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NATIONAL  ADVISORY  COMMITTEE   FOR  AERONAUTICS 

TECHNICAL   NOTE   NO.   972 

ON  TWO-DIMENSIONAL-FLOWS   OF   COMPRESSIBLE   FLUID-S 

By' Stefan  Bergman 

SUMMARY 

This report is devoted to the study of two-dimensional 
steady motion of a compressible fluid. 

It is shown that the complete flow pattern around a 
closed obstacle cannot be obtained by the method of Chaplygin. 
In order to overcome this difficulty, a formula for the 
stream-function of a two-dimensional subsonic flow is derived. 
The formula involves an arbitrary function of a complex vari- 
able and yields all possible subsonic flow patterns of certain 

types.  It is a generalization of the expression  Im 
for the stream function of an incompressible fluid. 

m\ g 
(Here  7 

is the velocity vector and  g  an arbitrary analytic function.) 

Conditions are given so that the flow pattern in the 
physical plane will represent a flow around a closed curve. 

The formula obtained can be employed for the approximate 
determination of a subsonic flow around an obstacle.  The 
method can be extended to partially supersonic flows. 

INTRODUCTION 

The theory of irrotational two-dimensional flows of an 
incompressible fluid is based on the theory of analytic func- 
tions of a complex variable. 

The relation between these two theories is given by the 
fact that the stream function  \{f(x,y)  of flow satisfies the 
Laplace equation ; (3s\|/-/dx2) + (8s^/8y3) = 0.  Hence the imag-r 
inary part of an analytic function  f(x + iy)  is a stream 
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function of a possible flow, and all. flow patterns can be ob- 
tained in this way. 

For certain purposes, however, it is useful to modify 
this approach.  The stream function may "be considered as a 
function of the components  vx  and  v3  of the velocity vec- 

tor  v.  Again \|/  satisfies the Laplace equation 
(ö2\l//3Vl

ä)-+ (öa\|//övs
3) = 0.  Therefore, it is possible to 

choose as \J/(vlfv2)  the imaginary part of an analytic func- 

tion  g(v),  v  being a complex variable in the  (vj.Vg)- 
plane.  In this way the flow pattern in the  (vx,vs)-plane 
(hodograph. plane.) is obtained.  In order to find the real 
shape of the streamlines it is neceesary to derive from 
Im g(v)  the corresponding function., of  x  and y.  This 
transition does not involve any serious theoretical diffi- 
culties . 

In the case of a potential flow of a compressible fluid 
the first method (construction of the flow pattern directly 
in..the.'physical plane) leads to a rather complicated nonlin- 
ear partial differential equation.  The second approach (con- 
struction of the flow pattern in the hodograph plane) reduces to 
the1 integration of a linear partial differential equation. 
'(See Ohaplygin, reference 1.)  Hence, the use of the hodo- 
graph method permits the application of various results from 
the,theory of linear partial' differential equations:" For 
'instance, a stream function in the hodograph plane can be ob- 
tained as a linear combination of particular solutions of the 
linear equation mentioned. Ohaplygin was the first to con- 
struct a set of such particular ' solutions''. Two other methods 
of constructing such sets have-beeri glveii by the present •, 
author. (See reference-S, pp. 16-20 and 23-24, and reference 
3, sec. 2.) 

However, Ohaplygin's method and both methods given in 
references 2 and 3 are not satisfactory in one respect.  In 
general, the streanr-funct i on will be r epr äsent ed by an infi- 
nite series of particular solutions, and such a series will 
converge only within a part of the domain in which the flow 
is defined1. 

XA hodograph of a flow around a profile is (in general) 
a multiply covered domain (see fig. lb and 2b) the branch 
points of which are not•necessarily located either at the 
or-i-gin or at infinity; on the other (continued on next, page) 
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To obtain results pertaining to the actual flow, a,' rep-, 
resentation of the stream function as a whole is indi sp'ensi- 
ble.  A representation fulfilling these requirements is given 
in this paper.  (See also reference 2, sec.-6, and reference 
3, sec. 4. ) 

If a linear relation "between the pressure  p  and. the 
specific volume  l/p  is assumed: 

p = A + cr/p (l) 

(A,<j constants), then the hodograph equation, coincides with 
the Laplace equation.  Assuming relation (l') and using the 
theory of functions of a complex variable, Von Karman (refer- 
ence 4) and Tsien (reference 5) obtained the compressible 
flow past an elliptic cylinder.  Equation (l) is a very a?ough 
approximation to the actual pressure-density relation and can 
be used only in cases where the local velocity is far below 
that of sound. 

In the present report a general pressure-density relation 

p = A + crpk (2) 

is used (A, cr, fc  are constants).  (Equation (2) contains as 
a special case the adiabatic relation  p = up1'    .)  Assuming 
(2) gives a general formula for' the stream function.  T)ri s 
formula expresses the stream „function of a compressible flow 
in terms of an arbitrary analytic function of a complex vari- 
able . . 

The representation obtained is, in general, valid in the 
whole region where the flow is subsonic- and in some cases can 
be extended into a supersonic region also. 

This investigation, conducted at the Brown University 
was sponsored by,, and conducted with the financial assistance 
of the National Advisory Committee for Aeronautics. 

(continued from page 2)    hand, the Chaplygin solutions 
yield flows which (in the hodograph plane) either are single- 
valued, or multi-valued with a branch point at the origin or 
at infinity.  In order to represent such flow patterns, sev- 
eral series development, each of which represents the .stream 
function  \{/  under consideration in a certain part of the 
domain in which  \J/  is defined, is needed. 
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I take the opportunity to express my gratitude to Mr 
Leonard Greenstone for his assistance in the preparation of 
the present paper. .. / 

NOTATIOK- 

Remark:  In dealing with differential equations, the following 
complex notation is often used: 

u, 3E 
8.Z 

_   1 / Bu        j_   3u\ u ÖU   _   1 ( 5u   +  t   8u\ 
2 \ 8x dy/' z  ~   S"z        2 V ax Sy/ 

u  1 
zz 

4\dxs        dy3/ 
x+iy,       z   =   x -   iy 

a   = a*  -  I(k -   l)v3!* sp eed of sound; (equation (28)) 

a0        speed   of   sound   at   a   stagnation   point 

c    '      (See   (94)A 

•   c<n)   (See   (94).) ; /-' '.:•• : 

exp(x) = ex; e   "base of Naperian logarithms 

f (z) an arbitrary analytic function bf1 the complex vari- 
able  z 

fV ;=-  3f/at ;  f f = 8f/3t 

g    constant of gravity 

,g(tj)'"an analytic  function   of   the   complex variable,   £ ;      the 
•'result   of   applying'.the 'transformation'    z   =   z (t, )      to 

•• g(o^(ü = «et)   ' •••.'•'.'.*'...   '"'•       f'.; 

g(n)(t)    (see ("iii), ff.;). 
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h  = '/— '-'••*•-   for   - k'3* :1;- ocaa-si.-ohalTy the   boundary   curve   6-f 
y   k  +   1 a-'domain.   Ü  • •- 

k       ratio   of   specific   heat   at'   c on s$ ant' preis sure   to   constant 
volume 

l(H)   =C^V)a   =  £-?Vf   ^  "   M2
(

H
))5    <45>' 

\8E/ Vp(H)/ 

.2     • p_ NS 

p    pressure 

p    pressure "at rest" •....- 

r    polar coordinate in the physical plane- 

s = 1 -Jl   - M2;  (151) 

schlicht = univalent 

v    sp'eed; magnitude of  V;  also,' occasionally, the reduced 
speed  v/a0 

vltv3 Cartesian components of  V 

w = cj) + i\|/ i \ v  ,: ..... 

x,y  Cartesian coordinates in' the physical plane 
»r-, .•   ".'£."•      '. '. • 

z = x + iy 
_        .  •   . . .      ..•••••/-.•.•:.'••'' 

z = x -" iy 

A constant   in  the   pressure-density relation   (22)      (See 
a 1 s o   s e c ,    3 , )      - • •_ ; v- '• \ 

D   = 9(4>i^)    = §& äjt _ §£. 9>t;  • •• (ij32>   "'    -•"  •• ''•'' '  ' 
3 (x, y)        d x 3 y       3y 3x '• " '    '' 

.'..'.•'     • •• -.       , . • \- . . u 
•  •      i i •  • •    • • 

E        (See   theorem   (53) .)     Bff a ^,      B0   = ^1-    , . , • : 

^ / i+t_ ^ H öH
    ,.,.39;; 

E*. = expl    fid(£*S5 JBJ     (69) . t..L",;'•,•:••. 
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f   =   -(&.    +  NÖ)   = (k  +   1)M4 
-(3k  -   l)M    -4(3   -   2k)M2   +   16 

m 
64(1   -   M2)3 

?m(2\)   =y    esXk;      (lemma   (67)) 

k=i _ 

F*        (See   theorem   (83).) 

ra        (See   (115),  ff.) 

ff(E)    (See   (53);   also   (124).) 

(^(E)   (See   (68).) 

GS(E)   (See   (75).) 

expt- /lTd(£ + £)  j-(lll)1; occasionally  a 
\ ./ /     hodograph  plane   with  "boun 

H (See   (115),   ff.) 

I heat   content 

I/g     pressure   head    •( —:—! •— 1 
\g(k  -  D]    ' 

Im       the   imaginary  part   of 

K kernel   function   (See   reference   9;    also   sec.   3.) 

*     r7 
KH        ker.'nel'-functi-o'ri- of     H;*   K|   =   /    'KH(V,A)dV 

5(71) 

H domain   in   the 
dary  curve     h 

L(\]/)   = \|/^   +  It;    (70) 

10(\|0   =.\J/^   + K(2?0 
*t + *EJ 

;   (46) 

Lm(\J/)   =  \|/^   +  Fffi\h    (74),    ff. 

La   .     (See    (115).) 

See  .remark  1 



NACA  TU   No.   972 

M.=  v/a 

H   =  - 

•-A 
(k + 1) 

3 
a„  - i(k -   l)v ']*' local   Mach,  rtuinber;   (31) 

(1  -  M3) 

N, a (See   (115).) 

,(i) =  -4 /    31   dX;    (107)X 

.<«) = | T   + |(q(l))s;    (108)1 

Q(>3) ;;C:S:ee..(ll-Oy.1) 

Q(n)   (Se:P.  (84),1) 

.ÄCn). ;(S,ee   (?4k )• 

E(o)   =  H   dfc.    (U4))   ff € 
dv T  

R(n)   (See   (114),   fiVV  j   ^'    ""v.",.- 

Re       the   real part   of 

Schlicht  = univaleiit , 
 + •. . •.'.•••     •"' • 

S(>|0   =  (Efl^^Ci  -  Ma)>J/ee
l+"VHHj    (43) 

s0(M,) s (tkf   (i - M
S
)*66 + £o        a    l_|?£fl,S       94L 

\p/ °°      p   aciog v; [_\ p./:.d(ioe 

i 
vT ;    (32) 

T = yi - M3  = a2.  -  4(k +  l)vs 
J£ 

a.  + i(k -  l)v 
0       2 

;  (KL) .-•, 

See  r.emark 1 
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V   8  ve        =   v,   +  iv_        velocity  vector 

*f =  ve-ie   =   v,   -   iv2   = IK 
dz 

VQJ   magnitude of the velocity at infinity 

W,W*  (See (119) .) 

2 - s 

a    the angle which a doublet makes with the real axis. (14) 
(Also, a real translation of the axis (See (ll5) ante.) 

e, acB  "a  is a member of B"  or  "a  belongs to B" 

I   = X ± i6  in which case "£ = 7\   T 16  (This variable use of 
£  merely means a reflection with respect to 

the real axi s.) 
-> 

Q the angle which  V  makes with the real axis 

MM) = A(v)j (48), (49) 

p density;     p  =   p     |l  ~-^k T   1^   va| *-*•    (25) 
0   L 2a* J 

p the   density   "at   rest" 

0" a   constant   in  pressure-density  relation     p  =  A  +  Cp   ;    (22) 

$ potential   function1; also,   the   polar -angle   in   the  physical 
plane   (polar   coordinates)    '        •'•        " 

\Jr stream  function1 

\|/*   =   exp       /*$[+$}$ i (69> 
........ I    •-      • 00 • 

—en '   ' r* 
circulation;    in   part   II   the   Gamma   function  r(x)  =  /    e    tx"1dt; 

(see   sec.   11,   ff ). J o 

See  r eaark-'-I 
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A_       Laplace   operator:     A<t>   = '^L +   3j& =   4 ( ^A 
87* v 3z8z- 

l • 

A(H)    (See   (45).) 

AH •= aA/aH,   Aö = 3A/ae 

$    Potential function- (See remark 1.) 

$    Stream function  (See r emark 1.) 

Remark 1:  In the following, the potential and the stream 
functions ct>(x,jr)  and  \if(x,y)  (as well as several other 
variables whiph/ar« indicated in this section) are considered 
as functions of different 'pairs of variables.  In passing 
from the physical to some other plane, new symbols should be 
introduced for 4>  and  \J/,  since in different planes 4>  and 
\J/  are different functions .of their respective arguments, 
for -instance, i]3a's''si'-ng to the  (v,6)-plane yields 

'.   • ••-" •'•CD(
1

'
)
 •(v,e>'=4>rx(v,e)>   y(v,e) 

*(i)   (v,6)  SXJ/FXCT.G),     y(v',e) 

.3?or   the • sake .of  brevity  the   author   omits   the   superscript   and 
always   writes     $     and    \j/,      no   matter   in  which  plane  he   con- 
siders   these   functions. 

"...:.".-. • .   FOREWORD 

The "stream function \J/  of an incompressible fluid flow 
ie a solution of "the Laplace equation 

-3    ^3 9x   Sy 

There '••ex'i's'ös 'a  general   formula   " .' •   • 

ty  =   Im     f(s)    , •   s  =   log v  -"'18' 

U) 

(4) 
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in terms of an arbitrary function  f  of one variable, for 
solutions of this equation.  Here  v  is the speed and  9 
the angle which the velocity vector forms with the positive 
x-axis. 

In the case of a flow of a compressible fluid, the 
stream function is a solution of the system of equations1 

dx 

r k+la-isr k+l o-i 

L (poao)sVV        V3y;j       3yH (poa0)SAp;      Va^J 

(Poao)C 

P0>k+1   3\|/ 3^   .dS^ 
V D /        ax 

=  o 
Sx öy Bx 3y 

(5) 

<^r - b - i^i^ e)s ((f)8+«)T ] 
where     p   ,   a0,   and are constant.  ?or air,  k = 1.4. 

A generalization of formula (4) to the case of subsonic 
flows of a compressible fluid is given in this paper..  Let 

M      =      V; i(k -   !)• 'I be   the  local   Mach   number.      If   it if     • " '* 
2 

is assumed that the flow is subsonic and that  k = 1.4, func- 
tions  A(M), H(M), Q(n'(M), n = 1,2, . . .  are determined 
(see table lb) so that for the solutions of (5) there Is ob- 
tained a reprosentation8 

1Stream function  \j/  and density  p  have tobe consid- 
ered as unknown in system Co).  The elimination of  p,  in 
order to obtain one equation for ^,  is impossible. 

2Por many purposes in evaluating (6), it suffices to 
take only a few terms of-the .series.  There also exist methods 
for improving the convergence of (6).  As will be shown else- 
where, it is possible under rather general assumptions to 

lim interchange the 
m and the summatio «  T and thus 

n'sFl 
obtain a new formula for  \|/;  In many instances, however, the 
formula in tho original form is more suitable for applica- 
tions, since by a suitable choice of the  m's  it is possible 
to achieve faster convergence. 
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. 00' 

\|/(MVe:>" =  :lim- Im (H(M) ff ( g) 
••••••  m —> »  L   L 

+--y-^)(«)iMs 
n=l 

2n , 2  nl 

n-i 
*(tB>4£i 

dtlI) (6) 

£ = MM) - 16,  A(M) =1 log 1 - (1 - M3)*/ 1 + h(l - M3) 

u 

vi 

aviV/H 

 nr. 
1 + (1 - M3) \ 1 - h(l 

h = (iE-J=-J0 .  k> '1"  " '  ^k + 1/ 

_ M3) 3J 

in terms of an arbitrary function of one variable1.. 'Since  f 
the transition to the variables  x,  y  does not involve any 
essential difficulty, (4) and (6). yield patterns for possible 
incompressible  and subsonic (compressible) fluid flows. 

..IPqrmula (6) is of interest not merely as a tool for com- 
puting 'examples of flows' of-a ''compressible fluid,, but-it- may 
be-consider ed also as an operation'which transforms -.stream . 
functions of incompres'siblö flows into stream functions..-.o.-f ; 
compressible flows.  The 'formula suggests the-possibilifcy.of 
carrying over various p'hy^ie-al laws which govern the motion 
of an incompressible, fluid to the case of. a compressible 
fluid. •'• • • 

In a companion paper this formula will be used for. con- 
structing a subsonic flow around a curve which approximates 
the boundary of an obstacle given in the xy-plane.  (See 
NACA TN No. 973.) 

