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TECHNICAL NOTE NO. 972

COREY

ON TWO-DIMENSIONAL‘FLOWS OF COMPRESSIBLE FLUIDS

' By'Stéfan Bergman
SUMMARY

'This report is devoted to the study of two-dimensional
steady motion of a compressidble fluid.

It is shown that the.complete flow pattern around a
closed obstacle cannot be obtained by the method of Chaplygin.
In order to overcome this difficulty, a formula for the
stream-function of a two-dimensional subsonic flow is derived,
The formula involves an arbitrary function of a complex vari-
able and yields all possible subsonic flow patterns of certain

types. It is & generalization of the expression Im g(ﬁil
for the stream function of an incompressible fluild. (Here V
is the velocity vector and g an arbitrary analytic function.

Conditions are given gso that the flow pattern in the
physical plane will represent a flow around a closed curvs,

The formula obtained can be employed for the approximate
determination of a subsonic flow around an obstacle. The
method can be extended to partially supersonic flows.

INTRODUCTION

The theory of irrotétional two-dimensional flows of an
incompressible fluid is based on the theory of analytie fune-
tions of a complex variable.

The relation between these two theories is given by the
fact that the stream function w(x.y) of flow satisfies the

Laplace equation :(32y/d3x®) + (3%y/ay®) = 0. Hence the imag-
inary part of an analytic function f(x + iy) is & stream

RESTRICTED



2 NACA TN No. 872

function of a possidble flow, and all flow patterns can be ob-
talned in thkis way.

For certain purposes, however, it is useful to modify
this approach. The stream function may be consgidered as a

funetion of the components v, and v, of the velocity vec~

tor -ih 2_A.gain y satlsfies the Laplace equation
(62¢/8v1 )'+'(32W/avaa) = 0., Therefore, it is possidble to
choose as VY(v,,v;) the imaginary part of an analytic func~

tion g(v), ¥ ©being a complex variadle in the (v,,vy)~-
plane. In this way the flow pattern in the (v,,vz)-plane

(hodograph.plane) is obtained. In corder to find the real
shape of the streamlines 1t is necessary to derive from

Im g(v) the corresponding function.of x and y. This
transition doces not involve any serious theoretical 4diffi-
culties,

In the case of a potential flow of a compressidble fluid
the first method (construction of the flow pattern directly
in.the phjysical plane) leads to a rather complicated nonlin-
ear partial differential equation. The second approachk (con-
struction of the flow pattern in the hodograph plane) reduces to
the intsgration of a linear partiasl differential equation.

'(See Chaplygin, reference 1.) Hence, the use of the hodo-’
graph method permits the application of various results from
the, theory of linear partial differential equations.” For
'instance, a stream function in the hodograph plane can be ob~
' ‘tained as a linear combination of particular solutions of the
linear equation mentioned. Chaplygin was the first to con-
struct a set of such particular solutions. Two other methods
of constructing such sets have-been givesi by the present
author. (See reference' 2, pp. 16-20 and 23-24, and reference
3, sec. 2.)

However, Chaplygin's method and both methods given in
refergnces 2 and 3 are not satisfactory in one respect. In
general, the stream function will be reprdsented by an infi-
nite series of particular solutions, and such a series will
converge only within a part of the domain in whick the flow
is defined?l,

1A hodograph of a flow around a profile is (in general)
a multiply covered domain (see fig. 1b and 2b) the branch
points of which are not necedsarily located elther at the
or¥Bin or at infinity; on the other (continued on next pags)
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To obtain results pertaining to the actual flow, a rep-
resentation of the stream function as a whole is indispensi-
ble. A representation fulfilllng these requirements is given
in this paper, (See also reference 2, sec. ‘6, and reference
3, sec., 4.)

If a linear relation between the pressure p -and. the
specific volume 1/p 1is assumed:

p=4A+c/p (1)

(A,0 constants), then the hodograph equaﬁian coincides with
the Laplace equation Assuming relation (I) and ,using the
theory of functions of a complex variable, Von Kérman (refer~
ence 4) and Tsien (reference 5) obtained the compressible
flow past an elliptic eylinder. ZEguation (1) is a very Pough
approximation to the actual pressure-density relation and can
be used only in cases where the local velocity is far below
that of sound.

In the present report a general pressure-density relation

P:A-}-O'lpk' ’ (2)

is used (A, o, k¥ are constants). (Equation (22 contains as
a speclal case the adiabatic relation p = Up o) Asguming
(2) gives a general formula for' the stream function. Tiis

{ormula expresses the stream function of a compressible flow

in terms of an arbitrarv analytlc functlion of a complex wvari-
able.

The representation obtained is, in general, valid in the

whole region where the flow is subsoniec. and in some cases can
be extended into a supersonlc region also.

This investigation, conducted at the Brown University
was sponsdored by,. and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

(continued from page 2) hand, the Chaplygin soclutions
yield flows which (in the hodograph plane) either are single-
valued, or multi-valued with a branch point at the origin or
at infinity. In order to represent such flow patterns, sev-
eral series development, each of which represents the stream
function Y under consideration in a certain part of the
domain in which WV 1is defined, is needed.
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"I take the opportunity to express my gratitude to Mr.
Leonard Greenstone for his assistance in the preparation of
the present paper.

NOTATION.

EER T

Remark: In dealing with differential eguations, the following
complex notation is often used:

|w
&
1
'.l-
\,/
g
]
i

w, = & = u - !;(EE;+ g o
3 2\0

oz

2L (aeu a3u> - - .
U,z = = Au = =~ + g = X + 1y 7z = X -~ iy
57 7 A 3x? '
2 1 %

&= |a’ - E(k - 1)v? speed of sound; (equation (28))
&g speed of sound at a stagnation point

- Sy L) T
¢ (See f94).) _ :
c(n) (see (94).) ‘3”ﬁu9,y
exp(x) = eX; e base of Naperian logarithms

f(z) an arbitrary analytic function BE- the complex vari-
able =z :

fk-e=af/a§; £, = 3f/3%
byl
g constant of gravity

,g(g) ‘gn analytic function of the complex variable . §; the
" ‘'result of applying the ‘transformation’ z = z(f) to
rﬁ;r. f( ) R ~ e . ,

Voo

cg(0) () = g(-g\)" S
g<n)(§) (see (112), ££.).
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“Ho=/k=1 fbr-mkﬁg;l;-oédaéioﬁ;Il#lﬁhé boundary curve oF
: o+ 1 a. 'domain. H ..

k ratio of specific heat at ‘constant Pressure to comstant

volume .
1 (H) =(iA)a = (LY (-t (48) L
oH p(H) P o Co
P pressure ’
Po pressure "at rest®
r polar goordinate in the physical plané
s =1 ~/1 - M2, (151) “
schl;chp'é univalent --7“I E
v épeé&; magnltude of —?? alQ&,'occasionally, the reduced

speed v/a,

-
v,,Vy Cartesian componente of ¥

¢ + b B :

w

x,y OCarteslan coordinates in the ph&éical plané

e wme

z = X + 1y

z = x-"i.y
A constant in the pressure-depéity relation (22) (See
also sec, 3,) - e O

L)

a(x,¥v) 3x 3y Oy dx T Py
e L ' v o . .. T . ..u
B (See theorem (53).) BEBp = QE, By = QET P 5 -i

Be s et ﬁd@g;) o) e

~=Co
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Foeoo(W o+ Ny - (& + 1)M43[;k3k - i)M4.m4(3 - 2k)MZ 4+ 1{];(71)
64 (1 - M2 )

Fm(zx) - 2: egkk; (;emﬁa (67))

Fx (See theorem (83).)
. (See (115), ff.)

G(E) (See (B3); also (124).)

¢,(B) (see (68).)

Go(BE) (See (75).)

£+¢
H = expl- [Wa(f+¢) | (111)%; ocdcasionally a domain in the
: hodograph plane with boundary curve h
(o]
H (See (115), ff.)
I heat content

k-1
I/g pressure head -/ kop

\g(k = 1))

In the imaginary part of

K kernel function (See reference 3; rleo sec, 3.)
Ky kérnel function of H;” K§ ='/n:KH(V,A)dV.

L(Y) = Vg + FY; (?70) |

Lo(W) =¥ + N(zA)[ J (46)

Lp(¥) = Vg + s (74), £2. .

L, . (See (115).) |

1
See remark 1.
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M.= v/a = T/[ai __%(k = 1)v%]%; local Mach number; (31)
(k + 1) u* ’
N = - s
s (1 .-wsy/e
N, (see (115).)
A
(?) = -%j/)F ar; (107)?
() w d 5 s qahys, oy 0
o2 = 27+ 2 (108)r "
Q,(‘y;")l:.:‘(See (110) )
Q(n) (Sege. (8&) ) . L L R
Q}n?KSee (94))
r(0) = 1 EA; (114) £F. o oqm
(1) 2 B8, 1 50(3) &, (114
r(2) = 24 2 Hq(l) £ (114), ff;
R(®) (ges (114), ﬁffY g‘f Zinif‘
Re the real part of o T S

Schlicht = univalent L - :
sy = ( <1 - ° )wee + wHH, (43) P T

Solv = (B-> Q@ = K vge + 2 "Tizg“v7[(p°> Errﬁﬁ'“r] + (82)

1%

B

'ai - %(k + 1)v®

T =1 - ¥° = ¥ - (51) . T o R
'ai + Lk - 1)v® ) T
2
™ 2 w5t I
L . ‘i . fe Y K 5 «.

1g' : < -
See remasrk 1. o =
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T = vel® -
= Ve = v, * iv, veloclty vector
?: Ve"ie = vy - 1lv, =.g'.l’i
dz
Veo magnltude of the velocity at infinity

W,Ww¥ (See (119).)

1 I."w. .,
{: ( 1 +h~ o s) ( : 1)}5; (Yi&2) . . M

o

o the angle which a doublet makés with the real axls. (14)
(Also, a real translation of the axis (See (115) ante.)

€, a¢B M"a 1s a member of B" or "a belongs to B"
£ =A% 16 in which case { = A ¥ 16 (This variable use of
: { merely means a reflection with respect to
the real axis.)
e
8 the angle which V makes with the rga; axls
AM) = A(v); (48), (49)

1
p density; p = p_ [1 ~-£§L:312 va] k-1. (25)
2ay

Po the density "at rest!

[
v o

o a constant in pressure-density relation P = A+ ka' (22)
¢ potential functionl alsgo, the polar angle in the rhysical
plane (polar coordinates)
v stream functiop%
.- TR T
§+§ JARNNEE
1 .
Y* = exp NaF+$) |y (69) I _
. , . o
) Cd -t, x-1
Iy circulation; in part II the Gamma fuhction I'(x) = e t dt;
(see sec. 11, f£f). J

1See remaric L. i
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AL Lapiace operat o::': —i —i = 4< )
ax 3290z

A(E) (sbel(455.)
Ag = 3A/3E, Ay = 3A/36

o) Potential Eﬁnbtibq' (See Tomark 1.)

¥  Stream Function (See remark 1.)

Remark 1: In the following, the potential and the streanm

- functions tb(x,y) and Y(x,y) (as well as several other
varigbles whigh'ane indicated in this section) are considered
as functions of different pairs of variables. In passing
from the physical to some other plane, new symbols should be
introduced for ¢ and VY, since in different planes ¢ and
Y are different functions of their respective arguments.

For ‘instance, fdeeing to the (v,B8)-plane yilelds

R ey me 2, w(ne]

For the - -sake :of bfevity:t&é aﬁﬁhor omits the superscript and
always writes ¢ and ¥, no matter in which plane he con-
..8ldere these functions.

;2 .+ POREWORD

The stream function ¥ of an incomprassible fluid flow
is a solutldn of the Laplace equation

-4 . o
50 . . . A

2 . : [

ax . ay
There exists ‘8 general formula ”: i

\l!..= [f(s):‘ '8 =-1:log v'r-."'lB' T ()
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in terms of an arbitrary function f of one variable, for
solutions of this equation. Here v is the speed and 8
the angle which the velocity vector forms with the positive

X-8xis.,

In the case of a flow of a compressible fluid, the
stream funetion is & solution of the system of equations?

% - pa><ﬁﬂ> ROIE av[l"?;“;TE("“)( 4y]

ox

SR N G ey et R (5)
(poao)B ) 3x 3y 9% dy

1.k 2 2\
E) 7 [ - gt & (@ @]

where Pos 24 and k are constant. For alr, k = 1.4.

A generalization of formula (4) to the case of subsonic
flows of a tompressible fluid is given in this paper. Let

3
M= i/{aoa - %(k - 1)VBJ be the local Mach number. If it

is assumed that the 1 w is subsonic and that k = 1.4, func-
tions A(M), H(M), Q'n/(M), = 1,2, . . . are determined
(see table Ib) so that for the solutions of (5) there is obw

tained a reprosentation®

‘Stream function V¥ and density p have to be consid-
ered as unknown in system (5). The elimination of p, 1in
order to obtain one equation for V¥, 1is impossibdle.

fFor many purposes in evaluating (6), it suffices to
take only a few terms of -the series, There also exist methods
for improving the convergence of (6). As will be shown else-
where, it is possible under rather genersal assgpptions to

interchange the _ i ' ahd the summation 3’ and thus

n ~—> o a
obtain a new formula for Y. In many instances, howoever, the
formula in the original form is more sultable for applica-
tions, since by a suitable choice of the m's it is possible

to achieve faster convergencs.
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m —4; =3

+ E: Qm(n)(w) (2n)*J/° U/" SRt I DTy S T } (6

-

L 'xu_(M"'.;e_{X; = lim Im {E(M) [f(g)

1« (1 - Ma)% 1 + h(1 - MB)% >/B

= A(M) - 16, A(M) = L 1og e
2 1 + (1 - Ma)-% 1 - h(l - MB)%
. h = k -1 , k>-'l RS oo
X+ 1

in terms of an arbitrary function of one Qariablelﬁf'éfnoe o f
the transition $to the variables x, ¥y does not involve any

essential difficulty, (4) and (6). yleld patterns for possible

incompressible and subsonic (compressible) fluid flows.

