250 6.262* 1.470 5.544	24	6.598*	1.917	7.822	1.247	3.604	3.995	1.076	3.515	1.087*
5.755 2.2116 5.889 1.317 4.207 4.095 1.119** 3.586 4.083 2.231 5.445 1.348 4.438 4.139 1.146 3.610 4.02 2.231 5.455 1.426 5.160 1.426 5.160 3.610 4.22 2.245 5.655 1.426 5.160 1.212 2.042 x 10 ⁻⁵ 3.716 4.232 2.569 6.560 1.565 6.465 7.440 1.212 2.042 x 10 ⁻⁵ 3.716 4.524 2.569 6.20* 1.763 8.378* 1.212 2.042 x 10 ⁻⁵ 3.716 4.584 2.766 6.71 1.812 8.378* 1.281 2.307 3.904 4.585* 2.676 6.71 1.812 8.378* 1.240 3.945 4.586 2.676 6.71 1.910 9.655 1.460 3.648 3.346 4.981 2.918 7.772* 2.021 1.018 x 10 ⁻⁴ 1.405 4.163 </td <th>80</th> <th>6.542</th> <td>2.019</td> <td>919.9</td> <td>1.289</td> <td>3.949</td> <td>4.048</td> <td>1.098*</td> <td>3.554</td> <td>1.095</td>	80	6.542	2.019	919.9	1.289	3.949	4.048	1.098*	3.554	1.095
4.863 2.231 5.545 1.348 4.438 4.190 1.146 3.610 4.403 2.231 5.645 1.383 4.633 4.190 1.162* 3.610 4.212 2.324 5.665 1.470 5.544 $CURVE$ 3.766 3.766 4.222 2.569 6.262* 1.565 6.465 $CURVE$ 3.778 3.778 4.532 2.569 6.262* 1.566 7.440 1.212 2.042 × 10 ⁻⁵ 3.784 4.594 2.762 6.717 1.812 8.791 1.342 2.720 3.360 4.595 2.766 6.717 1.812 8.791 1.342 2.720 3.360 4.596 2.766 6.717 1.812 8.791 1.346 3.948 3.394 4.786 2.863 7.004 1.910 9.655 1.360 3.048 3.948 5.101* 7.778* 2.177 1.018 × 10 ⁻⁴ 1.520 4.045 2.130	05	5.755	2.116	5.889	1.317	4.207	4.095	1.119*	3.586	1.108*
4.403 2.324 5.655 1.383 4.633 4.232 1.162** 3.666 4.212 2.415 5.855 1.426 5.160 CURVE 3.712 3.716 4.212 2.569 6.560 1.470 5.544 CURVE 3.716 3.716 4.322 2.569 6.262** 1.565 6.465 1.212 2.042 3.786 4.522 2.60 6.262** 1.666 7.440 1.212 2.042 3.786 4.595** 2.620 1.763 8.378** 1.281 2.077 3.994 4.596** 2.766 6.717 1.812 8.736 3.136 3.94 4.786 2.918 7.778* 1.910 9.655 1.360 3.94 3.94 5.101** 2.981 7.778* 2.017 1.018 × 10 ⁻⁴ 1.50 4.045 5.104 3.011 7.57 2.021 1.018 × 10 ⁻⁴ 1.520 4.012 4.045 5.328* 3.011	23	4.863	2.231	5,545	1.348	4.438	4.190	1.146	3.610	1.116*
4.212 2.415 5.855 1.426 5.160 CURVE 4.212 2.505 6.050 1.470 5.544 CURVE 4 3.712 4.322 2.505 6.050 1.470 5.544 CURVE 3.716 4.522 2.620 6.226* 1.666 7.440 1.212 2.042 × 10 ⁻⁵ 3.784 4.595** 2.620 1.763 8.378* 1.212 2.047 3.904 4.595** 2.766 6.717 1.812 8.791 1.342 2.307 3.904 4.786 2.863 7.170* 1.910 9.655 1.366 3.945 3.945 4.981 2.960 7.286 2.017 1.018 × 10 ⁻⁴ 1.520 4.012 4.045 5.101* 2.960 7.286 2.017 1.018 × 10 ⁻⁴ 1.520 4.012 4.045 5.104* 1.910 9.655 1.018 × 10 ⁻⁴ 1.520 4.012 4.045 5.108* 3.011 7.724 2.142	919	4.403	2.324	5.665	1.383	4.633	4.232	1.162*	3.666	1.139
4.242 2.505 6.050 1.470 5.544 CURVE 4 3.716 4.522 2.569 6.262 1.666 7.465 2.042 × 10 ⁻⁵ 3.784 4.522 2.569 6.262 1.666 7.465 2.042 × 10 ⁻⁵ 3.784 4.595* 2.672 6.396 1.763 8.378* 1.212 2.042 × 10 ⁻⁵ 3.966 4.595* 2.766 6.717 1.812 8.791 1.212 2.042 × 10 ⁻⁵ 3.966 4.596 2.766 6.717 1.910 9.655 1.366 3.948 3.946 5.101* 2.960 7.286 2.017 1.018 × 10 ⁻⁴ 1.520 4.042 4.045 5.101* 2.960 7.286 2.017 1.018 × 10 ⁻⁴ 1.520 4.042 4.045 5.104* 2.960 7.286 2.017 1.018 × 10 ⁻⁴ 1.520 4.042 4.042 5.104* 2.960 7.284 2.017 7.051 1.017 1.018 × 10 ⁻⁴ 1.017<	0.50	4.212	2.415	5.855	1.426	5.160			3.712	1.155*
4.332 2.569 6.262 1.565 6.465 1.212 2.042 × 10 ⁻⁵ 3.784 4.582 2.620 6.326 1.766 7.440 1.212 2.042 × 10 ⁻⁵ 3.964 4.595* 2.620 6.326* 1.763 8.791 1.342 2.307 3.904 4.595* 2.766 6.717 1.910 9.655 1.342 2.720 3.94 4.786 2.981 7.178* 1.910 9.655 1.396 3.136 3.94 4.981 2.981 7.178* 1.943 9.805* 1.460 3.648 3.94 5.101* 2.981 7.178* 1.943 9.805* 1.460 3.648 3.94 5.104* 2.981 7.178* 2.017 1.018 × 10 ⁻⁴ 1.520 4.045 3.94 5.104* 2.981 7.069 1.017 1.620 4.189 4.189 5.38* 3.164 7.866 2.177 7.751 1.874 7.292 4.189	7.	4.242	2.505	6.050	1.470	5.544	COR	IVE 4	3.716	1.159*
4.522 2.620 1.666 7.440 1.212 2.042 x 10 ⁻³ 3.860 4.595* 2.672 6.520 1.763 8.378* 1.221 2.042 x 10 ⁻³ 3.904 4.686 2.672 6.520 1.763 8.378* 1.281 2.307 3.904 4.786 2.786 7.178* 1.910 9.655 1.396 3.136 3.945 4.981 2.918 7.178* 1.943 9.805* 1.460 3.648 3.94 5.101* 2.918 7.178* 2.017 1.018 x 10 ⁻⁴ 1.520 4.012 4.045 5.104* 3.011 7.507 2.017 1.018 x 10 ⁻⁴ 1.620 4.021 4.045 5.328* 3.011 7.677 2.121 9.281 x 10 ⁻⁴ 1.874 7.292 4.189 5.398* 3.115 7.772* 2.177 7.751 1.874 7.292 4.189 5.505 3.164 7.866 2.218 7.062 1.996 8.546 4.	7.	4.332	2.569	6.262	1.565	6.465			3.784	1.180
4.686 2.767 1.763 8.378 1.221 3.904 4.786 2.863 7.004 1.910 9.655 1.342 2.720 3.936 4.786 2.983 7.004 1.910 9.655 1.360 3.648 3.945 5.101* 2.983 7.004 1.910 9.655 1.360 3.048 3.945 5.101* 2.981 7.178 1.917 1.018 x 10 ⁻⁴ 1.520 4.012 4.045 5.101* 2.960 7.286 2.017 1.018 x 10 ⁻⁴ 1.520 4.012 4.045 5.38* 3.011 7.577 2.069 1.017 1.620 4.081 4.045 5.38* 3.115 7.772* 2.177 7.751 1.874 7.222 4.189 5.505 3.164 7.866 2.218 7.062 1.996 8.546 4.189 5.578* 3.208 8.090* 2.218 7.062 1.374 7.222 4.296 5.77*	9 2 2	4.522	2.620	6,396	1.666	7.440	1.212	2.042 x 10 = 0	3.860	1.214*
4.786 2.883 7.004 1.910 9.655 1.302 2.136 3.945 4.981 2.918 7.178* 1.943 9.805* 1.460 3.648 3.945 5.101* 2.960 7.286 2.017 1.018 x 10** 1.520 4.012 4.045 5.248 3.011 7.57 2.069 1.017 1.620 4.012 4.045 5.328* 3.011 7.577 2.069 1.017 1.620 4.012 4.045 5.328* 3.061 7.697* 2.121 9.281 x 10** 1.737 5.898 4.091 5.505 3.164 7.866 2.177 7.751 1.874 7.222 4.183 5.578* 3.208 8.090* 2.218 7.062 1.996 8.546 4.296 5.767* 3.306 8.241 2.380 6.459 2.323 1.244 4.296 5.930* 3.501 8.888 2.485 6.344* 2.773 1.648*	25.	4.686	2.012	6.320	1 819	8.3/8	1.281	2.30/	3.904	1.232
4.981 2.918 7.178* 1.943 9.805* 1.460 3.648 3.994 5.101* 2.960 7.286 2.017 1.018 x 10 ⁻⁴ 1.520 4.012 4.045 5.248 3.011 7.507 2.069 1.017 1.620 4.991 4.045 5.328* 3.011 7.727 2.171 9.281 x 10 ⁻⁴ 1.737 5.898 4.091 5.505 3.164 7.866 2.177 7.751 1.377 5.898 4.183 5.578* 3.208 8.090* 2.218 7.062 1.996 8.546 4.183 5.578* 3.208 8.090* 2.282 6.578 2.107 9.733 4.202 5.767* 3.306 8.241 2.380 6.459 2.323 1.248 4.296 5.930* 3.501 8.588 2.485 6.396 2.519 1.449 6.050 3.656 9.133* 2.485 6.374* 2.773 1.648* 6.105* </td <th>75</th> <th>4.786</th> <td>2.863</td> <td>7.004</td> <td>1.910</td> <td>9.655</td> <td>1.396</td> <td>3.136</td> <td>3.5</td> <td>1.248#</td>	75	4.786	2.863	7.004	1.910	9.655	1.396	3.136	3.5	1.248#
5.101* 2.960 7.286 2.017 1.018 x 10 ⁻⁴ 1.520 4.012 4.045 5.248 3.011 7.507 2.069 1.017 1.620 4.091 4.091 5.328* 3.011 7.507 2.069 1.017 1.620 4.091 4.091 5.328* 3.011 7.72* 2.121 9.281 x 10 ⁻⁵ 1.737 5.898 4.189 5.505 3.164 7.866 2.177 7.751 1.874 7.292 4.189 5.578* 3.259 8.090* 2.282 6.578 2.107 9.733 4.202 5.767* 3.269 8.241 2.282 6.459 2.323 1.24 x 10 ⁻⁴ 4.248 5.942 3.400 8.533 2.419 6.296 2.319 1.449 4.296 5.930* 3.501 8.888 2.485 6.344* 2.703 1.648* 6.050 3.657 9.246 2.773 1.648* 4.296	03	4.981	2.918	7.178*	1.943	9.805*	1.460	3.648	3.994	1.272
5.248 3.011 7.507 2.069 1.017 1.620 4.891 4.091 5.328* 3.061 7.697* 2.121 9.281 x 10 ⁻⁵ 1.737 5.898 4.139 5.398 3.164 7.866 2.121 7.751 1.874 7.292 4.163 5.505 3.164 7.866 2.218 7.051 1.874 7.292 4.163 5.578* 3.208 8.090* 2.218 6.678 2.107 9.733 4.202 5.77* 3.269 8.161* 2.217 2.323 1.214 x 10 ⁻⁴ 4.248 5.767* 3.400 8.533 2.419 6.296 2.519 1.449 5.930* 3.501 8.888 2.485 6.344* 2.703 1.615 6.050 3.656 9.133* 2.619 6.474 2.773 1.648*	99	5.101*	2.960	7,286	2.017	1.018 x 10 ⁻⁴	1.520	4.012	4.045	1.292*
5.328* 3.061 7.697* 2.121 9.281 x 10 ⁻⁵ 1.737 5.898 4.139 5.398 3.115 7.772* 2.177 7.751 1.874 7.222 4.163 5.505 3.164 7.665 2.177 7.751 1.874 7.222 4.163 5.578* 3.164 7.866 2.218 7.062 1.996 8.536 4.189 5.679 3.259 8.161* 2.317 6.458 2.327 4.248 5.767* 3.306 8.241 2.317 6.429 2.427 1.385 4.296 5.842 3.400 8.533 2.419 6.296 2.519 1.449 4.296 5.930* 3.501 8.888 2.485 6.344* 2.703 1.615 6.050 3.605 9.133* 6.474 2.775 1.648* 6.105* 3.67 9.246 2.67 2.775 1.648*	23	5.248	3.011	7.507	2.069	1.017	1.620	4.891	4.091	1.307*
5.398 3.115 7.772** 2.177 7.751 1.874 7.292 4.163 5.505 3.164 7.866 2.218 7.062 1.996 8.546 4.189 5.578* 3.208 8.090* 2.282 6.678 2.107 9.733 4.202 5.679 3.259 8.161* 2.317 6.458 2.323 1.214 × 10 ⁻⁴ 4.248 5.767* 3.306 8.241 2.380 6.304* 2.427 1.385 4.296 5.842 3.400 8.533 2.419 6.296 2.519 1.449 4.296 5.30* 3.501 8.888 2.485 6.344* 2.773 1.648* 6.050 3.656 9.133* 2.561 6.474 2.775 1.648*	175	5.328*	3.061	* 269.1	2.121	9.281 x 10 ⁻⁵	1.737	5.898	4.139	1.332
5.505 3.164 7.866 2.218 7.062 1.996 8.546 4.189 5.578* 3.208 8.090* 2.282 6.578 2.107 9.733 4.202 5.679 3.259 8.161* 2.317 6.459 2.323 1.214 × 10 ⁻⁴ 4.248 5.767* 3.306 8.241 2.380 6.304* 2.427 1.385 4.296 5.842 3.400 8.533 2.419 6.296 2.519 1.449 4.296 5.930* 3.501 8.888 2.485 6.344* 2.773 1.648* 6.050 3.656 9.133* 2.561 6.474 2.775 1.648* 6.105* 3.67 9.246 2.61 0.474 2.775 1.648*	121	5.398	3.115	7.772*	2.177	7.751	1.874	7.292	4.163	1.339*
5.578* 3.208 8.090* 2.282 6.678 2.107 9.733 4.202 1 5.679 3.259 8.161* 2.317 6.459 2.323 1.21 x 10 ⁻⁴ 4.246 1 5.67* 3.306 8.241 2.317 6.459 2.427 1.385 4.296 1 5.930* 3.400 8.533 2.419 6.296 2.519 1.449 4.296 1 5.930* 3.501 8.88 2.485 6.344* 2.703 1.615 6.050 3.657 9.433* 2.561 6.474 2.775 1.648* 6.105* 3.677 9.245 2.63 6.710 2.13 1.648*	175	5.505	3.164	7.866	2.218	7.062	1.996	8.546	4.189	1.352*
5.767* 3.259 8.161* 2.317 6.459 2.323 1.214 x 10 ⁻⁴ 4.248 1 5.767* 3.306 8.241 2.304* 2.427 1.385 4.296 1 5.842 3.400 8.533 2.419 6.296 2.519 1.449 5.930* 3.501 8.888 2.485 6.344* 2.703 1.615 6.050 3.606 9.133* 2.561 6.474 2.775 1.648* 6.105* 3.677 9.245 9.673 6.776 1.648*	27	5.578*	3.208	*060.8	2.282	6.678	2.107	9.733	4.202	1.360*
5.842 3.606 8.533 2.419 6.296 2.519 1.385 4.296 5.593* 3.657 9.246 6.105* 2.773 1.615	- 0	9.0.0	3.259	8.161*	2.317	6.459	2.323	1.214 × 10 ⁻⁴	4.248	1.376*
5.930* 3.501 8.888 2.485 6.344* 2.703 5.00 3.605 9.133* 2.551 6.474 2.775 6.105*	27.4	5 949	3.306	8.241	2.380	6.304*	2.427	1.385	4.296	1.396
6.05° 3.657 9.24 2.551 6.105* 3.657 9.24 2.551	86	5 930*	3.400	0.033	2.419	6.296	2.519	1.449		
6.105* 3.657 9.246 2.657 5.710 2.813	80	6.050	3.501	0.000	2.485	6 474	2.703	1.615		
	27	6.105*	3.657	0 946	2.301	6.47	5.1.0	1.040		

* Not shown on plot

SPECIFICATION TABLE NO. 120 SPECIFIC HEAT OF TUNGSTEN + COBALT, W + Co (Co_1W_6)

(For Data Reported in Figure and Table No. 120]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation	Co,We
Reported Error, %	+ 0.4
Temp. Range, K	1969 589-1146
Year	1069
Ref.	409
Curve Ref.	•

DATA TABLE NO. 120 SPECIFIC HEAT OF TUNGSTEN + COBALT W + Co (Co; We) [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

T C_p

CURVE 1
589.6 5.689 x 10⁷
704.9 5.872*
823.8 6.060
895.5 6.174
994.2 6.330
1145.4 6.570

SPECIFICATION TABLE NO. 121 SPECIFIC HEAT OF TUNGSTEN + IRON, W + Fe

[For Data Reported in Figure and Table No. 121]

Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation	Fe;W.
Reported Error, %	
Terap. Range, K	590-1145
Year	1962
Ref.	402
Curve No.	-

DATA TABLE NO. 121 SPECIFIC HEAT OF TUNGSTEN + IRON W + Fe

[Temperature, T, K; Specific Heat, Cp, Cal g-1K-1]

Т

S90 5.4192 x 10⁴
600 5.4378*
700 5.6241
800 5.8241
800 6.8104
1100 6.3894
1145 6.4532

* Not shown on plot

SPECIFICATION TABLE NO. 122 SPECIFIC HEAT OF VANADIUM + ALUMINUM, V + Al

[For Data Reported in Figure and Table No. 122]

Composition (weight percent), Specifications and Remarks	93.66 V, 5.95 Al; annealed under He + 8% H ₂ gas atmosphere at 1100 C for 72 hrs; etched with 50% HNO ₃ .	88. 39 V, 10. 90 Al; same as above.	80.70 V, 18.99 Al; same as above.	73,74 V, 26.2 Al; same as above.	
Name and Specimen Designation	V(90)Al(10)	V(80)Al(20)	V(70)Al(30)	V(60)Al(40)	
Reported Error, %	2 >	× 2	× 7	8 2	
Temp. Range, K	1.54.4	1.6-4.6	1.44.4	1.94.3	
Year	1962	1962	1962	1962	
Surve Ref. No. No.	349	349	349	349	
Curve No.	-	8	ო	4	

DATA TABLE NO. 122 SPECIFIC HEAT OF VANADIUM + ALUMINUM V + AI

=
Ę
×
1
DE
<u>_</u> E
C
-
G
0
Heat
÷
2
ij
ွ
Ď.
S
Ü
×
₽
è
3
=
E
8
ᄅ
ĕ
Ē
-

Cp	1 (cont.)	1.47 x 10 ⁻⁴ 1.56	• • •	5	3.57 × 10°			4.75	5.32	5.88 35.38	3	7.71			9.79	•	•	•	1.25		/E 4	ı	3.80 x 10*	57	4.58	4.64*			5.70		6.45	0.91		8.76	68.6	9.74	9	5	1.09		
H	CURVE	4.389	CURVE					•	2.226	2.396	2.764		3, 190	3.429	3.647	3.844	٠	4.262	4.418		CURVE		1.850	2.048	2.149	2.191	2.260	2.400	2.554	2.697	2.00.0	3.017	3 434	3,579	3.755	3.904	4.017	•	4.250		
Сþ	E 1		7.95	8.47*	, oc	7.72	7.72	7.97	8.41	20.00	9.78	1.03 x 104	1.08	1.15	•	1.27	•	•	1.23	1.55	1.6	1.72	1.79		E 2			0	∢ .	5.49	ъ.	6.49	20.1	28	50.6	. 13 13	9.75	1 06 * 107	16		
H	CURVE	1.465	1.586 1.662	1.678	1 897	2.020	2.125	2.213	2.318	2.439	99	2.788	2.915	3.083	3.236	3,343	•			3,956	4.149	4.298	4.438		CURVE		1.638	1.747	1.870	1.889	2.043	2.218	21.0.0	2.717	200	2,959	3, 141	3 372	3.602		1

* Not shown on plot

SPECIFICATION TABLE NO. 123 SPECIFIC HEAT OF VANADIUM + ANTIMONY, V + Sb

[For Data Reported in Figure and Table No. 123]

Composition (weight percent), Specifications and Aemains	Annealed under He + 8% $\rm H_2$ gas atmosphere at 1300 C for 72 hrs; etched with 50 % HNO ₃ . 91.20 V, 8.77 Sb; same as above.
Name and Specimen Designation	V(98)Sb(2) V(96)Sb(4)
Reported Error, %	N N
Temp. Range, K	1.64.5
Year	1962
Curve Ref. No. No.	349
Curve No.	- 8

DATA TABLE NO. 123 SPECIFIC HEAT OF VANADIUM + ANTIMONY V + Sb

[K-1]
60
Cal
Cp,
Heat,
cific
8
Ŧ.
Temperature,

Ср	2 (cont.)	9.101 × 10 ⁻⁴⁶ ; 9.643 1.099 × 10 ⁻⁴ 1.123 1.191 1.280
۲	CURVE 2 (cont.)	3.346 3.459 3.778 3.959 4.156 4.403
Ср	E 1	4. 10 × 10 ⁴ 4. 30 × 10 ⁴ 4. 39 5. 39 5. 39 6. 31 7. 23 7. 23 7. 23 7. 23 1. 02 × 10 ⁴ 1. 22 1. 22
H	CURVE	1.685 1.785 1.785 1.785 2.076 2.108 2.237 2.339 2.442 2.557 2.994 3.311 3.467 3.311 3.467 4.028 4.183 4.183

4.907 x 16-8	*000	5,395*	5.743	6.082*	6.468	6.673*	6.812	7.084*	7.235*	7.408	*E#3.	7.775	7.997*	8, 189	8.570	8, 503*	9.053
1.823	1.937	2.080	2.204	2.334	2.446	2.532	2.596	2.670	2.733	2.796	2.851	2.907	2.996	3.032	3, 163	3, 178	3.341

A STATE OF THE STA

CURVE 2

Not shown on plot

THE PROPERTY OF

SPECIFICATION TABLE NO. 124 SPECIFIC HEAT OF VANADIUM + IRON, V + Fe

[For Data Reported in Figure and Table No. 124]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	63.4 V, 36.6 Fe, arc melted.
Name and Specimen Designation	Fe, 18 Vo, 67
Reported Error, %	
Temp. Range, K	1.64.4
Year	1959
Ref.	297
Curve No.	⊣ 84

DATA TABLE NO. 124 SPECIFIC HEAT OF VANADIUM + IRON V+Fe

[Temperature, T, K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

Т	CURVE 2 (cont.)	206 7 403	215 7 741	226	i ec	248 8.	Ġ	0.273 9.640	-	-	ij	329 1.	0.345 1.197	-	1.	ä	-i	-	0.491 1.883	1	α.	2	~	588	63	637 2.	8		725 2.	758 3.	.793 3.	.831 3.2	.870 3.	0.914 3.555	0.959 3.704										
Т	CURVE 1	631	680 5.611	734		858 6.	907 6.	196	024 6.	2.102 6.917	190 7.	377	æ	750 9.	877	041 1.	161 1.	267	451	543 1.	608 1.	199	743	825 1.	877 1.	013	118 1	4.226 1.471	4.356 1.521		CURVE 2*	•	100 3.	110 4.	115 4.	127	0.139 5.231	. 147	154	.161 5.	169	177 6.4	.186 6.7	.195 7.	

^{*} Not shown on plot

SPECIFICATION TABLE NO. 125 SPECIFIC HEAT OF VANADIUM + TIN, V+ Sh

[For Data Reported in Figure and Table No. 125]

Composition (weight percent), Specifications and Remarks	
Composition (weight percent),	87,57 V, 12,33 Sn. 78,15 V, 21.77 Sn.
Name and Specimen Designation	V(95)Sn(5) V(90)Sn(10)
Reported Error, %	V V V
remp. Range, K	1.54.3
Year	1962
Ref.	349
Curve Ref. No. No.	1 2

DATA TABLE NO. 125 SPECIFIC HEAT OF VANADIUM + TIN V + 9h

[Temperature, T,K; Specific Heat, Cp, Cal g-1K-1]

Сb	2 (cont.)	1.02 × 10 ⁴ 1.05 1.10		
۲	CURVE 2	4.037 4.152 4.277		
ď		4.40 x 10** 4.66 x 10** 5.66 x 10* 5.94* 6.17 7.35 7.35 9.20	ام به به به به به	3.71 x 10 ⁻⁴ 4.30 4.56 4.30 5.16 5.16 6.10 6.10 7.19 8.37 8.37 9.31
٢	CURVE	1. 497 1. 597 1. 598 1. 598 2. 036 2. 238 2. 238 2. 527 2. 587 3. 1333 3. 298	3.413 3.553 3.699 3.887 3.997 4.116 4.252	1. 574 1. 682 1. 913 1. 913 1. 927 2. 147 2. 936 2. 914 2. 914 3. 326 3. 326 3. 340 3. 340 3. 358 3. 358

Not shown on plot

SPECIFICATION TABLE NO. 126 SPECIFIC HEAT OF VANADIUM + TITANIUM, V+Ti

[For Data Reported in Figure and Table No. 126]

	Composition (weight percent), Specifications and Remarks	51.5 V, 48.5 Ti, arc melted.
	Name and Specimen Designation	T'0.5V0.5
	Error, %	
į	Range, K	1.7-6.4
	Year	1959
Dod	No.	297
0.00	No.	Т

DATA TABLE NO. 126 SPECIFIC HEAT OF VANADIUM + TITANIUM V + TI

_
K-1K-1]
- 14
T
64
7
Cal
Cp.
O
Heat
<u> </u>
Ŧ
2
=
8
Ď,
Specific He
×
T, K;
H.
ä
표
E
2
7
5
Ĕ
_

т	CURVE 1 (cont.)	684 6.	726 7.	782 7.	840 7.	900	7.	8. 8.	&	147 8.	220 6.	296	37.1 7.	7																										
T Q	CURVE 1		1.690 1.155 x 10-	-i	e,	mi ·	ຕໍ	2.317 4.575	Š.	'n	2.550 6.563	7.	8	6	÷	-;	3, 185 1, 369	321	454	565 1.	645	238	200	N	200	,	4.383 3.514	Series II	3.963 2.584 x 10 ⁻⁴⁴	073 2.831*	196	4.347 3.456*		,			5.218 5.627*	163	564 6.	

^{*} Not shown on plot

SPECIFICATION TABLE NO. 127 SPECIFIC HEAT OF ZINC + COPPER, Zn + Cu

[For Data Reported in Figure and Table No. 127]

Composition (weight percent), Specifications and Remarks	50.64 Zn, 49.36 Cu; annealed 20 min at 810 C, twice quenched from 810 C.
Name and Specimen Designation	49.92 at % Zn
Reported Error, %	
Temp. Range, K	1.4-4.2
Year	1962
Curve Ref. Year No. No.	390
Curve No.	1

DATA TABLE NO. 127 SPECIFIC HEAT OF ZINC + COPPER Zn + Cu

[Temperature, T, K; Specific Heat, Cp, Cal g^-1K^-1]

T CP CURVE 1 (cont.)	1.400 4,424 x 10 ⁻⁴ ; 1.424 4,542* 1.469 4,772* 1.480 4,772* 1.531 5.039* 1.619 5.444 1.650 5.618 x 10 ⁻⁴ 1.706 5.948 x 10 ⁻⁴ 1.919 7.120 2.025 7.813* 2.289 4,402* 2.289 1.504* 3.356 2.083* 3.356 2.083* 3.775 2.741* 4.202 3.585*	
T CP CURVE 1 Series 1	1, 392 4, 335 x 10 ⁴ 1, 424 4, 535 1, 456 1, 456 4, 691 1, 524 4, 769 ⁴ 1, 524 1, 724 6, 908 1, 998 7, 520 1, 998 7, 520 1, 998 7, 520 2, 340 7, 691 ⁴ 2, 014 7, 691 ⁴ 2, 014 7, 691 ⁴ 2, 014 7, 691 ⁴ 2, 014 7, 520 1, 299 2, 235 9, 222 2, 340 7, 791 2, 584 1, 201 2, 584 1, 201 2, 584 1, 201 2, 584 1, 201 3, 693 2, 994 3, 323 2, 645 3, 363 2, 645 3, 896 2, 367 3, 896 2, 367 4, 986 3, 3, 101 4, 118 3, 186 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188 3, 188 ⁴ 4, 188 3, 188 ⁴ 4, 188 3, 188	

SPECIFICATION TABLE NO. 128 SPECIFIC HEAT OF ZINC + MAGNESTUM, Zn + Mg (MgZn2)

[For Data Reported in Figure and Table No. 128]

Composition (weight percent), Specifications and Remarks	84.20 Zn. 15.80 Mg (84.3 Zn, 15.7 Mg theorectically); obtained by melting stoichiometric quantities in hydrogen atmosphere.
Name and Specimen Designation	MgZng
Reported Error, %	
Temp. Range, K	273-590
Year	1935
Ref. No.	208
Curve No.	-

DATA TABLE NO. 128 SPECIFIC HEAT OF ZINC + MAGNESIUM Zn + Mg (MgZn₁)

[Temperature, T, K; Specific Heat, Cp, Cal g^1K^1]

ď	1	1. 135 x 10 ⁻¹	1.179	1.223	1.267	1.311	1,355	1.394
H	CURVE	273.15	100	200	300	400	200	290

SPECIFICATION TABLE NO. 129 SPECIFIC HEAT OF ZINC + ZIRCONIUM, Zn + Zr

[For Data Reported in Figure and Lable No. 129]

Composition (weight percent), Specifications and Remarks	
Composition (weight percent),	
Name and Specimen Designation	ZrZn2
Reported Error, %	
Temp. Range, K	1.4-4.1
Year	1966
Ref. Y	403
Curve No.	-

[Temperature, T, K; Specific Heat, Cp, Cal g^1K-1]

T Cp	CURVE 1 (cont.)	3.591 1.237 x 104	٠-	010	4 195 I. 405	7																						
c _b	IVE 1		5, 364	5.456*		5.861*	6.114	6.282*	6.484	6.862	7.273	7.727	8, 192	8.591	8.988	9.397	9.807	1.023 x 10-4		1.103	1.147*	1, 191	1.233*	1.272	1.316*	1.356	1.397*	1.439*
H	Series	1.496	1.607	1.639	1.719	1.751	1.831	1.876	1.942	2.056	2.172	2.302	2.435	2.551	2.666	2.781	2.898	3.014	3.126	3, 239	3.351	3.469	3.581	3.686	3.793	3.896	4.001	4.114

Not shown on plot

6.686 x 10⁻⁴; 7.083* 7.476* 8.233* 8.644* 9.059* 9.450* 1.071 1.029 x 10⁻⁴; 1.17* 1.117* 1.158

1.998 2.114 2.219 2.449 2.564 2.681 2.796 2.911 3.027 3.143 3.365 3.375

Series II

SPECIFICATION TABLE NO. 130 SPECIFIC HEAT OF ZIRCONIUM + INDIUM, Zr + In

[For Data Reported in Figure and Table No. 130]

Composition (weight percent), Specifications and Remarks	92.23 Zr, 7.77 In, 0.21 Fe, 0.016 O ₂ , 0.0067 C, 0.003 N ₂ , 0.00051 H ₂ ; arc melted; homogenized 14 days at 1300 C in vacuum.	above.	above.	above.	above.
သိ	92.23 Zr homog	Same as above.	Same as above.	Same as above.	Same as above.
Name and Specimen Designation	Zirconium 7.77% Indium Alloy	same as above	same as above	same as above	same as above
Reported Error, %					
Temp. Reported Range, K Error, %	343-1178	353-1153	343-1173	333-1013	333-1133
Curve Ref. Year No. No.	1 134 1957	1957	1957	1957	1957
Ref. No.	134	134	134	134	134
Curve No.	-	61	က	+	S.

DATA TABLE NO. 130 SPECIFIC HEAT OF ZIRCONIUM + INDIUM Zr + In

$\overline{}$
g-1K-1
GE C
Cp,
Heat,
Specific
×
H.
Temperature,

Ср Т Ср	(cont.) CURVE 4 (cont.)	x 107 853.15		933.15			3 1073.15		x 10-2	6.965 CURVE 5		6.980 333.15 7.017 x 10 ⁻²	7.041 373.15 6.916			493.15	533.15		613.15	653, 15	693, 15	733.15	773.15	813.15	853, 15	8.024 893.15 7.538	933.15	973.15	1013.15		1093.15 7.	1133.15 7.992	£ 000 × 10.7	6.903	6,964	6,986	7.044	7.103	7.142	7.137	7.261	7.303	7.409	
H	CURVE 2 (cont.	1033, 15	1073.15	1113.15	1153.15		CURVE		343, 15	383.15	423, 15	463.15	503.15	543.15	583.15	623.15	663, 15	703.15	743.15	783.15	823.15	863.15	903.15	943.15	983.15	1023, 15	1063.15	1103.15	1143.15	1173.15		CORVE	323 15	373, 15	413, 15	453.15	493.15	533, 15	573, 15	613.15	653, 15	693.15	733.15	
ප්	1 1	7.082 x 10-	6.970	6.980	6.901	7.032	7.052	4.109	7.175	7.184	7.215	7.310	7.438	7.626	7.705	7.772	7.863	7.845	8.053	8.209	8.211	8.071	8.465	8.982	9.436	1.0967 x 10 ⁻¹		2		6.924 x 10 *	9.300	200	7.065	7, 153	7.185	7.227	7.247	7.296	7.397	7.529	7.532	7.642	7.663	000
H	CURVE	353, 15	393, 15	433.15	473.15	513.15	553, 15	593, 15	633, 15	673.15	713.15	753.15	793.15	833.15	873.15	913, 15	953. 15	993.15	1033, 15	1073.15	1103.15	1123.15	1143.15	1158.15	1168.15	1178.15		CURVE		353. 15	580. LD	433.15	513, 15	553.15	593, 15	633, 15	673.15	713.15	753, 15	793.15	833.15	873.15	913.15	952 15

SPECIFICATION TABLE NO. 131 SPECIFIC HEAT OF ZIRCONIUM + IRON, Zr + Fe

[For Data Reported in Figure and Table No. 131]

Composition (weight percent), Specifications and Remarks	Prepared from: Zirconium: 99.95 Zr, 0.01 Hf, 0.005 Si, 0.005 Al, 0.005 Mg, 0.005 Fe, 0.005 Ti, 0.005 Ni, 0.005 Ca, 0.0005 Cu, 0.015 n (sample supplied by Foote Mineral Co); and Ferrovac E Iron: 99.95 Fe, 9.024 C, 0.001-0.005 Mn, 0.0023 Oz, 0.0004 Nz, 0.007 Si, 0.005 Ni, 0.006 Sa, 0.001-0.004 Mo. 0.003-0.006 Co, 0.001-0.003 Cu, 0.000 0.006 Al, 0.001 Pb (sample supplied by Crucible Stell Corp).
Name and Specimen Designation	ZrFe ₂
Reported Error, %	
Temp. Range, K	1.64.0
Year	1962
Ref.	240
Curve No.	-

CURVE 1

1. 559 1. 656 x 10⁴
1. 787 1. 918
1. 992 2. 135
2. 188 2. 392
2. 381 2. 605
2. 572 2. 845
2. 572 3. 944
2. 969 3. 340
3. 170 3. 607
3. 571 4. 161
3. 773 4. 351
3. 972 4. 671

SPECIFICATION TABLE NO. 132 SPECIFIC HEAT OF ZIRCONIUM + NIOBIUM, Zr + Nb

[For Data Reported in Figure and Table No. 132]

Composition (weight percent), Specifications and Remarks	82.5 Zr, 17.5 Nb; arc melted from todide process Zr and Nb entectoid composition bomogenized 14 days at 1300 C in vacuum; tested in vacuum; 2 samples.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above,
Name and Specimen Designation	Zirconium 17.5% Niobium Alloy	same as	same as	same as above	same as above	same as above
Reported Error, % Sp						
Temp. Range, K	333-553	333-553	343-1063	373-933	333-1063	373-983
Ref. Year No.	1957	1957	1957	1957	1957	1957
Ref. No.	134	134	134	13	134	13
Curve No.	-	64	က	4	w	•

DATA TABLE NO. 132 SPECIFIC HEAT OF ZIRCONIUM + NIOBIUM Zr + Nb

ď	(cont.)	7. 929 x 10 ⁷ 8. 820 9. 802	1. 0367 x 10 ⁻¹	9. 923 X 10 - 9. 015	8.110	2.05		ဈ	6.913 x 1074	6.892*	6.905	7. 073	6. 868	6. 973	6. 589	6.340	9, 606	6.806	6.620	7. 337	7. 235	6. 855															
H	CURVE 5 (cont.)	903. 15 923. 15	963.15	1003, 15	1023, 15	1063.15		CURVE	373, 15	413, 15	453.15	533, 15	573.15	618.15	663, 15	703.15	783 15	823, 15	863, 15	903, 15	943.15	983. 15															
Сp	* (cont.)	6.847 x 10 ² 6.897 6.800	6. 729	•	6 998 v 102	6.991	6.991*	7.113*	7. 073	6.304	5.463	1.0552 x 10 ⁻¹	1, 3819	1.6627	1. 2829	7.760 x 10 ·	7.038	7.001*	6. 949	6.894		10 J	6. 960 x 1074	6.956*	6. 279*	6.869	6.890	7. 039	7 110	988	6. 938	7.213	7.041	7. 036	7.070*	7. 259	7. 513
H	CURVE 3* (cont.)	943. 15 963. 15 1023. 15	1063.15	CURVE	273 15	413.15	453, 15	493, 15 533, 15	573. 15	613, 15	693, 15	723, 15	743, 15	763, 15	783, 15	803. 15	843.15	863, 15	893, 15	933, 15		CURVE	333, 15	373, 15	413, 15	453, 15	493. 15	533, 15	613.15	653, 15	693.15	733, 15	773, 15	813, 15	843, 15	863, 15	883. 15
පී	71	6.948 x 10 ³ 6.713* 6.671	6.714*	6. 932*	6. 990 7. 029*	7, 136	7. 228	7.308		**	6. 940 x 10-2	6.940	6. 830	7.058	7.052	7.069	7.075	7, 136	7.160	7. 264	7. 363	**	j	6. 987 x 10 ⁻²	6. 943	9.836	6.888	2 263	7. 672	7.180	5, 491	6.347	1.0815 x 10-1	9. 580 x 10 4	6. 921	20.0	6. 829
H	CURVE	333.15 353.15 373.15	393.15	433, 15	453.15	493, 15	513, 15	563.15		CURVE	333, 15	353, 15	373. 15	393, 15	413.15	453.15	473, 15	493, 15	513, 15	533. 15	553. 15	CURVE		343.15	383. 15	423, 15	463.15	642 15	583, 15	623.15	663, 15	703, 15	743, 15	783. 15	823. 15	963. IS	903.15

SPECIFICATION TABLE NO, 133 SPECIFIC HEAT OF ZIRCONIUM + SILVER Zr + Ag

[For Data Reported in Figure and Table No. 133]

Composition (weight percent), Specifications and Remarks	0.88Ag, 0.03 Fe, 0.015 Op. 0.014C, 0.004 Cu, 0.0008Np, 0.00044Hp; arc melted; homogenized 14 days at 1300 C in vacuum; measured under 0.01 µ Hg.	Same as above.	Same as above.	Same as above.	5.37Ag, 0.028Fe, 0.0220 ₂ , 0.013C, 0.002Cu, 0.011H ₂ , 0.00049N ₂ ; arc melted; homogenized 14 days at 1300 C in vacuum; measured under 0.01 µ Hg.	Same as above.	Same as above.	Same as above.	
Name and Specimen Designation	Zirconium 0.881% Silver alloy	game 25 above	same as above	same as above	Zirconium 5.37% Silver alla	same as above	same as above	same as above	
Reported A									
Temp. Range, K	333-873	373-1103	343-1218	353-1233	343-1223	383-1078	633-1033	373-1153	
Year	1957	1957	1957	1957	1957	1957	1957	1957	
Ref. No.	134	134	134	134	13	134	134	134	
Curve No.	-	8	က	•	ĸ	ø	7	60	

DATA TABLE NO. 133 SPECIFIC HEAT OF ZIRCONIUM + SILVER Zr + Ag

Cal g 1K1]
Cp,
Heat,
Specific
¥
Ŧ.
[Temperature,

පි	out.)	8.887 x 10-*	9.432*	1 6041 + 10-1	1 4361	1 0803																																				
H	CURVE 8 (cont.)		1053.15 9																																							
පි	court.)	7.526 x 10 ⁻²	7.561	7.743	7.791	7.863	7.907	8.057	8.171	8.554	9.061	9.386	,	ř.	7 400 - 104	7 566	7.638	7.689	7.750	7.796	7.894	7.981	8.216	6.711	n 5 .	80		7.414 x 10 ⁻²	7.251	7.234	7.229	7.291	7.364	7.451*	7.52.7	7 600#	7 756	7 05.04	7.910*	8.006	8.110*	***
F.	CURVE 6 (cont.)		733, 15	773.15	813, 15	853, 15	893, 15	933, 15	973.15	1013.15	1053.15	1078.15		CURVE	633 15			753.15				913.15	953.15	353. 13	1055.15	CURVE		373.15	413.15			533. 15	573.15	613.15						893.15	933, 15	
Liemperaure, I. A.; Specure Heat, Cp, Cal g 'K '] Cp T Cp	cont.)	7.223 x 10 3s	7.338	7,337*	7.390*	7.434	7.461*	7.523	7.585*	7.653	7.701*	7.773	7.808*	7.888	7.982*	8.048*	8.092	8.137*	3.174*	8.224	8.343*	3.560	0.000	950	9.552	9.802*	1.0276 x 10 ⁻¹	1.0586	1.0045	8.728 x 10-	7.588	7 563	1.00.	**	• 1	7 163 v 10-2	7.244	7.261	7.295	7.346	7.440	7 453
Specific Hear	CURVE 5 (cont.)	523.15	563.15	583.15	603.15	623.15	643.15	663.15	683.15	703.15	723.15	743.15	763. 15	603.13	823.15	843, 15	863.15	883.15	903.15	923. 15	943, 15	963. 15	1003 15	1003 15	1043.15	1063, 15	1078.15	1123.15	1143.15	1163.15	1183.15	1999 16	1665. 15	CHOVE	CONT	383 15	413.15	453.15				613, 15
Cp	out.)	8.649 x 10 ⁻²⁴	9.153	9.160	7.397	6.833	6.772	6.819*	6.857	3	**-	7 405 - 103	7 227	7 919	7. 165	7.192	7.254	7.299	7.349	7.390	7.427	7 555	7.677	7.828	7.966	8.093	8.238	8.403	8.811	7.290	000.			7, 111 × 10-2	7.010*	.088	7, 135*	7.173	7.140	7.148*	7.183*	.226
L Lemp	CURVE 3 (cont.)	1023.15 8							1218.15 6		CURVE	269 16 7									713.15 7									1193.15 7		CIBVE	ı	343, 15 7					_			503.15 7
Ç	cont.)	8.201 x 10 ⁻² *	8.521*	8.590*	8.632	8.782*		1.0544 x 10 ⁻¹		اږ	#2-01 × 000 3	1954 1954	***************************************	6.911*	7.068	7.043*	7.028	5.372	7.079	6.006	7 015*	7.072*	7.121*	7.146	7.197*	7.242*	7.242	7.332	7.353	7 4004	7.541*	7.609	*999.	7.710*	7.779*	7.885*	7.875	8.008	8.196*	8.357	8.555	8.588
۲	CURVE 2 (cont.)	963.15 983.15	1003.15	1023.15	1043.15	1063. 15	1083.15	1103.15		CORVE	34.9.16	363 15	383.15	403, 15	423.15	443.15	463.15	483.15	503.15	543 15	563 15	583.15	603, 15	623.15	643.15	663.15	67.70	703. 15	723.15	763 15	783, 15	803, 15	823, 15	843.15	863.15	883.15	903.15	923, 15	943.15	963, 15	983.15	1003.15
දු		6.814 x 10 ⁻² 6.764	6.847*	6.932	6.985*	6.989	7.025	6.960	6.996*	6.994	7.031	7,082*	7. 131	.153*	7.186	7.232*	7.302	100	7.467*	7.527	7.612*	7.664	.719*	*992.1	7.843			200 - 10-2	7 000 X 10 -	7.038*	7.005	7.014*	7.102	7.161*	.218*	7.295*	7.422	7.558*	.638*	7.764	665	8. CH
H	CURVE 1	333.15 6. 363.15 6.		2	2					533.15 6.				- 1		2	693.15 7.	- (•-	873.15 7.	CTIBUE	CONTE	20 16 6				533.15 7.								853.15 7.		300. ID

SPECIFICATION TABLE NO. 134 SPECIFIC HEAT OF ZIRCONIUM + TIN, Zr + Sh

[For Data Reported in Figure and Table No. 134]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	94.7 Zr, 5.3 Sh.
Name and Specimen Designation	Zircaloy-2 Zr(95) Sn (5)
Reported Error, %	
Temp. Range, K	273-1323 473-1173
Year	1963 1953
Ref.	241
Curve No.	→ 8 7

DATA TABLE NO. 134 SPECIFIC HEAT OF ZIRCONIUM + TIN Zr + Sh

[Temperature, T, K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

င္ပ

CURVE 1 273.15 373.15 573.15 673.15 673.15 773.15 903.15 913.15 973.15 1103.15 1113.15 1113.15 1113.15 1113.15 1153.15 1123.15 123.15 1248.15

1.20 x 10⁻¹

9.4 9.7 1.02 x 10⁻¹ .5 1.16 15 1.34 CURVE 2 473.15 573.15 673.15 773.15 873.15 973.15 1073.15

SPECIFICATION TABLE NO. 135 SPECIFIC HEAT OF ZIRCONIUM + TITANIUM, Zr + Ti

[For Data Reported in Figure and Table No. 135]

Composition (weight percent), Specifications and Remarks	65.6Zr, 34.4 Ti; eutectoid composition; arc melted from iodide process Zr and Ti; homogenized 14 days at 1300 C in vacuum.	Same as above.	Same as above.	Same as above.	Same as above.	Same as above.	
Name and Specimen Designation	Zirconium 34.4% Titanium Alloy	same as above	same as above	same as above	same as above	same as above	
Reported Error, %							
Temp. Range, K	323-1163	333-1183	403-1153	373-1133	353-1163	333-1053	
Year	1957	1957	1957	1957	1957	1957	
Ref. No.	134	134	134	134	134	13	
Curve No.	-	c	က	4	ß	ø	

DATA TABLE NO. 135 SPECIFIC HEAT OF ZIRCONIUM + TITANIUM Zr + Ti

[Temperature, T, K; Specific Heat, Cp, Cal g⁻¹K⁻¹]

CURVE 2 Series 1 107 Series 2 333.15 353.15 373.15 373.15 373.15 373.15 933.15 433.15 943.15	[Temperature, I, K; Specific Heat, Cp, Cal g'K']	p T Cp T Cp T Cp	CURVE 3* CURVE 4 (cont.) CURVE 5 (cont.)	733, 15	403.15 9.399 x 10 ⁻⁷ 773.15 1.0351* 1133.15	443.15 9.443 813.15 1,0466	483, 15	523.15 9.644	563.15 9.794 Series II	603.15 9.905 1003.15	643.15 1.0052 x 10 ⁻¹ 493.15 9.812 x 10 ⁻² 1043.15	683.15 1.0313 533.15 9.769* 1083.15	* 723.15 1.0396 573.15 9.839* 1123.15	763.15 1.0459 613.15 9.940*	803.15 1.0628 653.15 1.0131 x 10 ⁻¹⁴	833.15 1.0728 693.15	7.33.15 1.0320	913 15 1 5559 613 15 1 6440*	943.15 1.0334 953.15 1.699#	983.15 9.983 x 10 ⁻² 933.15 1 0646	1023, 15 9, 803 973, 15 9 817 × 1078 403 15	1063.15 9.560 1013.15 9.697* 533.15	1103.15 9.011 1053.15 9.548* 573.15	1143.15 8.844 1093.15 9.325* 613.15	x 10 ⁷⁴ 1133.15 9.069 653.15	Series II 693.15	CURVE 5* 733.15	993.15 9.501	1033.15 9.124 267 16 0 647 - 10.7	1073.15 8.679 393.15	1113.15 8.456 433.15 9.319 933.15	1153.15 8.338 473.15 9.365 973.15	513.15 9.496 1013.15 CHRVF 4 EE, 15 0.520	- 1-	633.15	107 373.15 9.456 x 107 673.15	413.15 9.317 713.15	453,15 9,354* 753,15	493.15 9.469 793.15	533, 15 9, 6:14* 833, 15	573.15 9.820 933.15	505* 613.15 9.941* 973.15 9.720 x 10 ⁻²
T		Cp T	2 1	•	x 10 2											9.810" 833.15	1-01				7	•	_		x 10.7*		9.680*		_			8.640 1153.15		•		10-2#						6.603
			O,	r 102				Al- Ca a d	x 10 x	`			493.	x 10 **					-		x 10-14								_										10 # 01			0.011 1140.10

SPECIFICATION TABLE NO. 136 SPECIFIC HEAT OF ZIRCONIUM + URANIUM, Zr + U

[For Data Reported in Figure and Table No. 136]

advanced been accidentally	Composition (weight percent), Specifications and Actualias	89.52 Zr, 10.48 U; measured under argon atmosphere; density = 430 lb ft 7.
	Name and Specimen Designation	unhydrided zirconium- 10.48% Uranium alloy
	Reported Error, %	± 2.0
	Temp. Range, K	505-1811
	Year	242 1963
	Curve Ref. Year No. No.	242
	Curve No.	-

[Temperature, T, K; Specific Heat, Cp, Cal g^1K^1]

Cp

CURVE 1

6.050 x 10⁷ 6.640 7.240 7.240 8.650 1.000 1.140 7.060 7.590 8.120 8.650 506 617 728 839 894 1006 11117 1114 1367 1589

old uo uwche toN

SPECIFICATION TABLE NO. 137 SPECIFIC HEAT OF ALUMINUM + COPPER + ΣX_i AI + C_U + ΣX_j

[For Data Reported in Figure and Table No. 137]

Composition (weight percent), Specifications and Remarks	93.9 Al, 4.5 Cu, 1.5 Mg, 0.6 Mn.	93.4 Al. 4.5 Cu, 1.5 Mg, 0.6 Mn; sample supplied by the Aluminum Company of America; specimen sealed in a helium capsule; density (32 F) = 174 lb ft ⁻³ .	90.0 Al, 4.5 Cu, 1.5 Mg, 0.6 Mn; Hanovia liquid platinum applied on specimen's front surface for opaqueness and applied on specimen's rear surface to obtain good conductive surface; front surface painted with Parson's black for constant
ume and imen Designation	alloy 24S-T4 93.9 Al, 4.5	alloy 2024-T4 93.4 Al, 4.5 America;	Al alloy 2024 90.0 Al, 4.5 front suring sood cond
Temp. Reported Name Range, K Error, % Specime	V	116-700 Al all	97-218 Al a
Year	1954 7	1958 11	1962
Ref.	243	10	-
Curve Ref. No. No.	1	N	ო

DATA TABLE NO. 137 SPECIFIC HEAT OF ALUMINUM + COPPER + ΣX_j Al + Cu + ΣX_j (Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹)

.	3 (cont.)	2.80 x 10-1	5.00	2, 13*	2, 16*	2.20	2.18	2. 22*	2.24	2.26*	2. 29*		2.34	2, 33			2.38**	2.38	2.34*		2. 41*	2.41*		2.42	2,42*	2,36	2.35*		2.38	2.42																
۴	CURVE 3 (cont.	217	255	257	261	281	295	299	315	331	334	343	349	375	383	399	411	435	439	440	439	443	445	455	466	468	473	483	487	492																
တီ	IVE 1	1.12 x 10-1	1.41	3 2	1.98	2.18	က		2.62	2.76		IVE 2		1.35 x 10-1		-	2.03	2, 17	e.	2, 45	۲.		IVE 3		1.03 x 10-1	1.06*	1.11	1, 13*	1.24	1.28*	1.40*	1.45	1.48*	1.57	1.60*	1.69	1.72	1.75*	1.78	1.91	1.79	1.86	1.87	1.93	2.02	1.98
H	CURVE	5	123	223	273	373	473	573	673	723		CURVE		116	<u> </u>	200	293	366	478	589	100		CURVE		97	66	103	105	111	115	123	127	133	135	139	163	163	165	169	169	177	185	190	214	215	217