Another application Of the above result is to "distor- 
tion theory".-'that is, the study of how the properties and 

1The possibility forgeneral!zati' .on of the formula for 
ä mixed (i . a., partially subsonic and partially 

super sonic) flow i s d'i s cussed in-the paper.  It i-s observed 
M< 1,  £  is a complex-number,; f or-    M > 1  a. 

purely imaginary number.  Theref ore,-.- f or -M'< 1, -f(£) , i.B 
a function of one complex .variable., while for. M >1  it is 
a function of a real variable. • • 

the ease • of 
super son 
that for 
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the shape of the. boundary change (in applying.'the preceding 
procedure, retain'in both formulas (4) and (6), the same 
function  f) upon passing from a flow of an incompressible 
fluid to the corresponding subsonic flow of a compressible 
fluid:or upon ohanging the density-pressure relation of the- 
fluid.'' 

I. THE HODOGRAPH METHOD I IT THE CASE OP AIT INCOfPRESSIBLS FLUID 

• i .•• A • General Representation for the Stream Function of 

Plows of an Incompressible Fluid in Terms of an 

Analytic Function1 of a Complex Variable 

A stream function of a flow of an incompressible perfect 
fluid .is a :harmqnic function - that is, a function which sat- 
isfies' 'the' .Laplace equation       . . .        . 

_   * _ C7>' 
3: 3y' 

Conversely, a function  \J/  which satisfies equation (7) can 
be .,int erpret ed as the stream funotion of a suitable flow. 
Since the. imaginary part of an analytic function of a com-plex 
Variable satisfies (7), and for every function satisfying (7) 
there exists a function  f(z)  such that 

\|/(x,y) = Im f(a) (8) 

Cß ) is the "general formula" for' the stream functions of a 
flow of. an incompressible fluid.  Here  f(z) -.ranges over 
the totality of'' analytic functions. 

for 
In connection with various problems in fluid dynamics as, 

example, jet problems, another method of attack was 
... ,''.' \ lIn many instances an analytic function of a complex 
variable consists of several (or infinitely many) branches, 
each of which is defined in the who-le  xy-plane.  These 
branches cover the plane many times,- Since a flow covers the 
plane or a part of it only once, each branch gives rise to a 
physically possible stream function. . HoWeVer, here and' in 
th'e' followingj a'-function is always spoken* of rather than'a 
particular branch of it. '"" *•'••" 
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deveTL-bped.   the   basic" idea- of: which is  to  consider   the   flow  not 
in.  the  physical  plane "but'r in  the  hodograph'  or   so-called'-loga- 
rithmic  plane1   -  that   is',7 to-'infro'dtice" as   independent   •fr'aria- 
atrles-1 the   component s^'-Vj/,' vs   ' of-'-'the   velocity  vector: :   •'"-; 

-T = ve W- =  v- +  ivB •If,-       w. =-.4>-+  W- 
d.z  . 

and  log' v  and *' 8 ,,.,-respectively, . instead., of . x    and . y. 

This approach., leads to another .general fo.rmula which," 
while it is more complicated than' (13), has the advant-age of 
being capable of generalization to the case of a compressible 
fluid. 

t ion 
In the case of an incompressible fluid the stream func- 

' \|/(V,B) =l \|/ x(log v,e),  y(log v,e) 

is again a.harmonic function of  log  y  and  6 
fore ' 

\J/(v,6) = Imh f(log v - 16) 

and there- 

(10) 

yields a "general formula" for the stream function (consid- 
ered as a function of  log'v  and  6).  The representation, 
\|/(log v,8) = constant,  for the streamlines (in the logarith- 
mic plane) of the flow is obtained immediately from (10). 

2. Passage from the Logarithmic Plane t o.,,tfce. Physical Plane 

The fact that the flow is considered in the logarithmic 
plane instead :.of the original physical plane introduces 

3y the transformation"  Z* = log Z  the author passes 
from the. hodograph tp .the logarithmic plane.  In.the. follow- 
ing, in 'many instances, it.is necessary to pass from the 
hodograph to the logarithmic plane and vice versa, often' 
without explicitly mentioning it. .This fact is stressed here 
in order to avoid co&fu.si.On." .-.Th§t plane the .Cartesian coordi- 
nates of which are . iog v  and  6  is denoted as the logarith- 
mic plane. 

See Notation, remark I;  ';.     .. ,(•..•. 
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dertain complications.  In order to overcome them it is 
necessary to Investigate more thoroughly the. -relations which 
exist' between the flow around a given obstacle in tlxo phys- 
ical plane and its image in;the hodograph and logarithmic 
planes. 

Suppose'that the stream function  \{/ = \|/(log v,8)  of a 
flow (of an incompressible fluid) in the logarithmic plane is 
given.  The following procedure yields the streamlines of the 
corresponding flow in the physical plane.  Since 

V ='-— (see reference 6, p. 32), it follows inversely that 
dz 

z  = 
_dw 

V 
(11) 

,-i6 Writing     V   =   ve-"1" v    and   noticing  that   the   integration   occurs 
along  a   streamline,      \J/  =   constant,   and   therefore     d\|/  =   0 
gives   (ll)   written   in   the   form 

z   = 

4^ ö   dv 
(12) 

Using the relations vcj)v = -\f/g and (J>g = v\J/y and noticing 

that along a streamline d\|/ = \|/v dv + \\i„ d8 = 0 and there- 
fore;      dB/dv  =   -.\|/v/\l/g.    gives 

x  +  iy  =   z   =   - ^6   +  v2</.^ e- 
dv 

By   separating  the   real   and   the   imaginary .parts   there   is•ob- 
tained  a. parametric  representation. •!..'.." 

V : ; 

\j/6
3   4-ys^v

g ] 
^P: 

dv 

y = y(v)   =  - si n_6   US  fjX?li 
vs \|/g 

dv 

(13) 
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for the ' streamlines in-the physical plane. One of the 
streamlines or a suitable part of it can be used.as the 
boundary of the obstacle. 

By- employing the hodograph- method in airfoil theory it 
is convenient toIuse.;the fact that'the approximate form of 
the hodographs of the flows around airfoils of certain shapes 
is known.  If it is assumed that the domain  H  which repre- 
sents the- 'image of the. flow in the logarithmic plane is given 
(see, e.g., fig. 2b), it is possible, to1 construct- at -first., . 
the harmonic functi;oh: . ;"J/(.log -v,0.) ' which Assumes a constant ' 
value, on the boundary  h  of the hodograph' 'and. 'has .'the pre-;, 
scribed'- behavior' a!t:the point which corresponds; to  z = «. 
Then with (13) the form of the airfoil in ,jth£ - physical plane 
can be: 'det ermfnefd.- : . 

As is well known, for a given obstacle and ,a given angle 
of attaqk there exists a whole family of flows.* If the ob- 
stacle 'has a sharp edge; as occurs in the case of an airfoil, 
all solutions but one have an infinite.velocity'at the sharp 
edge.  The Joukowski hypothesis consist's of the • assumption , 
that this exceptional solution, which has an everywhere finite 
speed, represents that .flew which has physical significance . 

" The- hod'ogräphs of the flows around the same obstacle 
(in the'phys'ical plane) lead, in general,' to quite- different 
pictures^ in .the; hodograph,.. and in the logarithmic planes.  3?or 
in'stance, in figures, .la, lb,, and '2a'j' 2b,-" two 'different :flo,ws 
around-similar airfoils .are. ;indicat e'd.  As mentioned, before, 
the hodograph'of.: Joukowski flows üä s, in general, a shape. *" 
similar to that indicated in • figure' 2b.'  (It is. noted that r '' 
this domain is partially twice covered.) 

If the hodograph method is used Ao_;.'p"6ta'in the Joukowski 
flow around some profile, it is at first necessary to deter- 
mine the function  -^(log v, 9)  which is defined in the domain 
E, and has a d .0 u b J e t  at A, the point which is the image 
of  z = 00.  In order to- construct the stream function 
\|/(log v, 8) ,  prooeed in the following wa'y.-: -Determine the 
stream function in the upper half plane '(Z-plaue) - that is, 
a function  g(Z)  which assumes constant values along the 
real axis and has a combined vortex and doublet at some point, 
say at . "Z ='i,  and. then -the - fun.pt ion . Z = Z(log V), which 
maps the ;upper "plane int o the domain ' 'E ;, ^transforming  Z • = i 
into the 'branch' point >• A  of' S'.  As. Will be seen, a: family, 
of 'solutions is obtained f or; thi s problem. •'   "     " "••" • ;.-.' 

•"•A flow fulfilling the condition«; of. £ he;,.Joukowski 
hypothesis is termed a "Joukowski flow." 

-r1 
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The   axis   of   the   doublet   Is   assumed   to   form   the   angle     a 
with   the   real   axis   to   obtain   for   the   complex  potential   with 
the   circulation    Y     the   formula 

W(Z)   =   *L log l-^-L + -Si— eia -  -£A—  e~ia (14) 
;'""•'' 2TT Z   +   i        Z   -   i • Z   +   i 

Reiriarki' , lThe.term    'AH log  z., r ,-L     yields  a  rmrely   circulatory 
•*,;.'• 3TT Z   +   i * 

flow   (see   fig.   3,   a'lso   reference   7,   p.•326);   vrhere^s 

-_§  -   , >"";—)    represents  a   flow 'without   any  circulation 
Z - I   Z + 1/ 

and with a "doublet at  Z = I  the axis of which intersects 
the positive  Z-axis  with the angle  a.  (See'fig. 4, also 
reference 7, p. 202.) 

m 

The question of how to determine the mapping function 
has a more technical character and will "be considered In the 
next section. 

motion  \|/ =*'lm|w (Z(V))J which ass'ui 
;he boundary 4.  h  of  H.  (H  is the ii 

"' Suppose now a function  \|/ * Im |w f Z(V) j\    which assumes 
\   constant value on the boundary 4.  h  of  H.  (H  is the image 
of  D  in/'the hodograph plane .).''T..he boundary curve of the 
obstacle'"is obtained if, starting1 "from EQaik point, say  B  of 
h,  x'," and , y ' are determined by. in.t egra-ti.n'g. along • h.  How- 
ever, in, general, the obtained curve," wi.ll! not- be. a closed 
curve".,' In order that this be so,"..l't; is required that 

/ 
hi 

COB   -V [\frflS   +   Va'Vi|/v
gy ^' = 

& 
V 

dv  =   0 (15) 

P    fÜLi   Zj^JrZl   O  if-,   0       '      . (16)' 
2 

•* 

:'h-        ' :^6 

where'ithe   integration '.i's   carried. otLt _ ai'bltig '%tie; boundary   curve 
h     of:^HJ   'Thus   it' is   seen  that,'' In"'; order   that   the   obtained 
boundary 'in   the   physical   plane- be- a.' c'l osed   pur've",   it 'is   neces- 
sary' t'6'- choose     r»   m, '• •'• kixä.''!'-<x     in   süch'a   way' thai ' both   equa- 
tions   (15),   and   (16 ) • are • sät irsf ied'i '•••'"' ••••-"•' < • 
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Remark: -In connection, with further applications for a com- 
pressible fluid two separate expressions have teen derived, 
one for  x,. the. other for  y.  Clearly, in .the "case under 
consideration they can he combined together, and (15) and (16) 
are then equivalent to ;•; * 

/*>• Tdwfv) •    r dw(z) 
(Z)dZ- 

dZ (17) 

Since  w(z)  and  V(Z)  are analytic functions of a complex' 
variable  Z,  which are. regular in the- upper . half plane ex- 

cept at  Z = i,  and  V(Z)  does.not vanish there,  (17) 

&w(z)      at   the  point      Z  =   i .• equals   the   residue   of   _=—i— 
.     ~f (Z)       dZ is. 

Write     Zj. =   Z  -   i     to. obtain   for     w     and     v, 
opment s -; 

the series devel— 

w  =  i  X.  log   Z, +   ffilela  + 
27T &       l Z, 

7   =  Vtt;+  Vx_ Zl + (18) 

and  therefore 

|Z|   <   p,      p     sufficiently   s.ma,l.l, 

mie 

1    dw 

V 

ice. 

4Zi       V» 1 oo 

Z.ST 1. voo 

mie 

mi ia e 
—5~ -  + ill I + - 

Zi 2TT Zi 

+ •i Zi +    T3    \ + 

1 r-L V 1 

•    2TT   ZL     .        ••   JLV«,        V«,3     1 

STTT« V   *        '   Z, 
(19) 

Thus the-.abov-e' condition becomes 

  + —i—, * =t .0 ' 
2TT      V_ 

(20) 

,. ( 
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3. The Determination of the Function  Z = Z(V) 

Which Haps the Image of the Plow in the 

Hodograph Plane into the Upper Half Plane 

'   If the domain  E  is prescribed, then the function 

Z(Y)  which maps  E  can he obtained using one of the known 
methods in the theory of canformal mapping.  For instance, 
•T/heodorsen's method (see reference 8) may he used to deter- 
mine the function which maps the circle into  H and then 
compute the inverse function.  The theory of orthogonal 
functions also yields (see reference 9, chs. 71 to IX) a 

simple formula for the function 'Z(V). 

;''. Denote by  cpv (V)  a complete set of orthogonal func- 
tions.  Such a set can be obtained, for instance, by orthog— 

.   {(   ß \*\ 
onalizing the functions | \ v(V  — a)/ r,  where  a  is the 

branch' point of the domain  H. 
00 _      __ 

->  -»    T-"    —> 
3y  K(V,  2?) = ) , fPv(V) 9y(T)  is denoted the "kernel 

v=i 
function" of the domain.  Then the function which maps the 
domain  E  into the unit circle, mapping the point  A  on 

t he   or ig in ,   is    (/ TT 
K£(Y,   A) 

AH (A, Ä) 
and   therefore 

— .    -/TT-KJCV, A) - 7KH(A, I) 
z(v) =•- i _ 1—:      (2i) 

TTK*(T, A) + /KF(A, A) 

is the'~ required function." 

Be mark:  Equation .(10)' may be written in a little different 
f orm.  Wr it ing '• • 

Z = log v + i(u - 6) 
gives ,. 

\Klog v,8) = Im g(Z) 

where  g(Z) = f (Z - in).  The passage from  9  to TT — 6 
means that in the hodograph plane* t;he domain with respect to 
the imaginary axis is reflected. 
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•'•'•'i'l.  THE HODOGRAPH METHOD IH- THE CA.SE OF 

A COMPRESSIBLE JLUID - SUBSONIC CASE 

', , '." 4. Introduction 

'.In this part the hodegraph method' will be generalized 
to the case of a compressible' fluid. 

The stream function \p (x, y),  in this case, satisfies 
a complicat'ed nonlinear  partial differential equation, 
(See (26).)  If it is assumed, that the density pressure re- 
lation is. of the form        '=;••'•• 

         P = p(p) . 

where     p(p)      is   a  function   of     p     alone',   then   the-use   of 
\|/(T,8 )      instead   of     t(s,y] .'. (äs--£haplygih,   reference   1,   and 
Molienbroek have' shown)   represents   an   important   simplifica- 
tion.      If   the  variables     v     and     6      are   introduced   instead 
*f     x     and     y,      the   function    ty      satisfies   a   linear  partial 
differential 'equation     s(\|/).=   0.      (Sea .(3d)   instead   of ,a   non- 
linear   one,   (26). )v " 

Remark:      It   will   be   assumed  that   (unless   the   contrary   is   ex- 
plicitly   stated) 

p(p>   =  A   +   a'pk • (22) 

where A, a, and k are constants. However, the method 
developed here can' be employed in the case of a much more 
general pressure density relation. 

In the case, of an incpmpress ib'le fluid, ihst ead of 
merely a statement that the stream function  \K log v, 9) 
satisfies the Laplace equation, the' general formula (10) 
was given for solutions of the Laplace equation in terms of 
an arbitrary function  f ...of one variable  £ = log v— i8. 

The main purpose of the second part of this paper will 
be to give an analogous formula fo-r a compressible fluid, 
and to derive from' it the representation for' the stream 
function in the -phys ical plane.  •    -. • 

As will be proved elsewhere, this result leads to a 
construction, of a- flow around an obstacle approximating the 
given' obstacle (in the phys leal'plane), . 
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After a 
types of diff 
7 of properti 
needed in the 
tions 8 to 12 
of one comple 
\|/(v,9)  of  S 
tion for the 
for the case 
the following 

short discussion in section 6 about different 
e'rential equations and development in section 
es of the auxiliary.function  \(v)  which is 
following, an operator is defined in sec— 
(see (55,)). which•transforms functions  f (s ) 

x variable  s = \(v) + i9  into solutions 
o0M = 0.  Equation  S0(\|>) = 0  is the eq.ua- 
stream function (Ln.an appropriate plane) 
of compressible subsonic motion.  Then, if 
formulas' 'are used 

r   Pocos.e [ft.- H*)*e
3 + -va*v

s] 
x = x (v) - - /   — P -. d v 

y =• y(v) = 

V 

I posin   9   [iijzJlVtl——^jL 
\  (33) 

pV' * e 

which are derived in section 14 and represent a general- 
ization of. (13), a parametric representation for the 
streamlia.es In the physical plane of the corresponding 
flow is obtained. 

> • 

In section 14 are determined the conditions that the ' 
image of the. given hodograph yield a flow in the physical 
plane around a closed curve. 

