UNCLASSIFIED

AD NUMBER

ADA801550

CLASSIFICATION CHANGES

TO:

UNCLASSIFIED

FROM:

RESTRICTED

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 07 MAR 1944. Other requests shall be referred to Office of Scientific Research and Development, Washington, DC 20301.

AUTHORITY

OSRD list no. 1 dtd 1 Nov-14 Dec 1945; OTS index dtd Jun 1947

THIS PAGE IS UNCLASSIFIED

The U.S. GOVERNMENT

IS ABSOLVED

FROM ANY LITIGATION WHICH MAY

ENSUE FROM THE CONTRACTORS IN -

FRINGING ON THE FOREIGN PATENT

RIGHTS WHICH MAY BE INVOLVED.

8.2-17

NATIONAL DESERVE RESEARCH CONCEPTEE

Division //

of the

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT

OSRD No. 2036a Copy No. 89

DIVISION 11

NATIONAL DEFENSE RESLARCH COMMITTEE

of the

OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT

THE MANUFACTURE, PROPERTIES AND TESTING OF NAPALM SOAPS

by G. Broughton, Chemist, Eastman Kodak Company A. Byfield, Technical Aide, Division 11, N.D.R.C.

Supplement to Roport OSRD No. 2036 Copy No. 89 Date: Harch 7, 1944

Copy Nos	
1-28	Dr. Irvin Stevart
29-58	Chemical Warfare Center, Edgewood, Maryland
	Attention: Brig. Gen. V. C. Kabrich
59	Commandant, U. S. Marino Meadquarters, Navy Department
	Attention: Lt. Col. L. E. Marie (Marine Corps)
60	Office of the Chief of Chemical Marfare Service
	Attention: Technical Division, Liaison Branch
61	Chief, Dureau of Ordnanco, Attention: Commander J. H. Sides
62-63	Air Corps Liaison Officer with NDRC
64	CNS Development Laboratory, H. I. T.
04	Attention: Lt. Col. J. N. Rothschild
65	Commanding Officer, CWS Laboratories, Columbia University
66	Division 11 Files
67	Mr. E. F. Stevenson
68	Dr. H. C. Hottel
69	Dr. H. F. Johnstone
70	Dr. C. S. Keevil
71	Dr. E. K. Carver
72	Mr. N. F. Kyors
73	Dr. G. H. HcIntyre
74	Mr. J. E. Long
75	the A Minister
76	Sm. H. R. Kubu
77	Dr. J. V. McBain
78	
79	Mar D. D. Dever
30	Dr. L. F. Fieser
	Dr. h. r. Heser
83-84	Col. H. R. Lynn, British Petroleum Warfare Sorvice
0)=04	37 Wall St., New York City
86	Dr. L. H. Chilton
00	
	Total Number of Copies - 100
	RUSTRICTED
	RESTRICTED

Division 11 OSRD No. 2036

NATIONAL DEFENSE RESEARCH CONVITTEE

of the

CFFICE OF SCIENTIFIC RESTARC' AND DEVELOPMENT Section 11.3

THE NANUFACTURE, PROPERTIES AND TESTING OF NAPALM SCAPS

Service Directives CVIS 10 and 21

Endorsement (1) From Dr. H. C. Nottel, Chief, Section 11.3 to Dr. Irvin Stewart, Executive Secretary of the National Defense Research Committee.

Forwarding report and noting:

"This report supplements C.S.P.D. Report No. 2036, "The Manufacture, Properties and Testing of Mapalm Soaps" issued November 17, 1943.

"In that carlier report recommendations were made concerning the advisability of investigation of the effect of raw material properties in the finished scap, further investigation of exidation inhibitors, and investigation of the relationships among gasoline quality, moisture content, concentration and consistency. The present supplement reports progress on those recommendations.

"A study of the effect of raw materials leads to the following conclusions. Varying the composition of Mapalm from the standard to 2:1:1 ratio of coconst to choic to maphthenic acid indicates that the viscosity of the gel increases primarily with increased oleio acids and to a lesser extent with increased coconst acid above normal composition. The acid number of the coconst acid has been found important. Iron is an underirable impurity when found in the alum but not in the acid.

"Since issue of the last report all Fapalm has included an oxidation inhibitor. This is found to have no delaterious effect on consistency and to constitute a definite protection against oxidation.

"Although Napalm manufacture new appears to be under sufficient control to guarantee an acceptably small variation in quality of product from any one manufacturer, the viscositities of gels product from equal concentrations of scap of different manufacturers vary considerably. For the 8 per cent gels the ratio of the strongest to the weakest is roughly 1.8; for the 4 per cent gels the variation is even greater. There is still need for a determination of how important this variation is in use of

OSRD No. 2036 (Cont'd)

the gel in flame throwers. Consistency varies also with aging, and the effect is most pronounced in gels of low concentration. The consistency of 8 per cent gels varies 1.5 fold with variations in gasoline quality; more concentrated gels less sensitive to gasoline variations, more dilute ones more sensitive.

"Quantitative data showing how little temperature affects the consistency of Mapalm gels are presented in Fig. 5 following page 34. This temperature-insensitiveness makes Mapalm the only available flame thrower fuel useful for low temperature operation."

.

TABLE OF CONTENTS

•

i 4

	L'ERE
Introduction	. 1
The Manufacture of Napalm I. The Effect of Variations in the Ratios and Specifications of the Raw Materials Employed	2
II. The Effect of Iron on Consistency	6
III. The Effect of Oxidation Inhibitors on Gel Consistency	8
The Properties of Napalm	
I. The Moisture Effect	9
II. The Oxidation of Napalm	13
III. The Dispersion of Napalm	21
Appendices	
I. Properties of Napalm (a) Equilibration of Moisture in Napalm	24 24
(b) Prevention of the Moisture Effect	27
(c) Oxidation of Napalm	29
II. Testing and Specifications	34
III. Literature References	35

Introduction

This report constitutes a supplement to O.S.R.D. 2036, The Manufacture, Properties and Testing of Napalm Soaps" issued November 17, 1943. A considerable amount of new data has been obtained in the intervening months. Among these are the effect of (1) variations in raw materials, (2) the addition of oxidation inhibitors, (3) the addition of drying agents, (4) variation in gasoline and moisture content on consistency, and (5) temperature on dispersion and consistency. Also presented are data on the Columbia-CWS oxidation susceptibility test.

As before, we are indebted to C.W.S., and in particular Major deGray, for their cooperation in the preparation of this report.

The Manufacture of Napalm

I. The Effect of Variations in the Ratios and Specifications of the Raw Materials Employed.

A. <u>Variations in Ratios of Acids</u> During the early days of Napalm manufacture, a considerable number of laboratory batches were made in an effort to decide what ratio of acids would give the best results. Many of the data are confused by the effects of oxidation and moisture (which were not appreciated at the time) and do not lend themselves to a reliable analysis.

Recently data have become available (1) which shed some light on the effect of variation of the three acids on the aluminum soap produced. Nineteen laboratory batches of Napalm were made by verying the percentage of each component acid ± 10% from the standard composition of 50% coconut, 25% oleic and 25% naphthenic. Fig. 1 shows on triangular coordinates the variations involved in these experimental batches. Fig. 2 shows the complete date on these batches.

Several interesting conclusions may be drawn from these data. Holding all variables as mearly constant as possible except the percentages of acids used, the strength appears to be a primary function of the amount of oleic foid, with the coconut and naphthenic acids contributing secondary effects. If the 24 hour 150°F. mobilometer values are plotted versus per cent oleic acid on semi-logarithmic coordinates, e streight line correlation is found having the following equation: (2)

 $M = 397 \log A + 110$ where $h = 150^{\circ}F$, 24 hour mobilometer consistency

A = 3 oleic scid. A more detailed analysis of the date (3) has been made by considering the percentage of erch acid as an unknown in the following equation:

m = aA + bB + cC where m = mobilemeter consistency, A,B,C, = percenteges of oleic, coconut and nephthenic scids respectively and a, b, c are

constents.

Using the method of least squares to solve the nineteen simultaneous equations involved, the following values of the constants a, b and c are obtained:

Harmon Color Norks, Inc. Heledon, N. J. SAPALK i

A report indicating off-ote on Nepala when the proportions of the tires firsty solids used are varied. The or variations may be noted from the attached beinamine according to diagram. Equivalent weights (calculated from ocid unmored) and indice numbers denore with every variation.

The following method was used in the preparetion of sech semple:

FICURE 2

Besh variation was propored threa that on different days and these three uses bloaded, marked and used for the test. They were stored for sixty days is needed given for and wold burked determinations as well so well consisten-ties more and on the meterical before and after drying to react any moleture defend ap during storate.