217 1.98
* Not shown on plot

SPECIFICATION TABLE NO. 138 SPECIFIC HEAT OF ALUMINUM + ZINC + $\Sigma X_{\rm i}$ AI + Zn + $\Sigma X_{\rm i}$

[For Data Reported in Figure and Table No. 138]

Composition (weight percent), Specifications and Remarks	90 Al, 5.5 Zn, 2.5 Mg, 1.5 Cu, 0.3 Cr, 0.2 Mn. 90.2 Al, 5.5 Zn, 2.5 Mg, 1.5 Cu, 0.3 Cr; sample supplied by the Aluminum Company of America; specimen sealed in a helium capsule; density (32 F) = 175 lb ft ⁻³ .
Name and Specimen Designation	Al alloy 75S-T6 Al alloy 7075-T6
Reported Error, %	
Temp. Range, K	73-723
Year	1954
Ref.	243
Curve No.	7 7

DATA TABLE NO. 138 SPECIFIC HEAT OF ALUMINUM + ZINC + ΣX_1 Al + Zn + ΣX_2

(Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1)

ပ

H

CURVE 1

123 1.15 x 10⁻¹
123 1.42
173 1.64
273 1.96
373 2.16
473 2.16
473 2.26
673 2.48
673 2.26
123 1.37 x 10⁻¹
116 1.37 x 10⁻¹
114 1.52
200 1.76
293 2.01
206 2.55
700 2.80

SPECIFICATION TABLE NO. 139 SPECIFIC HEAT OF CHROMUM + ALUMINUM + ΣX_i Ct + Al + ΣX_j

["or Data Reported in Figure and Table No. 139]

63.91 Cr, 18.11 Al, 16.55 Fe, 0.67 Si, 0.024 C, 0.006 S.
0.4
273-1523
1960
244
-

DATA TABLE NO. 139 SPECIFIC HEAT OF CHROMIUM + ALUMINUM + ΣX_i Cr + Al + ΣX_i

(Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1)

T C_p

CURVE 1

273 1. 333 x 10⁻¹
290 1. 340
400 1. 341
500 1. 463
600 1. 463
600 1. 463
600 1. 1 543
600 1. 1 543
1000 1. 1 888
1100 2. 03*
11300 2. 03*
11300 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*
11500 2. 03*

SPECIFICATION TABLE NO. 140 SPECIFIC HEAT OF CHROMIUM + IRON + ΣX_1 Cr + Fe + ΣX_1

[For Data Reported in Figure and Table No. 140]

Composition (weight percent), Specifications and Remarks	76.45 Cr, 0.35 St, 0.26 C, 0.14 Al, 0.008 S, bai. Fe.	77.75 CF, 1.20 N ₂ , 0.70 Al, 0.52 Si, 0.028 C.	98.66 Cr, 0.64 Fe, 0.43 Al, 0.20 Sl, 0.036 C, 0.007 P.
ted Name and, % Specimen Designation	Carbonless Ferrochromium	Nitrated Ferrochromium	Aluminothermic chromium
Reported Error, %	1.5	-r	0.8-1.2
Temp. Report Range, K Error	273-1873	273-1873	273-1873
Year	244 1960	1960	1960
Ref. No.	747	244	77
Curve Ref. Year No. No.	1	N	<u></u>

DATA TABLE NO. 140 SPECIFIC HEAT OF CHROMIUM + IRON + ΣX_1 Cr + Fe + ΣX_1

రీ	CURVE 2 (cont.)	2. 009 x 10 ⁻¹ 2. 086 2. 163 2. 241*	3 2. 298 CURVE 3	1. 134 x 10 ⁻¹ 1. 142 1. 179 1. 221	1.327 1.391 1.539 1.539 1.715*	1, 920 2, 033 2, 153 2, 415 2, 517	
۲	CURV	1500	1873 CUI	273 300 400 600 600 600	700 800 1000 1100 1300	1400 1500 1700 1800 1873	
ď	CURVE 1	1, 214 x 10-1 1, 196 1, 169 1, 197	i. 238 i. 286 i. 266	1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1. 503 1. 504 1. 577 1. 6514 1. 689	0 1.765 0 1.802 0 1.840 0 1.955 0 2.031 0 2.106 0 2.185 3 2.241	1. 176 x 10 ⁻¹ 1. 207* 1. 207* 1. 203 1. 323 1. 474 1. 624 1. 770 1. 777 1. 854
H		273 300 350 400	3 3 3 5 5 3 5 5	7 7 7 6 6 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	900 1000 1100 1150	1250 1350 1400 1700 1700 1873	273 300 500 600 700 1100 1100 1100 1100

SPECIFICATION TABLE NO. 141 SPECIFIC HEAT OF COBALT + CHROMIUM + Σx_i Co + Cr + Σx_i

[For Data Reported Figure and Table No. 141]

Composition (weight percent), Specifications and Remarks	Before test: 60.49 Co, 26.69 Cr, 5.42 Mo, 2.38 Ni, 1.54 Fe, 0.258 C; after test: 62.27 Co, 26.74 Cr, 5.42 Mo, 2.42 Ni, 1.23 Fe, 0.264 C, density = 511.2 lb ft ⁻³ .
Reported Name and Error, % Specimen Designation	Stellite 21
Temp. Repo	810-1477
Year	1958
Ref. No.	245
Curve No.	1

DATA TABLE NO. 141 SPECIFIC HEAT OF COBALT + CHROMUM + Σx_1 Co + Cr + Σx_1 [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹]

T C_p

<u>CURVE 1</u>
811 1.38 x 10⁻¹
818 1.48
1144 1.58
1311 1.68
1478 1.78

SPECIFICATION TABLE NO. 142 SPECIFIC HEAT OF CONTRACT CHROMIUM + Σx_1 Contract Chromium + Σx_1 Contract Chromium + Σx_2 Contract Chromium + Σx_1 Contract Chromium + Σx_2 Contract Chromium + Σx_1 Contract Chromium + Σx_2 Contract Chromium + Σx_2 Contract Chromium + Σx_1 Contract Chromium + Σx_2 Contract Chromium + Σx_3 Contract Chromium + Σx_2 Contract Chromium + Σx_3 Contract Chr

[For Data Reported in Figure and Table No. 142]

Composition (weight percent), Specifications and Remarks	43.6 %, 26.0 Cr. 15.0 W, 10.0 Ni, 3.0 Fe, 0.8 Mn, 0.8 Si, 0.4 B; measured in helium atmosphere; density = 552 lb ft ⁻³ .
Name and Specimen Designation	Haynes stellite HE 1049
Reported Error, %	3.0
Temp. Range, K	444-1412
Year	1961
Ref.	146
Curve No.	-

DATA TABLE NO. 142 SPECIFIC HEAT OF CONTRIB + CHROMIUM + Σx_1 Co + $Cr + \Sigma x_1$

[Temperature, T, K; Specific Heat, Cp, Cal g - 1 K-1]

T C_p

CURVE 1

444 8.419 x 10⁻⁴
568 9.155
706 9.980
809 1.059 x 10⁻⁴
928 1.129
1036 1.129
1141 1.256
1260 1.327
1375 1.395
1411 1.417

SPECIFIC HEAT, cal 9" K"

FIGURE SHOWS ONLY II OF THE CURVES REPORTED IN TABLE

SPECIFICATION TABLE NO. 143 SPECIFIC HEAT OF COPPER + MAGNESIUM + ALUMINUM Cu + Mg + Al (MgCu_{2-x} Al_x)

[For Data Reported in Figure and Table No. 143]

Curve No.	Ref.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	385	1965	6-23		MgCu, srAle, os	Prepared from: 99.99° Cu. sample supplied by American Smelting and Refining Co.; 99.99° Al. sample supplied by Aluminum Co. of America; 99.98 Mg. 0.001-0.003 Si. 0.001 Al. 0.001 Cu. 0.031 Fe. 0.001 Mn. resublimed grade sample supplied by Dow Chemical Co.; after casting each sample scaled pure helium and held 17-24 hrs at 200-250 C below melting temperature.
83	385	1965	6-23		MgCul MAle 18	Same as above.
ო	385	1965	7-20		MgCul pAle 2	Same as above.
4	385	1965	5-20		MgCul, 16Alg, 24	Same as above.
vo.	385	1965	5-18		MgCul, 69Ale, 22	Same as above.
9	385	1965	5-18		MgCut 66Alg 35	Same as above.
7	385	1965	5-17		MgCut 62Ale, 38	Same as above.
60	385	1965	5-17		MgCu, 6Ale, 4	Same as above.
o	385	1965	3-13		MgCul wAla si	Same as above.
70	385	1965	3-9		MgCul, 435Alq, 575	Same as above.
11	385	1965	2-10		MgCul , Ale ,	Same as above.
12	385	1965	3-12		CuMg, 37Ala 63	Same as above.
13	385	1965	3-12		CuMg, MAle se	Same as above.
71	385	1965	3-12		CuMg, #Ale, 15	Same as above.
15	385	1965	3-10		CuMg, 15Ale as	Same as above.

DATA TABLE NO. 143 SPECIFIC HEAT OF COPPER + MAGNESIUM + ALUMINUM, Cu + Mg + Al (MgCu_{2-x} Al_x)

SPECIFICATION TABLE NO. 144 SPECIFIC HEAT OF COPPER + MAGNESIUM + SILLCON, Cu + Mg + Si (MgCub-xSix)

[For Data Reported in Figure and Table No. 144]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	101	1966	1.64.1		MgCu, sassia an	Prepared from: 99.99° Cu., sample supplied by American Smelting and Refining Co.; 99.98 Mg, 0.001-0.003 Si, 0.001 Al, 0.001 Fe, 0.001 Mn, resublimed grade sample supplied by Dow Chemical Co.; melted; stirred for several minutes; quenched; after casting each sample held in Ar or He gas at 600-700 C for 72-98 hrs.
63	404	1966	1.54.0		MgCul, arSio, 103	Same as above.
က	\$	1966	1.6-4.1		MgCul, stylie, 127	Same as above.
*	\$	1966	1.54.0		MgCul, anSio, ser	Same as above.
S	\$	1966	1.7-3.7		MgCur, 116Sio, 184	Same as above.
9	\$	1966	1.7-4.0		MgCu1, 1995ie, 297	Same as above.
7	\$	1966	1.7-4.1		MgCu, msi, 22	Same as above.
œ	4	1966	2.5-3.7		MgCu, 187Sie, 243	Same as above.
6	404	1966	1.7-4.1		MgCu, 14 Sig St	Same as above.
10	\$	1966	1.74.0		MgCu, 135ig. #7	Same as above.
11	\$	1966	1.4-3.4		MgCul, essio, 217	Same as above.
12	\$	1966	1.7-3.8		MgCu, erSia ses	Same as above.
13	\$	1966	1.6-4.1		MgCul sight em	Same as above.
7	\$	1966	1.6-4.1		MgCu, 48Sie, sa	Same as above.
15	404	1966	1.7-4.0		MgCut, seeSie, see	Same as above.
16	\$	1966	1.5-4.0		MgCut, seeSia, ess	Same as above.
17	101	1966	1.84.0		MgCu, MSi, m	Same as above.

DATA TABLE NO. 144 SPECIFIC HEAT OF COPPER + MAGNESIUM + SILICON, Cu + Mg + Si (MgCub-xSix)

	ပ	CURVE 16 (cont.)*	6. 937 x 10-4	7. 486	7.852	9. 860	1. 085 x 10 °	1.325	1.481	1.622	1.756	1.911	2. 095	CITRUTE 17		5. 991 x 10-6	6.970	7.965	8.888	9.815	1. 077 x 10 4	7.000	1. 290	1.407	1. 553	1.692	77077																
<u>.</u>	H	CURVE	1.767	1.977	2, 197	2.410	2.629	3, 024	3, 230	3, 434	3.635	3. 835	4.036	dir		1, 763	2.019	2, 240	2.444	2.638	2.837	2.001	3. 220	5.413	3.607	3.801	o. 990																
	ဝီ	CURVE 13 (cont.)	1.154 x 10 4	1. 261	1.377	1.501	1.037	1, 931	2, 086		CURVE 14		5.602 x 10 = 6.661	7 639	8.674	9.822	1.062 x 10 →	1.172	1.274	1.396	1.527	1.00	1.805	T. 32	***	CURVE 15	F 001 x 100 B	0. 321 A 10 5	0.913	7. 905	706	1.098 x 10-6	1, 218	1.349	1. 465	1. 581	1.723	1.889	.,	CURVE 16*		6. 067 x 10 4	
£	H	CURVE	2, 755	2.957	3. 145	3, 336	3. 710	3, 901	4.086		CUR		1.601	2 101	2, 320	2. 524	2, 721	2. 925	3, 126	3, 323	3.520	0.00	3.913	4. Too		COR	102.1	1. 001	1. 301	2.15	2.558	2, 775	2, 997	3, 206	3.394	3, 570	3.761	3.970		CUR		1. 542	
[Temperature, T, K; Specific Heat, Cp, Calg 4 K-1]	చ	CURVE 10 (cont.)	1.039 x 10-6	1, 179	1.323	1.460	1. 790	1.969	2, 173	2, 403*	2.607	;	1	7.351 x 10-6	8.376	8, 145	9.378	1. 067 x 10 3	1, 159	1.283	1.392	1 564	1.004		E 12	9-01 × 910 .	7 808 7	900	1 000 104	1. 093 X 10 °	1.363	1, 472	1.611	1.781	1.933		E 13		6. 230 x 10-6	7. 283	8, 309	9.425 1.053 x 10 ⁻⁵	
specific He	H	CURVE	2. 083	2, 287	2.493	2.701	3, 120	3, 331	3, 543	3, 752	3,956		CORVE 11	1.393	1. 591	1.817	2.066	2, 295	2, 522	2, 732	2. 937	2 363	3, 303		CORVE 12	1 717	1 803	900	200	2.303	2, 929	3, 147	3, 363	3, 571	3.772		CURVE 13		1.632	1.885	2.110	2, 340 2, 551	
T, K;								,																																			
emperature,	ပ္ရ	IVE 7*	8. 931 x 10-6	1.038 x 10-	1.130	1.341	1.662	1.846	2.056	2, 281	2.502	00 7	3.023	2000	IVE 8		1.438 x 10	1. 589	1, 734	1.881	2.062	2. 2.2	4. 430	0	2 2	8 251 x 10-6	2 541	1 004 4 10-6	1 940	1 370	1. 529	1.696	1.881	2.070	2.283*	2. 510"	2, 889		VE 10		7.721 x 10-	9. 159	
[Temperature,	r C	CURVE 7*									3.508 2.502			;	CURVE 8		∹ ·				3, 296 2, 062				CORVES							2.974 1.696		સં			%		CURVE 10		1.660 7.721 x 10 4		
Temperature,	L C	**1	8. 161 × 10-6 1. 663	1 025 104	1 170 2 2 011	1 337 2 400	1. 507 2. 687	1.678 2.893	1.873 3.099	2.078 3.304	2.305 3.508	2.000	3 045 4 097		5* CURVE		8.826 x 10 2.461 1.	1. 059 x 10 2. 688	1. 218 2. 895	1, 393 3, 091	1.574 3.296	2 073	2.0%	2000	2.676	1 693	1 909	130	101 - 100 B	9.473* 9 551	1.025 x 10 € 2.764	1.193 2.974	1.331 3.180	1, 489 3, 382 2.	1.629 3.588	1.801	2.015 4.113 2.	2. 2. 2.	2.470	2. 709	2.945		
Temperature,	H		8. 161 × 10-6 1. 663	1 025 104	1 170 2 2 011	1 337 2 400	1. 507 2. 687	1.678 2.893	1.873 3.099	2.078 3.304	3,508	2.000	3 045 4 097		CURVE		8.826 x 10 2.461 1.	1. 059 x 10 2. 688	1. 218 2. 895	1, 393 3, 091	3.296	2 073	2.0%	2000	2.676	1 693	1 909	130	101 - 100 B	2.553	1.025 x 10 € 2.764	2.974	1.331 3.180	1, 489 3, 382 2.	1.629 3.588	1.801	2.015 4.113 2.	2. 2. 2.	2.470	2. 709	2.945		
Temperature,	L C	**1	1, 534 8, 161 x 10 ⁻⁶ 1, 663	1 025 104	1.004 1.000 A 10 - 2.077	2,061 1,110 2,277	1. 507 2. 687	2,711 1,678 2,893	090 2.926 1.873 3.099	3.139 2.078 3.304	2.305 3.508	3 770 5.000 5.113	3 971 3 045 4 097		5* CURVE		1.679 8.828 x 10 2.461 1.	X 10 1.858 1.059 X 10 2.688	2,111 1,218 2,895	2.317 1.393 3.091	1.574 3.296	3 128 2 073 3 203	3 395 9 363	200.00	3.347 2.676	1 693	CURVE 6 1 909	130	321.1	1.777 9.473* 9.551	1.915 1.025 x 10-6 2.764	2.164 1.193 2.974	2.351 1.331 3.180	1, 489 3, 382 2.	2.732 1.629 3.588	2. 930 1. 801 3. 828	3.178 2.015 4.113 2.	3.380 2.242	593 3. 590 2. 470	3. 805 2. 709	1.660 2.945 1.660	1.877	

SPECIFICATION TABLE NO. 145 SPECIFIC HEAT OF MAGNESIUM + ALUMINUM + Σx_1 M_g + A1 + Σx_j

[For Data Reported in Figure and Table No. 145]

Composition (weight percent), Specifications and Remarks	95. 5 Mg. 3.0 Al, 1.0 Zn, 0.5 Mn; machined from permanent mold cast material. 95. 7 Mg, 3.0 Al, 1.0 Zn, 0.3 Mn. Bal Mg, 8.0 Al, 0.55 Zn, 0.14 Mn; measured in a helium atmosphere.
Name and Specimen Designation	Mg Alloy AZ31B Mg Alloy AN-M-29 Mg Alloy AZ-80
Reported Error, %	0.5-3
Temp. Range, K	425-1000 73-623 300-1080
Year	1957 1958 1961
Ref. No.	46 246
Curve No.	3 2

DATA TABLE NO. 145 SPECIFIC HEAT OF MAGNESIUM + ALUMINUM + Σx_{j} Mg + Al + Σx_{j}

Ξ,
ï
¥
_
1
50
_
ď
ပ
_
C, Cal g -1 K-1
O
Heat,
ď
9
=
O
-
=
္က
2
Š
Specific :
34
T, K
\vdash
a)
4
=
સ
Ľ
0
٩.
Ε
[Temperature,
H

r o	CURVE 3 (cont.)	720 2.89 x 10 ⁻¹ 740 2.90* 760 2.91*	9.4	920 3.41* 1040 3.41																											
d'o L	CURVE 1	425 2, 650 x 10 ⁻¹ 500 2, 789 600 2, 982	700 3.179 800 3.378	(s) 838 3.454 (t) 838 3.281	900 3. 1000 3.	CURVE 2	4	123 1.82	i di	2.	∾ .	573 2.74	6	CURVE 3	300 2.34 x 10 ⁻¹	340 2.38	i (i	2,0	, v,	.2	460 2.62 480 2.65*	2.	520 2.70	4 64	2	~	ci Ci	તં લ	N C	700 2.86	i

SPECIFICATION TABLE NO. 146 SPECIFIC HEAT OF MAGNESIUM + THORIUM + Σx_i Mg + Th + Σx_i

[For Data Reported in Figure and Table No. 146]

Composition (weight percent), Specifications and Remarks	2.0 Th, 0.5 Mn. 96.3 Mg, 3.0 Th, 0.7 Zr. 2.98 total rare earth, 1.40 Mn, 0.05 Zn, 0.03 Al.
Reported Name and Error, % Specimen Designation	Mg alloy HM 21.7A Mg alloy HK 31A Mg alloy HM 31Xa
Reported Error, %	
Temp. Range, K	470-1000 470-1000 470-1000
Year	1957 1957 1957
Ref.	3 3 3
Curve No.	1 2 8

DATA TABLE NO. 146 SPECIFIC HEAT OF MAGNESIUM + THORIUM + ΣX_1 $Mg + Th + \Sigma X_1$

[Temperature, T, K, Specific Heat, Cp, Cal g-1 K-1]

ပ္	VE 1	2.629 x 10 ⁻¹	2, 682*	2, 775*	2.874	2, 975*	3.080	3, 187*	3, 295	3.466	3, 180	3, 200*	3.243*	3.286
۲	CURVE	470	200	550	009	650	200	150	800	878 (8)	(4) 878	906	950	1000

CURVE 2	2.610 x 10-1 2.661* 2.753 2.973 3.057* 3.163 3.271* 3.404 3.161 3.217* 3.288* 3.359
CO	470 550 660 660 750 750 (c) 861 (c) 861 900

		10-F
3, 359	mi	2 582 x 10-f*
'n	CURVE :	6
1000	티	470

2, 582 x 10-f*	2.641	2, 748*	2,865*	2, 988	3, 115*	3,246	3,380	3, 591	3, 164	3.180	3.218	3.254*
470	200	220	9	650	200	750	800	(a) 878	(Y) 878	206	950	1000

^{*}Not shown on plot

SPECIFICATION TABLE NO. 147 SPECIFIC HEAT OF MAGNESSUM + ZINC + ΣX_i Mg + Zn + ΣX_i

[For Data Reported in Figure and Table No. 147]

Composition (weight percent), Specifications and Remarks	Mb, 0.03 Al.
Composition (weight p	5.78 Zn, 0.74 Zr, 0.05 Mn, 0.03 Al.
Nanie and Specimen Designation	Mg alloy ZK 60A
Reported Error, %	
Temp. Range, K	425-1000
Year	1957
Ref. No.	4
Curve No.	-

DATA TABLE NO. 147 SPECIFIC HEAT OF MAGNESIUM + ZINC + $\Sigma x_1 - Mg + Zn + \Sigma x_1$

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

CURVE 1 425 2. 542 x 10⁻¹ 450 2. 574 550 2. 774 550 2. 774 650 2. 994 700 3. 130 (a) 793 3. 330 (b) 793 3. 330 (c) 793 3. 131 850 3. 131 850 3. 131 850 3. 131 850 3. 131 850 3. 138

Specification table no. 148 Specific heat of molybdenum + titanium + $\Sigma x_1 - M_0 + T_1 + \Sigma x_1$

[For Data Reported in Figure and Table No. 148]

Composition (weight percent). Specifications and Remarks	Before exposure: 98.6 Mo. 0.7 Ti, 0.3 Fe, 0.2 Al, 0.2 Ni, 0.1 Si; after exposure: 98.3 Mo. 0.2 C; sample supplied by General Astrometals Corporation; crushed in hardened steel mortar to pass 100-mesh screen; hot pressed; density at 25 C before exposure; apparent density (wax coated specimen) 592 lb ft ⁻³ , true density (by immersion in xylene) 585 lb ft ⁻³ , after exposure; apparent density (ASTM method RS11-58) 539 lb ft ⁻³ , true density = 565 lb ft ⁻³ .
Name and Specimen Designation	
Reported Error, %	13
Temp. Range, K	533-2478
Year	1962
Ref. No.	237
Curve F	-

data table no. 148 specific heat of molybdenum + titanium + $\Sigma x_1 - M_0 + T_1 + \Sigma X_1$

[Temperature, T, K; Specific Heat, C_p , $C_{al} g^{-1} K^{-1}$]

CURVE 1

SPECIFICATION TABLE NO. 149 SPECIFIC HEAT OF NEPTUNIUM + CALCIUM + ΣX_i Np + C2 + ΣX_i

[For Data Reported in Figure and Table No. 149]

Composition (weight percent), Specifications and Remarks	99.44 Np. 0.34 Ca, 0.22 U.
Name and Specimen Designation	
Reported Error, %	<2.0
Temp. Range, K	333-480
Year	1958
Ref.	247
Curve No.	1

DATA TABLE NO. 149 SPECIFIC HEAT OF NEPTUNIUM + CALCIUM + ΣX_1 Np + Ca + ΣX_1 [Temperature, T, K; Specific Heat, Cp, Cal g⁻¹ K⁻¹]

с с В	3, 14 x 10 4 3, 38 3, 49 3, 70 4, 02
CURV	333 375 407 442 480

SPECIFICATION TABLE NO. 150 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , Ni + Cr + ΣX_i (9< Cr>11)

[For Data Reported in Figure and Table No. 150]

Composition (weight percent), Specifications and Remarks	89.1 Ni, 9.6 Cr, 0.63 Fe, 0.42 Si, 0.12 Zr, 0.08 Co, 0.01 Cu, 0.01 Mn; Sample A	71.53 Ni, 11.0 Cr, 6.5 Al, 5.0 Fe, 3.5 Mo, 1.0 Nb + Ta, 1.0 Mn, Si, 0.25 Ti, 0.2 C; measured under helium atmosphere; density = 576 lb ft ⁻³ .
Name and Specimen Designation		Inco 713 C
Reported Error, %	±.30	3.0
Temp. Range, K	273-1173	513-1473
Year	1960	1961
Ref.	248	146
Curve No.	-	N

(9 < Cr < 11) DATA TABLE NO. 150 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_1 , Ni + Cr + ΣX_1

[Temperature, T, K; Specific Heat, Cp, Cal g - K - 1]

CURVE 1

1. 040 x 10 -1 1. 058 1. 076 1. 107 1. 160 1. 206 1. 248 1. 326 1. 380 1. 420 1. 450 273 298 323 373 473 673 673 873 873 1073

CURVE 2

513 604 715 738 833 901 1035 1140 1245 1245 1254 1353

SPECIFICATION TABLE NO. 151 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , NI + Cr + ΣX_j (15< Cr>16)

[For Data Reported in Figure and Table No. 151]

Composition (weight percent). Specifications and Dame and	Nominal composition: 77 Ni, 15 Cr., 7 Fe. Nominal composition: 73 Ni, 15 Cr., 7 Fe, 2.5 Ti. Nominal composition: 78 Ni, 15 Cr., 7 Fe, 0.35 Mn, 0.2 Si, 0.04 C; sample supplied by the International Nickel Co., Inc.; specimen sealed in helium capsule: amended	Nominal composition: 73 Ni, 15 Cr. 7 Fe. 2.5 Ti, 1 Nb, 0.9 Al, 0.7 Mn, 0.4 Si, 0.04 C; sample supplied by the international Nickel Co., inc.; specimen sealed in helium in capsule; solution treated by heating for 3 hrs at 2100 F and air cooled; double aged for 24 hrs at 1550 F and air cooled; density	Nominal composition; 66.85 Ni (bal.), 15.5 Cr., 10 Fe, 5 Mo, 2.5 Ti, 0.15 C; measured in a belium atmosphere. Nominal; 80.0 Ni, 15.0 Cr. 3.0 Al 0.5 Ti 0.5 Cr.	cooled; heated to 1400 F for 5 hrs; air cooled. Nominal: 270 Ni, 15.0 Cr, 7.0 Fe, 2.5 Ti, 0.95 Nb, 0.70 Al, <0.2 Cu, <0.08 C; heated at 2100 F for 2 hrs; air cooled; heated to 1550 F for 24 hrs; air cooled; heated to 1300 F	76 Ni, 15 Cr. 9 Fe. Same as above.
Name and Specimen Designation	Incone! Incone! X Annealed Incone!	Inconel X	Hastelloy R-235 Inconel 702	Inconel X	Sample 1 Sample 2 Sample 3
Reported Error, %	4		0,66-2.9	5-10	± 0.3 ± 0.3 ± 0.3
Temp. Range, K	73-1123 73-1123 116-1255	116-1255	445-1517	366-1311	273-1173 273-1173 273-1173
Year	1952 1952 1958	1958	1958 1959	1959	1960 1960 1960
Ref. No.	25 25 10	10	75	249	248 248 248
Curve No.	- 8 8	*	ຜ	۲	8 6 0

DATA TABLE NC. 151 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , Ni + Cr + ΣX_j (15 <Cr <16)

T L do		1	1.05 x 10-1	1.008	1. 084	1. 112	1. 160	1. 202	1. 240	1. 276	1.379	1. 421	1.462	1.500		CURVE 9*		1. 04 × 10-1	1.061	1. 077	1.108	1. 160	1 249	1. 290	1.377	1. 422	1.467	1.510	;	CORVE 10	1 05 2 10-1	1 066	1.082	1.111	1, 162	1. 208	1. 251	1. 292	1.396	1. 430	1.465	1. 500				
H	CURVE		273	298	323	373	473	573	673	773	873	973	1073	1173		CUB		273	298	323	373	#13 573	673	773	873	973	1073	1173		CON	040	200	323	373	473	573	673	773	873	973	1073	1173				
్రా	5 (cont.)		2.01 x 10 -F*	2.03	2.03		/E 6		1.34 x 10 ⁻¹	1.34	1.35	1.35*	1.35	1.36	1.36*	1.36	1.43	1.48	1.48	1.55	1.70	1.12	1.18	1.50	1.59	j	12.7	1000	6.8 x 10 -	7.5	0.7	n	. 20	8.3	8.05	8.6	8.8	8.8	æ. æ.	9.3	1.00 × 10-1	1. 16	1. 215 8 8 x 10 =	80.00		
۲	CURVE 5 (cont.)		1474	,	1101		CURVE 6		366	422	478	533	589	644	28	755	811	986	922	978	1033	1144	1200	1255	1311		CURVE 7	000	200	775	410	286	1	100	755	811	998	922	978	1033	1089	1144	1255	1311		
္	CURVE 4*		7.3 × 10 4	000	9.00	1. 03 × 10 -	1.09	1.16	1. 20	1. 25	1. 30	1.37	1. 51	1. 71	1.97		CURVE 5	•	9.41 × 10 -	8.	1. 03 x 10 -1	- T	- T	1. 19	1. 25	1.32	F. 33	1.40	7.7	1,48	1.60*	1.61*	1.62*	1.65*	1.68	1.70*	1.75	1.79*	1.82	1. 83.	1.87	 	1.92*	1.96	1.97*	
H	COL		116	1 6	3 6	283	366	478	589	200	811	922	1033	114	1255		5		9	463	25	8 25	634	685	139	811	818		110	2101	1078	1089	1101	1132	1155	1174	1221	1264	1291	1307	1339	1356	1389	1426	1434	
ပ			6.5 x 10-4			7 0		1. 10 × 10 ⁻¹	1.17	1. 22	1. 26	1.30	1.35	1.41	1. 50	1. 56		CORVEZ	***************************************	6.4 x 10	n 1/2	, m	1.00 x 10-#	1. 10*	1. 16	1. 20.		: -	3 -	3	1.67		CURVE 3		7.3 x 10-	7.9	9.6	1.02 x 10-1	e 1	1. 17	N 5	1.5	1.38	1.47	1.59	
H	CURVE		13 13 13	3 5	2 6	3 5	213	373	473	573	673	773	873	973	1073	1123		5	É	5 5	32	223	273	373	473	573	272	873	673	1073	1123		COM	11	116	7	200	293	999	478	200	3 =	226	1033	114	

SPECIFICATION TABLE NO. 152 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , Ni + Cr + ΣX_i (18 \leq Cr \leq 20)

[For Data Reported in Figure and Table No. 152.

Composition (weight percent). Specifications and Kemarks	77.4 Ni, 19.5 Cr, 1.4 Si, 0.59 Mn. 0.45 Fe, 0.04 C.	As received; 56.07 Ni, 18.83 Cr, 14.57 Mo, 4.94 Fe, 4.41 W, 0.07 C; after test: 56.00 Ni, 15.82 Cr, 14.53 Mo, 5.04 Fe, 4.49 W, 0.068 C; density = 556.9 lb ft ⁻³ .	7.74 Ni, 19.5 Cr, 1.4 Si, 0.59 Mn, 0.45 Fe, 0.04 C. 57.15 Ni, 18.65 Cr, 9.98 Mo, 9.75 CQ, 2.74 Ti, 1.17 Al, <0.2 Fe, 0.12 C, 0.07 Mn, 0.06 Si;	solutioned 1950 F; air cooled; measured in a helium atmosphere.	54.60 Ni, 18.6 Cr, 10.73 Ck, 9.63 Mo, 3.14 Ti, 1.54 Fe, 1.49 Al. 0.11 C, 0.08 Mn, 0.07 Si, solutioned 1975 F; water quenched; measured in a helium atmosphere.
Name and Specimen Designation	Nichrome V	Hastelloy C	80 Ni-20 Cr	M252; Ge-71500	Rene 41; Ge-J1610
Reported Error, %	±2.0	ဗ	±0.3	3.0	3.0
Temp. Range, K	273-1173	811-1478	273-1173	479-1486	479-1483
Year	1955	1958	1960	1961	1961
Curve Ref. Year	250.	251 245	248	146	146
Curve No.	-	81	e	4	ß

DATA TABLE NO. 152 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , Ni + Cr + ΣX_i (18 \le Cr \le 20)

Cal g-1 K-1
င်္ခ
Heat,
Specific
×
Ŧ,
[Temperature,

CURVE 1	T C _p	1168 1.797 × 10 ⁻¹ 1253 1.914 1301 1.960 1360 2.060 1373 2.077* 1486 2.233	479 8.463 x 10-1* 582 9.843 624 1.041 x 10-1 749 1.207 749 1.207 749 1.207 749 1.207 749 1.207 749 1.207 749 1.207 1305 1.683 1106 1.683 1106 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683 1108 1.683	
	CURVE	1. 033 x 1. 052 1. 071 1. 109 1. 171 1. 217 1. 264 1. 310	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.521 x 1.159 x 1.581 1.581 1.628

*Not shown on plot

SPECIFICATION TABLE NO. 153 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_j , Ni + Cr + ΣX_j (Cr > 20)

For Data Reported in Figure and Table No. 153.

Curve Ref. No. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
252	1961	323-1073	7	OKh21N78T	77, 229 Ni. 21, I Cr. 9, 56 Fe, 0, 49 Mn, 0, 32 Si, 0, 23 Ti, 0, 06 C, 0, 006 S, 0, 005 P, trace of Cu: quenched in water from 1100 C.
252	1964	323-1073	7	OKh 20N60B	59. 64 Ni, 20, 4 Cr. 17.7 Fe. 1. 59 Mn. 0. 58 Nb. 0. 25 St. 0. 06 C. 0. 004 S; quenched in water from 1050 C; tempered 1 hr in air at 720 C.

DATA TABLE NO. 153 SPECIFIC HEAT OF NICKEL + CHROMIUM + ΣX_i , Ni + Cr + ΣX_i (Cr > 20)

[Temperature, T, K; Specific Heat, G_{μ} , Cal g ⁻¹ K ⁻¹]

ပ္ခံ	E 1	1.06 × 10 ⁻¹	1. 12	1.14	1.17									1.51	4	4	1.48	/E 2
H	CURVE	323	373	423	473	523	573	623	673	723	773	823	873	923	973	1023	1073	CURVE

7 2	1.03 × 10	12	1.17	1. 19	1.21*	1. 23*	1.24	1, 25	1.26	1.29	1.40	1.34	1.43	1.26	1.35	1.39
CON	323	373	423	473	523	573	623	673	723	773	823	873	923	973	1023	1073

Not shown on plot

SPECIFICATION TABLE NC. 154 SPECIFIC HEAT OF NICKEL + COPPER + ΣX_j Ni + Cu + ΣX_j

[For Data Reported in Figure and Table No. 154]

Composition (weight percent), Specifications and Remarks	67.1 Ni, 29.3 Cu, 1.8 Fe, 1.0 Mn, 0.18 C, 0.07 Si.	Nominal composition: 66 Ni, 29 Cu, 2.75 Al, 0.9 Fe; hot rolled; annealed 1 hr at 1650 F; water quenched.	Nornal composition: 66 Ni, 29 Cu, 3 Al; sample supplied by the International Nickel Co.; sealed in helium in capsule; annealed 1 hr at 1650 F and water quenched; density (32 F) = 527 lb ft ⁻³ .	66.9 Ni, 29.8 Cu, 1.6 Fe, 1.0 Mn, 0.15 C, 0.07 Si.
Name and Specimen Designation	Monel	K Monel	K Monel	Monel
Reported Error, %	7			بر 3
Temp. Range, K	273-573	73-1123	116-1144	273-573
Year	1953	1954	1958	1960
Curve Ref. Yea No. No.	250, 251	10	10	248
Curve No.	-	64	က	*

DATA TABLE NO. 154 SPECIFIC HEAT OF NICKEL + COPPER + $\Sigma X_{\hat{I}}$ Ni + Cu + $\Sigma X_{\hat{I}}$

Cal g -1 K -1]
ပ်
Heat,
Specific
꾶
H,
[Temperature,

T Cp CURVE 4 (cont.)*	373 1, 05 x 10 ⁻¹ 473 1, 10 573 1, 14		
C _p	1, 009 x 10 ⁻¹ 1, 021 1, 033 1, 034 1, 054 1, 197 1, 142		VE 3 7.1 x 10 4 7.1 x 10 4 8.7 1.00 x 10 -1 1.07 1.17 1.25 1.25 1.25 1.41 1.57 VE 4* 1.01 x 10 -1 1.03
TCURVE	273 296 323 373 473 573 CURVE	73 173 173 173 173 173 1073 1123	CURVE 116 114 200 293 366 478 811 922 1003 1144 273 226 226 323 323 323

SPECIFICATION TABLE NO. 155 SPECIFIC HEAT OF NICKEL + IRON + Σx_j Ni + Fe + Σx_j

[For Data Reported in Figure and Table No. 155.

Composition (weight percent), Specifications and Remarks	As received: 57.70 Ni, 23.92 Fe, 15.73 Cr, 1.14 Si, 0.052 C, 0.03 Mo; after test: 57.76 Ni, 23.91 Fe, 15.80 Cr, 1.33 Si, 0.050 C, 0.03 Mo; density = 508 9 lb ft-3	40.0 Ni, 35.0 Fe. 13.0 Cr, 6.0 Mo. 2.4 Ti, 0.05 C; heated to 2050 F for 2 hrs; oil quenched; heated to 1375 F for 24 hrs; air cooled.
Name and Specimen Designation	60-15 Cr (ASTM B83-46)	Incoloy 901
Reported K Error, %	က	5-10
Temp. Range, K	805-1477	366-1255
Year	1958	1959
Ref. No.	245	249
Curve Ref. No. No.	1	2

ပ္ခံ

CURVE 1

SPECIFICATION TABLE NO. 156 SPECIFIC HEAT OF NICKEL + MANGANESE + ΣX_j Ni + Mn + ΣX_j

[For Data Reported in Figure and Table No. 156]

Composition (weight percent), Specifications and Remarks	72 Ni, 25 Mn, 2 Al, 1 Si; sample supplied by the Haskins Mfg. Co.
Name and Specimen Designation	Alumel
Reported Error, %	
Temp. Range, K	298-1600
Year	1963
Ref.	234
Curve No.	1

T C_p

<u>CURVE 1</u>
298 1, 134 x 10⁻¹
300 1, 135 con 1, 135 con 1, 135 con 1, 135 con 1, 139 con 1, 139 con 1, 207
800 1, 225 con 1, 207
800 1, 225 con 1, 261
1100 1, 279
1300 1, 314
1400 1, 33
1600 1, 37

SPECIFICATION TABLE NO. 157 SPECIFIC HEAT OF NICKEL + MOLYBDENUM + ΣX_1 Ni + Mo + ΣX_1

[For Data Reported in Figure and Table No. 157]

Composition (weight percent), Specifications and Remarks	As received: 65.57 Ni, 23.78 Mo, 5.05 Fe, 0.020 C, after test: 65.55 Ni, 24.00 Mo, 4.96 Fe, 0.023 C; density = 585.5 lb ft ⁻³ .
Name and Specimen Designation	Hastelloy B
Reported Error, %	ဗ
Temp. Range, K	784-1375
Year	1958
Ref. No.	245
Curve No.	-

DATA TABLE NO. 157 SPECIFIC HEAT OF NICKEL + MOLYBDENUM + ΣX_1 Ni + Mo + ΣX_1

[Temperature, T, K; Specific Heat, C_p , Cal g $^{\text{-1}}$ K $^{\text{-1}}$]

ပို	<u>E 1</u>	1, 22 × 10° 1, 30 1, 38 1, 47 1, 55
H	CURV	811 978 1144 1311

SPECIFILATION TABLE NO. 158 SPECIFIC HEAT OF NIOBIUM + IRON + ΣX_1 ND + Fe + ΣX_1

[For Data Reported in Figure and Table No. 158]

Specifications and Remarks	58.55 Nb, 17.09 Fe, 10.91 Si, 7.40 Ti, 3.34 Al, 1.17 Zr, 0.53 Cr, 0.042 P, 0.011 Cu, 0.011 S.
Composition (weight percent), Specifications and Remarks	58.55 Nb, 17.09 Fe, 10.91 Si, 7.40 Ti, 0.011 S.
Name and Specimen Designation	Ferroniobium
Reported Error, %	0.8-1.2
Temp. Range, K	273-1873
Year	1961
Ref.	253
Curve Ref. No. No.	-

DATA TABLE NO. 158 SPECIFIC HEAT OF MOBIUM + IRON + ΣX_1 Nb + Fe + ΣX_1 [Temperature, T, K; Specific Heat, C_p , Cal g⁻¹ K⁻¹]

T C_p

	9.023 x 10	9.313	1.005 x 10	1.055	1.096	1.132	1.166	1.198	1. 230	1.261	1. 291	1.321	1.352	1.382	1.411	1.41	1.471	1.492
CORVE	273	300	400	200	909	700	900	8	1000	1100	1200	1300	1400	1500	1600	1700	1800	1873

SPECIFICATION TABLE NO. 159 SPECIFIC HEAT OF NIOBIUM + MOLYBDENUM + ΣX_{j} Nb + Mo + ΣX_{j}

[For Data Reported in Figure and Table No. 159]

Name and Composition (weight percent), Specifications and Remarks	Bal Nb, 5.03 Mo, 5.02 V, 1.13 Zr, 0.028 C, 0.0136 Np. 0.0093 Op; sample supplied by the Westinghouse Electric Co.; density = 538 lb ft-3
Reported Error, %	±5
Temp. Range, K	505-2469
Year	1963
Ref.	232
No.	7

DATA TABLE NO. 159 SPECIFIC HEAT OF NIOBIUM + MOLYBDENUM + ΣX_i Nb + Mc + ΣX_i

[Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1]

CURVE 1

505 6. 043 × 10631 6. 410
793 6. 814
791 6. 858
848 7. 010
947 7. 271
1000 7. 631
1193 7. 877
1201 7. 898*
1254 8. 021
1337 8. 341*
1446 8. 994*
1315 8. 169
1315 8. 169
1315 8. 169
1315 8. 446
1446 8. 994*
1466 8. 994*
147 9. 401
2314 9. 829
2316 9. 268*
1947 9. 401
2315 2372 1. 003 × 102469 1. 016

Not shown on plot

SPECIFICATION TABLE NO. 160 SPECIFIC HEAT OF NIOBIUM + TANTALUM + ΣX_1 Nb + Ta + ΣX_1

[For Data Reported in Figure and Table No. 160]

Composition (weight percent), Specifications and Remarks	Bal Nb, 33 Ta, 0.7-1 Zr; heat treated.	Bal Nb; 27. 84 Ta, 10. 4 W, 0. 92 Zr, 0. 01 Si, 0. 009 Ni, 0. 007 Fe, 0. 005 Ti, 0. 004 C, 0. 005 Op, 0. 002 Np; sample supplied by the Fansteel Metallurgical Corp; density = 669 lb ft ⁻³ .
Name and Specimen Designation	FS-82B Alloy	
Reported Error, %		# 2
Temp. Range, K	422-1364	472-2705
Year	1961	1963
Jurve Ref. No. No.	254	232
Curve No.	-	8

DATA TABLE NO. 160 SPECIFIC HEAT OF NIOBIUM + TANTALUM + ΣX_1 Nb + Ta + ΣX_1 [Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T Cp CURVE 2 (cont.)	8. 436 8. 436
CURV	2514
C _p	5. 376 6. 386 6. 371 6. 386 6. 371 6. 371 6. 371 6. 371 6. 371
T	422 478 533 589 644 644 700 755 866 866 978 1089 1144 1256 1366

								5.955																
472	621	111	780	7	853	915	920	1035	1093	1202	1255	1308	1396	1426	1481	1558	1650	1799	1864	1994	2114	2264	2422	

CURVE 2

Specification table no. 161 specific heat of niobium + Titanium + Σx_i nb + Ti + Σx_i

[For Data Reported in Figure and Table No. 161]

Composition (weight percent), Specifications and Remarks	Bal Nb, 10.0 Ti, 4.9 Zr, 0.0014 C, 0.0244 O _b , 0.0024 N _b , 0.0014 H _b ; sample supplied by DuPont; density = 485 lb ft ⁻³ .
Name and Specimen Designation	
Reported Error, %	5.0
Temp. Range, K	542-2560
Year	1963
Ref.	232
Curve No.	-

DATA TABLE NO. 161 SPECIFIC HEAT OF NIOBIUM + TITANIUM + Σx_1 Nb + Ti + Σx_1 [Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T Cp

CURVE 1

542 6. 630 x 10⁻⁴
641 6. 864
705 7. 018
721 7. 067⁴
853 7. 391⁴
966 7. 668
971 7. 681⁴
1119 8. 229
1264 8. 453
1265 8. 509⁴
1364 8. 803⁴
1364 8. 803⁴
1369 9. 130
1569 9. 293⁴
1599 9. 361
1734 9. 752
1737 9. 967
2236 1. 023 x 10⁻¹
2236 1. 132
2236 1. 132
2236 1. 239

Not shown on plot

SPECIFICATION TABLE NO. 162 SPECIFIC HEAT OF NIOBIUM + TUNGSTEN + ΣX_1 Nb + W + ΣX_1

[For Data Reported in Figure and Table No. 162]

Curve No.	Ref. No.	Ref. Year No.	Temp. Range, K	Reported Error, % Sp	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
	254	254 1961	422-1367		F-48	B. Nb, 13.8 W, 4.8 Mo, 0.90 Zr, 0.041 C, 0.036 O, 0.017 N; sample supplied by the General Electric Co.; heat treated.
	232	1963	487-2744	# 2		Bal Nb, 15.3 W, 5.26 Mo, 1.08 Zr, 0.034 C, 0.0211 Np, 0.0167 Op, 0.0061 Hp.
	232	1963	549-2572	¥ 2		Bal Nb, 9. 93 W, 2. 58 Zr, 0. 002 C, 0. 012 O ₂ , 0. 006 N ₂ , 0. 0009 H ₂ ; sample supplied by the Haynes Stellite Co.; density = 572 lb ft ⁻² .
	232	1963	435-2513	# 2		Bal Nb, 9.7 W, 0.88 Zr, 0.0810 C, 0.0052 O ₂ , 0.0033 N ₂ , 0.0004 H ₂ ; sample supplied by DuPont Co.; density = 564 lb ft ⁻³ .
	255	1963	273-1477	4	CB-752	87.5 Nb, 10.0 W, 2.5 Zr.