5. Differential Equations for the Potential 

and Stream Functions 

Prom the continuity and irrötätionality of the motion 
it follows that for every flow there exist two functions, 
<t> and  \J/,  the potant.ial and s-treäm functions, such that 

= v 1;' = v. (24) 

Here  • 'v i"   and     v2     are   the   Cartesian   components   of   the 
velocity  vector   and •. p      is^-'the   density!       (See   reference   6', 
pp.   228-2!2,9 'or  reference   2;>fp.   2.)     Pr-dm   the. Bernoulli 
relat ion ,;i/2 vs + I '= -constant, whe-re . i/g = kap ~ /g(k-l) 
denotes the pressure head (see reference 6, formulas (13), 
•D.   215,   and    (10),   p.   314),,   it   f :0ll ows\ *hat 

1/2 +   ak (k; -   1) -l fc-x = •• ak (k ±-1)' «i 
Po 

k-i or. 
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.-i..-i.:-k7a 
l/fc-1     "\ 

= p 

= p, 

2 ;•;-(*.!)*•] 
i/k-i 

>    (25) 

[-i a~3(k-l)(cDx
8  + 4>y

s) 
/k-i 

If   (25)   is   substituted   into   (24)   there   is   obtained  for     9     and 
•\|/     a  system   of   two   nonlinear      differential   equations 

— 2   . 
a.    (k- V      = 4> .    y x 

[l:-|. ar(k-i)(*x
2
+o/)]i/k-1 

*x- --vk1-/* a"* (k-!)($*   +  4>v
s) y 

1 i/k-i 
y (26) 

It   is   noted   that    in   the   case   where   the  motion repre- 
sents   an  adiahatic  process,     A  =   0 ,.     and   in   the   case -of   air 
k =   1.4. 

Eliminating-1. 4>      gives   for     ty . 

a*sL   (Poo
2 W       WAü'   VL    CPoa0)

2 

^r^fc^-c^ ö\j/    ö*     Ö3^ 
-.•*=  ,0 

öx   dy  öx öy' " "' 

^r-L-into.^yic^«:).];.' 

(27) 

Similarly,   eliminating . ty     from   (26)   gives   for-.<t>. 

[•ix + <JVy] -**V* xx ^   *^x vy *xy      ^y    ^yy 

1   ' 
§-   (k -1)(4>X

S + <}>y3) 

(28) 

- ' •' 3-Ehe .derivation* -oft, ( 27,>\and .( 29«)   is- o».l.t tfidv.her.fe.: " The 
lequati'an/ (-28 )  is. der Ived   in  r ef er/ende: .6.,. p •,  \&i30>, • .Concerning 
( 27).,.-.s;e©  re.f erence   10,. p.   5. •;•.--..'' •.-?    • •:. .- ,-.    • • .• :<•••.. 
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As Chaplygin and Molenbroek showed, if the variables 
log v  and  6  are introduced instead of  x 'and yr Ahen the 
equations relating the stream and the potential functions 
become linear.  If 1 

<fr(v,   9)   = <K*(v,   e),   y(v,   e)] 

*(•, e) =\|/[x(v, e),: y(W e)] 

(29) 

2 y \ is   written,   then,   instead     of   (26),    it   follows   that 

P 
4> e 

v 

M2>e   +*(.log-.v)   =   °1 

vd\J/ 
>     (30) 

(log  v) d(log v) ov J 

Here 

K  =   v/[a0
s -    i' (k'-.l)vsJ 

i/o 
(31) 

is   the   local  Mach  number.      Eliminating^  <J>     gives   for    \{/    a 
linear   equation ' 

.P. 
So(^) =(^) (1  - Msty69' 

., ffo\ __j r/PA   •»*  \ = 0     (32) 

In section 11 a general expr es s ion3 will be- given in the 
subsonic case (i.e., for  M < l) for the solutions of (32) 
in term»; of an arbitrary function of one variable  f.  That 
is to say, an expression will be obtained, involving an arbi- 
trary function of one variable  f  such that for every  f 
the obtained expression represents a solution of (32), and 
conver.sely every solution of (32) which is regular at the 
origin can be represented 'ih'.'the afore-rmentioned form with a 
suitably chosen  f . i^__  

1S e e Not at i o ny remark 
2A detailed derivation 

reference 2.. 
3 

of   (30)   is   given   in   sec 

It is h-ot ed . t hat, in...'sec. 
fied slightly by approximating 
The   indicated  result   refers   to 

-"9 • : e'quat i'on   (32)   is   simpli— 
the   coefficients   by -polynomials, 
th is 'S impl if ied   equation. 
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Remark:      It-, is   noted   that   for     k = .—Or,   K  < 1,        oq.ua- 
tio-n -(32)" becomes-   ('!»• appropr.iät'-e -varriables )   the   La-place 
equat ion. • . '••   • 

According   to    (25)   and   (31), 

p   =   Po    Cl  +    (v/a0)
2]~l/S (33) 

a-.T-1/s              t   I-   v      ,,r..      „2-,-i/s 
•K =. (v/a0)    [1 +.   ^U^Yl(. .or, },(v/a0)= M[l-H2]-1/S   (34) 

a 
Since   . 1   - M     = ±—^--,.     (p0/p)S  =   1  +    (v/a0)' 

'"'    '" 1  +    (Wa0) 
and 

[1  +   (v/an)2] 

where 
d   log  v        d\ •-. 

s-.i/s 

2 [1 +    (v/a0)"3]1/8"+   1 

equation   (32)   becomes1 

x. 11.« i^-M^ür^.-i 

**»•+ *;u -"° (36> 

.....6. A, Remark on D.if f .e r. an-t.. Types of Equations 

The fir si purpose of tb^e se bond" par t of this paper 
is to:.- give' .a- formula fox solutions of (32) in terms of an 
arbitrary function of one variable. 

Before the' derivation of this formula is considered, 
it is well' to discuss in some particularly simple cases 
the "general solutions" of this kind and indicate some 
characteristic features .of s^eb-f oraulas .' 

The following thr'e'e 'equations2 will be 'considered, 
.where, u-  and £  arg ,r-eal quantities:   .... 

•'•This result was f irs't'':"o"btained by Chaplygin.  (See ; 
reference 1, p. 99.) ''•'•'• ' : 

"A differential equation An,,,, + 2Bu.,- + Cu-g + Du»f 
+. 

t ive.ly. 

+   3ue   +. F   =   0     is   sa'.id   to  be   of;' elliptic' or   hyperbolic   type 
in   the   domain    R,      if     AC  — B'fe>   0    "or  < 0    in     R,     respec- 
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4 Ö|Jls 

öV\- _ 
öd8/ 

o, t   =   u-  +   id,        £   = M> 

-Ü2L = o 
öy, öd 

id 

(37) 

(36) 

'0-+4(1_,)^_2|i_-o 
ods ö|j,s 0|j, 

In  tho  first   case   the   "ceneral   solution"   is   given   by 

(38) 

* =   £(£)   +   g(£)   s  f(n   +   id)   +   sU -   i$) (39) 

in  the   second   case  by 

^ = f(uO  +  g(d) (40) 

where  f  and  g  are arbitrary- (sufficiently many times dif- 
ferentiable) functions of one variable.  As \i     and d are 
real variables, it is seen that in equation (36) there is an 
arbitrary function of one complex variable, and in equation 
(37) two arbitrary function's of a real variable.  (Clearly, 
in equation (36) in order'to obtain real solvtions, for  g 
must be ohosen  the conjugate to  f;  that is, f(\.i  — iif'}. 

A quite different situation is met in the case of equa- 
tion (38). „By  th> transformation  X = J1 - \i,     (38) can be 

reduced to .the form 

this case i$ 

d8*    ••*** _   n The   general   solution   in 

\|> =  f ( i /T-nL - d)' • + ' g( i V'I-'M, + • d) (41) 

It   is   seen   that   the   arguments      ivl 
for     (j, <   1     and  are   real   for.   u- = . 1. 

y, ± d  are complex 

•The solutions behave quite•differently than in the pre- 
vious cases.  It may happen that a.solution which is real 
-for  jj, < 1  becomes imaginary for  ^ > 1.  Consider, for in- 
stance',- the- function 

i (id- n)i/a-*) + j(i(i; - ^)'1/^:• + 0 a (i- - »)1/z 

On the other hand, there also exist solutions which reniain.. 
real in tho whole plane — that is, 
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On the other hand, there also exist solutions which remain 
real in the whole plane — *-*   example, 

(iCl-n).^a-:;#)f'+ (iCl^ii")'1^*-*")3 =? .Mjft 'J * t2) 

;,  Equat ion •' (.32) is. of mixed type1 and therefore a s itua— 
t ion -exists of the type exhibited in (38).  Of course, the 
behavior is more complex than in the latter case, because 
(32) is not the simplest case of equations of this type. 
First, the function  X(M)  must be determined}which- may be 
done by reducing the equation (32) to the canonical form. 

7. The Function  \(M)    : 

In this. ae.c.t i.bn the. function  X.(M)  is intro- 
duced. For convenience, an intermediary variable  H = H(v) 
given by 

Mill = J2. (42) 
.... dv    v       •'••.,•••.•'•.;• ••- is employed. •..••••• 

The equation (32). becomes 

s(«-(M" (i--K.)riiT-;|i--,«-(E>^-+äa.o    (43) 
\p/ LöesJ,  :   OH3 be3      öH? 

If  M < 1 — that is, in the case of subsonic motion- then the 
coefficients of both ^'QQ     and ^HH  

are positive and there- 

fore the equation is of elliptic type.  If  M > 1- that is, 
in the case of supersonic motion- the foregoing,coefficients 
have different signs, and', the equation is hyperbolic:     ,'v).'. 

In order to obtain" \(M) ,  (43) is reduced to the so- 
called canonical form.  (See reference 11, ch. Iy   sec. 1.) 

Introducing 

t=A(H) + ie,   r = A(H)-i8,s     (44) 

where / 

H = •pop-1Vl - M3  =' VtCHT; ':  that   is,   • *Ä'(v?   J  v-i(l-ji2)'l/2 

iThe   local  Mach'number     M     plays,'   in   the ' case   of   ('32) i   a'' 
role   similar   to   that"   of     n     in   the .case .of   (3.8 )•..'.. 

.. ^t   is   noted .'that, for.. M j^.l,    \i      and,   X   ,are_ complex 
quant it'iesI" which .are "conjugate,  to   each   other,   for     M  >  1      they 
become   two   (independent)   purely   imaginary  quantities.      (See 
(48),   (49).) 

(45) 
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the   equation   (43)   "becomes 

of. .91 •..-*. 1  -  M3  P  lav   L 
(1   -   M2) i/a 

3) Las   "äfJ 

where1 •• - 

N   =   N(£   + I)   =  N(v) 

(k   +   1) 

= '#*     +   K(£   +:£')' T|*   +  -S4l   (46) 

-*h3 -1 (k  +  1)   T; W« i 1-iA 
_   I(k   _    1)    V2 

(k  +  1) »T 
8 (1   -  M2)3/* 

(47) 

The   function     A(v)   =  >»(M)      may  now  he   easily   evaluated.      From 

dA( v)   _   1   [' - i(k + l) 

dv ;[.... i<t.,, ,.j*- 
it   follows, by  a   purely   formal   c-omputat ion,   that 

A(v)   =    X(M)   = ± log 
>/»•/: 

= i 
1   -'   (1   -   M   )        • /•l   +• h(l   -   M*) 

/a V1/11 

;i  +.(i -" M2)l/s \i - h(i - M2)x/; 
(48) 

.   \ k + l / 
for        k  >  1 

For     M <  1,      X.(M)      is   a  real   quantity,   if     M  >  1,      then 

A(M)   =   -i (tan-^yM3   _'l   -•iUan-'Hh./M2   _   1)] (49) 
h J        : 

is   a   purely   imaginary   Quantity,.' 

» 

See Notati on ,-1 remark 1. 

For  k - 1, '. X(M)   = 1 log ' 
2"1 
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£.Sfflar_k.:      If     k <  1,   • and     M <   1, 

X(K)= 7   (t»VttTJ(l:-Saj;/S]  +   l°g { [l ~  ^ I $ './Jj} 

rr:--.-2-.-(ra)-'"- 
>(50) 

^ 

If     k  = -1,    M < 1 

or K  =   3e *•/(!.+ e8*)     and     (v/a0)   =   2eX/(l-esX) 

Por   the  application   of   this   theory,   the   inverse  func- 
tion     H  =  M(\)     often   is'needed.     'This   can  be   determined 
either   by  preparing   once   and  for   all   a   diagram     \   =  \(M) 
for   a  fixed value   of1     k     or   analytically,   representing 
M  =  H(X.)     in   the  form   of   an   infinite   series'.      Tor     M <   1, 
k > 1     there   is   obtained: 

• J    \   ' ' 
' *        r i 

T(2\.) = </l -  M3(2\) =   1 -  X -  l/2(2k + l)-X2 

-_i (4k3 + 6k'+ 3)X--   iy.24'(24k3   +   6Qks + 76k + 29>X* 
4 ' 

48 
(48k* •+ 212k3   +   39 2k2 + 328 k + 103 )X5 :. .   . . 

~i~(480k5+   2976k4' +   7968k3   +-   10788k3' + ' 7266k + .1935 )X€ 

480 
1 'w{2880kg   +  23472k5   +   84232k4   M .162124k3  +   173940k3 

288Ö 
+   98086k +   22675)X7 -   .    .    . C     (S2) 

X  =   2 

A k .+ i); 

Ak+iK3-(k- W(k"^ 
\(k + l)1/s + (k - 1)1/2/ 

If  M  varies between  0  and  1,  \  varies between 
-co and  0;  The proof of the convergence-of. (52) for  \ < 0 
is ' given in section 15. • : 

xThe .corresponding values of- 2\, M, and' v/a0  for 
k = —0.5  and k = 1-.-4  are given in the. tables- la and lb. 
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8.   The   G-eneral  Representation  for   the   Solutions   of    (32) 

T_h.usr.aiB   (53).    £fii ilia fjiafiüjua    E^H'   e>   *)• -1 = * - 1 

he_ a  £.olut _i on .of. £ c_uaj_i, on 

G(B)S   r^i-r-i--A   *(p+   1Z.+ *MIX\  +    -lIlL-^1     (53) 
Lt(A+    19)      H   VA

H 
9      3ÜHS/Jt    Vl   -   ts 

uk-ii-li   h§Jl  ilis.  E^-OP^u-LiZ   that 

r/2»+ iEe") f*J±ZZ + £J/LZZ^HH 
!\% t(A +   16) 2t (A +   16) 

Al.   cont inuous   a £     t   =   0,     at      A =   0,     and aj/      0   =   0. 

S      is.  given   hy   (43) ,   ana 

(54) 

Here 

AH SAH(H)   =   ./1(E) 

(See    (43)   and   (45).)      Then. 

\|/(H, e) =y E(E,0, t)f j"|(A(H)+ i8)(l- t3) dt/A - t3 (55) 

üllQ-rs.     f ( s )      is   an , arp itrary ,   twice—differ ent lable   func t ion 
JO£ .ama x&zXä&lo., Kill its a S.ä1UJLisn  o£    s (\j/)  =   0. 

Pr oof :      Itisnoticedthat 

fH = rAH(l- t
3)f ',        fe = |(1- t2)f',        ft   =-f'(A+ ie)t      (56) 

wher o 

f.(.). S^i 
as 

Therefore 

f        _  I    AH(l-t2> 
H 2     t(A+ i6) 

Now,    oy3   (55) 

t » 2 t (A+ ie) 
f -i£= 

e" AH 
(57) 

x[    L      indicates   differentiation  with   respect   to      t. 

In   order   to  he   completely  rigorous,   the   integration 
is   carried   out   along   the   curve     —  1 <   t <   — e,   t   =   eelcP, 
-TT

<
CP^2TT,    6  < t <   1.      Then   the   integrands   in   (58)   and 

(59)   remain   continuous   along   the  path   of   integration.     By 
use   of   the   property   that    (54)    is   continuous,    it   is   possiolo 
to   let     e      subsequently  approach     0, 
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*H=JCX   EHf dt r + 1 
+ •/ EfH 

dt 

-/!•- ts 

> (58) 
»+.i B i/l •- t»   A g     4f 

? t(A    +    16 )     dt 
dt 

Vl -t3 

Integrating  "by  parts   gives--for-the   last   term   in   (58): 

J 

*H= r+1j **   ,(j^?>nwf^»f 
1  } (B.) 