Formula (6) is of interest not merely as a tool for com-
puting ‘examples of flows of.a ‘compressible fluid, but-it may
be considered also as an -operation’ which transforms stream -
funct&ons of incompressible flows into stream functions-rof
compressible flows. Thé -formula suggests the pPossidbilitiy. of
carrying over various phyaiéal laws which govern the motion
of an incompressible. fluid to the case of a compresslble
filuid.

) In a companion paper this formula will be tnsed for &on-
structing a subsonic flow around a curve which approximates
the boundary of an obstacle given in the xy-plane. (see
NACA TN No. 973.) -

Another application of the above result is to "distor-
tion theory" - that is, the study of how the properties and

“The possibility for generalization of the formula for
the case of-a mixed (i.e., partially subsonic and partially

supersonic¢) flow is discusseéd in.the paper. It is observed
that for "‘M< 1, ¢ 1is a complex- number,,for M>1 a
purely iméginary number. THerefore,.for "M'< 1, . £({) is

a function of one complex: ‘variable, while for. M >'1 it is
a function of a real variadble. R : R
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the shape of the. boundary change (in applying.the preceding
procedure, retain in both formulas {4) and (6), the same
function f) upon passing from a flow of an incompressible
fluid -to the corresponding subsonic flow of a compressible
filgid: or upon changing the density-pressure relation ¢f the.
fluid.

I, THE HODOGRAPH METHOD IN THE CASE OF AN INCOMPRESSIELE FLUID
ul A Geweral Reprcsentation for the Stream Functlon of
Flows of an Incompresgible Fluid in Terms of an

Analytie Functionl of a Complex Variable

A stream function of a flow of an incompressible perfect
fluid 1s a harmonic function - that is, a function which sat-
isfies the Laplace equation . .

Sy, 2¥ ., ooy

Gonversely, a function 1 wkich satisfies equation (7) can
be Interpreted as the stream funotion of a sultable flow.
Since the. imaginary part of an analytic function of a complex
variable satisfies (7), and for every function eatisfving (7)
there eoxists & function f(gz) such that

Wix,y) = Im[f(z)] (8)

(B) 18 the "genaral formula! for the stream functions of a
flow of an incompressible fluid. Here f(z) . ranges over
the totality of ' analytic functions, ‘

In connection with various problems in flnid dynamics as,
fo;'exambie, Jet problems, another method of attack was

.. ' *In many instances an analytic function of a complex
variable consigts of several (or infinitely manv) branches,
each of which is defined in the whole Xxy-plane. These
branches cover the plane many times,. Since a flow covers the
plane or a part of it only once, each brangh gives rise to a
pPhysically poséible stream function. . However, here and in
the following,; a-function is always spoken of rather than- a
particular branch of it. o
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developed ‘the basic ldea of' which &g 4o consider the flow not
~1in the physical plane'but in the hoﬁograph or so-called loga-
rithmic plane - that 1%, to ihrtruduce’ as independent takia-

ables the components “'v,, v, "o %tHe velocity vector f_i'

.

'.= ie:r:..‘ (0 =..__.VL. . o= O 4 FAY.
v .ve ". vl-+ 172:} gz“,‘ f..'?. iw.

and log v a'a e, respectively.ainéfééﬁ'b%'.f and , y.
This approach. lsads to another .gensral formula which,

while it is more complicated thah (B), has the advantage of

being capadle of generallzation to the case of a compressible
fluiad.

In the case of an incompressible fluld the stream func-
tion :

Viv,8) =‘w[x(1og v,8), ¥(log 'v.e)] L ‘__._"_';(?)

is again a_ harmonic function of log v &and € and there-
fore o o . ' ’

v(v,8) = Im[f'(log v N 19)J (10)

yields a "general formulal for the stream function (consid-
ered as a function of 1log’v and 6). The representation,
V(log v,8) = constant, <for the streamlines (in the logarith-
mic plane) of the flow is obtained immediately from (10)

R I R L DI o ' CT

2.‘?as§age from the Logarithmig_P}ane‘yo”@he,Physical_Plane

The fact that the flow is gons1dered in the logarithmic
plane 1nstead of the original physical plang introduces

By the transformation Z¥ = log Z +the author passes
from the hodogragph tg the logarithmic plane. In.the follow-
ing, in” many instances, it .1s necessary to rass . from the
hodograph to the logarithmic plane and vice versa, often’
without expli¢itly mentiohing it. | This fact 1s stressed here
in order to avoid coﬁfusidn ~Thg plana the .Cartesian coordi-
nates of which are  bog v and B 4is dernotéd as the logarith-
‘mi¢ plane, .

See Notation, rémark 2: . ., 1.
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dertain complicetions. In order to overcome them it 1s
necéssary to investigate more thoroughly the-relaticns which
exidt between the flow around & given obstacle in thce plys-
ical plane and 1ts Image in: the hodograph and logarithmic
planes.

Suppose’ that the stream function = Y(log v,E8) of a
flow (of an incompresesible fluid) in the logarithmic plane is
given., The following procedure yields the streamlines of the
corresponding flow in the physical plane. Since

= Aw . .
v = Az (see reference 6, p. 32), it follows inversely that
" ow
z = = (11)
v

Writing 5 = ve"16 and noticing that the integration occurs
along & streamline, VY = constant, and therefore 4y =
gives (11) written in the form

0lB ~ i6
/'..__. -/’v[a dv-i—q)ede]

B Y:
e de ~r 10 :
f - Ebv + g = ]d (12)

'Using the relations v, = -We and ¢e = vy, and notiéing
‘that along a streamline 4y = Yg dv + Vg 48 = 0 and there-
fore, ' dB/dv = -~y /¥y, gives ;

. i@ )
x + iy = z = -/’9;5_[% + ‘.’2‘1‘3/.‘.{’.9.}. v,

By separating the real and the 1maginary parts tnere is. ob—
tained a.parametric representation. .

A . .
L a2, 2
‘cbs 6 LWGB Py ] av
B Ve -
¥ 6

=(v)

(13)
v

sin 6 [-‘-""ea + v2v,f ]

- dy
ve Vg

n

y(v)

d
I
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for the streamlines in the phvsical plane One of the
streamlines or a suitable part of it .gan be used.as the
boundary of the obstaclse.

By emplOYing'tha hodograph - method in airfoll theory it
is convenient toluse. the fact that’ the approximate form of
the hodographs of the flows around alrfoils of certain shapes
is known. If it is assumed that the domain H which repre-
sent’s the image of the. flow in the logarithmic plane is given
(see, e.g., fig. 2b), it is possidble. t.o" construct at first.
the harmonib function W(log ¥,8) which dssumes a constant -
value on the boundary h of the hodograph 'and has the pre-. .
seribed ‘Béhavior at-:the point which corresponds to gz = o,
Then with (13) the form of the airfoil in the physical plane
can be determinad e L -

As is well known, for a given obstacle and a given dngle
of attagk there exists a wholse family of £flowe." If the ob-
stacle 'has a sharp edge; as occurs in the cass of an alrfoil,
all solutions but one havée an infinite. velocity at the sharp
edge. The Joukowski hypothesis consists of the-assumption
that this exceptional solution, which hag an everywhere finite
speed _represents that flow which has physical signiflcancel

The hodographs of the flbws around the same obstacle
(in the phystcal plane) lead, in general, to quite different
pictures: in ,the hodograph,- and in the logarithmic planes. ZFor
Instance, in figures .la, . lb and 2a‘ 2b, two ‘different .flows
around *similar airfolls are 1ndicated As mentioned. before,
the hodogreaph-of: Joukowski flows - has, in- enaral.,a shape N
similar to that indicated in figure:2b. %It is noted that"_;
this donmain is partially twice covered. ’ v

"If the hodograph method is used 40°0Bbain the Joukowski
flow around some profile, 1t is at first necessary to deter-
mine the function y{lng v,6) which is defined in the domain
H, and has a doublet at A, the point which 1Is the 1imags

z = . In order to construct the stream function
W(log v,8), proceed in ‘the following way: -Determine the
stream function in the upper half plane (Z-plane) -~ that is,
a function g{(Z) which assumes constant values along the
rsal axis and has a combined vortex and doublet at some point,
'say gt Z =i, and then -the-function, Z = Z(log V), which
. maps the ‘uppér ‘plane into.the domédin” 'E, transformlng 72.= 31
'into the branch point:iA .of H. As, will be séen, a’ family
of solutions i& obtained for:this problem T B ¢

o 5 N

14 flow fulfilling the conditiions: of ihe“Joukowski K?:
hypothesis is termed a "Joukowski flow." '
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The axls of the doudlet 1s assumed to form the angle a
with the real axls to obtain for the complex potential with
the circulation I' the formula-

,w(2) = QL log &= 1, mi ia _mi -lo (14)
Z

'-s + 1 Z - 1 B2 -

LT IR
OO .

Réﬁéfk“ ”he ‘term _ﬂ log Z - : yields a purely circulatory
: +

flow (see fia. 5. elso reference 7 p.5326); whefeee

mi ( -ia
Z - 1 Z.+ 1/ .o

and with a 'doublet at Z = i the axis of whkich intersects

the positive Z-axis with the angle a. (Seée fig. 4, also
reference 7, p. 202.)

) represents a flow ‘without any circulation

The questlon of how t¢6 determine the gapping function
hag a more technical character and will be considered in the
next section. .

L L. ..r.‘.'-' . ::> 5

+ ' Suppose ‘now a function ¥ ﬂ'Im[} gZ(V)>] which assumes
* constant value on the boundary . h o (E is the image
of D in 5he hodograph plane, ). 'The boundary .curve of the
obstacle’ is obtained if, starting’ From some p01nt, say B of
h, xj:and y are de+ermined by. integrating along - h, How-
even,\in veneral, the obtained curVe will. not. ba. a closed
curve., ' In order that.this be so, it is required that

EIN g O . . : L .
A oln e i o o ) e

A0 E:f¢92 + famw 23::&4 ’ ' T
. _7p T oB V.. - 5 I (15)
)J{r =- v . .e .l'l A .
W . _
3 S, - '2 P . '
‘j; . yz" ' s : \Usl SN -', e B B ."‘:.'.'-“.' . .(' -" .c . ‘e

“n . P2 IR
. S S AETRECE N IR TR PR [ . e,
where‘the integration is carried out alon} the boundary curve
k of°:H, -Thus 1t 1i's seen that, 1n orde’ that the obtained
boundary in the physical piane be- &' closed eurve, it is neces~
sary’t9" choose I, m,‘'* £hd""a 'in such'a wav that both equa-
tione (15), and (16) arb satisfied o

L . i . . e ot
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Remark: -IA connectlion with further applications for a com-
pressidble fluld two separate expregsions have been derived,
one for x, +the other for . Clearly, in the 'case under
consideration they can be combined together, and (15) and (16)
are then equivalent to -5

' 1> o .- .
) E dw(Z) S

az : (17)

%Z“ 7 ﬁ? (z)az. | C |

7} _ . = ' ' .
Since w(Z) and V(Z) are analytic functions of a complex’
variable Z, which are.regular in the upper. half plane ex-

cept at Z = i, and -%YZ) does not vanish there, (17)

equals the residue of __ 1 dw(Z) at the point Z =1.

(z) az = - =
Write - Z,= Z - 1 %o obtain for w and ¥, the series develw-
opment s ) -

tela > '
wei1 L log 2+ 53%—— + o, T =V ¥y Z+ . . (18)

1
12 < p, p sufficlently small,

and therefore

i
LIDL o
_1_3_"1 = 2y . 2 2,
. j 2
V &z, Vo + Vg &+ V3 2, + . .
i .
[mie“ L :”:1 vlzl ]
3 [3 . i ol . . .
2V 2m 3 c Ve TSR
ic AR 1ot
- . mie e
<. ple”, ( ir . 23 = m> L. (19)
Z 2TV Ve Z, ol T
Thus the above condition becomes
. + =
io .
. V., me . 15 oo : .o
_I.‘.__;.___..—:l 2= 0 ¢ (20)
21 v Wt
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3. The Determination of the Function Z = Z(V)
Which Maps the Image of the Flow in the
Hodograph Plane into the Upper Half Pléne

If the domain H 1is prescribed, then the function

-——’
Z(V) which maps E can be obtained using one of the known
nmethods in the theory of conformal map»ping. For instance,
‘Pheodorsen's method (see reference 8) may be used to deter—
mine the function which maps the circle into H and then
compute the inverse function. The theory of orthogonal
functions also yields (soe reference 9, chs. VI to IX) a

. . P R . —p
simple formula for the function ~Z(V).
—
¢, Denote by ©yu(V) a complete set of orthogonal func—
tions. Such a set can b@ obtainad fo” instance, by orthog-

onaiizing the functions { ‘) } vhere a 1is the
brancht point .of the domain H.

—— ——

) = E} P, (V) ¢, (T) ig denoted the "kernel

> S
3y K(V T
' D=1 .
function" of the domain. Then the function which maps the
domain H into the unit circle, mapping the point A 9on

K (V A
the origin, is yw —Eﬁ—————l, and therefore

V Eg(a, &)

=S b I CAR OISO §
Z(V) ="~ 14 — - (21)
eV, E) JEg (A, &)

is the"required fﬁhétion.“

.Remark: ®guation (10) may be wrltten in a little different
‘form. Writing ' :

Z = log v+ i(m - 8)

glves SR
V(log v,8) = Im g(2)

where g(%Z) = £(2 - iw), The passage from & to m — 8
means that in the hodogfaph plane’ the domain with respect to
the imaginary axis 1s reflected.
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e et

..~ '11, THE HODOGRAPH METHOD IN THE CASE OF
A COMPRESS.IBLE FLUID - SUBSONIC CASE
4. Iﬁtrdduct;oﬁ'

'In this part the hodograph method will be generalized
t0 the case of a compressible fluid

ThHe sﬁream function 1] (x, 'y), in this case, satisfies
a complicated noniinear partial differential equation,
(see (28).) If it 1is assumed that the ‘Aens ity pressure re—
lation 1s of the florm

e T ate)

where p(p) 4is a funection of p alone, then the-udse of

Y(v,0) instead of -W(;,Y).f(as;Chaplygiﬁ,'reference 1, and
Molenbroek have shown) represents an important simplifice-—
tion. If the variables v and ©8 are introduced instead
ef x and y, the function V¥ satisfies a linear partial

differential 'equation S(¥) = 0. (See .(30) instead of & non—
linear one,-(zs) Y ' .