data table no. 162 specific heat of niobium + Tungsten + Σx_i n_b + w + Σx_i

Curaye Color Col				DATA TABLE NO.	162	SPECIFIC HEAT OF NIOBIUM + TUNGSTEN + ZX
C _p T C _p T C _p T 6, 0006 5, 339 × 10 ⁻² 2122 9, 498 × 10 ⁻² 1291 6, 0006 2182 9, 498 × 10 ⁻² 1291 6, 073 ⁺ 216 1, 071 × 10 ⁻¹ 1483 6, 141 2.556 1, 134 ⁺ 1620 6, 275 2416 1, 071 × 10 ⁻¹ 1483 6, 275 2416 1, 071 × 10 ⁻¹ 1483 6, 275 2416 1, 071 × 10 ⁻¹ 1483 6, 477 ⁺ 249 5, 987 × 10 ⁻² 2190 6, 544 6, 199 6, 199 2073 6, 544 6, 199 2, 287 10 ⁻² 6, 746 6, 63 5, 987 2073 6, 814 870 6, 380 273 6, 814 870 6, 380 273 6, 814 870 6, 380 273 1, 105 1, 105 1, 104 274 6, 814 871 1, 100 274 <					LTemp	erature, T, K; Specific Heat, C_p , Cal g ⁻¹ K ⁻¹]
URVE 1 5. 939 × 10 ⁻⁴ 6. 006 6. 0073 6. 2189 9. 757* 6. 006 6. 275 6. 206* 6. 216 6. 216 6. 217 6. 216 6. 217 6. 216 6. 217 6. 218 6. 217 6. 218 6. 219 7. 015 7. 015 9. 1131 9. 60 9. 211 1. 226 1. 211 1. 226 1. 218 2. 218	H	ပ္ရ	H	c _p	H	ď
5. 939 x 10 ⁻⁴ 2122 9, 496 x 10 ⁻⁴ 1403 6. 073 ⁺ 2416 1.071 x 10 ⁻¹ 1403 6. 141 2.555 1.134 1.226 6. 241 2.255 1.134 1.226 6. 410 6. 241 2.255 1.134 1.226 6. 410 6. 4	CUR		CURVE	(cont.)	CURVE	4 (cont.)
6. 006 6. 073* 2189 9. 757* 1403 6. 173* 2416 1. 071, x 10-1 6. 206* 2744 1. 226 1. 134* 1628 6. 2075 6. 2410 6. 247* 2456 1. 124* 1628 6. 410 6. 410 6. 410 6. 410 6. 410 6. 612* 774 6. 612* 701 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 6. 663 6. 444 6. 190 700 700 700 700 700 700 700 700 700 7	422	5. 939 x 10-4	2122	9.498 x 10-1	1291	7.155 x 10-2*
6. 773	778	6.006	2189	9. 757*	1403	7.362*
6. 206	200	6.073	2416	1.071 x 10-1	1483	7. 517
6. 275 6. 343* 6. 343* 6. 343* 6. 410	200	6.141	2555	1.134	1520	7, 796
6. 343*	9	6. 275	;	7. 2.60	1828	8. 251
6. 410 6. 477* 6. 417* 6. 477* 6. 477* 6. 477* 6. 612* 6. 612* 6. 612* 6. 614 6. 626 6. 2297 6. 6194 6. 754 6. 104 6. 104 6. 754 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 104 6. 105 6. 104 6. 105 6. 104 6. 105 6. 104 6. 105 6. 106	755	6.343*	CURV	E 3*	1946	8.528
6. 477* 549 5.987 x 10 ⁻⁴ 2180 6. 544 640 6. 026 2297 6. 679 754 6. 104 2514 6. 746* 844 6. 190 6. 814 870 6. 219 6. 814 870 6. 219 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 900 5. 932 x 10 ⁻⁴ 1422 7. 245 6. 940 1422 7. 245 6. 940 1422 7. 245 6. 940 1423 1. 193 6. 437* 2111 9. 640 6. 691* 2241 1. 023 x 10 ⁻⁴ 7. 002 6. 437* 676 6. 218* 7. 002 7. 003 8. 224	811	6.410			2078	8.849
6. 544 640 6. 026 2297 6. 612* 701 6. 063 2416 6. 746* 844 6. 190 6. 814* 870 6. 219 6. 814* 870 6. 219 6. 814* 870 6. 219 7. 015* 11000 6. 390 7. 015* 11000 6. 390 7. 015* 1181 6. 443 7. 083 1181 6. 700 8. 873 6. 350 8. 873 6. 390 8. 874 478 8. 224 1422 7. 245 8. 933 8. 903 6. 437* 2241 1. 023 x 10 ⁻⁴ 8. 437* 2111 9. 640 8. 691* 2241 1. 023 x 10 ⁻⁴ 7. 163* 6. 356 6. 594 7. 163* 7. 245 8. 2572 1. 193 6. 939* 2572 1. 193	998	6.477*	675	5.987 x 10-2	2180	9.111
6. 612* 701 6. 063 2416 6. 679 754 6. 104 2514 6. 814 870 6. 199 CURVE 6. 814 870 6. 219 6. 814 870 6. 219 7. 015* 1000 6. 390 273 7. 015* 1181 6. 700 366 7. 083 1181 6. 700 366 7. 083 1286 6. 874 478 7. 083 1181 6. 700 366 7. 083 1286 6. 874 478 6. 040 1356 7. 080 700 7. 083 1181 7. 080 700 8. 262 128 7. 245 922 8. 262 1676 7. 984 1366 6. 262 6. 040 1483 7. 408 6. 262 1676 7. 984 1366 6. 274* 1804 8. 421 1478 6. 939* 2572 1. 193 6. 939* 2572	922	6.544	640	6.026	2297	9.420
6. 679 754 6. 104 2514 6. 746* 844 6. 190 6. 814 870 6. 219 6. 948 1000 6. 350 7. 015* 1000 6. 390 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1266 6. 874 7. 083 1181 6. 900 5. 932 x 10** 1278 6. 900 5. 932 x 10** 1286 6. 040 1394 7. 173 913 6. 079 1356 7. 080 6. 274* 1356 7. 041 6. 148 1589 7. 711 1255 6. 040 1483 7. 408 1038 6. 274* 1804 8. 421 1478 6. 422 1803 8. 903 6. 422 1833 8. 903 6. 422 1833 8. 903 6. 422 1833 8. 903 6. 422 1833 8. 903 6. 422 1834 7. 139 6. 939* 2572 1. 193 6. 939* 2572 1. 193 6. 939* 2572 1. 193 7. 261 4.35 5. 942 x 10** 7. 307* 676 6. 218* 7. 434 6. 843 6. 439* 8. 224 8. 410** 8. 224 8. 410** 7. 458 8. 429** 8. 409* 11098 6. 591* 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198 8. 577 1198	878	6.612*	701	6.063	2416	9.749
6. 746 6. 184 6. 190 6. 814 870 6. 219 6. 814 870 6. 219 7. 015* 1000 6. 350 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 7. 015* 1151 6. 643 8. 902 8. 040 134 7. 173 8. 903 8. 204 8. 218* 8. 224 8. 22	1033	6.679	154	6. 104	2514	1.003 x 10 ⁻¹
6. 814 870 6. 219 CURVE 6. 881* 877 6. 219 7. 015* 1161 6. 6. 390 273 7. 015* 1181 6. 700 366 7. 083 1181 6. 700 366 1266 6. 874 478 1278 6. 900 589 1278 6. 900 700 5. 932 x 10** 1422 7. 245 6. 040 1422 7. 245 6. 262 1676 7. 71 144 6. 148 1589 7. 711 1255 6. 437* 1894 8. 421 1478 6. 437* 2241 1. 023 x 10** 1478 6. 437* 2241 1. 024 6. 691* 2241 1. 024 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 7. 002 8. 224 8. 224 8. 257 8. 939* 6. 071 7. 163* 6. 071 7. 473* 676 8. 278 8. 224 8. 224 8. 224 8. 224 8. 224 8. 227 8. 236 8. 241 8. 241 8. 242 8. 243* 8. 903 8. 244 8. 257 9. 992 9. 993 9. 947 9. 993 9. 991 9. 992 9. 993 9. 994 9. 992 9. 993 9. 991 9. 993 9. 991 9. 992 9. 993 9. 993 9. 993 9. 993 9. 993 9. 993 9. 993 9. 993 9. 994	1089	6. 746	3	6, 190		
6.881* 873 6.350 6.981* 1000 6.390 7.015* 11000 6.390 7.015* 11151 6.643 7.015* 1151 6.643 7.015* 1151 6.700 8.932 x 10** 1266 6.874 6.262 1676 7.245 8.933 8.224 1.22 x 10** 1366 6.591* 2241 1.023 x 10** 1366 6.591* 2241 1.023 x 10** 1366 6.591* 2241 1.023 x 10** 1366 6.591* 2241 1.023 x 10** 1366 6.591* 2241 1.023 x 10** 1366 6.591* 2572 1.183 6.591* 2572 1.183 6.591* 2572 1.183 6.591* 2572 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2572 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.183 6.591* 2574 1.184 6.591*	114	6.814	870	6.219	CUR	VE 5
6.948 1000 6.390 273 7.015* 1151 6.643 311 7.083 1181 6.700 366 7.083 1286 6.970 589 5.932 x 10** 1286 6.900 589 6.040 1482 7.7245 922 6.040 1483 7.408 1033 6.262 1676 7.994 1366 6.274* 1804 8.421 1144 6.148 1589 7.7711 1255 6.262 1676 7.994 1366 6.274* 2241 1.023 x 10** 1478 6.937* 2241 1.023 x 10** 1478 6.939* 2572 1.183 6.939* 2572 1.183 6.939* 2572 1.183 6.937* 6.071 7.261 6.775 6.66 6.071 7.473* 6.66 6.071 7.474 782 6.355 8.409* 1028 6.439* 8.409* 11998 6.992 8.577 1194 6.992	1200	6.881	973	6.350		
7. 015* 1151 6. 643 311 7. 083 1181 6. 700 366 1181 6. 700 366 1181 6. 700 366 1181 6. 700 366 1181 6. 700 366 1182 1278 6. 900 700 1186 7. 1990 700 11878 7. 173 811 1188 1589 7. 408 1033 6. 274* 1804 8. 421 1478 6. 427* 1804 8. 421 1478 6. 427* 2241 1. 023 × 10 ⁻¹ 6. 427* 2241 1. 023 × 10 ⁻¹ 7. 261 2. 254 1. 193 6. 939* 2572 1. 193 6. 939* 2572 1. 193 7. 261 4.35 5. 942 × 10 ⁻² 7. 261 4.35 6. 071 7. 474 782 6. 355 8. 409* 1098 6. 439* 8. 409* 1198 6. 992 8. 977 1198	1255	6. 948	1000	6, 390	273	5.9 x 10-2
7.083 1181 6.700 366 URVE 2 1266 6.874 478 1266 6.874 478 1266 7.080 589 1367 7.080 700 1368 7.080 700 1368 7.080 700 1369 1422 7.245 922 1422 7.245 922 16.040 1575 7.671 1144 6.148 1589 7.711 11255 6.274 1804 8.421 1478 6.437 1804 8.421 1478 6.437 2241 1.023 x 10 ⁻¹ 6.691 2241 1.023 x 10 ⁻¹ 7.002 241 1.023 x 10 ⁻¹ 7.002 241 1.023 x 10 ⁻¹ 7.163 435 6.913 7.163 435 6.438 8.224 843 6.438 8.224 840 6.891 8.224 1139 6.891 8.224 1139 6.992 8.409 11098 6.712* 8.577 1199	1311	7.015*	1151	6.643	311	6.0
URVE 2 1266 6,874 478 1278 6,900 589 1376 7,090 700 5,932 x 10 ⁻⁴ 1326 7,090 700 6,040 1422 7,245 922 6,040 1423 7,408 1033 6,043 1583 7,408 1144 6,274 1589 7,711 1144 6,274 1804 8,421 1478 6,437* 2241 1,023 x 10 ⁻¹ 1478 6,691* 2241 1,023 x 10 ⁻¹ 1478 6,691* 2241 1,024 x 10 ⁻¹ 1,034 6,957 2241 1,024 x 10 ⁻¹ 1,034 7,002 2241 1,034 1,04 6,957 2241 1,034 1,04 7,163* 2572 1,193 254 0,71 7,163* 435 5,942 x 10 ⁻² 2,18* 7,473* 676 6,218* 7,74 7,759* 843 6,439* 8,439* 8,409* 1028 6,591* 8,912* 8,977 1199 6,991* 6,991* 9,977 1199 6,991*	1366	7. 083	1181	6. 700	366	6.1
5. 932 x 10 ⁻⁴ 1278 6,900 589 5. 964 1356 7,080 700 5. 964 1422 7,173 811 6. 040 1483 7,408 1033 6. 040 1483 7,408 1033 6. 079 1575 7,408 1033 6. 262 1676 7,711 1256 6. 262 1676 7,711 1256 6. 274 1804 8,421 1478 6. 437 211 9,640 1478 6. 691* 2241 1,023 x 10 ⁻¹ 6. 437 211 9,640 6. 437 211 9,640 6. 537 211 9,640 6. 537 2241 1,023 x 10 ⁻¹ 7. 002 2241 1,024 7. 002 2572 1,193 6. 957 435 5,942 x 10 ⁻² 7. 307 654 6,071 7. 759* 6,439* 6,439* 8. 409* 1028 6,212* 8. 477 1199 6,991* 9. 977 1199 6,991*			1266	6.874	478	6.3
5. 932 x 10 ⁻⁴ 1356 7, 080 700 5. 964 1422 7, 245 922 6. 040 1483 7, 408 1033 6. 040 1483 7, 408 1033 6. 040 1483 7, 408 1033 6. 262 1676 7, 984 1025 6. 262 1676 7, 984 1056 6. 437 183 8, 903 6. 691 2241 1, 023 x 10 ⁻⁴ 6. 775 2386 1, 094 6. 991 2241 1, 023 x 10 ⁻⁴ 7, 163 257 1, 193 6. 957 2572 1, 193 6. 957 2514 6, 071 7, 163 7, 163 6, 071 7, 163 7, 163 6, 071 7, 163 7, 163 6, 071 7, 163 7, 163 7, 163 6, 071 7, 163	5	2	1278	6.900	589	6.5
5. 932 x 10 ⁻¹ 1394 7, 173 611 5. 944 1422 7, 245 922 6. 040 1483 7, 408 1033 6. 079 1575 7, 671 1144 6. 148 1589 7, 408 1033 6. 274 1589 7, 7711 1255 6. 274 1804 8, 421 1478 6. 437 2341 1, 023 x 10 ⁻¹ 6. 491 2241 1, 023 x 10 ⁻¹ 6. 491 2241 1, 023 x 10 ⁻¹ 7. 163 455 5, 942 x 10 ⁻² 7. 261 435 5, 942 x 10 ⁻² 7. 307 6, 60 771 7. 473 6, 64 6, 071 7. 474 782 6, 355 7. 674 6, 992 8. 409 1028 6, 439 8 8. 409 1199 6, 992			1356	7.080	38	6.6
6. 079 1422 7. 245 922 6. 040 1428 7. 245 922 6. 079 1575 7. 671 1144 6. 148 6. 079 1533 6. 079 1575 7. 671 1144 6. 991 1255 6. 079 1575 7. 671 1144 6. 991 1255 6. 079 1575 7. 072 8. 0	487	5. 932 x 10-	1394	7. 173	811	6.7
6. 040 1483 7. 408 11033 6. 148 1. 408 1. 1033 6. 148 1. 408 1. 255 6. 262 1. 676 7. 711 1. 255 6. 274 1. 1804 8. 421 1. 478 6. 691* 2.241 1. 0.23 × 10 ⁻¹ 6. 691* 2.241 1. 0.23 × 10 ⁻¹ 6. 957 2. 241 1. 1023 × 10 ⁻¹ 7. 163* 7. 103* 7. 103* 7. 103* 7. 163* 7. 103* 7. 163* 7. 1	250	405.00	1422	7. 245	922	6.7
6. 262 157 1.144 6. 262 1676 7. 571 1.255 6. 262 1676 7. 984 1.366 6. 274* 1804 8. 421 1.478 6. 422 1833 8. 903 6. 437* 2.11 9. 640 6. 691* 2.241 1. 023 x 10 ⁻¹ 6. 535 2.572 1. 193 6. 939* 2.572 1. 193 6. 937 CURVE 4 7. 261 4.35 5. 942 x 10 ⁻² 7. 307* 6.64 6. 071 7. 473* 6.76 6. 218* 7. 474 782 6. 355 7. 674 782 6. 356 8. 429* 1028 6. 439* 8. 429* 1028 6. 439* 8. 409* 1028 6. 589 8. 409* 1199 6. 992	140	6.040	1483	7. 408	1033	1.1.0
6. 262 1676 7. 984 1366 6. 274* 1804 8. 421 1478 6. 437* 2241 1. 023 x 10 ⁻¹ 6. 691* 2241 1. 023 x 10 ⁻¹ 6. 539* 2572 1. 193 6. 939* 2572 1. 193 6. 939* 2572 1. 193 7. 261 6. 071 7. 163* 435 5. 942 x 10 ⁻² 7. 307* 6. 6. 071 7. 473* 6. 6. 218* 7. 474 782 6. 355 7. 759* 843 6. 439* 8. 224 844 6. 901* 8. 499* 11028 6. 589 8. 409* 11038 6. 992 8. 977 1199 6. 992	754	6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1589	7.711	1255	D. 7.
6. 274* 1804 8. 421 1478 6. 422 11833 8. 903 6. 422 11833 8. 903 6. 691* 2241 1. 023 x 10 ⁻¹ 6. 939* 2241 1. 023 x 10 ⁻¹ 7. 163* 2572 1. 193 7. 261 435 5. 942 x 10 ⁻² 7. 307* 6.76 6. 218* 7. 474 782 6. 439* 8. 224 843 6. 439* 8. 409* 1028 6. 712* 8. 977 1196 6. 992	850	6.262	1676	7.984	1366	***
6. 422 1933 8. 903 6. 437* 2111 9. 640 6. 691* 2241 1.023 x 10 ⁻¹ 6. 939* 2572 1.094 7. 002 2018 2572 1.183 7. 261 435 5. 942 x 10 ⁻² 7. 307* 676 6. 218* 7. 473* 676 6. 218* 7. 674 782 6. 355 7. 759* 843 6. 439* 8. 224 947 6. 589 8. 409* 1028 6. 712* 8. 671 1144 6. 991*	960	6. 274*	1804	8.421	1478	6.7
6. 437* 6. 691* 7. 6. 691* 7. 175 7. 002 7. 1002 7. 1634 7. 307 7. 473 7. 473 7. 473 7. 554 7. 759* 8. 409* 1. 1144 8. 977 1. 199	996	6. 422	1933	8.903		
6. 691* 2241 6. 575 2386 6. 953* 2572 7. 002 7. 163* 435 7. 261 7. 473* 676 7. 473* 676 7. 759* 843 8. 224 847 8. 409* 1144 8. 577 1199	976	6. 437*	2111	9.640		
6. 775 2366 6. 957 7. 002 7. 163* 7. 261 7. 261 7. 307* 7. 435 7. 473* 7. 759* 8. 224 8. 409* 1199 8. 977	1128	6.691*	2241	1.023 x 10-1		
6.938* 2572 6.907 CURVE 7.163* 435 7.261 435 7.473* 676 7.674 782 8.224 843 8.671 1194 8.977 1198	1172	6. 775	2386	1.094		
6.957 7.002 7.163* 7.261 7.261 7.307* 7.473* 676 7.473* 843 8.409* 8.671 1199	1254	6. 939*	2572	1.193		
7.002 7.163* 7.261 7.261 7.307* 676 7.674 7.674 8.224 8.409* 8.671 1198	1263	6.957				
7.163* 7.261 7.201 7.473* 7.674 7.674 7.55* 8.43 8.24 8.403* 1.128 8.671 1.194	1284	7.002	CURV	E4		
7.261 435 7.307* 554 7.473* 676 7.759* 843 8.224 843 8.409* 1028 8.671 1194	1357	7. 163*				
7.307* 554 7.473* 676 7.674 782 7.759* 843 8.224 947 8.409* 1028 8.671 1199	1399	7.261	435	5. 942 x 10-		
7. 473* 676 7. 674 782 7. 759* 943 8. 224 947 8. 409* 1028 8. 671 1144	1418	7.307	254	6.071		
7.674 762 7.759* 843 8.224 947 8.409* 1028 8.671 1144 8.977 1199	1485	7.473*	676	6.218		
7.759* 843 8.224 947 8.409* 1028 8.671 1144	1562	7.674	782	6.355		
8. 224 947 8. 409* 1028 8. 671 1144 8. 977 1198	1593	7.759	3	6. 439		
8.409* 1028 8.671 1144 8.977 1198	1753	8. 224	7	6. 589		
8.671 1144 8.977 1198	1811	8.409	1028	6.712*		
8.977	1891	8, 671	1144	6.901*		
	1980	8.977	1198	6.992		

Specification table no. 163 Specific heat of plutonium + cerium + Σx_i Pu + Ce + Σx_i

[For Data Reported in Figure and Table No. 163]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation	Eutectic Alloy
Reported Error, %	
Temp. Range, K	373-873
Year	1963
Ref. No.	256
Curve No.	-

DATA TABLE NO. 163 SPECIFIC HEAT OF PLUTONIUM + CERIUM + Σx_1 Pu + Ce + Σx_1 [Temperature, T, K; Specific Heat, C_p, Cal g⁻¹ K⁻¹]

T Cp

373 4.05 x 10-8 473 4.75 573 5.60 673 6.30 7.15 873 7.55

Not shown on plot

SPECIFICATION TABLE NO. 164 SPECIFIC HEAT OF TANTALUM + NIOBIUM + ΣX_1 Ta + Nb + ΣX_1

[For Data Reported in Figure and Table No. 164]

Composition (weight percent), Specifications and Remarks	Bal Ta, 30.3 Nb, 7.47 V, 0.09 C, 0.015 Op, 0.0065 Np; sample supplied by Wah Chang Corp.
Name and Specimen Designation	
Reported Error, %	# 22
Temp. Range, K	422-2509
Year	1963
Ref. No.	232
Curve No.	~

DATA TABLE NO. 164 SPECIFIC HEAT OF TANTALUM + NIOBIUM + ΣX_1 Ta + Nb + ΣX_1 [Temperature, T, K; Specific Heat, Cp, Calg-1 K-1]

CURVE 1

422 3.702 x 10-4 583 4.781 755 5.866 958 7.322 965 7.372* 1166 8.919 1272 9.769 1374 1.037 x 10-1 1555 1.218 1764 1.409 1971 1.608 2141 1.781 2216 1.859 2206 2.055

SPECIFICATION TABLE NO. 165 SPECIFIC HEAT OF TANTALUM + TUNGSTEN + ΣX_1 Ta + W + ΣX_1

[For Data Reported in Figure and Table No. 165]

Composition (weight percent), Specifications and Remarks	Bal Ta, 9.0 W, 2.2 Hf, 0.0041 C, 0.004 O_2 , 0.0023 N_2 ; sample supplied by the Westinghouse Corp. density = 1058 lb ft ⁻³ .
Name and Specimen Designation	
Reported Error, %	4 5
Temp. Range, K	561-2733
Year	1963
Ref.	232
Curve No.	1

DATA TABLE NO. 165 SPECIFIC HEAT OF TANTALUM + TUNGSTEN + ΣX_1 Ta + W + ΣX_1

[Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1]

CURVE 1

561 2. 507 x 10⁻²
705 2. 662
804 2. 773
845 2. 884
990 2. 989
1079 3. 096
1188 3. 230
1281 3. 324
1314 3. 324
1314 3. 324
1315 3. 500
1483 3. 614
1556 3. 713*
1628 4. 215
2253 4. 744
2264 4. 762*
2251 5. 545

SPECIFICATION TABLE NO. 166 SPECIFIC HEAT OF TITANIUM + ALUMINUM + ΣX_1 Ti + AI + ΣX_1

[For Data Reported in Figure and Table No. 166]

Composition (weight percent), Specifications and Remarks	4.4 Al, 3.0 Mo, 1.0 V, 0.1 Fe, 0.03 C, 0.011 N ₂ , 0.0057 H ₂ ; solution heat treated at 1655 F and then aged at 925 F for 12 hrs.	5. 89 Al, 3. 87 V, 0. 15 Fe, 0. 02 C, 0. 015 N ₂ , 0. 005 H ₂ ; sample supplied by the Mallory-Sharon Metals Corp; solution heat treated at 1700 F for 20 min; oil quenched; then aged at 900 F for 4 hrs and cooled in air.
Name and Specimen Designation		
Reported Error, %	<2.0	< 2.0
Temp. Range, K	21-922	21-922
Year	1961	1961
Curve Ref. No. No.	257	257
Curve No.	-	N

DATA TABLE NO. 166 SPECIFIC HEAT OF TITANIUM + ALUMINUM + Σx_i Ti + Ai + Σx_i

				Temise	Temistrature T K: Specific Heat C Calgatter	ific Host	Cal g-1 K-1
				Admin to	and it is the		
H	ပီ	H	రీ	H	ပ္ရ	۲	င် ဝ
CURVE	11	CURVE 1 (cont.	(cont.)	CURVE	2	CURVE 2 (cont.	(cont.)
Series 1	11	Series 3 (cont.)	(cont.)	Series 1	8.1	Series 3 (cont.)	(cont.)
277.22	1. 242 x 10-1	143.85	9. 542 x 10-f*	202, 26	1. 146 x 10-#	37.97	1. 224 x 10-4
280.09	1. 244	150.02	9. 786	207.85	1.158	43.00	1.672
283. 43	1. 250	156.39	1.002 x 10-F	214. 10	1.170*	48.09	2. 242
286.89	1.248	162. 64	1.023	220.48	1. 181	53.14	2.692
291.30	1. 252	168.77	1.042	226. 72	1. 191	58.03	3.214
202 25	1.258	175.12	1.060	233. 23	1. 202	63.27	3.782
305. 43		188 18		246 45	1 999*	73 67	1. 331 4. 846
Series 2	23	192.88	1.105	252. 99	1. 232*	20.67	5, 383*
		297. 21	1.260	259, 49	1.241		
202, 11	1.123 x 10-1	300.01	1.265*	265, 95	1. 249*	Series 4	*
207. 55	1.134	303.01	1.267*	272, 36	1, 258		
212. 78	1.143	306.01	1.271*			21. 47	2. 42 x 10-7
218, 43	1.154			Series 2	7 4	24. 21	3.50*
220.83	1.159	Series 4	4.8			27. 22	4.87*
226. 51	1. 167			82.34	5. 708 x 10-		
232. 34	1.177	21.40	2.27 x 10-	86.81	6. 132*	Series 5	2
238.32	1. 186	24.30	3.35	94. 99	6.803		1
24. 45	1. 196	28.00	5.09	100.22	7. 201	276.01	1. 261 x 10 -F
250. 52	1. 203	31.83	7.32	105.65	7. 588*	281. 50	1.267
256. 56	1. 212	35. 70	1.017 × 10-	112, 70	8.061	287.32	1. 273
262, 55	1. 221*	39. 64	1.339	118.09	8.396*	293. 26	1. 280
268. 52	1. 228	53.50	1. 691	123. 49	8. 709	298.86	1. 286
300	1.52	47.35	2.076	129.02	. 00.6	303.87	1. 290
296.04	1.261	51. 70	2.520	134. 58	9. 281	21	
301.81	1.287	56.61	3.026	140.16	9, 543	Series 6	0
	1	66 39	5. 05. 10. 06.	151 74	1 000 - 10-FF	966 40	1 248 - 10-4
Series 3	8	3.5	7.00°F	157.56	1.023	477.59	1. 350 A 10
		Series	2	163.46	1.043*	588, 71	1.478
70.35	4. 473 x 10-4			171.48	1,070	699, 82	1. 529
76.05	5. 039	21, 39	2.28 x 10 +	177.14	1.087*	810.93	1.576
80.82	5. 498	24.32	3.36*	183.12	1, 102	922.04	1.621
85, 93	5. 981	27.60	4.85	189.02	1, 117*		
92. 61	6. 537			194, 84	1. 132		
97.41	6.900	Series 6	9 8	200.60	1.144*		
102, 51	7. 273						
107. 56	7.616	366.48	1.312 x 10 ⁻¹	Series 3	83		
112, 81	7.956	477.59	1.381				
121.36	5.458	588. 71	1.446	21.26	2.37 x 10 4		
120 62	8.700	699. 82	1.507	23.95			
132. 33	9.030	810.93	1. 568	27. 99	5. 29		
100.00	N. 231	727. OF	I. 629	32. 90	S. 33		

SPECIFICATION TABLE NO. 167 SPECIFIC HEAT OF TITANIUM + CHROMIUM + ΣX_{i} T_{i} + C_{r} + ΣX_{i}

[For Data Reported in Figure and Table No. 167]

Composition (weight percent), Specifications and Remarks	
Composition (weight pe	
Name and Specimen Designation	
Reported Error, %	
Temp. Range, K	
Year	0000
Hef.	
Curve No.	-

DATA TABLE NO. 167 SPECIFIC HEAT OF TITANIUM + CHROMIUM + ΣX_j Ti + Cr + ΣX_j

[Temperature, T, K; Specific Heat, C_p, Cal g⁻¹ K⁻¹]

ပ္ရ	/E 1					1.387									
۲	CURVE	311	366	422	478	533	589	7	200	755	811	998	922	978	1033

SPECIFICATION TABLE NO. 168 SPECIFIC JEAT OF TITANIUM + IRON + COBALT Ti + Fe + Co

[For Data Reported in Figure and Table No. 168]

Composition (weight percent), Specifications and Remarks	44.36 Ti, 41.99 Fe, 13.65 Co; body centered cubic crystal structure, single phase; annealed 24 hrs at 900 C and 72 hrs at 1100 C; quenched in vacuum; etched with 3% HF, 3% HCl, and 94% M ₂ O for about 5 to 10 sec.	44.84 Ti, 41.38 Co, 13.77 Fe; body centered cubic crystal structure, 1% impurity phase; same as above.	44.85 Ti, 27.55 Fe, 27.59 Co; body centered cubic crystal, single phase; same as above.
Name and Specimen Designation	TifFesCo	TiffeCo	TisfeCo
Reported Error, % Spe-			
Temp. R Range, K	1.4-4.3	1.34.3	164.4
Ref. Year No.	405 1960	1960	1960
Ref. No.	405	405	405
Curve No.	-	81	ю

DATA TABLE NO. 168 SPECIFIC HEAT OF TITANIUM + IRON + COBALT Ti + Fe + Co

[Temperature, T, K; Specific Heat, Cp, Cal g-1 K-1]

Т	CURVE 2 (cont.)	બ	3211 2.		6038	7565		0994 2.	2213	3412		CURVE 3		1. 6016 8. 731 x 10-6	1.7490 9.284	1.8709 9.850	9870 1.	. 0921 1. 061	1749 1.	2648	; -:	5046	5271	7447	4.0	- i -	1000 T	2315 1.	3507 1.	4837 1.	6248	. 7699 1.8	8870 1.	-	⊣	જાં										
T C _o	CURVE 1	4	4734 4.	. 5389 4.	6578	8251	0345		2390	3554 6.	4800 6.8	5928 7.	1070		3.0230 8.179	3.1718 8.516	2788	3, 3997 9, 087	5272 9.	6652 9	8263 1.	5639	0674	1855	2169 1 1	1.19		CURVE 2		3240 9.895 x 10	3704	4231 1.	4941 1.	5756 1.	7117	-	0704 1.	1723	2. 2637 1. 535	2.3643 1.604	4738	5730 1.	ri	7700	9083 1.	2690

[For Data Reported in Figure and Table No. 169]

Composition (weight percent), Specifications and Remarks	13.9 V, 10.4 Cr, 3.5 Al, 0.25 Fe, 0.04 C, 0.025 N ₂ , 0.0114 H ₂ ; solution treated at 1450 F for 20 min; air cooled; aged at 900 F for 60 hrs; air cooled.	14.95 V, 2.75 Al, 0.21 Fe, 0.03 C, 0.015 N ₂ , 0.0066 H ₂ ; solution heat treated at 1410 F for 30 min; aged at 990 F for 4 hrs.
Name and Specimen Designation		
Reported Error, %	< 2.0	< 2.0
Temp. Range, K	21-922	21-922
Year	1961	1361
Ref. No.	257	257
Curve I	7	8

				Tem	[Temperature, T, K; Specific Heat, Cp, Cal g - K-1]	cific Heat,	2p, Cal g-1 K-1]
H	ဝီ	H	ď	H	o ^b	H	C _p
CURVE	VE 1	CURVE 1 (cont.)	(cont.)	CURVE 2 (cont.)	2 (cont.)	CURVE 2 (cont.)	(cont.)
Series 1	1	Series 3 (cont.)	(cont.)	110, 17	8, 139 x 10 ⁻²⁴	Series 4 (cont.)	(cont.)
276.15	1. 234 x 10 ⁻¹	72, 05	4. 974 x 10-	121.48	8. 790*	220.65	1, 172 × 10-1
282.02	1.240*	76.97	5.453	126.97	9.074	227.68	1.182
288.39	1.246*					234. 71	1. 192*
234.95	1.254	Series 4	4	Series 2	8 2 2	252.35	1.215
306. 75	1.253	21 18	3 43 x 10 4	21 87	4.05 x 10-4	264. 28	1. 230*
		23.33	4.43	25.76	6, 10	270, 20	1.236
Series 2	68 2	26.00	5.84	30, 11	8.91	274.38	1.242*
79.91	5.741 x 10-4	Series 5	2	Series 3	, m	Series 5	2
86.20	6.325						
94. 21	6.961	201.39	1.135 x 10-1*	21.44	3.86 x 10-	366. 48	1.330 x 10 ⁻¹
99. 71	7.357	206.97	1.145*	24.80	5.57	477.59	1. 403
105, 56	7.754	213.17	1.156	29, 53	8. S	588. 71	1,455
111.41	8.123	219.48	1. 166	34.84	1.266 x 10 =	699. 82	1.499*
117.09	8. 453	225. 73	1, 176	40.33	1.760	810.93	1.538
122.35	******	231. 33	1.155	52.41	2.04.	377	T. 3/3
134, 43	9, 332	244. 19	1. 202	58.56	3,665		
140.38	9. 583*	262, 30	1. 222	64. 93	4, 357		
146.39	9.874	267. 29	1. 227*	70.97	4.967*		
157.35	1.021 x 10 -1*	272. 42	1. 234*	140.21	9.675		
163. 12	1.039	10.0		145, 75	9.836		
169. 02	1.056	Series 6	9 8	151.24	1.010 x 10-1		
174.98	1.073			159,05	1.036		
180.86	1.087	366. 48	1.306 x 10 ⁻¹	165, 13	1.054		
186. 64	1.101	477. 59	1.377	171.32	1.071		
192. 34	1.1137	588. 71		177. 55	1.088		
138. 15	1.125	639.82	1. 503	184. 66	1.103		
- Second	Soutes 2	010. 50	1 627	106 57	1.110		
			3	201.96	1.141*		
21. 21	3.36 x 10-4	CURVE 2	E 2	276.27	1.243*		
24. 51	5.03		1	282. 54	1.249*		
29. 01	7.68	Series 1	8.1	289, 05	1. 255		
33. 82	1.123 x 10-		1	295. 73	1.261*		
38.83	1. 556	68.08	4. 679 x 10 -	302. 69	1.267		
2.5	7.057	73.62	5. 229				
49.90	2.664	79.51	5. 797	Series 4	es 4		
61.25	3.675	93.14	6.328	201 32	1 120 x 10-F*		
AA 72	4 450	95. La	7 380*	207.22	1.150 A 10		
•		104. 48	7.774	213.92	1.161*		

Specification table no. 170 specific heat of zirconium + iron + Σx_i zr + Fe + Σx_i

[For Data Reported in Figure and Table No. 170]

Composition (weight percent). Specifications and Remarks	1 Fe, 1 Hf, 0.04 Mg, <0.04 Ba, <0.04 Cd, 0.02 Cu, 0.02 Mn, 0.02 Ni, 0.01 Si, 0.0004 Ca, 0.0004 Ti, 0.0002 Cr, 0.0002 Pb, <0.0002 Sn, <0.0002 V, <0.0002 all others.
Name and Specimen Designation	
Reported Error, %	¥2
Temp. Range, K	423-1323
Year	1952
Ref. No.	406
Curve No.	-

T C_p

CURVE 1

423 8, 523 x 10⁻⁴
500 8, 800
600 9, 160
700 9, 880
900 1, 024 x 10⁻¹
1100 1, 066
1132
1300 1, 168⁻⁴
1323 1, 176

Specification table no. 171 Specific heat of zirconium + hafnium + ΣX_{j} zr + hf + ΣX_{j}

[For Data Reported in Figure and Table No. 171]

Composition (weight percent), Specifications and Remarks	1 Hf. 1 Fe, 0.04 Mg. < 0.04 Ba, < 0.04 Cd, 0.02 Cu, 0.02 Mn, 0.02 Ni, 0.01 Si, 0.0004 Ca, 0.004 Ti 0.0002 Cr. 0.0002 Pb. < 0.0002 Sn. < 0.0002 V, < 0.0028 all others.
Name and Specimen Designation	
Reported Error, %	# 22
Temp. Range, K	423-1323
Year	1952
Ref. No.	406
Curve No.	-

DATA TABLE NO. 171 SPECIFIC HEAT OF ZIRCONUM + HAFNIUM + ΣX_i Zr + Hf + ΣX_j [Temperature, T, K; Specific Heat, $C_{p'}$ Cal g^{-1} K⁻¹]

T Cp

423 8. 523 × 10⁻⁴
500 8. 600
600 9. 160
700 9. 520
800 1. 024 × 10⁻¹
1000 1. 056
1100 1. 132
1323 1. 176

Specification table no. 172 specific heat of zirconium + uranium + Σx_1 $z_1 + U + \Sigma x_2$

[For Data Reported in Figure and Table No. 172]

Composition (weight percent), Specifications and Remarks	$\sim 87.92~{ m Zr}$, 10.58 U, 1.5 H ₂ ; measured under hydrogen atmosphere; density = 383 lb ft ⁻³ .
Name and Specimen Designation	Hydrided
Reported Error, %	±2.0
Temp. Range, K	505-1006
Year	1963
Ref.	242
Curve No.	-

DATA TABLE NO. 172 SPECIFIC HEAT OF ZIRCONIUM + URANIUM + Σx_i Zr + U + Σx_i

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T C_p

CURVE 1

506 1.31 x 10⁻¹
617 1.37
728 1.48
839 1.48
1006 1.57

SPECIFICATION TABLE NO. 173 SPECIFIC HEAT OF IRON + CARBON + $\mathbf{\Sigma}_{\mathbf{i}}$ (C < 2.00), CARBON STEEL GROUP I

[For Data Reported in Figure and Table No. 173]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	104	1946	1123-1573	4.0	Carbon steel No. 7	0.8 C, 0.32 Mn, 0.13 Ni, 0.13 Si, 0.11 Cr, 0.07 Cu, 0.021 As, <0.01 Mo, 0.009 S, 0.008 P and 0.004 Al; annealed at 800 C; density = 490 lb ft - at 15 C.
8	201	1946	1173-1523	4.0	Carbon steel No. 1	0.85 C, 0.31 Mn, and 0.15 St.
ო	104	1946	1123-1523	4.0	Carbon steel No. 8	1. 22 C, 0.35 Mn, 0.16 Si, 0.13 Ni, 0.11 Cr, 0.077 Cu, 0.025 As, 0.015 S, 0.01 Mo, 0.009 P, and 0.006 Al.
7	8	1954	363-1143			0.87 C; furnace cooled from the homogenizing temperature of 1100 C.
S	ន	1957	353-993	s 0° 9	Steel A	>99, 147 Fe, 0.77 C, 0.021 S, <0.01 Mn, <0.005Si, <0.002 P, 0.01-0.09 Cu, 0.001-0.009 Ni; free cooled.
•	33	1957	353-993	80.9	Steel B	Same as above; slow cooled.
	404	1961	785-1142		Steel B	1. 2 C, 0. 21 Mn, 0. 115 St, 0. 02 Cr, 0. 023 P, 0. 016 S, and 0. 01 each Mo and Ni; annealed.
80	407	1961	820-1117		Steel C	1. 53 C, 0. 25 Mn, 0. 067 Sl, 0. 021 P, and 0. 018 S; annealed.
ø	408	1940	573-1223			0.67 C, 0.31 Mn, 0.078 St, 0.025 S, and 0.012 P.
10	408	1940	573-1223			0.97 C, 0.18 Mn, 0.12 St, 0.028 S, and 0.018 P.
#	408	1940	573-1223			1, 21 C, 0, 25 Mn, 0, 18 St, 0, 038 P, and 0, 021 S.
12	408	1940	573-1273			0.81 C, 0.39 St, 0.32 Mn, 0.008 P, and 0.008 S.

DATA TABLE NO. 173 SPECIFIC HEAT OF IRON + CARBON + Σx_i (C < 2, 00), CARBON STEEL GROUP I

లి	CURVE 9 (cont.)	1 58 + 10-1*	1. 95 1. 1. 95	2, 10	2,31	4.45	88.38	1.95	1.69	1.68	1.63	1.59		CURVE 10	1-01-00-1	1. 29 X 10 -	1.68	2.05	3.70	8.43	1.90	1.55	1.50	1.51	1.51*	:	CORVE 11	#1-01 - 10 1	1. 31 X 10 -	72	2,35	2.96	8.07	1.60	1.55	1.53	1. 52	1. 52	•	CORVEIZ	1 470 - 10-1	1 530	1.565	1, 590
H	CURVI	673	27.2	823	873	923	933	948	973	1073	1173	1223		CUR	2	673	773	873	923	938	876	973	1073	1173	1223		COLK	643	673	13	873	898	923	948	973	1073	1173	1223		COLK	673	673	773	873
္ဌ		1 3 x 10-1	•	1.5	1.7*	1. 8*	1.9*	2.0	2.2	2, 7	3.0	4.8	4.52 x 10°	1.58	0.0 X 10.0		2.6	2.7	2.5	2,9	3.1		VE 8	•	1.6 x 10 ⁻¹	o*•	0 6	**	**	2 1	0.6	3.21 × 10°	8.9 x 10-#	3.5	1.7	. i.	. 5.	9 -	**	* *	• •	VE 9		1.38 x 10 ⁻¹
۲	CURVE	785	801	820	844	868	892	917	176	996	978	986	991	966	1001	1016	1041	1066	1001	1117	1142		CURVE	000	820	4	000	017	3	996	981	985	988	991	966	1003	9101	1066	1000	1117		CITRVE		573
ູ່ວີ	-	1. 205 x 10 ⁻¹	1. 226	1.241	1, 257	1. 271	1. 285	1.307	1.320	1.328	1, 334	1.344	1.352	1.368	1.405	1.423	1, 439	1, 458	1.484	1.504	1, 530	1, 555	1. 572	1. 586	1.603	1.618	1.655	1 674	1.692	1, 717	1, 741	1.767	1. 791	1.822	1.849	1.885	1.918	1. 200	1. 200 0	2.038	2 155	2. 241		
H	CURVE	353	373	393	413	433	453	473	493	513	533	553	573	583	633	653	673	693	713	733	753	773	783	58.	803	613	833	643	853	863	873	883	893	803	913	EZ 6	55.6	7 6	200	2 2	983	883		
T C _p T C _p	CURVE 5 (cont.)	1. 244 × 10 ⁻¹		1, 271*	1.297	1.313*	1.322	1.327*	1, 333*	1.346	1,363*	1.378	1.398	1.408	1 443	1.466	1.487*	1.514*	1, 541	1, 571*	1,581*	1.590	1,626	1.041	1.040 - 650#	1.620	1 724	1 727*	1.748*	1.761*	1.808	1.828*	1.847	1.882	1.930	1.300	1. 23.	2,000	*******	2, 258) 			
H	CURV	393	413	433	453	473	493	513	533	553	573	593	613	653	673	693	713	733	753	773	783	793	803	613	36	843	25.5	86.0	873	883	893	903	913	200	n 9	7 0	3 8	900	2 6	683				
ပ္	CURVE 4 (cont.)	Series 1 (cont.)		1.4328 x 10 ⁻¹	1. 4554*	1. 4778	1, 4954*	1.5145	1. 5308*	1.5480	1. 5636*	1.5831	1.6195	1.6579*	1.6696	1, 7007*	1.7347	1, 7671*	1,8094	1.8424*	1.8867	1. 9399*	2. 0347	9 4207	1 25545 - 100	3 5812 x 10-1	1. 7976	1, 7234	1, 6263	1,6117	,	Series 2*		1. 5802 × 10 -	1.5/4/	1.5000	1 6364	1.6659	1 6171		RVE 5		1, 204 x 10 ⁻¹	1, 226*
H	CURVE	Series		523	543	563	583	603	623	643	663	683	763	2 2	783	803	823	843	863	883	903	200	7 S	200	1003	1008	1023	1043	1063	1083		Ser	0001	1023	1000	1083	1100	1123	1143		CURVE		353	373
ပ္ခရ		1,48 x 10 ⁻¹	1.48	1.50	1. 52	1.54	1.57	1. 59	1.61	1.62	1.62	to analy	¥	1.48 x 10-1		1.48	1. 51	1.54	1.58	1.61	1.64	***	CORVE 3	1 48 x 10-1	1 48	1.49	1.51	. 53	1.54	1.56	1.58	1.60	9	* 2		1 0	1 1879 - 10-1	1, 2210*	1 2422	1. 2798	1. 3295	1.3712*	1.3974	1.4089*
۲	CURVE	1123	1173	1223	1273	1323	1373	1423	1473	1523	1573		400	1173	1223	1273	1323	1373	1423	1473	1523	E	3	1122	1173	1223	1273	1323	1373	1423	1473	1523		CONVE	Series		263	383	403	2	3	463	4 83	200

T C_p

<u>CURVE 12 (cont.)*</u>
973 1.603 x 10⁻¹
1073 1.617
1173 1.630
1273 1.642

SPECIFICATION TABLE NO. 174 SPECIFIC HEAT OF IRON + CARBON + Σx_1 (C < 2, 00), CARBON STEEL GROUP II

[For Data Reported in Figure and Table No. 174]

Composition (weight percent), Specifications and Remarks	0.79 C, 0.51 Mo, 0.19 Si, 0.12 Mn, 0.005 each S and P. 0.75-0.84 C, 0.2-0.4 Mn, 0.15-0.35 Si, 0.25 Ni, 0.25 Cu, 0.2 Cr, 0.035 P, and 0.03 S. 0.79 C, 0.64 Mn, 0.091 Si, 0.038 S, 0.031 P, and 0.01 each Cr, Mo, and Ni; annealed.
Reported Name and Error, % Specimen Designation	Eutectoid steel Steel U-8 Hyper Eutectoid Steel A
Reported Error, %	
Temp. Range, K	673-1123 323-1273 785-1155
Ref. Year	1954 1959 1961
Ref.	15 15 407
Curve No.	3 2 2

DATA TABLE NO. 174 SPECIFIC HEAT OF IRON + CARBON + XX, (C < 2.00), CARBON STEEL GROUP II

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

ပီ	3 (cont.)	3.6 x 10-2.0		• •	1.0 x 10°	i i																						
H	CURVE 3 (cont.	1003	1028	1104	1130																							
ď	CURVE 1			1, 861 2, 015	2, 265 1, 624	1,649	CURVE 2	1. 12 x 10-4	1.18			8 8			8 3		CURVE 3	1,7 x 10-1	Ł.	9 .		- 1 1	1.6	۰. ۱.	2	2.06 x 10°		5.0 x 10-4
H	티	673 723	823	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	973 1023	1073 1123	티	200	27.5	573	673	3 2	973	1073	1173	1273	히	785	808	22.5	88	908	929	553	978	2 2	1	866

SPECIFICATION TABLE NO. 175 SPECIFIC HEAT OF IRON + ALUMINUM, Fe + Al, ALLOY STEEL GROUP!

[For Data Reported in Figure and Table No. 175]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	77. 20 Fe and 22, 80 Al.
Name and Specimen Designation	FepAln
Reported Error, %	
Temp. Range, K	2. 5-20
Year	1961
Ref.	409
Curve No.	-

DATA TABLE NO. 175 SPECIFIC HEAT OF IRON + ALUMINUM, Fe + Al, ALLOY STEEL GROUP I

[Temperature, T,K; Specific Heat, Cp, Cal g-1K-1]

_G	1 (cont.)	1.413 x 10-3		1.472	1.397	1.517	1.649	1.767	1.685	1.745	1.541	1.541*	1.771	1.523*	1.4%	1.636*	1.632	1.703*	1.745*	2.210	1.754*	1.720*	1.621*	1.618	1.745*	1.791*	2.013	1.77.1*	1.824*		•	1.738	1.508	1 658*	1.229				2 041*		2.172	•		•	1.800	
۲	CURVE 1	14.44	•	14.865		15.246	•		15.806	16.010	16.172	16.376	16.560	16.763	16.800	16.913	17.000	17.018	17.049	17.154	17.231	17.262		17.530	17.646	17.920	18.079	18.195	18.338	7		•	18.604	•					•	20.00	10.61		20.532	20.02	20.714	
ይ	E 1	1.868 x 10-4	1.843*		1.820	1.858	1.877	1.930	1.989	1.994*	2.096	•	2, 185	2.277	2.261	2.295*	2,397	4.030	4.561	3,852	4.428	4.207*	5.247	4.207	5.469	8.325	9.011	1.089 x 10-1	1.078	1.012	1. 169	1. 109	1.531		1.156	1.426	1,393	1 304	1.191	1 034	406	1 313	1.313	104.1	1.404	Y-209
H	CURVE		2.518	2.522	2.587	•	2.661	2.707	2.771		3.068	3, 113		3.256	3,306	3,358	3.400	4.18	4.18	4.22	4.25	4.26	4.27	4.29	4.46	٠. ٢	6.37	7.12	7.17			00 00				12, 233	12.409	12 601				12 690	12 903		14 966	

^{*} Not shown on plot

SPECIFICATION TABLE NO. 176 SPECIFIC HEAT OF IRON + ANTIMONY, Fe + Sb, ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 176]

Composition (weight percent), Specifications and Remarks	88.81 Fe and 11.13 Sb; annealed under He + 8% H ₂ gas atmosphere at 1100 C for 72 hrs; etched with 2% HNO ₂ .
Name and Specimen Designation	Fe31. pSbg. 5
Reported Error, %	25
Temp. Range, K	1.6-4.3
Year	1962
Ref. No.	349
Curve	ı

တီ

CURVE 1

1.585 3.713 x 10⁴

1.674 3.937

1.789 4.211

1.896 4.435⁴

2.004 4.687

2.004 4.687

2.004 4.455⁴

2.189 5.154

2.303 5.401

2.434 5.745

2.593 6.138

2.736 6.535

2.857 6.138

2.736 6.535

2.857 7.742

3.338 8.096

3.338 7.7564

3.228 7.7564

3.338 8.096

3.474 8.363

3.635 8.958

3.635 9.402

3.635 1.023 x 10⁴

4.706 1.090

SPECIFICATION TABLE NO. 177 SPECIFIC HEAT OF IRON + CHROMIUM, Fe + Cr (8 < Cr < 25), ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 177]

Composition (weight percent), Specifications and Remarks	Main constituent is Fe and 8. 05 Cr.	91. 2 Fe and 8. 8 Cr.; homogenized 4 days at 1350 C under helium atmosphere; air cooled to room temperature.	Top of specimen: 78.65 Fe, 21.14 Cr, 0.18 St, 0.088 O ₂ , 0.0006 Al, and 0.00014 H ₂ , bottom of specimen: 78.66 Fe, 21.12 Cr, 0.16 St, 0.088 O ₂ , 0.0004 Al, and 0.00014 H ₂ ; induction melted from electrolytic materials of Cr and Fe; alloy kept at molten state 3 min for homogenization; annealed 3 days at 1170 C under 92 He-8H ₂ gas mixture.
Name and Specimen Designation		Sample No. 9 Cr	
Reported Nati Error, % Specim	\$5.0	±0.5	
Temp. Range, K	533-1195	298-1400	1.84.3
Year	1955	1959	1959
Surve Ref. No. No.	⋒ ‡	222	320
Curve No.	-	8	ю

DATA TABLE NO. 177 SPECIFIC HEAT OF IRON + CHROMIUM, Fe + Cr (8 < Cr < 25), ALLOY STEEL GROUP I

Cal g 1 1
å
Heat,
Specific
T, K;
H
Temperature,

d C	CURVE 3 (cont.)*	2.348 4.369 x 10 ³ 2.562 4.793 2.756 5.184 2.928 5.551 3.062 5.813 3.449 5.930 3.347 6.203 3.455 6.439 3.456 6.903 3.778 7.340 3.990 7.946 4.118 8.352 4.267 8.324	
	7	1.250 x 10 ⁻¹ 1.410 1.360 1.360 1.350 1.350 1.250 1.250 1.450 1.610 1.610 1.650 1.830 1.860	1.046 x 10 ⁻¹ 1.156 x 10 ⁻¹ 1.266 1.375 1.496 2.520 1.669 1.669 1.650 1.550 1.550 1.508 1.483 1.483 2.499 3.499 3.499 4.101
H	CURVE	553 562 662 768 7768 833 862 862 862 961 1006 1018 1039 1118 1118	298.15 297.7 500 27.7 500 27.7 500 27.7 500 27.7 1000 27

SPECIFICATION TABLE NO. 178 SPECIFIC HEAT OF INON + CHROMIUM, Fe + Cr (25 < Cr < 50), ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 178]

Composition (weight percent), Specifications and Remarks	70.55 Fe, 27.61 Cr, 0.086 C, and 0.01 Mo, after test: 70.59 Fe, 27.64 Cr, 0.066 C, and 0.01 Mo; density = 473.5 lb ft-4.	44.0 Cr.
Name and Specimen Designation	Stainless steel 446	
Reported Error, %	3.0	±3.0
Temp. Range, K	811-1478	768-1368
Year	1958	1958
Ref.	245	130
Curve R	1	8

DATA TABLE NO. 178 SPECIFIC HEAT OF IRON + CHROMIUM, Fe + Cr (25 < Cr < 50), ALLOY STEEL GROUP I

တိ	TE 2 (cont.)	1.520 x 10 ⁻¹	1.522*	1.530		1.54.	1.640	1.05	1.558*	1.573	1.577*	1.582*	1.587*	1.594*	1.601		1.611*	1.616*	1.620*	1.625	1.630	1.635																					
H	CURVE 2	1148	1158	1179	1188	1198	1208	1218	1228	1248	1258	1268	1278	1288	1298	1308	1318	1328	1338	1348	1358	1368																					
ပ္ရ	/E 1	1.640 x 10"1	•	1 880	1.960		2	,	1.647 x 10 ·			2.457	2.825	2.913	2.471	2.065	1.821	1.666	1.60	1.575	1.558	1.551*		L. S.S.	1.50	1 5304	1.527	1.527*	1.527*	1.84	1.522	1. 522		1 5224	6	1.5204	1.518	1.515	1.513	1.513*	1,513	1,513*	1.515*
۲	CURVE	811	978	1311	1478		CURVE		778	788	798	808	818	828	828	26	858	89 j	878	888	868	808	918	0000	2 2	85.0	8	878	986	806	1008	1018	1020	1048	1059	1068	1078	1088	1098	1108	1118	1128	1138

SPECIFICATION TABLE NO. 179 SPECIFIC HEAT OF IRON + CHROMIUM + MANGANESE, Fe + Cr + Mn, ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 179]

Composition (weight percent), Specifications and Remarks	0.88 Cr. 0.59 Mn, 0.35 C, 0.26 Ni, 0.21 Si, 0.20 Mo, 0.12 Cu, 0.039 As, 0.031 S, 0.028 P, and 0.004 Al; annealed at 860 C; then reheated to 640 C and furnace cooled; density (15 C) =	489 lb ft. *. 12.95 Cr., 0.25 Mn, 0.17 St, 0.14 Nt, 0.13 C, 0.060 Cu, 0.034 Al, 0.024 S, 0.018 P, 0.015 As, and 0.012 V; heated at 960 C in air; heated at 750 C for 2 hrs; air cooled; density (15 C) = 482 lb ft.*.
Temp. Reported Name and It Range, K Error, % Specimen Designation	Alloy Steel No. 20	High Alloy Steel No. 16
Reported Error, %	77	7
Temp. Range, K	348-1523	348-1523
Year	104 1946	1946
Curve Ref. Year No. No.	101	\$
Curve No.	-	84

DATA TABLE NO. 179 SPECIFIC HEAT OF IRON + CHROMIUM + MANGANESE, Fe + Cr + Mn, ALLOY STEEL GROUP I

[Temperature, T.K; Specific Heat, Cp. Cal g^1K^1]																				
	တိ	7.6 2	1.13 x 10 ⁻¹ 1.19* 1.23*	1.38	1.45 1.51 1.65	1.74 1.86 1.95	2.16	1.93	Series II	2.2 x 10 ⁻¹	t, t,	# # :::	ts ‡. t ∹ ≈ i ≈	1.94	Ħ	1.53 x 10*	1.56 1.56	1.56	1.55 1.55	1.55
	۲	Series I	348 398 448	4.98 5.48 8.88	648 698 748	798 848 898	28 8 5	1148	Seri	978 886	998 1008	1018 1078	1098	1118	Series III	1173	1223 1273 1393	1373	1423	1523
	ኇ	Series I	1. 14 x 10 ⁻¹ 1.19 1.23	i.30 1.30 1.30	1.45	1.78 1.78	3.86	Series II	2 1 - 101		9	e e e	. : . 		1.2	III Souse	1.39 x 10 ⁻¹ 1.41 1.43	1.45	1.46	1.51 1.52 1.54
	H	E S	398	25 26 26 26 26 26	288 248 248	28 848 888	3	1098 Seri	8.28	9 6	1008	1028 1036	1058	1138	1148		1173	1273	1323	1423 1473 1523

SPECIFICATION TABLE NO. 180 SPECIFIC HEAT OF IRON + COBALT + ΣX_i , Fe + Co + ΣX_i , Alloy steel group i

[For Data Reported in Figure and Table No. 180]

	Composition (weight percent), Specifications and Remarks	67.9 Fe and 32.1 Co; homogenized for 4 days at 1350 C under helium atmosphere; air cooled to room temperature.	1.91 Co, 0.79 C, 0.22 Si, 0.12 Mn, 0.014 S, and 0.005 P; pearlitic; annealed at 900 C for 20 hrs; hammer-cogged to 1.75 in. square bullets from 1120 C; rolled to 1 in. rounds from 1040 C.
	Name and Specimen Designation	Sample No. 32 Co	Eutectoid steel
	Reported N. Error, % Speci	±0.5	
	Temp. Range, K	299-1400	673-1123
	Ref. Year No.	2 1959	1954
	No.	222	2
1	No.	-	~

DATA TABLE NO. 180 SPECIFIC HEAT OF IRON + COBALT + EX, Fe + Co + EX, ALLOY STEEL GROUP I

[Temperature, T,K; Specific Heat, C_p , Cal $g^{-i}K^{-i}$]

ပ္

CURVE 1

298.15 9.824 x 10⁷¹
400 1.079 x 10⁷¹
500 1.158
600 1.252
700 1.361
800 1.361
1000 1.867
1100 2.165
1100 2.165
1100 2.165
1100 1.555
1200 2.460
1.494
1.555
1.703.15 1.434

CURVE 2

673.15 1.434

773.15 1.531
773.15 1.531
773.15 1.636
823.15 2.015
923.15 2.015
923.15 2.015
923.15 1.634
1123.15 1.634

Mes shows on pla

SPECIFICATION TABLE NO. 181 SPECIFIC HEAT OF IRON + COPPER + \(\Sigma\xi\), Fe + Cu + \(\Sigma\xi\), ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 181]

Composition (weight percent), Specifications and Remarks	
Composition (weight perc	~50.0 Cu.
Name and Specimen Designation	
Reported Error, %	5.0
Temp. Range, K	528-1095
Year	1955
Ref. No.	437
Curve No.	-

data table no. 181 specific heat of iron + copper + Σx_i , $Fe + Cu + \Sigma x_i$, alloy steel group 1

[Temperature, T,K; Specific Heat, Cp, Cal g'1K'1]

CURVE 1

528 1.160 x 10 563 1.220 651 1.340 726 1.500 840 1.940 862 1.700 894 2.060 895 2.220 1051 2.240

SPECIFIC HEAT, cal g" K"! -

SPECIFICATION TABLE NO. 182 SPECIFIC HEAT OF IRON + MANGANESE + ΣX_i , Fe + Mn + ΣX_i , ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 182]

Curve Ref. No. No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
т	10	1958	116-1122		Hot rolled SAE 1010 steel	Nominal composition: 0.3-0.6 Mn, 0.08-0.13 C, <0.05 S, <0.04 P, and <0.01 Si; sample supplied by the U.S. Steel Corp; sealed in helium in a capsule; density (32 F) = 490 lb ft ⁻⁴ .
ei .	2	1954	73-1123		Mild Steel	0.3-0.6 Mn, 0.08-0.13 C, < 0.05 S and < 0.04 P.
m	428	1957	273-1273		Mild Steel	0.61 Mn, 0.2 Si, 0.13 C, 0.12 Ni and 0.01 Cr; density = 489 lb ft -4.
•	408	1940	573-1273			0. 53 Mn, 0. 15 C, 0.045 P, 0.038 S and 0.004 St.
4	3	1946	1173-1523	4.0	Carbon Steel No. 1	0.38 Mn, 0.08 Cu, 0.06 C, 0.055 Ni, 0.039 As, 0.035 S, 0.03 Mo, 0.022 Cr, 0.017 P, 0.01 Si, and 0.001 Al; annealed at 930 C; denaity (15 C) = 491 lb R ⁻² .
•	10	1946	1173-1573	4.0	Carbon Steel No. 2	0.31 Mn, 0.08 C, 0.08 Si, 0.07 Ni, 0.45 C, 0.045 Cr, 0.032 As, 0.029 P, 0.02 Mo, and 0.002 Al; annealed at 930 C; density (15 C) = 490 lb ft ⁻² .