In an analogous manner there is obtained 

vt-i 

*. e f1 fr_5i_.+ Civ£5LLYl 
J-i      L A/I - t8-     \2 t(A+ ie) ytJ 

dt 
.    sVl-t2  i 

2 t(A + ie) 

1 

t = -l 
(60) 

i 
Now,   differentiate   (59)- with  respect to     H,      (60) .with   respect 
to     6,      and multiply   "by    As

2.      There is   obtained finally 

*      + A  3 \|/a£i •   •: :• .-.•    :'-'   " •'••••: "•'•' 
HH H        9 B 

= f+1 fr S(E) +r^/rEIL_A s fEg , A
HH E , E9AI I 

J-i l^l-ts       Lt(A+   i6)    H     \2AH       AH2    2 2   /'f 
dt 

+ T+1(EHfE  + • /EVl  -   t»\      AEfE +  ^6f6
A 

J_i     Wl-t2        \2     (   t /t    (A  +  46)        v/T^1 

+ fl '/i- ts ^        AH
2fei \ 

\2       t        / t    (A  + ie) J dt 

2t(A + ie). 
[EHAH -       "^        +   EAHH  +   E8AH"i 

s 

leT 

(A/+ ; ie) JJ ::.lt=^x .-',; 

\2t(A+   iS) 1  H  H H     fJJlt^-i 
(61) 
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Using thj.last   relation   of   (57)   it   is   soen   that   the   second 
and   the'.'fourth   term   in   the   second   integral   of   (61)   cancel 
each   other,   and   if     fe   -   i^HAji      is   substituted,   the   last 
term   of   (61.),. vanishes.      Employing   (57)   again   and   integrat- 
ing- "by  parts" gives 

r; EH?E 
dt 

V   2 

-/r~~ ts 

BH yi - t S AH 

--L +i BHyi-t&AH 

i 

+1 

ftdt 

t(A +   i8) /      ' i        <J— 

2t(A + ie) 

, " \   2t( A   +;.i9) , 1 f  dt (62) 

and 

J-i  JT-t3 J-i 
•+1 '•BfiiAw

3,vA~^ ts ' 

J. 
üejfH__  

2t(A + ie) 
ft<i* 

JEeAH^Vl   -  t a 

2t( A +   i6 ) i     J-i\   2t[A + ie)   yt 
(63.) 

Using   (62)   and   (63)   gives 

vHH H       e 6 

J-i      IvT^t»     U(A+ ie)      H   \AH        e    An
s 2/J tj 

"{t(A Vi8)   [EHÄ^ + E6iA.HS +   i   SAHH]}: 

t + 

,t(A  + ie)  L  * *•     ö    ü 

which   implies   theorem   (53); 

t = l 

t = -i 
(64) 

P. A Simplification of the Problem 

Following the present line of attack the next step is to 
investigate the solutions of equation (53) arid • to. determine" 
those among them which are most appropr iat e . f or 'the d e •/ a 1 crp— 
ment of the theory. 

However, the mathemat i,ca.l> analys is of thi4 qiues't ioiivhas. 
not yet "been developed to t"he extent needed iff-t2i'.e "cas.e.-under 
consideration — that is, itn-the^:gene'ral case of an eaua'tion 
of mixed type — and to work out this mathematical theory* 

JThe author will develop this approach in a future paper, 
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here would lead-"'outs ide the scdp'e of the* present paper. 
Instead of this, two simplifications are made, by which it 
is possible .to employ already known mathematical results. 

ÜPirst , only the subsonic case will be considered.  This 
means that the solutions of the equation (30) will be con- 
sidered only in the domains where the equation is of elliptic 
type.  Secondly, function If  in.(70) will be replaced by a 
polynomial  3?m  in  e

fc^ .which vanishes at \= —'« . 

•:''• In th'©.''case of an incompressible fluid where ^ is a 
s o'lut ion'of the'Lap'lace equation there is'obtained for the 
stream functi'ö'n the representation 

\lr(v, S) = Im f(s) ,   s = log v - i6      (65) 

ia-terms of an arbitrary function  f,  of one variable. 
(See equation (10).) 

Generalizing this result, it is found in..the following 
that the stream function of a subsonic flow of a compressible 
fluid, which is a solution of (32), can be represented in 
the form -v\  •. ! - 

x|/(v, 9) = um  ImiH(v) [f('0 
m —?• <»    I     L 

ft, -•- .'-.pLn—l- 
+ I^&yf • .";.';^n"1i(£n)^v^1]}<") 
n=! 

. .I." 

where      i =   \(v) +' i&,   -and  -H("v)      and    'QK
m    (v) ,"    'n' = 'T,.' 2, ".    . 

are  functions   whi-.ch   depend upon     m,      v,     and     k.     For 

k =   1.4, Q =   lim Qj       .  are   graphical-ly repres'anteVI'• in 
m j>|y" -        ""' 

table' lb. 

The remainder of this section and sections 10, 11, and 
14 ar e-dey=o-ted. .to, an exact.--f ormulat; ion and der i-vpt ion--' of the 
ffrego.ing,, r^pr es.eatat iß.n for the- stream- funct ion'. x •'"/'••' "' 

" In,, prder t-o link the .ensuing analys'is - with standard ma'th- 
emati'cal procedure', equat ion%>( 3Q) is reduced' -to'the canondcal 
form  L0(ty) = 0,  (see (46)>, by introducing the variables 

^•The mathematical details of the proofs in sees, 9 to 
11 may, for the most part, be omitted by the reader whose 
primary interest lies in the field of physical applications. 
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£  = \(M) + 19,   £   = \(M) - 19 (67) 

(See (44) and ( 48 )'. )  The equation,(63)'becomes. 
.        .     • • -    , 

GX(E) = (1 - ta)(3Dgt + Mj) - t-1(nf + HE) + 2St L0(B) =0  (68) 

The   condition .( 5.4»)   will   be   satisfied 1 if     (357   +   UE)/tS      is 
regular   a.t   the. point       £ =   0,    .t  =   0 .-••..       . 

If   now,   instead   of    ^     and     S, 

14 t+1 
**'• =     lessr/'     :Nd(I+'t)- |\(/ and     E*=|expfy       N d(H>) X (69) 

_* 

are   cons ider ed, then     L0     becomes 

L(\J/*)  = \J/*£T  +   F>J/* =   0 (70) 

where 

F   = -  (N>     +   EF3) 

 (k  +   l)v4  
[ao3  - i(k+l)vfa[aos - i(k-l)r»]V»^   2(1-MS)1/S 

."£_, ,    ,     <k ^-lWa_ 

»4[a?l |'(k + l)'v*]3[a0
s- i(^-l)vE] 

i 

•- .( k.+ !) T*I-lft a0
4 :+ 4( 1 - 2k-)a0 2v B -^ ( k +_1) v*j] ' 

64[a'ös-  |- (k-+-l>va]a[a0
s--|S(k-l)rf}-: 

(k +1 )M4[~ (3k - 1)M4 - 4 (g"'--'gk) MB + 16]' 

64( 1..-  M3)3 (71) 

Since     X,     and     M.    are: .connected- by  the':relat ion   (48), 
the   expression     i1      is   a   function   of     X     which   has   a pole   of 
the second   order  .a.'t     V *»: 0. • .• And-..   X   =   0     lie's' on   the   boundary 
of   the   interval' of:-, v-ar^iarb ion   of.'V.    since,   ,if     M     ranges   ovor 
CO,   l) ,     X..   -ranges-, over •(•*-:«» ,  Q)..  . . 
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The second simplification is made "by replacing the 
function -F..."by appr oximat i.ng i function . "F  which is a 
polynomial 'in  es*  of the 'order  m .and' vanishes at' X = -co. 

In 'section 16' it is -Bifoved "that in 'every interval 
(-co, X"0- ) , '-X0- < 0;>    trhe original may he approximated 
arhitrari'ly closely "by such a polynomial. This mean-s' that 
to every- X0 A< 0 and every e > 0» ; th,erre is defear^mijned, *a. 
polynomial  Tm  in  e\  Fm(~eo) = 0 -such that 

JF(X) - rm(eM %    e for  -f00 %  X ^ X( (72) 

The following is now proved. 

X  %"   .*! .-'   'Lamm'*' "(67) .     To   every polynomial r  Fm(2X)      in     eA '  there 
exi st s   a   constant      c,      such   that 

dKFm(2X)/dXK fecCE+lM/C-Xp*, for    X < 0     and     K= 0, 1,' 2, ,':''. '.(73) 

Proof:   * S-inic}e   ' m 

**{?}). = T sXK .       . cKe »    CK     constants 
K=i 

it   suffices   to   prove   that   the   inequality   (73)   is   valid   for 
.the   derivatives   of  a   single   t erm-: 

!-e s\     But      dKes^/dXK 

ZI ( (—XB )r.^rf^.7 °°,;.. •••. .•therefore   there 

.    . (74) 

=   sKesA     an-d   as     K 
exisl sv -fet'T    et     s% b h'7 :t \h a t 

dKe*X/d7,K- ,£Q(K+i).,/(-X)Ktsf     K=0,    1.---.J3, 

In   some   instances   it is   expedient   to   approximate., H\ 
"by  the, sum   of   a  polynomial and   a   function  which   "becomes   in- 

finite   as     —     at    X    =   0. 
X2 ._ . . 

In   this   second   case   it   is   necessary to   use   the   result 
of  reference   3,    sec.   4,    instead   of   theorem   (83). 

. • -   ?: • .•.'    '.'   ': T 

Note   that   in   (4.2)    of   reference   3,      CT  (k   +   lj(a  -   X)k+S 

should   read     °-r,.^k  +^) .      in   (4f3)    [r (n"+   l)]~3     should   he 
(a - X ) 

[r(n+ l)"]"1;      and     on   line   11      of  p.N279        lim     c^   = 1 

should   De <llm-  U(n)r1   *     = i,      ' 7~ "   " 
n —s> co . 2.- .      . 
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In sections 10 ,.and 3,1 an integral .representation will 
"be derived in "t eras '.o;f arjalyt tc.'' functions for ..the solutions 
of  L^, 'the' equation Ve suiting from 'replacing  E  by  Em 
in    L'(\J/*)   =   0;      that   is,     Lm(\|/*)' =   \J/*~   + Effi\|/*  =   0. 

10..   Lemma .•   • 

Lemma   (75,):.    if     !E*('£,    £,    t)      is   absolution  -of   equation 

G_(E*)   =   (1   -   t    )E*^    -  t-1   E*T +   8ft  [E*7     +. EmE*1   =   0      (75) 
' 3 •    5f     "• 'S '£ £ ! 

and  E*-/£t  i_s continuous at the point  t = 0" and  £ = 0, 
then   * 

/3 (76) E* 

•tl 
<£.  £. t>   f (i£(i - t3))dt/(i - t3)1 

w.he-re     ff ( E ) ,      an  arbitrary  analyt ic   funct io,n   of   a_  complex 
variable      z,      is   a   solut ion   of ..... 

Proof;      Differentiating  with respect   to      £     gives 

(77) 

.A; 
-l>l 

\|>^  /•'''»•   F'-dt/.( 1   -   t2)1/2 "     (78) 

Differentiating  again  with   respect   to     £      gives 

+ i .    . '.•    . •••    . • '    ^+i 

M/*7    =. ./       E*_   f   dt/(l   -   tS)l/3+  /-E*   f   dt/d-tV8   (79) tl -. u 
y-i •V-, I.£ 

If it is noticed that 

, . f 

where 

'        •'"''.       f*   = 

there   is   obtained 

|(1   -  ta)f      and   •••ft:.=' -ftf. 

,   _  df(s) 
ds i^(l   -   tS"} 

and  therefore 

'*   •-       1        (1 ;>Ha)    - 
C   ~   ~   3 • ft- t    . (80) 
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y^-.fS«/*-t•)*;'» T --r/+1 (> ~^t
8)1/S  ••*? *tdt 

(1 - t2)1/s 

a; t £ lWr*fe^l"-> t= 

t 

("by integration, "by parts).  Substituting the obtained value 
into (77) gives 

Ü$T  +  lmt*   = -  - 1 -  ^  E*   f 
t=i 

t=-i 

.:;;.+
r:/.      f •<    l±_z_LJ  E*       + _ki 2—^at-(82) 

v/-i        LL        2 ^t        T-U (I - ts)l/2J 

which   implies   lemma  (75)t 

. 11.   The  Representation   of   the   Stream  Junction   in  the 

Logarithmic  Plane   for   the   Subsonic   Oase 

Theorem   ( 83 ) ,      Let •• FB( 2X )      be ati analvt ic,' function   of 
a  real   var iäble,     X,      defined   for     X < 0,      which  possess es   tho 
property   that , .    *. ( * 

d.ZI m 
d X 

< c(g+j)i for      X = 0        and       £=0,1,2,    .    . 

,   denot a a.   s et 

(-X)K+S 

where     c     jLs.  a  suitably   chosen   constant 

Further,   let      q^n^(2X),   n   -   1,2, 
of   functions   which   are   def inod .by;  the  recurrence   formula: 

(2n + l)Q^a+1Vjx^fc> +  4FmQ<n)   =   0,      C&< l >=-4?m 

Q^ (a) =0,   a< 0 

Fiqallv, let  g( £)      b_e jin analyt ic function r egular in a 

domain  B  which contains the origin,  Then 

(83) 

(84) 
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>|/*(\,   6,)   =  .Ira TeCS) 

—r1 S       n! '-'0 '•'0 

• £n-i 
(3F) 

ns=i 

will   be   a   solution   of 

X 
4 

s  \|/*    . +    Fm(2\)\l/*=. 0 

w 

(86) 

which  jL,§.   def ined jLn   evey.v  a imply   connected   domain   lyin,g   in, 

the   intersect ion   of     H     and     3,      wherjl • H.    denot es   the   domain 

6s   < 3\s,    \ < 0. 

Proof:      If 

. E*   =   l.+ tj1   C       y      (t   t l/s)5Ö"*1Q(n)(2\) (87) 

.a ei- 
ther! it must :bt! shown that- .33*  satisfies   the   equation 

GgU*)   =   (1  -   tS )E±       -  t-1 B*   + 2 t t [" B*     +   FmE* 1  =0 (88) 

(see   equation   76'),      and   that     ET / £  t      is   regular   at     £ = 0, 
t   =   0.     3*   • formalljr   g-atisfies   Equation  (88).      In  fact, 

Ef-= i*: 

EJü    =  t£.Ql°. + 

ta^1) + ' v':l "f an-a fn-i   (n-i)   ,   . -\ 

It 
. + (n'-l) t^-sjn-J»-^   .   . _. 

^=*2(K1) + i^O + (89) 

+ •  f 

Thus 

—?[|(n-i).r-V-l)*^a"'«(^"0]+. . . 
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' •-•• «*».»-*. t.Vn)-'r'": •'"-*• 

t2B*  =      .    .    .   +   (n~2)t3n7stn-2q(
x
n~s) 

•* .1 •      i V 

~\ 

+  gt. ..  . t  qv     + ... . 

r 

-2t ^3p7  =     < 

v>. 

.   -(n-a)tan~3. ^-»q^ 

, -(n-l).fesn-i £n-1q£n)"- 

2 £       ^x. 

2 &    -*\X 

-3t £]PmE* =  -2tUm-   •    .    ..    .-   2t^-^t^-^Fm^
n~x) 

sn-i  .n      - fn—ii 

or 
ttr (0 .o*).-^i + 4P m 

' .< 

.aa-ifn   f (n) 

>   (90) 

_> 

(91) 

which implies (84). Now, proceed to the proof of the con- 
vergence of (87). If.A is a dominant of B- that is, if 
for all derivatives k £*$/ d<\?; •'• K = 0, 1, 2 it fol- 
lows   that 

^'i^Z-cLX2, •':••' ••-•£ 7^.0.,.:!,, 2,  .   . (./ •"     a£.X<0      (?2) 

This   will   he   indicated  "by 

B <•<'£. or A >> 3 (93) 

By 't'he  r e.Tcurr-enp.e^ formula.. 
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^^^Ä1^^)-^^^^^]        (BO 
o(i)_ (al, QV^= 4c/(-\)s,   .   . ^n'-(a.):'a=:0' 

the  functions     5 are   introduced. 

Waiting     3<n>   =   c(n)(-.X.r'(n+^;' gives      : 

(2B*l)o(»+x)(->l)"(B!,?).,-r    (u+l)c(nU±£^)    (-V)-(n+2) (g5) 

and  from  this   is   obtained 

.   liB 
c<n+l)        i 

n^>'»       c(n) 
(96) 

Thus, the   s er ies 

- i > -£ tni(n:)(.2\) (97) 

converges   for 

-2\ 

n = i 

<    1        or        \2  +  6s <4\s (98) 

It   is   shown   now  that 

;( n ><•<'.-r( n) (99) 

Clearly,   the     $'^      and   all   derivatives     dK'§^llV<äAK     are 
positive.   ..Further,   -by   ( 84) , : ( 94 )',   and  (83)    it   follows   that 

.   .Q(I)«Q(-I1 '      "(100) 

Equation (99) follows by induction.  Suppose it holds for 
some  n,  say  n = n; then, by (84).-. and (94), 
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(3n-+-l)   L   *• J     (-x)s J 
;(n+l)   (101) 

Pucther ,   s.ince.;all   derivatives     §>Jp+1^      of     Q^^*1) ar e   c om— 

binations   of   the   derivatives     CJ of f(n> with,  positive 
"(p,+ l) 

coefficients,   andj. s ince   the   expressions   for      £Lr> in   terms 
(p,) ..••"'   '•     '."• ••.'... ..... ^-~ 

of     Q,  jr       hayY'the   same   s.tr'utturs   as   the   expressions   for 

^^+l)      in .tef.ns :of     Q^,      (100)   follows.     Here    O^E =• ^-£- 

•in   (87)    is   a  solution 
£t     regular   at      £   =   0 

•••:.- •• Tbuv-?bhvAf&:(rtr£tftr-IS*—introdüce-d 
of '( 88*) '• s-at'-i-sf y-ing- tthes   cdn'dil ion :      E'7/ 
and     t   =   0, 

3y   l-e"mffl'a'  (T75')-""i,ti\  follows" that 
+1 

\j/'*'-=; •lm''' ifJ'^i tvLt)f(ini-tv):^ Vt/ci-t3)^72 
(102) 

where ' f (.Z) ,':'  an  arbitrary  analytic  function"' of   a- complex 
variable     Z,      is   a   solution   of   (86).      The   series^ (102.)   con- 
verges ' uniformly  for      &&-<5\s.      Therefore   after, replacing .. 
I*     in  (102)   by  the   ri'gh't'-hand   s*'i;de .of   ( 87');' the" 'order j of •".; 
summation   and   integration   in   the' resulting   expression may   be 
changed   to   obtain 

•1 :   l r> 

^;="im^j^f[i 1 (i-tsrjdt/f;i-ts)l/2 

CO ....... 