In preparing these the caustic sods ass left constant and the anomats of faily asids used are in proportion to the acid number calculated from that parts address.

¹⁵ Green No.17 935 - dissolved in 2000 grams when any operation -when the entration -interference - the poly operation -the structure - the poly operation -the structure - the poly operation -distructure - ement multiples from - structure -filter - ement multiples from - structure -of entration - structure -of entration - structure -of entration - structure -of entration - structure -of - structure - ement presented thructure of - structure - structure -of - structure - structure -structure - structure - structure -structure - structure - structure -structure - structure - structure - structure -structure - structure - structure - structure -structure - structure - structure

OBSERVATIONS AND DATA

	60° 7 7616	0.54	0.55	0.5%	0.56	0.56	0.45	0.55	0.65	0.75	0.65	0.55	0.5%	0.45	0.55	0.55	0.54	0.44	2.54	
	Jours et 1 Jours et 1 Hours Wol	ĸ	735 0	665 C	655 0	e80 0	740	720	780	720 (720 0		635	605		dis				
-11	1914 fu Arithi A Nours at 180° 2 2410 foly Ditor to Amerian <u>and</u> 25 fiours 45 Rours 2014 to	740	e95	620	50	660	720	675	755	670	700	680	570	585		009	630	0 80	282	705
11 	Trets to	dis	035	595	640	04.5	020	alis		630			580	1 ,95						
alance alance name	r Mature	1.25	1.25	1.35	×6	1.24	1.3%	1.25	1.2%		х.		1.2%	1.35	1.2% 575	1.1≮	1.35	1.2%	1.15	1.16
1.11.11.11.1	utterianta alter filages da la bura da Nouro M olature	014	350 1	340	110 1.35	1,00	490	370	4.50	370 1.5%	300 350 1.25	570	330	350	400			110		
	Tests on affect atanting follow Houre 24 Hours	34.0	310	320	350	0/£	400	350	611	350	200	34.0	330	330	570	380 430	34.0	450		320
	1.11	0 6 2	320	330	100	340	410	300	150	370	340	340	310	350	1,00	380	370	350	190	100
8	per 100 per 100 enu ley	295	375	120	260	260	275	325	380	8	-25	290	245	295 350	255	250	250	245	255	002
Se, whe	ury Physical Appearatur	Tell on	Thite	hite	parte	Pasta	peen	a Jury	Places	Linta		Fluctz	Fluffy	white	pear	Pused	Pese	Pused	Puerd	Tel low
Parts 11x-	ed acida Losa in Experimenta a	192.4	181.2	179.6	<u>1</u> 91.6	191. 8	195.6	13.6	198.0	181.6	179.8	177.6	176.8	178.4	180.4	13.2	196.4	187.2	192.0	199.6
		228.0 10x11224-1 192.4	220.5 10x11228-2	224.5 10x1122C-3 170.6	227.0 10x1122D-4	231.0 10x1122F-5	232.0 10x11227-6	229.5 10x11220-7	235.0 10x1122H-8	277.0 10x11221-9 181.6	223.5 10x11227-10 175.8	222.0 10x1122x-11 177.6	19.6 221.0 10x11221-12 176.8	4.871 FL-M211201 0.223.0	225.5 10x1122N-14 180.4	229.0 10x11220-15 13.2	237.0 10x1122P-16 196.4	244.0 10x11229-17 187.2	240.0 10x1122P-18 192.0	237.0 10x1122c-19 199.6
Calculated Agaiwalent grp. Fo.	Nite on Mix Three Re- of Three peaks actus Dry Mix	228.0 1	220.5]	224.5	227.0 1	231.0 1	232.0 1	229.5	235.0 1		223.5		221.0 1	. 223.0	225.5	29.0	232.0	234.0	240.0	237.0
belouisted (edine No.	or the of Three of actics	26.7	20.0	22.9	2.0	20.9	30.7	30.5	34.2	30.3	20.4	22.7	18.6	19.2	19.4	23.3	27.0	50.7	344	34.4
Percent Naphthenic Asid asid		ĸ	8	£	2	30	x	8	ম	ų	R	8	x	30	5	5	32	30	2	8
Percent Cleis word Loid No.	Todine P Bi.S	ĸ	R	8	8	2	8	30	2	30	x	ន	2	2	2	8	ĸ	30	-	5
Feroest Coccast Petty Astern	in the second	8	5	5	8	54	4	8	8	8	3	3	3	5	20	54	91	9	9	5

RESTRICTED

a (oleic) b (coconut)	2 hrs. 150°F.	24 hrs. 77°F.	48 hrs. 77°F.
a (oleic)	13.1	13.8	14.0
b (coconut)	5.1	5.8	6.0
c (naphthenic)	1.1	1.8	2.0

When used in the above equation, these constants permit the calculation of mobilometer consistencies for these data showing good agreement with experimental values. This analysis makes clear the predominant effect of the oleic acid on the mobilometer consistency. It should be emphasized, however, that these constants apply only to the raw materials and preparation procedure given in Fig. 2, but the mathematical analysis should be generally applicable.

B. <u>Variations in the Acid Value and Quelity of</u> <u>Coconut, Naphthenic and Oleic Acids</u>.

ъ

1

an tsta National

The effect of acid number and quality of the component acids has received considerable attention during the past few months, and data are now available as the result of a large number of laboratory preparations (4, 5, 6, 7). The laboratory technique has been held constant and the raw materials varied to as great a degree as possible with the samples available. A standard batch formulation and procedure, corresponding closely to general plant practice, were selected and after a sufficient number of batches had been made to assure reproducability and satisfactory gel-forming characteristics, the three acids were replaced, one at a time, by other grades of the same acids. Tables I, II, and III show the results obtained with various grades of oleic, naphthenic and coconut acids. In each case all variables except the one being investigated were held constant.

From these data it seems reasonable to conclude that the quality and acid number of the oleic and naphthenic acids within the limits of the spec. suggested on p. 34 of 0.8.R.D. Report 2036) used have little effect on the consistency of the final gel. There is some indication that the acid value of the naphthenic acid may have some influence, but the effect is not clear from the amount of data available. With oleic acid poor results have been obtained with acids of titre lower than 8 and as high as 15. On the other hand, the acid value of the coconut acid is definitely a factor in determining the thickening power of a Napalm scap. Providing that the acid number of the coconut acid used is specified, no difficulty should be encountered in producing satisfactory Napalm from a variety of commericially available acids.

RESTRICTED

.

Table I: Oleic Acid

4

																							1			
Mole-	0.55	0.37	0.46	0.40	0.51	0.40	0.45	0.68	0.33	0.30	0.68	0.33	0.55	0.55	0.25	0.48	0.25	0.40	0.38	0.43		R	ES	TR:	ICT	ED
24 hrs.		825	810	770	815	780	610	290	835	202	064	660	785	760	710	740	290	715	205	580	758	835	580			
44 hre.	-14 - 1 - 815	800	820	810	800	780	810	805	780	815	815	705	008	825	730	810	800	825	805	210	293	825	205			
Titer °C.	11.8			25.1	11.5	17.9	25.5	5	17.7	25.2	11.8	6-9	8-10	10-12	10-12	10-12	15-18	8-12	8-12	5-7	mean	mex.	min.			
Ia No.	1 93 1 93 1	89	98	64	87	85	64	68	83	78	91	87-90	B8-91	06-88	8	06	78-93	26-06	<u> 26-03</u>	85-95						
icid Vrlue	- 198 198	191	192	194	167	168	190	192	192	193	193	199	197	185	190	195	175	190	199	198						
Source	Hardesty		-	Ŧ	=		Ŧ			-	Ŧ	A. Gross & Co.	=	W11son-WPrtin	=	=	Emery Ind.	=	=	Proctor-Gamble						
	ouble Dist.	Redolene-Reg.	" Med.	" Heavy	Sapolene Reg.		" Heavy	ne	n H Med.	" Heavy	" Crystolene	White Oleine	L.C.P. Red Oll	Sap. Red Oil	1	Double Dist. Red 011	Sap. 0-22	Elsine		y Brend			R	281	'RI(CTŁ

RESTRICTLD

24 hrs. Kols-<u>150°F</u>. <u>ture</u> <u>840</u> <u>0.55</u> 705 880 0.55 880 0.45 805 0.45 825 0.45 825 0.60 810 0.67 0.67 785 I_a No. Unsr.p. 44 hrs. - 9.7 - 70⁵ - 10³ 18.6 app.205 745 10.1 < 105 800 10.4 305 820 10.0 255 820 15.2 - 750 15. 785 nean Ia No. Coconut Acid I Actd Z72 272 294 294 294 294 231 240 240 240 241 241 Gen. Petroleum Co. Pennotex 011 Co. Cel. ٠ Table III: Source * Texes Co. St'd. of Stanco . I #212 Refined Special Cut Grade Semi-ref. Refined Rect1f1ed Refined #9110 Crude 200x

