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The Load Carrying Capacity of Circular

'Hates at Large Defl-ection

by

E. T. Onat2 and R. 14 Haythornthwaite
3

Abstract

This paper presents an approximate analysis for the load carrying

capacities of initially flat circular plates under various loading and edge

conditions and subjected to slowly increasing load. As a plate deforms the

carrying capacity is increased due to favourable changes in geometry. The

load capacity is estimated by assuming a velocity field based on the boundary

conditions and on the incipient velocity field of the flat plate, The analysis

is made for a rigid plastic, non strain-hardening material that yields accord-.

ing to the maximum shear stress criterion. In several cases the results

obtained compare favourably with published test data for mild steel plates;

however, for very thin plates, better agreement is obtained by means of a purely

membrane type analysis, which is also presented.
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Introduction

-Tue analysis presented in this paper was prompted by the results of

recent static loading tests on circular mild steel plates in the plastic range

[l,2,3,h] . In each of these tests, the rate of increase of deflection did not

approach the indefinitely high value expected fromn the usual theory of limit

analysis [5]. Instead, the load continued to increase without excessive

deflection to well above the expected collapse load. The explanation of

this will be sought through a study of the load-deflection relationship in the

plastic range, The approach adopted may in itself prove useful as the basis

of a more comprehensive technique for the limit analysis of plates.

The methods of limit analysis [5,6] enable good estimates to be made

of the useful carrying capacity of certain structural steel frameworks in which

instability does not develop and in which unserviceability due to excessive

deflextion occurs before any member fails due to fracture. Tests have shown

these to include, for example, some single span and multi-span beams [7,8,9]

and some portal frames [10] fabricated from low carbon structural steel, in

the theory, elasticity of the material is usually neglected and the load carry-

ing capacity is estimated as the load at whicn a model conposed of an ideal,

rigid-plastic material would begin to deform. It can be shown that, if the

material is perfectly plastic (i.e. non-strain hardening) and if the accompany-

ing change in geometry is disr-gardud, plastic flow continues under constant

load [6]. Thus, under monotonically increasing load, the rigid-plastic model

collapses as soon as the yield point load is reached, and this reflects quite

accurately the observed behaviour of structures of the types referred to.

The simplest limit analysis theory ii±locts both strain hardening

and changes in geometry and this must always be bcrnu in mind when attempting

4. Numbers in square brackets refer to the bibliography at the end of the
paper.

Contract DA-19-020-ORD-3172/4
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to broaden its field Lf application. When either of these factors is introduced

in the theoreticaj. model, it is found that, in general plastic flow can continue

only under either increasing or decreasing load [11]. If the modified model is

appropriate, the yield load ray then be of less value as a measure of the carry-

ing capacity of the actual structure, In practice, the rate of increase of

deflection with load will usually be the significant factor. When this rate

greatly exceeds the rate of deflection in the elastic range the structure will

rapidly become unserviceable and the practical limit of carrying capacity will

have been reached. This stage can be identified by investigating the load-

deflection relationship beyond the yield load,

The above considerations lead us to suppose that the obserred post-

yield behaviour of circular plates is probably conditioned by change of

geometry and by strain hardening, In this paper the role of the change of

geometry will be investigated and the resulting theoretical load deflection

curves will be compared with the results of tests. The distorted plate is an

example of a rotationally symmetric shell and the mathematical problem of

determining the limit load of such a shell will be reviewed ao a basis for the

further discussion. Only rotationally symmetric, monotonijally increasing

loading will be considered, The case of reversing loads is discussed else-

where [12].

2, Quasi-Static Deformations of an Initially Flat RiEid-Plastic Plate as a

Problem of Plastic Shell Theo ry

Consider a circular plate made of rigid plastic material and subjectea

to a rotationally symmetrical, monotonically increasing load that can be

described by a single parameter. As the intensity of this loading is raised

gradunlly, starting from zero, the plate at first remains rigid. It begins to

deform when the load reaches a critical value, termed the limit load [ 5] or

Contract DA-19-020-ORD-3172/4
Project TB2-OOOI (1086)
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the yield load [111]. Let us assume that the loads are varied in such a manner

that the further distortion following the reaching of the yield load takes

place in a quasi-static manner. Because of the symmetry of the loading and

edge conditions, the plate will assume a shape that is axially symmetrical

with respect to the axis of symmetry of the original shape, Thus the initially

flat plate becomes a shell of revolution for the post yield point loads. Now,

if it is assumed that the material is ideally plastic, then at each instant

we have to consider an equilibrium state for a quasi-static shell of revolutijon

Fig. (1) shows an element of such a shell ith the stress resultants

transmitted across the boundary meridians -nd parallels; My and ME are the

meridional and circumferential bending morients, H'T and N0 the corres-onoi.,g.