,-.-.+,p cfah2x)in[•••tJ^f-\^i (i_ts) 
-ri=V- • • ^-1 ...    .u. 

i •!• X -1 

'dt'/U-t^1^    (103) 

Let r(%} -^ 
•.•*i J    of 

avZ   ,     ak<r VrlVe,1 

v=o 

1r(-o)  is the gamma function SQ    e t X tp * dt ; so, for 

integral valuos of T(p + 1) =pi = p(p - 1) . 
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n+x   r 
dt/( l-tE) t0)a) 

§v 

.   .   J      e .uvM^     .Z.'8»<n+»)   .-.   .   (iH-l)r   (v+1 
0        ,-,'"'•   *; :        .   '  •'v=0 

(104) 
n   =.. 0,   1,    2,   .. 

Then 

v-i n—4- 
t    I   t^f|iHi-t2)j'dt,;(i-ts)1^[anLrj(l.t)     t 

= "     V 1  •    V   -2/     V-      2/    tn   va 
V=6    •      •.-.•:.••••'• 

V    2A    2y-       2.^o. (n+u)... v ..(to + i)r(W+i)   2v 

=   (3n-l)(2n-g)    .    ,    . 1       (n)(M   =       EigEÜJ    *(*>(£) (lOS) 

Substitute .the last term of (105) into (103) to o.btain the 
express ion- (85 ).»'•-. >. 

12'., The Evaluation of the Coefficients "Q^'OO1 

dt 

m 
It   was   proved   in   section   9   that   if     3?   v is   replaced  by 

the   series   obtained   for     E*     converges,   and   (85)   rep- 
resents   a   solution   of    (86). 

It   is   important   for   pr'act i'cal' purposes   to   compute   the 
Q^n^      explicitly.2     Since     m     can  he   chosen   so   large   that   in 

aIn   thJ,s -a.nd  the-•following   section advantage   is   taken 
of   the   remark   in   footnote   2   on-p.   10.- 

3In a   later   paper   the   corrections   tö-'.be   made   in   order 
(n)        obtained   in  the  above—described to  pass   from   the     Q, 

manner to the Q,- (n) obtained using a polynomial  P   will 
be determined. . It. w.i.11 .be.,.s.e.en..that., . in- general, these 
corrections may be neglected. 
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the   given   interval .... (r-:<»v Xo) ,     XQ.<    9»   Fm     and   any  reauired 

number   of   the   derivatives   af     Fm     differs   "by   less   than   any 

prescribed-   e >0     from   the   corresponding  derivatives   of     F, 

*k-e •'. $•     •      will   "be- computed, us ing   the. function •• F     instead 
of     Fm.      As   will   be   shown,   the   expressions   obtained  for 

Q^n'      consist   of   a  finite  number   of   rational   and   logarithmic 
t erms   in .•   - • .•••'.._•.. 

T  =   (1-Ms)l/2 
(106) 

(For   the   relation  between     X     and     M,'    see   (48).)'    From   the 
second   equation   of   (84) 

*M   =-'-4   f       F  dX  --a      [   .dL2X) 
:.I  — 

T 
1 ... 

F ^-=—--  dT 
dT . 

- I/1 (5£l±k2 _   IS  +  i^l^Tl  +   4(k+2) 

- (3k-l)Ts 

;.: • . 8    . 

J    (I -1) (l-hsT*) 
dT 

•5   ;i--,- •   8k .+ i=^E T 
3 T-•"--"" (k*l)T k-1 

log 
(k2-l)k2-l 1- £rl  a; 

. ,-k+l ; 

v   .". •' T = l 

(is?) 
. .'"-I 

Setting     n   =   1      in   the   first   express.ion   of   (84)   gives 

or 
**P • -<;' 4F<^ 

1        "     3 *X 

.•••     .A-   .-.:•.:...;t-......-:- ~-\- -ft-   » (2\; » 

••<••••-*/   i,('itt.ü-4.'^>J,<*W,) 

••;-:"":''r;i ^'iv:ci)"'.: *J+ %ftu>'s qM(~») 
3   \ (iö'ö')- 

t ;_,-• V •'A 

••!• ' 
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It   is   noted   that,    in, ^general,   i.t f QHJOKS-.jf-pom. ,^•84)   that.;- 

'•'•'•'                               x "'                ., T(s\) • 

<2n+l)Q>'+1>   ='-Q(n>.-4     f   Q(n)3T d*. ^'oj^ +    T  " ft(n) dq(l)           (109) 
X      J X   •-/. . . 

"*  -!(-«), 

since from  (dKl7dXZ)  =0 it follows that 
\ = —oo. , 

Q$n)(-°0 = ft^f)C-») =   0r        n   =   0,   1,   3,    .    .    . 
. V *       • ii.' 

Thus   there   is   oljcfc^Üned 

•   .   . „ »    T'r - 

,3 
1      n(0 ^(3) --!»x + i^(° -T.l   '*dX+Ia * 

or 
X . ,     ,3 

^)  =-^-:-^- ^^(l)-ü f    ^dx.iqf1)      (lio) 

where 

128 j L. 

-4(3k-7)T4 -2(3k- :-l)TB] 
and 

T  vs   ^   _ 35(k+l) 10k.(k+l)   ^   39^-80^115 
/     Jf      O.A. §  *- — s   +   B   ' • • 

J 9T T7 5T 
— GO 

4(llk  +48kg+59k+20),        4ifc4 -06k3--18 k2+112k+91 

^(k+l:)ip3'''•••-   "     .;.  • (k+l)S T 

+   3(gk4 + 17k3-15kS-21k+8)   T  _   (3k-l)g(k+l)   T3 
(k-^l).?    •  Sb ' ' 3(k-l) 

In   order   to   obtain  ^ from  ty*  (see   (69).) it,, is   necessary   to 
have •',   .f   •*'-•-    • 

H  =   exp   C -f    N(dÜ)V" —r-T § 1     2(k~l]       ("I) V     J '    (l-M8)lA   L 2+(k-l)MsJ _s» 
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Thus 

43 

^(y.e) = H rwu + Y   rfen+i);^ij—e(nja)i  (113) 

where     Im   =   imaginary  part   and.    g(.n+1 )(£)"=  /     tfn' ( £)d £, ' r°'( D 
••••- #     .     -. ..••_.     0 

=   g(£).      In   order   to   evaluate'the   term's 'of" 0136)     \l>e     and   \|/T 

are  needed. •••„•• 
i      •'  \ , 

Differentiating   (112)   with  respect   to     6      and   to     v, 
respectively,   gives     ' •     • : "    ''•,-,. 

'   '   ;^}=;r[irg^^^^(l)fee^^yÄ)Re   g(l)+ .    .    .] (113) 

'•; -    -    (Se,7  real  part ••"• * .^ 
'    '   "    "      ••.-•• [      '.••:•••:. 

M/v.=.;H.(°|..Im.gg   +   R^Im  g +  |R(3)im   g( 1> + | R( " >   Im   g( 2 > 

•••'•••;     •-» , .    +   .   ,  ..    ^r1.^     'g(n)"iM(n-° +   •   •   .(114) 

-.'.     •   '-•".    *('oj''_'V'w   .4X '   TJ^"1^   •-•V'-+:'i   •^•1^"iL-  • where-  Rv    '-  =.',H-^,-       R:-.      =,HT .+  5- ffQ,        -^- dv 

;.;'; ?H(°>- :^^r.a^i «,(;>'] ig...'='n.-'.. ,.. . . 

>U> .= .n•   n   (a)'" v   The  v,alues   of     H-,     q}n}   = -lim  Qm
v    \    for   k = -0.5     and'those 

.'•'.'• ;   ; m—> 00   " . 

of R,   Q,      ,R      .=>=' lim Rm^n^'Tiö.r'" k =   1.4 •' are   given   numerically 
m —»> co ' ' 

in   tallies I la   and   lib,   respectively.1     Tables la   and   lb  give 
t^heir 'gtf-aphi'cal» representations. 

Remark:      If   the   origin   is   moved  and   \    is' replaced   "by     \*+a; 
that   is,   setting    -'     .'•-.• 

{,* .=   £"+   a,      .£*   =   t +   et,      a real, 

equation (70) assumes the. form- 

xMr. E. Ostrow assisted with the'computation of these 
tables. 
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L~   U) = 
ÖSM/ 

H* ör 
=_ + Nar^L + ijL  :=0 (115) 

The  general   formula'(see   (85)   and  (77)) may now  "be  used  for 
the   solutions   of   (115). 

Since   ' F" = -(if   +   N3M'see   ( ?1))  it" is -found'that     Ta 

=   r(£*-a,   J*-a).     Using   (109)   gives 

Q(
a
n)   =   Q(n>(2\*-2a),     Ha = H(2\*-2a')', 

Thus,   the   generalized   formula  (112)   becomes 

M/(vf9)   =  H   [2\*(v)   -  2a3   Im   |g(£*) 

+   V        Un);     Ci<n)(2\*(v)-2a)g(n)ü*)      (116) 
Z-,     2E*(n)» J 

n = i 
f * 

g(n+l)(^*)   =-.r        g(n>(£*)d£**       ^-=  ^v)   +   ie  ' 

'    "      13,   The   Behavior   of. a "Subsonic  How  at   Infinity 

At   the   point    -a  4 a +   iß,   a,   ß      real,   of   the   hodograph 
plane  which   corresponds   to   the point1      z   = oo      of   the  physi- 
cal  plane,   the .stream   function     ^    has. a   singularity.      This 
fact   leads   to   the   study   of .the   singularities   of   functions 

•satisfying   (46). 

If  point   a   is   a  branch  point,   then  the  use   of   formulas 
(85)   and   (69)   yields  'a   singularity   which  possesses   the   de- 
sired  features.      Indeed, 

M> (u.v),,e). =H(V) {^^r^'-^1^8-^'2-^) (a-ü 

+ f-Q("> ((a- £)'•"»    -al/s  J^a'A)  + .  .   .1} 
': »   '*'"• ,  \ • ' dl?) t = \(v) - ie 

i .... — i P  
Thl s rcepris "thai   the", velocity    ;ae. ••'?     obtains   at  point 

= « ' • (of   the physic«!  plane). • 
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is a stream function which is two—valued at point  a  and 
"becomes infinite as  l/(a — t)1 — that is, it "behaves 
like  l/(a— log v + 3,9) /B     for the. case of an incompress- 
ible fluid.       •••'»••'     : '. 

If, however, point 'a  is not' a "branch point — that v 
is, if (85) and (69) are applied to the function 
.g = 1/(*..-.£) - . then 

••••••• .     . 'j      A     i      . - .       . '      •; ., 

*fcC^)'9)" HU)-Xm{I^^^^(vi(lc-g(a-t)-log a) 

.(»). + | Q" '( v)f (a-£)log(a-£)- (ar-£ )log(-a+£ >)+...} 
is obtained, which is not a single—valued function. 

(118) 

£) For   the   sake   of   "brevity  the   case   of     g  =   log(a 
.is   not ,di.s,cussed,   "but   here   alsQ,'   in   general,   a  many—valued 
function   is   obtained. 

The   function   (118)   can,   however,   be  made   one-valued 
"by   replacing   the  many—valued  term  ( 9   =  arg   t> ) by   its   mean 
value  (in   the   sheet   under   consideration). 

Clearly,   this   new   function  will   no   longer   be   an   exact 
solution   of   equation   ("46),   but   in  many   instances   it   will 
not   differ   very  much  from  an   exact   solution.1     Plainly 
this  procedure  may  be  refined,. 

It is, however',-'-of-interest from a theoretical point 
of view to determine (exact) .solutions ofs (86) which are 
single—valued  and have   a   logarithmic   singularity  at   point    a, 

*.      Clearly,   it   is_ euf f icient   to   find   functions   for   equa- 
tion  (86)   which  possess   a   logarithmic   singularity. 

A  function 

W*(\,   6;   \Q,   B0)   =  W( i,   I;    tQ,   I0) 

=  A(5,    U    £0,    £0)   1 og i-ir + B( i, i\ s0. s0) (119) 

It   is   noted   that   in   this.'case   expressions   (136)   will 
no   longexr: he   complete   differentials,   which fact   may   cause 
some   difficulty   if     a •   is-- an   inter"i:br   point   of   the   domain. 

Sf>C .   9.) 
It' is   assumed here-' ih'afr" $ •'   is. replaced  "by •m' ( See 
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which,   cons'i-dered   as   a   function ' of ,£,   t,     -sat isf-.-i-es   equation 
(86)   in   the   whole plane,   except   at the  point     £, r=   l0,     is 
termed  a   "fundamental   solution"   of equation (86)   with   the 
affix  at      t =   t0. 

CLearly,     ^ =  W( .£,   £;   a,   a)     represents   a  desired 
stream  function  with  a   singularity  at       I -a. 

Kotat ion:      If    ty — Wc,      c     an  arbitrary   constant,    is   regular ".t 
point a,   the" Corresponding  flow   can   "be   said  to   have   a pseudo- 
vortex  at   infinity. 

: The   funct.io.ns    .A     and     B  may  he   obtained   in   the  follow- 
ing manner   (see   sec.   7   of   reference   2): 

Let   a   new   variable   be   introduced; 

....... l,   =   l~t0        '      , (120) 

Equation   (86)   then  becomes 

da\|/ 

&taöC,i 
+ ym   ( ti  +    U.    tx   + I0)   »   0 (121) 

A fundamental solution of.(l2l) with the affix at tx 

= 0 will be a fundamental solution of (86) with the affix 
at      t  =   £<°->. • .•".. 

Substituting     W  =' i a log £x  +  J- a log 11 + B,      a=a-(t1, £ x), 

B   =  B( £,, Fx)     into   (121). gives 

1 
2 

+;?>  7v  +. rffiB   =   0 •     .       .(122) 
1"! 

Therefore     a     is   a   solution   of   (l2l), which  has  .the.  property 

that    Yaj   Hx   +   a»   /fa- Vis   regular,' at     ' £1;/= .'.Q,. .1^   =   0, 
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d£adT8   +   ...   (123) 

is   a  desired ' B "oi:uVi'öT""ö.f' TTSTT.'.' \Chd~.   'B     is   si    ?solu- 
tion   of   the   equation' 

B ^Ti •+ rmBV& = o,,, ö»-:(*r//tÖ^ (atxO (124) 

It fol-lows that _ 

3 "/ ./ ft4t»4t-"/./.*' m 
o .- o O 0 

• t • t 

^J &d£3dl; 
0  0 

•.•' * 

d£2dt8
+ • • •  (125) 

Remark-1:  As indicated elsewhere f! the theory of operators 
yields an alternative express ion :'f or  a. 

In references 2 and 13 a function  s  was considered 
which,is^a solution of (75,) ..and . ther ef ore which when sub- 
's tTtut e"äT! in to (76) for  E  yields a solution of1 (121);   € 
has the following property:-,   ; \ 

•:••-:    :• e (6x .I,. .• t) = 1 +• tp. 1(t1,  Iv'.t); .     C126) 

where      e,      is   again   a regular   function   of ., lir^:.      (See  prefer- 
ence ;"1;2, formulas   ( 1 .JL 2) ,,_(! .14) ,   and £ 1.15). ) 

If   the   funct ion     E      is   denoted   "by c ( £x , £x , t;   £D,£0) 
corresponding-t o   equation ( 121") ,   then 

+ 1 +1 

a (Elf Ix)   = '/! € dt/( l-t3)1/2 * m/2=> ^t,   T. ea d.t/.( l-t2)1'-8 -. 
. •        -i. -1 

yields   a  desirefL  solut i.on,- of   (121).   ...Thus .. 

+1 

e.a,lAQ,l0)   =f e(t -l.o'I-lo' *i:%,I0) dt/(l-t
s)i/2   (127) 

• -1 •  • ' . 

•  —  ~—^T-TT^ n -r   v •' ' •.—=-:—T—• '     —:  
J-The'-functions' Qk '(v/'a0)  which correspond to  e  are 

not real.  This was the reason that in reference 3 and in: the 
present paper a new solution  E  is introduced which yields 

• real functions  <^n'(v/a0). 

In reference 12, sec. 1, the function  e  is determined 
in a form of an infinite series. 