Moisture 0.43 0.31 0.45 0.52 0.63 0.38 0.50 I. 44 hrs. 24 hrs. 77°F. 150°F. ___004__ 785 1050 805 805 730 800 805 805 805 800 750 770 1150 785 835 835 820 810 820 820 795 1 23.2 26-27 22.6 Titer 23.6 23.2 26.5 23.7 Value 13-15 14.8 1.1 8-9 2-3 I2 ŝ ŝ e Sap. No. 250-260 AAR hydrolysed 274 274 254 258 1. 268 268 350 258 268 Source Value Sap. - E.F. Drew Co. 266 267. 277 348 229 Ac 1d 277 St'd.of Cal. Griffin Chem. Grade Oron1te Refined Refined AAARH AAAR æ 9 G,

RESTRICTED

Naphthenic Acid Table II:

RESTRICTED -5-

II. The Effect of Iron on Consistency

4

A. <u>Presence of Iron in the Acids</u> Table IV A (5, 6) shows the results of standard betches of Napalm in which iron was added to the acids used, and B gives data on the addition of iron (as ferrio sulfate) to the slum both with and without inhibitors (a-naphthol and alphanil). Up to 0.6% iron present in the aoids used in making, the batch appears to have little effect on the consistency of the result-ing gel, and it is probable that the iron is precipited as ferric hydroxide during the formation of the sodium soaps.

When iron is introduced with the alum used for precipitation, the harmful effect on consistency is apparent at final iron contents greater than 0.1% (approx. 0.15% based on the alum). The presence of 0.2% a-maphthol (based on weight of finished Napelm) does not appear to prevent gel deteriora-tion. It is likely that the effect of iron noticed in these data is due to the dispersing action of the iron salt rather than oxidation since the iodine numbers given are normal. Maximum permissible iron contents suggested elsewhere (8, 9) have ranged from 0.01 to 0.03%; these figures were arrived at by oxidation experiients without taking account of the dispersing effect. Since oxidation is catalysed by amounts of iron considerably smaller than the quantities necessary to oause low gel consistencies by the dispersing effect, the former must be considered the more important and alum speciτ fications should consider priverily this factor.

RESTRICTED

.

-2-																													
RESTRICTED .			Molsture	0.43	0.00	94.0	0.45	0.55	0.38	0.30	0.53	0.58	0.43	0.45				be .	Molsture	- 0.73	0.38	0.45	0.45	0.45	0.60	0.50	40	0.40	
R		24 10	150°F.	200	775	202	084 280	795	800	715	830 830	850	835	825	Iron Free			. 24 hrs.	12041	- <u>- 805</u> -	810	785	605	470	785	750	650	425	
	<u>lstency</u>	44 144	<u> </u>		810	020	605 605	825	008	750	800	835	800	825	Wrr Grede	*	•••	44 hrs.	/ /	<u>- 815</u>	805	825	600	390	795		670	420	
	n on Cons	LotoT	_1n Ac1dg	0.0033	0.033		C.112	0.024	410 0		0.60	0.121	0.24		Company - 12	* *		Initial	euroot	- 27.5 -	25.8	27.0	26.6	26.6	27.1	4.02 96 a		27.1	
	Effect of Iron on Consistency	Tron	1 <u>1</u> c_		0.003	0.003	0.12	60				03	003 0.96	3 1.28	Cremicel	* * *		Inhibitor	тоuาแจ่≌แ−ก ๔	1. 	0	0	0	0	200	200	0.2	0.2	
	Table IV:		أبه		0.06			-			2.4	0		·•• •	ALUM 18 General	•	Alum	Iron Content	mraduat		0.02	0.05	0.50	29.0		01.0	0.20	0.60	
		A. Iron in Acids	Formulation	CPU (st'd)	CPU-CI6	CPU-CI 1.5	2					CPU-OI 48	6711-01 96	Cru-ul 128			B. Iron 1n A	Formulation		CPU-A II	AIZ	A 15	4	4	N 12N	<	A 160N	¥	
																							P	CE I	21.	RIC	11	υ Ω	

...

-7-

III. The Effect of Oxidation Inhibitors on Gel Consistency

-8-

The following table gives results for several laboratory batches of inhibitor-containing Napalm (5, 6).

÷

Table V

Inhibitor	44 hrs., 77°F.	24 hrs 150°F	
0.1% alphanil	855	750	0.47
0.3% "	810	765	0.30
None	795	755	0.45
0.05% a-naphthol	805	770	0.58
0.10	800	780	0.35
0.30 "	790	780	0.33
0.80 "	775	750	0.35
1.20 *	770	770	0.53

It appears that the presence of oxidation inhibitors in Napalm has no deleterious effect on the consistency of the resulting gels.

The Properties of Napsim

I. The Moisture Effect

No new findings of great importance have been made recently on the moisture effect. Nevertheless, the conclusions of the previous report have been confirmed and in some cases extended by new work. This may be briefly detailed.

Several times in the past (10), it has been questioned whether or not water taken up by Napelm can be redistributed within the molecule in some way on standing so that it becomes inactive with respect to its effect on the consistency of the gasoline gel. It was also thought that moisture determinations made by a variety of methods might change their relative values due to such rearrangement. To test this point, three soaps were exposed to two relative humidities, 120°F. - 20% R.H. and 85°F. - 65% R.H. for varying periods of time (13). Samples were withdrawn and kept in tightly closed bottles in the same relative humidity rooms so that any small leak would have no effect, and moisture determinations were made by both vacuum oven and benzene distillations (15). No differences whatever in moisture content (in any one series) could be observed. Similar results were obtained with consistency measurements. (Full results are given in Table XVI, Appendix I.) It must be concluded, therefore, that no detectable redistribution of moisture within the Napalm structure occurs on standing, at least with the present available water and consistency determination methods.

Data have been obtained on the equilibrium moisture contents at 20, 50 and 70% R.H. of typical samples of Napalm from the various C.W.S. contractors (16). These, together with consistency results on 4% and 8% gels in Standard Oil Development test gasoline #14, are shown in Table VI. It will be seen that there is considerable variation in moisture content and gel consistency, although in nearly all cases the values for the samples as received were very close to those of the samples conditioned at 20% R.H. This seems to indicate comparative uniformity in packaging conditions and containers.

-10-

RESTRICTED

Gardner Consistencies Per Cent 8% Gels 4% Gels Rel. Hum. at which C.W.S. 2 days 2 days 24 hrs. 77°F Sample Conditioned Moisture_ 150°F. 77°F. Grams grams 745 grams 175 Nuodex As rec'd. :7% .95 1.2 1.7 Eakins As rec'd. N-3-2981 20 .45 .7 1.0 Imperial As rec'd. .7 NR 232 .7 .95 1.45 McGean As rec'd. .75 .8 1.45 2.2 11 . Ferro As rec'd. .65 .55 1.0 1.45 Pfister As rec'd. .7 N-3-2432- 20 .7 1.05 1.30 Harmon As rec'd. R11285 20 .7 .75 1.0 1.2 Oronite As rec'd. .5 J-33-C .45 .7 .95 Calif. Ink As rec'd. .7 .8 1.1 1.55 Colgate As rec'd. .4 N-3-2854- 20 .5 .75 .95

Table VI: Moisture Content and Consistencies of Typical Napalms

Much of the variability in soap consistencies must be ascribed to the moisture effect, but it is thought that one of the methods previously suggested (8), namely, the addition of a small quantity of a dehydrating agent, may serve to overcome this. Of the available dehydrating agents, phosphorus pentoxide, magnesium perchlorate and calcium chloride immediately caused breakdown of Napalm gels. Calcium chloride, while initially satisfactory, causes breakdown of the gel after long time keeping, particularly at elevated temperature. Sodium sulphate, calcium sulphate and alumina are not sufficiently active leaving silics gel and magnesium sulphate as the most promising materials for use (11, 12, 13, 14). Table VII and Fig. 3 show results obtained with these materials. It will be noted that the addition of these reagents makes the drop in consistency on keeping at 150°F. practically zero, even after prolonged storage.

.

۹. ··

As a result of this work, experiments are now in progress to compare the relative efficiencies of magnesium sulphate and silica gel, the minimum percentage of each required and the reduction in concentration of Napelm which could be made in gels for any given purpose when a dehydrating agent is present.