DATA TABLE NO. 182 SPECIFIC HEAT OF IRON + MANGANESE + ΣX_i , Fe + Mn + ΣX_i , ALLOY STEEL GROUP I

lc Heat, Cp, Cal g ⁻¹ K ⁻¹]																																										
[Temperature, T.K; Specific Heat, Cp, Cal g ⁻¹ K ⁻¹]	ဝီ	VE 6*	1.56 x 10 ⁻¹	1.56	1.57	1.57	1.58	1.58	1.08	5.59																																
Ξ	H	CURVE	1173	1223	1273	1323	1373	1423	1593	1573																																
	౮	CURVE 3 (cont.)	1.221 x 10 ⁻¹	1.260	1.291	1.331	1.381	1.429	1 589#	1.671	1.802*	1.953	2.151	2.414	2.916	2. L30	1.891	1.871	1.821	1.561	1.570		VE 4	, 1	1.32 x 10 ⁻¹	1.40	1.63	2.10	2.50	2.5	1.61	1.52	1.53		٠ ا	1 57 - 10-1	1.59	1.60	1.60*	1.60*		8 9:
	۲	CURV	423	473	3	575	960	200	3 5	22	873	923	973	1013	1036	202	27.7	2113	1170	1223	1273		CURVE	8	573	673	773	873	253	ŝ	1073	1173	1273		CORVE	1173	1223	1273	1323	1373	27.	1523
	ይ	<u>1</u>	7.600 x 10-1	8.100	9.000	1.020 x 10 ·	370	300	1.480	1.660	1.900	2.080	2.960	6.500	2.500	2.000	2000	2.630			5.3 x 10*	6.9	8.7		1.02 x 10 ⁻¹	1.15	1.26	 	1.45 64.1	- 1	2.09	2.8	. 20	2.02	2.26	2 834		7E 3	ı	1.039 x 10 ⁻¹	1 100	1.180
	H	CURVE	116	1 8	200	366	47.0	984	200	811	822	1005	1005	1033	101	1103	311	771	aver.	100	73	123	173	223	273	373	473	573	673	2	873	1003	1033	1070	1103	1123		CURVE		2		E

SPECIFICATION TABLE NO. 183 SPECIFIC HEAT OF IRON + MANGANESE + \(\Sigma X_1\), Fe + Mn + \(\Sigma X_1\) (10 < Mn \in 50), ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 183]

-						
Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
٦	349	1962	1.34.1	s2.0		83.7 Fe, 11.0 Mn, and 5.3 C; annealed at 1100 C for 72 hrs in He + 8% H ₂ gas atmosphere; etched in 1-3% HNO ₂ .
8	8	1930	20-205			80.6 Fe and 19.4 Mn.
က	310	1962	140-1180			79.005 Fe, 20.55 Mn, 0.39 Si, and 0.055 C.
•	349	1962	1.5-4.2	s2.0		76.4 Fe, 20, 0 Mn, and 3.6 C; annealed at 1100 C for 72 hrs, under He + 8% H ₂ gas atmosphere; etched in 1-3% HNO ₂ .
49	55	1930	15-216	1.5		70 Fe and 30 Mn.
•	222	1959	298-1400	0.5	Sample No. 30 Mn	70.0 Fe and 30.0 Mn; homogenized for 4 days at 1350 C under belium atmosphere; air cooled to room temperature.
2	348	1962	1.3-4.3	52.0		66.4 Fe, 30.0 Mn, and 3.6 C; annealed at 1100 C for 72 hrs, under He + 8% Hz gas atmosphere; etched in 1-3% HNO ₂ .
60	310	1962	140-1140			65.935 Fe, 32.8 Mn, 1.21 Si, and 0.055 C.
6	310	1962	140-1240			59.165 Fe, 40.4 Mn, 0.41 Si, and 0.025 C.
10	297	1959	1.6-4.6			55.4 Fe and 44.6 Mn; induction melted.
=	297	1959	1.7-4.6			55.0 Fe, 44.1 Mn and 0.9 C; induction melted.
12	222	1959	298-1400	0.5	Sample No. 50 Mn	51.6 Fe and 48.4 Mn; homogenized for 4 days at 1350 C under helium atmosphere; air cooled to room temperature.
13	8	1830	16-205	1.5		50.0 Fe and 50.0 Mn.
71	388	1956	2.2-4.1	7.0		90.0 Fe and 10.0 Mn.

DATA TABLE NO. 183 SPECIFIC HEAT OF IRON + MANGANESE + DX, Fe + Mn + DX, (10 < Mn < 50), ALLOY STEEL GROUP I

f	ç	•			[Temperature, T,K; Specific Heat, Cp, Cal g 1K-1]	secific Heat,	cp, cal g ⁻¹ K ⁻¹]				ı L
:	ນ ີ	H	ۍ	H	ບີ	H	တီ	۲	တိ	H	ပ္ရ
CURVE	- 1	CURVE	2 (cont.)	CURVE	3 (cont.)	CURVE 4	4 (cont.)	CURVE		CURVE	CURVE 8 (cont.)*
1.315	8.682 x 10-6	127.47	7.857 x 107	720	1.448 x 10*	3,987	1.553 x 10°	1.347	4 121 x 1076	707	1 201 - 100
1,359	8.816	133.88	8.193	740	1.452	4.093	1.597	1.389	4.230	6 5	1.371 X 10 -
1.416	9.245	146.25	8.785	160	1.456*	4.199	1.653	1.447	4.365	220	1.388
1.476	9.500	186.24	9. 177	780	1.469			1.533	4.608	240	1.392
1.552	208.6	156.41		8 8	1.486	CURVE	اء	1.670	4.993	260	1.388
1.020	×	106 99	1 00 - 10-1	970	1.480			1.817	5.439	280	1.396
1 957	1 997	105.62	1 058 IU	0.00	1.503	15.32	9.012 x 10	1.935	5.776	900	1.396
2.016		205 40	1 086	200	1.508	17.66	1.055 x 10°	2.024	6.147	620	1.396
9.010	1 300	209-40	1.000	8	1.506	20.33	1.509	2.140	6.380	640	1.405
9 111	1.341	THEVE		2	1.361	72.97	1.902	2.219	6.613	999	1.405
2.168	1.367*	200	1	2 2	: t	25.80	2.476	2.342	7.047	680	1.422
2.246	1.423	140	8.309 × 1072	9	1 542	20.00	9.100	2.493	7.532	200	1.435
2.349	142	160	9.308	086	546	33.22 49.45	1 059 4 10-2	2.625	7.95	720	1.452
2.449	1,555	180	9.766	1000	1.546	57 57	1.035 A 10 9 397	E	8.328	740	1.452
2.513	1.600	200	1.032 x 10 ⁻¹	1020	1.546	70.80	27.5	7 000	9.769	760	1.456
2.572	1.614*	220	1.062	1040	1.551	8.8	4.560	3 231	2.04.0	780	1.461
2.651	1.672	240	1.135	1060	1.555*	97.00	5. 582	3.348	1.027 x 10 ⁻⁴	200	1.469
2.786	1.756	260	1.190	1080	1.563	105.25	6.172	3.471	1.070	20	1.499
2. 2.2	1.857	280	1.234	0011	1.568	114.50	6.759	3.602	1,116	860	1.516
	1.373	96	1.413	071	1.576	124.90	7.345	3.751	1.165	880	1,516
2.400	2.141	330	1.508	1140	1.576	135, 60	7.954	3,865	1.211	006	1.512
	9 220	976	7.00	2011	1.000	147.07	8.486	3.950	1.240	920	1.525
2.072	4.300		1.000	1130	1.589	157.33	8.857	4.047	1.277	350	1,525
4.039	6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	96	1 743	and the second		169. 57	9.322	4.159	1.315	096	1.533
138	. 666	32.0	1 400	CORVE	•	176.12	9.498	4.278	1.361	980	1.533
-			1.551	1 69.1	5 760 - 10rs	3.3	9.786			1000	1,538
CHRVE	•	390	1 482	1.061	0. 103 x 10	136.61	1.004 x 10 x	CURVE	.	1020	1.542
		400	1.435*	1.711	6 414	F .c12	1. OF 3		1	1040	1.542
19.95	1.401 x 10-3	420	1.324	1, 837	6.872	CTTBVE		0.51	6.224 X 10 -	1060	1.559
22.00	2.078	440	1.328	1.969	7.375	7	'n	961	0.990	001	1.558
23.50	2.147	460	1.332	2.216	8.348	298.15	1.175 x 10 ⁻¹	200	1 019 + 10-1	1190	1.000
26.50	2.695	480	1.332	2.320	8.695	350	1,439	220	1.073	1140	1 606
28.63	3.388	0	1.349*	2.439	9. 193	400	1.447	240	1, 139		
5 8	6.240	220	1.358	2.540	9.607	450	1.241	260	1.191	CURVE	6
26.75	200		1.5/8	2.633	9.965	200	1.354	280	1.229		
45.70	1 438 - 102		1.375	2.738	1.031 x 10 .	009	1.421	300	1.264	140	8. 181 x 102
58.30	•	3	306	2002	1.031	900	1.450	320	1.306	160	8.823*
60.80	2.839	620	1.418	916	1 993	200	1.473	950	1.311	180	
73.00	3.954	25	1.422	3.331	1.266	8 5	1 537	960	1.328	200	1.024 x 10 m
85.90	5.054	099	1.435	3.451	1.320	1100	1.566*	966	1.365	220	1.062
104.47	6.423	989	1.452	3.596	1.377	1200	1.50.7	964	1.332	250	1.305
118.63	7.348	700	1.452	3.756	1.460	1300	1.624	77	1.34	200	1.136
						1400	1.653	94	1.354	300	1.234
ŀ										711	

CURNE 8 (come) CURNE 110 CURNE 12 CURNE 12 CURNE 14 (come) CURNE 8 (come) CURNE 110 C		တီ	H	ტ	H	ထိ	H	တိ
1,296 x	RVE 9 (co	밁	CURVE	10	CURVE	21	CURVE	*1
1,477	123	298 x 10 ⁻¹	1.598	4.457 x 10°	298.15	1.625 x 101	2.244	1.657 x 10 ⁻⁴
1,447 1,447 1,841 1,144 4,00 1,872 2,344 1,843 2,013 5,144 4,00 1,872 2,344 1,843 2,013 5,145 5,949 2,113 2,215 2,145		371	1.710	4.717	350	1.753	2,305	1.712*
1,641 2,011 5,446 450 1,983 2,478 1,589 1,583 2,478 1,589 1,589 2,145 5,765 5,99 6,00 1,970 2,527 1,589 2,228 6,186 6,00 1,970 2,527 1,589 2,247 2,99 6,689 7,70 1,946 2,913 2,238 1,465 2,890 7,179 800 2,097 2,191 1,443 2,244 9,177 1,00 2,194 2,290 3,119 1,443 3,244 9,317 1,000 2,185 3,285 1,443 3,244 9,317 1,000 2,227 3,390 1,443 3,244 9,317 1,000 2,227 3,390 1,443 3,244 9,317 1,000 2,227 3,390 1,443 3,244 9,317 1,000 2,227 3,390 1,443 4,041 1,113 1,565 1,048 4,001 1,049		113	1.891	5.154	400	1.872	2.364	1.745
1.553 2.038 5.437 5.50 2.089 2.472 1.559		491	2.011	5.446	450	1.983	2.418	1.782*
1.559 2.145 5.765 5.50 2.133 2.255 1.559 2.216 6.186 6.00 1.970 2.525 1.456 2.496 6.608 700 1.946 2.710 1.456 2.496 6.687 750 1.946 2.930 1.456 2.894 7.838 900 2.057 3.031 1.456 2.894 7.838 900 2.057 3.031 1.456 2.894 7.897 1000 2.185 3.187 1.451 3.294 8.817 1100 2.185 3.285 1.457 3.294 8.817 1100 2.185 3.285 1.458 3.294 9.317 1200 2.227 3.390 1.443 3.294 8.817 1200 2.227 3.390 1.445 3.800 1.067 x 10 ⁴ 1400 2.185 3.508 1.445 3.800 1.067 x 10 ⁴ 1410 2.287 3.983 1.456 4.424 1.173 1200 2.287 3.983 1.487 4.404 1.218 3.28 3.28 1.489 4.404 1.218 3.29 3.228 1.567 1.797 3.90 3.032 1.567 1.907 2.905 4.303 1.567 1.907 2.905 4.303 1.567 1.907 2.205 1.568 2.466 3.255 5.408 1.698 2.466 3.255 5.408 1.619 3.228 3.90 3.231 1.628 3.230 3.932 1.628 3.248 3.900 7.75 4.502 1.628 3.249 1.277 1.241 1.657 4.106 1.277 1.241 1.657 4.106 1.277 1.241 1.657 4.106 1.277 1.657 4.106 1.277 1.657 4.106 1.277 1.657 4.106 1.277 1.657 4.106 1.277 1.657 4.107 1.244 1.708 4.207 1.207 1.657 4.207 1.207 1.657 4.106 1.277 1.708 4.207 1.207 1.708 4.20	ï	25	2.038	5.437	200	2.089	2.472	1.806
1.563 2.215 5.949 600 1.970 2.597 1.569 2.2470 6.608 700 1.946 2.710 1.456 2.470 6.608 700 1.946 2.710 1.456 2.499 6.659 700 1.946 2.813 1.456 2.894 7.638 900 2.067 3.031 1.456 2.894 7.638 900 2.067 3.119 1.448 2.993 7.763 900 2.141 3.119 1.448 3.294 8.317 1100 2.141 3.129 1.448 3.995 9.719 1300 2.227 3.390 1.448 3.997 9.719 1300 2.227 3.390 1.448 3.998 1.079 2.141 3.119 1.448 3.998 1.079 2.141 3.119 1.448 4.644 1.218 1.919 2.439 1.448 4.644 1.218 1.919 2.439 1.458 4.644 1.218 1.919 1.458 4.644 1.218 1.919 1.459 4.644 1.218 1.919 1.450 4.644 1.218 1.919 1.450 4.644 1.218 1.919 1.550 1.997 5.409 4.530 3.93 1.550 1.997 5.409 4.530 3.93 1.550 1.599 5.730 3.93 1.550 4.106 1.274 113.9 1.650 4.271 1.11 1.11 1.11 1.650 4.271 1.274 1.12 1.650 4.394 1.277 1.13 1.907 1.650 4.394 1.277 1.900 1.902 1.650 4.394 1.277 1.900 1.902 1.650 4.394 1.277 1.900 1.650 4.394 1.277 1.900 1.650 4.394 1.277 1.900 1.739 4.304 1.277 1.900 1.739 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 4.304 1.277 1.900 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.		589	2.145	5.765	220	2.133	2.525	1.864*
1.569	_	563	2.215	5.949	009	1.970	2.597	1.890
1,456 2,470 6,608 700 1,946 2,813 1,456 2,489 7,179 900 2,099 3,119 1,456 2,984 7,678 900 2,099 3,119 1,446 2,984 7,997 1000 2,141 3,127 1,447 3,284 8,317 1000 2,141 3,127 1,443 3,284 8,317 1000 2,287 3,390 1,445 3,984 1,079 1,000 2,227 3,390 1,445 3,984 1,079 1,000 2,227 3,390 1,445 3,984 1,079 1,000 2,289 1,445 4,224 1,173 1,65 1,918 1,446 4,404 1,218 2,436 1,018 1,497 4,404 1,218 2,436 1,356 1,497 4,404 1,218 2,436 1,356 1,527 1,525 1,997 2,26 3,303 1,527 1,527 1,527 1,525 1,527 1,567 1,997 2,246 6,255 5,420 2,265 1,567 2,246 2,246 2,246 2,246 2,246 1,587 3,039 2,888 8,030 7,247 1,587 3,039 2,888 8,030 7,247 1,619 3,489 1,177 1,118 1,13,80 7,4614 1,627 3,991 1,274 1,214 1,503 1,637 4,294 1,274 1,214 1,503 1,647 4,294 1,274 1,244 1,502 1,647 4,294 1,274 1,244 1,502 1,647 4,294 1,274 1,244 1,502 1,647 4,294 1,274 1,244 1,502 1,647 4,294 1,274 1,244 1,502 1,647 4,294 1,274 1,204 1,204 1,707 4,294 1,274 1,204 1,204 1,707 4,294 1,274 1,204 1,204 1,707 4,294 1,237 1,364 1,002 1,004 1,708 4,394 1,277 1,344 1,502 1,204 1,708 4,394 1,277 1,344 1,502 1,204 1,708 4,394 1,277 1,344 1,502 1,204 1,708 4,394 1,277 1,304 1,002 1,004 1,708 4,394 1,277 1,304 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708 4,394 1,277 1,404 1,002 1,004 1,708	_	589	2.298	6.186	650	1.906	2.710	1.991
1,456 2,489 6,685 750 1,988 2,930 1,456 1,456 2,689 7,179 800 2,097 3,103 1,456 2,884 7,679 800 2,097 3,103 1,445 3,294 7,637 1000 2,141 3,1197 1,445 3,294 9,317 1100 2,214 3,1197 3,139 3,144 3,284 9,317 1100 2,216 3,390 3,119 3,119 3,145 3,887 9,719 1000 2,226 3,598 3,103 1,445 3,887 9,719 1000 2,211 3,295 3,290 3,295 1,445 4,604 1,013 1,079 2,111 2,266 3,598 3,295 1,445 4,604 1,113 1,565 1,016 x 10 ² 4,101 4,404 4,101 1,236 4,404 4,124 1,113 1,565 1,016 x 10 ² 4,101 1,436 4,404 1,218 1,288 2,186 1,919 4,404 1,218 1,288 2,186 1,919 2,206 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,246 1,237 1,247		456	2.470	6.608	700	1.26	2.813	2.039
1.465* 2.680	_	456	2.499	6.685*	750	1.988	2.930	2.140
1.456 2.884 7.638 900 2.099 3.119 1.448		465*	2.680	7.179	800	2.057	3.031	2.22
1.448° 2.993 7.997 1000 2.141 3.197 1.443° 3.294 8.817 1100 2.185 3.285 3.285	1.	456	2.884	7.638	006	2.099	3, 119	2.294*
1.443 3.294 8.817 1100 2.185 3.285 3.454 3.390 3.675 3.454 3.194 3.666 1.027 x 10^4 1200 2.277 3.390 1.443* 3.686 1.027 x 10^4 1400 2.311 3.508 1.445* 3.980 1.069 2.031 3.708 3.963 1.445* 4.061 1.113 1.069 2.311 3.963 3.963 1.449* 4.061 1.113 1.565 1.016 x 10^3 4.101 1.489* 4.003 1.288 21.85 1.939 4.101 1.555*	1	184	2.993	7.997	1000	2, 141	3, 197	2.337
1.439	1	443	3.294	8.817	1100	2, 185	3,285	2.402*
1.459 3.587 9.719 1300 2.269 3.508 1.443* 3.686 1.037 x 1040 2.311 3.705 1.443* 3.686 1.037 x 1040 2.311 3.705 1.462* 4.061 1.113 1.079 2.018 2.311 3.963 3.963 1.462* 4.061 1.113 1.565 1.016 x 10 ³ 4.101 1.436* 4.061 1.113 1.566 2.1 85 1.919 2.4.13 2.4.38 2.4.38 2.4.38 2.4.38 2.4.38 2.4.33 2.4.38 2.4.38 2.4.38 2.4.38 2.4.38 2.4.38 2.4.33 2.4.38 2.4.38 2.4.33 2.4.38 2.4.33 2.4.38 2.4.33 2.4.38 2.4.33 2.4.38 2.4.33 2.4.34 2.4.33 2.4.34 2.4.		438*	3.434	9.317	1200	2 227	300	9 489
1.445* 3.686 1.027 x 10 ⁻⁴ 1400 2.311 3.705 1.445* 3.800 1.069 1.069 1.069 1.445* 3.800 1.069 1.069 1.069 1.461* 3.918 1.073 1.016 x 10 ⁻³ 3.965 1.462* 4.061 1.113 1.5.65 1.016 x 10 ⁻³ 4.101 1.494* 4.404 1.218 1.218 1.856 1.919 2.438	1	439	3,587	9.719	1300	2.269	2 50 E	2 5634
1.446* 3.800 1.099 CURVE 13 3.953 1.446* 1.214 1.113 15.65 1.016 x 10 ⁻³ 3.953 1.488* 4.224 1.173 1.565 1.016 x 10 ⁻³ 3.953 1.499* 4.603 1.288 24.13 2.488 1.939 1.499* 24.13 2.488 1.559* 1.556* 1.016 x 10 ⁻³ 1.556* 1.556* 1.016 x 10 ⁻³ 1.556* 1.556* 1.016 x 10 ⁻³ 1.556* 1.556* 1.732 x 10 ⁻⁴ 24.13 2.488 1.559*		* 7	3.686	1027 - 107	140	2 311	3 705	9 717
1.461* 3.918 1.079 CURVE 13 3.993 1.478 4.061 1.113 15.65 1.016 x 10 ³ 4.101 1.482* 4.24 1.173 15.65 1.016 x 10 ³ 4.101 1.493* 4.603 1.288 21.85 1.919 24.13 2.438 1.499* 2.650 2.438 24.13 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.635 1.535 2.633 2.633 2.633 2.635 2.656 2.265	-	4.7	3.800	1 069		•	20.00	4. II.
1.478		461*	3.918	1.079	CIBVE	23	3.000	1000
1.482*		478	4.061	1,113	COM	31	4 101	3 010
1491	227	482*	4.224	1.173	15,65	1.016 x 10"3	101.1	0.0
1.496* 1.498* 2.603 1.288 1.498* 2.185 1.525 1.526 1.567 1.563 1.567 1.567 1.568 1.589* 2.246 2.389 1.297 1.690 71.90 11.90 11.007 11.		491	4.404	1.218	18.37	1.356		
1499* 1.625 CURVE 1		496*	4. 603	1.288	21.85	1.919		
1.825 CURVE 1 26.30 1.529*		4994			24, 13	2.438		
1.529* 1.660 4.732 x 10** 22.63 1.556* 1.957 1.957 1.957 33.20 33.20 1.558* 1.957 5.375 33.20 33.20 1.559* 1.957 5.406* 46.33 3.90 1.569* 2.246 6.255 54.20 1.569* 2.246 6.255 54.20 1.569* 2.888 8.000 71.90 1.581* 3.039 8.420 71.90 71.90 1.619* 3.232 8.953 8.65 1.619* 3.249 9.730 1.020 x 10** 106.25 1.628* 3.949 1.020 x 10** 1.15.90 1.632* 4.106 1.178 1.13.90 1.659* 4.297 1.214* 1.659* 4.359 1.255* 1.731* 1.669* 4.389 1.255* 1.731* 1.669* 4.389 1.255* 1.731* 1.90.52 1.731* 1.731	-	625	CITRUE	`=	26 30	3 033		
1.546* 1.660	: -	200		:	20.00	4 303		
1.555* 1.735 4.891 35.90 1.555* 1.937 5.409* 35.90 1.559* 1.937 5.409* 36.90 36.20 1.569* 2.246 6.255 54.20 3.639 3.639 3.640 73.77 66.95 1.581* 3.039 6.420 71.90 71.90 3.438 9.730 71.90 71.90 3.438 9.730 3.438 9.730 3.65	i -	17	CEO	4 729 - 1076	33.50	900		
1.559* 1.559* 5.375 33.50 1.559* 2.246 6.255 54.20 1.559* 2.246 6.255 54.20 1.559* 2.246 6.255 54.20 1.559* 2.656 7.357 68.95 1.591* 3.039 8.420 71.90 1.591* 3.232 8.953 88.65 1.619* 3.486 9.790 79.75 1.623* 3.939 1.111 115.80 1.632* 3.930 1.104* 123.17 1.632* 4.106 1.178 141.90 1.665* 4.297 1.214* 163.94 1.666* 4.339 1.255 173.13 1.705* 4.339 1.255 173.13 1.705* 4.339 1.257* 183.41 1.739* 4.531 1.361 199.52 1.658* 4.339 1.257* 199.52 1.739* 4.531 1.361 199.52 1.739* 1.377* 199.52 1.739* 1.377* 1.99.54 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.52 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.739* 1.237* 1.99.54 1.730* 1.237* 1.99.54 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.237* 1.99.55 1.730* 1.730* 1.730* 1.730* 1.730* 1.99.55 1.730* 1.730* 1.730* 1.90* 1.90* 1.90* 1.730* 1.7	•		100	1.136 A 10.	2.00	0.00		
1.559* 1.937 5.375 33.80 1.559* 2.246 6.255 54.20 1.569* 2.246 6.255 54.20 1.569* 2.656 7.357 68.95 1.593 2.888 8.000 71.90 1.581* 3.039 8.420 79.75 1.602* 3.232 8.953 88.65 1.619* 3.488 9.790 98.65 1.619* 3.649 1.020 × 10 ^{-4*} 106.25 1.628* 3.913 1.111 115.90 1.628* 4.106 1.17* 132.17 1.636* 4.106 1.17* 132.66 1.645* 4.27 1.214* 157.57 1.666* 4.339 1.255 173.13 1.705* 4.364 1.237* 183.41 1.705* 4.631 1.361 190.52 1.739* 4.631 1.361 190.55 1.739* 4.631 1.361 190.55 1.739* 1.255 1.390.64 1.739* 4.631 1.361 190.55 1.739* 1.255 1.390.64 1.739* 1.255 1.390.64 1.739* 1.207* 1.207* 1.200.64 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.200* 1.739* 1.200* 1.200* 1.739* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200* 1.200* 1.800* 1.200	₫,	200	1.735	1.001	35.30	. S.		
1.559* 1.997 5.409* 46.833 1.569* 2.246 6.255 54.20 1.569* 2.656 7.357 66.95 1.561* 3.039 8.420 71.90 1.602* 3.232 8.953 88.65 1.619* 3.438 9.790 98.05 1.619* 3.448 9.790 98.05 1.623* 3.913 1.111 115.80 1.623* 3.930 1.106* 123.17 1.632* 4.106 1.178 141.90 1.645* 4.297 1.214* 163.94 1.666* 4.339 1.255 173.13 1.705* 4.631 1.361 190.52 1.739* 4.631 1.361 190.52 1.739* 4.631 1.361 190.52 1.668* 4.339 1.255 1.731 1.705* 4.631 1.361 190.52 1.739* 4.631 1.361 190.52 1.739* 1.214* 190.64 1.739* 4.631 1.361 190.52 1.739* 1.214* 1.90.64 1.739* 1.214* 1.201 1.90.52 1.739* 1.214* 1.201 1.90.52 1.739* 1.214* 1.201 1.90.52 1.739* 1.214* 1.201 1.90.52 1.739* 1.214* 1.201 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.739* 1.201* 1.201* 1.90.52 1.739* 1.201* 1.201* 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.739* 1.201* 1.301* 1.90.52 1.730* 1.201* 1.301* 1.90* 1.730* 1.201* 1.301* 1.90* 1.730* 1.201* 1.90* 1.90* 1.730* 1.201* 1.301* 1.90* 1.730* 1.201* 1.301* 1.90* 1.730* 1.201* 1.301* 1.90* 1.730* 1.201* 1.301* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.201* 1.90* 1.730* 1.730* 1.200* 1.200* 1.730* 1.200* 1.200* 1.200* 1.730* 1.200* 1.200* 1.200* 1.730* 1.200* 1.200* 1.200* 1.200* 1.730* 1.200* 1.200* 1.200* 1.200* 1.200* 1.730* 1.730* 1.200* 1.200* 1.200* 1.200* 1.200* 1.200* 1.200* 1.200* 1.200* 1.200*	- i∙	200	1.838	5.375	38.80	9.328		
1.568** 2.246 6.255 54.20 1.593** 2.656 7.357 68.95 1.593** 2.888 8.000 71.90 1.581** 3.039 8.420 78.75 1.602** 3.232 8.953 88.65 1.619** 3.498 9.790 78.75 1.619** 3.498 9.790 98.05 1.619** 3.949 1.020 x 10** 106.25 1.623** 3.949 1.131 115.80 1.632** 4.106 1.17** 123.17 1.658** 4.297 1.214** 163.94 1.668** 4.39 1.255 117.13 1.668** 4.34 1.237** 183.41 1.705** 1.361 1.361 1.99.52		559	1.997	5.408	46.93	1.551 x 10 *		
1.589* 2.656 7.357 66.95 1.581* 2.888 8.000 71.90 1.581* 3.039 8.420 71.90 1.602* 3.232 8.953 88.65 1.619 3.498 9.790 98.05 1.628* 3.949 1.020 × 10** 106.25 1.628* 3.949 1.127* 115.90 1.632* 4.106 1.178 1.13.90 1.655* 4.297 1.214* 163.94 1.666* 4.297 1.214* 163.94 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13 1.705* 4.389 1.255 173.13	_	268	2.246	6.255	54.20	2.205		
1.593 2.888 8.000 71.90 1.581* 3.039 8.420 77.75 1.602* 3.232 8.953 88.65 1.619* 3.498 9.790 98.05 1.619* 3.913 1.111 115.90 1.623* 3.913 1.111 115.90 1.623* 3.93 1.127* 123.66 1.634 4.106 1.178 123.66 1.658* 4.106 1.178 141.90 1.658* 4.27 1.214* 163.94 1.669* 4.339 1.255 173.13 1.705* 4.34 1.277* 183.41 1.705* 4.631 1.361 199.54		5894	2.656	7.357	68.95	3.561		
1.581* 3.039 8.420 79.75 1.602* 3.232 8.953 88.65 1.619* 3.498 9.790 98.05 1.619* 3.498 9.790 98.05 1.623* 3.913 1.111 115.90 1.623* 3.999 1.127* 123.17 1.635* 4.106 1.178 141.90 1.645* 4.27 1.214* 163.94 1.666* 4.339 1.255 1173.13 1.705* 4.631 1.361 199.55		593	2.888	8.000	71.90	3.833		
1.602* 1.619* 3.232 8.953 88.65 1.619* 3.498 9.790 9.790 9.628 1.628* 3.913 1.111 115.80 1.623* 3.930 1.106* 1.632* 4.173 1.645* 4.297 1.214* 1.658* 4.399 1.27* 1.658* 4.399 1.27* 1.648* 1.658* 4.297 1.214* 1.679 1.668* 4.399 1.255 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.738* 1.361 1.361 1.390.		581*	3,039	8.420	79.75	4.502		
1.619** 3.496 9.790 98.05 1.628** 3.949 1.020 x 10 ⁻⁴⁴ 106.25 1.628** 3.943 1.111 115.106.25 1.632** 3.999 1.127** 123.17 1.636** 4.106 1.178 1.132.66 1.658* 4.297 1.214** 163.94 1.668** 4.399 1.255 1173.13 1.679 4.389 1.255 1173.13 1.705** 4.631 1.361 190.52 1.739***		602*	3.232	8.953	88.65	5.218		
1.619 3.649 1.020 x 10 ⁻⁴ 106.25 1.628* 3.913 1.111 115.80 1.632* 3.999 1.127* 123.17 1.636 4.106 1.178 141.90 1.645* 4.27 1.214* 157.57 1.666* 4.339 1.255 173.13 1.705* 4.631 1.361 190.52 1.738* 4.631 1.361 190.52	-	619	3.498	9.790	98,05	5.899		
1.628* 3.913 1.111 115.80 1.623* 3.830 1.106* 122.17 1.636 4.106 1.17* 132.66 1.645* 4.173 1.184* 157.57 1.658* 4.287 1.214* 163.94 1.668* 4.339 1.255 173.13 1.705* 4.631 1.361 190.52	ï	619	3.649	1,020 x 104	106.25	6.437*		
1.623* 3.930 1.106* 123.17 1.632* 3.999 1.127* 132.66 1.645* 4.173 1.194* 157.57 1.665* 4.297 1.214* 163.94 1.666* 4.339 1.255 1.73.13 1.679 4.364 1.237* 183.41 1.735* 4.631 1.361 190.52		628*	3.913	1.111	115.80	7.033		
1.632* 3.989 1.127* 132.66 1.655 4.106 1.178 141.90 1.665* 4.297 1.214* 163.94 1.666* 4.339 1.255 173.13 1.679 4.34 1.237* 183.41 1.735* 4.631 1.361 190.52		623*	3.930	1.106*	123, 17	7.461*		
1.636 4.106 1.178 141.90 1.645* 4.173 1.184* 157.57 1.658* 4.297 1.214* 163.94 1.679 4.364 1.257 173.13 1.705* 4.631 1.361 190.52 1.739*		632*	3.989	1.127*	132.66	7.91		
1.645* 4.173 1.164* 157.57 1.658* 4.287 1.214* 163.94 1.666* 4.339 1.255 173.13 1.679 4.364 1.237* 183.41 1.705* 4.631 1.361 190.52 1.738* 4.631 1.361 190.62		636	4.106	1.178	141.90	8.229		
1.658* 4.297 1.214* 163.94 1.669* 4.339 1.255 173.13 1.679 4.364 1.237* 183.41 1.705* 4.631 1.361 190.52 1.738* 190.62		£25	4.173	1.184*	157.57	8.754*		
1.666* 4.339 1.255 173.13 1.679 4.364 1.237* 183.41 1.705* 4.631 1.361 190.52 1.739*		658*	4.297	1.214*	163.94	9.029		
1.679 4.364 1.237* 183.41 1.705* 4.631 1.361 190.52 1.739* 1.739*	_	₩999	4.339	1.255	173.13	9.289*		
1,705* 4.631 1,361 190,52 1,739* 198,04	_	679	4.364	1.237*	183.41	9.570*		
1.739*		705*	4.631	1.361	190.52	9.781*		
	_	7394			198.04	1,002 × 10 ⁻¹		

SPECIFICATION TABLE NO. 184 SPECIFIC HEAT OF IRON + MANGANESE + CARBON, Fe + Mn + C, ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 184]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
н	408	1940	573-1223			0.72 Mn, 0.5 C, 0.30 Si, 0.035 P, and 0.03 S.
64	3	1954	443-1063		Steel T-261	1.0 Mn and 0.75 C.
က	8	1954	343-1063		Steel T-262	Same as above.
4	83	1954	343-1063		Steel T-310	Same as above.
S	8	1954	363-1063		Steel T-311	Same as above.
•	8	1954	363-1063		Steel T-270	Same as above.
7	83	1954	343-1063		Steel T-278	Same as above.
•	8	1954	403-1083		Steel T-279	Same as above.
•	8	1954	443-1063		Steel Pearlite	Same as above.
10	8	1954	428-1123		Steel Pearlite	Same as above.
==	8	1964	363-1123		Steel Pearlite	Same as above.
12	3	1954	1008-1083		Steel Austenite	Same as above.
13	8	1954	1023-1123		Steel Austenite	Same as above.
14	8	1957	353-993	≤0.9	Steel B	97.969 Fe, 1.03 Mn, 6.97 C, 0.024 S, <0.005 Si, and <0.002 P; free cooled.
15	æ	1957	353-993	s0.9	Steel B	Same as above; slow cooled.
16	g	1957	993-1218	< 0.9	Austenite	
17	408	1940	573-1223			1.04 Man, 0.33 C, 0.11 P, 0.1 Si, and 0.05 S.
* 18	104	1946	348-1148	2.0	Alloy Steel No. 4	1. 51 Mn, 0. 23 C, 0. 12 St, 0. 105 Cu, 0. 06 Cr, 0. 038 B, 0. 037 P, 0. 04 Ni, 0. 033 As, 0. 025 Mo, and 0. 015 Al; annealed at 860 C; density (15 C) = 489 lb ft ⁻² .
19	\$	1954	673-1123		Eutectoid Steel	0. 25-1. 85 Mn, 0.79-0.80 C, 0. 22 Si, 0.011-0.02 P, and 0.011-0.016 S; pearlife.

DATA TABLE NO. 184 SPECIFIC HEAT OF IRON + MANGANESE + CARBON, Fe + Mn + C, ALLOY STEEL GROUP I

		*	12 x 10 ⁻¹	55	2 9	25	1 =	9	13	39	1	12	2 2	-			3	ຊູຊ			1 100 - 100	. 07 4 51	3 52	96	38	37	13		5 2	2	n	90	SZ.	31	91	39	36	35	58	9.1	62	53 19
	ۍ.	7 (cont.	1.6742	1.7025	1 7519	1, 7803	1.8211	1.8648	1.9043	1.9439	2.0014	2.0011	2.2466	1.32727	3.2741	1.9467	1.6734	1.6623		امة		1 2663	1.2965	1.3299	1,3538	1,3887	1.4213	1.4447	1.4892	1.5060	1.5207	1.5406	1.5563	1.5697	1.5916	1,6099	1.6386	1.6705	1.6858	1.7181	1.7429	1.7823
	H	CURVE 7 (cont.)*	743	763	200	823	843	863	883	903	923	<u> </u>	88	1003	1008	1023	1043	1063		CURVE	103	493	# £	463	483	503	523	2 2	583	603	623	£3	663	683	703	723	743	763	783	803	823	86.3 86.3
	ۍ	CURVE 6 (cont.)*	1.5488 x 10 ⁻¹	1.5679	1.6046	1.6250	1.6589	1.6805	1.7133	1.7439	1.7704	1.8299	1.8629	1.9035	1.0567	2.0401		~	3.0061 x 10 ⁻¹	1.7571	1.5942		/E 7*	1	1. 1372 x 10 ⁻¹	1.1711	1.2298	1 2867	1.3233	1,3521	1.3787	1.4119	1.4430	1.4599	1.4697	1.5012	1. 5299	1.52	1.5735	1,5901	1.6139	1,6552
	H	CURVI	663	683	723	743	763	783	803	823		3 20	903	923	3	963	983	1003	1008	1023	1043		CURVE		343	363	383	403	443	463	483	503	523	543	563	583	603	623	643	663	683	723
, Cp, Cal g-1K-1]	တိ	CURVE 5 (cont)*	1.3130 x 10-1	1.3365	1.3988	1.4257	1.4513	1.4727	1.4886	1.5077	1.5264	1. 5547	1.5724	1. 5903	1.6146	1.6250	1.6667	1.6829	1.7138	1.7328	1.7934	1,8199	1.8519	1.9031	1.9727	2.0655	2.1899 1 27797 v 100	3 0719 × 1071		1.5872	1.5889		* <u>*</u>		1. 1450 x 10 ⁻¹	1. 1926	1.2415	1.2917	1.3405	1.3632	1.3845	1.4347
pecific Heat	H	CURVE	443	463	203	523	543	563	583	603	623	663	683	703	723	743	3 2	200	200	270	863	883	903	923	943	963	1003	1008	1023	1043	1063		CURVE		363	383	403	423	443	463	483 503	523
[Temperature, T,K; Specific Heat, $C_{ m p}$, Cal ${ m g}^{-1}K^{-1}$]	d _o	*	1.1277 x 101	1,1588	1.2636	1.2925	1.3268	1,3596	1.3921	1.4149	1.4256	1.4738	1.4946	1.5118	1.5290	1.5495	1.5622	1.5770	1.5953	1.6184	1.6713	1.6881	1.7183	1.7364	1.7680	1.8034	1.8280	1 9095	1.9832	2.0713	2.2009	O)	3, 1225 x 101	1.9170	1.6099	1.6013		ď, ω	1	1. 1449 x 10"1	1.1951	1.2355
[Ter	Ŧ	CURVE	343	363	403	423	443	463	483	503	523	563	583	603	623	643	663	683	703	723	743	783	803	823	843	863	883	623	¥ 3	963	983	1003	1008	1023	1043	1063		CURVE		363	383	423
	ပ်	2 (cont.)	1.6232 x 10"	1.6222	* E	1	1.1277 x 10 ⁻¹	1.1455	1.1946	1.2342	1.2752	1.3443	1.3725	1.4031	1.4321	1.4555	1.4781	1.4906	1.5113	1.5274	1.5574	1.5752	1.5945	1.6195	1.6417	1.6781	1.6955	1,7361	1.7631	1.7943	1.8180	1.8594	1.9157	1.9936	2.0867	2.2153	_	3.0209 x 10	1.7761	1.5787	1.5805	
	F	CURVE	1043	1063	CURVE		343	363	383	403	423	£63	483	503	523	243	200	200	3	523	3 2	683	703	723	743	763	2 2	823	843	863	883	903	923	1		983	1003	1008	1023	1043	roor	
	ტ	1 1	1.34 × 10 ⁻¹	3.5	2.68	4.05	8.22	1.90	9:	1.53	5.5		E 2		1.3134 x 10 ⁻¹	1. 3299	1.357	1.0514	1.4643	1 4731	1.4882*	1.5060	1.5220*	1.5403	1.5518*	1.0000	1.6070	1.6351*	1.64 ,2	1.6809*	1.7048	1.7186	1. 7449	1.7731	1.7982	1.8559	1.9340	I. 9833	2.0742	2.1815	3.0630 x 1071	
	L	CURVE	573	773	873	868	913	923	973	1073	1223		CURVE		443	200	3 3	3 62	252	25.5	38	603	623	643	3	9 6	723	743	25	783	803	823	3	200	883	200	923	7	2	2861	1008	1023

* Not shown on plot

DATA TABLE NO. 184 (continued)

o O	(cont.)*		1.767 x 10 ⁻¹	1.793	1.833	1.872	1.885	1.925	1 957	110 6	2 001	2.021	2 103	2.100		31	3	1.366 x 10.1	1.371*	1 376*	1 389*	1 207#	1 300*	1 307#	1 300	1 403#	1.409*	1.415*	1.420	1.426*	1.431*	1.437*	1.444*	1.449*	1.455	1.459*	1.467*	1.486*	1 489#	7 406							
Ŧ	CURVE 15(cent.)*			893	903	913	923	933	E	943	200	9 6	000	200	3	AL TVETT	7	863	1003	1013	1003	1033	1038	1043	1053	1063	1073	1083	1093	1103	1113	1123	1133	1143	1153	1163	1173	1198	1208	1916							
g	14 (cont.)	•	1.823 x 10 **	1.850	1.909	1.927*	1.950	1.992*	2.041*	2.143*	2 303	~ · · · · ·	F 15*	<u>:</u>	1.165 x 10.1	1.185	1.202	1.220	1.238	1.241	1.263	1.285	1.296	1.318	1.337	1.356	1.368	1.388	1.406	1.426	1.442	1.454	1.479	1.506	1.528	1.556	1.573	1,587	1.603	1.623	1.640	1.658	1,678	1 697	1 790	1 741	1.114
H	CURVE 14 (cont.)		913	923	250	3	923	963	973	586	993	3	CIRVE 15*		353	373	393	413	433	453	473	493	513	233	22	573	593	613	633	653	673	693	7.13	733	753	773	783	793	803	813	823	833	24.3	2.00	3 2	3 2	5
င္ခ	E 13*		1.5733 x 10 ·	1. 2003	1.3892	1.5831	1.5921	1.6043		E 14	1	1.175×10^{-1}	1.192*	1,205	1.226*	1.239	1.256*	1.271	1.287*	1,296	1,318*	1,338	1.357*	1.370	1.388*	1.405	1.426*	1.448	1.458*	1.484	1.506*	1.520	1.556*	1.578*	1.588	1.603*	1.622*	1.645*	1.6.7	1.676*	1.689*	1.724*	1,735	1.743*	1, 775*	1 798#)
H	CURVE 13*	000	1023	200	2007	201	1103	1123		CURVE 14		353	373	393	413	433	453	473	493	513	533	553	573	593	613	633	653	673	693	713	733	7.53	773	783	793	803	813	823	833	843	853	863	873	883	883	903	}
ى ص	CURVE 11 (cont.)*	1 2000 - 1001	1, 2535 A 10 -	1 3670	2000		I.4034	1.4298	1.4526	1.4684	1.4901	1.5106	1.5311	1.5411	1.5616	1.5797	1.6007	1.6258	1.6554	1.6762	1.7117	1.7387	1.7790	1.8143	1.8528	1.9034	1.9682	2.0392	2.1217	1.6097	1.5969	1.5969	1.6210	1.6238		CURVE 12*		1.5641 x 10 ⁻¹	1.5680	1.5797	1.5822	1,5830					
۲	CURVE	0.4	45.00	207	200	3 5	523	7	263	583	603	623	643	663	683	703	723	743	763	783	803	823	843	863	883	903	923	£	963	1043	1063	1083	1103	1123		CURV		1008	1023	1043	1063	1083					
တိ	/E 10*	1 204 0 2 107 1	<	1 3301	1 2263	7070-1	1.3388	1.3387	1.3919	1.4167	1.4348	1.4529	1.4698	1,4913	1.5065	1.5256	1.5407	1.5670	1.5861	1.6082	1,6307	1.6614	1.6871	1.7177	1.7451	1.7853	1.8300	1.8635	1.9123	2.0347	2.0958	2.2257	1.5973	1.5713	1.5713	1.6574	1.6377		CURVE 11*		1.2288 x 10 ⁻¹	1.2044	1.2544	1,2833	1.2998	1.3187	
H	CURVE	400	438	446	924	9	504	418	503	523	74 3	563	583	603	623	643	663	683	703	723	743	763	783	803	823	2	863	883	903	943	200	286	1043	1063	1083	1103	1123		CUR		363	383	403	423	438	448	
တိ	CURVE 8(cont.)*	s oren - 10-1	1 8004	1 9525	0.000	2.010	2.0922	2.2139	9	3.1856 × 10 ⁻¹	1.8675	1,6115	1.5856	1.5865		/E 9*	1	1.3028 x 10	1.3119	1.3416	1.3735	1.4065	1.4338	1.4618	1.4737	1.4972	1.5147	1.5343	1.5545	1.5724	1. 5964	1.6024	1.6231	1.6505	1.6666	1.6953	1, 7215	1.7547	1.8089	1.844	1.8918	1.88	2.0146	2, 1004	1.6163	1.6011	
H	CURVE	600	200	200	250	2 6	200	286	1003	1008	1023	1043	1063	1083		CURVE		443	463	483	503	523	543	563	583	603	623	6	663	683	703	723	743	2	782	803	823	8 43	863	883	903	92:3	9	963	1043	1063	

* Not shown on plot

ت ص	CURVE 18(cont.)	1048 2.0 × 10 W				Series III		1173 1.40 x 10 ⁻¹	1223 1.42*	1.4	1:	-	1423 1.50*	1.	1523 1.53*	ij		CURVE 19*		ij	1	773 1.636	ï		2.	2.	1	1	1123 1.675				
౮		1.30 x 10-1	1.43	8	2.22	6.63	1.92	2.5	1.55	1.57	1.57*	1.57		CURVE 18	1 28		1.14 x 10 ⁻¹	1.18	1.22	1.26	1,30	1.35*	1.41	1.47*	1.55	1.66	1.77*	1.86	2.00*	3,46	1.96	1.33	1.28
F	CURVE 17	573	673	773	823	883	888	923	973	1073	1173	1223		CURY	Seri		348	398	448	498	548	598	878	869	748	798	848	888	878	866	1048	1098	1148

11 *	1.9 × 10 14	1 .8	5.	2.0*	2.0	2.2*	6.4	3.8	2.7	2.2	2.1	2.1*
Series	828	938	8	928	968	978	988	866	1008	1018	1028	1038

SPECIFICATION TABLE NO. 185 SPECIFIC HEAT OF IRON + NICKEL + Σx_i , Fe + Ni + Σx_i , ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 185]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Reported Name and Error, % Specimen Designation	Composition (weight percent). Specifications and Remarks
7	104	1946	348-1523	2-4	Alloy Steel No. 9	3.47 Ni, 0.55 Mn, 0.325 C, 0.18 Si, 0.17 Cr, 0.086 Cu, 0.04 Mo, 0.034 S, 0.032 P, 0.023 As, 0.01 V and 0.006 Al; annealed at 860 C; density (15 C) = 490 lb ft ⁻⁴ .
81	236	1940	473-1648			90.9 Fe, 9.1 Ni; prepared from electrolytically deposited raw material; vacuum melted; heated 5 hrs at 1100 C and cooled slowly.
ກ	236	1940	448-1573			80.7 Fe and 19.3 Ni. "
4	236	1940	423-1573			70.5 Fe and 29.5 Ni.
2	410	1965		0.5-4.0	Invar	64.6 Fe, 35.3 Ni, and 0.05 Co; sample supplied by Carpenter Steel Co.
9	236	1940	423-1673			61.0 Fe and 36.0 Ni.
	236	1940	473-1673			50.98 Fe and 49.02 Ni.
œ	349	1962	1.4-4.3	5 5	Ni40Fego	58. 95 Fe and 40, 97 Ni; annealed under He + 8% H ₂ gas atmosphere at 1100 C for 72 hrs; etched with 30 ml HNO ₂ and 20 ml CH ₂ COOH.
a	349	1962	1.5-4.3	\$2	Nie Fess	54.09 Fe and 45,77 Ni; same as above.