membrane forces, and Q the shear force, each measured per unit length of

shell cross-section. The load per unit area of the middle surface of the shell

has the components XY in the direction of the meridian and X Z in the

direction of the normal. Y and Z are supposed to be known and X is the

unknown load parameter. The arrows in Fig. (1) indicate the conventions for

positive forces and couples. The equilibrium of the shell element requires

that

(Np ) - r11 Cos - Q + rorlXY 0

(rN () + r1NgSin p + (roQ) + rerI \ 0 (i)tI
(r M ) - r1MCos cp - rOrlQ Oq

4 where the prime denotes differentiation with respect to y.

To obtain the velocity field of the plastic flow, the particles

originally on the normal to the undeformed middle surface are assumed to remain

on a normal to the ra.ddle surface as the latter is deforming. When the motion

of the middle surface is lnoim, the velocity field of the plastic flow and also

the plastic strains are then determined,

Contract ' A-19-020-ORD-3172/h
Project TB2-0001 (1086)



Consider a generic point A) Fig. (2), situated at a distance

from the centre of the plate before the plastic deformations set in. This point

will have the co-ordinates r( , t) and z( , t) at time t and

r( , 0) and z( , 0) =0

If the meridional and normal velocities are denoted by v and w respectively,

the positive directions being those indicated by Y and Z in Fig. (1), these

components can be expressed in terms of ;, z, r and z where the dot denotes

t3. :e differentiation. The principal rates of strain in the middle surface are

6 (v'-w),- C (v cot(P -w) (2)

The principal rates of curvature are
/

1 1 'Cot ON
1 + rlr2  (v + wI)

where the prime denotes differentiation with respect to y.

The plastic behaviour of the shell is described completely by the

field quantities My. 149, N,, N. and r( , t) and z( ,t). They are

functions of position and time. Note that any monotonically increasing function,

such as the deflection of the centre of the plate or the load intensity X, can

be used as the measure of time.

Plastic deformation may take place wherever the state of stress is

represented by a point on the yield hypersurface

N T N MyP Me) 0o(

where MO = &N o 
= doh, do  being the yield stress of the naterial in

simple tension and h the thickness of the plate. The hypersurface f = 0

Contract DA-19-020-ORD-3172/4
Project TB2-0001 (1086)
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-has been described in detail for a material obeying the maximum shear

stress yield criterion [13], The condition that work is absorbed in the

plastically deforming parts demands that (4) is always convex and that

the flow mechanism and the state of stress (represented by the generalized

stresses NP/N O etc.) are related by the flow rule

(5)
Vf f Of Of

NT2) a( OS) (-

Geometrically, (5) states that, at a generic point of the yield hyper-

surface f O, the vector with components proportional to NOcp, NOSe,

Moey and MON (drawn in the directions R/NO, Ng/No, Mcp/M0  and

Me/Mo respectively) will have the same direction as the exterinr normal

to the yield hypersurface at the point considered. For any parts of the

shell that are at rest or undergo rigid body motion the corresponding

stress points will be within the yield hypersurface.

We now recapitulate the equations and conditions to be satisfied

by the field quantities: it is required to find functions N V N9 , NP)

M9, Q, r((,t) and z( ,t) in such a way that

1) NNUpt), 116(pt), M4(pjt), %e(cqt) and Q(cpt) satisfy the

5equations of equilibrium (1) the coefficients of which are functions
of r( ,t) and z( ,t).

2) All points with co-ordinates a) fo- , and lie insideSNO' NO' ' I 0

or on the yield surface (4). In the first case the shell must remain

at rest or perform rigid body motion; in the second case the strain

rates defined by the equations (2) and (3) must satisfy the flow rule

Contract DA-19-020-ORD-3172/4
Project TB2-0001 (1086)
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3) The boundary conditions and some additional regularity conditions

must be satisfied.