Remark: It will be assumed that (unless the contrarv is ex—~
plicitly stated) '

p(p):A'l'O"pk ' . (22)

where A, o, and k are constants. However, the method
developed here can be employed in the case of & much mors
general pressure density relation.

In the case of an .incompressible fluid, instead of
merely a statement that the stream” function VY(log v, 8)
satisfies the Laplace equation, the general formula (10)
wag given for solutions of the Laplace equation in terms of
an arbitrary function f _.of one variable { = log v-— i€,

The main purpose of the second part of this paper will
be to give an analogous formula for a compressible fluiad,
and to derive from it the representation for the stream
function in the physical plane, :

As will be proved elsewhere, this result leads to a
construction of a flow around an obstacle approximating the
given: obstacle (in the physical plane)
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After a short discussion in section 6 about different
types of differential equations and development in section
7 of properties of the auxiliarzy.function A(v) which is
needed in the following, an operator is defined in sec—
tions 8 to 12 (see (B5)). which-transforms functions f(s)
of one complex variable s = A(v) + 1@ into solutions
Y(v,8) of SoMW) = 0. ZEquation S,(¥) = is the equa-—
tion for the stream function (in.an appronrlate plane)
for ‘the case of compressible_suhsonio motion, Then, if
the following formulag are used

- . . . L f
000088 [ (1. - M3Wg® + v, 7]
x, = x(v) = —f : - : av
pV‘" we
(23)
(1 - M2)yg® + v, 2)
y = y(v)= f posin 6 [ AL v
‘ L pva Ve |
whlch are derived in sectlion 14 and represcht a henerhl— -

izatior of. (13), a ‘parametric representation for the
streamliaes in the physica; vlane of the corresponding
flow 1s obtained.

In section 14 are determined the conditions that the-
image of the given hodograph yield a flow in the physical
plane around & closed curve.

5. Differential Equations for the Potential

and Stream Functions

From the continuity and ifrdtationality'of the motion
it follows that for every flow there exist two functions,
¢ and Y, the notential and stredm functiOns, such that

LoBew, e, e BRIe, v (as)
Here ‘v,  and v, are the Cartesian components of the
veloclity vector and. p isihthe ‘densisy. (See reference 6,
PP . 228—%2°'or reference 2)°p. 2,) Fram the Bernoulli

relation . L/2 v® + I = constant,'where. I/g = kcpk Ve (k1)
denotes the pressure head (see refersnce 6, formulas (13),
p. 215, and (10), p. 214), it follows, that '

1/2 Qz + ok(k, - 1)t p%fl s

ck(k ~—l) bc- . oor.
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T 1/k-1 7
i - — ~
i P S po.-“ll ';" (k—l)k ‘o 1p1 k‘v‘]
PRSI : 1/k~
B e |
= Py = %o >, (25)
S E R 2 2y | 2/k2
=p |1 % ey (x-D5" + &y )J

-~

If (25) is substituted into (24) there is obtained for @ and
¥ a system of two nonlinear differential equations

.Wv ¢z[1:-3%'azg(bd)(§x2-+¢yg)]l/k—l

e : | = (26)
= - |9 _ L =3¢, _ ‘2 1/k—1
v ¢y-hl ,%'.?0 (k—=1) (% + ¢y2)]
It is noted.that in -the case wheré the motion repre—
sents an adiabatic process, A =.0, and in the case of air
k= 1l.4. g
Eliminating®. ¢ gives for ¥ A ,
2. k2 2 2y ' . ' I. W l
%W 1 9_9_ oV - 1 .
) F) 1 £ -S- +—-——2- 1l- "'——'—'_"5
x {po2o) dy (poao)
(‘ 5‘”( Ve (2 )“* Emwre e
(F’Qa'c,u)2 " 3% 3y ax By ’

T It @)

Po _______._2_< EINRC )
Siﬁi#a;i&, elimiﬁating_.w from (26) gives for-'¢§”l

"'a3t¢xx * ¢W] = G2 Ppg ¥ 2<b ----- oy ¢xy +‘<?y"ﬂd? (28)

R e sy
-7 1The Jerivation of. (27) and {28} is - omitted: here.' " The
;equation (‘28) e derived in reference 6., p. BBO :fonperning
(27)., .see referenee 10,.p. 5. e, ey . L
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As Chaplygin and Molenbroek shoved, if the variables
log v and €@ are introduced instead of x 'and y, bhen the
equations relatins the stream and the potential functions
become linear., If?

- @ (v, 8) = @lxlv, 8), (v, )] L
L (=e)
U(v, 8) =¥x(v, 8), y(vi )] |
is written, then, instead® of (26), it follows thatl::T
_f.¢_¢ =0 (3‘2)' (1 ~ M3y + ¢ )
Py 8 (log v) g ) . (log¥)
. (30
o o = Y - v oy
(log v) d(1og v) . dv
Here ' p
¥ = v/lag? -~ % (k—-1)v2]"" (51)

2

is the local Mach number. Eliminating ¢ gives for ¥ a
linear eguation T R

Sot¥) -<-£> (1~ ¥*Nrgq

Po a\u‘ =
( > b(log v)‘{ < b(log v) © (82)

In section 11 a general expression® will be given in the
subsonic case (i.e., for M < 1) for the solutions of (32)
in termsg of an ardbitrary function of one variable f. That
is to say, an expression will be obtained involving an arbi-
trary function of one variatie f such that for every £
the obtained expression represents a solution of (32), and
conversely every solution of (32) which is regular at the
origin can be represented 'in'the afore-mentioned form with a
sulitably chosen f.

lsee Notmpion,” pemark 1. °. i
24 detailed derivation of (30) is given in sec, 3
reference 2.

. PIt is noted that in.. sec. 9, equation (32) is simpli-
figd slightly by npproximating the coefficients by polynomials.
The indicdted result rsfer¢ to this- simplified equation,
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Remark: It..is noted that for k = .1, ¥ <1, ogua-—
tioh {(32) bscomes: (in: appropriate variables) ‘the Laplace
equation.

According to (25) and (3EXL

o = py [+ (v/a)2777% (55)

{= (v/ag) [1+ (#/ag)217% 2  ox .(v/ag)=ul1-u21">"2 (34)

. a
Since 1 - M = —— = - 2,.J(po/p)a =1+ (V/&p)a
o 1+ (v/ag)
and Co e 4o P
: S SRR
[l+(V/a)J—— =
& log v an -
where
) [1 + (v/ao)zjl’a -1
A== log 173
- 2 [l + ('V’/B.O) ]
equation (32) bec;,omesl o
=0 : (35)

Yae.t Yy

..6. A Remark on Different Types of Equations

" The first purpose of the Lebond’ ‘bart of this paper
is to-give a~formula for soluxions of (32) in termg of an
arbitrary function of one variabdle.

., Before the derivation of this formula is considered,
it 4s well to ‘discuss in some particularly simple cases
the "general solutions™ of this kind and indicate some
characteristic features .of suych formulas.:

The following three equatlonsa-will be ‘considered,
where, p and 3§ 8Te raal qnantitles.

o

IThig result was fir st obualned by Chaplygin. (See.I
reference 1, p. 99.) - :

°A differential esquation AuHM + ZBu}9'+ Cugg + Duy,

+ Zug + F = 0 -is said to be of elliptic’ or hyperbolic type
in the domain R, 1f AC — B >0 or <0 in R, respec—
tively. ety . - . .. . .
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z au3+a;’f2 gé\% T . I . (88)
0% - '
Y 0 (37)
Ry 23y W _
el (1 - ) Eve 0 (38)

In the first case the "general solution" is given by

I

Y= £(8) + &) = £(u + 18) + glp — 48)  (39)

in the second case by

Vo= f(p) + g(s) (40)

where f and g are arbitrary (sufficiently many times dif-—
ferentiable) functions of one variable. As p and 4§ are
real variables, it is seen that in equation (36) there is an
arbitrary funection of one complex variable, and in equatioen
(37) two arbitrary functions of a real variable., (Clearly,
in equation (36) in order to obtain rsal solvtions, for g
mist be chosen the cop;j.:.gate to f: that ig, Flu — i4),

A quite different situation is met in the case of egua—
tion (38). .'By the transfo:rma.tion N =41 —p, (38) can be

2
reduced to the form bég SE% = 0. The general solution in

this case ig

. fu._x[,iﬁ?'_;-ﬁ 0+ (/T +9)  (a1)

It is seen that the arguments 'idJ.r::;ia are complex
for I < 1 and are real for pZ.1.

’

‘The solutions behave quite differently than in the pre—
vious cases. It may happen that a. solution which ig real
Aor <1 becones inaginary for u > l Consider, for in-—
stanece,” the function ' ' e

¥ (1(1 u)l/é ) ) (i(l u)l/g. +U> = (1 _ p‘)l/fé

On the other hand, there also exist solutionq which renﬂin
real in the whole plane — that isg,
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On the other hand, there also exist solutliens which remain
real in the whole plane — for example,

(1(1—p >1/3'- a)?+ (i(l-—p.)’-/a-l-ﬁ)a = 2 (u, 4w 132)

. Equation’ (32) is. of mixed type1 and therefore a situa—
t ion exists of the typa exhibited in (38). Of course, the
behavior is more complex than in the latter case, because
(32) is not the simplest case of equations of this type.
First, the function . A(M) must be determingd; which may be
done by reducing the equeation (32) to the canonical form.

. ° N - - i 3 '
7. The Function k(M) :

In this. sectibn the function A(M) is dntro-
duced. For convenience, an intermediary variadble H = H(v)

given by
M:E (a2)

Lo s h v . _’.-'_.r. -.,._s...-'."
is employed. S et

The equation (32). becomes

e (3 ] BB

If M < 1-that is, in the casé of dubsonic motion- then the
coefficients of both \Uge and wHH are p031tive and thgre—__

fore the equatlon ig' of elllptic type. If M > 1- that is,
in .the case of supersonic métion- the foregoing, coefficients,
hawve different signs, and the equatiOn is hyperbolic. N

In order to obtaln X(M), (43) 'is reduced to the so—
called canonical form. (See reference 11, ch. I, sec. 1.)

v oo

Introducing _ . .
E=A(m) + 10, T=A(H)-18,°  (a2)
where ' f ' PUTe T ' A e
%%; 'pop-l:‘“/l - M7 = “\/II('H_)-, . that is, %ﬁl= ;r-'—l(l_ﬁé)'"l/a (45) -

1The local Mach number M -plays, in the ca.se of (:32),
role similar to thdt of u in the.casé .of (38)- '

_PI% is nofed’ ﬁhat for. M < 1, L and t .are complex
quantltles which are conJugate to each other, for M > 1 they
become two ( independent} purely imaginary quantities, (See

(48), (49).)
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the equatio; (43) becomes
totw) - 22 .2 _e? xfo [ - MEV“J}[@& + 2]
2L AT AT - W P\ b -

| ¢
‘f ='g%i§f F L ) [aw . ?W] (46)

wherel

N(E + T) = N(v)

. l ] / -
= - LE—i*ll v"‘[ao3 - %(k + 1) va]—s 2[a°3 - %(k - 1) va} 1/a

N

I

8 -
4
SR OE R Y i (47)
8 (1 ~ u®)3/2
The function A(v) = A(M) may now be easily evaluated. From

. /a
dA(V) _ l[aog;‘l(k+l) V.l

av v | ' /a
2 1 2
| - | [ao - E(k - 1) v 1
it follows, by a purelv formal comnutation, that
o ST R VL T
A(V)=7\(M)=-12—log 1-(1-—M)/' 1 + h{(l - M (48)
. 1% (1 - ) 2\1 L on(a - w2)2/2
2 2
YL for k > 1
k' + 1,
For M <1, a(M) 1is a real quantity, if M > 1, then
MM) = -1 [(tan"l)«/Mz -1 -'%(tén"l)(h JuE - 1)] o (49)

is a purely imaginary ouantity;

'1See Notation,.remark 1. . / ;
. g M N 2 1 B
1 o+ fl ‘M* ) e

For k = l, A(M) =

Wl
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Remark: If k <1,

A(MY= v (tan b)) [¥7T 31 -

If k = —1, M<1

3)1/2

-and M < 1,

1+k 1/2
L—k

1—(1=u2) /3
= 2 -3 -
M(K) = 1/2 log [.1 + (1—MR) /2

or M=.‘<",e)‘/(1+e.2

For the application

tion M = M(A) often is’

either by preparing once
for a fixed value of! k
M =HMH(A) in the form of

k >1 there is obtained:

I'v

k).

and

]- =j .12/.2 1l .g.

3 + log

(v/ao) =

of this theory,

needed.

[1 (‘1 —

M2)1

27

/2J

(1 f(lsz)”%J

[14(v/ay)2]72 Zq

[1+(v/a ) 2] 1/2 +1

oM/ (1-e2h

the inverse funec—

an infinite series. UFor

T(zx) Jl - Mz(zﬂ~ 1~ X~ 1/:3(21:+1)x8

A=A (
representing

M <

. -1- (41«:24 6k+3)x - 1/24(241:3 + 68kz+’76k+29)x

(4Sk +212k + 392%x? + 328k + 103)x5

— —-L(480k + 2976k4 + ‘?9681:3 + 10788Kk3 + 7266k + 1935)%°

-——-{28801: + 28472k° + 84282k*

2880

+ 98086k + 22675)X° —

&

(k —

1)1/

1'.1/2-
S 2<(k+ 1)

2
(k + 1)*3 + (& ~ 1)1/2>

If M varies between

- ‘and '0:
is given in section 15.