DATA TABLE NO. 185 SPECIFIC HEAT OF IRON + NICKEL + ΣX_i , Fe + Ni + ΣX_i , ALLOY STEEL GROUP I [Temperature, T,K; Specific Heat, C_p , Cal $g^{-i}K^{-i}$]

ပီ	ျ	1 234 * 10-1	1 26.04	1.301	1, 332	1.362	1.390	1.416	1.261	1.278*	1.295*	1.312*	1.328*	1.343*	1,358	1.374	1.388	1.403	1.417*	1.431	1.444*	1.457	1.470*	1.482	1.494*	1.506	1.517*	1.528	1,539		E 7	ŀ	1.243 x 10 #	1.291*	1.338*	1.383*	1.429*	1.469	1.332	1,336*	34.34	1 359#	1 369#	1.00¢	1.5/5"	1.406*	
H	CURVE	493	448	473	498	523	22	573	673	723	773	823	873	923	973	1023	1073	1123	1173	1223	1273	1323	1373	1423	1473	1523	1573	1623	1673		CURVE		473	523	573	623	673	723	823	873	923	22	1093	1023	1100	1173	
ပ္ခံ	(cont.)*	3	2.512 x 1074*	2.609*	2,663	2.750*	2.812	2.867*	2.982	3, 156	4.978	5, 196	5.402*	5.528	5, 939	6.385	\$. A	6.691	8.298	9°086*	9.657	9.846*	1.200 x 10 ⁻³	1.203	1.287	1.334	1.433	1.451*	1.736	1.793	1.809	1.855	2.133	2.2/2	2.240	2.335*	2.406	3.052*	3, 101	3.276*	3,651						
۲	CURVE 5 (cont.)*	Series	4.346	4.462	4.569	4.690	4.792	4.906	5.059	5,321	7.607	7.773	7.943	8.090	8.451	8.819	9.029	9.198	10.83	11.10	11.50	11.66	12.54	12.93	13.43	13.68	13.95	14.32	15.65	15,88	16.07	16.25	17.61	17.85	18.05	18.26	18.53	20.42	20.65	21.31	21.82						
cp, car g n J	CURVE 5 (cont.)*	1.929 x 10 ^{-4*}						2.214*					2.545*			II 92						٠.	_	_	_ '		_	~	_		1.455*															1 64	
T	CURVE	3,345	3.405	3.471	3.634	3,706	3,773	3,834	3,884	4.043	4.140	4.198	4.264	4.330	•	Series		1.317	1.411	1.492	1.587	1.678	1.769	1.848	1.934	2.032	2.120	2.197	2.385	2.479	2.563	2.647	2.748	20.2	2.958	3.082	3, 199	3.310	3.412	3,504	3,575	3,651	3.718	3 816	3 909	3.995	
C _p T C _p C	4 (cont.)	1,300 x 10 ⁻¹	1,315	1,330	1.345	1.360	1.370*	1,387	1.400*	1.413	1.425*	1,437	1.448**	1.459	1.470	1.480	1.491	1.499		ار»	_	•	8.300 x 10°	8,632*	× 40.0	9. ZIZ*	9.438	9.531*	1.047 x 10°	1.103	1. 147	1.182	1.217	1.200	1.2/4	1,335	1.403	1.456	1.506	1.538	1.558*	1.604	1.765	1.897	1.895*		
L	CURVE 4 (cont.)	773	823	873	923	973	1023	1073	1123	1173	1223	1273	1323	1373	1423	1633	6761	1573		CURVE	Series		1.462	1.526	1.579	1.626	1.668	1.690	1,856	1. 948 0.00	2.027	2,097	2.155	2.200	2.204	2.352	2.445	2.536	2.611	2.679	2.733	2.794	3.070	3.286	3,288		
္ဌီ	2	1.231 x 10 ⁻¹	1.284	1.330	1.391	1.445	1.471	1.48	1.50*	1.52	1.55*	1.58	1.66	1.73	70.1		î,		1.212 x 10 ·	1.225*	1.252	1.280	1.293	1.440	1.501	7007	1.623	1.654	1.46	104.	1.48	1.50	2.5	-	1	100 - 000	1 220#	1.220	792.1	1.304	1.346	1.232	1.250	1.267*	1.283		
۴	CURVE	473	523	573	623	673	869	1348	1373	1423	1473	1523	1573	1623	010	CIBY	CONT	•	448	473	523	573	298	579	3 5	773	823	868	1223	12613	1373	1473	2007	CITETIE	COR	100	465	2 6	523	573	623	573	623	673	723		
ပိ	71.		1.15 x 10 ⁻¹	1.20	1.25	1.28	1.31	1.36	1.41	1.48	1.58	1.68	1.79	 	10.0	2.20		1.49	I. 23	1	11		1.8 x 10 '	n 8		2.0	2.2	0.0		3.0	n 1	7 -			E		1 56 - 101	1.50 A 10	F. 50	5	1.53	1.83	1.54*	1.56	1.57		
H	CURVE		348	398	448	498	248	298	28	869	748	798	200	90 0	Š	920	000	1098	1148	19	Series II		8833	9 6	076	828	3	958	8 8	000	000	000	1016	0707	El molecul	Perio	1173	770	527	1273	1323	1373	1423	1473	1523		

т	CURVE 9 (cont.)	1.761 4.152 x 10 ⁻¹	4	1.936 4.589	1.956 4.628*	2.094 4.986	2.173 5.174	2.279 5.455		.594 6.	.740 6.	. 6	. 28	3.511 8.711	•		987 1.01	.077 1.049*		- i																					
ဝီ	এ	1.425 x 10*	1.446*	1.468*	1.493*	1.520*	1.548*	1.580*	1.612	1.647	1.683		©	4. 399 x 1076	t	7 966	5.323	5,634	5.685*		6.123*	6.502	6.661*	6.942		7	•	•	254	5.	•	1.100	1, 239	1.315	1.373	1.414	1.459	6	3.467 x 10*	574	3.931
н	CURVE 7	1223	1273	1323	1373	1423	1473	1523	1573	1623	1673		CURVE	1.419	1 493	909	1.723	1,815	1.832	1.947	1.976				•	•	•	•	2.924			2 507		•		4. 153	4.281	CURVE	1.465	1.512	1.664

SPECIFICATION TABLE NO. 186 SPECIFIC HEAT OF IRON + MICKEL + CARBON, Fe + Ni + C, ALLOY STEEL GROUP!

[For Data Reported in Figure and Table No. 186]

Composition (weight percent), Specifications and Remarks	65.4 Fe, 28.0 Ni, and 6.6 C; annealed under vacuum at 1100 C for 72 hrs; etched with 30 ml HNO ₃ and 20 ml CH ₂ COOH.	56. 0 Fe, 37. 4 Ni, and 6. 6 C; same as above.
Name and Specimen Designation	Ni2sFess, «Ce, s	Nin, 4FegCe, 6
Reported Error, %	52	25
Temp. Range, K	1.4-4.3	1.44.4
Year	1962	1962
Curve Ref.	349	349
Curve No.	7	8

DATA TABLE WO. 186 SPECIFIC HEAT OF IRON + NICKEL + CARBON, Fe + Ni + C, ALLOY STEEL GROUP I

[Temperature, T,K: Specific Heat, Cp, Cal g-1K-1]

ပ္	1	9.134 x 10 ⁻⁵ 9.558	1.041 x 10 ⁻⁴ 1.112	1.271 1.403 1.469	1. 538 1. 617 1. 674* 1. 713	1.783* 1.966 1.971 2.106	2.297* 2.378 2.492 2.621 2.731 2.795*
H	CURVE	1.363	1.553	1.924 2.142 2.233	2.332 2.438 2.533 2.633	2.741 2.859 3.015 3.213	3.625 3.75 3.75 4.087 4.322

2	3.946 x 10 ⁻⁵	4.335	5, 113	5.607	800.9	6.432	6.945	7.299	7.682	8.222	8.944	9.518	1.005 x 197	1.065	1.147	1.215	1.252*	1.277
CURVE	1.442	1.628	1.930	2.112	2.263	2.398	2,553	2.692	2.837	3.025	3.260	3,456	3,602	3.781	3.991	4.158	4.267	4.379

SPECIFICATION TABLE NO. 187 SPECIFIC HEAT OF IRON + SILICON + ΣX_i , Fe + Si + ΣX_i , ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 187]

No.	No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	411	1956	373-1173			1.0 Si, 0.25 Mn, 0.07 C, 0.026 S, and 0.024 P; specimen soaked isothermally in furnace for I hr prior to drop.
8	411	1956	373-1173			1. 23 St, 0. 29 Mn, 0.09 C, 0.047 P, and 0.029 S.
က	411	1956	373-1173			1. 80 St. 0. 32 Mn, 0.09 C, 0.038 P, 0.023 S, and 0.01 Al.
•	349	1962	1.6-4.3	52.0	FessSia	97. 94 Fe and 2.01 Si; annealed under vacuum at 1200 C for 3 days and at 900 C for 2 days; etched with 1-3% HNO ₂ .
10	411	1956	373-1173			2,2 Si.
9	411	1956	373-1173			2. 78 St, 0.35 Mn, 0.09 C, 0.06 Al, 0.034 P, and 0.023 S.
1	411	1956	373-1173			3, 94 St, 0.27 Mn, 0.09 Al, 0.08 C, 0.027 P, and 0.008 S.
80	411	1956	373-1173			4. 28 Sl, 0.08 Mn, 0.06 C, 0.05 Al, 0.012 P, and 0.006 S.
0	349	1962	1.34.3	\$2.0	FegSis	95. 86 Fe and 4. 11 Si; annealed under vacuum at 1200 C for 72 hrs; etched with 1-3% HNO.
10	411	1956	373-1173		2516	4.38 Si, 0.20 Mn, 0.07 C, 0.05 Al, 0.015 P, and 0.008 S.
=	222	1959	298-1400		Featin (23)	93.6 Fe and 6.4 Si, nonogenized for 4 days at 1350 C under helium atmosphere; air cooled to room temperature.
12	349	1962	1.44.3	\$2.0	Niesis.	92.42 Fe and 7.42 Si; annealed under vacuum at 1200 C for 72 hrs; etched with 1-3% HNO,
13	349	1962	1.8-4.3	\$2.0	FenSiz	85.76 Fe and 14,00 Si; same as above.

Data table no. 187 specific heat of iron +silicon + Σx_i , fe + si + Σx_i , alloy steel group i

												_																			*																
	ပ်	12 (cont.)	6.841 x 10"	7.237	7.699	7.878*	8.237*	8.693	9.092*	9,359*	9.678	1.005 x 10	1.035*		13	1	4 446 + 1075	4 625*	4 833	5 061	200.0	5 787	A 147*	26.	7 087*	7 693	*691.8	8.631	9.070	*967 6	1,005 x 10 ^{-6*}	1 051*	1, 102	1, 135													
_	T	CURVE 12 (cont.)	2.941	3.101	3.234	3, 3,7	3.488	3.645	3.791	3.902	4.004	4.127	4.258		CURVE 13		1 810	1.912	1.959	000	0.00	9 245	805.6	699	918 6	3 005	3.219	3,372	3,506	3.682	3,880	4.038	4.174	4.316													
[Temperature, T,K; Specific Heat, Cp, Cal, g^1K · j	ပ္ရ	E 10*	1.21 × 10 ⁻¹	1.28	1.36	1.48	1.67	1.98	2.37	2.53	1.72	1.75		E 11		7.045 x 102	7,744	8.420	9, 107	2 783	1 047 - 10-1	1.068	1.083	1.262	1.767	1.327	1,145	1, 136	1,176	1.214		E 12		3.214 x 10°5					·								
Specific Hea	e H	CURVE 10*	373	473	200	673	773	873	973	1023	1073	1173		CURVE 11		298.15	400	200	9	200	00	83	929	006	950	1000	1100	1200	1300	1400		CURVE 12		1.404	1.477	1.565	1.677	1.797	1.924	2.034	2,108	2, 192	2.300	2.444	2.574	2.678	2.798
perature, T.K;	တီ	*	1.21 x 10 th	1.28	1.00	1.48	1.67	1.98	2.37	2.53	1.72	1.75		6 6		3.271 x 10°	3.403	3, 539	3, 793	4.143	4.495	4.817	5,043	5,262	5,564	5.881	6.134	6.391	6.699	7.073	7.477	7.760	8.034	8.355	8.759	9.197	9.659	9.968	1.029 x 104	1.066	1.099						
LTem	H	CURVE	373	573	2 6	673	773	873	973	1023	1073	1173		CURVE		1.340	1.406	1.457	1.567	1.714	1.866	2.010	2, 102	2.188	2,300	2.423	2,524	2.619	2.739	2.868	3,013	3, 139	3, 436	3,356	3,502	3,653	3.796	3.911	4.009	4.127	4.250						
	တိ	(cont.)	7.392 x 10*	000	936	0.30	8.752	9. 136	9.437	9.807	1.023 x 10-1		₽-	,	1.205 x 10 ⁻¹	1.270	1.34	1.45	1.62	1.89	2.20	1.77	1.82		9	1	1.20 x 10 th	1.27*	1.34*	1.46	1.63	1.91	2.24	1.76	1.80		*-		1.209 x 101	1.278	1.352	1.474	1.660	1.96	2.32	1.74	1.71
	۲	CURVE 4 (cont.)	3.180	3 493	2 565	2.000	3.721	3.857	3.976	4.107	4.261		CURVE		373	473	573	673	773	873	973	1073	1173		CURVE		373	473	573	673	773	873	973	1073	1173		CURVE		373	173	573	673	773	873	973	1073	1173
	o d	E 1	1,203 x 10 ⁻¹	1 394	1 410	ET#-T	1.5/4	1.796	2.089	1.812	1.871		E 2	•	1.203 x 10 ⁻¹	1.264	1.324	1.419	1.58	1.81	2, 194	1.80	1.86		<u>با</u>	1	1.204 x 10*	1.269*	1.33*	1.4	1.60	1.85	2.14	1.79	1.84		7							77) 	are.	ø	3 7.024
	н	CURVE	373	573	673	2 6	22	573	973	1073	1173		CURVE		373	473	573	673	773	873	973	1073	1173		CURVE		373	473	573	673	773	873	97 3	1073	1173		CURVE		1.571	1.658	1.782	2.145	2.288	2.449	2.636	2.846	3.02

SPECIFICATION TABLE NO. 188 SPECIFIC HEAT OF IRON + TIN, Fe + Sn, ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 188]

Specifications and Remarks	,
Composition (weight percent), Specifications and Remarks	84. 56 Fe and 15. 41 Sn.
Reported Name and Error, % Specimen Designation	Feggin
Reported Error, %	83
Temp. Range, K	1.8-4.5
Year	1962
Ref.	349
Curve No.	-

DATA TABLE NO. 188 SPECIFIC HEAT OF IRON + TIN, Fe + Sn, ALLOY STEEL GROUP!

[Temperature, T,K; Specific Heat, Cp, Cal, g-1K-1]

T Cp

CURVE 1

1.755 3.796 x 10⁻⁶
1.849 3.959
1.945 4.465
2.071 4.439*
2.129 4.662
2.371 4.439*
2.425 5.024
2.425 5.024
2.425 5.024
2.425 5.024
2.425 5.036
2.371 5.915
2.937 6.071*
2.932 6.301
3.106 6.675
3.300 7.097
3.304 7.799
3.722 8.166
3.885 8.450
4.085 8.835
4.237 9.359
4.339 9.543*

SPECIFICATION TABLE NO. 189 SPECIFIC HEAT OF IRON + TITANIUM, Fe + Ti, ALLOY STEEL GROUP I

[For Data Reported in Figure and Table No. 189]

DATA TABLE NO. 189 SPECIFIC HEAT OF IRON + TITANIUM, Fe + Ti, ALLOY STEEL GROUP I

[Temperature, T,K; Specific Heat, Cp, Cal, g⁻¹K⁻¹]

ဝီ	-	3.62% x 10 ⁶ 3.752	4.267	5.300	5.874	6.980	7.440	7.981	8.600	9.758	1.040 x 10-4		×	1 679 × 1075	1.951	2.207	2.453	2.700	2.922	3.202	3.407	3,746	4.007	4.268	4.508	4.876													
H	CURVE	1.481	1.726	2.126	2,335	2.750	2.954	3,158	3.361	3.767	3.972		CURVE	1.484	1.709	1.922	2.117	2.302	2.488	2.690	2.891	3.088	3,287	3.487	3,688	3,888													
ပ္ခရ	4	6.544 x 10 ⁻⁵ 7.329	8, 203		1.049 x 104	1.125	1.210	1.287	1.369	1.534		E 5	4 020 - 105	4.493	5.081	5.677	6,337	6.948	7.665	8.177		1.021 x 104	1.082	1.147	1.202	E 6		2.143 x 10°	2.682	2.998	3.284	3, 593	3.846	4.185	4.482	4.789	5.111	5.433	
H	CURVE	1.771	2.400	2.601	2.803	3.002	3.207	3.411	3.013	4.017		CURVE	1 419	1.577	1.776	1.984	2.192	2.401	2.625	2.829	3.036	3.445	3.644	3.839	4.032	CURVE		1.656	2.060	2.264	2.469	2.672	2.874	3.076	3.274	3.470	3.665	3.862	
్త	1 1	5.251 x 10 ⁻⁵ 5.728	6.937	7.657	8.300	9.048	8.658	1.033 x 10 ·	1.10	1.316		2	5 479 v 1076	6.266	6.936	7.685	8.447	9, 162		1.064 x 10 ⁻¹	1.147	1.219	1.298	1.376	1.467	3	•	5.825 x 10 •	7.269	7.996	8.735		1.019 x 104	1.087	1.174	1.24	1.327*	1.405	1.486
H	CURVE	1.543	2. 946 945	2.247	2.445	2.649	2.842	3.038	3 498	3.815		CURVE	1 480	1.686	1.881	2.078	2.273	2.470	2.672	2.875	3.078	3.283	3.490	3.696	3.902	CURVE		1.543	1.914	2.102	2.291	2.480	2.672	2.867	3.065	3.264	3.464	3.667	3.873

^{*} Not shown on plot

SPECIFICATION TABLE NO. 190 SPECIFIC HEAT OF AISI 420, Fe + Cr + ΣX_j , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 190]

Composition (weight percent), Specifications and Remarks	84.999 Fe, 13.1 Cr, 0.5 Ni, 0.48 Mn, 0.41 Si, 0.3 C, 0.12 Cu, 0.06 Mo, 0.02 P and 0.011 S; under helium atmosphere; density = 481 lb ft ⁻³ .
Name and Specimen Designation	AISI 420
Reported Error, %	3.0
Temp. Range, K	493-1471
Year	1961
Ref. No.	146
Curve Ref. No. No.	н

1

SPECIFICATION TABLE NO. 191 SPECIFIC HEAT OF AISI 430, Fe + Cr + ΣX_1 , ALLOY STEEL GROUP II

[For Data Reported ir Fig. " and Table No. 191]

Specifications and Remarks	
Composition (weight percent), Specifications and Remarks	
Name and Specimen Designation	AISI 430
Reported Error, %	
Temp. Range, K	700-1100
Year	1955
Ref. No.	45
Curve No.	7

DATA TABLE NO. 191 SPECIFIC HEAT OF ALSI 430, Fe + Cr + ΣX_1 , ALLOY STEEL GROUP II

[Temperature, T,K; Specific Heat, Cp, Cal g-1K-1]

ပ္		1.55 x 10 ⁻¹							
H	CURV	700	000	850	900	950	1000	1050	1100

SPECIFICATION TABLE NO. 192 SPECIFIC HEAT OF AISI 446, Fe + Cr + ΣX_1 , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 192]

Composition (weight percent), Specifications and Remarks	25.58 Cr, 0.68 Si, 0.42 Mn, 0.32 Ni, 0.25 C, 0.019 P and 0.016 S.
Name and Specimen Designation	AISI 446
Reported Error, %	±0.3
Temp. Range, K	273-1173
Year	1960
Ref. No.	248
Curve No.	1

DATA TABLE NO. 192 SPECIFIC HEAT OF AISI 446, Fe + Cr + Σx_i , ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, Cp, Cal g"1K-1]

T C_p

CURVE 1

273 1.08 x 10⁻¹
296 1.10
323 1.18
473 1.29
573 1.40
673 1.51
773 1.63
873 2.10
873 1.70
1073 1.63

SPECIFICATION TABLE NO. 193 SPECIFIC HEAT OF Fe + Cr + Mn + EX, (Cr < 5.0), ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 193]

Composition (weight percent), Specifications and Remarks	1.09 Cr., 0.69 Mn, 0.315 C, 0.2 Si, 0.073 Ni, 0.066 Cu, 0.039 P, 0.036 S, 0.028 As, 0.012 Mo and 0.005 Al: annealed at 86. C. denetre (15 C) = 488 lb 63	1.09 Cr. 0.69 Mn, 0.315 C, 0.2 Si, 0.073 Ni, 0.066 Cu, 0.039 P, 0.036 S, 0.028 As, 0.012 Mo and 0.005 Al; heated at a constant rate of 40 watts, up to 1210 C during one day; left at 1000 C overnight.
Reported Name and Error, % Specimen Designation	Alloy Steel No. 19	Alloy Steel No. 19
Reported Error, %	2.0	
Temp. Range, K	348-1523	818-1868
Year	1946	1958
Ref. No.	104	130
Curve F	-	81

TEEL GROUP II

		DAT	DATA TABLE NO. 193		CHEAT OF Fe + (7r + Mn + 2	SPECIFIC HEAT OF Fe + Cr + Mn + ΣX_{i} (Cr < 5.0), ALLOY ST
				[Ten	[Temperature, T,K; Specific Heat, Cp, Cal g'lk']	pecific Heat	i, Cp, Cal gr1K-17
۲	o ^d	۴	ď	۲	c _p	H	ဗိ
CURVE	1	CURVE	VE 2	CURVE 2 (cont.)	(cont.)	CURVE 2 (cont.)	2 (cont.)
-		818	1. 666 x 10 ⁻¹	1268	1, 420 x 10-1*	1718	4. 328 x 10°1*
348	1, 18 x 10-1	828	1.690*	1278	1. 420*	1728	6, 238
398	1.22	838	1.714	1288	1. 422*	1738	9, 312
448	1, 25	848	1.496	1298	1. 424	1748	2. 123 x 10°
498	1.28	828	1.759	1308	1. 424*	1758	1, 393*
548	1. 32	868	1, 785	1318	1. 424*	1768	1, 153
286	1.37	878	1.793*	1328	1. 427*	1778	2,533 x 10 ⁻¹
648	1. 42	888	1.836*	1338	1. 427*	1788	2.046
869	1. 49	10 o	1.062*	1348	1. 429*	1798	2.046*
7.48	1.57	918	1.031	1358	1.429	1808	2.046*
848	3 -	928	1.948*	1378	1 432#	1828	2. O46*
88	. 85	938	1. 979*	1388	1, 432*	1838	2.046
876	2.00	948	2.015*	1398	1, 434	1848	2.046*
966	3.58	928	2.051*	1408	1. 436*	1858	2.046*
1048	2, 23	896	2.091	1418	1, 439*	1868	2.046
1098	1.35	978	2, 141*	1428	1.41*		
1148	1.37	988	2.206*	1438	1. 444*		
2000		986	2, 292*	1448	1. 448*		
Series II	Es II	1008	2.412*	1458	1.453*		
-	* 10 m 10 m 10 m 10 m 10 m 10 m 10 m 10	1018	2.569	1468	1. 458*		
978	2.2 x 10-1	1028	909.9	1478	1.465*		
80 0	2.3	1038	5. 160	1488	1. 472*		
9000	4.6	1048	3.052	1498	1.479		
1018	→ • •	1068	2. 180	1508	1.487*		
1028	, c	1078	705	1598	1 499#		
1038	2.4	1088	1, 508*	1538	1.503*		
1088	2.0	1098	1.415*	1548	1, 508*		
1098	1.8	1108	1. 36 .	1558	1.511*		
1108	1.5	1118	1.375	1568	1.513*		
1188	1.4	1128	1.377	1578	1.518*		
		1140	1. C/3+	1588	I. 5.5*		
Liao		1158	1.364#	1096	1. 532*		
1173	1 48 - 10-1+	1168	1.386*	1618	1.554#		
1223	1 49*	1178	1.389#	1628	1.568*		
1273	9	1188	1.391	1638	1.587#		
1323	1 49	1198	1, 396*	1648	1,613		
1373	1 48	1208	1. 401*	1658	1 640*		
1423	1.48	1218	1. 405	1668	1,671*		
1473	1.50	1228	1.410*	1678	1, 702*		
1523	1.53	1238	1.413*	1688	1, 745		
I		1248	1, 415*	1698	3, 262		
		1258	1.417*	1708	4, 104*		

SPECIFICATION TABLE NO. 194 SPECIFIC HEAT OF Fe + Cr + Mn + EX; (14 sCr s27), ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 194]

Composition (weight percent), Specifications and Remarks	13.69 Cr, 0.28 Mn, 0.27 C, 0.25 W, 0.2 Ni, 9.18 Si, 0.074 Cu, 0.031 Al, 0.022 each S, P, and V, 0.01 Mo and 0.003 As; heated at 960 C in air, 2 hrs at 750 C and air cooled; density = 482 lb ft ⁻³ at 15 C.	Nominal composition: 12.0-14.0 Cr, 0.6 Mn, 0.6 Ni, 0.6 Si, 0.35-0.45 C, 0.035 P and 0.03 S.
Name and Specimen Designation	High Alloy Steel No. 17	Steel 4 Khi3
Reported Error, % Spe	2.0	1.0
Temp. Range, K	348-1523	323-1273
Year	104 1946	1959
Ref. No.	104	12
Curve No.	-	81

DATA TABLE NO. 194 SPECIFIC HEAT OF Fe + Cr + Mn + EXI (14 < Cr < 27), ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, Cp, Cal g'lK-']

Т		323 1 08 x 10-1	1. 14	1	573 1, 34	-	773 1. 63	-:	973 2.85	-	-	1273 1.91																															
ပ္	~L			1. 17	1.22	1. 27	1.31	1.36	1.43	1.51	1. 62	1.73		2.01	2.21	2,37		2.30	-	п 8		2, 52		2 22	2 05			1 85*		2					= • • • • • • • • • • • • • • • • • • •	1. 53 x 10-1	1.55	1.54		1.55	1.56	1.58	1.60
۲	CURVE		348	398	448	498	548	296	849	869	748	798	8	898	876	966	1048	1098	1148	Series	978	886	866	1008	1018	1028	1038	1048	1058	1068	1078	1088	1098	1118	series	1173	1223	1273	1323	1373	1423	1473	1523

SPECIFICATION TABLE NO. 195 SPECIFIC HEAT OF AISI 301, Fe + Cr + Ni + ΣX_j , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 195]

Composition (weight percent), Specifications and Remarks	Nominal composition: 16-18 Cr and 6-8 Ni. Nominal composition: 16-18 Cr, 6-8 Ni, <2.0 Mn, <1.0 Si, <0.15 C, <0.045 P and <0.03 S; sample supplied by the Republic Steel Corp; specimen scaled in belium capsule; annealed 1 hr at 1900 F; water quenched; density = 495 lb ft ⁻³ at 32 F.
Temp. Reported Name and tange, K Error, % Specimen Designation Comp	73-1123 AISI 301 Nominal Nominal 116-1255 AISI 301 AISI 301 capeu capeu
Year Ra	1954 7
Ref. No.	10
Curve Ref. No. No.	- N

DATA TABLE NO. 195 AIM 301, Fe + Cr + Ni + ΣX_1 , ALLOY STEEL GROUP II [Temperature, T,K; Specific Heat, Cp. Cal $g^{-1}K^{-1}$]

CURVE 1

7.0 x 10² 9.1 x 9.1 9.9 1. 10 x 10⁻¹ 1. 22 1. 32 1. 36 1. 45 1. 45 1. 45 1. 52

8.00 x 10² 8.60 9.60 1.109 x 10¹ 1.27* 1.37 1.37 1.40 1.48 1.48 1.54 1.62 CURVE 2 116 8.0 144 8.7 200 1 295 1 366 478 589 700 811 922 1033 1144 1155

SPECIFICATION TABLE NO. 196 SPECIFIC HEAT OF 17-7 PH, Fe + Cr + Ni + \(\times \)X\(\text{j} \), ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 196]

Composition (weight percent), Specifications and Remarks	16.99 Cr, 7.26 Ni, 1.25 Al, 0.85 Mn, 0.49 Si, 0.069 C, 0.026 P, and 0.012 S; heated to 1400 F for 1.5 hrs; air cooled; heated to 1050 F for 1.5 hrs; air cooled.	As received: 72.21 Fe, 17.30 Cr, 7.06 Ni, 1.11 Al, 0.6 Mn, 0.49 Sl and 0.074 C; after test: 72.71 Fe, 17.35 Cr, 7.13 Ni, 1.09 Al, 0.55 Mn, 0.52 Sl and 0.074 C; density = 483 lb ft ⁻³ .
Name and Specimen Designation	17-7 РН	17-7 PH
Reported Error, % Spe	5-10	
Temp. Range, K	366-1311	811-1478
Year	1959	1958
Ref. No.	249	245
Curve Ref. No. No.	-	81

DATA TABLE NO. 196 SPECIFIC HEAT OF 17-7 PH, Fe + Cr + Ni + ΣX_1 . ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, C_p , Cal $g^{-i}K^{-i}$]

		x 10-2	x 10-1	* × 10 2
ပိ	E 1		1,27	19.11.11.19.19.29.29.29.29.29.29.29.29.29.29.29.29.29
۲	CURVE	366 472 473 583 589 700 700	755 811 922 978	1033 1089 1144 1200 1255 1311

1, 36 × 10⁻¹
1, 41
1, 46
1, 51
1, 55

811 978 1144 1311 1478

CURVE 2

SPECIFICATION TABLE NO. 197 SPECIFIC HEAT OF Fe + Cr + Ni + ΣX_1 (17-20 Cr and 8-14 Ni), ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 197]

Composition (weight percent), Specifications and Remarks	19.11 Cr, 8.14 Ni, 0.68 Si, 0.6 W, 0.37 Mn, 0.08 C, 0.03 Cu, 0.025 As, 0.022 P, 0.011 S and 0.004 Al; heated to 950 C; cooled in water; density = 493 lb ft ⁻³ at 15 C.	18.67 Cr., 9.50 Ni, 1.11 Mn, 0.46 Si, 0.063 C, 0.023 P and 0.017 S; mill annealed condition.	Nominal composition: 17.0-20.0 Cr, 8.0-11.0 Ni, 2.0 Mn, 0.8 Si, <0.8 Ti, 0.12 C, 0.035 P and 0.03 S.	Same as above.	Nominal composition: 18-20 Cr., 8-12 Ni, <2 Mn, <1.0 Si, <0.08 C, <0.045 P and <0.03 S.
Specimen Designation	High Alloy Steel No. 15	AISI 304	Steel Kh18 N9T	Steel mark 1 x 1 8N9T	AISI 304
Reported Error, %	7 7	5-10	-	T.	N S
Temp. Range, K	348-1523	366-1311	323-1173	238-1073	533-1366
Year	1946	1959	1959	1959	1962
Ref. No.	104	2%	12	412	2
Curve No.	~	64	က	•	s.

DATA TABLE NO. 197 SPECIFIC HEAT OF Fe + Cr + Ni + EX1 (17-20 Cr and 8-14 Ni), ALLOY STEEL GROUP II

ပ္	URVE 5	1.600 x 10-1	1.600	1. 600	} ;																																			
H	티	533	10801	1366																																				
ပ္	E 2 (cont.)	1.06 x 10 ⁻¹	1.03	: :	1. 14	1. 15	1. 16			1, 14 x 10-1	1. 18	1.24	1. 29	1.32	3 5	1.5	1 S	\$		AVE 4		1, 1 × 10°	1.18	1.21	1. 23*	1.25	1.30	1, 31*	1.33	1. 34	33#	9	1, 42*	1,43	1. 42*					
۲	CURV	978	1089	11	1200	1255	1311	CIL		323	373	=	573	973	3 5	3 5	1073	1173		5	900	96.0	3 2	23	473		623	673	22	25	273	923	973	1023	1073					
ပီ	RVE 1		1. 26 1. 26	1.27	1. 29	1.31	1. 36 1. 36	8 -1 -1 30 -1	1.45	1.50	1.55	1.51	1.49	1. 50	3 :		} c	•	ries II		1.58 x 10-4	1.56*	1.56	1.57	1.58*	1.60	1 62			- 10.2	0.0	i di	9.5	9.3	4.6		8. 6	38.5	1, 01 x 10°.	5
۲	D S	348	398	148	498	548	986	869	748	798	848	868	948	988	0401	148	1148	2	8	,		1173	1273	1323	1373	1623	1523		밁	946	422	478	533	589	1	8	755	118	2 2	
	Ср Т Ср	CURVE 1 CURVE 2 (cont.)	Cp T Cp URVE 1 CURVE 2 (cont.) Series I 978 1.06 x 10 ⁻¹	Cp T Cp CURVE 1 Series I Series I 978 1.06 x 10 ⁻¹ 1.22 x 10 ⁻¹ 1.24 10 ⁻¹ 1.25 x	Cp T Cp CURVE 1 Series I CURVE 2 (cont.) 1, 22 x 10^1 1063 1, 06 x 10^1 1, 26 11089 1, 111 11 1, 27 1144 1, 13 11	Cp T Cp CURVE 1 Series I	Cp T Cp Series I CURVE 2 (cont.) 1, 22 x 10 ⁻¹ 1033 1, 09 1, 26 1144 1, 13 1, 29 1200 1, 14 1, 31 1255 1, 15	Cp T Cp CURVE 1 Series I	Cp T Cp Series I CURVE 2 (cont.) 1, 22 x 10 ⁻¹ 1063 1, 06 x 10 ⁻¹ 1, 26 1069 1, 11 11 1, 27 1144 1, 13 1, 29 1200 1, 14 1, 31 1255 1, 15 1, 34 1311 1, 16 1, 39 CURVE 3	Cp T Cp Series I CURVE 2 (cont.) Series I	Cp T Cp Series I	Cp T Cp Series I	Cp T Cp CURVE 1 Series I Series I 1. 22 × 10 ⁻¹ 1. 26 1. 26 1. 27 1. 29 1. 29 1. 29 1. 29 1. 29 1. 20 1. 31 1. 25 1. 34 1. 34 1. 35 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 36 1. 50 1. 51 1. 51 1. 51 1. 51 1. 51	Cp T Cp CURVE 1 Series I Series I 1. 22 × 10 ⁻¹ 1033 1. 09 1. 26 1144 1. 13 1. 27 1144 1. 13 1. 29 1200 1. 14 1. 31 1255 1. 15 1. 34 1311 1. 16 1. 39 CURVE 3 1. 42 323 1. 14 × 10 ⁻¹ 1. 50 373 1. 24 1. 51 473 1. 24 1. 49 573 1. 24	Cp T Cp URVE 1 Series I Series I 1.22 x 10 ⁻¹ 1033 1.06 x 10 ⁻¹ 1.26 1089 1.11 1.29 1.14 1.31 1.250 1.14 1.34 1.13 1.34 1.31 1.55 1.35 373 1.18 1.50 373 1.24 1.50 673 1.29	Cp T Cp URVE 1 Series I CURVE 2 (cont.) 1, 22 x 10 ⁻¹ 1033 1, 09 1, 26 1104 1, 13 1, 29 1, 100 1, 34 1, 13 1, 34 1, 14 1, 36 1, 42 1, 50 323 1, 14 x 10 ⁻¹ 1, 50 373 1, 24 1, 50 673 1, 24 1, 50 673 1, 35	Cp T Cp URVE 1 Ferfes I	Cp T Cp URVE 1 Ferfes I 1.22 x 10 ⁻¹ 1033 1.06 x 10 ⁻¹ 1.26 1.06 x 10 ⁻¹ 1.27 1044 1.13 1.29 1.200 1.14 1.31 1.25 1.15 1.34 1.31 1.15 1.36 1.31 1.16 1.36 373 1.24 1.50 673 1.24 1.51 673 1.24 1.53 873 1.42 1.55 873 1.42 1.55 873 1.42	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Ferfes I	Cp T Cp URVE 1 erles I	Cp T Cp URVE 1 certes I certes I certes I certes I certes I curve 2 (conf.) certes I conf. CURVE 2 (conf.) certes I conf. CURVE 2 (conf.) conf. Conf. conf. Conf.	Cp T Cp URVE 1 certes I certes I 1.22 × 10 ⁻¹ 1.26 × 10 ⁻¹ 1.27 1.29 1.29 1.29 1.34 1.34 1.34 1.34 1.35 1.39 1.42 1.50 1.50 1.55 1.18 1.42 1.55 1.18 1.51 1.50 1.55 1.18 1.37 1.24 1.55 1.55 1.18 1.55 1.18 1.24 1.55 1.55 1.18 1.24 1.55 1.55 1.18 1.24 1.55 1.55 1.18 1.56 1.55 1.77 1.32 1.32 1.42 1.55 1.55 1.55 1.77 1.37 1.37 1.37 1.37 1.37 1.35 1.37 1.37 1.37 1.35 1.37 1.37 1.37 1.37 1.35 1.36 1.37 1.48 1.56 1.19 1.56 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	Cp T Cp URVE 1 Ferfee I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Ferfee I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I 1.22 x 10 ⁻¹ 1.28 1.06 x 10 ⁻¹ 1.29 1.06 x 10 ⁻¹ 1.29 1.06 x 10 ⁻¹ 1.39 1.06 x 10 ⁻¹ 1.39 1.06 x 10 ⁻¹ 1.39 1.25 1.14 1.39 1.25 1.14 1.39 1.25 1.14 1.50 1.39 1.24 1.50 373 1.24 1.51 49 573 1.24 1.53 873 1.37 1.55 873 1.42 1.56 873 1.42 1.56 873 1.42 1.57 1.37 1.37 1.37 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.58 x 10 ⁻¹ 1.59 1.13 1.18 1.60 523 1.33 1.34 1.61 623 1.34 1.34 1.34 1.34 1.34 1.36 1.36 1.37 1.34 1.38 1.31 1.34 1.31 1.34 1.31 1.34 1.31 1.34 1.31 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34	Cp T Cp URVE 1 Series I 1.25 x 10 ⁻¹ 1.26 1.063 1.06 x 10 ⁻¹ 1.27 1.08 1.11 1.29 1.25 1.14 1.39 1.25 1.14 1.39 1.25 1.14 1.39 1.25 1.14 1.30 1.25 1.14 1.50 1.25 1.14 1.51 1.51 1.24 1.51 1.51 1.24 1.52 1.72 1.25 1.53 1.73 1.24 1.54 5.73 1.24 1.55 873 1.24 1.55 873 1.42 1.55 873 1.42 1.55 873 1.42 1.55 873 1.42 1.55 873 1.42 1.55 873 1.42 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.28 1.56 873 1.37 1.46 873 1.28 1.56 873 1.38 1.56 873 1.38 1.56 873 1.38 1.56 873 1.38 1.56 873 1.38 1.57 1.38 1.58 1.60 823 1.38 1.61 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.34 1.31 87 1.31 1.31 87 1.31	Cp T Cp URVE 1 Series I 1.25 x 10 ⁻¹ 1.26 1.06 x 10 ⁻¹ 1.27 1.29 1.06 x 10 ⁻¹ 1.31 1.29 1.06 x 10 ⁻¹ 1.31 1.32 1.34 1.39 1.34 1.39 1.35 1.35 1.35 1.35 1.35 1.37 1.39 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1 Series I	Cp T Cp URVE 1	CDRVE 1 CURVE 2 (CORV.) CURVE 2 (CORV.) 1, 25 × 10 ⁻¹ 1069 1, 111 1, 25 × 10 ⁻¹ 1069 1, 113 1, 25 × 10 ⁻¹ 1169 1, 114 1, 34 1, 34 1, 120 1, 34 1, 120 1, 49 1, 57 1, 120 1, 50 1, 50 1, 50 1, 42 1, 50 × 10 ⁻¹ 1, 44 CURVE 4 1, 56 * 10 ⁻¹ 1, 44 Series II CURVE 4 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 57 * 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 56 * 10 ⁻¹ 1, 40 1, 57 * 1, 40 1, 50 * 10 ⁻¹ 1, 40 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1, 50 * 1, 50 * 1, 50 * 1, 50 1

SPECIFICATION TABLE NO. 198 SPECIFIC HEAT OF AISI 305, Fe + Cr + Ni + ΣX_1 , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 198]

Specifications and Remarks	17.5 Cr, 11.1 Ni, 0.86 Mn, 0.38 Si, 0.039 C, 0.014 P and 0.01 S.
Composition (weight percent), Specifications and Remarks	17.5 Cr, 11.1 Ni, 0.86 Mn, 0.3
Name and Specimen Designation	AISI 305
Reported Error, %	
Temp. Range, K	1-90
Year	1965
Ref.	413
Curve No.	7

DATA TABLE NO. 198 SPECIFIC HEAT OF AISI 305, Fe + Cr + Ni + ΣX_i , ALLOY STEEL GROUP II

[Temperature, T,K; Specific Heat, C_p , $Cal\ g^{-l}K^{-l}$]

ပ္မ	VE 1	1.1 x 10 ⁻⁴ 2.2	3,35	4, 49	5.66	98.9	9.34	1. 19 x 10 ⁻³	1. 48	1, 79	2. 15	2.56	3.8	3, 59	4.28	5.09	6.02	7. 10	1.02 x 10-2	1, 38	1, 78	2.20	2.65	3, 11	3,58	\$	4. 52	4.97	5.40	5.83
H	CURVE	- 2	က	4	S	ç	40	10	2	7	16	18	20	22	24	26	28	30	35	40	45	S	25	8	65	70	75	2	8	8

SPECIFICATION TABLE NO. 199 SPECIFIC HEAT OF AISI 310, Fe + Cr + Ni + ZXI, ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 199]

Composition (weight percent), Specifications and Remarks	24.03 Cr, 16.96 Ni, 0.55 Si, 0.42 Mn, 0.13 C, 0.13 Cu, 0.033 Mo, 0.018 P, 0.01 each Co, Nb, Ta, <0.01 W, Li, Hf, 0.008 S, <0.002 Cd and <0.001 B.	22.3 Cr, 19.14 Ni, 0.5 Mn, 0.43 Si, 0.12 C, 0.1 Cu, 0.06 Nb, 0.042 Mo, 0.025 P, 0.01 Co, <0.01 W and 0.008 S.	24. 90 Cr, 19. 63 Ni, 1. 6 Mn, 0. 42 Si, 0. 22 P, 0. 036 C and 0. 025 S; mill-annealed condition.
Name and Specimen Designation	AISI 310 Heat 64177	AISI 310 Heat 64270	AISI 310
Reported Error, %	±5.0	£5.0	5-10
Temp. Range, K	511-1131	\$13-1107	366-1366
Year	1963	1953	1959
Ref.	#	414	3
Curve No.	-	69	၈

S	-
	CURVE

1, 43 x 101	1.43*	1. 43*	1.43	1. 43*	1.43*	1. 43*	1. 43*
511	573	673	773	873	973	1073	1131

CURVE 2

1, 39 x 10-1	1, 39*	1.39*	1, 39	1, 39	1.39	1.39*	1.39
513	573	673	773	873	973	1073	1100

2	8.2 x 10	8.8	9.4	1.06 x 1	1,065	1, 11	1, 16	1.20	
CON	366	422	478	533	589	75	200	755	

CURVE 3

8.2 x 10		9.4	1.06 x 10	1,055	1, 11	1. 16	1.20	1.24	1, 28	1.30	1, 30	1.30	1,305	1.31	1, 31	1,31	1.31	1,31
366	422	478	533	589	779	200	755	811	998	922	978	1033	1089	1144	1200	1255	1311	1366

SPECIFICATION TABLE NO. 200 SPECIFIC HEAT OF AISI 316, Fe + Cr + Ni + ΣX_1 , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 200]

Curve No.	Ref. No.	Year	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
-	150	1961	273-1173		AISI 316	
N	406	1952	423-1273		AIST 316	17.0 Cr, 12.2 Ni, 2.3 Mo, 1.99 Mn, 0.55 Si, 0.12 C, 0.026 P and 0.004 S.
က	243	1958	73-1123		AISI 316	Nominal composition: 16-18 Cr, 10-14 Ni, 2-3 Mo, <2.0 Mn and <0.1 C.
~	10	1958	116-1255		AISI 316	Nominal composition: 16-18 Cr, 10-14 Ni, 2-3 Mo, <2.0 Mn, <1.0 Si, <0.08 C, <0.045 F and <0.035 S; sample supplied by the Timken Roller Bearing Co.; sealed in helium capsule; annealed 1 hr at 2000 F; water quenched; density = 496 lb ft ⁻³ at 32 F.
s	248	1960	273-1173		AISI 316	17.0 Cr. 12.6 Ni, 2.0 Mo, 1.4 Mn and 0.4 Si; under helium atmosphere.
ø	75	1958	433-1500	0.66-2.9	AISI 316	Nominal composition: 16-18 Cr, 10-14 Ni, 2-3 Mo, \leq 2.0 Mn, \leq 1.0 Si, \leq 0.08 C, \leq 0.045 P and \leq 0.03 S; helium atmosphere.

DATA TABLE NO. 200 SPECIFIC HEAT OF AISI 316, Fe + Cr + Ni + EX1. ALLOY STEEL GROUP II

Ξ
g-1K-
7.
-
Cal
_
å
Ö
4
Heat
Heal
63
Specific
8
Ğ.
T, K;
_
_
نو
3
H
F
ĕ
5
H

		10-1*																																														
ပ္ရ	CURVE 6 (cont.)	1.373 x 10	1.379*	1, 390*	1.411*	1.415*	1, 438	1. 454=	1.460*	1. 497*	1, 502*	1,523*	1.543*	1,554	1.578*	1.587*	1. 6€∵*	1.615	1, 630*	1.651*	1.658*	1,672																										
۴	CURVE	736	811	838	887	38	951	988	1001	1089	1100	1150	1197	1222	1279	1301	1343	1366	1401	1451	1468	1500																										
္မ	VE 4	7.9 x 10-2	8.5		1.08 × 10-1	1. 16*	1. 26	1.31*	1.35	1.37	1.40	1. 47	1.55	1.65*		VE 5*		1. 100 x 10-1	1. 122	1, 142	1. 177	1.234	1, 282	1, 325	364	1.402	1 438	1. 420	7.417	1.510		VE 6		1, 218 x 10-1	1. 224*	1.231*	1, 261	1, 261*	1, 268*	1, 282*	1. 294	1 294*	1, 60 t	1. 321*	1, 343	1.365*	. 372*	1, 372*
÷	CURVE	116	14	200	293	366	478	589	28	811	922	1033	114	1255		CURVE		273	298	323	373	473	573	673	773	873	673	2000	201	1173		CURVE		4 33	445	463	532	533	550	583	610	119	****	675	727	779	78.	795
္မ	VE 1	1.098 x 10-1	1. 176	1, 235	1. 282	1.325	1.364	1. 400	1. 436	1.470	1.504		WE 2		1. 171 x 10°1	1. 215	1. 272	1. 329	1.386	1.443	1.500	1, 557	1.614	1,656		VE 3		201.		.	30 ·		1.05 × 10-	1.17	1, 25*	1.30	1.34*	1, 36*	1.39*	1. 43*	4.	1.52	}					
H	CURVE	273	373	473	573	673	577	5	973	1073	1173		CURVE	2.7	423	200	9	2	8	906	1000	1100	1200	1273		CURVE		£	2 5		22	223	273	273	4 73	573	673	773	£73	873	1073	1123						

^{*} Not shown on plot

SPECIFICATION TABLE NO. 201 SPECIFIC HEAT OF AISI 347, Fe + Cr + Ni + Σx_1 , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 201]

	Composition (weight percent), Specufications and Remarks	18. 0 Cr., 11. 1 Ni, 1.30 Mn, 0.86 Nb, 0.52 St and 0.08 C.	Nominal composition: 17-19 Cr. 9-13 Ni, \$2.0 Mn, \$1.0 Si, \$0.08 C, \$0.047 P, \$0.03 Si and 10 x C min Nb-Ta; sealed in helium in capeule; annealed 1 hr at 2000 F; water quenched; density = 494 lb ft ⁻⁸ at 32 F.	Same as above.	Nominal composition: $17-19$ Cr. $9-12$ Mi and Nb = 10 X C.
	Name and Specimen Designation	AISI 347	AISI 347	AISI 347	AISI 347
	Reported Error, %			0.66-2.9	
	Temp. Range, K	273-1173	116-1255	451-1133	73-1123
	Year	1953	1958	1958	1954
	No. No.	250	10	75	243
,	Curve No.	-	N	က	*

DATA TABLE NO. 201 SPECIFIC HEAT OF AISI 347, Fe + Cr + Ni + EX₁, ALLOY STEEL GROUP II [Temperature, T.K. Specific Heat. C₂, Cal e⁻¹K⁻¹]

[Temperature, T, K; Specific Heat, Cp, Cal g-1K-1]																																								
	ဝီ	CURVE 3 (cont.)	1, 273 x 10-1*	1, 295	1, 299*	1.299**	1. 320	1.329*	1. 343	1, 345*	1.356*	1.370	1.438	1. 472	1, 498*	1. 521	1.521*	1. 524*	1.529*	1.0/9	1. 640*	1.644*	1. 651	1.698*	1.705	CURVE 4		7.1 × 10-2		⊃ ∝ n' σ	1.05 × 10-1	1. 16	1,24*	1.30	1, 34*	1.38	1, 42*	1.46*	1. 52	1.56
	ć• o	CURVE 1 CUR	1, 104 x 10-1 649	1. 142 691								1.487 838		CURVE 2 1038	8.0 x 10-2 1089	2	Ì	x 10-1	1. 16 1149						1. 75		CURVE 3		1. 1/2 x 10" 123	1, 186	1.193*						1 219* 873			1, 263*
	L	CO	273	323	373	473	573	673	773	873	973	1073			166	ĭ	200	293	366	9	700	811	922	1033	1255			757	104	478	491	498	505	201	532	533	242	286	282	615 629

HNM SPECIFICATION TABLE NO. 202 SPECIFIC HEAT OF CRUCIBLE HMH, Fe + Cr + Ni + Σx_{j} , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 202]

	Composition (weight percent), Specifications and Remarks	68 Fe, 18.5 Cr, 9.5 Ni, 3.5 Mn, 0.5 Si, 0.3 C, 0.23 P and trace of Mo; helium atmosphere; density = 479 lb ft ⁻³ .
- N	Name and Specimen Designation	Crucible 4100 HNM
1 0 0 0	Error, %	3.0
E	Range, K	491-1460
	Year	1961
9-6	No.	146
	No. No.	1

HNM SPECIFIC HEAT OF CRUCIBLE HIMM, Fe + Cr + Ni + ΣX_l , ALLOY STEEL GROUP II DATA TABLE NO. 202

[Temperature, T, K; Specific Heat, Cp, Cal g-1K-1]

T C_p

CURVE 1

491 2. 461 x 10⁻¹
565 2. 884
674 3. 505
815 4. 315
902 4. 812
1020 5. 489
1182 1. 425
11231 1. 466
1159 1. 528
1460 1. 585

SPECIFICATION TABLE NO. 203 SPECIFIC HEAT OF Fe + Cr + Ni + ZXi (15-16 Cr and 4-5 Ni), ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 203]

Composition (weight percent), Specifications and Remarks 72.9 Fe, 16.4 Cr, 4.2 Ni, 4.1 Cu, 1.0 Mn, 1.0 Si, 0.3 Nb + Ta, 0.07 C and 0.04 P; helium atmosphere; density = 482 lb ft ⁻⁴ , 75.5 Fe, 15.66 Cr, 4.27 Ni, 2.82 Mo, 0.94 Mn, 0.12 C, 0.05 Si and 0.02 P; helium exphares density = 485 lb ft ⁻³ .	things of the same
Name and Specimen Designation Stainless Steel type 17-4 PH AM355	
Reported Error, % 3.0	
Temp. Range, K 472-1474 483-1487	
Year R	
No. No. Year No. 146 1961 2 146 1961	
Curve No.	