3, A Basis for Approximate Solutions

The mathematical problem described in the previous section is rather

complicated. The yield condition (4) may be a non-linear algebraic equation;

hence also the flow rule (5) may be non-linear. The equilibrium equations

(1) contain coefficients that are functions of the unknown coordinates

r( ,t) and z( ,t).

In the case of the undeformed plate the latter difficulty does ncc

arise. Also, if Trescats yield condition is used, the equations of equi-

librium may be integrated directly and the complete solution obtained,

including the incipient velocity field and the stress distribution at the

yield point [li]. For example, a simply supported circular plate carrying

a load concentrated at the centre will begin to deform plastically when the

load reaches the yield or limit load 21o. The velocity field that

initiates the plastic distortion is given by

$ w cj 1- '1 (6)
v 0

where c is an undetermined positive constant and R is the radius of the

plate.

If now the early stages of the plastic deformation are considered

the velocity field may be expected to differ only slightly from the field

given by (6); hence the shape of the middle surface after a time interval

t may be approximated by

*The effect of shear is neglectsd,

Contract DA-19-020-ORD-3172/4
Project TB2-0001 (!086)
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z ct - (7)

where ct may be chosen as small as desired. The equation (7) then suggests

that the initially flat plate will become a conical shell,

Actual tests of mild steel plates loaded through a central punch

have shown that the deformed shape remains very nearly conical even when the

permanent deflection is several times the thickness [3,h]. Other tests using

various loading and edge conditions have shown that in each case the deformele

shape can be approximated by continuing the incipient velocity field obtained

at zero deflection [3].

The facts mentioned above point to a method of attack that may be

used to obtain approximate solutions. If a velocity field can be found that

describes the position of the midsurface of the plate at every stage with

reasonable accuracy, then the applied loads associated with it might be used

as estimates of the carrying capacity of the plate. Before this can be done,

reasonable assumptions must be made concerning the radial component of the

velocity. Here the force or velocity boundary conditions at the support

are a valuable guide.

Once both components of the velocity field have been chosen, the

rates of strain e9, e for every point in the plate follow fron (2) and (3)

by

eq Ee + Xez ;  e, = 8+X z.

The rate of dissipation of energy can be conputed and the magnitude of the

applied load follows at once by virtual work. In this approach, no use is

made of the equilibrium equations, so the forces N , N6, M I and Me need

not be computed. Instead the rate of energy dissipation is found directly

Contract DA-19-O20-ORD-3172/
Project TB2-O001 (1086)
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- from the strain rates and the corresponding stresses.

The components Y and Z of the exterior load are given to within

a common factor X that defines the unknown critical load intensity. Since

no energy is recoverable from a rigid-plastic shell, the total rate of energy

dissipation must equal the rate at which the applied unit loads (multiplied

by %) do work. This condition is satisfied if X is determined from

X 3'(vY + wZ) rOr l dcp - D rOr l d0

where D is the rate of dissipation of energy per unit area and the integratic.

is extended over the entire meridian. In the following, equation (8) will be

used to give an estimate of the load intcnAty X. Once the approximate mode

of deformation is decided upon with the help of the incipient velocity field

and the boundary conditions, then r0  and rI and hence v and w may be

computed as functions Lf y and a time-like parameter, such as the maximum

deflection 6 . Equation (8) gives the load intensity parameter X in terms

of b, thus establishing a load-deflection relationship for the post

yield-point loads.

This approach will now be applied to two cases for which test data

is available. For the puroose of analysis, the ideal material is assumed to

yield according to the maximum shear stress criterion and subsequently to obey

the corresponding flow rule. The rate of energy dissipation per unit volume

during plastic flow is do Je m where dO  is the yield stress in simpleduin oasicflw s eImax.0

dg tension and l e I max is the greatest principal strain rate, The use of the

maximum shear stress criterion results in particularly straight-forward algebra;

but any other criterion could be employed without introducing any basic

difficulty. The corresponding incipient vclocity field would have to be known,

of course,

Contract DA-19-O20-ORD-3172/4
Project TB2-OOOI (1086)



IC
Example I. The Simply Supported Circular Plate.