It is observed that for various equations  c  can "be 
represented in a closed form. 
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The   function     W     satisfies -ef'ouat ion   ('86).      Clearly 
•\   \ 

ÖW* 

ae  ., 
= A. 

\j.-i ec 

[(x-xo-rv. (9-&0->s;3- ,.V2.Tl/2 

+   As .log  [(X-X0).3 _+   (S   -   60)2] +. A; 
,. \ 

(12S) 

where     A1,Ae,   and A3     are   entire   functions,    is   als-o   a-solu- 
tion   of   this   equation .'.''.. 

Notation: '    IS '• 'V— \0\ W'*- C3 —-,• 0X , ' Ca     arbitrary   constants, 

is   regular   at     £..= a,      then   it. can   be   said: that   the-corre- 
sponding  flow  has   a   combined  pseudo—vortex  and'pseudo—doublet 
at   infinity. 

By  refining   thisjipi^ocedure   (namely,   considering  func—' 

( 6)7   '•     + "A
'B   

+   AS    etc.) 

other   univalent   solutions   of   (8ß) , 'nay  be  found   which  have 
singularities   at .point •     .£ = ' a.        •••••:    .' 

t-Hons     A4 (I —' t\ 0 •)) 'r + A4   (t - £ 

Remark ,3;      In   the   case   where   th:e' dens ity  p're'ssure   r-elation 
"" o     4-v,.,  #. 4.4 • w*   . _^.JI-   6W*- is   of   the   fo'rm     p- ;=  A  +  —     tha functions. ' W*   ' ah'd' de are 

.-J- -log^[.(\-.X05)* +   (9   - ß)2J.and 9- ß 

respectively,   where    .X 

(X-X0)s + (9-ß)8 

s -1 i/e 

(129) 

7 lCl   +-(v/a0)33l/3
+lJ 

It is 

noted that in this particular case new singularities are ob- 
tained by diff erentiating _ ;W* • .with ..respect to'X,'- For in— 
s tance. 

X   -  X •o> . tf(oi) _ aw*  
•:•••   ax,-:- «(A-c x0)'3+ (e -s.)2 '   C130) 

is   a   singularity  which   is   inf.in.lta. .of .the   first   order   and   is 

äw*- ,• ..-••• .'     ' ' ""'... independent   of ae 
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14.. The  Passage  t.4 ;the  Fhy.s.ica;i P3,-aine   ". 
"""-> — •   e<  " -w - •  ••• 

In the following a procedure will "be described for de- 
termining the-flow In the '"physical ••pl'^n.e po'rr 6s ponding to .a 
stream  function,    A^ ( v ,6) ,   given   ih: the   holograph  planet 

from 

Considering    ~.   |Z     |^,  .|Z     as-..unknown,    it   is   found 
o\J/     d\|/     ocp.   Tfr~l •: v r 

o\t<   ox  t   &\1/   5y       5v|/   _'   - o^^ox   |   frft   ay  _   2 

ax a*     öy av     ö^.~ • ' ... öx a<t>     a^a$,~\-! 

a<p ox , o$ ay _ 50     0      afr'a'x + jw ay_ _ '0 
ax a\j/     ay a\i/     a\|/ "    '     ax ö<$>     ay a<j> 

5.   (131) ? 
J ^:i 

that   at- every  point   at   which   the' J'aeobian ..•    ,•-•••;'^;• 

.    u : affrMO   a a* a* _ -a* a*- = (Tl
s + va's)-P    vf,, • •• 

acx.y)      ax ay     ay ax Po no'--' 

(see (24)) does not vanish and is f init e,' the- relations .-.- 

D ax _ aj; 
. act»     ay* 

D is: = - M 
a<t>        ay 

a^      . ay\    a\|/     ax    J 

hold.  Using (24) yields from (133) and (132) ! •  ' \ 

'•    .     • .d*:.=.|&.a$. *. If, dfr = :C0B..9..:^.-..^:E.1e••e.-.dfr 
-...pep . ÖV v P       ..v  •    ; • 

i .   .'      ..ir.      "' .' ',       :    "• :• '• •" ••       ." :.' ... "  "        "   ' ' 

"'Since .by  (30).'"';' ": 

(133) 

>    (134) 

:: •} 

dCp  ='"Cp'vdv   + "CPflde   =  — :.P0
(1 ~M   >•  ,   ' •-    •-    v     :    J" - ^fldv  + ~  p  i> d9 

pv e P-    ^o.-v.- 
(135) 

there.is "obtained 
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dx 

dy =-^ 
•     P 

COB6>1V- ^-i^p 1 
e^v+ co^j.^ 

de 
^(136) 

or1 

dz 

=   i 'o   e 
H* < lOg   T) *  '*•) (dUOg T) " ' ")+ T   ^   *6dT     (137> 

Along  a   streamline,     ty =   constant;   that   is,    ^ vdv H-^dS = 0. 
Substituting     do   = - ^dv/^e      into   (137)   gives   for   the 

st-reamlines   in  the  physical  plane   the  parametric   representa- 
tion*. 

p.cos   6    [(l-K2) %2   +  v*\|/ra] 
*N 

J pv- *Q 

/- P0c°s   9   [\|/eg+ Ta^Ta] 

dv 

dv + 
/ 

p0   cos   8   Ms^8 
dv 

pv 
>     (138) 

p0sin   9    [(1  -  M2)^e2 + v2 ^v
s] 

—dv 

P0 sin« Oe2 + v2 ^vs3 ,        r Posin e M ^e —a ,—      .     0.V   + 
^e •./ pv 

dv 
S 

where   the   integration   is   carried   r>ut   along a   streamline, 
|(T, ft) =   constant.      The   integrals   (3.38)   represent   a   general- 
ization   of   formulas   (13) .      Substituting  for     ty     the   expres- 
sions   (69),   (85),   gives   a  parametric;   representation  for   the 
streamlines    in   terms   of   an   arbitrary   analytic   function   of 
one  variable. 

Suppose   that   the   stream   function    ^(v,   8)      of   a   com- 
pressible   fluid  flow   is   given,   where     ^(v,   9)      is   defined 

•'•It   is   assumed  here   and   in   the   following,   thai,    tyg 
\|/T      are  univalent   functions   in   the   domain   considered. 

and 



NA.CA TU No. 972 51 

in the simply connected domain H (with "boundary curve h) 
in the hodograph plane, and has a singularity at the point 
a  (the image of ZL = °°).  (See, for instance, fig. 2b.) 

Just as i-n -th'e-case of• an- incompres;&ible' fluid the con- 
ditions must he determined in order that the obstacle in the 
physical plane (which is formed .by the image of the boundary 
curve  h  of1  H)  be a closed curve. ' Clearly, 'the" necessary 
and sufficient condition in order that the image of  H  in 
the physical plane be single—valued is that 

wheTe I      is any simple closed curve lying entirely in  H + h. 

Since the integrand of (139) is a complete differential, 
t-he- value • of- the integral does not change if 'l' iö .continu- 
ously deformed without leaving. E + h- and without pass.ing . 
through the singular point  a. 

Thus, in particular, if the boundary curve  h  is chosen 

Sty    au* 
for      I     it   follows   that      d\l? = —-  dv   +  —-  d8   =   0,   that   is, 

&6   = —   .(A-^ )    d8     along     h,      since     h      is   a   streamline.      If 

this   expression   is   inserted, into   ( 139 ) ,   JLh,e_c.o.n,diJii jp.n   is, ob.- 
ta,ined   that   the   image   of     h     in, the   physical   plane   be   a t 
closed   curve   in   a  form   analogous   to   (15)   and  (16), 

On   the   other   hand,   the   relation   (139)   can   also   be'written 
in  a   different   form  which   is   often  more   suitable   for   appli— 
cat ions .        . = . . ..   ,_ .; 

In   section   13   some   standard  types   of   single—valued 
singularities   were   introduced,   that   is,   for   every point     a 
=   ä .+   iß     functions   were   defined  which   are   single—valued 
in   the  whole   subsonic   region  and  which   satisfy   ectuation  (46) 
there,   except   at   point     a     where     they   become   infinite.     Such 
funct ions.are . , 

.:       -:.    /-i»^}(y18io1ß)   =   W*(\,;8;\0, 80)       • -.    (140) 

. '. r'
irt'.' is as sümed here that the "peji^t" ,'y. = p."is not' an in- 

terior point of domain H.' If y =0, 8 = 0. is ahrinterior 
point it is well to proceed similarly but, use'as variables v1 
and  v2  instead of  v  and  8. ' "  : 
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and 

w(n!(T,«; a.ß)« 
_   5nW(o)(\, 6;   \0I   Ba) 

5en 

where     W*      is   given   "by   (119),      ß   =   60     and 

(141) 

2 Ll  +   (1  - M0
3)l/8 \l  -   h(l  - MQ

3)1/S/        J 

M0   =   . 
a 

"po 2 - Ju(fc _ i)a! 

2 
1/2 

,(n) Notat ion;      With   every   singularity     Wv       ,     n  =   0, 1,  2,   .    .    . 
may   be   ass ocia,t ed ^ (complex)   number     Xn  +   iYn     which  will   be 
denoted   by     n(^n^j . 

E (W(n>)   =  Xn   +   iY'a (143) 

c 

where     c     is   an   arbitrary   simple   closed   curve   around     a,   the 
sense   of   integration   being   such   that      a     always   lies   to   the 
left.1 

Let    it   be   assumed   now   that   the   stream   function     ii'     can 
be   represented   in   the   neighborhood   of     a     (the   image   of   z='-0 
in   the  form 

k 

^=    V    AnW(n)   +   $ 
n=i 

(144) 

where An  are constant s ,-and ; -.ifr. is a function which is 
regular at point  a.  Since curve  c  may be chosen for  t^ 
and since the integral (13?) in which  W*n'      is replaced by 

Since the integrand of :(143) is a complete differential, 
the value of the integral is independent of the choice of the 
path of  c  integration. 
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\Jr     vanishes,It   is   concluded  that   an  alternate   form   of the 
condition   that   the   image   of     h     in   the  -physical   -plane,   for   a 
flow  the   stream   function   of  which   is   given  "by   (144),   "be   a' 
closed   curve   is   that 

)-     A   R(w<nM = .0 (145) 

n=i      .... 

It   will   De   of   interest   to   discuss   in more   detail   the 

^valuation   of   the   quantities'   R V.'W       J.    ia the. special   case, 
when     k = -  1. ' .       \ / ". .'. 

As   was   indicated   in   section   13   in   this   case 

wCo>  = \ log [U-\0)2 + (8"-ß)8 ].       W(l) = i^S -       (146) 
2 (X~\0)2+(9-ß-)s 

where     a +   iß   =   a. ': .; 

_» l0* U*W..^MJ •       Xo " * ^ \[l+(a/a0)=]^+lJ 

In   addition   to   these   s ingular it ies   are ' obtained •( in   this 
particular   case)   "by  differentiating  with   respect   to     X,   the 
s ingular it ies      . :. ••'•'• : • •••,..• 

v(oi) = *«(o> „ \ - \ 

a\. .... (x-x0)s+(e-ß)s 

Substituting 

y •( °') =   '       •'•'     "     X  ""Ao_ 

0 - ,   etc. (147) 

EU   -  X0)3+.(.e-ß)2]7[l   +   (v/a0)
s3 J/: 

8   -• • :C(X-Xo)3 + '(e-'ß)s] 
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or 

or 

[(X-\0)3+(e-ß)£]Sv[l  +   (v/a0)
2]l/2  •--•-- 

«CO      (\-x0)s - (e — p)s 
W

ö        77—:—r;—;; ^r& (i48) 8 C(x-\0>2 + (e- ß)2] 

-   (oi) = __i: -(x-\0)? + (e-p.)2-      .   . • 
Wv     .     "C<X.^X0)»*(8-0

8
3"TCX   +   (v/aD)2]l/2 

w (ox) _      -8U-\0)(e-p) 
'e'- 

CU - x0)
3 + (e-p)23 S   13 

into (143) give's, the corresponding values  R(tf' ')   = X^ + iYjr, 
k = 0,1,  and  H^ff^01^ = X01 + 1Y0X,  respectively. 

For instance, 

x  _ /?•••'-  ; 1  jT -cos- 8(9 ~'ß)    __ sin 6(\ - \0) ~| 

•-/' [C^-x0)
2 + (e-ß)a] W^l + U/ao)3)^      v2    J 

'; • + fcos 'iU-\'o) \    (1 t (v/a0)
2)l/2(8 -p? 'sin &  ]   ^\ 

L    v v -!, . S 

y. •_ f _^ 1 •'_ f  |"-sin 6(8-*- p ) • , - + cos e(\-\0)"[ 
° Jc     i(^o)''+(8-P)']-VU

8(l + fT/a0)
8)1/"       v2    J 

+ I" sin &(\-q) _ (1 + (v/a0)
g)l/2(e-ß)cos 8  1 de "1 

'•**-•     - 15-,- Append-ix   ....- .. 

I> Verification that the expressions (156) are complete 
different ia-ls-.-r To show that  dx  as given byi (136a) is a 

^By' (136a) •vfll 'be denoted in this section the first 
expression of (136), and by (136b) the second expression. 
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complete differential, it • ds necessary t o ' prove that." th e 
coefficients  a  and  "b 

•'.[•'||,'!;'V^''] 
= 4 

pT2 

cos   8 
*. 

sin   6 
pv 

* •] 
(149) 

of     dv     and     d8      of' the   right—hand   side   of   (l36a)   satisfy 
the   relation :._•-. 

da  _   hjo 
06        dv (150) 

Recalling   ( 3Ö.\ ' yields 

ö*   =  £oI   ö* Ö*   ^ PQ(1  - M   )   &* 
08 p      dv ' öv pv 08 

(151) 

s o. that 

Therefor e 

Ob /  . 
•§7 =   Po 1^- 

•    a  =   p     Cso^i--*    Ji^i V 
"o' \ V •    •• PV v/ • 

sin 8   (p    +   c6s'8' ^ .    _ cos   8   ^     _ s in   6' 

(152) 

cos   8' 

v v8 

cos   6 

pv *v6 )      <153) 

(+i-      .    u u s   °   A '     -.: • -s i ri   8    Py' 
,2        v    V6 

•  sin  8     , sin 8    ,,, 
pv2 pv >: (154.) 

Ihus    it   'is   necessary   t«  'prove   that 

\      .  v       • ^ 
.cos. '8. 

*' 
fc 

c.o s   8, 
<P« 

s in .8   pv , 
v . T<e 

.pv 
(155) 
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If use is made of (30) again, it is'necessary only to show 
that ' :!:'      •' • • 

•"  1 •" M' 

• pvs 

,3 ;•..:'! M  = .~v ^—• (log p) 
• '   OT" 

.lut from (25) it is known that 

L     2a03 

so that 

P = P, 

v -Ü- (log p) = - 

k-i 

(156) 

(157) 

(158) 

Sv    " ' .     a " - I (k -.l)v2 

If this is compared with (3l) it is seen that this is exactly 
equal to  —M   and it therefore has "been verified that the 
right—hand side -of (l36a)„, is a- complete differential.  In a 
similar fashion it might be shown that the right—hand side 
of (136b) is also a complete differential.  Hence, since this 
is the case", it follows that the integrals (138) are inde- 
pendent of the path of integration. 

II. A proof of an auxiliary lemma.'— In the following 
it will be proved that  5,(2X)(see sec. 9) can he approxi— 

m 

mated "by polynomials T?'a( 2\ >• T- a ("0   „ssX 
s a (»)« 

S = 0 

in   every   interval     ( — °°., X0).'   ^o < °i      an(i   indicated how   to 
determine   the     Pia(2X). 

If      2\      is   replaced   by  logX;:     the     F[2\(X)]       is   a 
continuous   function   of     X     in   the   interval     (0,   X0),     X0<1, 
and  by   classical   r.esul.ts,    it.   is   obvious   that   it   can   be   ap- 
proximated   by   a polynomial   in     X.      It   will   be' seen   t.hat   it 
will   not   suffice  merely   to   approximate     F,      but   in   addition 
to   this   i"t   will   be  possible   to   require   that   any   given   number 
of   the  derivatives   of     T     be  approximated   in   the   interval 
( —o»,\0)      by   the   corresponding  derivatives   of     Fm. 
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It   is,   Jiowever,   of   int.ar.est   t.o   give   a more   explicit 
form   of   £h:e. appT'bximat ing- polynomials .   •-)Th_iä   wilij inake   it 
possible   to \deter.mine   th'el, correct Cong/of,"    ft       .     obtained 
in   section   IS  which  have   to  be made   'in   order'to   obtain   func- 
tions     Q,(n'      corresponding   to  a   given     $m. 

If     M      increases   steadily  from     0   to   1,     X      increases 
from     —oo to   0.      Since   the   relation     K  —>  X      is   a   one—to—one 
correspondence,   ^her-e   cor.r,esppnds   to   every     X0,   X0 <   0,      an 

*M0   =  M(\0)   <  1.      Therefore,   if     \e(-»,\0),    then    M(\)e(0,Mo). 