The form in which the dehydrating agent should be shipped is as yet doubtful. If packed in a separate hermetically seeled container within the Napalm tin, the Napalm could suffer moisture deterioration yet the dehydrating agent when added to the gasoline directly before mixing would pull it up to strength. Mixing of the agent with the scap is also a possibility. Preliminary results (19) indicate that gels made up from Napalm containing silice gel were very satisfactory even after the Napalm-silica gel mixture had been in storage for two weeks.

RESTRICTED

-11- .

NENGARS "ADNELSISNOD

Drying Agent**	<u>Days_at 150°F.</u>	_Gardner_Consisten	çy
	1	grams	
None	$\frac{1}{7}$	300 150	
	7	190	
1% CaCl ₂ (anhyd)	1	700	
Le caolà (autitu)	7	700***	
	50	125	
1% Na2SO4 (anhyd)	l	300	
1% "Drierite" (CaSO ₄)	l	450	
		2715	
1% Activated alumina	1	375 260	
3% Activated alumina	5 1	580	
NA WOITAGICH STHIITUS	5	360	
1% Silica gel****	1	725	
3% Silica gel	1	765	1
	7	780	
	40	550	
B. 4Nuodex #89093, C.W.S			
None	1 hour	420	
	l day	450	
	2 days	480	
0.5% CaSO.	1 hour	480	
	1 dey	480	
	2 days	500	
.5% Activated alumina	1 hour	460	
	1 day	510	
	2 days	. 580	
.5% Silica gel	1 hour	610	
	l day	520	
	2 days	570	
.5% MgSO4	1 hour	530 .	
	1 day	540 650	
Nuodex #18032. Stored 90	2 days PF90% B.H. for		
package. Vacuum oven mo	isture about 1.7		
* Percentegte besed on t	wight of gasolin	e .	
**Slight deterioration i	In top 10-20% of	gel. Gardner vis-	
cosity in this region	about 380.		
••••• 9.1% H ₂ O.			
		RESTRICTED	

.

-12-

.

r'

.

۰.

.

II. The Oxidation of Napalm

Work on the oxidation of Napelm has continued, partioularly with reference to causes and prevention of oxidation and the development of simple oxidizability tests.

-13-

Two further tests for susceptibility to oxidation have been suggested: (a) an adaptation of the Voorhees test for gasoline (20), and (b) a peroxide value test on the soap after heating for 24 hours at 80°C. in an atmosphere of oxygen (22).

The former has been tried on only a few samples of Napalm, but appears quite feasible. Results are given in Appendix I. The second has been given considerable study both at Columbia University and Eastman Kodak. In its final form, five grams (\pm 0.1 gram) of the scap to be tested are weighed into a Midvale absorption bulb (Stetser-Norton modification). The bulb is placed in an oven or thermostat regulated to 60° C. and connected with rubber tubing through a bubble counter to an oxygen tank. The bubble counter contains 50% sulfuric acid. A very slow stream of oxygen is passed through (about 50 ml. per minute) for 24 hours. The bulb is then disconnected, the scap transferred to a 250 ml. iodine flask and the peraxide number (mg. iodine liberated per gram of scap) is determined as follows: 50 ml. of glacial acetic acid - chloroform (60-40 by weight) are added and the flask shaken gently to disintegrate any lumps which may have formed. Three ml. of saturated potassium iodide solution are added, the mixture shaken vigorously for 1-1/2 minutes and then 100 ml. of water are added. The solution is titrated with .01 normal sodium thiosulphate solution and the peroxide number calculated according to the following equation.

Peroxide No. = <u>127 x volume (ml.) x normality</u> weight of sample

Since an occasional erratic result is obtained, the test should be run in duplicate, although it is permissible to connect the two samples in series for the oxygen treatment. The peroxide number of the original untreated scap should also be determined according to the same method. Results on four typical scaps are shown in Table VIII below.

-14-Table VIII

Oxidation Susceptibility Tests: (22)

Change in Peroxide Number After 24 Hrs. Oxygen Trestment at 80°C.

Soap	Peroxide Number	Peroxide Number After 24 Hrs. 80°C. under Oxygen
t Imperial #NR99	4.3, 4.3	28.1, 28.8
b Imperial #NR99	5.9, 5.4	29.5, 28.3
t Pfister #3-2432-78	1.6	20.9, 13.1
b Pfister #3-2432-78	1.4, 1.5	20.9, 12.8
5 Eakins #N3-2981-182	0.3	1.8, 1.1
b Eakins #N3-2981-182	0.3	1.4, 1.0
t Harmon #R11242	0.2	0.9, 0.6
b Harmon #R11242	0.2	0.6, 0.5
t McGean #684	0.2	0.5, 0.4
b McGean #684	0.3	0.5, 0.5
Nuodex #89093	0.2	0.5, 0.5

 t - Sample taken from top of drum and stored in a tightly covered jar. The jar had been opened a number of times to secure samples for experimental work.

b - Sample taken from bottom of drum especially for this test.

Surveillance Tests

Peroxide Numbers After Exposure to Air at 65°C.

Soap	0 days	7 4044	9 deys	12	roxide 14 <u>days</u>	17	ber 19 days	21 deve	23 days	104 days
Imperial NR99	1.8	17.7	<u>. aet o</u>	7.4	_4290	6.2		3.1	<u>_459 6</u>	aut -
Pfister #3-2432-78	1.2	18.0	22.0		10.2		8.2		3.9	
Eakins #N3-2981-182	0.2		1.5		2.3		2.3		5.3	0
Hermon #R11242	0.3		0.7		1.2		1.3		1.4	
McGean #684 Nuodex	0.4	0.8		1.8		2.5		14.6		ł
#89093	0.2		0.3		0	0.6	0.7		•.	3.0

A more complete study of peroxide number, iodine number and gelling properties of Napalm (Pfister #3-2432-78) is shown in Table IX.

Table IX

Correlation of Peroxide Number, Iodine Number and Gelling

of Napelm* Exposed to 0, et 70°C. (22)

Time	Peroxide	%				
Hrs.	No.	HaO	I: No	. 48 hrs. 25°C.	1 hr.65°C.	24 hrs.65°C.
	- 1.1	0.8	35.7	590	570	570 -
4 6	1.2	0.8	35.7	630	610 ·	540
6 .	1.3	0.8	35.7			
24	2.1	0.8	35.2	630	570	540
30	2.4	0.8				
36	3.5	0.7	34.3	670	610	590
60	6.4	-	33.6			
76	7.4	1.0	32.2	700	620	540
82	11.9	0.8	32.2	680	630	640
94	14.9	1.0	30.9	710	- 580	670
102	17.2		29.3	Crumbly (710)	(650)	(640)
110	23.0	0.8	23.5	Too crunbly		
116	22.2		21.8	15 16		
124	20.2	0.8	18.3			
132	22.1	-	16.1			
156	20.1		14.6	н н		
180	17.2	0.8		11 H		

*Pfister Napalm #3-2432-78.

It will be seen that the soaps studied varied greatly in oxidizability and that the test appears to differentiate the soaps satisfactorily. Furthermore, the iodine value and peroxide value appear to change simultaneously, peroxide value increasing to a maximum and then decreasing. This last point is confirmed by results of McIntyre and Elliott (18, 19) (Figure 4). The properties of the gel appear to be little affected until the iodine number has fallen about ten points, after that the gels lose their string and become excessively orumbly.

As a result of these experiments, Birnbaum and Edmonds (22) recommended the following as a tentative specification for oxidation susceptibility of Napalm.

- (a) All soaps having an initial peroxide value above 5 shall be rejected.
- (b) After the 24 hours at 80°C. oxygen treatment, all soaps with peroxide numbers
 (-1) below 1.2 shall be considered satisfactory,
 - (2) between 1.2 and 5 shall be marked for manufacture of the gels within two weeks, and in no instances be shipped for type A use, and
 - (3) over 5.0 shall be rejected.

At Eastman Kodak a large number of soaps received from the filling plants and other sources have been tested for oxidizability by three methods: namely, the Mackey (100°C.), the Modified Mackey(130°C.) and the peroxide value test just described (14). Simultaneously, long time keeping tests at 120°F. - 20% R.H. have been made following the iodine value of the soap. (Appendix I). In general, the relation between these tests and long term oxidizability appears to be good, particularly for the two month keeping times. The chief discrepancies have been noted for the Eakins soaps, several of which showed induction periods and high peroxide values after the Mackey test, but which failed to show oxidation after two months' keeping. The peroxide value test, possibly because it was run on fewer soaps, shows almost perfect correlation if 1.0 rather than 1.2 be taken as the value for rejection of the soap.