Consider a circular plate of uniform thickness h. simply supported

at the outer radius r = R anid carrying a lateral load of intensity p applied

to a central circular zone of radius r = a, as shown in Fig. (2). As mentioned

already, the incipient velocity distribution at the limit load will tend to

deform the plate into a right circular cone with apex at the center. This is

known to be correct only at zero deflection, when there are no membrane forcc, -

The conical shape might reasonably be taken as a first approximation during

small but finite deflections. The membrane forces are no longer zero and

must be considered when computing the loads required to produce the deformain;

also these forces satisfy boundary conditions with which any assumed velocity

field should be made to fit, as far as is possible.

The assumption of a conical shape for the deformed plate serves

to fix one component of the velocity distribution- that normal to the plate at

any instant. The component in the plane of the plate has yet to be fixed.

If the pla-,e Is freely supported at the outer edge, radial membrane force at

the edge will be zero; hence the corresponding velocity component is probably

small. Thus a reasonable assumption would seem to be to set the velocity

component in the plane of the plate zero at the outer edge. For simplicity)

the component will be taken as zero throughout the plate, but the more general

case cculd be treated on similar lines. The material point initially at A.,

Fig, (2), will move to A. The circumferentia± strain on the mid-surface

is Cos (p - 1 - - 2 /2 when p is small; hence the circumferential strain

rate (with respect to p) is

4 "-T

Also x/r,- tan cp i T; so 1/r (P/x and the circumferential curvature rate
2

(with respect to () is

x r

Contract DA-19-020-ORD-3172/h
Project TB2-0001 (1086)
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The rate of energy dissipation per unit volume is dIelm.x where lelmax.

is the numerically largest principal strain rate; hence the rate of energy

dissipation per unit area of the plate is

h/2

d = do el max dz. (9)
-h/2

The only strain is in the circumferential direction so l elax =

Is, + Xezl and by integration the area of the lelmax diagram, Fig. (3) is

found to be

h 8 h2  2r Rh

3e = r + R2 when r <-- (a)

d
di h = _h when r 2 (b) (10)

For small deflections ( ) (10a) applies throughout the plate. The total

rate of' energy dissipation is then

D = (2xrd) dr 2 tM0 R(l + )

0 
h2where M0  0

The rate of work by the applied pressure p is

a

E 2np f r(R-r) dr PR (1-

where P = ta2p is the total load.

By the upper bound theorem of limit analysis [6], E < D. Writing PL

27'V(l- 2a/3R) for the yield load of the undeformed plate (b 0),

3 h 2 when V/h < 1/2

P U1.)
SL2L 1when 6/h 1/2

Contract DA-19-020-ORD-3172/4
Project TB2-000 (1086)
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Comparison with Tests.

In Fig* (6) a load-deflection curve computed by means of (11) is

compared with observations of the central deflection of a simply supported

mild steel plate loaded through a centrally placed punch [4. In addition, a

load-deflection curve is shown based on an approximate theory neglecting membrane

stresses but allowing for the elasticity of the material [lk, A third curve has

been obtained by adding to the deflection found by means of (11) an elastic

deflection component proportional to the initial deflection rate.

The last mentioned curve serves to show that the slope of the

experimental points at high loads is very nearly the sum of the initial elastic

slope and that obtained from the use of equations (11). It mus be emphasized

that this superposition has been made to illustrate the good agreement with the

tests thus made possible. Lateral displacement of the curve based on a rigid-

plastic model has no known theoretical justification; however, when sufficient

confirmatory tests are available, it might prove useful in engineering practice

as a method for obtaining conservative estimates of plate deflection.

In the early stages of plasticity the approximate elastic-plastic

theory is probably more satisfactory for practical applications because it will

overestimate deflection, providing shear is unimportant. Nevertheless the present

theory gives a much better picture of the mechanics of post yield behaviour.

Example II. The Clamped Circular Plate.

Consider a plate similar to that of example 1, but clamped to a stiff

ring at its outer radius r = R, as shown in Fig. (7). This ring is supposed

to prevent all radial and rotational movements of the outer edge.

In this case it would be unreasonable to set the rate of strain zero

in the direction of the plate mid-surface. If the edges are prevented from

moving inwards there must be some such strain if the plate is to deflect at all.