SPECIFIC HEAT OF Fe + Cr + Ni + λx_i (15-16 Cr and 4-5 Ni), ALLOY STEEL GROUP II [Temperature, T, K; Specific Heat, Cp, Cal g-1K-1] DATA TABLE NO. 203

CURVE

1, 052 x 10-1
1, 142
1, 142
1, 143
1, 155
1, 155
1, 156
1, 156
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 165
2, 174
2, 165
2, 174
2, 174 472 583 583 691 733 739 856 890 909 909 906 911024 11194 119

CURVE 2

1, 415 × 10-1
1, 459
1, 533
1, 533
1, 627
1, 627
1, 636
1, 715
1, 747
1, 747
1, 844*
1, 884*
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168
1, 168

* Not shown on plot

SPECIFICATION TABLE NO. 204 SPECIFIC HEAT OF E1257, Fe + Cr + Ni + ZXj. ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 204]

Composition (weight percent), Specifications and Remarks	Nominal composition: 13.0-15.0 Cr, 13.0-15.0 Ni, 2.0-2.75 W, 0.8 Si, 0.7 Mn, 0.4-0.6 Mo, 0.035 P, 0.03 S and 0.15 C.
Name and Specimen Designation	**************************************
Reported Error, %	1.0
Temp. Range, K	298-1073
Year	1959
Ref. No.	412
Curve No.	-

DATA TABLE NO. 204 SPECIFIC HEAT OF EI 257. Fe + Cr + Ni + ΣX_1 , ALLOY STEEL GROUP II

[Temperature, T,K: Specific Heat, C_p , Cal $g^{ri}K^{l}$]

CURVE 1

SPECIFICATION TABLE NO. 205 SPECIFIC HEAT OF Fe + Mn + ΣX_i , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 205]

Curve No.	Ref.	Ref. Year No.	Temp. Range, K	Reported Error, %	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
1	104 1946	1946	348-748		High Alloy Steel No. 13	13.0 Mn, 1. 22 C, 0. 22 Si, 0. 07 Cu, 0. 07 Ni, 0. 0.38 As, 0. 038 P, 0. 03 Cr, 0. 01 S and 0. 004 Al; heated to 1050 C; cooled in air; density = 491 lb ft ⁻³ at 15 C.
81	412	1959	323-1073	1.0	Tempered Steel Mark	Nominal composition: 0.4-0.7 Mn, 0.4-0.6 Cr, 0.4-0.6 Mo, 0.3 Ni, 0.15-0.3 Si, 0.25 Cu, 0.09-0.16 C, 0.04 P and 0.04 S.
က	10	1946	1173-1573	4.0	Carbon Steel No. 5	0.643 Mn, 0.415 C, 0.12 Cu, 0.11 Si, 0.063 Ni, 0.033 As, 0.031 P, 0.029 S, and 0.006 Al; annealed at 860 C; density = 490 lb ft ⁻³ at 15 C.
4	104	1946	1173-1573	4.0	Carbon Steel No. 6	0.69 Mn, 0.435 C, 0.2 Si, 0.06 Cu, 0.04 Ni, 0.038 S, 0.037 P, 0.03 Cr, 0.024 As, 0.01 Mo and 0.006 Al; annealed at 860 C; density = 489 lb ft 3 .
ra	104	1946	1123-1573	4.0	Carbon Steel No. 3	0.635 Mn, 0.23 C, 0.13 Cu, 0.11 Si, 0.074 Ni, 0.036 As, 0.934 P, 0.034 S, and 0.01 Al; annealed at 330 C; density = 490 lb ft 3 at 15 C

DATA TABLE NO. 205 SPECIFIC HEAT OF Fe + Mn + Σx_i , ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, Cp, Cal g'1K-1]

ပိ	/E 4*	1.50 x 10 ⁻¹ 1.50 1.50 1.50 1.55 1.55 1.55 1.56	/E 5	1.54 x 10 ⁻¹ 1.55 1.55 1.55 1.55 1.55 1.55 1.56 1.66 1.6	
H	CURVE	1173 1223 1273 1323 1373 1423 1473 1523	CURVE	1123 1173 1223 1273 1273 1373 1473 1523 1573	
တိ	<u>E</u> 1	1.24 × 10 ⁻¹ 1.29 × 10 ⁻¹ 1.39 1.41 1.42 1.42 1.38	E 2	1.07 × 10°1 1.13 1.28 1.38 1.38 1.42* 1.48* 1.67 1.67 1.67 1.67 1.75 1.67 1.67 1.75 1.67 1.75 1.67 1.75 1.7	1.66
H	CURVE	24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CURVE	323 423 423 473 523 523 623 623 673 772 772 772 772 772 1023 1073 1173 1173 1173 1173 1173 1173 117	1573

100

SPECIFICATION TABLE NO. 206 SPECIFIC HEAT OF Fe + Ni + ZX, ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 206]

	Composition (weight percent), Specifications and Remarks	28.37 Ni, 0.89 Mn, 0.28 C, 0.15 Si, 0 03 Cu, 0.027 As, 0.012 Al, 0.009 P and 0.003 S; heated to 950 C; cooled in water; density = 509 lb ft ⁻³ at 15 C.	Nominal composition: 45.0 Fe, 34.0 Ni, 21.0 Cr, 0.5 Cu and 0.05 C; heated to 1975 F for 0.5 hrs; air cooled.	36.55 Ni, 15.5 Cr, 2,88 W, 0.55 Si, 0.46 Mn, 0.31 Ti, 0.08 C, 0.047 S, and 0.0125 P; quenched in air from 1100 C.
	Reported Name and Error, % Specimen Designation	High Alloy Steel No. 14	Incoloy	OKh 16N36V3T E1 855
	Reported Error, %	:	5-10	±1.0
	Temp. R Range, K	348-1188	366-1311	323-1073
	Year	1946	1955	1964
	Ref.	104 1946	249	252
9	Curve No.	п	N	10

DATA TABLE NO. 206 SPECIFIC HEAT OF Fe + Ni + Σx_i , ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, Cp, Cal g-1K-1]

r o	-1	1089 9.0 x 10-2	1200 9.1		, e.		CURVE 3		7	ત્; .	- i	i	-	.i	623 1.279	673 1.281	723 1.291	-1	·	` 	-		1023 1. 448		•													
T Cp	CURVE 1		348 1. 19 x 10-1 398 1. 20	i	i	4	i.	-i	<u>.</u>	.i .		-i	٠i		998 1.24	1048 1.23	1098 1.27	4		Scries II		ij.	1.2*	-	1108 1.2	1118 1.4*	-	CURVE 2	366 6.7 × 10-2	7.1	478 7.4	533 7.7	589 7.9	644 8.1		866 8.6	978 8.8	

* Not shown on plot

SPECIFICATION TABLE NO. 207 SPECIFIC HEAT OF Fe + Ni + Cr + Σ_{X_1} , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 207]

Curve No.	Ref. No.	Year	Curve Ref. Year Temp. Reported No. No. Year Range, K Error, % Spe-	Reported Error, %	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	104	104 1946	348-1528	5-Z	Alloy Steel No. 12	3. 53 Ni, 0.78 Cr., 0. 55 Mn, 0.39 Mo, 0.34 C, 0.27 Si, 0.05 Cu, 0.037 As, 0.024 P, 0.007 Al, and 0.003 S; annealed at 860 C; reheated to 640 C and cooled in furnace; density = 490 lb ft ⁻³ at 15 C.
84	104	1946	348-1523	7 7	Alloy Steel No. 11	3.41 Ni, 0.71 Cr, 0.55 Mn, 0.325 C, 0.25 Si, 0.12 Cu, 0.06 Mo, 0.025 S, 0.023 As, 0.018 P, 0.01 V and 0.008 Al; annealed at 860 C; reheated to 640 C and cooled in furnace; density = 489 lb ft ⁻³ at 15 C.
ဗ	10	1946	348-1523	†	Alloy Steel No. 10	3.38 Ni, 0.8 Cr. 0.53 Mn, 0.33 C, 0.17 Si, 0.07 Mo, 0.053 Cu, 0.033 S, 0.031 P, 0.028 As, 0.01 V, and 0.008 Al; annealed at 860 C; reheated to 640 C and cooled in furnace; density = 488 lb ft ⁻³ at 15 C.

DATA TABLE NO. 207 SPECIFIC HEAT OF Fe + Ni + Cr + ΣX_1 , ALLOY STEEL GROUP II

[Temperature, T, K; Specific Heat, Cp. Cal g'K-1	_
Temperature, T, K; Specific Heat, Cp. C	
Temperature, T, K; Specific Heat, Cp. C	Ϊ.
Temperature, T, K; Specific Heat, Cp. C	- 00
Temperature, T, K; Specific Heat, C	d
Temperature, T, K; Spe	å
Temperature, T, K; Spe	Heat,
[Temperature, T,K;	4
[Temperature,	T, K;
	[Temperature,

spectate near			_																			7												1-1									
Temperature, I. h. spectuc n	တီ	CURVE 3*	1, 17 × 10 ⁻¹	1, 21	1.25	1 29	¥.	1, 39	3 :	1.51	1 72	1 85	3	3 12	2.81	1.33	38	36		7	Series II	2.0 x 10-1	2.1	2.2	2.9	6.4	6.4	3.2	1.8	1.3	1.3		Series III	1 50 4 1	1.50	1.51	4 E	3 2		3 3	8 :	J. 2.	
[Temper	۲	Serie	348	398	448	498	548	298	648	90 00	700	87	900	3	900	1048	9001	1148	0011	1136	Seri	928	938	876	85.0	896	878	886	866	1008	1018		Ze.		1173	1040	1273	1327	1373	1423	1473	1523	
	္မ	2 3	1, 17 x 101*	1 23	1.25*	1.28*	1, 31	1, 36	1.42	1.49	1. 594	1. 3				3.30	8 .	8 :	1. 57	1.38	Series II	2 0 x 10-1		**		9.4		2 6	1.6	1	•	Series III		1. 49 x 10-	1.51	1.53*	1.55	1.56*	1.57	1.58*	1. 59		
	۲	Series I	348	906	448	498	548	298	648	869	748	798	20	868	250	966	1048	1096	1148	1198	Seri	860	9 6	200	0	000	9	900	1008	1018		Ser		1173	1223	1273	1323	1373	1423	1473	1523		
	ပ်	118	1 10 1 101	1. 10 X 1V	1.21	1.20	1. 23	1.39	1.45	1.52	1.60	1.72	 \$	1.97	2.51	3.97	1. 52	1.50	1, 52	1.54	Series II	•	2.1 × 10-	2.1	7.7	2.5	3.7	* 0	, ·	o •	9 o	·	Series III		1.55 x 10 ¹⁴	1, 53*	1,51	1,51*	1.52*	1.53	1.54	1.55	
	H	CURVE Series I		348	388	448	97	0 6 6 K	848	859	748	798	848	868	878	966	1048	1098	1148	1198	Seri		928	938	878	828	896	878	886	200	1008	OTAT	Ser		1178	1228	1278	1328	1378	1428	1478	1528	

SPECIFICATION TABLE NO. 208 SPECIFIC HEAT OF Fe + Si + Σx_i , ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 208]

Composition (weight percent), Specifications and Remarks	1.98 Si, 0.9 Mn, 0.637 Cu, 0.485 C, 0.156 Ni, 0.047 S, 0.044 P, 0.04 Cr, 0.029 As, and 0.007 Al; annealed at 930 C; density = 482 lb ft ⁻⁴ at 15 C.
Name and Specimen Designation	Alloy Steel No. 21
Reported Error, %	7,
Temp. Range, K	348-1523
Year	1946
Ref.	104
Curve Ref.	-

DATA TABLE NO. 208 SPECIFIC HEAT OF Fe + Si + Σx_i , ALLOY STEEL GROUP II [Temperature, T,K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

CURVE 1

348 1. 19 x 10⁻¹
396 1. 25
498 1. 25
498 1. 29
548 1. 39
596 1. 38
648 1. 44
698 1. 51
748 1. 59
798 1. 68
948 1. 96
998 2. 16
1048 3. 26
1048 1. 46

978 2.1 x 10⁻¹
986 2.2
996 2.3
1006 2.2*
1018 1.9
1028 1.9*
1048 2.0
1058 1.5
1088 2.0
1098 1.5
1109 1.5
1118 1.3

Series III

Series III

1123 1,48 x 10^{1*}
1173 1.50
1223 1,51*
1273 1,55
1373 1,55
1473 1,61*
1523 1,63*

* Not shown on plot

SPECIFICATION TABLE NO. 209 SPECIFIC HEAT OF Fe + Ti + Σx_i , a lloy steel group ii

[For Data Reported in Figure and Table No. 209]

Specifications and Remarks	0.051 C 0.025 P and 0.028
Composition (weight percent), Specifications and Remarks	60.0 Pe. 27.5 Ti 6.74 Al 4.3 St 0.051 C 0.055 D and 0.09 S
Name and Specimen Designation	
Reported Error, %	1.2
Temp. Range, K	273-1573
Year	1961
Ref.	253 1961
Curve No.	1

DATA TABLE NO. 209 SPECIFIC HEAT OF Fe + Ti + ΣX_i , ALLOY STEEL GROUP II [Temperature, T, K; Specific Heat, C_p , Cal $g^{-1}K^{-1}$]

T C_p

CURVE 1

273.15 1.302 x 10⁻¹
300 1.297
400 1.316
500 1.417
700 1.478
900 1.606
1100 1.737
1100 1.737
1200 1.804
1300 1.871
1478
900 2.006
1573 2.055

SPECIFICATION TABLE NO. 210 SPECIFIC HEAT OF Fe + W + ΣX_{j} . ALLOY STEEL GROUP II

[For Data Reported in Figure and Table No. 210]

Composition (weight percent), Specifications and Remarks	18.45 W, 4.26 Cr, 1.075 V, 0.715 C, 0.3 Si, 0.25 Mn, 0.067 Ni, 0.064 Cu, 0.035 As, 0.028 E, 0.018 Cr, and 0.004 Al; annealed at 830 C; density = 541 lb ft ⁻² at 15 C.
Name and Specimen Designation	High Alloy Steel No. 18
Reported Error, %	77
Temp. Range, K	348-1523
Year	1946
Curve Ref. No. No.	101
Curve No.	-

DATA TABLE NO. 210 SPECIFIC HEAT OF Fe + W + Σx_i , ALLOY STEEL GROUP II

[Temperature, T,K; Specific Heat, C_p , Cal $g^{-i}K^{-i}$]

Series I

9.8 × 10⁷
1.02 × 10¹
1.04 × 10¹
1.108
1.108
1.125
1.25
1.35
1.43
1.43
1.47
1.71
1.71
1.63 348 448 449 548 548 648 698 698 748 748 798 848 848 848 948 910 938 1148

Series II

1.82 x 10¹ 1.84 x 10¹ 1.54 x 2.62 1.75 x 2.62 1.45 x 2.63 1.45 x 2.63 1.45 x 2.63 1.45 x 3.63 1.45 1028 1038 1048 1058 11068 11128 11148 11158

Series III

Not shown on plot

REFERENCES TO DATA SOURCES

Ref. TPRC No. No. Jenkins, R.J. and Parker, W.J., WADD TR 61-95, 1-27, 1961. [AD 268752] [PB 181 139] Kok, J. A. and Keesom, W. H., Physica, 4 (9), 835-42, 1937. Pochapsky, T.E., Acta. Met, 1 (6), 747-51, 1953. Giauque, W.F. and Meads, P.F., J. Am. Chem. Soc., 63, 1897-1901, 1941. Hopkins, D.C., Ph.D. Thesis, Univ. Illinois, AROD 2771: 9, 1-82, 1962. [AD 282758] Rorer, D.C., Meyer, H., and Richardson, R.C., 1-29, 1962. [AD 293 874] Mit'kina, E.A., At. Energ. (USSR), 7 (2), 163-5, 1959. Martin, D. L., Can. J. Phys., 38, 17-24, 1960. Bell, I. P., U.K. At. Energy Authority, Ind. Group, R&DB (C) TN-127, 1-10, 1959. Lucks, C. F. and Deem, H. W., Am. Soc. Testing Mater. Spec. Tech. Publ. (227), 1-29, 1958. Howse, P.T., Jr., Pears, C.D., and Oglesby, S., Jr., WADD TR 60-657, 1-137, 1961. [AD 260 065] Neel, D.S., Pears, C.D., and Oglesby, S., Jr., WADD TR 60-924, N62-12987, 1-216, 1962. [AD 275 536] Krauss, F., Z. Metallkunde, 49 (7), 386-92, 1958. Sandenaw, T.A., U.S. At. Energy Comm. LA-2307, 1-19, 1959. Lyusternik, V.E., Pribory i Tekhn. Eksperim., 4, 127-9, 1959. Franck, J.P., Manchester, F.D., and Martin, D.L., Proc. Roy. Soc. (London), 263A, 494-507, 17 . 16723 Lehman, G.W. WADD TR 60-581, 1-19, 1960. [AD 247411] [PB 160 804] Pawel, R.E., Ph.D. Thesis, Univ. Tennessee, 1-143, 1956. Masuda, Y., Sci. Rept. Res. Inst., Tohoku Univ., A14 (3), 156-64, 1962. Hultgren, R. and Land, C., Trans. Met. Soc. AIME, 215 (1), 165-6, 1959. [AD 216 259] Fieldhouse, I.B., Hedge, J.C., Lang, J.I., Takata, A.N., and Waterman, T.E., WADC TR 55-495, Pt. 1, 1-64, 1956. [AD 110404] Clusius, K. and Franzosini, P., Z. Naturforsch., A17 (6), 522-5, 1962. Beaumont, R. H., Chihara, H., and Merrison, J. A., Phil. Mag., 5 (50), 188-91, 1960. Armstrong, L.D. and Grayson-Smith, H., Can. J. Res., A28 (1), 51-9, 1950. Friedberg, S. A., U.S. At. Energy Comm., NP-5668, 1-32, 1954. [AD 63407] Pallister, P.R., J. Iron Steel Inst., 161, 87-90, 1949. Kelley, K.K., J. Chem. Phys., 11, 16-8, 1943. Dench, W. A. and Kubaschewski, O., J. Iron Steel Inst., 201 (2), 140-3, 1963. Awbery, J.H. and Griffiths, E., Proc. Roy. Soc. (London), A174, 1-15, 1940. Lyubimov, A. P. and Belashchenko, D. K., Sbornik Moskov. Inst. Stali, 33, 3-11, 1955. Tret'yakov, Yu.D., Troshkina, V.A., and Khomyakov, K.G., Zh. Neorgan. Khim., 4 (1), 5-12, Wallace, D.C., Sidles, P.H., and Danielson, G.C., J. Appl. Phys., 31 (1), 168-76, 1960. McElroy, D. L., Ph. D. Thesis, Univ. Tennessee, 1-157, 1957. Anderson, P. D. and Hultgren, R., Trans. Met. Soc. AIME, 224 (4), 842-5, 1962. Parkinson, D. H., Simon, F. E., and Spedding, F. H., Proc. Roy. Soc. (London), A207, 137-55, 1951. Berg, J.R., Spedding, F.H., and Daane, A.H., U.S. At. Energy Comm., IS-327, 1-35, 1961.

Martin, D. L., Can. J. Phys., 40, 1166-73, 1962.

- Ref. TPRC
- 38 24810 Brooker, J., Paine, R.M., and Stonehouse, A.J., WADD TR 60-889, 1-133, 1961. [AD 265 625]
- 39 25846 Kogan, V.A. and Lyusternik, V.E., Inzh. Fiz. Zh., Akad. Nauk. Belorussk. SSR, 4 (4), 105-8, 1961.
- 40 9182 Flubacher, P., Leadbetter, A.J., and Morrison, J.A., Phil. Mag., 4 (39), 273-94, 1959.
- 41 17357 Gul'tyaev, P.V. and Petrov, A.V., Soviet Phys. -Solid State (English Transl.), 1, 330-4, 1959.
- 42 37419 Dismukes, J. P., Ekstrom, L., Hockings, E. F., Kudinan, I., Lindenbald, N. E., Miller, R. E., Rosi, E. D., and Steigmeier, E. F., 1-100, 1964. [AD 441794]
- 43 2122 Hill, R.W. and Parkinson, D.H., Phil. Mag., 43, 309-16, 1952.
- 44 503 Estermann, I. and Weertman, J. R., J. Chem. Phys., 20, 972-6, 1952.
- 45 30903 Stull, D.R. and McDonald, R.A., J. Am. Chem. Soc., 77, 5293, 1955.
- 46 10537 Baker, H., WADC TR 57-194, Pt. II, 1-24, 1957. [AD 131034]
- 47 422 Wallace, W.E., Craig, R.S., Saba, W.G., and Sterrett, K.F., U.S. At. Energy Comm., NYO-6334, 1-8, 1957.
- 48 7471 Craig, R.S., Krier, C.A., Coffer, L.W., Bates, E.A., and Wallace, W.E., J. Am. Chem. Soc., 76, Pt. 6, 238-40, 1954.
- 49 23142 Mannchen, V.W. and Bornkessel, K., Z. Metallk., 51, 482-5, 1960.
- 50 19410 Martin, D. L., Proc. Roy. Soc. (London), A254, 444-54, 1960.
- 51 19285 Martin, D. L., Physica, 25, 1193-9, 1959.
- 52 6314 Moser, H., Physik. Z., 37 (21), 737-53, 1936.
- 53 510 Krauss, F. and Warncko, H., Z. Metallk., 46, 61-9, 1955.
- 54 7115 Hagel, W.C., Pound, G.M., and Mehl, R.F., Carnegie Inst. Tech., 1-103, 1954. [AD 39 272]
- 55 22751 Eucken, Von A. and Werth, H., Z. Anorg. Allgem. Chem., 188, 152-72, 1930.
- 56 1864 Busey, R. H. and Giaque, W. F., J. Am. Chem. Soc., 74, 3157-8, 1952.
- 57 11413 Kelley, K.K., Naylor, B.F., and Shomate, C. II., U. S. Bur. Mines, Tech. Paper 686, 1-34, 1946.
- 58 36200 Franzosini, P., Losa, C.G., and Clusius, K., Z. Naturforsch., 19a, 1348-53, 1964.
- 59 7879 Elson, R.G., Grayson-Smith, H., and Wilhelm, J.O., Can. J. Res., A18, 83-9, 1940.
- 60 197 Armstrong, L.D. and Grayson-Smith, H., Can. J. Res., <u>A27</u>, 9-16, 1949.
- 61 24797 Lazareva, L.S., Kantor, P.B., and Kandyba, V.V., Fiz. Metal. i Metalloved., 2 (4), 628-9, 1961.
- 62 27526 Kirillin, V.A., Sheind'lin, A.E., and Chekhovskoi, V.Ya., Intern. J. Heat Mass Transfer, 5, 1-9, 1962.
- 63 20843 Cape, J.A., Atomics International, AI-6127, 1-12, 1961. [AD 251317]
- 64 27207 Lowenthal, G.C., Australian J. Phys., 16 (1), 47-67, 1963.
- 65 19953 Taylor, R. E. and Finch, R. A., U. S. At. Energy Comm., NAA-SR-6034, 1-32, 1961.
- 66 7499 Redfield, T.A. and Hill, J.H., U.S. At. Energy Comm., ORNL-1087, 1-9, 1951.
- 67 31192 Rudkin, R. L., Parker, W.J., and Jenkins, R.J., Temp. Meas. Control Sci. Ind., 3, Pt. 2, 523-34, 1962.
- 68 27981 Chekhovskoi, V. Ya., Inzh. -Fiz. Zh., Akad. Nauk. Belorussk. SSR, 5 (6), 43-7, 1962.
- 69 9165 Clusius, K. V. and Franzosini, P., Z. Naturforsch., A14, 99-105, 1959.
- 70 7602 Jaeger, F. M. and Veenstra, W. A., Rec. Trav. Chim., 53, 677-87, 1934.
- 71 28530 Boggs, J. H. and Wiebelt, J. A., U. S. At. Energy Comm., TID-5734, 1-91, 1960.
- 72 37908 Cezairliyan, A., Advances Thermophys. Properties Extrem. Temp. Pres., 3rd ASME Symp., Lafayette, Indiana, 253-63, 1965.
- 73 18506 Spedding, F. H., McKeown, J. J., and Daane, A. H., J. Phys. Chem., 64 (3), 289-94, 1960.
- 74 7239 Chou, C., White, D., and Johnston, H.L., Phys. Rev., 109 (2), 788-96, 1958.
- 75 7689 Fieldhouse, I.B., Hedge, J.C., and Lang, J.I., WADC TR 58-274, 1-79, 1958. [AD 206 892] [PB 151 583]
- 76 27635 Clusius, K., Franzosini, P., and Piesbergen, U., Z. Naturforsch., 15a, 728-34, 1960.
- 77 18219 Kaznoff, A.I., Orr, R.L., and Hultgren, R., U.S. Dept. Comm., Office Tech. Serv., 1-83, 1961. [AD 255 273]
- 78 1004 Hill, R. W. and Smith, P. L., Phil. Mag., 44, 636-44, 1953.
- 79 22591 Kantor, P.B., Krasovitskaya, R.M., and Kisil, O.M., (English Transl. Fiz. Metal. i Metalloved. USSR, 10 (6), 835-7, 1960), MCL-950/1, 1-6, 1961. [AD 261792]
- 80 32715 Kirillin, V. A., Sheind'lin, A. E., Chikhovskoi, V. Ya., and Petrov, V. A., Zh. Fiz., Khim., 37 (10), 2249-56, 1963.

```
TPRC
                                             Bibliographic Citation
Ref.
               Serebryannikov, N. N. and Gel'd, P. V., Izv. Vysshikh. Uchebn. Zavedenii, Tsvetn. Met., 4 (4),
        No.
No.
       27610
 81
                80-6, 1961.
                Duyckaerts, G., Physica, 6, 401-8, 1939.
                Picklesimer, M. L., Ph. D. Thesis, Univ. Tennessee, 1-106, 1954.
       11924
 82
                Hoeven, Van der, B.J.C., Jr. and Keesom, P.H., Phys. Rev., 137 (1A), 103-7, 1965.
       293#9
 83
                O'Neal, H.R. and Phillips, N.E., Phys. Rev., 137 (3A), 748-59, 1965.
       38430
  84
       38436
                 Lounasmaa, O. V., Phys. Rev., 133 (2A), 502-9, 1964.
  85
       32530
  86
                 Lounasmaa, O. V., Phys. Rev., 133 (1A), 211-8, 1964.
                 Guenther, R.A., M.S. Thesis, Ill. Inst. Tech., ANL-6594, 1-30, 1962.
        32500
  87
                 Lounasmaa, O.V. and Roach, P.R., Phys. Rev., 128, 622-6, 1962.
        28959
  88
        22753
  89
                 DeSorbo, W., J. Phys. Chem., 62, 965-7, 1958.
                 Franzosini, P. and Clusius, K., Z. Naturforsch., 19a, 1430-1, 1964.
         7662
  90
                 Johnston, H. L., Hersh, H. N., and Kerr, E. C., J. Am. Chem. Soc., 73, 1112-7, 1951.
        36201
  91
                 Jaeger, F.M., Rosenbohm, E., and Zuithoff, A.J., Rec. Trav. Chim., <u>59</u>, 831-56, 1940.
         1591
  92
                 Clusius, K. and Schachinger, L., Z. Naturforsch., A7, 185-91, 1952.
          5278
  93
                 Skochdopole, R.E., Griffel, M., and Spedding, F.H., J. Chem. Phys., 23, 2258-63, 1955.
          1840
  94
                 Geballe, T.H. ard Giauque, W.F., J.A. Chem. Soc., 74, 2368-9, 1952.
          1005
   95
                 Westrum, E. F., Jr. (author), McClaine, L.A. (editor), ASD TDR 62-204, Pt. 3, 189-96, 1964.
          1761
   96
         37348
   97
                  Smith, W.T., Jr., Oliver, G.D., and Cobble, J.W., J. Am. Chem. Soc., 75, 5785-6, 1953.
                  Jaeger, F.M. and Rosenbohm, E., Physica, 6, 1123-5, 1939.
          8184
   98
                  Strittmater, R.C. and Danielson, G.C., U.S. At. Energy Comm., ISC-666, 1-27, 1955. [AD 96 968]
         28519
   99
                  Butler, C.P. and Inn, E.C.Y., USNRDL-TR-235, 1-30, 1958. [AD 200 857]
            871
  100
                  Yurkov, V.A. and Ivoninskaya, L.A., Izv. Vysshikh Uchebn. Zavedenii, Fiz., (1), 132 43, 1962.
          31341
  101
                  Meads, P.F., Forsythe, W.R., and Giauque, W.F., J. Am. Chem. Soc., 63, 1902-5, 1941.
          27596
  102
                   Awbery, J.H., Challoner, A.R., and Pallister, P.R., J. Iron Steel Inst. (London), 154 (2), 83-111,
   103
           7811
           9350
   104
                   Trice, J.B., Neely, J.J., and Teeter, C.E., Jr., U.S. At. Energy Comm., NEPA 816-SCR-28,
           6381
                   Sims, C.T., Craighead, C.M., Jaffee, R.L., Gideon, D.N., Kleinschmidt, W.W., Nexsen, W.E., Jr., Gaines, G.B., Todd, F.C., Peet, C.S., Rosenbaum, D.M., Runck, R.J., and Campbell, I.E.,
   105
          10119
    106
                   WADC TR 54-371, 1-79, 1956. [AD 97301] [PB 121653]
                   Clusius, K. and Losa, C.G., Z. Naturforsch., A10, 545-51, 1955.
                   Clusius, K. and Piesbergen, U., Z. Naturforsch., A14 (1), 23-7, 1959.
             340
    107
                   Roberts, L.M., Proc. Phys. Soc. (London), B70, 434-5, 1957.
           23964
    108
            8151
    109
                    Desorbo, W., J. Chem. Phys., 21 (7), 1144-8, 1953.
                    Shanks, H.R., Maycock, P.D., Sidles, P.H., and Danielson, G.C., Phys. Rev., 130 (5), 1743-8,
            7408
    110
            29948
    111
                    Kantor, P.B., Kisel, O.M., and Fomichev, E.M., Ukrain. Fiz. Zhur., 5, 358-62, 1960.
                    Martin, D. L., Proc. Roy. Soc. (London), A254, 433-43, 1960.
            21087
    112
                    Sterrett, K. F. and Wallace, W. E., J. Am. Chem. Soc., 80, 3176-7, 1958.
            19411
    113
                    Hildenbrand, D. L., Theard, L. P., and Potter, N. D., AERO-U-1606, 1-49, 1962. [AD 273792]
             8409
     114
                     Hoch, M. and Johnston, H.L., J. Phys. Chem., 65 (5), 855-60, 1961.
            20973
     115
                     Kraftmakher, Ya.A., Zh. Prikl. Mekhan. i Tekhn. Fiz., (2), 158-60, 1963.
            28434
     116
                     Jennings, L.D., Stanton, R.M., and Speeding, F.H., J. Chem. Phys., 27 (4), 909-13, 1957.
            31542
     117
              8684
                     Wallace, D.C., Phys. Rev., 120 (1), 84-8, 1960.
     118
                     Griffel, M. and Skochdopole, R. E., J. Am. Chem. Soc., 75 (21), 5250-1, 1953.
     119
             20739
                      Eichelberger, J. F., U.S. At. Energy Comm., MLM-1133, 1-31, 1962.
      120
               326
                      Dempsey, E. and Kay, A.E., J. Inst. Metals, 86, 379-84, 1958.
             20568
      121
                      Dean, D.J., Kay, A.E., and Loasby, R.G., J. Inst. Metals, 86, 464, 1958.
              8419
      122
```

Ref. No.	TPRC No.	Bibliographic Citation
124	32435	Kay, A. E. and Loasby, R. G., Phil. Mag., 9 (97), 37-49, 1964.
125	37902	Conway, J.B. and Hein, R.A., Advances Thermophys. Properties Extreme Temp. Pres., 3rd ASME Symp., Lafayette, Indiana, 131-7, 1965.
126	24076	Jennings, L.D., Hill, E., and Spedding, F.H., J. Chem. Phys., 34, 2082-9, 1961.
127	17597	Golutvin, Yu.M., Zhur. Fiz. Khim., 33, 1798-805, 1959.
128	1271	Aven, M.H., Craig, R.S., Waite, T.R., and Wallace, W.E., Phys. Rev., 102, 1263-4, 1956.
129	24340	Holland, L.R., J. Appl. Phys., 34 (8), 2350-7, 1963.
130	7170	Backhurst, I., J. Iron Steel Inst. (London), 189, 124-34, 1958.
131	23749	Stalinski, B. and Bieganski, Z., Roczniki Chem., 35, 273-83, 1961.
132	1877	Kelley, K. K., Ind. Eng. Chem., 36, 865-6, 1944.
133	10139	Rea, J.A., M.S. Thesis, Oklahoma Agricultural Mechanical College, 1-52, 1956. [AD 94417]
134	250	Scott, J. L., U.S. At. Energy Comm., ORNL-2328, 1-122, 1957. [AD 138 838]
135	131	Loewen, E.G., Trans. Am. Soc. Mech. Engrs., 78, 667-70, 1956.
136	532	Kothen, C.W. and Johnston, H.L., J. Am. Chem. Soc., 75, 3101-2, 1953.
137	26916	Sheindlin, A. E. and Chekhovskoi, V. Ya., Proc. Acad. Sci. USSR, Phys. Chem. Sect. (English Transl.), 142 (6), 184-6, 1962.
138	26919	Kirillin, V.A., Sheindlin, A.E., Chekhovskoi, V.Ya., and Petrov, V.A., Joklady Akad. Nauk. SSSR, 144 (2), 390-1, 1962.
139	26001	Kirillin, V.A., Sheindlin, A.E., and Chekhovskoi, V.Ya., Teploenerg., 9 (2), 63-6, 1962.
140	31541	Kraftmakher, Ya. A., Zh. Prikl. Mekhan. i Tekhn. Fiz., (5), 176-50, 1962.
141	14238	Flotow, H. E. and Lohr, H. R., J. Phys. Chem., <u>64</u> , 904-6, 1960.
142	1741	Moore, G. E. and Kelley, K. K., J. Am. Chem. Soc., <u>69</u> , 2105-7, 1947.
143	1584	North, J.M., At. Energy Res. Establ. (G. Brit.), Rep., M/R 1016, 1-9, 1956.
144	807	Ginnings, D.C. and Corruccini, R.J., J. Res. Natl. Bur. Std., <u>39</u> , 309-16, 1947.
145	33559	Long, E.A., Jones, W.M., and Gordon, J., U.S. At. Energy Comm., A-329, MDDC-609, 1-13, 1942.
146	24812	Fieldhouse, I.B. and Lang, J.I., WADD TR 60-904, 1-119, 1961. [AD 268 304]
147	22075	Golutvin, Yu. M. and Kozlovskaya, T. M., Zh. Fiz. Khim., 36 (2), 362-4, 1962.
148	28734	Bieganski, Z. and Stalinski, B., Bull. Acad. Polon. Sci., Ser. Sci. Chim., 9 (5), 367-72, 1961.
149	37425	Gertstein, B.C., Mullay, J., Phillips, E., Miller, R.E., and Spedding, F.H., J. Chem. Phys., 41 (3), 883-9, 1964.
150	7000	Douglas, T.B. and Victor, A.C., WADC TR 57-374, Pt. 2, 1-75, 1957. [AD 150 128]
151	10322	Lounasmaa, O. V., Phys. Rev., 126 (4), 1352-6, 1962.
152	31102	Kochetkova, N.M. and Rezukhina, T.N., Semiconductor Materials Conference, Moscow, 26-8, 1961.
153	918	Desorbo, W., Acta Met., 1 (5), 503-7, 1953.
154	6560	Lucks, C. F. and Deem, H.W., WADC TR 55-496, 1-65, 1956. [AD 97185]
155	342	Clusius, K. and Schachinger, L., Z. Angew. Phys., 4 (12), 442-4, 1952.
156	29954	Mitacek, P., Jr. and Aston, J.G., J. Am. Chem. Soc., 85, 137-41, 1963.
157	27993	Weller, W. W. and Kelley, K. K., U. S. Bur, Mines, Rep. Invest. 5984, 1-3, 1962.
158	16682 1363	Jennings, L. D., Miller, R. E., and Spedding, F. H., J. Chem. Phys., 33 (6), 1849-52, 1960.
159 160	36669	Coughlin, J. P. and King, E. G., J. Am. Chem. Soc., <u>72</u> , 2262-5, 1950. Parker, R., Trans. Met. Soc., AIME, 233, 1545-9, 1965.
161	17553	Wolcott, N.M., Bull. Inst. Intern. Froid, Annexe, 286-9, 1955.
162	14232	Wise, S.S., Margrave, J.L., and Altman, R.L., J. Phys. Chem., <u>64</u> , 915-7, 1960.
163	22370	Jaeger, F.M. and Rosenbohm, E., Proc. Acad. Sci. Amsterdam, 34, 85-99, 1931.
164	22461	Jaeger, F.M. and Rosenbohm, E., Rec. Trav. Chim., 51, 1-46, 1932.
165	6251	Jaeger, F.M. and Poppema, T.J., Rec. Trav. Chim., 55 (6), 492-517, 1936.
166	1721	Clusius, K. and Schachinger, L., Z. Naturforsch, 2A (2), 90-7, 1947.
167	6323	Kok, J.A. and Keesom, W.H., Physics, 3 (9), 1035-45, 1936.
	V-C AND	

Def	T D D C	
Ref. No.	TPRC No.	Bibliographic Citation
168	712	Clusius, K., Losa, C.G., and Franzosini, P., Z. Naturforsch, 12A, 34-8, 1957.
169	29972	Kendall, W.B., Orr, R.L., and Hultgren, R., J. Chem. Eng. Data, Pt. 1, 7, 516-8, 1962.
170	20920	Eastman, E. D. and Rodebush, W. H., J. Am. Chem. Soc., 40, 489-500, 1918.
171	6387	Carpenter, L.G. and Steward, C.J., Phil. Mag., 27 (184), 551-64, 1939.
172	897	Krier, C.A., Ph.D. Thesis, Univ. of Pittsburg, 1-126, 1954.
173	7276	Roberts, L.M., Proc. Phys. Soc. (London), 70 (452B), 744-52, 1957.
174	26732	Lemmon, A.W., Jr., Deem, H.W., Eldridge, E.A., Hall, E.H., Matolich, J., Jr., and Walling J.F., NASA CR-54017, BATT-4673-Final, 1-66, 1963.
175	1223	Horowitz, M. and Daunt, J.G., Phys. Rev., <u>91</u> , 1099-106, 1953.
176	863	Dauphinee, T. M., Marti: 13. L., and Preston-Thomas, H., Proc. Roy. Soc. (London), 233A, 214-22, 1955.
177	21831	Anderson, C. T., J. Am. Chem. Soc., <u>52</u> , 2301-4, 1930.
178	30243	Pearlman, N., Ph.D. Thesis, Purdue Univ., 1-104, 1952.
179	21779	Eastman, E. D., Williams, A. M., and Young, T. F., J. Am. Chem. Soc., 46, 1178-83, 1924.
180	6420	Jaeger, F.M., Rosenbohm, J.E., and Veenstra, W.A., Prok. K. Akad. Wet. Amsterdam, 36, 291-8, 1933.
181	6330	Keesom, W. H. and Kok, J. A., Physica, <u>1</u> , 770-8, 1934.
182	6245	Bronson, H. L. and Wilson, A. J. C., Can. J. Res., 14A (10), 181-93, 1936.
183	6246	Bronson, H. L., Hewson, E.W., and Wilson, A.J.C., Can. J. Res., 14A (10), 194-99, 1936.
184	34308	Martin, D. L., Phys. Rev., 141 (2), 576-82, 1966.
185	1482	Ginnings, D.C., Douglas, T.B., and Ball, A.F., J. Res. Natl. Bur. Stds., 45, 23-33, 1950.
186	21823	Clusius, K. and Vaughen, J. V., J. Am. Chem. Soc., <u>52</u> , 4686-99, 1930.
187	22754	Seekamp, H., Z. Anorg. Allgem. Chem., <u>195</u> , 345-65, 1931.
188	6385	Keesom, W. H. and Kok, J. A., Physica, <u>1</u> , 595-608, 1934.
189	21774	Rodebush, W. H., J. Am. Chem. Soc., 45, 1413-6, 1923.
190	22849	Fritz, L., Z. Physik Chem., 110, 343-62, 1924.
191	22378	Keesom, W. H. and Ende, Van der, J. N., Proc. Acad. Sci. Amsterdam, 35, 143-55, 1932.
192	22375	Jaeger, F. M. and Bottema, J. A., Proc. Acad. Sci. Amsterdam, <u>35</u> , 347-52, 1932.
193	1376	Bartenev, G.M., Zhur. Tekh. Fiz., 17, 1321-4, 1947.
194	1190	Webb, F.J. and Wilks, J., Proc. Roy. Soc. (London), 230A, 549-59, 1955.
195	490	Corak, W.S. and Satterthwaite, C.B., Phys. Rev., <u>102</u> , 662-6, 1956.
196	29573	Heffan, H., M.S. Thesis, Univ. California, 1-17, 1958.
197	24027	Yaqub, M., Cryogenics, <u>1</u> (3), 166-70, 1961.
198	6415	Keesom, W. H. and van Laer, P. H., Physica, <u>5</u> (3), 193-201, 1938.
199	6797	Jaeger, F.M., Rosenbohm, E., and Fonteyne, R., Rec. Trav. Chim., <u>55</u> (7/8), 615-54, 1936.
200	21224	Clusius, K. and Franzosini, P., Z. Physik. Chem. (Frankfurt), 16 (3/6), 194-202, 1958.
201	21407	Magnus, A. and Holzmann, H., Ann. Physik [5], 3, 585-613, 1929.
202	1813	Silvidi, A.A. and Daunt, J.G., Phys. Rev., 77, 125-9, 1950.
203	468	Waite, T.R., University Microfilm, 18264, 1-79, 1957.
204	8451	White, D., Chou, C., and Johnston, H. L., Phys. Rev., [2], 109 (3), 797-802, 1958.
205	34604	Lounasmaa, O. V., Phys. Rev., 143 (2), 399-405, 1966.
206	22855	Behrens, W. U. and Drucker, C., Z. Physik. Chem., 113, 79-110, 1924.
207	7025	Clusius, K. and Harteck, P., Z. Physik. Chem., <u>134</u> , 243-63, 1928.
208	6329	Poppema, T. J. and Jaeger, F.M., Proc. K. Akad. Wet. Amsterdam, 38, 510-20, 1935.
209	1705	Smith, P. L., Phil. Mag., 46, 744-50, 1955.
210	23965	Eichenauer, W. and Schulze, M., Z. Naturforsch, A14 (1), 28-32, 1959.
211	9136	Srinivasan, T.M., Proc. Indian Acad. Sci., 49, 61-5, 1959.
212	8454	Roberts, L.M., Proc. Phys. Soc. (London), <u>B70</u> , Pt. 8, 738-43, 1957.
213	22861	Zeidler, W., Z. Physik Chem., <u>123</u> , 383-404, 1926.

254

255

256 257 28663

29805

1961.

746		
Ref.	TPRC	
No.	No.	Bibliographic Citation
214	21799	Dixon, A. L. and Rodebush, W. A., J. Am. Chem. Soc., 49, 11162-74, 1927.
215	22369	Jaeger, F. M. and Rosenbohm, E., Proc. Acad. Sci. (Amsterdam), 34, 808-22, 1931.
216	19226	Seidel, G. and Keesom, P.H., Phys. Rev., <u>112</u> (4), 1083-8, 1958.
217	1708	Griffel, M., Skochdopole, R.E., and Spedding, F.H., Phys. Rev., [2], 93, 657-61, 1954.
218	19921	Seidel, G.M., Ph.D. Thesis, Purdue Univ., Univ. Microfilms, Mic 58-7994, 1-100, 1958.
219	248	Gerstein, B.C., Griffel, M., Jennings, L.D., Miller, R.E., Skochdopole, R.E., and Spedding, F.H., J. Chem. Phys., 27 (2), 394-9, 1957.
220	32459	Kempen, van H., Miedama, A.R., and Huiskamp, W.J., Physica, 30 (1), 229-36, 1964.
221	27515	Gunther, P., Ann. Physik., <u>51</u> , 828-46, 1916.
222	10729	Kendall, W.B., Orr, R.L., and Hultgren, R., AFOSR-TN-59-524, 1-14, 1959. [AD 216 258]
223	19947	Gaumer, R.E., Ph.D. Thesis, Ohio State Univ., 1-118, Univ. Microfilms, Mic 60-1182, 1-123, 1959
224	32871	Braun, von M. ard Kohlhaas, R., Z. Naturforsch, [A], <u>19</u> (5), 663-4, 1964.
225	31842	Panin, V. E. and Zenkova, E. K., Soviet Phys. Doklady, 4, 1368-71, 1960.
226	371	DeSorbo, W., Acta Met., 3 (3), 227-31, 1955.
227	27439	Day, G. F. and Hultgren, R., J. Phys. Chem., <u>66</u> (8), 1532-4, 1962.
228	16062	Martin, D. L., Can. J. Phys., 38, 25-31, 1960.
229	28518	Kono, H., J. Phys. Soc. Japan, <u>13</u> , 1444-51, 1958.
230	14256	Titman, J.M., Proc. Phys. Soc., 77, Pt. 3, 807-10, 1961.
231	16590	Fieldhouse, I.B., Lang, J.I., and Blau, H.H., WADC TR 59-744, 4, 1-78, 1960. [AD 249 166] [PB 171 390]
232	25961	Hedge, J.C., Kostenko, C., and Lang, J.I., ASD-TDR-63-597, 1-128, 1963. [AD 424 375]
233	20083	Land, C.C., M.S. Thesis, Univ. of California, 1-25, 1957.
234	29988	Gangopadhyay, A.K. and Margrave, J.L., J. Chem. Eng. Data, 8 (2), 204-5, 1963.
235	28346	Aoyama, S. and Kanda, E., J. Chem. Soc. Japan, <u>62</u> , 312-5, 1941.
236	2968	Zuithoff, A.J., Rec. Trav. Chim., <u>59</u> , 131-60, 1940.
237	26008	Pears, C.D., ASD-TDR 62-765, 1-420, 1963. [AD 298061]
238	34310	Isaacs, L. L. and Massalski, T.B., Phys. Rev., <u>141</u> (2), 634-7, 1966.
239	280	Passagalia, E., Ph.D. Thesis, Univ. of Penn., Univ. Microfilms Publ. No. 13417, 1955.
240	32845	Massena, C.W., Ph.D. Thesis, Univ. of Pittsburg, 86, 1962.
241	31965	Deem, H.W. and Eldridge, E.A., BMI-1644, UC-25, TID-4500, V1-V2, 1963.
242	27792	Hedge, J.C., Lang, J.I., Howe, E., and Elliot, K., Armour Res. Foundation, Air Force Special Weapons Center, TDR 63-17, 1-19, 1963. [AD 4125867]
243	6565	Lucks, C. F., Matolich, J., and Van Valzor, J.A., U.S.A. F. TR 6145, 1-71, 1954. [AD 95406]
244	24512	Krentsis, R. P., Gel'd, P. V., and Serebrennikov, N. N., Izvestiya, VUZ, Chernaya Met., 5-11, 1960.
245	6970	Fieldhouse, I.B., Hedge, J.C. Lang J.I. and Waterman, T.E., WADC-TR-57-487, 1-79, 1958. [AD 150 954] [PB 131 718]
246	24547	McDonald R.A. and Still, D.R., J. Chem. Eng. Data, 6, 609-10, 1961.
247	8114	Evans, J. P. and Mardon, P.G., 1-4, 1958. [AD 210 812-L]
248	20286	Douglas, T.B. and Victor, A.C., Natl. Bur. Std., J. Res., 65C (1), 65-9, 1961.
249	16743	Venturi, R. and Seibel, R.D., DRI Rept. 1023, 1-31, 1959.
250	7412	Douglas, T.B. and Dever, J.L., USAEC, NBS-2302, 1-23, 1953.
251	677	Douglas, T.B. and Dever, J.L., Natl. Bur. Std., J. Res., 54 (1), 15-9, 1955.
252	26219	Neimark, B.E., Lyusternik, V.E., Anichkina, E.Yu., and Bykova, T.I., High Temp., $\underline{1}$ (1), 9-12, 1963.
253	23704	Serebrennikov, N.N., Gel'd, P.V., and Krentsis, R.P., Izv. Vysshikh Uchebn. Zavedenii, Tsvetn. Met., 4 (1), 82-7, 1961.
		W. M. G. W. D. J. D. G. L. J. J. A.D. MD 41 000 0 1 040 1041 [AD 000 044]

33326 Neff, C.W., Frank, R.G., and Luft, L., ASD TR 61-392, 2, 1-342, 1961. [AD 267 844]

Ziegler, W.T. and Mullins, J.C., Georgia Inst. Technology, Final Rept., Proj. No. A-504, 1-54,

Wittenberg, L.J., USAEC, MLM-1162, TID-4500 (30th Ed.), 1-22, 1963.

31325 Bewley, J.G., ASD-TDR-63-201, 1-14, 1963. [AD 402 066]

```
Ref.
       TPRC
No.
        No.
                                             Bibliographic Citation
       22905
258
               Lounasmaa, O. V., Phys. Rev., 128 (3), 1136-9, 1962.
259
        1329
               Krier, C.A., Craig, R.S., and Wallace, W.E., J. Phys. Chem., 61, 522-9, 1957.
260
       21830
               Anderson, C. T., J. Am. Chem. Soc., 52, 2296-300, 1930.
       30170
261
               Maier, C.G. and Anderson, C.T., J. Chem. Phys., 2, 513-27, 1934.
262
        6795
               Quinney, H. and Taylor, G.I., Proc. Roy. Soc. (London), 163A (913), 157-81, 1937.
263
        6448
               Avramescu, A., Z. Tech. Physik, 20 (7), 213-17, 1939.
264
        7169
               Mäder, H., Metall, 5(1), 1-5, 1951.
265
       19230
               Phillips, N. E., Phys. Rev., 114 (3), 676-85, 1959.
266
       23058
               Hopkins, D.C., Ph.D. Thesis, Univ. of Illinois, 1-82, 1962. [AD 282758]
267
       21394
               Günther, P., Ann. Physik, 63, 476-80, 1920.
268
       31762
               Umino, S., Sci. Repts., Tohoku Impl. Univ., 15 (Series 1), 597-617, 1926.
269
       33729
               Ahlers, G., Phys. Rev., 145 (2), 419-23, 1966.
270
       9862
               Lewis, E.J., Phys. Rev., 34, 1575-87, 1929.
271
       19099
               Vernotte, P. and Jeufroy, A., Compt. Rend., 192, 612-4, 1931.
272
               Jaeger, F.M. and Rosenbohm, E., Rec. Trav. Chim., 53, 451-63, 1934.
       10323
273
       7573
               Losana, L., Alluminio, 8 (2), 67-75, 1939.
274
      22865
               Drucker, C., Z. Physik Chem., 130, 673-90, 1927.
       21834
               Anderson, C. T., J. Am. Chem. Soc., 52, 2720-3, 1930.
               Keesom, W. H. and Van den Ende, J. N., Proc. Acad. Sci. Amsterdam, 33, 243-54, 1930;
276
       22368
               (correction: 34, 210-11, 1931).
277
       22446
               Carpenter, L. G. and Harle, T. F., Proc. Roy. Soc. (London), 136A, 243-50, 1932.
278
       6393
               Bronson, H. L. and MacHattie, L. E., Can. J. Res., 16A (9), 177-82, 1938.
279
       4342
               Kubaschewski, O. and Schrag, G., Z. Electrochem., 46, 675-80, 1940.
      16018
280
               Bell, H. and Hultgren, R., Univ. California, Tech. Rept. No. 1, 1-17, 1960. [AD 242479]
               [PB 149842]
281
      14646
               Schneider, A. and Hilmer, O., Z. Anorg. Allgem., 286, 97-117, 1956.
282
      24325
               Gruneisen, E. and Goens, E., Z. Physik, 26, 250-73, 1924.
283
       22871
               Lange, F. and Simon, F., Z. Phys. Chem., 134, 374-80, 1928.
        307
284
               Smith, P. L. and Wolcott, N. M., Phil. Mag., 1 (8), 854-65, 1956.
285
       9822
               McKeown, J.J., Ph.D. Thesis, Iowa State College, 1-113, 1958.
286
       25870
               Lemmon, A.W., Jr., Deem, H.W., Eldridge, E.A., Hall, E.H., Matolich, J., Jr., and Walling,
               J. F., NASA-CR-54018 BATT-4673-T7, 1-34, 1964.
287
      12111
               Anderson, C. T., J. Am. Chem. Soc., 59, 488-91, 1937.
288
       1886
               Estermann, I., Friedberg, S.A., and Goldman, J.E., Phys. Rev., 87, 582-8, 1952.
289
       21420
               Klinkhardt, H., Ann. Physik, 84, 167-200, 1927.
       14596
               Jaeger, F.M., Rosenbohm, E. and Bottema, J.A., Proc. Acad. Sci. Amsterdam, 35, 772-9, 1932.
291
       6379
               Dockerty, S. M., Can. J. Res., 9, 84-93, 1933.
292
       6240
               Dockerty, S. M., Can. J. Res., A15 (4), 59-66, 1937.
293
      2834€
               Aoyama, S. and Kanda, E., J. Chem. Soc. Japan, 62, 312-15, 1941.
       1525
294
               Brown, A., Zemansky, M.W., and Boorse, H.A., Phys. Rev., 86, 134-5, 1952.
295
      17559
               Eder, F.X., Bull. Inst. Intern. Froid. Annexe, 2, 137-41, 1955.
               Corak, W.S., Ph.D. Thesis, Univ. of Pittsburgh, 1-92, 1955.
296
      32573
297
      19923
               Cheng, C.-H., Ph.D. Thesis, Dept. of Metallurgy, Univ. of Illinois, 1-103, 1959.
298
      32681
               Chang, Y.-S.A., Ph.D. Thesis, Univ. of California, 1-79, 1963.
299
      32968
               Phillips, N. E., Phys. Rev., 134 (2A), A385-91, 1964.
300
      34916
               Ahlers, G., Rev. Sci. Instr., 37 (4), 477-80, 1966.
301
      39107
               Dennison, D. H., Gschneidner, K. A., Jr., and Daane, A. H., J. Chem. Phys., 44 (11), 4273-82,
               1966.
```

Christescu, S. and Simon, F., Z. Physik Chem., B25, 273-82, 1934.