For     M. = M0 ,      the.function 

j  =   (k +   1)   M4 [-(3k -  l)   M4   -   4(3  -  3k)   Ms  +   16] 
64(1 - M3)3 

• * / *   \ "fc It    ' . • 
nay  "be   approxiiaat od  "by   a   polynomial     Fn.     of   the   ( 2n  +   8; 

degree   in     M   , 

."     j   (K)   =   (k  +.1)   M4 [-(3k -  1)   M4   -   4(3  -   2k)   M2 
11 64 L 

n '       . 

+   ie]   [   y    (iT3)(-l)UM3v]    (159) 

.3 Only  a 'finite   nunber   of   powers   of     M        appears, in   (149)..     It 
will  now  "be   shown  that   : l*2     can  he   developed   in   the uniformly 
convergent   series-    '.,:'• - 

«•- y.vv',,,(ik^rf,.\,l<o. dec) 
K<ri    . •   M-t-n)     +(*>-i)    ' •• .      • 

Instead of considering- M2, it is well, to introduce 

s   =   1  - (1 - M2)1/s (161) 

s 
Since     M2  =   1  —  ( 1 —  s )   ,    it   will   suffice   to   determine   the 
s er ies   f or      s . 

From  (48)   follows 
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,  k > 1      (162> 

Por   simplicity's sake   it   will   be  assumed   in   the   following 
that •     t . 

• . •••    • '•'   '         •       • ^     •'•>'•      •'•-.*     . • •    . •• • 

.    — •      •"   '"' ••   h"=  i       'thPt'ia,    fciS'/3                   (163)   " 
••••'. • •    •   •    2.          •                                                                                • 

Now   consider   the function     X  =  X( s)   .as   a   function   of   the 
9^SSl3S variable s,     and   investigate   its   behavior   in  the 
domain      [sj <1. 

aenark:        X( s )   = — A   +   h   * ~0) 
3-sVh-i_1 + B    / 

1    .      2HTTJ 
h —E— is   a  many- 

valued  function   because   any   integer   may  be   taken   for     H. 
Since,   however,    its   branch  points      s = l + h-1   and   ssh""1 —1    are 
outside      Is.] <1      it   is   necessary   only   to   consider  :pie   of   its 
branches;      Therefore,      H   = •© "'is 'chosen,   so   that   whenever 
X( s )   is   mentioned  this   branch  will   be   always   understood. 

i       ! •:   r       . .       . 
In   order   to   pr.ove 'that   t|he •image   of    |s|<l      is   a   schlicht 

domain   in   the   X—plane   it   is' rioted   at   first   that     X( s) ,      S 
real,    is   a   real   function,,   and .therefore   the   image   will   be   a 
domain  which   is   symmetric   with  respect   to   the   real   axis.      The 
image   of,,   s   =• + 1     will   be"  the   point   1,   and   the   image   of      s 
=  —1     will   be   a   point   of   the   negative   real   axis. 

It   will   be   ßhown   that,-   if - '"' <t> -   arg   s,     varies  from     0 
to   rr,     X' increases   st eadi'iy". 7"'Sorting     s   =   e1^    yields 

,Xl =  L      -—   Ml/S^,       M^1+h"1)3+1-3(l+h"1)c08<?        (164) 
(5-4  eba<P')1/a (h_1-l)a+ l + 2(h_1-l)cosCp 
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and 

1L|1 = _ x(  4   s in <t> 

( 5—4   COB $) 
3/3 V1 /ah 

L2^\(5-4   coa   4>)l/2  J   . J 

( (l-h'^+l+zChVOeoB $ Xl+h~%la*+ 2(h_1-l)2sto$((l+h~1)2+l-2(l+h~1)cos <t>) 

(( l-h~ *) *+ l + 2(h~1-l) cos cMS 

/ '••   3  Bln'4> A   Mi/2h-i  '     ''   1      '    " p 

V(5-4   cos   0)l/2/ (l-h"~1)2+l+2(h~1-3)cos <P 

P   ='•['_    f (l+h~1)2-H-S( l+h""3-)co3 0 1      •  . 
L        \ 5-4   cos C> J 

(165) 

•)    -j. 

— 4 

(h_1-l)2 + l+2(h 1-l)cos $ H 
=   4(h     -1) 

(h    +l).~ (h     +2)cos   4»  +   co s2 4> 

( 5—4 cos '«>)(( h_1- •!)• +l+'2(h     -l)cos <t> 3) 
For., all   values- ' 0' ^ $   = • n     the:, expression   (165)     has   the   same 
sign   as     P.      The   denominator   of     P      is   always   positive,   and 
the   numerator   is   positive   for     —KCOS4><1.      Clearly  for   all 
values   of     <$>,   0 < <$>< rr, P ,     and ^ther ef or e   (16.5)   is _ pos it,ive. 

Thus   the   "boundary   curve   of   the   image   of    |s}<!     .is   a., 
curve  which   does   not   intersect   itself.      By   classical   theorems 
of   the?.-theory 'of   functions   the   domain   bounded :by. this   curve 
is   schlicht.      Clearly   it   includes   in   its   interior   the domain 
f Xt < 1 • 

Since   the   image   of      Isj   <   1.   is   schlicht   and   includes 
lXl<l,      the-inverse   function     s   =   s.(:X)      is   regular   in 
[X"|<1     and   by   Cauchy's   theorem   can   be   expanded   in    [Xj < 1 

in   the  f'or,m   of -an   infinite   series,-   -.s(X)   =•   j . • *f v 

V = l 

Tor' every  X0 < 1  and every e > 0 - there' exists an  F 
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S . H 

uch   that     | s(X)   -     Y      ßuXU     3e    for      [X|<X0.      Thus     ^   P»** 

U = X V=l 

yields.'.-the   required   approximation. 

ILsmarJc:      Clearly-    KT     can  be  determined   so   large   that   any 
N 

given  number   of   derivatives   of       >     ßvX       approximates   the 
i, ..I 

-   • • u = i 

corresponding  derivatives   of     s(X). 

It   is   noted   further   that   a  formal   computation   yields 
for   the   right-hand  side   of   (152)   for      Ixj   < 1 

X   = .a -   -i-(3k + l)sa+ i-(4k3 + 2k-l)s3 

-^r(24k3+:'8feS-14k-l)s4   +   ~(48k4+4k3-44kS + 2k+5)s£ 

,24 48 

'- -|-r(48 0k5-104k4-572k  +   148.ks+12'.6k-25 )s   + 
48 U 2880 

( 2880k-    •' 

-1584k5~3944k4+2212k3 + 1140ks-602k-5) s7 +   .    .    . ' (166) 

The   inverse   function   is   • . ,    .i •. 

•   B=>-X  +  A-(2k  +   l)X8 V/J^;*** +   6k  +   3)X3+-^(24k3 

.    ; Kj- + 68ks+76k + 29)S4+ ~   (48k4+212k3  +   392kS  +   328k' 

• +   103)X5  +  ~^—( 480k5.' + ' 2976k4   +   7968k3 

48 0 - ' .      .-.: 

+   10788kS   +   7266k  +   1935 )XS   +       !•     (2880kg 

v..  ., , 28 8 0 

+   234.72k5   +   84232k4  +   16'2124k3 '+' 173 S^k3    •   '    : 

+   980.86k +   22675)X7  +    ,    .    . (167) 

By   the   present   result   "this   series   converges—,in-    (Xj <1,      and 
therefore   for     0 %  X   < 1. 
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*- •• ! III. ADDITIONAL HBMARKS ' •;„_ _'!:'* 

le.-The Boundary Value Problem in the Physical Plane.. 

Mixed Flow 
• i •'.•:• 

The theory developed in the second part of the paper 
leads to various methods for constructing flows around air- 

'•£ Q.1JL.S . 

The primary problem to be faced in the theory of airfoils 
is to determine the flow with a certain velocity at infinity 
around an obstacle given in the physical plane.  This leads to 
a very complicated nonlinear problem in the hodograph plane 
since the domain where the flow is defined is determined by 
the flow itself.  However, this problem may be considerably 
simplified if it is agreed to obtain a flow around an obstacle 
which approximates the given obstacle. 

The hodogra-ohs of flows of an incompressible fluid around 
profiles of certain tyt>es and for a number of angles of attack 
may be determined once and for all. 

The present approach also makes it possible to construct 
functions satisfying (32) and having singularities of the 
kind required - that is., singularities of the flow of a com- 
pressible fluid which yield sources, vortices, and doublets. 

A hodograph is chosen which in the case of an incompress- 
ible fluid leads to the desired profile. 

Let  $(v,8)  be some solution of (32) which possesses 
the required singularity at point  a  (the image of  z = a>). 
A solution of \|/(v,6)  of (32) is further determined, which 
is regular in th,e domain. E  and such that 

. -':.':•• $(v,G) + \|/(v,6> •'• 

assumes a constant value on -the boundary  h  of  H. 

• '-The obtained function :is: a hodograph of a flow of a com- 
pressible -fluid the" ime/ge 6'f Whi'-oh in the physical plane will 
in many instances not differ considerably from the'given pro- 
file.  Th'i s" 'me'thod' -of a!t:tacfc "o'aii be refined:' By the forego- 
ing procedure the initial profile is distorted i^n a' certain 
way; if the given profile is distorted in opposit e - dir ec.ti bns 
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and if the procedure described is repeated to the distorted 
profile, then in many instances ;a- ibett er-, -approximat i on is ob- 
tained.  This method may he repeated until the desired degree 
of accuracy i s attained .1      •...:.. 

However, this •procedure has the inconvenience that in 
order to determine  \|/  it is necessary (at each step) to 
solve a boundary value problem for the equation (32) which 
requires rather long computation. :In another paper .the 
author has developed'iri de-frail-an • alt ernatiye t o .this ' method,, 
in which he avoids the necessity of solving boundary value ' - 
problems. " 

In the present considerations•attention was in the main, 
directed toward the subsonic case.  In addition to the method 
of attack,which is based on considerations of section 8 of  "' 
the second part, there;exists another possibility for handling 
the mixed problem - that is, to construct flows which are'par- 
tially subsonic and partially supersonic. .. .  ", 

17. The Representation of the Stream Function of a. 

Subsonic Flow in the Kegion in Which .the Velocity 

is Near the--.Velocity of Sound . 

Part ially--Super s'onic Flow 

In the region §ty <  MQ< l) where  M0  is hear 1, the 
series (85) converges very slowly, and it is .therefore neces- 
sary to employ a large number of 'terms in .order to obtain a. 
good approximation for  v|/*.  If this be the case,, it is then 
expedient to replace the expansion (85) by (103)*. 

• • ' - i .... . 

This is, however^ not the only'^way of'overcoming this 
difficulty, and in the following, other meanB of,'so doing 
will be indicated; this alternate approach employs the method 
of "analytic continuation:*      ,. 

xIt may be observed that, a similar procedure can be ap- 
plied to prove that for every profile (satisfying certain 
conditions) there exists a flow of a compressible fluid. 

s 
This method will.-be. developed in more detail ,in a fu- 

ture report of the au.th.or..-i 
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Let  \f/(v,9')  'be determined'-ia a domain, say  H,  and let 

\j; >,n =1,2, . . , be a " qomplet e" system of particular so- 

lutCaas of (46), each tyn     being determined•in a domain  &. 
Suppo'se that  H  and .G-  actually do overlap and denote their 

( 

'n "be   the   series   ex- common  part   by     I.      Further,   let      >        an.^i 
n=i r—i 

pansion   of     ty     in     I.      Frequently       \     an^n'.•''* will   converge 
n=i 

outside, of  I, • :say in the domain  H2 - I-,  where  H2  is  G 

or some part of it.  If, in addition. 

» 

n=i 

a_\lr_  can be'teri- nTn 

wise differentiated twice in  H3,  it represents the analytic 
continuation of  \ji  in  H2 - I , 

Remark:  The requirement that /  ah^n  coincide with  \|/ ' in 
n=i 

a domain  I,  can be replaced by another requirement, which 
will "be explained later. 

Frequently, *he domain. Hs  in which the stream function 

can "be represented in the form 

>Co • -.   •-  . 

2^ an^n covers a super sonic 
n=* 

region as well, and-' consequently, thi s method will then.yield 
the flow in this latter regdvon .-• In "this manner, a method 
("based on considerations other than those of sec. 8) for de- 
termining a mixed flow may be obtained. 

Two alternate forms of this method will be 'd'i'scuss'ed in 
the following. 

First Method 

In order to develop the first approach, an auxiliary 
lemma must first be proved. 

Lemma:  Let  p(v,&), vo < v 5 vi»  -L<6<L be 
an analyt ic functi on of twoLreal-variables  v,6, and r et 
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y  au(v) c6s 2M,^-.bu(v>. 8in 22i 
u=o 

a0(v) = i L 1  T-l 

2 
>$ p(v,e) de,   a- (v) = I /  p(v,e). co.s. i^Hl de, 

L / L 
rL .- -L 

Uu.(v) = - /' pCv.B.). sin Eii d9 (168) 

^L 

be. it s Fourier development .  The aer ie s (16Ö) converge s uni- 
formly and can be differentiated t ermwisa any finite number 
of t ime s both with re smect to  v 'and with r e st>ect t o  8 • 

Proof:  Let 

aS(v-v8) 
Bvi 10 

dV.(v) 
 —  cos — 

dv*        L 
TTU6   d b„ (v)     TTU6 
  +  E  sin   

dv* 

.Now., since  p  is an analytic function of  v  and  0, 

is also an analytic function, and therefore 

(k «1,2) 

•93P 
dv ae 

/ &>«-< 
(169) 

is bounded, uniformly, in v; 

On the other hand,- 
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M 

T 
•p=m 

dap(v) 
dv 

db„(v) 
dv : < 

from which the uniform convergence of the series 

CO 

da„(v)     ITü6   db„(v)     TTU9 
r cos  + -•—«  sin -"—<• 

(170) 

(171) 
dv dv 

• follows. -But (l7l) is the series which, ia obtained "by ."differ- 
entiating (168) term by term. -In a similar way the otiie'rj,... 
cases may be handled. 

Since every ,-soluti on of an elliptic equatigo ,with ana-, ": 
lytic' coefficient s :-i's an analytic £önct'i orx- .of;*- two real-'vär i— • 
ables, the result obtained can' be applied to the case where'*' 

'•p.(v,e)  is the stream function  v|/(v,8)  of a subsonic flow. 
Thus 

I u=o 
ay (v)   cos TIEi + b (T) sinn*e_ 

i " It 

a •<" * i/ \j/(v,e) de, 

a^v)   = i   /^ M/(v,9)   cos ^ de, 
viL 

-L 

V 

..,•> fo.72) 

TV- 

*„*» = i /   M/(v,e) sin üHi de,    (u = 1.2,  . .  .) ^ 

can be differentiated termwise.  If now, following Chaplygin 
the author introduces instead of  v  the variable 



66 NAOA  TH  Ho.   972 

T    = 
v3,;:.. 

2a, 

then   theeauation   f or, , \J/    assumes   the   form 

ffzid-   T)"ß |3fe)  4-   X   "    (3ß   +   X)    (1   -   T)-ß   f!*   =   0   (173) 9T V ST/_       2T(1 _ T) as3 

where     ß   =       (reference   1,   p.   5,   formula   (12)). 
(k - 1) 

Differentiating termwise gives 

A    ICLTV dT / T.(l   -   T) '   4.L2  -J. L 
U=Ou • .-. 

t(T 
dT V 

,-ß     1TSU 3.. 2 + ^-JL(T(l   -   T)7ß ij^V.^:!   -    (jg   +   1)T    (1   _   T)   r-    ,1_uL_   K>   sin 
"J dT  J- .,T(I   _' T)   . 4L; V 

UTT6 

. L 

(174) 

=   0 

and,   therefore,   the     a.,      and      D„,     are   each   solutions   of   equa- 
i on 

dT 

d 
dT 

dT 

3    2 

i id - T)-ß IM - 1 - <2ß + 1)T (i _ T)-
ß v : "V = 

T(l   _   T) 4L 

3     3 

> (175) 

(T(l   -  T)_fJ  ÜU.")   -   *   -   (2P   +   ^T    (1   -   T)"ß  n"    !U   =   0 
^ dT / T(I - T)        : 4Ls 

(175) is a hypergeometric series and thus e^cry solution of 
(175) may "be written in the form 

".U^i, + BVTV*)T 
2L 

(176) 
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where » 'A^     and   '.'B^.are   constant's   arid 

*v   =   Kc^.ß^;      -ß;      1   -  T>, 

V   =   (1   -   T)"ß+1   PCY^   -   av§   tv   -   ß^;      2  +  ß;      1   -   T) 

P(a,ß,Y,T)  being the hypergeometrJ.c series.  Here 

: "'^>;(!r:0"':-»'-A:'- •'."- •'• 

-\ 

> (177) 

a. »' -'i [& - 0 + V '     ßi> = I Ö-0-4» y (178) 

Av - (£)" <2* +1)+»B i 
_-» 

In order to determine the constants  Ap , By,  the following 
theorem is employed.: 

• (i ) .   .   i     (3)  /'   f  Ü ••- : 
Let  \|/...._ (v,e)  and \|r.   .('V, 8 )t [ Y0 <. v < v1, •L < G < L] 
"be solutions of an equation of "elliptic type 1 ' If VJ"along a. 
line, say  (v = v0) ' , ; •."•' 

* 
(l)-(vJ,e)= ^(s) (v„,e-)- 

and 

3M/° (V,6) 

v=v0 

3M/(3) U,6) 

(179) 

(180) 

7=To 

then in the whole domain  [v-0 < v < vi,  - L <. .Q. < L] 

•'• ?,    -^(l) (v,6) = M/
3

* (v.,.e) .  .••.  "•*'.,,     (i8i) 
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Remark:      Suppose   that   the   function     g(£),      £   =   X  -   i6. 
X   =   M v)      (see   (85))   is   regular   in   some   domain     Hx   +. H3, 

H. 