Since the writing of O.S.R.D. 2036 the addition of alpha-nephthol to all soaps during manufacture is required by C.W.S. Specification 196-131-107 A. The results of Tables V and XI indicate that this material has no deleterious effect on the consistency of gels made from soaps containing it and that it is beneficial as an oxidation inhibitor, as has been shown by experiments detailed in the previous Napelm report. Some results on a large scale batch containing alphanil as an inhibitor are summerized in Table X. It will be seen that to date, because of the excellent stability of the check, little distinction between the various batches with regard to oxidizability can be made.

RESTRICTED

-16-

1 1 . E

. .

•

.

2	Table	X: F	erro Bat	tches C	ontain	Ing Inh	Table X: Ferro Batches Containing Inhibitors				
Batch No.	Ind. Period	at 100°C Hert Rise	st 100°C Perox. Ind. Hect Rest- Pert Rise due	Ind. Period	at . Ind. 130°C Perox. Period Heat Resi- Col Rise due T	Perox. Rest- due	Columbia Test	Orig	<u>Iodine No.</u>	ة •ا	. 80
531 532 G-Nenhthol 1	5		5.4	0.5	ດີ ມີ ເ	20.2		1	28.7	14 11	17
533	8	0.5 25.5	25.5	0	۲,	14.9	0.25	29.0	28.1		
403 404 Alchan11 - 12	24		7.5 9.1	40	1 1	13 12	., ., ., .,	20 52 58 5	27.7 29.0	27.8 27.8	00
405	24	ł	8.0	9	ŧ	16	.2, .3	29.0	28.2	27.3	3
	As Re	As Received 24	ed 24 hrs.	ပိ	nd1t1or	aed at 44 h	Conditioned at 120°F20% RH 44 hrs. 24 hrs.	NA RH			
531	Molsture 0.78		<u>150°F.</u> B10.840	왜	<u>Molsture</u>	Joh	77°F. 150°F.	•			
532 533	0.66 0.54	72 64(720,740 680,700		0.48 0.49	840 820	840,880 770,730 820,850 750,730	730			
403 404 405	0.73	65K	650,680					, N			

RESTRICTED

-17-

Table XI (23) shows the effect of α -maphthol on the oxidation susceptibility of four Napalms as determined by the Columbia Test (22). Indine numbers are also shown for comparison. It is evident that the inhibitor has a beneficial effect on those soaps susceptible to oxidation by this test.

Table XI: Columbia CWS Lab. Oxidation Susceptibility Test (23)

	Fer	ro	Pfist	ter	Eak	ine	Nuode	ex
	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)
Peroxide No. Befo	re 0.4	0.3	0.7	0.4	3.4	0.9	0.2	0.4
" " Afte								
Iddine No. Before								
" " After	27.3	26.6			38.6	38.0	26.0	28.0

(1) Without a-naphthol (2) With "" •

Table XII: The Effect of Metallic Ions on Napalm Oxidation

Metal Salt Add % Metal in Al So		Feroxide No. 24 hrs		
Alum Solution Soda Soa	ap Soln. % H		al 80°C. in 02	
	- 0,		0.0	
.004% Mn(ous)	0.	.3 0.1	0.2	
.009% Mn (ous)	0.	.3 0.1	0.2	
.018% Mn (ous)	0.	4 0.3	32.5	
.045% Mn (ous)	0.	.3 0.3	31.9	
.02% Cu(1c)	0.	6 0.2	0.3	
.06% Cu(ic)	0.	5 0.6	0.6	
.10% Cu(1c)	0.	4 0.8	0.9	
.005% Cr(ic)	0.	4 0.1	0.1	
.01% Cr(1c)	0.	6 0.1	0.1	
.05% PI		-	0.2	
.10% P	o(ous) 0.		0.2	
.15% Pi			0.1	

According to Southern and Roth (9) alpha-naphthol does not protect completely against the presence of <u>Lengeness</u> and iron in the alum solution used for the precipitation. (Table XII) On the other hand, Dickenson and Long (7) report that 0.2% alpha-naphthol is effective in reducing Napalm oxidation in presence of iron (Table XIII). Nevertheless, it is recommended that any alum used, even though alpha-nephthol or other inhibitors be present, should contain as few metallic impurities as possible and in perticular that the manganess content be kept below .01% and the iron content below .03%. This is confirmed by practical manufacturing difficulties which have been experienced by one C.W.S. contractor due to excessive manganese in the alum used. <u>TABLE XII Continued</u> Fines

d Watel in Al Scan			Peroz	Peroxide	Thru			
THE THE TRY AN	1			24 hrs	.Stan.	Spec	Specification	-
T- A1 (CO)- IN COME SORD	TADA ROA	_	-	80°C. 40%	10%	L hr.	24 hrs.	48 hrs.
Selution		% Water Orig. in O. Sig	Orig.	1n 02	Sleve, &	150°F	150°F. 77°F	77°F
			0	0	1	1	1	1
DOER BO(DIS)		0.5	0.4	0.4	2.0	550	530	580
Ocola Felores			8.0	0.1	1	ł	ł	
.075 Folto		0.5	4	4.0	1.2	500	530	670
		4		13.5	ł	ł	ł	I
(otto)	Page 1		10	1.0	1.5	670	650	730
	+000 0	0.6			8.4	650	660	044
(added as 1ron		stearate)	•					
0.] Fe(1253+ (ous)	0.7	0.2	0.1	6.8	600	600	650
FO.).125%** e(1c)	0.7	0.2	0.1	5.6	620	570	650
*Tron stearate added but precipitate allowed to settle, soap made from	lđeđ but	precipitat	e allo	wed to	settle,	вояр ше	de from	

Iron stearate aqueu p supernatant liquid.

+ Iron discolved in oleic acid under nitrogen.

**As under + but solution exposed to air overnight.

r

RESTRICTED

-191

Table XIII (7)

-20-

Effect of a-Naphthol on Oxidation of Napalm in Presence of Iron

Iron Content	Inhibitor Content,%	Initial	A	ter Aging	
of	Alpha-	Iodine	8 days	19 days	36 days
Napalm,%	Naphthol	Value	120°F.	120°F.	120°E.
.01	0 · · · · · · · · · · · · · · · · · · ·	27.5	28.4	26.9	25.2
.02		25.8	27.0	27.1	25.9
.05		27.0	27.5	27.4	26.9
.20		26.6	26.8	23.8	16.3
.60		26.6	26.4	22.7	12.2
.02		27.1	27.3	28.9	27.0
.05		26.4	27.4	28.5	26.9
.10		26.8	27.4	26.6	26.6
.20		27.3	28.6	29.6	26.5
.60		27.1	27.7	29.9	25.8

Experiments at Ferro Enamel (Figure 4) indicate that poor washing or too high a pH of the pulp after washing may be conducive to easy oxidation.

The effect of temperature on induction period is also indicated by the Ferro (19) experiments, increase of temperature from 160° to 195°F. cutting the induction period to approximately one-querter of its initial value.

It had been thought that the quality of the oleic acid used in making Napalm might play a role in its susceptibility to oxidation. This is probably true, although the effect is masked when alpha-nephthol is used as an inhibitor. In a series of experiments at C.W.S. Columbia Laboratory (24), a number of oleic acids were used for the preparation of Nepalm. The acids had widely varied susceptibility to oxidation as shown by the Mackey test, as did their pure aluminum soeps; however, the Napalms prepared therefrom showed no significant difference in induction period. The reason for this undoubtedly lies in the fact that alpha-naphthol was used as inhibitor in all the experiments.

The inhibiting effect of the anti-oxidants present in naphthenic acid has again been shown by Shell (25). Mixtures of oleic with 4, 8, 16 and 24% of naphthenic acid had induction periods of 2.5, 3.9, 5.3 and 7.5 hours, respectively.

Fundamental Properties of Napalm

Some interesting work has been carried on at Stanford University (26,27). X-ray patterns of a number of pure scaps have been investigated and compared with that of Napalm. Napalm and aluminum dilaurate $Al(OH)L_2$ show practically identical diffraction patterns, suggesting that this scap may well be one of the main consitiuents of Napalm. An oxidized sample of Napalm shows a somewhat different pattern indicating a definite change has occurred.

The estatic pressure of aluminum dilaurate in 1% solution in benzone has been studied. The results showed an unexpectedly high temperature coefficient for the estatic pressure of such solutions. At 18°C. The estatic pressure was slightly less than 1 mm., while at 25° it was about 75 mm. This indicates that the degree of association of the aluminum dilaurate in benzone varied from about 30 at $\lambda0^{\circ}$ C. to ever 6000 at 13°C. Such a continuous increase in particle size leading to the formation of particles with a molecular weight as high as one million, must correspond to a continuous transition from a liquid sol or solution to a jelly having an elastic structure.