Ref. No.	TPRC No.	Bibliographic Citation
303	32919	Piesbergen, U., Z. Naturforsch, A18 (2), 141-7, 1963.
304	34510	Sommelet, P. and Orr, R. L., J. Chem. Eng. Data, 11 (1), 64-5, 1966.
305	7453	Corak, W.S., Garfunkel, M.P., Satterthwaite, C.B., and Wexler, A., Phys. Rev., 98 (2), 1699-1707, 1955.
306	32743	Franzosini, P. and Clusius, K., Z. Naturforsch, <u>18a</u> (12), 1243-6, 1963.
307	32260	Hawkins, D.T., Onillon, M., and Orr, R.L., J. Chem. Eng. Data, 8 (4), 628-9, 1963.
308	7242	Wolcott, N.M., Phil. Mag., 8 (2), 1246-54, 1957.
309	20978	Wohler, L. and Jochum, N., Z. Phys. Chem. (Leipzig), 167A (3), 169-79, 1933.
310	30108	Kohlhaas, R. and Braun, M., Archiv. fur das Eisenhuttenwesen, 34 (5), 391-9, 1963.
311	21789	Rodebush, W. H. and Mickalek, J. C., J. Am. Chem. Soc., 47, 2117-21, 1925.
312	22636	Umino, S., Sci. Rept., Tohoku Impl. Univ., 15, 331-69, 1926.
313	9938	Umino, S., Sci. Rept., Tohoku Impl. Univ., <u>18</u> , 91-107, 1929.
314	11805	Simon, F. and Swain, R.C., Z. Physik Chem., 28B, 189-98, 1935.
315	6206	Honda, K. and Tokunaga, M., Sci. Rept., Tohoku Impl. Univ., 23 (1), 816-34, 1935.
316	7668	Jaeger, F.M., Rosenbohm, E., and Zuithoff, A.J., Rec. Trav. Chim., <u>57</u> , 1313-40, 1938.
317	1903	Duyckaerts, G., Mem. Soc. Roy. Sci. Liege, 6, 193-329, 1945.
318	1234	Pallister, P.R., J. Iron Steel Inst., <u>178</u> , 346-8, 1954.
319	9156	Valentiner, S., Optik, 15 (6), 343-57, 1958.
320	19922	Wei, CT., Ph.D. Thesis, Univ. Illinois, Univ. Microfilms Publ. 59-2063, 1-89, 1959.
321	6310	Jaeger, F.M., Bottema, J.A., and Rosenbohm, E., Proc. K. Akad. Wet. Amsterdam, 39 (8), 921-7, 1936.
322	536	Horowitz, M., Silvidi, A.A., Malaker, S.F., and Daunt, J.G., Phys. Rev., 88, 1182-6, 1952.
323	4654	Douglas, T.B. and Dever, J.L., J. Am. Chem. Soc., 76, 4824-6, 1954.
3 24	39226	Bonnerot, J., Rev. Physique Appliquee, <u>1</u> (1), 61-7, 1966.
325	7511	Cabbage, A.M., AECD-3240, 1-10, 1950.
326	16656	Yaggee, F. L. and Untermyer, S., ANL-4458, 1-27, 1950.
327	920	Bates, A. G. and Smith, D.J., U.S. At. Energy Comm. Rept. K729, 1-31, 1951.
328	10357	Douglas, T.B., Epstein, L.F., Dever, J.L., and Howland, W.H., J. Am. Chem. Soc., 77, 2144-50, 1955.
329	298	Logan, J.K., Clement, J.R., and Jeffers, H.R., Phys. Rev., 105, 1435-7, 1957.
330	1113	Shomate, C. H., J. Chem. Phys., <u>13</u> , 326-8, 1945.
331	28295	Naylor, B. F., J. Chem. Phys., <u>13</u> , 329-32, 1945.
332	1309	Booth, G. L., Hoare, F. E., and Murphy, B. T., Proc. Phys. Soc. (London), 68B, 830-2, 1955.
333	21397	Simon, F., Ann. Physik, 68, 241-80, 1922.
334	22846	Simon, F., Z. Physik Chem., <u>107</u> , 279-84, 1923.
335	22306	Carpenter, L. G. and Stoodley, L. G., Phil. Mag., 10 (7), 249-65, 1930.
336	28517	Pickard, G. L. and Simon, F. E., Proc. Phys. Soc. (London), 61, 1-9, 1948.
337	1292	Douglas, T.B., Ball, A.F., and Ginnings, D.C., J. Res. NBS, 46, 334-8, 1951.
338	1230	Busey, R. H. and Giauque, W. F., J. Am. Chem. Soc., 75, 806-9, 1953.
339	22316	Cooper, D. and Langstroth, G.O., Phys. Rev., 33, 243-8, 1929.
340	29598	Kothen, C.W., Ph.D. Thesis, Ohio State Univ., Univ. Microfilms Publ. 52-23697, 1-89, 1952.
341	33660	Rorer, D.C., Ph.D. Thesis, Duke Univ., Univ. Microfilms Inc. 64-8562, 1-124, 1964.
342	19090	Lapp, Ch., Compt. Rend., 186, 1104-6, 1928.
343	7373	Grew, K. E., Proc. Roy. Soc., A145, 509-22, 1934.
344	6212	Keesom, W. H. and Clark, C. W., Physica, 2, 513-20, 1935.
345	6479	Clusius, K. and Goldmann, J., Z. Phys. Chem., <u>B31</u> (4), 256-62, 1936.
346	6238	Ewert, M., Proc. K. Akad. Wet. Amsterdam, 39 (7), 833-8, 1936.
347	6405	Sykes, C. and Wilkinson, H., Proc. Roy. Soc., <u>50</u> (5), 834-51, 1938.
348	6434	Persoz, B., Compt. Rend., 208 (21), 1632-4, 1939.

29759 Gupta, K. P., Ph. D. Thesis, Univ. Illinois, Univ. Microfilms Publ. 62-6148, 1-132, 1962.

```
Ref.
      TPRC
No.
       No.
350
      24836
              Schmidt, E.O. and Leidenfrost, W., ASME Second Symp. on Thermophysical Properties, 178-84,
351
        911
              Brown, A., Zemansky, M.W., and Boorse, H.A., Phys. Rev., 92 52-8, 1953.
352
      37179
              Leupold, H.A. and Boorse, H.A., Phys. Rev., 134 (5A), A1322-8, 1964.
353
       1846
              Douglas, T.B., Ball, A.F., Ginnings, D.C., and Davis, W.D., J. Am. Chem. Soc., 74, 2472-8,
```

- 354 9460 Kurti, N. and Safrata, R.S., Phil. Mag., 3 (31), 780-3, 1958.
- 355 24162 Gordon, J. E., Dempsey, C.W. and Soller, T., Phys. Rev., 124 (3), 724-5, 1961.
- 356 32512 Lien, W. H. and Phillips, N. E., Phys. Rev., 133 (5A), A1370-7, 1964.
- 357 21852 DeVries, T. and Dobry, L.F., J. Am. Chem. Soc., 54, 3258-61, 1932.
- 358 6248 Anderson, C. T., J. Am. Chem. Soc., <u>59</u> (6), 1036-7, 1977.
- 359 29729 Kalishevich, G.I., Gel'd, P.V., and Krentsis, R.P., Russ. J. Phys. Chem., 39 (12), 1602-3, 1965.
- 360 20966 Keesom, W. H. and Kok, J. A., Proc. Akad. Sci. Amsterdam, 35, 301-6, 1932.
- 361 1037 Dauphinee, T.M., McDonald, D.K.C., and Preston-Thomas, H., Proc. Roy. Soc. (London), <u>221A</u>, 267-76, 1954.
- 362 1518 Parkinson. D. H. and Quarrington, J. E., Proc. Phys. Soc. (London), 68A, 762-3, 1955.
- 363 8047 Sterrett, K. F., Ph. D. Thesis, Univ. of Pittsburgh, Univ. Microfilms Publ. 22865, 1-119, 1957.
- 364 11101 Kelley, K. K., J. Chem. Phys., 8, 316-22, 1940.
- 365 28520 Keesom, W. H. and Desirant, M., Physica, 8, 273-88, 1941.
- 366 9686 Clusius, K. and Losa, C.G., Z. Naturforsch, A10, 939-43, 1955.
- 367 11869 Slansky, C.M. and Coulter, L.V., J. Am. Chem. Soc., 61, 564, 1939.
- 368 6394 Hicks, J. F. G., Jr., J. Am. Chem. Soc., 60 (5), 1000-4, 1938.
- 369 6232 Keesom, W. H. and Kok, J. A., Physica, 1, 175-81, 1934.
- 370 1318 Snider, J. L. and Nicol, J., Phys. Rev., 105, 1242-6, 1957.
- 371 32860 Bryant, C.A., Ph.D. Thesis, Purdue Univ., Univ. Microfilms Publ. 61-2464, 1-119, 1961.
- 372 1271 Aven, M., Craig, R.S., Waite, T.R., and Wallace, W.E., Phys. Rev., 102, 1263-4, 1956.
- 373 15368 Anderson, C. T., J. Am. Chem. Soc., <u>58</u>, 564-6, 1936.
- 374 1235 Corak, W.S., Goodman, B.B., Satterthwaite, C.B., and Wexler, A., Phys. Rev., <u>96</u>, 1442-4, 1954.
- 375 22614 Lounasmaa, O.V., Phys. Rev., 129, 2460-4, 1963.
- 376 424 Zabetakis, M.G., Ph.D. Thesis, Univ. of Pittsburgh, Univ. Microfilms Publ. 16530, 1-66, 1956.
- 377 10453 Zimmerman, J. E. and Crane, L. T., Phys. Rev., 126 (2), 513-6, 1962.
- 378 1478 Todd, S.S., J. Am. Chem. Soc., 72, 2914-5, 1950.
- 379 2023 Skinner, G. B. and Johnston, H. L., J. Am. Chem. Soc., 73, 4549-51, 1951.
- 380 39692 Lourasmaa, O.V. and Sundstrom, L.J., Phys. Rev., 150 (2), 399-412, 1966.
- 381 409 Johnston, W. V., Ph. D. Thesis, Univ. of Pittsburgh, Univ. Microfilms Publ, 15089, 1-106, 1956.
- 382 10440 Khomyakov, K.G., Kholler, V.A., and Slavhova, G.K., Vestnik Moskov Univ. Ser. Mat. Mekhan. Astron. Fiz. i Khim., 13 (4), 223-30, 1958.
- 383 21310 Saba, W.G. and Wallace, W.E., J. Chem. Phys., 35, 689-92, 1961.
- 384 29687 Brooks, C.R., Ph.D. Thesis, Univ. Tennessee, Univ. Microfilms Publ. 62-3711, 1-256, 1962.
- 385 38688 Slick, P.I., Massena, C.W., and Craig, R.S., J. Chem. Phys., 42 (8), 2788-94, 1965.
- 386 31040 Ho, J.C., O'Neal, H.R., and Phillips, N.E., Rev. Sci. Instr., 34 (7), 782-3, 1963.
- 387 20462 Keesom, W. H. and Kurrelmeyer, B., Physica, 7, 1003-24, 1940.
- 388 40676 Guthrie, G. L., Ph. D. Thesis, Carnegie Inst. of Tech., 1-126, 1956.
- 389 39449 Yee, R. and Zimmerman, G.O., J. Appl. Phys., <u>37</u> (9), 3577-80, 1966.
- 390 39735 Veal, B.W., Jr., M.S. Thesis, Univ. of Pittsburgh, 1-104, 1962.
- 391 40607 Chang, Y. A. and Hultgren, R., J. Chem. Eng. Data, 12 (1), 98-9, 1967.
- 392 26447 Orr, R. L., Giraud, H.J., and Hultgren, R., ASM Trans. Quart., 55 (3), 853-7, 1962.
- 393 32472 DeNobel, J. and DuChatenier, F.J., Physica, 29 (11), 1231-2, 1963.
- 394 19936 Galli, G., Ph.D. Thesis, Univ. Pittsburgh, Univ. Microfilms Publ. 59-4448, 1-77, 1959.

- Ref. TPRC
- No. No.
- 395 39887 Arledge, T. L., Jr., M. S. Thesis, Univ. Tennessee, 1-86, 1963.
- 396 17231 Wollam, J. S. and Wallace, W. E., J. Phys. Chem. Solids, 13, 212-20, 1960.
- 397 31333 Proshina, Z. V. and Rezukhina, T. N., Russ, J. Phys. Chem., 36 (1), 76-7, 1962.
- 398 7403 Hoare, F. E., Matthews, J.C., and Walling, J.C., Proc. Roy. Soc. (London), A216 (1127), 502-15, 1953.
- 399 32927 Ziegler, W. T. and Mullins, J. C., Cryogenics, 4 (1), 39-40, 1964.
- 400 40631 Jelinek, F.J., Shickell, W.D., and Gerstein, B.C., J. Phys. Chem. Solids, 28 (2), 267-70, 1967.
- 401 23357 Hake, R.R., Phys. Rev., 123, 1986-94, 1961.
- 402 31690 Proshina, Z. V. and Rezukhina, T. N., Russ. J. Phys. Chem., 36 (8), 941-2, 1962.
- 403 39917 Hoare, F. E. and Wheeler, J. C. C., Phys. Letters, 23 (7), 402-3, 1966.
- 404 39473 Klar, E., Mallya, R.M., and Craig, R.S., J. Chem. Phys., 45 (3), 934-6, 1966.
- 405 31065 Starke, E. A., Jr., M. S. Thesis, Univ. Illinois, 1-48, 1961.
- 406 1712 Redmond, R. F. and Lones, J., ORNL-1342, 3-20, 1952. [AD 3 665]
- 407 23739 Gregory, B. and Bray, H.J., Metallurgia, 63, 276-8, 1961.
- 408 33186 Bartenev, G.M., J. Tech. Phys. (USSR), 10, 1074-84, 1940.
- 409 39743 Bernard, H.W., M.S. Thesis, Penn. State Univ., 1-59, 1961.
- 410 38509 Burford, J.C. and Graham, G.M., Can. J. Phys., 43 (10), 1915-7, 1965.
- 411 3919 Gel'd, P. V., Kuprovskii, B. B., and Serebrennikov, N. N., Teploenergetika (USSR), <u>3</u> (6), 45-51, 1956.
- 412 21240 Liusternik, V.E., Phys. Metals Metallog. (USSR), 7 (3), 40-3, 1959.
- 413 35093 DuChatenier, F.J., Boerstoel, B.M., and DeNobel, J., Physica, 31 (7), 1061-2, 1965.
- 414 26610 Powers, W.C. and Blalock, G.C., CF-53-9-98, 1-9, 1953.
- 415 7366 Craig, R.S., Satterthwaite, C.B., and Wallace, W.E., USAEC Publ., NYO-946, 1-28, 1952.
- 416 8143 Holden, R.B. and Kopelman, B., USAEC, SEP-128, 1-17, 1953.
- 417 41263 Huffstuller, M.C., Jr., Ph.D. Thesis, Univ. California, 1-52, 1961.
- 418 32370 Kussman, Von A. and Wollenberger, H., Z. Metallkunde, <u>50</u>, 94-100, 1959.
- 419 38419 Brewer, D. F., Howe, D. R., and Turrell, B. G., Phys. Letters, 13 (3), 204-5, 1964.
- 420 40967 Proctor, W., Scurlock, R.G., and Wray, E.M., Proc. Phys. Soc. (London), 90 (3), 697-705, 1967.
- 421 6335 Mendelssohn, K. and Moore, J. R., Proc. Roy. Soc. (London), 151A, 334-41, 1935.
- 422 44070 Lounasmaa, O.V. and Sundstrom, L.J., Phys. Rev., 158 (3), 591-600, 1967.
- 423 30698 Pollitzer, F., Z. Electrochem., 17, 5-14, 1911.
- 424 35142 Taylor, W. A., McCollum, D. C., Passenheim, B. C., and White, H. W., Phys. Rev., 161 (3), 652-5, 1967.
- 425 19184 Evans, J. P. and Mardon, P. G., J. Phys. Chem. Solids, 10, 311-3, 1959.
- 426 36776 Sandenaw, T.A., J. Phys. Chem. Solids, 26 (6), 1075-8, 1965.
- 427 20619 Lyubimov, A.P., and Belashchenko, D.K., Sbor. Moskovskogo Inst. Stali, 33, 3-11, 1955.
- 428 7294 Pallister, P.R., J. Iron Steel Inst., 185, 474-82, 1957.
- 429 2868 Skinner, G.B., Ohio State Univ. Ph.D. Thesis, Univ. Microfilms Publ. 51-25473, 115pp., 1951.

Meterial Index

MATERIAL INDEX TO SPECIFIC HEAT COMPANION VOLUMES 4, 5, AND 6

Acetone [(CH ₃) ₂ CO] 6 113 Aluminum silicates: 5 Acetylene (CHCH) 6 117 Al ₂ Si ₂ O ₅ 5 Acetylenogen (see Calcium dicarbide) 6 293 Al ₂ Si ₂ O ₇ ·2H ₂ O 5 Air 6 293 Al ₂ Si ₂ O ₇ ·2H ₂ O 5 AiSi 301 4 693 Dialuminum silicon pentaoxide (Al ₂ Si ₂ O ₅) 5 AiSi 304 4 699 Hexaaluminum disilicon 13-oxide (Al ₈ Si ₂ O ₁₃) 5 AiSi 305 4 702 Dialuminum sulfates: (Al ₂ Si ₂ O ₇ ·2H ₂ O) 5 AiSi 316 4 708 Al ₂ (SO ₄) ₃ 5 AiSi 347 4 711 Al ₂ (SO ₄) ₃ ·6H ₂ O 5 AiSi 420 4 678 Dialuminum trisulfate [Al ₂ (SO ₄) ₃] 5 AiSi 430 4 681 Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃] 5	1289 1292 1295 1289 1292 1295 1161 1164 1161
Acetylenogen (see Calcium dicarbide) Al ₈ Si ₂ O ₁ 3 5 Air 6 293 Al ₂ Si ₂ O ₇ ·2H ₂ O 5 AISI 301 4 693 Dialuminum silicon pentaoxide (Al ₂ SiO ₅) 5 AISI 304 4 699 Hexaaluminum disilicon 13-oxide (Al ₈ Si ₂ O ₁₃) 5 AISI 305 4 702 Dialuminum disilicon heptaoxide dihydrate (Al ₂ Si ₂ O ₇ ·2H ₂ O) 5 AISI 310 4 705 Aluminum sulfates: Aluminum sulfates: AISI 347 4 711 Al ₂ (SO ₄) ₃ 5 AISI 420 4 678 Al ₂ (SO ₄) ₃ ·6H ₂ O 5 AISI 430 4 681 Dialuminum trisulfate [Al ₂ (SO ₄) ₃] 5 Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃] 5 5	1292 1295 1289 1292 1295 1161 1164 1161
Air 6 293	1295 1289 1292 1295 1161 1164 1161
AISI 301 AISI 304 AISI 305 AISI 305 AISI 310 AISI 310 AISI 316 AISI 347 AISI 347 AISI 340 AISI 3	1289 1292 1295 1161 1164 1161
AISI 304 AISI 305 AISI 305 AISI 310 AISI 316 AISI 347 AISI 347 AISI 420 AISI 430 AISI 430 AISI 430 AISI 430 AISI 459 Hexaluminum disilicon 13-oxide (Al ₈ Si ₂ O ₁₃) 5 Dialuminum disilicon heptaoxide dihydrate (Al ₂ Si ₂ O ₇ ·2H ₂ O) 5 Aluminum sulfates: Al ₂ (SO ₄) ₃ 5 Al ₂ (SO ₄) ₃ 5 Dialuminum trisulfate [Al ₂ (SO ₄) ₃] Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃] Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃]	1292 1295 1161 1164 1161
AISI 305 AISI 310 AISI 316 AISI 347 AISI 420 AISI 430 4 702 Dialuminum disilicon heptaoxide dihydrate (Al ₂ Si ₂ O ₇ ·2H ₂ O) 5 Aluminum sulfates: Al ₂ (SO ₄) ₃ 5 Al ₂ (SO ₄) ₃ ·6H ₂ O Dialuminum trisulfate [Al ₂ (SO ₄) ₃] Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃]	1295 1161 1164 1161
AISI 310 AISI 316 AISI 347 AISI 420 AISI 430 4 708 4 708 AISI 430 (Al ₂ Si ₂ O ₇ · 2H ₂ O) 5 Aluminum sulfates: Al ₂ (SO ₄) ₃ 5 Al ₂ (SO ₄) ₃ 5 Al ₂ (SO ₄) ₃ 6H ₂ O Dialuminum trisulfate [Al ₂ (SO ₄) ₃] Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃]	1161 1164 1161
AISI 310 AISI 316 AISI 347 AISI 420 AISI 430 4 708 4 708 Aluminum sulfates: Al $_2(SO_4)_3$ 5 Al $_2(SO_4)_3 \cdot 6H_2O$ Dialuminum trisulfate [Al $_2(SO_4)_3$] Dialuminum trisulfate hexahydrate [Al $_2(SO_4)_3$]	1161 1164 1161
AISI 316 AISI 347 AISI 420 AISI 430 4 708 A $l_2(SO_4)_3$ 5 A $l_2(SO_4)_3 \cdot 6H_2O$ 5 Dialuminum trisulfate $[Al_2(SO_4)_3]$ Dialuminum trisulfate hexahydrate $[Al_2(SO_4)_3]$	1164 1161
AISI 347 AISI 420 4 711 Al ₂ (SO ₄) ₃ · 6H ₂ O 5 AISI 430 4 681 Dialuminum trisulfate [Al ₂ (SO ₄) ₃] 5 Dialuminum trisulfate hexahydrate [Al ₂ (SO ₄) ₃]	1164 1161
AISI 420 4 678 Dialuminum trisulfate $[Al_2(SO_4)_3]$ 5 AISI 430 4 681 Dialuminum trisulfate hexahydrate $[Al_2(SO_4)_3]$	1161
AISI 430 4 681 Dialuminum trisulfate hexahydrate Al ₂ (SO ₄) ₃	
Dialuminum trisultate hexahydrate Al ₂ (SO ₄)	
AISI 446 4 684 6H ₂ O] 5	1164
Alpha brass alloy 4 346 Aluminum titanate (see Dialuminum titanium pentaoxide)	
Alumei 4 568 Dialuminum titanium pentaoxide (Al ₂ TiO ₅) 5	1298
Alumina (see Aluminum oxide) Ammonia (NH ₃) 6	61
Aluminosilicate glass (SiO ₂ + Al ₂ O ₅ + ΣX_i) 5 1227 Ammonium aluminum sulfates:	01
Aluminum 4 1	1170
Aluminum + Copper + ΣX_i Aluminum + Copper + ΣX_i NH ₄ Al(SO ₄) ₂ 5	1170
Aluminum + Zinc + ΣX_1 $4 514 NH_4Al(SO_4)_2 \cdot 12H_2O 5$	1173
Ammonium aluminum disulfate [NH ₄ Al(SO ₄) ₂] 5 Aluminum alloys (specific types)	1170
24 S (same as 2024) 4 511 Ammonium aluminum disulfate dodecahy- drate [NH ₄ Al(SO ₄) ₂ ·12H ₂ O] 5	1173
75 S (same as 7075) 4 514 Diammonium sulfate [(NH ₄) ₂ SO ₄] 5	1167
2024 4 511 AMS 4901 B (see Titanium, Ti-75 A)	
7075 4 514 Antimonic acid anhydride (see Diantimony pentaoxide)	
Aluminum antimonide (AlSb) 5 297 Antimony 4	
Aluminum carbide $+\sum X_i$ (Al ₄ C ₃ + $\sum X_i$) 5 395 Antimony oxides:	6
Aluminum trifluoride (AIF ₃) 5 915	90
Aluminum nitride (AlN) 5 1075 Sb ₂ O ₄ 5 5	30
Aluminum oxide (Al_2O_3) 5 26 Sb_2O_5 5	33
Aluminum phosphide (AlP) 5 517	

Material Name	Vol.	Page	Material Name	Vol.	Page
	-		Baking soda (see Sodium bicarbonate)		
Planting and Artifacturida (Ch. C.)	_	20	Barium	4	13
Diantimony tetraoxide (Sb ₂ O ₄)	5	30	Barium carbonate (BaCO ₃)	5	1109
Diantimony pentaoxide (Sb ₂ O ₅)	5	33	Barium dichloride (BaCl ₂)	5	785
Antimony sulfide (see Diantimony trisulfide)		205	Barium dichloride dihydrate (BaCl ₂ ·2H ₂ O)	5	788
Diantimony trisulfide (Sb ₂ S ₃)	5	635	Barium fluoride (see Barium difluoride)		
Antimony sulfur iodide (SbSI)	5	485	Barium difluoride (BaF ₂)	5	918
Argentum (see Silver)			Barium dinitrate [Ba(NO ₃) ₂]	5	1139
Argon	6	1	Barium oxide (BaO)	5	42
Armco iron	4	102	Barium silicates:		:
Arsenic	4	9	BaSiO ₃	5	1301
Arsenic acid (see Diarsenic pentaoxide)			Ba ₂ SiO ₄	5	1304
Arsenic anhydride (see Diarsenic pentaoxide)			BaSi ₂ O ₅	5	1307
Arsenic triiodide (AsI3)	5	488	Ba ₂ Si ₃ O ₈	5	1310
Arsenic oxides:			Barium silicon trioxide (BaSiO ₃)	5	1301
As ₂ O ₃	5	36	Dibarium silicon tetraoxide (Ba ₂ SiO ₄)	5	1304
As ₂ O ₅	5	39	Barium disilicon pentaoxide (BaSi ₂ O ₅)	5	1307
Arsenic sesquioxide (As ₂ O ₃)	5	36	Dibarium trisilicon octaoxide (Ba ₂ Si ₃ O ₈)	5	1310
Diarsenic trioxide (see Arsenic sesquioxide)			Barium sulfate (BaSO ₄)	5	1176
Diarsenic pentaoxide (As ₂ O ₅)	5	39	Barium sulfide (BaS)	5	644
Arsenic sulfides:			Barium titanates:	,	044
AsS	5	638		-5	1313
Ав ₂ S ₃	5	641	BaTiO ₃	5	
Arsenic sulfide (AsS)	5	638	Ba ₂ TiO ₄		1316
Arsenic tersulfide (see Diarsenic trisulfide)			Barium titanium trioxide (BaTiO ₃)	5	1313
Diarsenic trisulfide (As ₂ S ₃)	5	641	Dibarium titanium tetraoxide (Ba ₂ TiO ₄)	5	1316
Arsenious acid (see Arsenic sesquioxide)			Barium uranate (see Barium uranium tetra- oxide)		
Arsenious iodide (see Arsenic triiodide)			Barium uranium tetraoxide (BaUO ₄)	5	1319
Arsenious oxide (see Arsenic sesquioxide)			Barium zirconate (see Barium zirconium trioxide)		
Arsenious sulfide (see Diarsenic trisulfide)					1222
Arsenous anhydride (see Arsenic sesqui- oxide)			Barium zirconium trioxide (BaZrO ₃) Benzene (C_6H_6)	5 6	1322
Arsenous sulfide (see Diarsenic trisulfide)			Beryllia (see Beryllium oxide)		
ASTM B 265-58 T, grade 3 and 4 (see			Beryllium	14	16
Titanium, Ti-75A) Aurum (see Gold)			Beryllium + Beryllium oxide, cermet (Be + BeO)	5	1243
Austenite (see steel, austenite)					

Material Name	Vol.	Page	Material Name	Vol.	Page
Beryllium aluminate (see Beryllium dialum- inum tetraoxide)			Boron carbide (see Tetraboron carbide)	1	
Beryllium dialuminum tetraoxide (BeAl ₂ O ₄)	5	1325	Tetraboron carbide (B ₄ C)	5	402
Diberyllium carbide $+\Sigma X_i$ (Be ₂ C $+\Sigma X_i$)	5	399	Boron trifluoride (BF ₃)	6	67
Beryllium cermet (specific types)			Boron nitride (BN)	5	1078
QMV	5	1243	Boron nitride + Diboron trioxide + $\sum X_i$, cermet (BN + $B_2O_3 + \sum X_i$)	5	1270
YB 9052	5	1243	Boron nitride + Carbon, cermet (BN + C)	5	1273
YB 9054	5	1243	Boron sesquioxide (B ₂ O ₃)	5	51
Beryllium difluoride (BeF ₂)	5	921	Diboron trioxide (see Boron sesquioxide)		
Beryllium oxide (BeO)	5	45	Borosilicate glass (SiO ₂ + B ₂ O ₃ + $\sum X_i$)	5	1230
Beryllium oxide + Beryllium, cermet (BeO + Be)	5	1246	Brass	14	346
Beryllium oxide + Beryllium + Molybdenum.		1240	Brimstone (see Sulfur)		
cermet (BeO + Be + Mo)	5	1249	Bromine	6	7
Beryllium oxide + Molybdenum, cermet (BeO + Mo)	5	1252	i-Butane (i-C ₄ H ₁₀)	6	129
Beryllium oxide + Molybdenum dodeca-	Ü		n-Butane (n-C ₄ H ₁₀)	6	136
beryllide, cermet (BeO + MoBe ₁₂)	5	1255	Butter of zinc (see Zinc dichloride)		
Beryllium oxide + Niobium dodecaberyllide, cermet (BeO + NbBe ₁₂)	5	1258	Cadmium	4	29
Beryllium oxide + Tantalum dodecaberyllide,			Cadmium + Magnesium (MgCd)	4	294
cermet (BeO + TaBe ₁₂)	5	1261	Cadmium + Magnesium (Mg ₃ Cd)	4	297
Beryllium oxide + Titanium dodecaberyllide, cermet (BeO + TiBe ₁₂)	5	1264	Cadmium + Magnesium (MgCd ₃)	4	300
Beryllium oxide + Zirconium 13-beryllide,			Cadmium dibromide (CdBr ₂)	5	759
cermet (BeO + ZrBe ₁₃)	5	1267	Cadmium dichloride (CdCl ₂)	5	791
Diberyllium silicon tetraoxide (Be ₂ SiO ₄)	5	1329	Cadmium iodide (see Cadmium diiodide)		
Beryllium sulfate (BeSO ₄)	5	1179	Cadmium diiodide (CdI ₂)	5	491
Birnethyl (see Ethane)			Cadmium oxide (CdO)	5	54
Bis muth	4	21	Cadmium sulfide (CdS)	5	650
Bismuth + Lead	4	291	Cadmium telluride (CdTe)	5	720
Bismuth glance (see Dibismuth tritelluride)			Calcia (see Calcium oxide)		
Bismuth sesquioxide (Bi ₂ O ₃)	5	48	Calcium	4	32
Dibismuth trioxide (see Bismuth sesquioxide)			Calcium aluminates:		
Dibismuth trisulfide (Bi ₂ S ₃)	5	647	CaAl ₂ O ₄	5	1332
Dibismuth tritelluride (Bi ₂ Te ₃)	5	717	CaAl ₄ O ₇	5	1335
Bitter spar (see Calcium magnesium dicar- bonate)			Ca ₃ Al ₂ O ₆	5	1338
Boralloy (see Boron nitride)			Ca ₁₂ Al ₁₄ O ₃₃	5	1341
Boron	4 5	25	Calcium dialuminum tetraoxide (CaAl ₂ O ₄)	5	1332

Material Name	Vol.	Page	Material Name	Vol.	Page
Calcium tetraaluminum heptaoxide (CaAl $_4$ O $_7$)	5	1335	Calcium fluoride (see Calcium difluoride)		
Tricalcium dialuminum hexaoxide (Ca ₃ Al ₂ O ₆)	5	1338	Calcium difluoride (CaF ₂)	5	924
Dodecacalcium 14-aluminum 33-oxide (Ca ₁₂ Al ₁₄ O ₃₃)	5	1341	Calcium diiron tetraoxide (CaFe ₂ O ₄)	5	1356 1359
Calcium aluminum silicates:			Dicalcium diiron pentaoxide (Ca ₂ Fe ₂ O ₅)	3	1339
CaAl ₂ Si ₂ O ₈	5	1404	Calcium magnesium dicarbonate [CaMg(CO ₃) ₂]	5	1115
Ca ₂ Al ₂ SiO ₇	5	1401	Calcium magnesium silicates:		
CaAl ₂ Si ₂ O ₈ ·2H ₂ O	5	1407	CaMgSi ₂ O ₆	5	1413
Ca ₂ Al ₄ Si ₈ O ₂₄ ·7H ₂ O	5	1410	Ca ₂ MgSi ₂ O ₇	5	1416
Calcium dialuminum disilicon octaoxide (CaAl ₂ Si ₂ O ₂)	5	1404	Ca ₃ MgSi ₂ O ₈	5	1419
Dicalcium dialuminum silicon heptaoxide	3	1404	Ca ₂ Mg ₆ Si ₈ O ₂₃ · H ₂ O	5	1422
(Ca ₂ Al ₂ SiO ₇)	5	1401	Calcium magnesium disilicon hexaoxide (CaMgSi ₂ O ₆)	5	1413
Calcium dialuminum disilicon octaoxide dihydrate (CaAl ₂ Si ₂ O ₈ ·2H ₂ O)	5	1407	Dicalcium magnesium disilicor heptaoxide (Ca ₂ MgSi ₂ O ₇)	5	1416
Dicalcium tetraaluminum octasilicon 24-oxide heptahydrate (Ca ₂ Al ₄ Si ₈ O ₂₄ ·7H ₂ O)	5	1410	Tricalcium magnesium disilicon octaoxide (Ca ₃ MgSi ₂ O ₃)	5	1419
Calcium borates:		П	Dicalcium pentamagnesium octasilicon 23-		
CaB ₂ O ₄	5	1344	oxide monohydrate (Ca ₂ Mg ₅ Si ₈ O ₂₃ ·H ₂ O)	5	1422
CaB₄O ₇	5	1347	Calcium molybdate (see Calcium molybde- num tetraoxide)	5	1362
Ca₂B₂O₅	5	1350	Calcium molybdenum tetraoxide (CaMcO ₄)	5	1362
Ca ₃ B ₂ O ₆	5	1353	Calcium oxide (CaO)	5	57
Calcium metaborate (see Calcium diboron tetraoxide)			Calcium silicates:		
Monocalcium borate (see Calcium diboron tetraoxide)			CaSiO ₃	5	1365
Calcium diboron tetraoxide (CaB ₂ O ₄)	5	1344	Ca₂SiO₄	5	1368
Calcium tetraboron heptaoxide (CaB ₄ O ₇)	5	1347	Ca₃SiO₅	5	1371
Dicalcium diboron pentaoxide (Ca ₂ B ₂ O ₅)	5	1350	Ca ₃ Si ₂ O ₇	5	1374
Tricalcium diboron hexaoxide (Ca ₃ B ₂ O ₆)	5	1353	Calcium metasilicate (see Calcium silicon trioxide)		
Calcium dicarbide (CaC ₂)	5	405	Calcium orthosilicate (see Picalcium silicon		
Calcium carbonate (CaCO ₃)	5	1112	tetraoxide)		1365
Calcium dichloride (CaCl ₂)	5	794	Calcium silicon trioxide (CaSiO ₃)	5	
Calcium ferrites:			Dicalcium silicon tetraoxide (Ca ₂ SiO ₄)	5	1368
CaFe ₂ O ₄	5	1356	Tricalcium silicon pentaoxide (Ca ₃ SiO ₅)	5	1371
Ca ₂ Fe ₂ O ₅	5	1359	Tricalcium disilicon heptaoxide (Ca ₃ Si ₂ O ₇)	5	1374
Calcium metaferrite (see Calcium diiron tetraoxide)			Calcium sulfates: CaSO4	5	1182
Calcium orthoferrite (see Dicalcium diiron pentaoxide)			CaSO ₄ · 1/2H ₂ O	5	1185

Material Name	Vol.	Page	Material Name	Vol.	Page
Calcium sulfates - continued			Carbon dioxide (CO ₂)	6	143
CaSO ₄ · 2H ₂ O	5	1188	Carbon steel (Group I)	4	619
Calcium sulfate (CaSO ₄)	5	1182	Carbon steel (Group II)	4	623
Calcium sulfate hemihydrate (CaSO ₄ ·1/2H ₂ O)	5	1185	Carbon steel (Group II), eutectoid	4	623
Calcium sulfate dihydrate (CaSO ₄ ·2H ₂ O)	5	1188	Carbon steel (Group II), hyper eutectoid	4	623
Calcium sulfide (CaS)	5	653	Carbon steel (Group II), U-8	4	623
Calcium titanates:			Cassiopeium (see Lutetium)		
CaTiO ₃	5	1377	Celtium(see Hafnium)		
Ca ₃ Ti ₂ O ₇	5	1380	Cerium	14	36
Calcium titanium trioxide (CaTiO ₃)	5	1377	Cerium trifluoride (CeF ₃)	5	927
Tricalcium dititanium heptaoxide (Ca ₃ Ti ₂ O ₇)	5	1380	Cerium oxides:		
Calcium tungstate (see Calcium tungsten tetraoxide)			CeO	5	60
Calcium tungsten tetraoxide (CaWO4)	5	13٤3	Ce ₂ O ₃	5	64
Calcium uranate (see Calcium uranium			Cerium dioxide (CeO ₂)	5	60
tetraoxide)			Cerium sesquioxide (Ce ₂ O ₃)	5	64
Calcium uranium tetraoxide (CaUO4)	5	1386	Dicerium trioxide (see Corium sesquioxide)		
Calcium vanadates:			Cerium sulfides:		
CaV₂O6	5	1389	CeS	5	656
Ca ₂ V ₂ O ₇	5	1392	Ce ₂ S ₃	5	659
Ca ₃ V ₂ O ₈	5	1395	Cerium sulfide (CeS)	5	656
Calcium divanadium hexaoxide (CaV ₂ O ₆)	5	1389	Dicerium trisulfide (Ce ₂ S ₃)	5	659
Dicalcium divanadium heptaoxide (Ca ₂ V ₂ O ₇)	5	1392	Cermets:	,	
Tricalcium divanadium octaoxide (Cs ₃ V ₂ O ₈)	5	1395	Be + BeO	5	1243
Calcium wolframite (see Calcium tungsten tetraoxide)			BeO + Be	5	1246
Calcium zirconate (see Calcium zirconium			BeO + Be + Mo	5	1249
trioxide)			BeO + Mo	5	1252
Calcium zirconium trioxide (CaZrO ₃)	5	1398	BeO + MoBe ₁₂	5	1255
Carbon, diamond	5	4	BeO + NbBe ₁₂	5	1258
Carbon, graphite	5	9	BeO + TaBe ₁₂	5	1261
Carbon + Silicon carbide, cermet (C + SiC)	5	1276	BeO + TiBe ₁₂	5	1264
Carbon tetrachloride (CCl ₄)	6	159	BeO + ZrBe ₁₃	5	1267
Carbon oxides:			$BN + B_2O_3 + \Sigma X_i$	5	1270
co	6	152	BN + C	5	1273
CO ₂	6	143	C + SiC	5	1276
Carbon monoxide (CO)	6	152	$SiC + C + \Sigma X_i$	5	1279

Material Name	Vol.	Page	Material Name	Vol.	Page
Cermets - continued			Trichromium dicarbide (Cr ₅ C ₂)	5	408
wc + co	5	1282	Tetrachromium carbide (Cr ₄ C)	5	414
ZrO ₂ + Ti	5	1285	Pentachromium dicarbide (Cr ₅ C ₂)	5	411
Cesium	4	40	Heptachromium tricarbide (Cr ₇ C ₃)	5	417
Cesium aluminum disulfate dodecahydrate [CsAl(SO ₄) ₂ ·12H ₂ O]	5	1191	Chromium chlorides:		
Cesium chloride (CsCl)	5	797	CrCl ₂	5	800
Cesium monohydrogen difluoride (CsHF2)	5	931	CrCl ₃	5	803
Cesium iodide (CsI)	5	494	Chromium dichloride (CrCl ₂)	5	800
Chlorine	6	11	Chromium trichloride (CrCl ₃)	5	803
Chlorodifluoromethane (see Freon 22)	t		Chromium sesquioxide (Cr ₂ O ₃)	5	67
Chlorotrifluoromethane (see Freon 13)			Dichromium trioxide (see Chromium sesquioxide)		
Chloroform (CHCl ₃)	6	166	Chromium silicides:		
Chloromethane (see Methyl chloride)			CrSi	5	565
Chromel A (see Nichrome V)			CrSi ₂	5	568
Chromel P	4	392	Cr ₃ Si	5	559
Chromium	4	44	Cr _p Si ₃	5	562
Chromium + Aluminum	4	304	Chromium silicide (CrSi)	5	565
Chromium + Aluminum + Σ_{X_i}	4	517	Chromium disilicide (CrSi ₂)	5	568
Chromium + Iron	.4	307	Trichromium silicide (t/r ₃ Si)	5	559
Chromium + Iron + $\sum X_i$	4	520	Pentachromium trisilicide (Cr ₅ Si ₃)	5	562
Chromium + Manganese	4	311	Cobalt	4	48
Chromium alloys (specific types)			Cobalt + Chromium + ΣX_i	4	523,
Aluminothermic chromium	4	520	Cobalt + Dysprosium (DyCo ₅)	4	52.6 314
Ferrochromium	4	520	Cobalt + Iron	4	317
Chromium borides:			Cobalt + Nickel	4	320
CrB	5	335	Cobalt alloy, HE 1049	4	526
CrB ₂	5	338	Cobalt chlorides;		
Chromium monoboride (CrB)	5	335	CoCl ₂	5	806
Chromium diboride (CrB ₂)	5	338	CoCl ₂ ·6H ₂ O	5	809
Chromium carbides:		1	Cobalt dichloride (CoCl ₂)	5	806
Cr ₃ C ₂	5	408	Cobalt dichloride hexahydrate (CoCl ₂ ·6H ₂ O)	5	809
Cr ₄ C	5	414	Cobalt ferrites:		
Cr ₅ C ₂	5	411	CoFe ₂ O ₄	5	1425
Cr ₇ C ₃	5	417	Co _x Fe _y O ₄ (nonstoichiometric)	5	1428

Material Name	Vol.	Page	Material Name	Vol.	Page
Cobalt diiron tetraoxide (CoFe ₂ O ₄)	5	1425	Copper alloys (specific types)		
Cobalt iron tetraoxide, nonstoichiometric (Co _X Fe _y O ₄)	5	1428	Manganin	4	338
Cobalt difluoride (CoF ₂)	5	934	Monel	4	562
Cobalt oxides:	-		Copper bromide (CuBr)	5	762
CoO	5	70	Copper chlorides:	50	
Co ₃ O ₄	5	73	CuCl ₂	5	812
Cobalt monoxide (CoO)	5	70	CuCl ₂ · 2H ₂ O	5	815
Tricobalt tetraoxide (Co ₃ O ₄)	5	73	Copper dichloride (CuCl ₂)	5	812
Cobalto-cobaltic oxide (see Tricobalt tetra-oxide)			Copper dichloride dihydrate (CuCl ₂ ·2H ₂ O) Copper ferrites:	5	815
Cobaltosic oxide (see Tricobalt tetraoxide)			CuFe₂O₄	5	1437
Cobaltouscobaltic oxide (see Tricobalt tetra- oxide)	-		Cu _x Fe _y O ₄ (nonstoichiometric)	5	1434
Cobalt silicide (CoSi)	5	571	Copper diiron tetraoxide (CuFe ₂ O ₄)	5	1437
Cobalt sulfate heptahydrate (CoSO ₄ ·7H ₂ O)	5	1194	Copper iron tetraoxide, nonstoichiometric (Cu _x Fe _y O ₄)	5	1434
Cobalt tungstate (see Cobalt tungsten tetra-oxide)			Copper hemioxide (see Copperous oxide)	ļ	
Cobalt tungsten tetraoxide (CoWO ₄)	5	1431	Dicopper monoxide (see Copperous oxide)		
·	3	1431	Copper oxides:		
Columbium (see Niobium) Constantan			CuO	5	80
	4	341	Cu ₂ O	5	76
Copper	4	51	Copperas (see Iron sulfate heptahydrate)		
Copper, electrolytic	4	51	Copperic oxide (CuO)	5	80
Copper, electrolytic tough pitch (Fed. Spec. QQC-502)	.4	51	Copperous oxide (Cu ₂ O)	5	76
Copper, electrolytic tough pitch (Fed. Spec. QQC-576)	4	51	Copper protooxide (see Copperous oxide)		
Copper, OFHC	4	51	Copper suboxide (see Copperous oxide)		
Copper + Aluminum	4	323	Copper sulfides:		
Copper + Chromium + EX.	4	-506	Cus	5	662
Copper + Gallium	4	327	Cu ₂ S	5	665
Copper + Iron	4	331	Copper sulfide (CuS)	5	662
Copper + Magnesium	4	335	Dicopper sulfide (Cu ₂ S)	5	665
Copper + Magnesium + Aluminum (MgCu _{2-x} Al _x)	4	529	Cordierite (see Dimagnesium tetraaluminum pentasilicon 18-oxide)		
$(MgCu_{2-X}M_{X})$ Copper + Magnesium + Silicon $(MgCu_{2-X}Si_{x})$	4	532	Corning 1723 glass	5	1227
Copper + Magnesium + Sincon (MgCu _{2-X} Si _X) Copper + Manganese	4	338	Corundum (see Aluminum oxide)		
			Crucible HMM	4	714
Copper + Nickel Copper + Zinc	4	341	Cuprum (see Copper)		

Material Name	Vol.	Page	Material Name	Vol.	Page
n-Decane (C ₁₀ H ₂₂)	6	170	Ethylene alcohol (see Ethylene glycol)		
Deuterium	6	15	Ethylene glycol (CH ₂ OHCH ₂ OH)	6	192
Diamond (see Carbon, diamond)			Ethyne (see Acetylene)		
Dichlorodifluoromethane (see Freon 12)			Europium	4	68
Dichlorofluoromethane (see Freen 21)			Europium oxide (Eu ₂ O ₃)	5	89
1,2-Dichloro-1,1,2,2-tetrafluoroethane (see Freon 114)			Dieuropium trisulfate octahydrate (Eu ₂ (SO ₄); 8H ₂ O)	5	1197
Dimethyl (see Ethane)			Ferric oxide [see Iron (ic) oxide]		
Dimethyl keytone (see Acetone)			Ferroniobium	4	574
Dimethylmethane (see Propane)			Ferrous chloride (see Iron dichloride)		
Dysprosia (see Dysprosium oxide)			Ferrous ferric oxide (see Triiron tetraoxide)		
Dysprosium	4	62	Ferrous fluoride (see Iron difluoride)		
Dysprosium trichloride hexahydrate (DyCl ₃ ·6H ₂ O)	5	818	Ferrous oxide [see Iron (ous) oxide]		
	5	83	Ferrum (see Iron)		
Dysprosium oxide (Dy ₂ O ₃) Dysprosium sesquioxide (see Dysprosium	3	63	Flowers of tin (see Tin dioxide)		
oxide)			Fluorine	6	19
Didysprosium trioxide (see Dysprosium oxide)			Freon 10 (see Carbon tetrachloride)		
Erbia (see Erbium oxide)			Freon 11 (Cl ₃ CF)	6	200
Erbium	4	65	Freon 12 (Cl ₂ CF ₂)	6	204
Erbium trichloride hexahydrate (ErCl ₃ · 6H ₂ O)		822	Freon 13 (ClCF ₃)	6	210
Erbium gallate (see Trierbium pentagallium	J	044	Freon 20 (see Chloroform)		
dodecaoxide)			Freon 21 (Cl ₂ CHF)	6	212
Trierbium pentagallium dodecaoxide	5	1440	Freon 22 (ClCHF ₂)	6	218
{ Er ₃ Ga ₅ O ₁₂ (Garnet)} Erbium oxide (Er ₂ O ₃)	5	86	Freon 113 (CCl ₂ FCClF ₂)	6	224
Erbium sesquioxide (see Erbium oxide)	J	80	Freon 114 (CCIF ₂ CCIF ₂)	6	228
Dierbium trioxide (see Erbium oxide)			Gadolinia (see Gadolinium oxide)		
Ethane (C ₂ H ₄)	6	174	Gadolinium	4	72
1,2-Ethanediol (see Ethylene glycol)	0	174	Gadolinium trichloride hexahydrate (GdCl ₃ ·6H ₂ O)	5	826
Ethene (see Ethylene)			Gadolinium trinitrate hexahydrate		
Ethine (see Acetylene)			(Gd(NO ₃) ₃ · 6H ₂ O)	5	1142
Ethoxyethane (see Ethyl ether)			Gadolinium oxide (Gd ₂ O ₃)	5	92
Ethyl Alcohol (C ₂ H ₈ OH)	6	180	Gadolinium sesquioxide (see Gadolinium oxide)		
Ethyl ether [(C ₂ H ₈) ₂ O]	6	194	Digadolinium trioxide (see Gadolinium oxide)		
Ethyl oxide (see Ethyl ether)			Gallium	4	75
Ethylene (CH ₂ CH ₂)	6	185	Gallium antimonide (GaSb)	5	300

CALL DESTRUCTION OF SECURIOR

Material Name	Vol.	Page	Material Name	Vol.	Page
Gallium arsenide (GaAs)	5	307	Graphites (specific types) continued		†
Gallium oxide (Ga ₂ O ₃)	5	95	Canadian natural CNG	5	9
Gallium sesquioxide (see Gallium oxide)			Canadian natural boronated CNG-B	5	9
Digallium trioxide (see Gallium oxide)			Ceylon natural graphite	İ	
Gallium phosphide (GaP)	5	520	Graphitized lampblack SA-25	5	9
Gallium telluride (see Digallium tritelluride)			Natural Madagascan	5	9
Digallium tritelluride (Ga ₂ Te ₃)	5	723	Pile H-CS II	5	9
Genetron 11 (see Freon 11)			Руго	5	9
Genetron 12 (see Freon 12)			Hafnia (see Hafnium dioxide)		
Genetron 13 (see Freon 13)			Hafnium	,	87
Genetron 22 (see Freon 22)			Hafnium + Zirconium	4	356
Genetron 113 (see Freon 113)			Hafnium beryllide (see Dihafnium 21- beryllide)		
Genetron 114 (see Freon 114)			Dihafnium 21-beryllide (Hf ₂ Be ₂₁)	5	313
Germanium	4	79	Hafnium diboride (HfB ₂)	5	341
Germanium tetrahydride (GeH ₄)	5	1033	Hafnium carbide (HfC)	5	420
Germanium oxide (see Germanium dioxide)			Hafnium tetrafluoride (HfF ₄)	5	937
Germanium dioxide (GeO ₂)	5	98	Hafnium nitride (HfN)	5	1081
Germanium silicide, nonstoichiometric (Ge_xSi_y)	5	574	Hafnium dioxide (HfO ₂)	5	101
Glass ceramics (see pyroceram)			Hastelloy B	4	571
Glasses (see individual glass)		j	Hastelloy C	4	556
Glucinum (see Beryllium)			Hastelloy R-235	4	553
Glucinum sulfate (see Beryllium sulfate)		-	Haynes stellite, HE 1049	4	526
Glycerin (see Glycerol)			Heavy hydrogen (see Deuterium)		
Glycerol (CH ₂ OHCHOHCH ₂ OH)	6	230	Helium	6	23
Glycol (see Ethylene glycol)			n-Heptane (C ₇ H ₁₈)	6	232
Glycyl alcohol (see Glycerol)		į.	n-Hexane (C ₈ H ₁₄)	6	238
Cold	4	83	High silica glass (SiO ₂ + $\sum X_i$)	5	1234
Gold + Nickel	4	353	Holmia (see Holmium oxide)		
Graphites (specific types)	1	ŀ	Holmium	4	90
Grade 3474 D	5	9	Holmium trichloride hexahydrate (HoCl3.	_	
Grade 7087	5	9	6H ₂ O)	5	829
Grade ATJ	5	9	Holmium oxide (Ho ₂ O ₃)	5	104
Grade CS	5	9	Holmium sesquioxide (see Holmium oxide)		
Grade GBH	5	9	Diholmium trioxide (see Holmium oxide)		
Acheson	5	9	Hydrargyrum (see Mercury)		