Contract DA-19-020-ORD-3172/4
Project TB2-0001 (1086)
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-' The simplest assumption is to set the radial velocity zero, so that all material

points in the plate move vertically. A continuation of the incipient velocity

field then furnishes a complete description of the movement.

The incipient velocity field is made up of two parts [14]. In a

central zone bounded by r = p the plate deforms to a conical shape, as for

the simply supported plate of example 1. Outside this zone the shape is

logarithmic. Finite rotation occurs just inside the clamped edge, implying

the formation of a kink or plastic hinge at that radius, Defining a function

0(b) of the central deflection b by

C(b) b , (13)
~p

the rate of deflection with respect to C is [lh] ,

f1 4 n when 0< r <pP P (14)
1. nR when p!r < R.r

When a/R _<e - 0.606, p is found from the transcendental equation

~~~2 a(l+n

- ( (15)

and when a/R > 0,606, it is found from

, p2
2a (1 +2 90 ) + 1 (1 4n~ 0 (16)

We shall assume that the expressions (lh), Imown tc he correct for zero deflectior

are a reasonable approximation when the deflection is non-zero.

Exact determination of the rates of extension and curvature of the

middle surface at finite deformations is rather involved in this case. The

mathematical work is simplified considerably by making the following

Contract DA-19-020-ORD-3172/h
Project TB2-0001 (1086)



approximations, familiar from the elastic theory for shells,

-1/r 1 & d2z/dr2;  c, -dz/dr; r2 % -r/(dz/dr).

We then obtain from (2) and (3), for 0 < r <p,

ST= dV/dr +0/p2

.e r2(V cotCP - w) o

X T d2w/dr 2 = 0

X9  (dw/dr)/r 2 sin (p I/pri2
and for r p< R,

p (dv/dr) r 2 cosP/r I -w/r I  C/r 2

X =cp [d(v/rl)/dr + d2w/dr 2 ] r 2 coscp/r I  -1/r 2

S. ..9  + I/r 2 where the rates of strain and curvature are
taken with respect to C

Fig. (4) shows the strain rate diagrams for the above. By integration of the

lei diagram we obtain, for 0< r <p, Fig. (ha),
max

Ch + C2r + h when C <h
2 P -2r

~- 2P 2p LiorP
r 0 Ch h2 hOh _ when h

p2 8pr p-2r

and for p <r < R, Fig. (4b),£4Ch +C2 +h h
d2r2 2r 2  4r2 -

0o Ch + J 2  
when C >h

r2  8r 2  --2

Contract DA-19-020-ORD-3172/4
Project TB2-000I (1086)
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The rates of energy dissipation in the parts of the plate defined by 0 < r < p

and p<_ r < R (excluding r = R)) are then obtained by integration$ Towards

the edge, dz/dr = C/R just inside the plate and zero at the edge itself. The

resulting plastic hinge (see, for instance3 [5]) requires the development of the

fully plastic moment M0 (if the effects of shear forces are neglected)* The

rate of energy dissipation at the plastic hinge is 2jtRMo(1/R) - 2iM o . The total

rate of energy dissipation is then

D = 2RMO + n (2itrd) dr - 2-MA

where

2 +/n + f ( + when C <h/2p h h2 (13

1_2 +1 n E+ (2 +,n ) + "h when C > h/2

The rate at which work is done by the pressure loading p isI a
E j 2mrlpdr - BP

2
where P I ta p is the total load and

' n l nR 2a when p> a*. B I (18)
B 2

i+ n 11 Pp when p < a
2 a 6a2

jjl Employing again the upper bound theorem of limit analysis [6], E <D; hence

P < 2'A40 A/B

where A and B are given by (17) and (18) above. The yield load of the

undeformed plate is PL 2;dM0 Ao/B where A 0 2 n ; hence on subtitutio

Contract DA-1 9-00-n"-1:7.
,- vr' J,'-' T-UO (1086)
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for C (equation )3) in (17),

1 +a,() + a (  )  hen <7 + 1R

hhe I-2 2 p

PL <AOfwe 
: 1 1PI +P2 ( E) +P3 (t) w h - 2 2

where a, a 2  P22 p

" (2+.5n)(l n R 3(2 +ZnE)(i +Zn )2

(3 +1LnE )  2(l +2n) 1 +n

i and . PI P ( nR ' ; =  R 13 =  .. P (19)(2 (2 ,nE)(1 +tnR 12(2 +Un R )

The value of p/R is found fro 21 ( 16) depending on whether a/R is-1/

greater or less than e /2. The coefficients cI a2 Pl P2 and P3  may then

be evaluated for various a/R and are given in Table I together with critical

(values of b/h. Intermediate values correct to two significant figures may be

found by linear interpolation in the range 0.1 < a/R < 1. In the neighborhood

Table I: Values of coefficients in the 4orriulas (19) and

critical values of b/h,

a/R 0 0.01 0.1 0.2 0j.4 0.6 0.8 1,0

Cl 0 0.323 0.44o 0.481 0.519 0,533 0.536 0.535