0

and

1,

(k -1

K:

e

+ 162124k3 + 173940k°

{

s A

‘This can be determined
and for all a dlagram
or analytliecally,

M)

1,

{52)

varies between
The proof of the convergence -0f (52) for

A<O

. '1The corresponding values 'of-
k = =0, 5 apnd k = 174  ate given in the.tebles-Ia and Ib,

2N,

¥,

and'vko

for

(50)

}'(51
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8. The General Representation for the Solutions of (32)

Theorem (53). Let the function E(H, 6, t), =15t 1
be a solution of cquation

G(E)= [__“.];_:_EE_A 2<§§+ iz +£§EE .{+-_s.§§.l..=ol (53)

AH e 2‘AHE _lt ‘Vl bt tE

ﬂ(mi*iﬂ> Aﬂa/l-—t§+.3./l—bg AHH} (54)
AN y t(A+ i8) 2t (A + 18)

is continvous at t = 0, at A= 0, and at 6 = 0. Here

S is given by (43), ang

Ay = Ay(H) = JUEY

(See (43) and (45).) Then
V(K, 8) i/ﬁq E(E,8,t)f [%(A(H)+ is)(l—-tzﬂ atM1—-1t% (55)
Ja ;

where f(s) is an arbitrary, twice—differcntiable function
of one yariable, will be a selution of sS(V¥) = ©.

Proof: It is noticed that

£y = %AH(I-tE)f', fg= %(l—-ta)f', £, ==L '(A+ 1608 (56)
wherae
df (s
fi(s) = diﬂl
Therefore
1 Ag(l-%7) 1 (1 = t%) ify

g & ZHIZTV /e o e LA e o222 (57)

EST 2 T(h+ 18y °t 8" " 2t (A+ te) ° 8" Ay

¥ow, bdy2® (55)

1if ], indicates differontiation with respect to %,

®In order to be completely rigorous, the integration
1g carriecd out along the curve — 1< t< —¢, t = €e’?,
- 7S @S 27, € €t < 1, Then the integrands in (58) and
(59) remain continuous along the path of integration. By
usae of the property that (54) is continuous, it is possible
to let € subsequently approach O,
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5 e
- h

S T 1 +1 _ h
Vg =f Egf L +f  Efg N LT
e ~1 _ M1 — 2 - . —1.. g '/1__-,_ £2 :

o . - L (58)
.—.f+l Egf —S _IH BYI-t% Ay ar '
-1 JI o2 —31 2 t(A 4 '18) at ) :

Integrating by parts gives for-the last term in (58):

f“ _Fz_ EJl 22 Mg > IE V1 *’G‘?AH !1 } (59)

In an analogous manner there is obtained

v =f+1 f[ Eg & _E__.:Vl —t® 4 ] at ..__._E_.../l_ta i 5 Il .
LI (I 1—-1% 2 t(A+ 19) 2 $(A+ 18)  lt=-2
- s v '

Yow, differentiate (59) with respect to H, (60}, with _rés.pect
to 8, and multiply by Ag=. There is obtained fl.mlly

(60) -

. =
Vg ¥ 45 Ve

=f+z f _s(E) [________Ji‘l_t?A ;(_E_H_+figg£+§gi>}
-1

Jl t2 (A + 18) zAH Ag=® 2 2 /!,
oD +1 ¢ . _ B -
+j‘ *[ Erfm | EJl = 'b3> . Fofelm
1 J1—%2 { % (A + 19) 71 _"'_.'t"e"
,;‘(E J1= 62 > Ap®eg1 ot o
2 (A + ie)_/ . : i
Vi—52 [ BAgz” e
A — 22
26(A+ 16) PR T R, o) ¢ PlEm t Bebpa
Sy iB)' il g SR S
. A o C w3 H S8 - -. ::.”: -= -:_: l: . .. -
Eo N T
At + il g e P e AT (g
2t(f¥ + :.6) H°H Db P=—1 - Dt r _ .'



30 KACA TN No. 972

Using ths.last relation of (587) it is scen that the second
and the. fourth term in the second integral of (61l) cancel
_each other, and if fg = ifg/Ay is substituted, the last
"term of (61) vanishes, Employing (67) again and integrat—

_ing by parts gives

+2' EHfH ..d.'b f‘*‘l BgJ/1-t3 AH

J-a »/1 - t® 2t(A + ie)
2 <ET{ s +[+1<EH‘l~tBAH> £ at (62)
26(A + 19) N 26(A +18) /.
“and o =
*1Eefahg® +1mgiAy® T~ tF
at = -Jf fgdt
JL =53 - 2¢( A + i8) _
*iEeAHE«/l -t~ _|*t /"“(weAHB»/l—-tE) e as (63)
2t(A + i8) 2t (A + 18) & vh

. Using (62) and (63} gives

2
WHHq-AH WGG

+l . ) l: .’l LI .’ »
= f £ ~XEL [-“ =% 'A'H"?(-}-“-g- + 1B+
- A

__...Iil‘i\] } b

1 /I =52 Lt(A + ie) B Ag® 2 e
J1 - t® '

“{m (5t +monas” ¢ & shag] ) e o (64)

t=—1

which implies theorem (53);

e. A SimplifiC@tion of the Problen

Following the present line ‘of attack the next atep is to
investigate the solutions of equation (53) axnd.to. determine
thoge gmon them which are most appropriate for ‘th velop—
ment o% thg theory. ° e SlderaTen

However, the mathematical. ﬁnalysis of thié qﬁestion has
not yet been developed to the extent needed im' tha cas.e. under
oconsideration — that is, in- the\general case of an eouﬁtion
of mixed type — and to work out this mathematical theoryl

lThe author wili_develoP this approach in a future paper,
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here would lead "outside the sddpe of the presént paper.
Instead of this, two simplifications are made, by which 1%

1s p05s1ble to employ alraady known mathematical results,

._,'--

Firgt, only the subsonic case will be consldered. This
means that the solutions of the equation (30) will be con—
sidered only in the domains where the equation is of elliptic
type. Secondly, function F in .(70) will be replaced by a
polynomial Fp 1in %A  which vanishes at A==,

- In the “gcase of an incompressible fluid whisrel e
solution of the ‘Laplace equation there is gbtained for the
stréam function thé representation

Y(v, 6) = Im f(s), ' s=1og€—ie | (65)l

in:téfms of an arbitrary furction £, of one variable.
(See equation (10).) '

Generalizing this result it is found in. the following
that the stream function of a subsonic flow of a compressible
fluid, which ls a solution of (32), can be represented in
the form . . TR . SRR >

o .. e e o e R S T d

i L :
B . v

V(v, 8) = 1'15 Im{H(v) [}?gy ' h

N Em g = remege
(2n)! (n) "L E ]}-
) -r—g IS )f [ TR ety st ] s
n=1 o
(n) o

where § = A(v) + ie - ané va) and (v), 'n"='i;:2,:: o
are functions which depend'upon m, v, and k. For

(n )

k= 1-4»Q(n> = lip Qu ° . are .graphically réyreyéﬁﬁéﬁfin.u
- m—3 LA e BE R Eo e S ERLREES
table Ib,

The romainder of this séction and sections 10, 11 and
14 are deyoted,bo,an exact-formulation &nd derivatioa- of the

-

foEBgOIngﬂrepresentatlnn for the stream function.l Y

3 G . .
K

..‘.J

In oraer to 1ink tne ensuing analysls wlth standard math—

" ematital procedure, equation (30) is reduced %' the canondcal

form L,(V) = 0, (see (46)), by introducing the variables

1The mathematical details of the proofs in secs, 9 to
11l mey, for the most part, be omitted by the reader whose
primary interest lies in the fleld of physical applications.
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P
——— .

€= A(M) + 408, € = A(M)-— 10 (67)
(See (44) gnd'(4éfli iﬁe'éq@aéion_(éz)'ﬁéééﬁesf_1

G, (E)-— (1 — tz)(m§t4-NEt) - 7 (E; + NE) * 2§t LQ(E)— (68)

The condition (54) will be satlsfied if (E; + NE)/t§ is
regular at the p01nt §=-01 b= 0. )

PR

If now, instead of W and'”El

o ¥ = [exp<f' Nd(‘b;)‘]w ‘and E* = [éxp<fz+;rd(§+£>:l (69)

are considered, then L, becomes

T L(V*) = U¥pF + FU* = b."' (70)
whers
F=—(Ng + =)
- (k + 1)v* )
[207 = L (x+1)v2]¥2 [0 - DR 22 Sy
v
L (x4 1)ve

f
o epmr—

s4ag- Z(k + 1) 7o [ag> - 5 (¥-1)77]
(k+1)v‘*{16~a° + 4(1°- 2k)ao®v -'-,-(k.,._-%_{v‘g. .
64[3'0 (k +1)v ]3[a° - ’(k"—'l)v;j-:f"

=(k+i)ﬁ [ (Bk— 1N — 4(5 — 2x) 42 + 16]""
64(1.— M®)®

" (71)

Since A and M. are:.connected by the relation (48},
the expression F 4is a function of A which has a pole of
the second order at N =0, . And..-A = 0 ' lies on the boundwry
of the interval of.variation of. A. since, .f M ranges over

(0, 1), A. .ranges.ovear {(=w, O .

-
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The second simplificétion +s made by replacing the
function -F.. by ag?roximatingl function . F which is a
polynomial 1n of the ‘order 1 - and vanishes at A = —co,

: In'section'15“it fs‘pfoved'that'in'evéry interval
(=, Ay ), ‘Ag € 0, ‘the original F may be approximated
arbitrarfly closely ‘by: such a polynomigl. -This means that
to every: Ay :< O and every e > O,: there is detaambne¢oa

polynomial ¥y in ed, Fpl-oe) = .such that

A
“ o>
A

Ao -~ (72)

3 . AGD

iF(A) - Fm(eAS é € for =

.
~n

.-.t_.
.-a Fotes s

" H I
Vo b,

The following is now proved

VT Y speddw (67), To every polvnomial TF (BA)' in eM  +there
exists & constant ¢, such that S o

{ar (23) /an K Bo@)t (AFH2, for N <0 and ¥=0,1,2,4...(78)

Proof: * Sinide _ ' .o e

m
- . ¥ (?ﬁ) = S- cKeZAKt“pK . constants m“
o = e B R K“—‘l SR ’ Ct -

. the derivatives of a single term-.teSA, But a¥e B“/d)x

= sKeSA_ and ags K -—» o K!/(- As)Kb*—> @3, ,tperﬁfpre thers

exigts’ 8 ¢ dueh’that

. afesh/a ¥ S0/, k=0, 1,22, . . . (74)

'In some instances it is exvedlent to aporoximate , F,
by the sum of a polvnomial and a function which becomes in-

1
finite as ;E at AN = 0, .
In this 8econd case it is necessary to use the reéuﬁt
of reference 3, sec. 4, instead of theorem (83)

D
MKl

Note that in (4 2) of reference 3, ' GF (k + 1)(m - X)k+2

- cl{x +.1 . -2
should read L k+;; in (4,3) [P (n'+ 1)] should be
(o = A) : i
. EF(n-+]Qj-l; and on line 11 of 279 1im c(n) = X
. . ;o . .(. } '-',_';:f: HF'F‘;'” r 2
should be f1im~ (3<n>?5l’én"'= -%— T :

n — o,
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In sections 10 .and 11 an integral .revregentation will
be derived in “terms’ of analytic functione for the solutions
of Lm. the equation résulting from replacing T by Pg

in L(¢*) = 0; that 1g, 1 (W ) EZ +—me* =

10 Lemma:

. .
= '-‘ T

.Lemne (75j: If E*(C ﬁ,lt) 'iglgzsolgtion of equation

G (B*) = (1 - tz)‘.E*E_t.-—'t—.l T+ 206 [B g+ FgE*] = 0 (75)

and E*—/Qt 1s continwous &t the point t = O and ¢{ = O,
then

/' ze(t, T, o) ¢ (—%C(:l - -t“a))dt/(‘l e (76)
n .

where £(g), n arbltrary analytic fnnctiom'gi a8 complex

variable 2z, 18 a solution of

Vo + P_yx' = 0. . . . (77)
. g.t 'm\w N -
Proof: Differentiating with respect to { gives
o 2 R S
Win_/}E!gfdt/(l—t)l/a T (78)
0 “';I- "

Differentiating again with respect to f egives

- AT +1
2
S T dt/(l -t )"’a+ ~EX £ at/(1-t7)1/2 (79)
ee T Tt T e -
a -1 _ C M1 2
'If it 1s noticed that I
L oty %(1 - t%)E and ofyie= - tHE)
where I ; ' ' ' '
T T ar(a) BRI T
£t o= =2t s = = (1 « t2)
. | ds : %ﬁé
there is obtained
Jee 1 (1;.133)
f, = - = STl f 80
; 2 -g;'t" t ( )

and therefore
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+1 +1 1/2
bl . 2yL/=2 .. 1 l (L~ t3) 5
B £ At/ -1t ? o — = . _ Bx fF.4¢t
,[1 E- gd/a )'" \. N 2‘ ~1 . gt ' '.c k '

__(1--{")1"3 “je=1 i [(1 32)10R *]
- 2ttt o ft=—1+j.‘.1_ ,,f 2 (¢ gy 2 03

(by integration by parts). Substititing the obtained value
into (77) gives I .