III. The Dispersion of Napalm

Experiments are being continued at Standard Oil Dovelopment on the influence of gasoline quality on gel consistency. While not yet complete, the following preliminary statements may be made (23).

- 1. The consistency of Mapala gels varies with the soap and gasolino.
- 2. There is a charge in consistency on aging which is most pronounced at lower concentration. This aging effect is shown by all gasolines but it is not so prominent with pure hypocarbons.

3. All gels appear to attain a minimum consistoncy.

The precise effect of each of these variables has not yot been ascortained but for three gel consistencies the change due to variations in gaseling or hydrocarbon quality is shown in Table XIV.

RESTRICTLD

-21-

-22-

Table XIV

Soap		Variations in Consistency (Grams Gardner) due to					
Conc.		linos	Pure Hy	Pure Hydrocarbons			
4		Nex	Min	Nex			
4	40	250	110	390			
8	600	900	550	1060			
12	1250	1700	1300	2230			

It is apparent that aging and gasoline quality cause a wide variation in viscosity. Undoubtedly, the third variable (variation in seap) will further increase this range. Some of the change due to moixture content may be lessened by use of dehydrating agents (Table VII, Fig. 3).

It is as yet uncertain how great an effect such a variation has upon performance.

The Testing of Maralm

There have been for developments of any importance in knowledge concerning Napalm testing and specifications. Compounding, temperature apparently influences consistency but little (29).

Further results have been obtained on the influence of temperature upon Gardner consistency. (Appendix II).

Birnbaum and Edmonds (10) have compared the Earl Fischer, C.W.S. Bonzono Distillation, and vacuum drying on a number of soaps, reaching the conclusion that no method is absolute and can be related definitely to a cortain definite type of water in the soap. The Karl Fischer method is reproducible for any given Napalm and will give satisfactory results, although they will be higher than these shown by benzel distillation.

A new specification, C. W. S. 196-131-206, has been issued covering gasoline for use in testing Mapalm according to the mothods described in C.W.S. 196-131-107A. This gasoline is designed to replace the standard test gasoline proviously furmished by Standard Oil Development Company. While a somewhat higher beiling material than the provious test gasoline, it gives comparable consistency results (Table XV). It does not give the same dispersion times, being slower, than the old standard when a soap is tested for this factor according to CWS 196-131-107.

Table XV (23)

Comparison of Old and New Standard Gasolines

-23-

Nuodex Batch #88955R

Date	Gasoline	Gardner C hr., 150°F24	onsistencies hrs. <u>150°F</u> .	48_hrs.77°F
Dec. 6 Jan. 4 Sept. 10 H Jan. 17	Conoco (New)	690 680 /690 730 660 650	590 650 640 600 640 630	730 700 700 690 680 680
-24-APPENDIX I.

Properties of Napalm

(a) Equilibrium of Moisture in Napalm

It has been questioned several times in the past whether or not water taken up by Napalm can be redistributed on standing in some way within the molecule so that it becomes inactive with respect to its effect on the consistency of the gel formed in gasoline. It has also been thought that such "unactivated" moisture might not show up in vacuum oven measurements, while it could be determined by the benzene distillation method. With this in mind, the experiment reported in Table XVI was devised. Three scaps were taken and exposed to two relative humidities, 120°F. - 20% R.H. and 85°F. -65% R.H., for varying periods of time. Samples were withdrawn, kept in tightly closed bottles in the same relative humidity rooms so that very small leaks would have no effect, and molsture determinations were made by both vacuum oven and benzene distillation methods. It will be seen that no differences whatever in moisture content could be observed. Similar results were obtained with consistency measurements shown in the lower part of the table, but these were not continued beyond the third day because of the labor involved.

It can be concluded from this experiment that Napalm, after reaching equilibrium, shows no further changes which may become apparent through consistency or moisture content determinations even after long standing. An interesting side light from this experiment was the much lower susceptibility of the Oronite scap to atmospheres of high relative humidities. This may possibly be due to the rotating cylinder method of drying employed.

Table XVI: Moisture Determinations on Soaps Exposed to Different Relative Humidities

•

.

•

.

[Outstand	Kept 3 da. in Tightly Closed		a. in Tig	Kept 7 da. in Tightly Closed
I	Bottle After Exposure		e After H	xposure
Oronite J-33-C	McGean Harmon Oronite #462 <u>R11285</u> J-33-C	McGean #462	Harmon R11285	Oronite J-33-C
•47, •48 0.8				
.34, .36 .6, .6	.83,.83 .70,.69 .38,.36	.79 .9, 1.0	.77	•36 •6, •6
.33, .31	.80,.80 .63,.66 .37,.38	.73	.55	32
.29, .32 .6, .6	.74 .56 .30	.82,.79	.55, .56 .7, .7	-25- 25- -25, 25 -25, 25- -25, 25-
.4.73,.74 1.0,1.0	2.05,2.06 1.47,1.47 .73,.74	74 2.03 2.0,2.1	1.42 1.5,1.5	.74 1.0,1.2
<u>s 65°F65% R.H.</u> 1.90,1.86 1.45,1.43 .73,.69	2.06,2.0 1.65,1.62 .79,.79	9 2.02	1.58	0.75
deye 85°F. 65% R.H. 1.95,1.68 1.58,1.56 .71,.72 2.2,2.2 1.4,1.3 .9, .9	1.93 1.34 .74	2.01,1.9 2.1,2.3	7 1.35,1. 1.8,1.8	2.01,1.97 1.35,1.36 .75,.75 2.1,2.3 1.8,1.8 1.0,1.0
				RESTRIC

CTED

Table XVI Continued

÷

•

•

Oronite J-33-C		720,710	800,810	450,430	450,275
Harmon R11285		630,580	640,700	270,290	210,260
McGean #462	0	600,630	600,620	220,260	230
Oron1te J-33-C	650, 6 70,62(960,960	815,720 1080	710,670 920,910	400,450 740,760	410,430 710,7 3 0
Harmon R11285	620,640 720,700	600,680 720	630,590 760,740	240, 230 390, 370	200,210 300,290
McGean #462	620,620 69 0 ,660	600 930, 940	620, 570 830, 830	240,180 295,310	200,210 325,315
lenta InO	24 hrs. 150°F. 48 hrs. 77°F.	Exposed 1 day 120°F205 R.H. 24 hrs. 150°F. 48 hrs. 77°F.	Exposed 3 days 120°F20% R.H. 24 hrs. 150°F. 48 hrs. 77°F.	<u>Erposed 1 day 85°F65% R.H.</u> 24 hrs. 150°F. 48 hrs. 77°F.	<u>Exposed 3 days 85°F65% R.H.</u> 24 hrs. 150°F. 48 hrs. 77°F.
	McGean Harmon Oronite McGean Harmon <u>#462 R11285 J-33-C</u> <u>#462 R11285</u>	Harmon Oronite McGean Harmon R11285 J-33-C #462 R11285 620,640 650,670,620 720,700 960,960	McGean Harmon Oronite McGean Harmon #462 R11285 J-33-C #462 R11285 620,620 620,640 650,670,620 #462 R11285 0°F205 R.H. 600,660 720,700 960,960 630,560 930,940 720 1080 815,720 600,630 630,580	McGean Harmon Oronite McGean Harmon #462 R11285 J-33-G #462 R11285 620,620 620,640 650,670,620 50,960 815,720 50,580 690,660 720,700 960,960 960,960 50,580 820,580 0°F205 R.H. 600 600,680 815,720 600,630 630,580 20°F205 R.H. 600 720,710 915,720 600,630 630,580 20°F205 R.H. 600 720 1080 815,720 600,630 630,580 20°F205 R.H. 600 720 930,940 720 1080 600,630 630,580	McGean Harmon Oronite McGean Harmon #462 R11285 J-33-G #462 R11285 620,620 620,640 650,670,620 #462 R11285 0°F205 R.H. 600,680 815,720 600,680 815,720 0°F205 8.H.H. 600 690,680 815,720 600,630 630,580 0°F205 R.H. 600 600,690 815,720 600,630 630,580 0°F205 R.H. 600 720 1080 815,720 600,630 630,580 ° 930,940 720 1080 810,670 600,630 640,700 ? 830,830 760,740 920,910 600,620 640,700 ? 240,180 240,230 400,450 220,260 270,290 ? 240,180 390,370 740,450 220,260 270,290

RESTRICTED

-26-

RESTRICTEL

(b) <u>Prevention of the Moisture Effect</u> The main results on the prevention of moisture deterioration of Napalm gels by the addition of dehydrating agents have been described in the body of the report. Nevertheless; have been described in the body of the report. Nevertheless; Table XVII, showing the efficiency of magnesium sulphate, and Table XVIII, showing some further results with silica gel may be of interest. The latter table indicates that it may be possible to reduce significantly the percentage of Napalm required in gels for any given purpose. Thus, if 5% was for-merly required for the flame thrower, 4% may be sufficient to give the same Gardner consistency if a dibydrating agent is present. Unfortunately, no direct comparison of silica gel and magnesium sulphate is as yet available, since the silica gel used in R. W. Little's (17) studies had too high a moisture content (0.1%) to be effective. a moisture content (0.1%) to be effective.