a2 0 0.010 0.150 0.196 0.256 0,295 0,317 0.3244P 1  (0.500) 0.591 0.635 o.655 O.581 0.699 0.712 0.716

P2  (0) 0.646 0.879 0.963 1.038 1.066 1.072 1.071

P3  (0.0833) 0,0682 0.0609 0.0574 0.0531 0.0501 0.0480 0.0473

b/h oo 2,253 1.355 1.109 0.879 0.753 o.681 0.657

Contract DA-19-020-ORD-3172/4
Project TB2-0001 (1086)
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of a!R 0 0, the coefficients a 1 and P2  fall rapidly to zero and linear

interpolation cannot be used. However, the theory is unlikely to be applicable

for very small a/R because the effects of shear force are neglected, so in

this range the precise values of coefficients are of little interest.

Theory predicts a finite slope for the load-deflection curve immediately

tafter yield, This result is exact in that at zero deflection the velocity field

is known to be correct within the framework of the thin plate theory.

Comparison with Tests.

Data is available that enables a comparison to be made between the

above theory and the results of static tests of mild steel plates [3]. Fig.

(7 )shows observed central deflection v. applied load for a series of plates

having various ratios of diameter to thickness. Each plate was clamped to a very

stiff outer ring and was loaded through a centrally placed punch. Supposing

the effects of non-uniformity of pressure beneath the punch to be purely local,

the test conditions conform closely to those assumed in the theory. The solid

line shows the load-deflection curve computed from (19), using the coefficients

for a/R = 0.1 given in Table I. For the plates of intermediate thickness, the

general character of the post yield b-ehaviour is represented quite well by the

theory when due allowance is made for the neglect of elastic deflection, For

the thickest plate, the increase in rate of deflection at the yield load is

less than expected. This may be due to the approximations of the simple plastic

plate theory (eg. that plane sections remain plane) which are unlikely to be

accurate for very thick plates, or to the apyx.rv.mations used for the slope and

radii of curvature of the midsurface. For the thinnest plate, Lhe pre-yield and

post-yield deflection rates were very similar so no marked change in slope was to

be expected at the yield load,

Fig. (8) shows load-deflection data Por a plate subject to uniform
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pressure, The solid line shows the load-deflection curve computed from (19)

using the coefficients for a/R = 1, as given in Table I. This case has been

studied by means of membrane theory, in which bending action is neglected [15,

16, 17, 18] . The load-deflection relationship obtained in [17] for rigid-

ideally plastic material obeying the maximum shear stress criterion of yield has

been added to Fig. (8) as the broken line. This is seen to represent the obser-

vations quite well over a wide range of deflection, although the theory cannot,

of course, give an accurate guide to the rate of deflectiun in the neighborhood

of the yield point load.

Comparison of Figures (7) and (8) suggests that membrane theory might

also be of use for very thin plates loaded over only part of the surface. The

membrane theory for this slightly more general case is developed in the following

section.

4. Theory of Plastic Membranes

Consider a clamped circular plate on which a uniform pressure of

intensity p acts over a central area bounided by r = a. If bending forces

cannot develop, the equations of equilibrium (1) become, for 0 < cp <p (a),

N + = p cos (P
r, r2

s P r r2 sinc p d 1*r N 2 sin2 P J2

and for cp(a)<p,

' +- 0
* r r2

I (p~a )

1

r 2 sin2so jP r n0d
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where cp(a) is the value of p at the radius r a.

When the maximum shear stress criterion of yield is used for the

plastically deforming portions of the shell, the stress point with the

coordinates Ny and N. will be situated on the yield hexagon shown in Fig.

(5). It is easily seen that, when the stress state is represented by one of the

sides of the yield hexagon, the unknown stress resultants may be eliminated

from the equations of equilibrium to obtain an equation that contains only

r l (P), r2(p) and p. This last equation is a differential equation which must

be satisfied by the meridian curve of the deflected plate. Thus the deflected