/=2 =1
wEE+FmW*=-—(1"t)l E*f‘t

Lt |2
+f+l f{ [(1 _ g2yase *] . ﬂf + FpE* } -
R 2¢t Ef & (1 — 2)1/2

which implies lemma (75),

.11, The Representa{ion of the Stream Function in the
Logarithmic Plahe for the Subsonic Qase

Theorem (83). Let ~-Pp(2\) be an anslytic function of

a real variable, A, gdefined for A <O, yhich possesses the
property that vy T, oo {-
. b . % . pee b »oa « N
cl'KFm < c(K+1)! . < - ¥ = (83)
m —--(—:;‘—)-I-c-_x*_—al for: A= O".-_ and = 9, l,’ 2, s . .

yhere c 1is a _guita.bly chosen congtgnt

Fu;-ther, let Q(n)(Z)\) =1, 2, . ., denote a set
of functions which are d.efinqd. by the recurrence formula:

(20+1) (2D gl (8) & axpa®) =0, o )eary
aln) (a) =0, a< 0

Finally, let &(f) 1de _a__ enalytic function regular
domain B which contains the origin, Then

lp
]
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(A, GD = [g(i)

ST Lgél_ (n)(éX)/Cg.. .Jrgigign)dﬁn. .dglJ (3r)
n=L ¥ <o

will be a solution of

- ————————t— e St

3 owx + Fp(2A)VX = -—(S}:“: * 3:;”:) + Fpl2A )™

= Vi Byl 2M V% = 0 (86)

which is defined in every gimply connected domgin lying in
the intersection of H and 3, wher&: H. denotes the domain

82 < 3AR, A<O0.

Broof: If
'. g.*l = l_+ t§1/8 y‘ (s ¢ 1/2.)21i-':.q(n)(2;‘3 (87)
' n=1 ' X

then:innstbushom1that E* satisfies the equation

G (E*) (1 - t JEX  ~ tTlEX +;a§tl:szf + FmE*] = 0 (88)

¢t N
x
(see equation 76), and that EE‘[ £+ i regular at { =0,
t = 0. 3I¥  formally satisfies ~“eqiiation (88). In fact,
Ex = s (1) - i3, ean—a n—1 (n—1) o . . D
EE - th(l) . .t (n~l)t3n—3§n_lQ(n l) < e
. ? (83)
E = < q + L §QA o
+ ﬁ'an'f?.'.l—.%‘-(n.-— 1)..§P-*?QK@1‘1)+ Lt (n—l)} ..,
L . _

Thusg
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-uy, = L S T

CwoagPrmgRg(a)

L3 L] wh o

t 2 = -' o + (n__z)tp_n—slgn-— Q(n—a)

£t AL

+ (n-1) tan-lgn-lq)(\n‘l) oo

LV
or o' o

N T N
PR > . SEEE R (.90.)'
X _ _{n—1)
( . : . —=(n-2)tRD—3 F g BT
ot g —-(n?l)lt?fé‘n—_l gn—lQ;(\n)~
B 1A 1

- L y=n-3 gv'i-v 1Q(§—a)

. ' 2

1 tzh—lg'&'Q(n_d"‘) Y

=2t LT B* = ~34lTp— . . . - Zt'ﬁi‘“En‘lF q(n-”

-zt 1~§ F’mq(n_l) - ...

.

6o (3% = - %—LQ;E”{&}F,I;]—.. I i S ‘-zn—l)q( e

+ Q{i 1Yy 4 g 1)] ... (s1)

which implies (84). ©Now, proceed to the proof of the con-
vergence of (87). If.A 1is a d.omina.nt of B — that is, if
for all derivatives ‘&Kﬁ/d)\ =0, 2, 2, . .+ «, it fol-
lows that .
Id.K:B/d.KKIS d. A/d?\K CuKwm a0y, B, . Wi aE A <0 (92)
0NN } St .t T 0 ot o fa

ThlS will be ind;cated by '
3 << £ or A >3 (93)

By ‘the recurrence,formula,.

’ .owon - . .
-~ L g Co i . _--,:." - P e
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(2o + 1" 23600, 4c..<-.~>~)‘.f[‘ fa Bl ane °-zfn)‘<':-k>-‘-n] (s4)
) = ao/-n)2, G Me)r 0
the functions C"),(n) I'a;.:"e .:ii'tfsdi;.c.ed. '
Writing Qin) = c(n)(—l.)—"'l(m"'}) ‘T gives
(2as1)o(mh2) (L) <(n+l)c(n)+. e n.)> (=3)~(a¥2)  (g5)

r .

and from this is obtained . _ SRR

t : oln+l)
_ ety o) 2 (96)
Thus, thé series
« 00
1 + zz L (n>(zx) : (97)
n=1 .
converges for
o AR + 82 <a)? (98)
—2A : .
It ig shown now that

Clearly, -the §(n° and all derivatives dKQ\n)/de are
positive, . Purther, by (84),:(94), and (83) it follows that

_Q(:L),<<'§(-1). . o :(106)

Equation (99) follows by induction. Suppose it holds for
some n, say n = u; then, by (84):and {94),
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.;.._ 5 .':I;; . {_'.“ : A o . .
. " .:: .._ :..... -t -—.--.d- -u{’n-—au—-.-« ----- \ ' s .: i )
...AW;Q(FH'].){-_, - e X [Q(l—b) +4 '}::I'*Q(I-B)d;\]
N (2u+l) :

A
51 [gcu.).-,, do [ L Q(u)m}g 5(w1) (101)
(2uw+1) L7H ), (=02 .

. Fugtger, since;all derivatives §§$+l) of Q(u+l) are com—

binations of the derivatives Qiﬁ) of Q(“) with positive
i 1
coefficients, anm pince the expressions for Qig ) In $erms
of Qi%) hgvg the sane structurn as the cxpredsions for ()
(u+1) ~ (1) ‘ . (n) _ 3g'w
Q in terms_of Q. r ,» (100) follows. HEere X =
SIS % k-

Thus*tﬁa fuﬁcvan‘“iﬁ“‘introduced 4n (87) is a solution
of (ss) e t'isfying the condition: Eflbt regular at £ = O
and t = 0,

LA YR X
e . '

o R R T:R T S U . F A SR 4 e e
By lemma (78)7if Follows’ that
+1 :
PRI R NNETE 5 B (N e SR po o B ) N A B
W = In [[1 B £, )¢ <%§ (1--1-,2)) dt/_(;l—ta):l./-?-] e (102)

.

where " £(2), 7 an arbitrary analytic Funebion  of a complex
variable 2, 1is a solution of (86) The series (102) con-—
verges' ‘uniformly for 6% <ga?, Tﬁerefore aftg;”repla01ng

E* in (102) by the right—hand s¥de .of (87) the” brder of .---.:
summation and integration in the resulting expression may be

changed to obbain .. . L. - e L o

TR R~ S foicintiaxa MU

5 =ﬂu1h:{;.“f = [ 1 g (l—- 2)} d‘b /( l ta)l/z .-... .. ,.-._-_::..:.. A
e L Nl
— 1

+2_ 'Qf'('n)(zx)ﬁnf tahf I—l g (1-1:3)} dt/(l ta)l'/‘z} (103)

i .'-'n'.'="]_‘.'. et [iq . Lo
Siiw %120 Y hsz”.’ i ' ‘“'.. wF oGP vtune

. N H f v o B e e e ! Lonmlaa e
Let *(%7) =y apZ , and writed - - ¢ S

v\:io - . . T Yan o
(o]

T(n») 1is the gamma function fo et x P2 dt; so, for
integral valuos of p, I'(p + 1) =p! = p(p - 1) . . . L.
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/jl [-Lm-_tr )} at/(1-t2 ) = g(°)(§)

,.‘."_.-'2"’(._11+v) I (v+1)1" (u+1)
"v=0 .

:"o
(104)
-or =0, 1,2, . .

Then .
c f tanffh_lg;g (1—% a):[ dt/(l-—tz)l/z S_"an 5

S COLICLE ) [
s E? ) e

P(n+v+1)

=(n-->(n__j | s avf‘(w—g) ORI

e (n#v) Ly (b+1¥D(v+1) 2V

V=0
) (2n-1)(?2;§) e 21 g(n) () - Eég%éﬂii% g(n)(g) (105 )

Substitute the last term of (105) into (103) to obtain the
expression (85) . .

12, The Evaluation of the Coefficients 'Q(n>(M)1

It was proved in section 9 that if F 'is replaced by
F, the series obtained for E* converges, and (85) rep-—
resents a solution of (86) :
N, . o O :
It is important for praétical parposes ‘to comnute the
explicitly Since m can be chosen so large that in

Q(n)

1In this .and the : fallowing section advantage is taken
of the remark in footnote 2 on.-p. 10.

®In a later paper the correctlons tdﬁbe_méde in order
to pass from the @ n) obtairned in the above—described
manner to the Qm(n) obtained using a polynomial F will
te determined, It will be .seen.that,. in general, tBese
corrections may be neglected.
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the given interval..(—.®,X0), Ag< O, Fp .and any reguired
number of the derivatives eof Fp differs by less than any
prescribed. € >0 from the corresponding derivatives of F,
thbﬂlgcpa will be. computed. using the function -F "instead
of Fp. As will be shown, the expressions obtained for

Q(n) consist of a finite number of rational and logarithmic
terms in I . S L S

=
I}

= (1_M8)1(2 _ (106)

i "o b

(For the relation between A and M, sece (48) ) From the
second equation of (84) '

A Cemlen)
w0 ol #) =’-14'[ T ax = —2 [ FM ar
- ,-:'_t ~; - '._:5 . n 4 —en . , . . 1. d.T -

.T. .. : o
1/ [s(i+k) 12k, 2(3k-7)

- + 4(k+2)
1 8L L ¢ = p* 7@ -
.f-\ 3 " "
..y R R L 2
DT o e e (Sk—l)T{} — z
(T —-1) (l—-hzT‘E)
- (k+1) : i—3k iy
P s L. 8 *1 k-1 - - -
E'” oy Ye. ;-'fl" . T
e . v —
K 14t g
4 k+1 : (10.#)
(k2—1)k”~1 1-%l p
. e o ':..'::..‘..._.:"'..,.k-'-l. . T=l- N i 1&

Setting =n = 1 in the first expression of (84) gives

.'.'.4-(.'-'."'.... LR 3R

S - ......-..‘.:.. _- -éq.’(2>— Q( 1) 4FQ(1> TS S IR
N RN x SR S .5.':-""”'.‘.._i,i:j_'._.-.ﬁ.. (l)(zk)

2oL G

L . JF 6‘; #35; Qil)'ﬁ/‘ oM agt

3 %
s g 1 oy e R e o g2k (o)
= _ 1 1,007 _ & 1 (a2 15
_LoF % TEe TP (1G8)
S R S
I e sl mshey avesmars b e N A . vt o4 |l .- y .
E‘" l: EN ". K4



42 NACA TN No. 972

0 - N § vmrer *
ral 0 . e, FRRROR R ]

Tt s noted tﬁat. ;ﬁjgenéral,.if iq11DWSL?pC%:§84) that : .

. e e : _T(zh)
{2n+1)Q{R*1) =:—Qin9.—4 f o{®)p ap f o™ ag{y)  (109)
LR T(--oo)
since froum (dKF/dXK)A =0 it follows that
."\-3..;' Y m T
| Qin)(,m)=q(n)(_m)— o :n = O!. ;]_, 2, « «
Thus there is olhained
A > (1)°
(3) . _ 4 4 r) 18 2an+ 2 ol?
.sq = Ty, * 3 Tq = P2k + 2o Q
) . -
or
o(®) = oy A omlr) o /J\Fadh+ (1) (110)
15 15 15
o
where
k—1
2 (r=2-1) (;—'k+ T ) :
= (krl) L2 | lzo(k+1) + 48kT3
128 ;®
| | —4(3k—7)1" — 2 Sk—l)T’;|
and L }
K 2 '
jF F® g 2 28(k*r1)”  10k(k+l) . 39k%-80k-115
- ) 7 B 5
‘ 9T T 5T
Y, « ] -
. 2(11k +48k%+59k+20)  41k* - 06k®—18k%+112k+01
B(x+1)TFr 0 (x+1)° T
N 2(3k* +17%° —15%° -21k+8) _ (3k—1)2(k+1)
(x-1)2 T 3(k—1)
In order to obtagx}yfgm‘W: gsge'(GS))it#is necessary to

have
- T+t TS

. B =0\ 1 2( k-1

H -exp (._gf N(d§+§)/—.(,l--Mav5;/4 [ 2 ] (111)

2+( k=1)M"
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Thug

'y M e
PR

.m

\U,,('y’e‘)' :?.'.r H;- —[;I-m'- g(ﬁ) +Z : (2n+l). gr}) -Inll:g( )(t)] <112)

2n1"(n+1)

n=1 4

e,

S g‘l-‘
where Im = imaginary part and. g(n+1)(§) ..f (n)(ﬁ)dﬁ,'g(o)(ﬁ)

= g(ﬁ). In order to evaluate the terms af (136) \lle and \l/v

are needed. F g

1 .
Differentiatding (112) with respect to & and to v,
respectively, gives oo

Y

. -
N SRR o

: (Be.T real part - . . i, )
v =a(°) In gp + R(l)Im g + gR( )ia .)+%R(3) In gl ®)
A I'(2n—1) '.() (n—1)
A -_..+.-..g2§1_2”n)n Imgnl “...(114)
wners & °) g & gl '=..."'H' .Q(l)

’ ....'Rgn). [(Hq(n 1)> - 2n(2n—l{l (n)] dvv | .”.r}:= 2, 3y, . .

FE

The values of H-, Q(n) -1im Q,m(n), f.or k = ~0.5 an‘&;those

] : L m—:> p .
of H, Q(n),R(n)r- limR (= :) ?or k= 1. 4 " are given numerically
o =t . P, A

in tables IIa and IIdb, respectively. TablesIa and Ib give
their gre.phical» re,presentations..

_liemark. If the origin is moved and. A is replaced by A*+ aj
that 1is, setting '

£*= t+ a, =10+ a, areal,

equation (7C) assumes the, form:

Mr, E. Ostrow assisted with the computation of these
tables. ' '
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32y (aw aw\_o " (115)

ER. & 4

ag*a;* * otk a_t,*/

Lo (V) =

The general formula (see (85) and (77))may now be used for
the solutions of (115).