H. 

=     v0 <   T <  ylf      -   L <   6  <  L 

=   Uj  <  v<   vgl      _   L <   6 <  L 

which domain lies in  [8  < 3'fc ,  X < 0],  Then by the main 
theorem it follows that  ^ = Im .P(g)  is also regular in 
Hi + H3.  Suppose that  \|/ has "been evaluated in the domain 
Hj,,  but it is desired to avoid the evaluation of  \{/ by- 
means of (8.5) .-since this series converge &-v-ery slowly in  Hs. 

1                                         ' 

*<* ••••?  ; 

/ \6 
•t- 

-  •  :    : 

•    \      • 

V0 

t 

vl V3 -*x 

ore ier   that 

L 

r 

•v/a0 

T) cos TTV>8 +..Bv
{a)   (T) sin 2^i     (182) 

V>=1 

(k) 
•V     CO = [AV 

,(k) 
Fv + By 

(k) 
i1 * vj 

2 
F * T   , (k = 1,2)   (183) 
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-tie'the solution- \|/" under -consideration, the constants 
(k) (k) A^        ,   Bv must   tie   determined   so   that    • 

a/0    (T). 

^    <T) 

"> 

V=V, 

V=T, 

=   S(^o} 

•  VV 
V (184) 

dv 

dB,^aM,T) 

dv 

v=v, 

V=V, 

dv 

dti^v) 

dv 

v=v, 
> (185) 

v=v, 

It is noticed that 

dS (k) 

dT U     dT  .   U      dT 

••- ••. .JL.' 
.,1 • -2L 

V   2L 
+ —T 

2L 

-i 

A . (k) j.  + B (k) p *1  (186) 
u    u   u -•] 

H -i, = ^Ä !<&„ + 1, ß„- + 1; -ß + 1; 1 - T) 
d(l"-:T)      -ß-  •   U    •     V    .• 

dF * Q 
15 •- (1 + ß')(l - T)p:PCVw'^ ä^.^ -ßv; 2; + _ß ;;!.-_ T) 

d(l - T) 
1. 

2 + ß 

Yv - ßv + 1; 3 + ß; 1 - T) 
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Since   in 
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v, < v < va> -L < G < L 
function, the series 

,  \J/(v,8)  is an analyti« 

CO 

-S(l> Fu + Bu(0 V 
2 

cos . TTU6 

A '2' F  + B ^s' F D      V     V v*l  2  sin H2il     (187) 

and its derivatives converge uniformly and absolutely in this 
domain. Then (187) represents the solution \|/ under consid- 
eration in the region  H3,  Moreover, this series (and its 
derivatives) may also converge outside, of  H s» say in 
H3 s [va < v < v3, -L < G < L].  If  H3  partially lies out- 
side of the domain  [8a < 3?\s , X < 0]  (see sec. 11) then the 

obtained expression gives the analytic continuation of the 
solution outside of the domain of representation by the inte- 
gral formulas (85).  In particular, 
region which lies in  M > 1. 

H. may include some 

Very often it is known that the region, say  L,  where 
the velocity is supersonic is small.  Now, instead' of summing 
to infinity, take 

N 

I 
U=l 

[H 
(l) (T) cos 22Z& 

L 
+ s (3) 

V (T) sin uinr9 
L 

(188) 

(see (183) and (177)) where  S  is sufficiently large; then 
(188) can be considered a sufficiently good approximation for 
analytic continuation of the stream function \J/.  under con- 
sideration.  On the other 'hand, (l>88): r eSpr-e sent s \|/  in. the 
whole plane and therefore is particular in  L. 

In this way are. obtained .approximate flow patterns .which 
larti'ally supersonic. • Iri" applying this me.thod,. it' is. 
isary, however, to check whether the streamlines in  L 
IftCh     to     Rmfinth     limit     H.n'ao     vVi a n m        ^nnvoaaaa 

are 'par 
necessary, .._ ,. , „ „ w~~w~ -^^„i.^.J 
approach to smooth limit lines, when increases. 
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*: •.•.1-.- ;.. -j r- •  •' Seeoad'. Method-    • i>.-. 

...In reference 1.2 the. autb,o.r ;;hae introduced •:dl,f f ererit'' .. 
methods for computing sets of particular solutions.,1 r j|/n(v,Q.) , 

of (32).  (See 'p. 17 arid p. 23, ].of -r.ef ere.no?.'.2 *) \ ;.T.he func- 
tions of each of these sets are defined for the subsonic and 
the supersonic range. 

Let H De ,a domain in which it is desired to determine 
a hodograpti with a"supersonic velocity. Then H Is divided 
into two overlapping .parts Ej^ and Hg. .In,.. Rz the veloc- 

ity is throughout subsonic.  The intersection of Ex     and 
I . • In figure '5, 
and  H 

Hj. 'is" that part of 

2  is that part for which  v^ vQt 

vQ < v1 <   1.  There is determined a function ty0(8,v)  which 

i» hi» 

Hs  is denot-ed "by 
for which  v<vlt 

..  The 

is defined in • Ex  an.d.'has at point  a,  a prescribed singu- 
larity, and on the part of  h  which lies in  v .<'vn 
approximately constant values. 

•• : "    •  Now' consider the" functions 

n 

•::!'••  •  _'•••  ^(l).= \i/p(v:,e) + 7 avM/v(v,e) 

m 

IJ=I        •     ' - •"'. - 

and determine the  cc^  and  ßv  in such a way that 

n. 

U=l 

ds + 

• n 

Jl  'A 
h3- V=i' 

ds 

r • •  .' v-i- 
will be a minimum. 

* • .     • IS • . •  .- . i 

^o+,r) <*»% - y ^v 
dvd8 

1?=1 f ?.» 

It is observed that it is possible also to use the 
Chaplygin solutions.  See, for Instance, reference 2, pp. 18- 
22. 
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If the boundary val-ue pro Diem'has a solution (possessing 

certa'in'"pr oper t ies' :oii: the. 'boundary ' h) and. 'if. the' .ays.t-.ejn. . i-i|/y r 

i's' comple't..e, th.en it is possible to show, (under. ..certain, act-di- 
.tiVnal conditions) that the limit .function obtained by thus' 
"proce'ss will yield the solution, • •• ' '  -•.• 

......       ,-• :•,:..      •     .   } • .  •• .    . i ,••:•;•     • •  : 

.'...._. 1.8.. A Remark Concerning .the Appl teat ion»*.of .the. • •"• 
' '• " '.'"'       •   '• •  '•'        • . / ••: • j "•  '    ' * '  ' ' 

Hodograph Method in the' Three-Dime.nsi onal Case . • 

.. .The-method, developed in this paper yields a general 
formula for the -stream functions of possible Compressible' 
fluid flow patterns. 

• '• As indicated in reference 2 (sees.' 6 to"8) there exist_ 
other methods of obtaining particular solution« of equation' 
(32); and for deriving from them solutions of- (117). They- ' 
often are not very convenient for practical purposes, and in 
many instances represent a flow only in a part;of ite domain 
of definition. 

In the following will be., indicated a method of obtaining 
particular solutions-of equation (32) which has the disadvan- 
tages indicated but which can also be applied in the three- 
dimensional case. 

As is well known, the Velocity  q = (u,v) of an irrota- 
tional fluid flow satisfies the equations 

V(p   q*) = 0,  7 x q = 0, (Cauchy-Riemann equation) (189) 
•.  •  * •••• v . '_• '' •'" •'   • ••        •" 

This suggests considering three-dimensional flows where the 

velocity  § = (~u,-v,-w) satisfies the equation 

V(p q) = 0,;  V x q = 0 (190) 

p = p(V)  being function of  V = (u  + v, + w )   alone. 

It follows from the second equation of (19(5) that there 
exists a potential  <£,  such that •„• .. >    •       : • ; 

,'"".. ' ; q = T*-y<p •• :        :    "(191 ) 
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Inserting this'value in the first equation of (190) yields 

9(p  3fr/3x)    }   3(p  3cj>/3y)   +  3(p  9cfr/3z)   =   Q (igg) 

3x ay 8a 

(192) is a very complicated nonlinear partial differential 
equation.          .-••-. . •. ;  • 

The introduction of  u, v, w  as new variables leads to 
a much simpler nonlinear differential equation. • :-•".' 

Introduce as new variables .'M . :.'. 

3x' 
v   = 

3<t> 
w  = 

3<> 

dy 3ss  ..   « 

and  as   the   new  unknown   function 

A   =   xu  +  yv +   zw - •(£ 

Use   (193)   to   obtain   from   (192) 

(193) 

(194) 

3(pu) 3(pv) 3(pw) 

3x 3y "  [PuU. 
3u 3v 3w 

+  p  u —  +  p  u 
3x v     Qx       •   w     Bx 

+  p   v Üi + 
Pu     3y Pv

v  +  P 
3v 3w 3u 
^T +  Pvv ^7 +  P„w TT  +   Pvw 

37 w 3y       ru     3* 

3_v 
3z 

• [*ww + p]fl =   ° <195) 

It   follows   from   (194)   that 

K.  = u 
+      sLE +     ^ +      ^     3Jk .§£ .. ^ äL     3^ 3z 

3u 3u 3u ""   3x  3u       3y  3u       3z  3u 
x 

>(196) 
?w = y> *w   = 

and 
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3x =   X au: • uu1 
dx 

äv" 
3x 3y. By -\ 

3w 

3z By       x 3z   _  , wi.       , 
3w  "     vw'     3u   =     **'     3v" 

ad: 

3z   _  x 
vw» •   "§"£ -  Aww 

,.3v 

?    (197) 

From . . 
V I 

:    ,•••"•• 

3u   = du 
au     ax "uu     ay "^v ... az ^. •|4,-k..'+|a-N„". i 

au 
av 

au 
aw 

- 3U  x       ^   öu  x 

- T* Ä- *• aF "- 3z vw 

_ au au•. • •      au 
" al A« + a7   vw + ä7 ^« 

= o 

=   0 

)    (198) 

^ 

there is obtained 

au 
ax 

\v   ^Y:W 

Vw * ww 

;D, and so forth (199) 

where  D  denotes the det'&rminant 

D = 

X;uu Xuv Äuw 

XUV XVT \w 

X X x  • uw vw ww 

Substituting the values obtained in (199) into (195) yields 
he following equation for X: 



ÜTÄÖA.SJÜ  Ko.--§7'2 fÖ 

[' PU
U     +     P 

-   Puv 

+  Puw 

vv 

•vw 

vuv 

VW 

'UV 

• vv 

VW 

ww 

VUW 

ww 

XUW 

TW. 

- pvu 
\iv-i. .^vw' 

^uw     ^ww 

|PTT + P] 
*iiu 

wu 

~  pvv 

^uii     \v 

vuv X ww 

Here     p- =   p(u     +  v     +   w   ) i 

+  Pwu 

-\ 
xuv 

*uv 

TV 

TW 

uw 

ww 
-•  Pwv 

^uu  \T 

^uv  \v 
>(20(J 

t   (P^+P) 
^üu  "uv 

^uy  ^v'v 
=   0 

> 

is   a   known   function; 

• '.There now arises the problem" of determining particular 
solutions öf (200). Clearly, this can "be done by!usiiig the 
series   developments 

A-       -ufflvV mnn 
(201) 

m,n,p . _ 

which sat'i'öfy .equation (200). _'  _ '. 

Such a series development which represents' (tn'tiie hodo- 
graph space) the potential function  <f> ^ of a possible flow 
pattern of a compressible fluid converges! oniy'in. t^c'neigh- 
borhood of "t'he origin.      - ; ' ' ' .'        .''',. 

However, there exist methods'-of determining <J>, in the 
whole region of the real (u,v,w) space where <£ is regular. 
Such a 'representation, for instance, 'is given in many cases 
b> • • ; .       •'     •-. •      '. 

      .    ' m n p 
11 V A

m„,,  U  V  W   . 

k —> o   /_  pi"! + k(B + a + • 
m, n, p 

03 
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: "• " OOKO-LUDIN'G- RBMAHKS  • •   .-.''!• 

• • • • ; -'i • .; 

i      ' r •-•       ;,...•-..• 
j 

|     The main result of the present report consists in deriv- 
'.  lngvft' •"•formula which-transforms an arbitrary analytic function 
of:a complex .variable into a stream function of a compressi- 
ble su\bsonic flow. •   . 

This formula yields compressible flows around symmetric 
. (and certain nonsymmetric) obstacles. 

:.T,.he main difficulty arises in adapting the formula to a 
given shape of the obstacle.  A-oproximate methods for solving 
this problem are indicated in section 15. 

Since all expressions appearing in the theory of a com- 
pressible fluid flow are much more complicated than those 
occurring in the study of incompressible flows, a careful 
investigation of the numerical methods to be applied is nec- 
essary. 

. ...... A considerable part of the numerical work consists in 
preparing tables of auxiliary functions such as  Q^n', which 
have to be used in all particular ..cases.  In this paper the 

functions Q(n}     are computed up to  n = 4,  for  k = 1,4. 
Tables for the  Q'n''s  for higher values of the', super script 
n  will be necessary if flows with maximum Mach number ap- 
proaching 1 are to be considered. 

Bach particular problem also involves the>performance 
of certain integration processes.  In order to advance the- 
application of this theory it would be necessary to use ef- 
ficient modern • computing" device s .     .•      ._.... 

The present paperdpals only with subsonic flows. It, * 
should be emphasized that the development of the theory will 
permit consideration of flows for which the maximal velocity 
exceeds that of sound.  (See sec. 1?.) 

Brown University, 
Providence, R. I., May 15, 1944. 
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Table Ila 

The values  of F,  H,  o/  'for k = -0.5 

2* 11 T v/aQ H(230 F(2?fl Q(1>(2X) 

- 0 1 0 1 0 0 

-2.82 0.265 0.964 0.272 1.000 0.0007 -0.0299 

-1.96 0.403 0.915 0.430 1.001 0.0048 -0.0602 

-1.612 0.473 0.881 0.518 1.002 0.0105 -0.0909 

-1.51 0.497 0.867 0.551 1.003 0.0138 -0.1115 

-1.368 0.528 0.849 0.593 1.004 0.0187 -0.1267 

-0.79 0.690 0.723 0.861 1.015 0.1135 -0.3009 

-0.394 0.820 0.572 1.165 1.046 0.6430 -0.7033 

-0.188 0.901 0.433 1.440 1.111 3.6330 -1.5871 

-0.132 0.921 0.388 1.527 1.145 6.9763 -2.2682 

Table Hb.      Tb» values of F, H, Q (n)    „(n) for   k = 1.4 

2> H V»0 F H QCi) Q<2) Q<3) Q(4) R<°> H• R<2> R(3) 

- •© .0000 .0000 .0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

-3.8772 .1000 .0999 .0001 1.0000 .0000 .0001 -.0001 .0002 9.96OO .0010 -.0020 .0000 

-2.5096 .2000 .1992 .0011 1.0002 -.0009 .0015 -.0013 .0008 4.9197 .0030 -.0103 .0148 

-1.7327 • 3000 .2972 .0064 1.0014 -.0056 .0085 *   -.0083 .0064 3.2141 .0090 —04II .0670 

-1.2071 .4000 .3938 .0256 I.0O42 -.0199 .0342 -.0395 .0374 2.3371 .0235 -.1203 .2307 

-.8238 '.5000 -4879 .0866 1.0110 -.0574 .II60 -.1680 .2116 1.7947 .0520 -.3152 .7600 

-.6706 .5500 .5341 .«65 1.0167 —0935 .2101 -.3496 .5211 1.5901 .0755 —5082 1.4060 

—5364 .6000 .5795 .2839 1.0247 -.1501 .3823 -.7494 1.3527 I.4150 .1088 -.8277 2.6949 

-.4204 .6500 .6242 .5245 1.0359 -.2401 .7089 -1.6847 3.7802 1.2620 .1566 -1.3796 5.4353 

-.3203 .7000 .6680 1.0060 1.0515 -.3870 1.3663 -4.0770 11.7558 1.1254 .2275 -2.3946 11.8168 

-.2207 .7500 .7110 2.0623 1.0811 -.6959 2.8304 -12.7121 51.4676 

-.1615 .8000 .7532 4.6583 1.1049 -1.0896 6.4068 -35.1357 194.4562 .8847 .5248 -9.0769 81.6373 

-.1015 .8500 .7945 12.5662 1.1517 -2.0186 17.4338 -149.6938 954.643 .7717 .8743 -21.9464 306.6745 

-.0535 .9000 .8349 46.6378 1.2275 -u.ym 65.3783 -997.3960 16412.652 .6555 1.6804 -71.6427 1772.3621 

.0000 1.0000 .9129 00 oO — 00 M - 00 •0 .0000 00 -00 00 
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