Table XVII: Effect of Addition of Magnesium Sulphate to Gasoline on Gel Consistency

Hours Soap* Exposed to	CWS Moisture		Gard	ner Cons. grams	istencie	8
A1r	<u>Content</u> 0.9	<u>% Ng SO</u> nome 0.8	2_daya 520 690		<u>16_daya</u> 580 800	50_d <u>a</u> yε 640 740
4	1.4	none 0.8	370 640	400 740	430 650	570 750

*McGean #684.

Table XVIII: Effect of Silica Gel* on 8% Napalm Gel Consistency (After 8 Days' Storage at 75°F.)

• ١

1

.

	After 8 Days' Storage at 75°F.	ANBI Store	e at 75°	<u>Atted Verton B& Napalm Gel Consistency avs! Storage at 75°F.)</u>	nsistency		RESTRICTED	
	Soaps 90° Moisture	Soaps Conditioned at 90°F 70% R.H. ure	ed at .H.	Soaps Conditioned	ditioned 20% R.H.	% Increase in Constatement	se in	State Service
	Content of Soap	No	D.	Content		with Silica Gel	ica Gel	
Batch No.	CWS Ben- zene Dist.) Gel	Silica	of Soap (CWS Ben- zene Dist)	Silica	OVEL	Jevo	
oronite J-33-C	0.9	260	1350	0.4		70% R.H.	20% R.H.	
Pfister N-3-					000	¥81	367	
24.32-94	1.3	490	810	0.7	GDE			
Ferro 184	1.4	445	850		620	65%	50%	
Imperial NR232	1.4	330		0.0	04.4	9 1 %	10%	
Hermon			000	2.0	640	160%	33%	
R11285	1.2	310	096	0.8	009			
McGean 462	2.2	280 10	1000			\$10%	39%	
Celif. Ink 98	1.6	235	720	0	120	257%	39%	
*Davison Chemical Corp.		Water content 5.8%	it 5.8%		990	207%	29%	

-28-

(c) Oxidation of Napalm

1

The Voorhees test for the oxidation stability of gesoline (30) osn apparently be adapted for use with Napalm. Three samples of Napalm, one of which was known to oxidize bedly on keeping, were examined with the results shown in Table XIX, below.

Table XIX		idation orhees		<u>alm and</u> ne Numb	1999 (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (11997) (1	
	Induction Period	Before Oxid.	After		After	keeping °F. for 2_mos
Pfister #N-3- 2432-94	5 5.5	34.1 	31.0* 21.1**	32.9	16.7	14.8
Ferro No. 184	None None	28.1	25.1**	30. 5	28.2	29.2
Nuodex No. 19869	14					
<pre>*4 hrs. 35 min. ** 71 hrs.</pre>				•		

The unstable scap showed a definite induction period of about five hours, while the stable sample continued to oxidize slowly for 71 hours. A third scap on which no long time keeping results are available gave an induction period of 14 hours. There was no apparent change in the appearance of the stable sample, while the unstable sample showed a slight change in color, a nd the Nucdex sample sintered somewhet. The results are tabulated above with iodine number before and after oxidation, determined by the Hanus method. They indicate that the test has possibilities for measuring oxidation stability of Napalm. Advantages compared with the metal bomb test are: more resdily available glass equipment, simplified procedure, and more rapid temperature equilibrium.

Oxidizability tests have been run on a number of scops received from the filling plants. Mackey tests at 100°F. and 130°C. were run on most of the scops, together with a peroxide value determination on the scop residue after completion of the tests. Peroxide values were run on some of the samples according to the method suggested by Birnbaum and Edmonds (22). The results are summarized in Table XX. Also given in the Table sre the iodine values of the scops, initial RESTRICTED

-29-

and after exposure for 1, and 2 months in a thin layer at 120° F. - 20% R.H. It appears that any of the oxidizability tests of this table might be used if necessary to predict long term behavior of the soap. However, the inclusion of alpha-naphthol as an inhibitor in all Napelm batches, probably tions unnecessary.

	de on	20'd							1	31-									
RESTRICTED	Peroxide. Soan	<u>AB . Rec</u> d.	2.5		4.0		1.8							n.)				RESTRICTED	
REST	lue mo.2 mo.		12.1			12.0	0.0	8.2	Q•2	9.5		6.2	000					2	
	Is Value Orig. 1 mo Aged at 120	Hell	9 16.0	10.0					11.3	9 10.1 12.8		9.5	28.2	5	29.0	28.2	30.5		
	1e Ori Age		4 26.9	29.92				27.5	25.7	85.1 6 25.9 26.3	27.9	28.5	30.5	20.00	20.02	29.0	31.5	S. 0.	
	Columbie		2.3.5.4		3.9,3.1		1.2,1.1			19.6,21.6		1.0,2.0	1.7,0.5	0.3.0.3	2.0.3	0.2,0.3	03, 23	01. 01.	
X	Per. No. Residue		5	ដ	23		16.4		50	1212		25.9					11.6 8.6 15.4		
Table XX	Temp. Rise °C.	01 1	5	53 5	р но	~	-			93	13				ŝ				
	I.P.	0		00	00	00	>			00	0	.8 8	None None	4	1.01	1	270		
	Per. No. Residue	36	1	8	45	: : :	6A	394	59	80	20	61.2					1.0		
	Rise.	ĥ	5	10 CI	4 H	ဖလ္ဂ				3. 1.5	2	CO.	0.57						
•	hrs.	8	4	9	5 . 5	0.2	01 KD	2.5	9,0		99	5.5		224	22	5.5	224		
	Min -	·0017				. •			.022)	p. 33)			C.0005						
	- Fe	•018	-030	024	120.	015	016	022	025,	.022 (see p	120	010	-016 ¢			100	\$ 00		

		1											-	-3	2-	•								RE	str	ICT	ED			
ED	Peroxide on Soap					•		1		28.4	2.1								0.6				1.8			1.9				0.1,8.1
RESTRICTED	e P. EO.	 					0 - 0	50.03		6.4	18.9					28.9		26.7	27.4		27.2	29.0	29.5			12.8		17.2	13.8	L.BT
æ	Is Value . 1 mo. at 120°	11-1-V2				31.0			31.2 B 7				28.82		28.9 28.9	28.4	29.0	27.8	28.1	27.7	29.2	ł	29.5	30.2	000	22.1		25.8	22°0	F-02
	Or1g Aged	8 	30.2	28.7	29.0	31.4			20.0	0.23.9	8		50.4		29.02	30.3	30.5	28.3	27.9.	29.8	29.44	30.2	32.0	31.3	0 20	23.3		27.4	26.1	
led	Columbia		.15,.15	.18.20	25					16.9.17.	1	1.1,1.6		10	02.02.	.23, .25				.1825			6, 6, 8, 6,	1.6,1.7		1.9,1.8	U.3,8.1	-	1.5,1.5	0.1,1.0
Table XX Continued	Per. No. Residue		13.1	20.2	14.9	16.4				8.9	9		4.6		3 . 0	15.1			16	10.7			13	21]		53		27	7	3
able X	I.P.Temp. hrs.Rise C.	i	ч	5	Ч	Ч			1	32	Г		-		۱ ₁	I			I	ł			ı	4.8		9		3		1 ·
E	I.P. hrs.	 	1.5	0	0	0				0	0		o	0	×.5	>5			74	>6		2	>6	0		0		0	c	>
	Per. No. Residue		8.4	5.4	25.5	15	20	30		32	เร		B Q		°r	4.9		3.4	3.4	2.9	4.4	0.0	J • 4	36	76	22		65	20	Ľ
	Temp. Rise C.		I	0	0.5	1	5)		6.2			1 0		١,	F	I	1	I	ı	ı	: 4	ı	I	-	Ч		н	1 -	-
÷	I.P.	∱ ⊫	%	non	8	264				0	9	9	25	Ś	弦	>24	R	>24	724	24	724	V 24	724	Ц	4	5		5.5	#20	
	Mn								.0058	.0071	0100.							•	-021				•000.•		120-	<.0005			0000	
٠	Cire Line	Cont.				.020	50	040	.025	.015	.015	2 50	013		9.013	-10-	500	019	.016,.021	* 016	-019 -	120.	•094	610 .	2025.	020	nie In	022		
		10	# 531	#532	#533	#585	Imperiel			#NR 219	#NF 232	170	642 NW#	032	Hermon 356	#10532	CSCOTU#	* 1.0COTH#	#R10576	#11202	#R11251	402TTU#	CRZTTY#		J-33-A	1-33-C		#08	#0#	

(2) (C)

•

•

i. 7

8

£.