‘Since ; ~= L(Ng + N®)(see (71)) 1t &s found that Tq
= F({* —a, g*-m). Using (109) gives
Q(n) Q(n)(zx*—za) Hg, = H(2A*— 2a),

"Thus, the generalized'f$rmula (112) becomes

V(v,8) = H [2?\*(v) — 2a] Im [g(ﬁ*)

b N L2 o) Gan(ey - 2a)e(®) (10 | (126)

P °n 1
N 2°n(n)!

-

g(2+1)(£x) 5f§ R e G U

, )
'13; The Behavior'offéfgﬁﬁsén{c'Flow at Infinity

At the point 2 = o + 1B, o, B real, of the hodograph
plane which corresponds to the point! 3z =« of the physi-
cal plane, the stream function V¥ has a singularity. This
fact leads to the study of ‘the singularlties of functions
‘s8atisfying (46)

If point a is a branch point, then the use of formulas
(85) and (69) yields = singularity ‘which possesses the de—
sired features. Indeed

. W(l\(.v),,ve) = 1(v) {Im [ )1. Sl e .Q('i) <(a_.__ g)lfg_ a:__/z)

r 2 ((a-nyerr _are g2 ) o ]

e : (117)

E= A(v) —Iie

1T~1s Mesns that the velocity .me L obtaing at voint
- (of “the physical vlane). - '

|
Il
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ig a strean function which is twg—valued at point a and

becomes infinite as {(a - ~ that is, it behaves
like 1/(a—1log v+ 19) for the case of an incompress—
ible fluid., ) Co

If, however, ﬁoint.'a is nét a branch point — that
ig, if (85) and (69) are applied to the function
&= 1/(a.~.{) — then

Jtl.

( (Z)e)- w5 (_____(._7 %gg 5(7)@%(&_“_108%
* 3 (2)(v)<ka~§)leg(m— )-(a—g)log(m+§> ;} H?:(llé)

is obtained. which is not a single—valued functi9n.

For the sake of brevity the case of g = logla — {)
.is not discussed, but here alsqe, in general, a many—valued
function is obtained., '

The function (118) can, however, be made one-valued
by replacing the many-valued term (6 = arg-g) by its mean
value (in the sheet under consideration).

Clearly, this new function will no longer be an exact
solution of equation {(46), but 'in many instances it will
not differ very much from an exact solution.! Plainly
this procedure may be refined

It is, however, "of. .interest from = theoretical point
of view to determime (exact) solutions of® (86) which are
single—~valued and have a logarithmic singularity at point a.

. ) Clearly, it 'is sufficient to find functions for equa—
tion (86) which possess a logarithmic singularity.

A function
w*()\: 83 )‘os o =W(§ E O' E)
=8t Tt To) 1oe (c 4

+ 30t G Lo §o) (119)

It is noted that 1ﬁ“this hasé expressions (136) will
no laonger:.be complete differentials, which fact may cause
-saome dlfflculty if & - 1% an inter¥or point of the domain,

Engié'assumed Heré-  thav: F. is replaced by Fp. (See
sec. 9, "
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—

whigh, considdered as & function'of _ﬁ, §, saf tafies equation
(86) in the whole plane, except at the point  { = {,, is
termed a "fundamental solution" of squation (86) with the
affix at { = €o. :

Clearty, Vv = W(f, {; a, 2) represents a desired

stream functior with & singularity st ¢ = a. ,
Notation: If W —We, ¢ an arbitrary constant, is regular =t

Point a, the-corresponding flow can be said to have a pseudo—
vortex at infinity.

. The functians A& and B may be obtained in the follow-—
ing nanner (see sec. 7 of reference 2):

Let 's new variable be introduced:

S S . (120)
Bquation (86) then becomes

5?%7%?? + Fp (0, + Lo; E; +-Eo) = 0 (121)

et

A fundamental solution of (121) with the affix at

= 0 will be a fundamental solution of (as) with the affix
at § § ° . 3

_ 1 1 t —alt t
Substi_tuting W = 5 & log §l t s a log §1+ B, a'a(§1'§1)
B=38(L,0 ) into (121) gives

HCR R F”‘a}hggﬁ%cg; T )

+j3§lzx + FgB = O - (122)

Therefore a is a solution of (121) which has the property

" —

that ‘< £ /b ag /% ) s, reguia'r.' st ‘=0, =0

£y
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¢, T, t L [A gba |
a=1—ff Fp, d§2d§ +jflﬁbL[f IF.m-dC d§ d§ d§, . .. :(123)

o “o
igs a desired golutisén of (IEIT Khi ‘B is g ssolu-
tion of the equatioh’ T

Bﬁlzl' + PpB+G=0,v. @-é.( ;) ( a¢ /f> (124)

It fo‘lowa that

'
-~

CREURy Y

f [ Gdi [[ f[ G»df,sc;; d§2d§9+ _'.:""'I(I‘:Lzs)
070"

re

Remark.l: As indicated elsewhere, the theory of operators
yYields an alternative expression for a. :
In references 2 and 12 a function € was considered
,which ig a solution of (75).and.therefore which when sub—
"stituted ‘into (76) for .E yields a solution of! (121); ¢
has the following property: ., % C.

. .-.e(c-l.il v t) =t1._4f.£§.¢.;(ﬂa-__f;,='.f>: . “é‘”

where €, is agailn a regular fupction of £1,§ 1+ (See refer-
ence’ ¥z, formules (1. 12) k1.14), end (1. 15) ) 2

If the function B is denoted by e(§1.§ vt3 Lor o)
corresponding to equatiom (121), then i

: +1 +1
a(t,,0) =] . eat/(1- t")”"a m/2i+ L, T o[ e as/(1-62)272
}. ‘JC jﬂx :
‘ y;élds a dééiféﬁjéplutiphrpf {131)::h¢§g;., :
_ .. - +1 . _ 0
a(t,8 8. ¢C,) -[e(ﬁ Slor G Los 83750 E)aE/ (182272 (127)
L Ty - . ) . e

PPN oy N STy e - . ” —, . -
1Thé-functions Q(n)(v/ao) which correspond to € are
not real, This was the reason that in réference 3 and in‘ the

present paper a n?w solution E is introduced which ylelds
.real funetions n>(v/ao)

In reference 12, sec., 1L, the function € is determined
in a form of an infinite series,

It 1s observed that for various equations € can be
represented in a closed form.
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The function W satisfies'égéétio% QSG). Clearly
o g

bl . 2

T A TR

+ A;log [(A=2ro)% + (8 = 08,)%] + Ay (122)

e P . '."1:_ HEEN . 0 - . -

'3

kY

where A,,Ap, and Az are entirle functions, 1s also a-solu—

tlon of this equation S
. RS . Wk o . S T
Notatinn:’ If-‘ﬂhégle*—-Ca-%%—f Cys» O, ardbltrary constants

is regular at ¢ = a, then it can be said!that the- corre—

sponding flow has & comhined pseudo—vortex and ‘pseudo—doudblet

at infinity.

I By refining this p:ocedure (namely, considering func—'

( -1
Flons Ay §"“§(o)) Ky <§—-§((§> + Ag + Ag 6tc.)

other univalent solutions of (Bf), may be found which have
singularities ab point. §~'a.

|‘.

..Rsmark 2: In the case where the density pressure relation
ig of the form A+ %1 the functlons. W* -and 'SEJ are
“(A=rg)E+ (8—B)%

$ 106 X =A% + (8 )% ana

_ . 1/ e
respecbively, where l %—log Ei'+ Ev;aoi %1/2 }; It 1is
e + v [ %e) + 1.

(129)

noted thet 1in this iarticular case new singularities are ob—

tained by differentlating W* - with réspect to: 'X," For in—
stance,

L(o1) _ 2w

=

= - )\-Qv | ?
T T ek L)

+(9-S)2

A
i

o Ciéo)

is 8 singularity which is infin;ta of rhe first order and is

*.. .
indspsndsnt of ZZ .

’
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14.. The Passage bé the Physical Plane
g’ -
In the following =« procedure will be described for de—
., termining the-flow 4in the physical plane corréspon ing t0,a
* stream function, ¥ (v,8), giwen 4in' the hodograph plane, .

Gonsidering SE g; %E,.%%_,aeuggﬁpowp, it 1is fouﬁa
from | "':L':'-'"t T e i b
.a_!if-p_a.‘;b_él:aw_z gﬁ‘iéﬁ+§.¢;§l=1
dx 3y dy 3 dV. o 9% 30 3%,
% 2x, 303y 30 [ ¥k, g
dx Y dy ¢ v _:..”Bx B¢ By_a¢

that at- every poinft at which the Facabian - IR BT

L Do BB W B0 W (vy® + vyt | wRaans
Gy dx dy  dy ox ™ ,Rohgg;SZ)

(see (24)) does not vanish and is finite, the relations -

d3x _ Y oy _ _ ¥
D = —— -—lv- = -
29 oy’ D

-4 (a3

H
}
SR
d
2
u
o/
O

3x
b¢

nold. Using (24) yields from (133) and (132) ¢

a%m 2 a6 % 2% ay =208 8 4o Poein.dug
-drx.“l'.”_,a:¢.-d-l'. .. W .d~w e v._.-l -.-.d-¢‘ . p.-. .-.‘.e.. e '.. - \LI (134)
A = o _ sin 8 Po cos 8
LTt fyav e 2hae s TR S
R (1-—M2) ' T
i® ="bydv + Pgdas = = odv ¥ I p ¢ a8-" (135)
pv :
there.is ‘obtainea ~ 1 R



50 NACA TN Neo. 972

= %{[_ (l—Ma)cos?W - -s—%l—-?-\bv}dv i [cos oV — Ei.rvl G\Ue}da}

ve o if _ (136)
d‘y.=%g'{[" (l—!dav)asine \ve + _c_:o: ] ‘\‘Vv]d_v + [sin 6\&v+ _qo: e\be]de}
ori =’ | B g . .. . -
az = dx+1 ay,.:;%‘eie.{;[-: —1-’;’;13 Uy o+t %v—]dv +[\t/v 1 \E;g-]da}

i o po oi%n?
i <w(l-.og oy ”‘9) (‘“““"* “)* 7 Tyr VYeav (13D

Along a streamline, V= constantj that is, VY dv+V¥ed8=0.
Substituting a8 = — ¥ dv/Vg into (137) gives for the

streamlines in the fhysical plane the parametrilic representa—
tiont '

pocos 8 [(1—M%) Ug® 4+ vav, 2] . .\
S v
. f pv? | \
» p_cO8 8 a2 2Y_ =2 8 MRV
=—f° [E+v"]av+f°°°°s 8 av (128)
pv= Ve pv?
in 8 [(1 — M2)Wp2 +v2y 2
'y = _jr_Pos 2. z[( zye V- Ve] -4v
pv= 8
- 2
- Py 8ind (Vg2 4 2 V2] v +‘[‘posin & M=y .
' . pve J

pva. Ve

where the integration 1is carried oaut along a streamline,
VY(v, 8) = constant. The integrals (138) represent a general—
ization of formulas (13). Substituiing for V¥ the expres—
sions (69), (85), gives a parametric rapresentation for the
"streamlines in terms of an arbitrary analytic function of
one variable.

Suppose that the stream function V{v, 6) of a com—
pressible fluid flow is given, where V(v, 8) is defined

AL s went

*It is assumed here arnd in the following tha% Vg and
Yy are univalent functions in the domain considered,
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in the simply connected domain E (with boundary curve h)
in the hodograph plane, and has & singularity at the point
a (the image of z = ®), (See, for instance, fig. 2b.)

Just as in -the -case of an incompresisible fluid the con-—
ditions must be determined in order that the obestacle in the
physical plane (which is formed by the image of the boundary
curve h of! H) be a closed curve.' Glearly,*the ‘necessary
and sufficient condition in order that the image of E 1in
the.physioal plane be single—~valued is that

19

[_p:__{[_.]:_:_ﬁ\p +1\.U_‘_’.:}v-+[ip +E.\lie_]de}=0(139)
J1 P v v i

where ! is any simple closed curve lying entirely in H + h,

Since the integrand of (139) is a complete differential,
the value.of the integral doed not change if 1 isg '‘continu~—
.ously deformed without leaving H + h. and without passing .
through the singular point a.

Thus, in particular! if the boundary curve h is chosen

for it follows that avy = a¢ dv + %% de = O, that is,
v

<¢—> ‘a8 along h, since h 1is a streamline, If

Lh_ﬁ_ﬁzmw.'& ed. into (139), the condition is ob—
tained thet the image of h in_the phzsical plane _be a
closed curve in a form analogous to (15) and (16)

On the other hand, the relation (139) can also be written
in a diffierent form which is often more suitabdble for appli-—
cations. . . . ot

In section 13 some standard types of single—valued
81ngu1arities were introduced, that is, for cvery point a
= o.+ i functions were defined which are single—valued
in the whole subsonic region and which satisfy equation (48)
there, except at point a where they become iInfinite. Such
functions .are

PO
R I

-"W(o)(v 9; a, e) = w*(x 93 )\0,90) h . (140)

1Ib 15 ‘gssumed here that the pqipt .vf=_Q.'is not an in-

"Jterior point of ‘domain H, If .y =0, 8 = 0. is =n,interior

point it 1is well to proceed similarlv but use as variables v1
and v, instead of v and 6,
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and
anyl o) A, 8 Ag, ©
W(®)(v, 8 a,8)= ( e o) (141)
S L
where W* is given by (118), B = €, and

Ao

_ - 2y1/2 _ z2y1/2""
Loogll=(1 =M ) _(1 + h(1l — My2) _) ] o)
£ L1+ (1= M2)"2\1 — n(1 — n,32)27%

o

M, = - : -
i {aoz_%(k_l)az]llz

Notation: With every singularity W(n), n=0,1,2, . . .
may be associated\ﬁ (complex) number X, + iY, which will be
denoted by R(F(n{/'

m(#(2)) = x5 + 17y (143)

; (n) (n)
=f% e-i&{[_l_:_é_Mf_ Wd(n) + i van ]dv +[Wv(n)—iwiv:—]du}
c

where ¢ 18 an arbitrary simple closed curve around =a, the

senselof integration being such that a always lles to the
left.,

Let it be assumed now that the stream function ¥ can
be represented in the neighborhood of a (the inmage of z =)
in the form

k

V= zz Anw(n) + ¥ (144)

n=1

where Ap are constants;and::¥. is a function which 1is

regular at point a. Since curve ¢ ma e chosen for 1,
and since the integral (137) in which W'D is replaced by

'Since the integrand of .(148) is a complete differential,
the value of the integral is independent of the choice of the
path of ¢ integration.
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vanighes,it i1s concluded that an alternate form of the
condition that the image of h in the physical vlane, for a
flow the stream function of ‘which 1s given bx,(l44) be a
cloged curve is that

-e o - T L

n=1 .:_ L ) .