shape of the plate is very nearly determined by the equations of equilibrium when

the type of plastic regime is known. It is to be noted that the corners of the

yield hexagon require special treatment, because two equations are obtained for

each of tne regions of loading that meet at the corner.

Assumi:ig that the slope of the meridian curve remains small, the

equations of equilibrium become, for r < a

rN d z + N _z + pr O

dr2 
(20)

2 dz + pr 0

and, for a < r < R
2

r Ny d ,, + 11 dardZ 0

dr
2

~(21)

2r NA+ pa 2 0

At the centre of the plate,

N6 = N? = NO

by symmetry. Therefore, for the neighbouring rlato elements, the stress state

Contract DA-19-020-ORD-3172/h
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must be represented by either the regime AB or AF; i.e. Ny NO, No > Ne> 0

or N. = NO, NO> N.> 0. If the first condition is introduced in the equations

of equilibrium (21), the second condition gives, for 0 < r < a

2
Z = . + 

(

where b is the deflection at the centre. Using these results in the first of

(21),

Similarly, for r > a

and
2

Da Zn X (23)
2 R

where the boundary condition z 0 at r - R is satisfied automatically. The

curves defined by (22) and (23) will match at r = a if

2 2

2N°  R 14%

Writing the total load as P :ica2p, the load-deflection relationship becomes

P = 2 6o  (24)

2 a

This may be plotted non-dinensionally afte r dividing through by the yield point

load P defined in Section 3. The relationship is shown in Fig. (7) as the
L

broken line. This line is in quite good agreement with the data for the thinnest

plate, thus illustrating that a membrane type theory may also be of use in certair

cases of non-uniform loading.

Contract DA-19-020-ORD-3172/h
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Concluding Remarks.

To place the results in perspective in relation to limit design [5, 6]

it should be noted that the approximate stiff plate theory developed here does

not necessarily give an upper bound to the load carrying capacity at a specified

central deflection because, in general, the assumed shape of the plate is not

exactly correct. We have found upper bounds to a slightly different problem.

This point is well illustrated by the case where a/R = 0.1, shown in Fig. (7):

for which at large deflection the carryi.ng capacity of the membrane exceeds that

computed for the stiff plate, presumably because the membrane assumes a more

favorable shape. A theorem may exist to the effect that, under certain

restrictions, the structure will assume the most favorable shape; but this has

not yet been established. In the meantime the best procedure is to judge the

utility of the results obtained in specific cases by direct comparison with

tests,

The comparisons made with the results of tests on mild steel plates

suggest that, for mild steel, there is a substantial range of thicknesses in

which the present stiff plate theory represents the immediate post yield behaviour,

with fair accuracy, when due allowance is made for the neglect of elasticity.

For both vory thick and very thin plates, howevor, the results are less

satisfactory. This is not unexpccte-d. For very thick plates the assumptions

of the simple bending theory of plates will not be met even approximately, whilst

Jfor very thin plates, the relitively high rate of elastic deflection tends to

mask the change in defluction rate at yield as predicted by the rigid-plastic

model. Settlement of the precise range of utility of the rigid-plastic theor-J

must await further tests; howeve), on the evidence available, it seems likely

that the thin plate limit is reached when the elastic slope is about twice the

ultimate post-yield slope 82 (see Table I). When the elastic slope is smaller

Contract DA-19-020-ORD-3172/h
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than this, a membrane theory is probably better.

The point of greatest general interest emerging 
ftom the analysis is

that it seems likely the continued strengthening 
of plates immediately above the

yield point load can be largely explained by taking into account the changes in

geometry and without postulating strain 
hardening or other change in the properties

of the material as yield proceeds.

/

'I
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