Material Name	Vol.	Page	Matorial Name	Vol.	Page
Hydrogen	6	26	Iron + Chromium, Group ((25 ≤ Cr < 50)	4	635
Hydrogen chloride (HCl)	6	72	Iron + Chromium + Manganese, Group I	4	638
Hydrogen iodide (HI)	6	76	Iron + Chromium + Manganese + $\sum X_i$, Group II (Cr < 5.0)	4	687
Hydrogen sulfide (H ₂ S)	6	78		-	007
Inco 713 C	4	550	Iron + Chromium + Manganese + $\sum X_i$, Group II (14 \leq Cr \leq 27)	4	690
Incoloy	4	726	Iron + Chromium + Nickel + ∑X _i , Group II (15-16 Cr, 4-5 Ni)	4	717
Incoloy 901	4	565		*	111
Incoloy alloy 800 (see Incoloy)	11		Iron + Chromium + Nickel + ΣX _i , Group II (17-20 Cr, 8-14 Ni)	4	699
Incoloy alloy 901 (see Incoloy 901)			Iron + Chromium + ΣX _i , Group Π	4	678
Inconel 702 alloy	4	553	Iron + Cobalt + ΣX _i , Group I	4	641
Inconel alloy	4	553	Iron + Cobalt + ∑X _i (Group I), eutectoid	4	641
Inconel alloy 600 (see Inconel alloy)			Iron + Copper + ΣΧ _i , Group I	4	644
Inconel alloy 702 (see Inconel 702 alloy)			Iron + Manganese + Carbon, Group I	4	655
Inconel alloy X-750 (see Inconel X alloy)			Iron + Manganese + Carbon (Group I), eutectoid	4	655
Inconel X alloy	4	553	Iron + Manganese + $\sum X_i$, Group I	4	647
Indium	4	95	Iron + Manganese + ΣX_i , Group I	*	047
Indium + Tin	4	359	(10 < Mn < 50)	4	650
Indium antimonide (InSb)	5	303	Iron + Manganese + ΣΧ _i , Group II	4	723
Indium arsenide (InAs)	5	310	Iron + Nickel, Group II	4	726
Indium phosphide (InP)	5	523	Iron + Nickel + Carbon, Group I	4	665
Diindium sulfide, nonstoichiometric (In _E S _X)	5	668	Iron + Nickel + Chromium + ∑Xi, Group II	4	729
Inquartation silver	4	208	Iron + Nickel +ΣX _i , Group I	4	660
Invar	4	660	Iron + Silicon + ΣX _i , Group I	4	668
Iodide titanium	4	257	Iron + Silicon + ΣX _i , Group Π	4	732
Iodide zirconium	4	268	Iron + Tin, Group I	4	672
Iodine	5	15	Iron + Titanium, Group I (TiFe ₂)	4	675
Iridium	4	99	Iron + Titanium + ∑X _I , Group II	4	735
Iron	4	102	Iron + Tungsten + ΣΧ _i , Group II	4	738
Iron, Armco	4	102	Iron aluminate (see Iron dialuminum tetra- oxide)		
Iron, electrolytic	4	102		_	1449
Iron + Aluminum, Group I	4	626	Iron dialuminum tetraoxide (FeAl ₂ O ₄)	5	1443
Iron + Antimony, Group I	4	629	Iron carbide (see Triiron carbide)	g	404
Iron + Carbon + $\sum X_i$, Group I	4	619	Triiron carbide (Fe ₃ C)	5 5	424
Iron + Carbon + $\sum X_i$, Group II	4	623	Iron dichloride (FeCl ₂) Ironous chloride (see Iron dichloride)	J	832
Iron + Chromium, Group I (8 ≤ Cr < 25)	4	632	rollogs choline (see fron dichloride)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Iron chromite (see Iron dichromium tetra- oxide)			Iron sulfide (FeS)	5	674
Iron dichromium tetraoxide (FeCr ₂ O ₄)	5	1446	Iron disulfide (FeS ₂)	5	677
Iron cobaltite (see Iron dicobalt tetraoxide)			Iron sulfide, nonstoichiometric (Fe _x S)	5	671
Iron dicobalt tetracxide (FeCo ₂ O ₄)	5	1449	Iron tellurides:		
Iron difluoride (FeF ₂)	5	940	FeTe,	5	729
Iron oxides:			Fe _x Te (nonstoichiometric)	5	726
FeO	5	107	Iron ditelluride (FeTe ₂)	5	729
Fe ₂ O ₃	5	110	Iron telluride, nonstoichiometric (Fe _x Te)	5	726
Fe ₃ O ₄	5	114	Iron titanate (see Iron titanium trioxide)		
Diiron trioxide [see Iron(ic) oxide]			Iron titanium trioxide (FeTiO ₃)	5	1455
Triiron tetraoxide (Fe ₃ O ₄)	5	114	Iron vitriol (see Iron sulfate heptahydrate)		
Iron selenides:			Iron(ic) oxide (Fe ₂ O ₃)	5	110
FeS ₂	5	527	Iron(ous) oxide (FeO)	5	107
Fe ₃ S ₄	5	536	Isotron 11 (see Freon 11)		
Fe ₇ Se ₈	5	533	Isotron 12 (see Freon 12)		
Fe _x Se (nonstoichiometric)	5	530	Isotron 13 (see Freon 13)		
Iron diselenide (FeSe ₂)	5	527	Isotron 22 (see Freon 22)		
Triiron tetraselenide (Fe ₃ Se ₄)	5	536	Isotron 113 (see Freon 113)		
Heptairon octaselenide (Fe ₇ Se ₈)	5	533	Isotron 114 (see Freon 114)		ĺ
Iron selenide, nonstoichiometric (Fe _x Se)	5	530	Jodium (see Iodine)		
Iron silicides:			Kalium (see Potassium)		
FeSi	5	577	Krypton	6	34
Fe ₃ Si	5	583	Lanthana (see Lanthanum oxide)		
Fe _f Si ₃	5	580	Lanthanum	4	110
Iron silicide (FeSi)	5	577	Lanthanum oxide (La ₂ O ₃)	5	118
Triiron silicide (Fe _s Si)	5	583	Lanthanum sesquioxide (see Lanthanum oxide)		
Pentairon trisilicide (Fe _p Si ₂)	5	580	Dilantanum trioxide (see Lanthanum oxide)		
Iro orthosilicate (see Diiron silicon tetra- oxide)		=	Laughing gas (see Nitrous oxide)		
Diiron silicon tetraoxide (Fe ₂ SiO ₄)	5	1452	Lead	4	113
Iron sulfate heptahydrate (FeSO ₄ ·7H ₂ O)	5	1200	Lead + Tin	4	363
Iron sulfides:			Lead - tin solder (Sn + Pb)	4	446
Fe6	5	674	Lead glance (see Lead sulfide)		
Fe6;	5	677	Lead diiodide (PbI ₂)	5	497
Fe _X S (nonstrichiometric)	5	671	Lead molybdate (see Lead molybdenum tetraoxide)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Lead molybdenum tetraoxide (PbMoO ₄)	5	1458	Lithium fluoride (LiF)	5	943
Lead oxides:			Lithium hexafluoroaluminate (see Trilithium aluminum hexafluoride)		
PbO	5	122	Lithium hydride (LiH)	5	1036
PbO ₂	5	125	Lithium monohydrogen difluoride (LiHF.)	5	953
Pb ₂ O ₃	5	128	Lithium iron dioxide (LiFeO.)	ó	1467
Pb ₅ O ₄	5	131	Lithium iron tetraoxide, nonstoichiometric	3	1407
Lead oxide (PbO)	5	122	(Li _x Fe _y O ₄)	5	1470
Lead dioxide (PbO ₂)	5	125	Lithium oxide (Li ₂ O)	5	134
Lead monoxide (see Lead oxide)			Dilithium oxide (see Lithium oxide)		1
Lead peroxide (see Lead dioxide)			Lithium titanate (see Dilithium titanium trioxide)		
Lead protoxide (see Lead oxide) Lead sesquioxide (Pb ₂ O ₃)	5	128	Lithium metatitanate (see Dilithium titanium tricxide)		
Lead superoxide (see Lead dioxide)			Dilithium titanium trioxide (Li ₂ TiO ₃)	5	1473
Dilead trioxide (see Lead sesquioxide)			Lithium zinc ferrite [see Lithium zinc iron tetraoxide (nonstoichiometric)]		ļ
Trilead tetraoxide (Pb ₃ O ₄)	5	131			
Lead sulfide (PbS)	5	681	Lithium zinc iron tetraoxide, nonstoichio- metric (Li _X Zn _y Fe _Z O ₄)	5	1476
Lead tungstate (see Lead tungsten tetra- oxide)			Lutetia (see Lutetium sesquioxide)		
Lead tungsten tetraoxide (PbWO4)	5	1461	Lutetium	4	121
Lead wolframate (see Lead tungsten tetra- oxide)			Lutetium sesquioxide (Lu ₂ O ₃) Dilutetium trioxide (see Lutetium sesqui-	5	137
Libbey-Owens-Ford plate glass No. 9330	5	1240	oxide)		
Lithia (see Lithium oxide)			Magnesia (see Magnesium oxide)		
Lithium	4	117	Magnesium	4	124
Lithium + Magnesium	4	366	Magnesium + Aluminum + ΣX_i	4	535
Lithium aluminate (see Lithium aluminum			Magnesium + Silicon	4	369
dioxide)			Magnesium + Thorium + $\sum X_i$	4	538
Lithium metaaluminate (see Lithium aluminum dioxide)			Magnesium + Zinc + $\sum X_i$	4	541
Trilithium aluminum hexafluoride (Li ₃ AlF ₆)	5	947	Magnesium alloys (specific types)		
Lithium aluminum dioxide (LiAlO ₂)	5	1464	A N-M -29	4	535
Dilithium beryllium tetrafluoride (Li ₂ BeF ₄)	5	950	AZ-31B	4	535
Dilithium carbonate (Li ₂ CO ₃)	5	1118	AZ-80	4	535
Lithium chloride (LiCl)	5	835	нк-31А	4	538
Lithium ferrites:	1		HM-21XA	4	538
LiFeO ₂	5	1467	HM-31XA	4	538
Li _x Fe _v O ₄ (nonstoichiometric)	5	1470	ZK-60A	4	541

Material Name	Vol.	Page	Material Name	Vol.	Page
Magnesium aluminate (see Magnesium di- aluminum tetraoxide)			Magnesium germanide (see Dimagnesium germanide)		
Magnesium metaaluminate (see Magnesium dialuminum tetraoxide)			Dimagnesium germanide (Mg ₂ Ge)	5	481
Magnesium dialuminum tetraoxide (MgAl ₂ O ₄)	5	1479	Magnesium diiron tetraoxide (MgFe ₂ O ₄)	5	1485
Magnesium aluminum silicate (see Dimagne- sium tetraaluminum pentasilicon 18-oxide			Magnesium iron tetraoxide, nonstoichio- metric (Mg _X Fe _y O ₄)	5	1488
Dimagnesium tetraaluminum pentasilicon 18-oxide (Mg ₂ Al ₂ Si ₅ O ₁₈)	5	1503	Magnesium molybdate (see Magnesium mo- l ybdenum tetraoxide)		
Magnesium borides:		1000	Magnesium molybdenum tetraoxide (MgMoO ₄)	5	1491
MgB ₂	5	345	Magnesium nitride (see Trimagnesium di- nitride)		
MgB_4	5	348	Trimagnesium dinitride (Mg ₃ N ₂)	5	1084
Magnesium diboride (MgB ₂)	5	345	Magnesium oxide (MgO)	5	140
Magnesium tetraboride (MgB ₄)	5	348	Magnesium silicates:		
Magnesium cadmium alloys:			MgSiO ₃	5	1494
MgCd	4	294	Mg ₂ SiO ₄	5	1497
MgCd ₃	4	300	Mg ₃ Si ₄ O ₁₁ ·H ₂ O	5	1500
Mg₃Cd	4	297	Magnesium silicon trioxide (MgSiO _y)	5	1497
Magnesium chlorides:			Dimagnesium silicon tetraoxide (Mg ₂ SiO ₄)	5	1497
MgCl ₂	5	838	Trimagnesium tetrasilicon undecaoxide	_	1500
MgCl ₂ ⋅H ₂ O	5	841	monohydrate (Mg ₃ Si ₄ O ₁₁ ·H ₂ O)	5	1500
MgCl ₂ ·2H ₂ O	5	844	Magnesium titanates:	-	
MgCl ₂ · 4H ₂ O	5	847	MgTiO ₃	5	1506
MgCl ₂ ·6H ₂ O	5	850	MgTi ₂ O ₅	5	1509
Magnesium dichloride (MgCl ₂)	5	838	Mg ₂ TiO ₄	5	1512
Magnesium dichloride monohydrate (MgCl ₂ ·H ₂ O)	5	841	Magnesium dititanate (see Magnesium dititanium pentaoxide)		
Magnesium dichloride dihydrate (MgCl ₂ ·		844	Magnesium metatitanate (see Magnesium †itanium trioxide)		
2H ₂ O) Magnesium dichloride tetrahydrate (MgCl ₂ -	5	044	Dimagnesium titanate (see Dimagnesium titanium tetraoxide)		
4H ₂ O)	5	847	Magnesium titanium trioxide (MgTiO ₂)	5	1506
Magnesium dichloride hexahydrate (MgCl ₂ · 6H ₂ O)	5	850	Magnesium dititanium pentaoxide (MgTi ₂ O ₃)	5	1509
Magnesium chromite (see Magnesium di- chromium tetracxide)			Dimagnesium titanium tetraoxide (Mg ₂ TiO ₄)	5	1512
Magnesium dichromium tetraoxide (MgCr ₂ O ₄)	5	1482	Magnesium tungstate (see Magnesium tungsten tetraoxide)		
Magnesium ferrites:			Magnesium tungsten tetraoxide (MgWO4)	5	1515
MgFe ₂ O ₄	5	1485	Magnesium vanadates:		
Mg _X Fe _y O ₄	5	1488	MgV ₂ O ₆	5	1518
Magnesium difluoride (MgF,)	5	956	Mg, V,O,	5	1521

Material Name	Vol.	Page	Material Name	Vol.	Page
Magnesium metavanadate (see Magnesium			Manganese sesquioxide (Mn ₂ O ₃)	5	151
divanadium hexaoxide) Magnesium pyrovanadate (see Magnesium divanadium hexaoxide)			Dimanganese trioxide (see Manganese sesqui- oxide)		
Magnesium divanadium hexaoxide (MgV ₂ O ₄)	5	1518	Trimanganese tetraoxide (Mn ₃ O ₄)	5	154
Dimagnesium divanadium heptaoxide			Manganese (ic) oxide (see Manganese sesqui- oxide)		
$(Mg_2V_2O_7)$	5	1521	Manganese (ous) chloride (see Manganese		
Magnesium wolframate (see Magnesium tunsten tetraoxide)			dichloride)		
Manganese	4	127	Manganese (ous) fluoride (see Manganese difluoride)		
Manganese, electrolytic	4	127	Manganese (ous) oxide (see Manganese monoxide)		
Manganese + Aluminum	4	372	Manganese (ous) sulfide (see Manganese		ſ
Manganese + Copper	4	377	sulfide)		
Manganese + Nickel	4	380	Manganese selenide (see Manganous selenide)		
Manganese aluminum carbide (see Trimanga- nese aluminum carbide)			Manganese silicate (see Manganese silicon trioxide)		
Trimanganese aluminum carbide (Mn ₃ AlC)	5	427	Manganese silicides:		
Manganese carbide (see Trimanganese carbide)			Mn ₉ Si	5	586
Trimanganese carbide (Mn ₃ C)	5	433	MnSi _x (nonstoichiometric)	5	589
Manganese carbonate (MnCO ₃)	5	1121	Trimanganese silicide (Mn ₃ Si)	5	586
Manganese chlorides:			Manganese silicide, nonstoichiometric (MnSi _X)	5	589
MnCl ₂	5	853	Manganese silicon trioxide (MnSiO ₃)	5	1524
MnCl ₂ ·4H ₂ O	5	856	Manganese sulfide (MnS)	5	684
Manganese dichloride (MnCl ₂)	5	853	Manganese monosulfide (see Manganese sulfide)		
Manganese dichloride tetrahydrate (see Manganous dichloride tetrahydrate)			Manganese telluride (see Manganous tellur-		
Manganese difluoride (MnF ₂)	5	959	ide)		
Manganese oxides:			Manganese zinc carbide (see Trimanganese zinc carbide)	,	
MnO	5	145	Trimanganese zinc carbide (Mn ₃ ZnC)	5	430
MnO ₂	5	148	Manganin	4	338
Mn ₂ O ₃	5	151	Manganomanganic oxide (see Trimanganese tetraoxide)		
Mn ₃ O ₄	5	154	Manganous dichloride tetrahydrate (MnCl;		
Manganese binoxide (see Manganese dioxide)			4H ₂ O)	5	856
Manganese dioxide (MnO ₂)	5	148	Manganous selenide (MnSe)	5	539
Manganese monoxide (MnO)	5	145	Manganous telluride (MnTe)	5	732
Manganese peroxide (see Manganese dioxide)			Marsh gas (see Methane)		
Manganese protoxide (see Manganese mon- oxide)			Mercuric oxide [see Mercury (ic) oxide]		

Material Name	Vol.	Page	Material Name	Vol.	Page
Mercuric selenide (see Mercury selenide)	1		Molybdenum silicides:		
Mercury	4	131	MoSi ₂	5	592
Mercury selenide (HgSe)	5	542	Mo ₃ Si	5	595
Dimercury sulfate (Hg ₂ SO ₄)	5	1203	Molybdenum disilicide (MoSi ₂)	5	592
Mercury sulfide (HgS)	5	687	Trimolybdenum silicide (Mo ₃ Si)	5	595
Mercury (ic) oxide (HgO)	5	157	Molybdenum sulfide (see Molybdenum di- sulfide)		
Methane (CH ₄)	6	244		5	690
Methanol (see Methyl alcohol)			Molybdenum disulfide (MoS ₂)		146
Methyl alcohol (CH ₃ OH)	6	252	Mond nickel	4	
Methyl chloride (CH ₃ Cl)	6	257	Monel alloy	4	562
Methylbenzene (see Toluene)			Monel alloy 400 (see Monel alloy)		
Methylmethane (see Ethane)			Monel alloy K-500 (see Monel K alloy)	121	
Molybdenum	4	135	Monel K alloy	4	562
Molybdenum + Titanium	4	383	MSM-70 (see Titanium, Ti-75 A)		
Molybdenum + Titanium + ∑X _i	4	544	MSM-2.5 Al-16V (see Titanium alloy Ti-2.5Al-16V)		
Molybdenum + Tungsten	4	386	MSM-6Al-4V (see Titanium alloy Ti-6Al-4V)		
Molybdenum beryllide (see Molybdenum dodecaberyllide)			MSM-8Mn (see Titanium alloy C-110 M)		
Molybdenum dodecaberyllide (MoBe ₁₂)	5	316	MST-2.5 Al-16V (see Titanium alloy Ti-2.5Al-16V)		
Molybdenum borides:			MST-6Al-4V (see Titanium alloy Ti-6Al-4V)		
МоВ	5	358	MST-8Mn (see Titanium alloy C-110M)		
MoB ₂	5	352	Natrium (see Sodium)		
Mo₂B	5	355	Neodymia (see Neodymium oxide)		
Molybdenum horide (MoB)	5	358	Neodymium	4	140
Molybdenum diboride (MoB ₂)	5	352	Neodymium trichloride hexahydrate	5	953
Dimolybelenum boride (Mo ₂ B)	5	355	(NdCl ₃ ·6H ₂ O)	Э	859
Molybdenum carbide (ંટe Dimolybdenum carbide)			Neodymium gallate (see Trineodymium pentagallium dodecaoxide)		
Dimolybdenum carbide (Mo ₂ C)	5	436	Trineodymium pentagallium dodecaoxide [Nd ₃ Ga ₅ O ₁₂ (Garnet)]	5	1527
Molybdenum hexafluoride (MoF ₆)	5	962	Neodymium oxide (Nd ₂ O ₃)	5	166
Molybdenum oxides:			Neodymium sesquioxide (see Neodymium		
MoO ₂	5	160	oxide)		
MoO ₃	5	163	Neon	6	37
Molybdenum dioxide (MoO ₂)	5	160	Neptunium	4	143
Molybdenum trioxide (MoO ₃)	5	163	Neptunium + Calcium + $\sum X_i$	4	547
			Neptunium dioxide (NpO ₂)	5	169
			<u></u>		

Material Name	Val.	Page	Material Name	Vol.	Page
Nichrome V	4	556	Nickel alloys (specific types) continued		
Nickel	4	146	OKh 20 N60 B	4	559
Nickel, electrolytic	4	146	Rene 41	4	556
Nickel, mond	4	146	Nickel chlorides:		
Nickel + Aluminum	4	389	NiCl ₂	5	863
Nickel + Chromium	4	392	NiCl ₂ · 6H ₂ O	5	866
Nickel + Chromium + $\sum X_i$ (9 < Cr < 11)	4	550	Nickel dichloride (NiCl ₂)	5	863
Nickel + Chromium + $\sum X_i$ (15 \leq Cr \leq 16)	4	553	Nickel dichloride hexahydrate (NiCl ₂ ·6H ₂ O)	5	866
Nickel + Chromium + $\sum X_i$ (18 < Cr < 20)	4	556	Nickel ferrites:		
Nickel + Chromium + ΣX_i (Cr > 20)	4	559	NiFe ₂ O ₄	5	1530
Nickel + Copper	4	398	Ni _x Fe _y O ₄ (nonstoichiometric)	5	1533
Nickel + Copper + ΣX_i	4	562	Nickel difluoride (NiF ₂)	5	973
Nickel + Iron	4	403	Nickel fluosilicate hexahydrate (A) (NiSiF ₆ · 6H ₂ O)	5	966
Nickel + Iron + $\sum X_i$	4	565	Nickel fluosilicate hexabydrate (B) (NiSiFg*	,	300
Nickel + Magnesium (MgNi ₂)	4	407	6H ₂ O)	5	970
Nickel + Manganese	4	410	Nickel diiron tetraoxide (NiFe ₂ O ₄)	5	1530
Nickel + Manganese + $\sum X_i$	4	568	Nickel iron tetraoxide, nonstoichiometric (Ni _X Fe _V O ₄)	5	1533
Nickel + Molybdenum + ∑X _i	4	571	Nickel oxide (NiO)	5	172
Nickel + Silicon	4	413	Nickel monoxide (see Nickel oxide)	,	1,5
Nickel + Tungsten (Ni ₄ W)	4	416	Nickel protoxide (see Nickel oxide)		
Nickel + Zinc	4	419	Nickel selenides:		
Nickel alloys (specific types);			NiSe ₂	5	549
60Ni 15Cr (ASTM B83-46)	4	565	Ni _x Se (nonstoichiometric)	5	545
80 Ni 20Cr	4	556	Nickel diselenide (NiSe ₂)	5	549
90 Ni 10Cr	4	550	Nickel selenide, nonstoichiometric (Ni _x Se)	5	545
Alumel	4	568	Nickel sulfate hexahydrate (NiSO ₄ ·6H ₂ O)	5	1206
Chromel A (see Nickel alloy Nichrome V)	Ì	j	Nickel sulfides:	Ŭ	1200
Chromel-P	4	392	Nis	5	693
EI-435	4	559	Ni ₃ S ₂	5	696
GE J 1500 (same as M252)	1	339	Nickel sulfide (NiS)	5	693
GEJ 1610 (same as Rene 41)			Trinickel disulfide (Ni ₃ S ₂)	5	696
M252	4	556	Nickel tellurides:	"	555
Monel	4	562	NiTe ₂	5	738
Nichrome V	4	556	NiTe _x (nonstoichiometric)	5	735
OKh 21 N78 T	4	559		5	738

Material Name	Vol.	Page	Material Name	Vol.	Page
Nickel telluride, nonstoichiometric (N!Te _x)	5	735	Niobium pentafluoride (NbF ₅)	5	976
Nickel zinc ferrite see Nickel zinc diiron tetraoxide (nonstoichiometric))			Niobium oxides:		
Nickel zinc diiron tetraoxide [Ni _X Zn _y Fe ₂ O ₄ (nonstoichiometric)]	5	1536	NbO ₂	5	175
Nickel (ous)oxide (see Nickel oxide)			Nb ₂ O ₃	5	181
Niobium	4	153	Niotium monoxide (NbO)	5	175
Niobium + Iron + $\sum X_i$	4	574	Niobium d'oxide (NbO ₂)	5	178
Niobium + Molybdenum + ∑X _i	4	577	Diniobium pentaoxide (Nb ₂ O ₅)	5	181
Niobium + Tantalum + ∑X _i	4	580	Nitric oxide (NO)	6	83
Niobium + Titanium + ΣX_i	4	583	Nitrogen	6	39
Niobium + Tungsten + $\sum X_i$	4	586	Nitrogen peroxide (NO ₂)	6	90
Niobium + Zirconium	4	422	Nitrous oxide (N ₂ O)	6	92
Niobium alloys (specific types)	-	""	n-Nonane (C ₃ H ₂₀)	6	261
5 Mo-5 V-1 Zr	4	577	n -Octane (C_8H_{18})	6	266
27 Ta-12 W-0.5 Zr	4	580	OFHC copper		
10 Ti-5 Zr	4	583	Olefiant gas (see Ethylene)	4	51
15 W-5 Mo-1 Zr-0,05 C	4	586	Osmium		
10 W-5 Zr	4	586		4	157
10 W-1 Zr-0,1 C	4	586	Oxygen	6	48
CB-752	4	586	Palladium	4	160
D-36 (see Niobium alloy 10 W-5 Zr)	-1	300	Palladium + Silver	4	425
F-48		500	Palladium tellurides:		
_	4	586	PdTe	5	741
Ferroniobium	4	574	PdTe ₂	5	744
FS-82 B	4		Palladium telluride (PdTe)	5	741
Niobium dodecaberyllide (NbBe ₁₂)	-5	319	Palladium ditelluride (PdTe ₂)	5	744
Niobium borides:			Pearlite	4	655
NbB ₂	5	365	n-Pentane (C ₅ H ₁₂)	6	272
NbB _x (nonstoichiometric)	5	361	Perchloromethane (see Carbon tetrachloride)		i
Niobium diboride (NbB ₂)	5	365	Phenylmethane (see Toluene)		18
Niobium boride, nonstoichiometric (NbB _x)	5	361	Phosphorus	5	18
Niobium carbides:			Phosphorus, black	5	18
NbC	5	442	Phosphorus trichlorice (PCl ₃)	5	869
NbC _x (nonstoichiometric)	5	439	Phosphorus (ous) chloride (see Phosphorus trichloride)		
Niobium carbide (NbC)	5	442	Pittsburgh No. 3235 glass	· E	1220
Niobium carbide, nonstoichiometric (NbC _X)	5	439	r moonigh 110, 5255 giass	5	1230

Material Name	Vol.	Page	Material Name	Vol.	Page
Plate glass No. 9330	5	1240	Potassium nitrate (KNO ₃)	5	1145
Platinum	4	163	Potassium dioxide (see Potassium super- oxide)		
Platinum sulfides:			Potassium superoxide (KO ₂)	5	184
PtS	5	699	Dipotassium sulfate (K ₂ SO ₄)	5	1209
PtS ₂	5	702	Praseodymium	4	177
Platinum sulfide (PtS)	5	699	Praseodymium oxide (see Hexapraseodymium		
Platinum disulfide (PtS ₂)	5	702	undecaoxide)		
Platinum tellurides:			Hexapraseodymium undecaoxide (Pr ₆ O ₁₁)	5	187
PtTe	5	747	Propane (C ₃ H ₈)	6	279
PtTe ₂	5	750	2-Propanone (see Acetone)		
Platinum telluride (PtTe)	5	747	Pyrex 774	5	1230
Platinum ditelluride (PtTe ₂)	5	750	Pyrex glasses	5+	1230
Plutonium	4	167	Pyroacetic ether (see Acetone)		
Plutonium + Cerium + ∑X _i	4	589	Pyroceram	5	1237
Plutonium carbide (PuC)	5	445	Pyroceram 9606	5	1237
Plutonium dioxide (PuO ₂)	5	190	Pyroceram 9608	5	1237
Potassium	4	171	Quartz	5	207
Potassium + Sodium	4	428	Quartz crystal	5	207
Potassium aluminum silicates:		1	Quartz glass	5	202
KAl ₃ Si ₃ O ₁₁	5	1540	Quick silver (see Mercury)		
KA1 ₃ Si ₃ O ₁₁ · H ₂ O	5	1543	RC-70 (see Titanium, Ti-75 A)		
Potassium trialuminum trisilicon undeca- oxide (KAl ₃ Si ₃ O ₁₁)	5	1540	Rene 41	4	556
Potassium trialuminum trisilicon undeca-			Rhenium	4	181
oxide monohydrate (KAl ₃ Si ₃ O ₁₁ ·H ₂ O)	5	1543	Rhenium trichloride (ReCl ₃)	5	878
Potassium aluminum sulfates:			Rhodium	4	184
KA1 (SO ₄) ₂	5	1212	RS-70 (see Titanium, Ti-75 A)		
KA1 (SO ₄) ₂ ·12H ₂ O	5	1215	Rubidium	4	187
Potassium aluminum disulfate [KAI(SO ₄) ₂]	5	1212	Rubidium bromide (RbBr)	5	769
Potassium aluminum disulfate dodecahydrate [KAl(SO ₄) ₂ ·12H ₂ O]	5	1215	Rubidium fluoride (RbF) Rubidium monohydrogen difluoride (RbHF ₂)	5 5	985 988
Potassium bromide (KBr)	5	765			_
Dipotassium carbonate (K ₂ CO ₃)	5	1124	Rubidium iodide (RbI)	5	503
Potassium chloride (KCi)	5	872	Ruthenium	4	190
Potassium fluoride (KF)	5	979	Rutile (see Titanium dioxide)		
Potassium hydrogen difluoride (KHF ₂)	5	982	SAE 1010	4	647
Potassium iodide (KI)	5_	500	Samaria (see Samarium oxide)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Samarium	4	193	Silver selenides:		
Samarium oxide (Sm ₂ O ₃)	5	193	Ag ₂ Se	5	553
Samarium sesquioxide (see Samarium oxide)			Ag _x Se (nonstoichiometric)	5	556
Disamarium trioxide (see Samarium oxide)			Disilver selenide (Ag ₂ Se)	5	553
Scandia (see Scandium oxide)			Silver selenide, nonstoichiometric (Ag _X Se)	5	556
Scandium	4	198	Silver sulfide, nonstoichiometric (Ag _x S)	5	705
Scandium oxide (Sc ₂ O ₃)	5	196	Silver tellurides:		
Scandium sesquioxide (see Scandium oxide)			Ag₂Te	5	753
Discandium trioxide (see Scandium oxide)			Ag _X Te (nonstoichiometric)	5	756
Selenium	4	201	Disilver telluride (Ag ₂ Te)	5	753
Silica (see Silicon dioxide)			Silver telluride, nonstoichiometric (Ag _X Te)	5	756
Silica glass	5	202	Soda lime glass (SiO ₂ + Na ₂ O + ΣX_i)	5	1240
Silicon	4	204	Soda-lime silica plate glass (see Soda lime		
Silicon carbide (SiC)	5	448	glass) Sodium	W	213
Silicon carbide + Carbon + $\sum X_1$, cermet (SiC + C + $\sum X_1$)	5	1279	Sodium, electrolytic	4	213
Silicon tetrachloride (SiCl ₄)	5	881	Sodium + Potassium (Na ₂ K)	4	431
Silicon tetrafluoride (SiF4)	5	991	Trisodium aluminum hexaflucride (Na ₃ AlF ₆)	5	997
Silicon nitride (SL3 N4	5	1087	Sodium aluminate (see Sodium aluminum dioxide)		
Silicon dioxide [SiO ₂ (cristobalite)]	5	210	Sodium metaaluminate (see Sodium aluminum		
Silicon dioxide [SiO ₂ (Quartz crystal)]	5	207	dioxide)		
Silicon dioxide [SiO ₂ (Quartz glass)]	5	203	Sodium aluminum dioxide (NaAlO ₂)	5	1549
Silicon dioxide [SiO ₂ (Tridymite)]	5	213	Sodium aluminum silicate (see Sodium aluminum trisilicon octaoxide)		
Silicon dioxide + Dialuminum trioxide + $\sum X_i$ (SiO ₂ + Al ₂ O ₃ + $\sum X_i$)	5	1546	Sodium aluminum trisilicon octaoxide (NaAlSi ₂ O ₂)	5	1602
Sillimanite (see Dialuminum silicon penta- oxide)			Sodium tetraborate (see Disodium tetra- boron heptaoxide)		L
Silver	4	208	Sodium borates:		1
Silver, electrolytic	4	208	NaBO,	5	1552
Silver, inquartation	4	208	Na ₂ B ₄ O ₇	5	1556
Disilver carbonate (Ag ₂ CO ₂)	5	1127	Sodium boron dioxide (NaBO ₂)	5	1552
Silver chloride (AgCl)	5	884	Disodium tetraboron heptaoxide (Na ₇ B ₄ O ₇)	5	1556
Silver nitrite (AgNO ₂)	5	1148	Sodium bromide (NaBr)	5	772
Silver oxide (Ag ₂ O)	5	199	Disodium carbonate (Na ₂ CO ₂)	5	1130
Disilver oxide (see Silver oxide)			8 dium bicarbonate (NaHCO ₂)	5	1133
			Sod um chloride (NaCl)	5	887
			Dot and tract		001

Material Name	Vol.	Page	Material Name	Vol.	Page
Sodium ferrite (see Sodium iron dioxide)			Sodium sulfates:		
Sodium fluoride (NaF)	5	994	Na ₂ SO ₄	5	1218
Sodium hydrogen carbonate (see Sodium bicarbonate)	,		Na ₂ SO ₄ ·10H ₂ O	5	122 i
Sodium hexafluoroaluminate (see Trisodium			Disodium sulfate (Na ₂ SO ₄)	5	1218
aluminum hexafluoride)			Disodium sulfate decahydrate (Na ₂ SO ₄ ·10H ₂ O)	5	1221
Sodium monohydrogen difluoride (NaHF ₂)	5	1000	Sodium tellurate (see Disodium tellurium tetraoxide)		
Sodium iodide (NaI)	5	506	Disodium tellurium tetraoxide (Na ₂ TeO ₄)	5	1575
Sodium iron dioxide (N ₂ FeO ₂)	5	1560	Sodium titanates:		
Sodi m molybdates;			Na ₂ TiO ₃	5	1578
Na ₂ MoO ₄	5	1563	Na ₂ Ti ₂ O ₅	5	1581
Na ₂ Mo ₂ O ₇	5	1566		5	1584
Disodium molybdenum tetraoxide (Na ₂ MoO ₄)	5	1563	Na ₂ Ti ₃ O ₇	э	1584
Disodium dimolybdenum heptaoxide	ا ۽	1500	Sodium dititanate (see Disodium dititanium pentaoxide)		
(Na ₂ Mo ₂ O ₇) Sodium nitrate (NaNO ₃)	5 5	1566 1151	Sodium me atitanate (see Disodium titanium triocide)		
Sodium oxides:			Sodium trititanate (see Disodium trititanium		
Na ₂ O	5	216	heptnoxide)		
NaO,	5	222	Disodium trioxide (Na ₂ TiO ₃)	5	1578
Na ₂ O ₂	5	219	Disodium dititanium pentaoxide (Na ₂ Ti ₂ O ₅)	5	1581
Sodium oxide (Na ₂ O)	5	216	Disodium trititanium heptaoxide (Na ₂ Ti ₃ O ₇)	5	1584
Sodium superoxide (NaO ₂)	5	222	Sodium tungstates:		
,			Na ₂ WO ₄	5	1587
Sodium peroxide (Na ₂ O ₂)	5	219	Na ₂ W ₂ O ₇	5	1590
Sodium dioxide (see Sodium superoxide)			Disodium tungsten tetraoxide (Na ₂ WO ₄)	5	1587
Disodium oxide (see Sodium oxide)			Disodium ditungsten heptaoxide (Na ₂ W ₂ O ₇)	5	1590
Disodium monoxide (see Sodium oxide)			Sodium vanadates:		
Sodium silicates:			NaVO ₃	5	1593
Na ₂ SiO ₃	5	1569	Na ₃ VO ₄	5	1596
Na ₂ Si ₂ O ₅	5	1572	Na ₄ V ₂ O ₇	5	1599
Sodium disilicate (see Disodium disilicon pentaoxide)			Sodium metavanadate (see Sodium vanadium trioxide)		
Sodium metasilicate (see Disodium silicon trioxide)			Sodium orthovanadate (see Trisodium vanadium tetraoxide)		
Sodium silicate glass No. 23	5	1240	Sodium pyrovanadate (see Tetrasodium divanadium heptaoxide)		
Disodium silicon trioxide (Na ₂ SiO ₂)	5	1569	Sodium vanadium trioxide (NaVO ₂)	5	1593
Disodium disilicon pentaoxide (Na ₂ Si ₂ O ₃)	5	1572	Trisodium vanadium tetraoxide (Na ₂ VO ₄)	5	1596

Material Name	Vol.	Page	Material Name	Vol.	Page
Strontium orthotitanate (see Distrontium titanium tetraoxide)			Tellurium dioxide (TeO ₂)	5	231
Strontium titanium trioxide (SrTiO ₃)	5	1611	Terbium	4	232
Distrontium titanium tetraoxide (Sr ₂ TiO ₄)	5	1614	Tetrachloromethane (see Carbon tetrachloride)		
Strontium zirconate (see Strontium zircon- ium trioxide)			Thallium	4	237
Strontium zirconium trioxide (SrZrO ₃)	5	1617	Thallium + Lead (PbTl ₂)	4	437
Sulfur	5	권	Thallium monohydrogen difluoride (TlHF ₂)	5	1006
Sulfur dioxide (SO ₂)	6	97	Thallium nitrate (TINO ₃)	5	1157
Sulfuretted hydrogen (see Hydrogen sulfide)			Thoria (see Thorium dioxide)		0.40
Sulfuric ether (see Ethyl ether)			Thorium	4	242
Tantalum	4	221	Thorium tetraboride (ThB4)	5	375
Tantalum + Niobium + TX _i	4	592	Thorium carbide, nonstoichiometric (ThC _X)	5	454
Tantalum + Tungsten	4	434	Thorium tetrafluoride (ThF ₄)	5	1009
Tantalum + Tungsten +∑X _i	4	595	Thorium dioxide (ThO ₂)	5	234
Tantalum alloys (specific types)			Thulium	4	245
30 Nb - 7.5 V	4	592	Tin	- 27	-23
8 W - 2 Hf	4	595	Tin, grey	4	249
Tantalum beryllides:			Tin, white	4	249
TaBe ₁₂	5	322	Tin + Bismuth	4	440
Ta ₂ Be _{i7}	5	325	Tin + Indium	4	443
Tantalum dodecaberyllide (TaBe ₁₂)	5	322	Tin + Lead	4	446
Ditantalum 17-beryllide (Ta ₂ Be ₁₇)	5	325	Tin + Magnesium (Mg ₂ Sn)	4	449
Tantalum borides:			Tin oxides:	_	000
TaB	5	372	SnO	5	237
TaB ₂	,;	368	SnO ₂	5	240
Tantalum boride (TaB)	5	372	Tin monoxide (SnO)	5	237
Tantalum diboride (TaB ₂)	5	368	Tin dioxide (SnO ₂)	5	240
Tantalum carbide (TaC)	5	451	Titania (see Titanium dioxide)		
Ditantalum hydride (Ta ₂ H)	5	1040	Titanium	4	257
Tantalum nitride (TaN)	5	1090	Titanium, Ti-75 A	4	257
Ditantalum pentaoxide (Ta ₂ O ₅)	5	228	Titanium + Aluminum + ΣX_1	4	598
Tantalum disilicide (TaSi ₂)	5	598	Titanium + Chromium + ΣX_i	4	601
Telluric acid anhydride (see Tellurium dioxide)			Titanium + Iron + Cobalt Titanium + Manganese	4	604 453
Tellurite (see Tellurium dioxide)			Titanium + Molybdenum	4	456
Tellurium	4	229	Titanium + Vanadium +ΣX _j	4	607

Material Name	Vol.	Page	Material Name	Vol.	Page
Tetrasodium divanadium heptaoxide (Na ₄ V ₂ O ₇)	5	1599	Steels (specific types) continued		
Solex 2808 plate glass	5	1240	Steel 19	4	687
Solex S plate glass	5	1240	Stellite HE 1049	4	526
Stainless steels (specific types)			T-261	14	655
1 KH 18 N9T	4	699	T-262	14	655
17-4 PH	4	717	T-270	4	655
17-7 PH	4	696	T-278	4	655
AISI 301	4	693	Т-279	4	655
AISI 304	4	699	Т-310	4	655
AISI 305	4	702	Т-311	4	655
AISI 310	4	705	Stibium (see Antimony)		
AISI 316	4	708	Strontia (see Strontium oxide)		
AISI 347	4	711	Strontium	:4	218
AISI 420	4	678	Strontium bromide (SrBr)	5	775
AISI 430	4	681	Strontium carbonate (SrCO ₃)	5	1136
AISI 446	4	684	Strontium chloride (see Strontium dichloride		
AM 355	4	717	Strontium dichloride (SrCl ₂)	5	890
Austenite	4	655	Strontium difluoride (SrF2)	5	1003
EI 257	4	720	Strontium nitrate (SrNO) Sr(NO)2	5	1154
EI 855	4	726	Strontium oxide (SrO)	5	225
HMN Crucible	4	714	Strontium silicates:		
Stannia (see Tin dioxide)		į	SrSiO ₃	5	1605
Stannic oxide (see Tin dioxide)			Sr ₂ SiO ₄	5	1608
Stannous oxide (see Tin monoxide)			Strontium silicon trioxide (SrSiO ₂)	5	1605
Steel, austenite	4	655	Distrontium silicon tetraoxide (Sr ₂ SiO ₄)	5	1608
Steel, eutectoid	4	655	Strontium sulfides:		
Steel, pearlite	4	655	8r 5	5	708
Steels (specific types)			SrS ₂	5	711
4 Kh 13	4	690	Strontium sulfide (SrS)	5	708
Mark 1 X 18 N9T	4	699	Strontium disulfide (SrS ₂)	5	711
Mark 12 34 MKh	4	723	Strontium titanates:		
Mild steel	4	647	SrTiO;	5	1611
OKh 16N 36V 3T	4	726	Sr ₂ TiO ₄	5	1614
Stainless steels (see separate entries under stainless steels)	-		Strontium metatitanate (see Strontium titanium trioxide)		

Material Name	Vol.	Page	Material Name	Vol.	Page
Titanium alloys (specific types)			Titanium hydrides – continued		
AMS 4928 (same as Ti-6Al-4V)	4	598	TiH _x (nonstoichiometric)	5	1044
C-110 M	4	543	Titanium dihydride (TiH₂)	5	1047
C-120 AV (same as Ti-6Al-4V)	4	598	Titanium hydride, nonstoichiometric (TiH_X)	5	1044
M-6	4	456	Titanium tetraiodide (TiL)	5	510
M-8	4	456	Titanium nitride (TiN)	5	1093
M-9	4	456	Titanium oxides:		
M-10	4	456	TIO	5	243
MSM-2.5Al-16V (same as Ti-2.5Al- 16V)		607	TiO ₂	5	246
MSM-6Al-4V (same as Ti-6Al-4V)	4		Ti ₂ O ₃	5	250
	4	598	Ti ₃ O ₅	5	256
MSM-8Mn (came as C-110M)	4	543	Titanium monoxide (TiO)	5	243
MST-2.5Al-16V (same as Ti-2.5Al- 16V)	4	607	Titanium dioxide (TiO ₂)	5	246
MST-6Al-4V (same as Ti-6Al-4V)	4	598	Titanium sesquioxide (Ti ₂ O ₃)	5	250
MST-8Mn (same as C-110M)	4	543	Trititanium pentaoxide (Ti ₃ O ₅)	5	253
RC-130 A (same as C-110M)	4	543	Titanium silicides:		
RS-110 A (same as C-110M)	4	543	TiSi	5	601
Ti-4Al-3Mo-1V	4	598	TiSi ₂	5	604
Ti-2.5Al-16V	4	607	Ti ₈ Si ₃	5	607
Ti-6Al-4V	4	598	Titanium silicide (TiSi)	5	601
Ti-8Mn (same as C-110M)	4	543	Titanium disilicide (TiSi ₂)	5	604
Ti-13V-11Cr-3Al	4	607	Pentatitanium trisilicide (Ti _{\$} Si ₃)	5	607
Titanium beryllide (see Titanium dodeca-			Toluene (C ₆ H ₅ CH ₃)	6	285
beryllide)	_	200	Trichlorofluoromethane (see Freon 11)		
Titanium dodeca eryllide (TiBe ₁₂) Titanium diboride (TiB ₂)	5	328	Trichloromethane (see Chloroform)		
Titanium bromides:	5	378	Trichlorotrifluoroethane (see Freon 113)		
	n <u>a</u>	770	Tridymite [see Silicon dioxide (tridymite)]		
TiBr ₃	5	778	Tungsten	4	263
TiBr ₄ Titanium tribromide (TiBr ₃)	5	781	Tungsten + Cobalt (Co ₇ W ₆)	4	459
	5	778	Tungsten + Iron (Fe ₇ W ₆)	4	462
Titanium tetrabromide (TiBr ₄) Titanium carbide (TiC)	5	781	Tungsten borides:		
	5	457	wв	5	382
Titanium trichloride (TiCl ₃) Titanium tetrafluoride (TiF ₄)	5	893	W₂B	5	385
·	5	1012	W_2B_{\S}	5	388
Titanium hydrides: TiH ₂	5	1047	Tungsten boride (WB)	5	382

Material Name	Vol.	Page	Material Name	Vol.	Page
Ditungsten boride (W2B)	5	385	Uranium nitride (UN)	5	1096
Ditungsten pentaboride (W ₂ B ₅)	5	388	Uranium nitride, nonstoichiometric (UN _x)	5	1099
Tungsten carbide (WC)	5	460	Uranium oxides:		
Tungsten carbide + Cobalt, cermet (WC +Co)	5	1282	UO ₂	5	259
Tungsten trioxide (WO ₃)	5	256	UO3	5	262
Tungsten disilicide (WSi ₂)	5	610	U ₃ O ₈	5	265
Tungstic acid anhydride (see Tungsten tri- oxide)			U ₄ O ₉	5	269
Uranic chloride (see Uranium tetrachloride)			Uranium dioxide (UO ₂)	5	259
Uranic iodide (see Uranium tetraiodide)			Uranium trioxide (UO ₃)	5	262
Uranic oxide (see Uranium dioxide)			Triuranium octaoxide (U ₃ O ₈)	5	265
Uranium	4	268	Tetrauranium enneaoxide (see Tetrauranium nonaoxide)		
Uranium carbides:			Tetrauranium nonaoxide (U4O9)	5	269
UC	5	463	Uranium silcides:		
UC ₂	5	466	USi ₂	5	619
U₂C₃	5	472	USi ₃	5	616
UC _x (nonstoichiometric)	5	469	U ₉ Si	5	613
Uranium carbide (UC)	5	463	U ₃ Si ₂ + U ₃ Si	5	622
Uranium dicarbide (UC ₂)	5	466	Uranium disilicide (USi ₂)	5	619
Diuranium tricarbide (U ₂ C ₃)	5	472	Uranium trisilicide (USi3)	5	616
Uranium carbide, nonstoichiometric (UC _X)	5	469	Triuranium silicide (U ₃ Si)	5	613
Uranium chlorides:			Triuranium disilicide + Triuranium mono- silicide (U ₃ Si ₂ + U ₃ Si)	5	622
UC13	5	896	Uranous uranic oxide (see Triuranium octa-		
UCl₄	5	809	oxide)		
Uranium trichloride (UCl ₃)	5	896	Uranyl oxide (see Uranium trioxide)		
Uranium tetrachloride (UCl4)	5	899	Uranyl uranate (see Triuranium octaoxide)		
Uranium fluorides:			Vanadic anhydride (see Divanadium penta- oxide)		
UF ₄	5	1015	Vanadium	4	271
UF ₆	5	1018	Vanadium + Aluminum	4	465
Uranium tetrafluoride (UF ₄)	5	1015	Vanadium + Antimony	4	468
Uranium hexafluoride (UF ₆)	5	1018	Vanadium + Iron	4	471
Uranium trihydride (UH ₃)	5	1050	Vanadium + Tin	4	474
Uranium tetraiodide (UI4)	5	513	Vanadium + Titanium	4	477
Uranium nitrides:			Vanadium carbide (VC)	5	475
UN	5	1096		-	
UNx (nonstoichiometric)	5	1099			

Material Name	Vol.	Page	Material Name	Vol.	Page
Vanadium chlorides:			Triytterbium pentagallium dodecaoxide [Yb ₃ Ga ₅ O ₁₂ (Garnet)]	5	1620
vcl,	5	902	Ytterbium oxide (Yb ₂ O ₃)	5	284
vcl ₃	5	905	Ytterbium sesquioxide (see Ytterbium oxide)		204
Vanadium dichloride (VCl ₂)	5	902	Diytterbium trioxide (see Ytterbium oxide)		
Vanadium trichloride (VCl ₃)	5	905	Yttria (see Yttrium oxide)		
Vanadium trifluoride (VF3)	5	1021	Yttrium	4	070
Vanadium hydride, nonstoichiometric (VH _x)	5	1053	Yttrium deuterides:	•	278
Vanadium nitride (VN)	5	1103		_	
Vanadium oxides:			YD ₂	5	1062
vo	5	272	YD ₃	5	1066
v_2o_3	5	275	Yttrium dideuteride (YD ₂)	5	1062
V ₂ O ₄	5	278	Yttrium trideuteride (YD ₃)	5	1066
v_2o_5	5	281	Yttrium gallate (see Triyttrium pentagallium dodecaoxide)		
Vanadium monoxide (VO)	5	272	Triyttrium pentagallium dodecaoxide		
Vanadium sesquioxide (V ₂ O ₃)	5	275	[Y ₃ Ga ₈ O ₁₂ (Garnet)]	5	1623
Divanadium tetraoxide (V ₂ O ₄)	5	278	Yttrium hydrides:		
Divanadium pentaoxide (V ₂ O ₅)	5	281	YH ₂	5	1956
Vanadium silicides:			YH ₃	5	1059
VSi ₂	5	625	Yttrium dihydride (YH ₂)	5	1056
V ₃ Si	5	625	Yttrium trihydride (YH ₃)	5	1059
V _p Si ₃	5	631	Yttrium oxide (Y ₂ O ₃)	5	287
Vanadium disilicide (VSi ₂)	5	628	Yttrium sesquioxide (see Yttrium oxide)		
Trivanadium silicide (V ₃ Si)	5	625	Diyttrium trioxide (see Yttrium oxide)		
Pentavanadium trisilicide (V ₈ Si ₃)	5	631	Zinc	4	281
Vycor 7900	5	1324	Zinc + Copper	4	480
Vycor glasses	5	1234	Zinc + Magnesium (MgZn ₂)	4	483
Water (H ₂ O)	6	102	Zinc + Zirconium (ZrZn ₂)	4	486
Wolfram (see Tungsten)		102	Zinc dichloride (ZnCl ₂)	5	908
X-metal (see Uranium)			Zinc ferrite (see Zinc diiron tetraoxide)		
X-metal (800 Oramum)			Zinc difluoride (ZnF2)	5	1027
	6	57	Zinc diiron tetraoxide (ZnFe ₂ O ₄)	5	1626
Xenon tetrafluoride (XeF ₄)	5	1024	Zinc oxide (ZnO)	5	290
Ytterbium (see Ytterbium oxide) Ytterbium	4	274	Zinc orthosilicate (see Dizinc silicon tetra- oxide)		
Ytterbium gallate (see Triytterbium penta-			Dizinc silicon tetraoxide (Zn ₂ SiO ₂)	5	1629
gallium dodecaoxide)			Zinc sulfate heptahydrate (ZnSO ₄ ·7H ₂ O)	5	1224

Material Name	Vol.	Page	Material Name	Vol.	Page
Zinc sulfide (ZnS)	5	714	Zirconium silicon tetraoxide (ZrSiO4)	5	1635
Zinc orthotitanate (see Dizinc titanium tetraoxide)			ZT-15-M	5	1285
Dizinc titanium tetraoxide (Zn ₂ TiO ₄)	5	1632			
Zircaloy 2	4	501			
Zircon (see Zirconium silicon tetraoxide)					
Zirconia (see Zirconium dioxide)	}				
Zirconium	4	287			
Zirconium + Hafnium +ΣX _i	4	613			
Zirconium + Indium	4	489			
Zirconium + Iron (ZrFe ₂)	4	492			
Zirconium + Iron + ΣX_i	4	610			
Zirconium + Niobium	4	495			ı
Zirconium + Silver	4	498			
Zirconium + Tin	4	501	•		
Zirconium + Titanium	4	504			
Zirconium + Uranium	4	507			
Zirconium + Uranium + ΣX_i	4	616		<u> </u>	
Zirconium beryllide (see Zirconium 13- beryllide)		1 1	}		
Zirconium 13-beryllide (ZrBe ₁₃)	5	331			
Zirconium diboride (ZrB ₂)	5	391			
Zirconium carbide (ZrC)	5	478			П
Zirconium tetrachloride (ZrCl4)	5	911			
Zirconium tetrafluoride (ZrF ₄)	5	1030			
Zirconium hydrides:					
ZrH ₂	5	1072			l
ZrH _X (nonstoichiometric)	5	1069			ł
Zirconium dihydride (ZrH ₂)	5	1072			- 1
Zirconium hydride, nonstoichiometric (ZrH _X)	5	1069			
Zirconium nitride (ZrN)	5	1106			ŀ
Zirconium dioxide (ZrO ₂)	5	293			
Zirconium dioxide + Titanium, cermet (ZrO ₂ + Ti)	5	1285			
Zirconium orthosilicate (see Zirconium silicon tetraoxide)					