It will be of interest to discuss in more detail the

svaluation of the quant itieS' R',QW(__D‘)), in the special case,
when k = — 1. _ ) e st

As was indicated in section 13 in this case

W(°)

=%—1o'g['(i—xo)2+(a‘-p)2 3, wla) = 2"5 (1486)
(A=2o)®+ (8-p)%

where a + 1B = a.

)’[1+(V/ao)2] a2 _q }

A log
%_ [1+(v/a 21372 4y

. [1+‘('dyao>'211/2'-1}
2 [ + (afag)?) /2 41

In addition to these singularities are obtaindd -(in thie
particular case) by diiferentiating with respect to A, the
singularities T

U W en s erw e -- 5 O Cra O 3

neow

{o01) _ BW(OB = A _.A°
" a)\l ':_-('7\—7\°)2+(9—_B)2' , ete. | -(14'7)

Substituting

LS

W (0) = l LA y - )\ .'.'....';....'i.i.....,'_.-.
E(x = 2, >2+<e a) Tl + (v/ag)?]¥/?

(o) =i 8~ B .
[(x xo)""+(e—s)23
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54
or ) | .
(1)_ z(x—x)(e_s)
{QNETA )3+(9-B)ﬂ“v[1 + (v/ao)zjl/é: SO
(1) _ _(A=2o)® = (0= §)=
: s [(A=2p )2+ (0~ )] (148)
or
—(2=20)% + (8 -p)%

FEPT IS
.

w (ov) .
i [(7‘_}‘0)8“'(9-;)2]2\1[1 ¥ (v/ag)? ]1/2_

"3'()\"‘)\9)(9—5)
N = Ap)R £ (e —p)2]%

into (143) gives the corre'sp'on-ding valués R(W(k)> = X + 1Y),
7(01)) = X5y + 1Y¥45,, respectively.

(01)

k=0,1, and R

For instance,

% - SR 1 —cos. 'e(e:-;"‘B)” ' _ sin 8(N — Ag) d.
o [ [(h—ho) +(9 B) ] {Lva(l_,_(v/a )R )1/2 o2 :‘ v
+ [éos'a'('x—xa) L (1t (v/ag)®) P(a ~8) im0 | ae-}
v v } : _:‘. i .

. cos e(x—-xo)]

[ { _—sin%(é-—&)
E(x-x )3+(e~5)23 Lv2(1+ (v/ag)2) 2 -2
-+|:sin e‘(rh"m) _ (1 + (V/ao)z)llz(e—fa')cos ) ] d.e}
v
v : 15 knpendix v

I. Verzflcation that the exprecs1ons jlos) are_complete
¢ifferentials.~ To show that dx as given byl (136a) is a

2By (1862 ) wIill'be denoted in this secction the first
pression of (136), and by (136b) the second expression.
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compléte differential, it -4s hecessary to prove that. the
csefficlients a and D :

_ 8(1 — M2) sin 8 ]
a“Po[ £o8 ov e | Vg~ - Ve |

6. ' sin o
b = E_(?_S__ e ]
p'[ P Ve pv Ve »

(149)

of dv and 40 of the right-~hand side of (136a) satisfy
‘the relation G0 &% .

Iba db

36 oy Selat
Recalling (BdETYié;&é
2
% . v 3 _ _ poll—M7) 3V (151)
08 ov’ ov oV 06
R .- IS SLNERn . . ’
so.thqé -} Lo K g © '
R _ cos 6 -“sin 9
(e e ]
o cos 8 4. sin -8 -
o (S e - ) .
Theqefore _ :
Q&.; .sine N cdsh' I_ cos B sin 8"
6 = Po (‘ S by B0 - —;“‘"v - “’ve
db _ . cos B cos @' 4 ' .oosin 6 Py -
e
+sin & , - gin® \ -
* pvae Yo — pv - Wvg Gl (li%)
~ Thus iﬁ'is_qeﬁeséary to ‘prove that .}.':,- R

_sin B.. j; 305 6. n..; :.cos €Jt' siﬁ-ﬁ‘p#:*: T;.;;
< e :¢’v_ . o \['v>—' - -—-——_vs -CDB:. + = --_\[J¢ .

KL U

R T . v . e

(153)
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t ° ' e

If use is made of (30) ééaih,.it is'ﬂééé%séfﬁ'bnly to show
that HER . . c
! : - M 1
pv pev. pv .
M2 = v .2 (Llog p) (157)
) .5.:;' ‘:Q." te ' '
.But from (25) it is known that
e N . )
k1 - : . .
k - 1 .= c
= 1 -£=2 v (158)
: Po [ - 2ag? ]
so that
v 2. (log p) = - v2
CAZ . ao” = 2 (k -.1)v°

If this is compared with (31) it is seen that this is exactly
equal to —M® " and it therefore has been verified that the
right—hand side -of (136a), is a complete differential. In a
similar fashion it might be shown that the right-hand side

of (136b) is also a complete differential. Hence, since this
is the case, it follows that the irntegrals (138) are inde—
pendent of the path of integration.

II., A_proof of an suxiliary lemma.— In-the following
it will be proved that F(2\)(see sec. 9) can be approxi—

[~ s

mated by polynomials Fp(2N) = aim) edsh agm)= s}

S=0

in every interval (-, Ao, Ag <0, and indicated how %o
determine the Fp(2X).

If 2h 1is replaced by log - X,: the F[2Aa(X)] is a
continuous function of X in the interval (0, Xo), Xo<1,

and by classical results, it is obvious that it can be ap—
proximated by a polynomial in ‘X, It will be seen that it
will not.suffice merely to approximate F, but in addition
to this it will be possible to reguire that any given number
of the derivatives of F TDbe approximated in the interval
(—e,N,) Dby the corresponding derivatives of Fp.
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It is, however, of 1ntare§t to give » more explicit
form of %hle. a@proxim@ting‘polynomials. Thi€ gil& make it
possible to-determins thexcorrections of obtained
in section 12 which have  to be made in order "to obtain func-—
tions Q n) corresponding to a given ¥Fp.

0 PULE SR S R : g .f“"r-‘[-

If M increases stsadily from 0 to 1, A increases
from =—o to O, Since the relation M — A 1is a one—to—one
correspondence, there corresponds to every Aoy Mg < 0, =an

Mo = M(A,) < 1. Therefore, if Ae(—=, Ay), then M(A)e(0, ¥,).
For M = Mg, the funection

(k + 1) M*[—(3x — 1) M* — 4(3 — 2x) M® + 16)

F =
64(1 — M2)°

may ‘be approximated by a polynomial F, of the (2n + 8)

degree in Ha,

_ (x +1) Ve

4 . - .-2
—(3k - M - 4(3 —~ 2k) M
- [( - 1) 43 = 26) M

3

. n .
3 16} [ V (v""’)(—l)_vM”:{ (159)

[
V=1

Fp(M)

Only a Tinite number of powers-of M® appears. in (149).. It
will now be shown that . M® can be developed in the unifornly
convergent series. S o N

. e - -
.

S 1 /2 1/
y 8.x%, x = 2 (E+1)27% - (k- L) /2“/" 3™ nA<0  (160)
' (k+1>1 3+(k 1):. Aﬂ/ — o =

Instead of considering: M3, 1t is wsll to introduce

e =1~ (1~—M3)*73 (1e1)

Since M2 = 1 — (1 — )°, it will suffice to determine the
series for s,

From (48) follows
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£ . S 2(1+h.‘.-—s)/h“’ 1)”’“} hee <k 1)’?/é;k>1 (162) -

2=5 L fp 11s) L4 B L+k

ot

For sinp1101ty's sake 1% will be assumed in the followlng
that i 3

IR ] P T
S b

o A RE L thet is, k S.5/3 (153)

' Now consider the function X = X(s) .as a function of the
conplex variable s, and investigats lts behavior in the

domain [s) <1.

s /1 + n 5o+ 2Rt
Remark: X(s) = ( s) h
2"'.'5 h-"l__l + 8

is a many—

valued function because any integer may be taken for H.
Since, however, its branch points s=1+KH* and s=h"'-1 are
outside |s] <1 it is necessary only-to consider phe of its
branches: Therefore, H =.0 "'ig° chosen, so that whenever
X(s) is mentioned this branch will be always understood.

In order to prove 'that Qhe‘image of [sl<1 1is a schlicht
domain in the X—~plane it ieg noted at first that X(e), S
real, is a real functlon, and therefore the image will be a
domain which is symmetric with respect to the real axls. The
imagp of,. 8 = +1 will Be the point 1, and the image of s
= ~1 will be a point of the negative real axis.

It will be shown that, if-“@'F.arg s, varies from O
., tom, X- increases steadil?‘“ Sﬁﬁiﬁng s = eid yields

1 _ Ml /zh M = (1+n=1 )3“-1- 1-2(2+h Hecosg

— - M. 0 = (164)
(5—4 sbs )72 (K =1)®+1+2(h~2=1)cos ¢

X1 =
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a.n._d

d[X'l - ____l,_( 4 sin ¢ ) l;{1/2h
N 2 (5~4 cos ¢)3/a_ .

) 1 1 - 1/zh—1
+[—- ) M :[
- 2R\ (5—g cos 9)172 _

((l—h )+l+2(h —1)cos¢)(l+h Yeinds2(h —1)zsin¢((1+h Y2 41— 2(1+h )cos ¢)

g

((1 YR+ 1+2(h 1) cos ¢> IR J
- (e ) y1 /2h—2 1 P (165
<(5-4 cos )72 (1-n~1)% +1+2(h Lcos ¢ Ly

1='=:'["— [ €1+h™1)2+1-2(1+h~ ) cos .
JL - 5 — 4 cosg @ . _ G
]

. B J
(h—=-1)2+1+2(6 *3)cos ¢

'(h—2+l)_—- (r2+2)cos ® + cos? O

-2
= 4(h =1) e 4 :
« (5—4 cos @) ((h‘l-—l)?+1+'z(h‘l—l_)cos Q :

For.all values- O = ¢ ' the e-xibz_'_f:ssion_ (185) has the same
slgn as P. The denominator of P 1s always positive, and
the numerator 1is positive for =—-1< cosd<«<l., Clearly for all
values of &, 0<®<m P, and therefors (185) is poe.it,ive.

Thus the boundary curve of the image of [sl<1l is a-
curve which does not intersect itself. By classical theoremnms
of thextheory 'of functions the domain bounded by. this curve

is schlicht, Clearly it includes in its interior the domain
[xi<1.

Since the image of |s] < 1. is schlicht and includes
lXl<1, the-inverse function s = &(:X) is regular in

[X]1<1 and by Cauchy's theorem can be expand.ed in [X} <1
in the form of .an infinite series, :s(X) = S_‘

f e -
» - -

‘For' every Xo <1 and every €>0- there éxists an ¥
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N, y ‘ o X
' : v
such that | s(X) — 2 BvX~ ‘ie for ([XI<X,. Thus Z BpX

v=1 _ ) ; v=1

[}

yields: the required approximation.
Remark: Cleérly- N can be determined so large that any -
: N
: g v
given number of ‘derivatives of ;T BpX approximates the

e

corresponding derivatives of s(X).

It is noted further that a formal .computation yields .
for the right—hand side of (152) for IX| <1 _ . '

X =.5— L(zk'+1)gs+ %(4}:34- 2k—1)e3
-——(24k FBk3L14k—1)e® + -;}8-_( 48k +4x%—44k%+2k+5)s%
o : 4 3 . 2 " '\I I 6
- 480( 480k°—104k*—572k%+ 148k +126k—25)s + 2880(28801:
—1584k°—3944k"+2212k%+1140k%~ 602k —5) 8" + . . . " (16s)
Tpe inverse function is f, ;:. '

L SO TP 3.1 goand .
s =X+ 3 (2k + 1)X% 4 F(4k® + 6k + B)X +5pRar
4 .
;. ;+68kR +76k + 29)X Z}e' @8k +212x° + 392k® + 328k
o oG _ ’ ' i . o
+ 103)X°5 + Zé—o(éao}cfs.ﬁ' 2976k + ‘?9631:3

+ 10788k + 7266k + 1935)X° + —i— (2880k°
G g N . 2880
+ 28472k° + 84282k* + 162124k + 173940k
+ 98086k + 286%7B)X° + , . . . (167)

By the present result this series converges-in [X]<1, and
therefore for 0 § X <1,
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LRI III, ADDITIONATL REMARKS BT

s .

1&.“The Boundary Value Problem in the Physical Plane.

. Mixed Flow
-1 . . o

The theory developed in the second part of the paper
leads to various methods for constructing flOWs around air-
fQils.

The primary problem to be faced in the theory of airfoils
1s to determine the flow with a certain velocity at infinity
around an obstacle given in the physical plane. This leads to
a very complicated nonlinear problem in the hodograph plane
since the domain where the flow is defined is determined by
the flow itself. Eowever, this problem may be consideradly
gsimplified if it is agreed to obtain a flow around an obstagle
which approximates the given obstacle.