Q.,

-

•

RESTRICTED

						Table	XX Co	Table XX Continued			V-1-V	RESTRICTED	CTED
Soap	ۍ ۲۰	Wa	I.P. hrs.	Temp. Rise	Per. No. Residue	I.P. hrs.	Temp. Rise °C.	Per. No. <u>Regidue</u>	Columbia Orig. 1 Aged at 205	Orig. Aged a 20	La value E. 1 mo. 2 ' ed at 120°F.	88.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peroxide on Soap Ag Rec ¹ d
Prister #96 #106	.022	1 1 1	2.5							36.0	15.8 32.2	30.7	
T	2432-94	020 4.0005	2.5	ର	53	0	80	8	8.5,7.1	32.9	16.7	14.8	3.2
Eakins #60 #116	.032		724	0.1	នដ	1			2 - - -	42.0	40.0 6 8 0 0 8 0		
#216	034	·	40	0.5	33	Fuse				42.6	40.9		
N-3-2981	<u> </u>		0	0.5	54					42.9	40.1		
162			>24 14	1 -	30 49.8	Fuse		5.7	.50,.35	40.5			-3
Huntsville	11e**									5	00	/ - 5	3-
	-10-		724		3.3					P. 70			
#158 lot	.016		>24	1	3.4					20.2	29.7		
#369 lot			724	1	16					32.9	31.2	28.2	
#401 lot	t 1000		1.5	4	15				15.6,20	20.5 20.5	8.3	5.1	24
•This cannot be the as received.	.022 ennot	be the		sct Mc(correct McGean batch number, but was	ch nur	ber, t	out was	the only information on the	Informe	tion	on the	bottle
**Maker not known,	not k	, nwon	therei	fore 1	lsted un	der fi	liing	plent f	therefore listed under filling plant from which it was received.	1t was	s rece	lved.	

.

CLEV-

6

.

2

Note: I.F. is induction period in hours Temp. Rise is from modified Mackey-Test Per. No. Residue is Columbia-CWS Test on Mackey Residue

RESTRICTED

.

APPENDIX II

11

٩.

Testing and Specifications

From time to time the question has been raised as to whether the temperature of dispersion has any significant effect upon gel consistency. In order to determine this, four samples of Napalm, covering a dispersion range of fifteen seconds to eight minutes at 70°F., were made up in standard test gasoline at temperatures of 50, 70 and 90°F. To avoid evaporation or condensation of moisture at the low temperatures all the gels were made up in individual scaled meson jars and shaken by hand before transferring to the iron pipes for specification measurements. The consistency of the gels (8%) was measured according to C.W.S. Specifications after 24 hrs. at 150°F. and 44 hrs. at 77°F. The data are shown in Table XXI.

Table XXI (29)

Gardner Consistencies

24 hrs. 150°F.	44	hrs.	77°F.	

	Made up	Made up	Made up	Mede up	Made up	Made up
Sample	90°F.	70°F.	50°F.	90°F.	70°F,	50°F.
Imperial NR 232	- 620	620	520	600 -	625 -	590 -
Nuodex 19889	640	645	625	760	805	790
Eakins N-3-2981-431	355	385	375	480	525	475
Calif. Ink 98	415	465	395	575	570	575

All of the samples stored at 77°F. checked within 50 grams Gardner over the 50° to 90° F. range of mekeup temperatures. With one exception, good checks were also obtained on the 150°F. test. The single low point may be due to tube leakage. It seems probable, therefore, that over the range of mixing temperatures normally encountered variation in dispersion temperature has but little effect.

Further results have been obtained on the variation of Gardner consistency with temperature (Fig. 5) (14). It appears that variation with temperature is not very pronounced, thus giving Napalm one of its outstanding advantages over other thickening agents.

RESTRICTED

-34-

APPENDIX III

. 4

Literature References

1.	Letter	of V. C.	Vesce (H	armon Color	Wks. to	A. By	field	1, 11/11/43	•
2.	Memoran Jette,	dum from . Unkefer.	A. Byfie 11/17/43	ld to Messr	s. Dawso	n, DeG	ray,	Elliott,	
3.	Letter	W. C. Kab	rich to	A. Byfield,	11/24/4	3.			
4.	Monthly No. 9.	Progress	Report,	01Mer-847,	Hershaw	Chem.	Co.	10/15/43	
5.	1				đ			11/15/43	
6.	No. 10.	i i		ана - с.				12/15/43	
7.	No. 11.	n		. 11				1/15/44	
8.		36, "The l Boaps, "No		ure, Proper 1943.	ties and	Testi	ng of		
9.	C.U.M.R.	No. 50,	12/17/4	3.		/			
10.	Ĩ	No. 47	12/23/	43.			,		
11.	Monthly	Progress	Report,	0Elisr-538,	Eestmen	Kođek	Co.	10/15/43	
12.			3. 8 .2			1	0	11/15/43	
13.	н		8 0 8 1		Ħ	11	(n)	12/15/43	
14.	Ш. s			े आ	11			1/15/44	
15.	C.W.S. 5	pecificat	ion No.	196-131-10	7A.				
16.	Eastman	Kodak Co.	Unpubl	ished data.					
17.	C.U.M.R.	No. 40,	12/8/43	•					
18.	Monthly Co., 10/	Progress 15/43.	Report,	0E%sr-882,	Ferro Da	rier &	Chem	ical	
19.	Monthly Co., 11/	Progress 22/43.	Report,	OEMer-882,	Ferro Di	rier &	Chem	ical	
								-	

RESTRICTED

-35-

				-36-	RES	BTRICTED	
20.	Monthly (Indian	Progress , 12/15	Report, /43.	OEMsr-1011,	Standard	011 Co.	
21.	Monthly (Indian	Progress a), 1/15/-	Report, 44.	0Emer-1011,	Standard	011 Co.	
22.	C.U.M.R	., No. 44	, 12/22/	43.			
23.	Private	Communi	cation ,	R. J. DeGra	y.		
24.	C.U.M.R	., No. 52	, 12/13/	43.			
25.	Monthly	Progress	Report,	0EMsr-916,·	Shell Dev.	Co., 11/	15/43.
26.	n		1	OEMsr-1057,	Stanford	U., 12/15	/43.
27.	К. И	н н	3 0 - 1	н		1/15/-	44.
28.	# 1/15/44			OEMer-354	Standard C	Dil Dev. C	D ,
29.	Letter,	E. K. Car	rver to	A. Byfield,	1/19/44.		
30.	Rogers,	Bussies &	k Ward,	Ind. Eng. Ch	em., <u>25</u> , r	. 397, (1	933).

<u>ن</u>م

5

		· · · · · · · · · · · · · · · · · · ·	
RESTRICTED TITLE: The Manufacture, Properties and Testing of Napaim Soaps AUTHOR(S): Broughton, G. ORIGINATING AGENCY: Eustman Kodak Company, Rochester, N. Y.			ATI- 33557
			REVISION (None)
			ORIO. AGENCY NO. (None)
PUBLISHED BY: Office of Scientific Research and Development, NDRC, Div 11			PUBLISHING AGENCY NO. OSRD-2036
March '44 Restr. U.S. En		tables, graphs	
ABSTRACT:			
with the effect of variation in the ratios and specifications of raw materials employed, and the effect of oxidation inhibitors of gel consistency. Relationships existing among gasoline quality, moisture content, concentration, and consistency, are investigated. It was found that varying the composition of Napalm from the standard to 2:1:1 ratio of coconut to oleic to napthenic acid, indicates that the viscosity of the gel increases primarily with increased oleic acids and to a lesser extent with increased coconut acid above normal composition. The acid number of the coconut acid has been found important.			
DISTRIBUTION: Copies of this report obtainable from Air Documents Division; Attn: MCIDXD DIVISION: Ordnance and Armament (22) SUBJECT HEADINGS: Thickeners, Incendiary - Production			
DIVISION: Ordnance and Armament (22) SECTION: Chemicals and Incendiaries (11)	(93630); Thickeners, Incendiary - Specifications (93935)		
ATI SHEET NO .: R-22-11-2			· _ · · · · · · · · · · · · · · · · · ·
Air Documents Division, Intelligence Department Al Air Material Command	RESTRICTED	DEX Wright-Pattorson Air Dayton, Oh	