The hodogravhs of flows of an incompressible fluid around
-pré6files of certain types and for a number of angles of attack
may be determined once and for all.

The present approach also makes 1t possible to construct
functions satisfying (32) and having singularities of the
kind required - that 1s, singularities of the flow of a com-
pressible fluid whieéh yield sources, vortices, and doublets.

A hodbgraph is chosen which in the case of an incompress-
ible fluid leads to the desired profile.

Let Y(v,8) ©be some solution of (32) which possesses
the required singularity at point a (the image of z = =).
A solution of VY(v,8) of (32) is further determined, which
is regular in the domain E and such that

2 Plv,8) + y(v,6) "
assumes a constant value on the boundary h of H,.

- The obtained function 19 ‘| hodograph of a flow of a com-
pressible fluid the imaze of which in the physical plane will
in many instances not differ'considerably from the'given Pro-
file. Thisg ‘method ‘of afttack ‘can be refined" By the forego-
ing procedure the initial profile 1is distorted in a certaln
way; if the given profile is distorted in opposite. directions
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. - 5

and 1f the procedure described 1s repeated to the distorted
profile, then in many instances & fetter approximation is ob-
tained. This method mav be repeated until the desired degree

of accuracy is attalned. . R

However, this vprocedure has the inconvenience that in
order to determine Y 1t is necessary (at each step) to
solve a boundary value problem for the equation (32) which
reguires rather long computatior, -:In another paper the
anthor has develodpéd ixd 'deveil -an. alternative to, this method,
in which he avoids the necegsity of solving boundarv valuef'*

problens.

In the present coneiderations attention was in the main
directed toward the subsonlc case, In addition to the method
of attack,which is based on considerations of section 8 of *°
the second part, thereiexlsts another possibllity for handling
the mixed problem - that 1s, to construct flows which are" par-

tially subsonic and partially supersonic.

17. The Representation of the Stream Function of a
Subsonic Flow in the Region in Whioh,ﬁié Velocity
is Near thanVelocit of Sound
Partially Supersonic ri&%

In the region (¥ < M < 1) where Mo i's hear 1, the
series (85) convergés very sldwly, and it is- therefore neces-
sary to employ a large number of ‘terms in.order to obtain a.
good approximation for Y*. If this be the casex it is then
expedient to replace the expansion (85) by (103)"~

This 1s, however, not the only:way of'OVercoming this
difflculty, and in the following, othér means of’so doing
will be indicated; this alternate approach employs the method
of "analytic continuation:® . o

'llt may be observed that a similar procedure can be ap~
plied to prove that for every profile (satisfying certain
conditions) there exists a flow of a compressible fluid.

H
This method will. be develoned in more detail in a fu-
ture report of the aluthor..

TN s
R o

:r".‘ . o
) il g [N I
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Let W(v,8) %e detefhiné&?in-a domain, say H, and let
{wnwun = 1,2, . . , be a "gomplete" system of ﬁarticular so-

.fhjjams of (48), each VYn Dbeing determined.in a domain G,
Suppose that H and .G ac¢tually do overlap and denote their

[o4]
common part by I, PFurther, let Sﬂ a ¥y be the series ex-

né-:-i = R |
pansion of ¥ in I. Frequently ;j anwnq”will converge
1

n= :
outside . of I, .wsay in the domain H, - ¥, where H, 1is G

ey o] . G
or some part of 1it. If, in addition, Ez anwn can be'tgi@_

. §
wigse differentiated twice in Hy, it revresents the analytic
continuation of V¥ in H; - I, :

. . ) Ct'a oG
Remark: The'requiremént that ~ S? apVn coincide with V- in
S JAR )
n=sl

a-domain I, can be replaced by another requirement, which
will de explained later.

Frequently, 4he domaipn. H; ip which the stream function

can be represented in the form anVp, covers a supersonic
e D.::fﬁ‘ :

reglon as well, and.conmequently. this method will then yleld

the flow in this latter region, In ‘this manner; a method

(based on considerations other than those of sec. 8) for de-

termining a mixed flow may be obtained.

PTwo alternate forms of this method ﬁiii be ‘dté&cussed in
the following.

+

First Method

In order to develop the first approach, an asuxiliary
lemma must first be proved.

Lemma: Let p(v,6), [Vo <v<v,, -L<6< LJ " be
an analytic function of two-real.-variables +v,0, et

an

—_—
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w
Z av(v) éas._%ﬂ:::""‘bv(v)ﬁsih ﬂ}ie
v:o . HE e 1 . . I '
. R L . ~‘:“.]'_, . |
ag(v) = % L‘lv/ﬂ'P(V.e) ig, “a,lv) = %_/ﬁ p(V,G),cps.E%E a8,
w ! : e ;L.' ) oo . . e_;
! Liab]:)
bv(V) = E p(v,ﬁl siq _E. a8 (;68)

L

rier development. The geries (168) converses uni-
can be differentiated termwise gny finite number
of mes both with respect to v 'and with resvect to 8.

Proof: Let

: k S -
_,akp(vge)-n‘_zz [d a, (v) cog M08 4 vaV) : nue]’

avk L

(k.f 1?2)

.33
XNow, since p 1s an analytic function of v and 8, —9—2—

_ . _ " adv 38
is also an analytic function, and therefors

L a
3%p . :
—————9 a6 < A : (169)
u/é <av a8 o . .(

-5
is bounded, uniformly, in v:

On the other hand,.



. NACA TN .No;~9%2 1 65

M - '
(e - (5 ) (5 ey

v=n v=m
.:- k H
2
+ BB (‘”’]2> %< Y £.q 5 (170)
av - Lo 5,
13 . s .U'm\: i

from wh?ch the uniform convergence of the series

A3

w . . . v N
¥ dep(v) e T8 , b, (%) oo™ L (g
L dv L

follows. "But (1%71) is the series which. is obtained ‘by ilffer—
entiating (168) term by term. -In a similar way the other ; .
cases may be handled. : '

Since every:solution of an elliptic equatlgn with ana-. "
, lytic coefficientsis an analytic functicn of-two Tezl- Vari-- &
. &bles, the result obtained cad be avpplied to the case where
“*p{¥,8) 18 the stream function Y(v,8) of a subsonic flow.
Thus '

= -&'n Lo . Lo ) . ‘._-:.:_':::.. 0 }i.'... '
1l e oo
2; [av(v) cos = + bu(v) sin —%—] . .
. V=06 R . R o e s
L :
1
ag(v) = — v(v,8) 40,
2L, -
Sl foonho LR e '3T2$£%72)
L . S5 o iy Ton B
ay (v) =lf Y(v,8) cos ZLE ap
. L .2 L * N
S %L : : R 5
= L v 6 -
b, (v) Lf V(v,8) sin —= a6, (v =1,2, . . .) |
. Jr :

-r

can be differentiated termﬁigé. If now, following Chaplygin
the author 'introduces instead of v the variadle
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2 vt
T =Y T e =

z2
284

then the equation for,, ¥ assumes tke form

3 P 3y 1~ (28 + 1) -B 3%y _
= {27 (1 - 1) §¥} + 5 (L - 1) %g¥ = 0 (173)

where B = ?_—E—IT (reference 1, p. 5, formula (12)).
k - o N

Differentiating termwise gives

50 m . . . . L. . ,
_ANER BaY L - (38 + 1) T (g | gy »infay) o vme
UZS[ <T(1 L i) " T(1 - T) (1. T)- Tt T

-

P N O R 3 Jao

ST(L - T) 4L2

» (174)
and, therefore, the a, and .hw. are each solutions of equa-
tion L o . ]
a -B da, 1 - (28 + 1)7 B v°n® )
— 4T(1 - 7) - (1-mTP2T% .
aT ar T(L - 7T) _ 4L%

\ (175)
"B ) _s 2 2

A (1 -1y db,,)_l-(ze+17(1_7) TV % _ g
aT ar /- T(1 - 7) 4L R

(1758) 1s a hypergeometric serles and thus every solution of
(175) may be written in the form

. , i
: - ShpFy + By )T . o (17e)
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wherenjgu-_and_GBU.féfe constants and TR

-

F=
n

v F(G'U BU' "'B; 1 "T)!
- : : : i (177)

(1 ) B+1 F(Yu - aps Yy, - By: 2+ B; 1 - T)

‘n

- - - G
s L ) L4

F(@,B.Y.T) being the hypergeometric series Here

"?¢.= (- N 1) ijl_ ﬁf_ :';:I',.l - : :
3D +'AL]- R CEDEM A
sel@r @

In order to determine the constants 4y, By, the following
theorem 1is employed 3

et ') (v,0) abe P he)digv< vi- <6< 1]

be solutions of an éguation of elliptic type. "I1f,along a
line, say (v = v.) ; s

w‘1>~<voie>-s-@<3)-(vo,eou--- | (179)
and :
(2) : 2..(2) N R
2y ) (v,6) - UARLN Y IR EEL TR RN
ov ov
v=vgq . T?VO

L

then in the whole domain [vo < V<L V3, - h ﬁba'f 1]

W ooy = v ey T L (1e)

B
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oo - : . o
Remark: Suppose that the funection  g(f), ¢ = A - ig,
A = Av) (see (85)) is reguler in some domain B, + Hp,

H1=[Vo<vsn» .—LsesL}

H, = [vl S v<Svy,, -1 SAB S‘L]

which domain lies in [6° < 3%2, A< 0]. Then by the main
theorem it follows that W = Im.P(g) 1is also regular in
H, + H;. Suppose that Y has been evaluated in the domain

Hy, Dbut it 1s desired to avoid the evaluation of V¥ by
means of (85).sinpe‘this series converges.very slowly in H,.

'}
H H /
1 3
1 __>V/ =)o)
Vo v 1 v a / Vs —N
L
In order thét g
m.
. 2; Sv(%)_(T?:qos ﬂ;e +“Sv(?? €79 sin E%Q (182)
v=1 ’

vL

———

(k) k) (k). 2
Sy (1) = [Av Fy + B, FU*] T ,(k=1,2) (183)

- "o oA mve '
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-Be&t%e solution: Y~ under -consideration, the constants
A, k ' Bv(k) must be determined so that
\
(1) .
Sy, ()| . = Eylyy)
S V=V g
. _ (184)
(2) ' o
'V'='V'°
-
: . Py .
-, (1) . . ) A 4
ds,, (m)y |, ) dan(v)i.
av v=v, av _¥=Vo
. . , ' (185)
(3) . P
s, 0270 (1) _ & (v)
dv V—VO dv: -V='V.'° 'J' TR
It is noticed that o o - : ke o
. T o D ~::ug%‘ '
(k) Poxl "
EEM___ = Au(k) EEM Bu(k) E_H_ T
art aT ar -
v, T
v .2 (k) () 7 =
+ EET [Au F, + B, F, (186)
. i, (1‘. B o ) . . e - s,
af o = B B‘(d'b + 1, BU. + 1l; -8 + 1; 1 - T)
a(1-—:1) g - o TP *
dFU*

a(r - 7)‘,

L Coe g 1.
2 + 8B '
YU - BU + 1; 3 + B

v

(14 )1 = P PCvy - Gy Yy 2By 2 v B - )

ey e

N Tﬁ”r'

1 - 7T)
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r('
r-.'- e oy

Since in [vl <v<v,, =L < < 6 < L] W(v,0) 4is an analytic

function, he series

vL

oo [ AL2
(1) () 2 . L6
y {[AU FU + BU - Fv*] cos -—-L—'
V=1 K : L.
+ [AU(B) F, + Bv(a) va] Z  sin E%Q (187)

and its derivatives converge uniformly and absolutely 1in this
domain. Then (187) represents the solution ¥ wunder consid-
eration in the region H,, Moreover, this series (and its
derivatives) may alsc converge outside of H,, say in

Hy = [v, S v < vy, -L <86 < L}. If H, partially lies out-
eide of the domain [62 < 3A%, A < 0] (see sec. 11) then the

obtained expression gives the analytic continuation of the
solution outside of the domain of representation by the inte-
gral formulas (85). In particular, Ha may include some
region which lies in M > 1,

Very often it is known that the region, say L, where
the velocity is suversonic is emall. Now, instead of summing
to infinity , take

N - '
Sﬂ{}v(‘) (1) cos Ifﬁ + 5,020 (1) ein E%Q] (188)

V=1

(see (183) and (177)) where ¥ is sufficiently large; then
(188) can be considered a sufficiently good approximation for
analytic continuation of the stream function Y. under con-
sideration, On th'e other ‘hand, (188) represents ¥ in the
whole plane and therefore is particular in L.

- In this way are obtained approximate flow patterns ,which
are partially supersonic + In applying this method, it is
necessary, however, to check whether the streamlines in L
approach to sgmooth limit lineg when m_ 1increases.

[
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+Segond. Method: . -i.:

wt oo
PR

l In reference:2 the aythor . has introducdd - different .

. “"methods for computing sets of narticuxar solutionq!J.wn(v 8),

68 (32). (See p. 17 and T. 2% of reference 2;); The func-
tions of eaech of these sets are Aefined for the subsonic and
the supersonic range.

Let H TDe,a domain in which 1t 1is desired to determine
a hodograph ‘with ‘g "supersonic velocity. Then H 1s divided
into two Qverlapping,parts . : and Ez. .In.. By the veloc-

ity is throughout subsonic, The 1ntersection of H; and

B, 1is dgmoted by " I. In figure 5, Hy 'i€ that part'of E
for which'. v€v,, and H; 1is that part for which 'v'z v,,
Vo< vy < 1, There is determined a function wo(e,v) which
is defined in - E, ang has at point &, a prescribed singu-
larity, and on the part of h which lles in v <'vy, hy, '
approximatelv constant values. :

« 1" Now' consider the functions

Cotmpe \y( ) = ¥, (v 6) + Y m\!f (v,8)

B o u-—

L )

m
\ll(f) = ,y BU\UU(V,G,)_ .
. ﬁ;i . s

-

'and!déterminé'the mv"and Qu in such a way that

' .
LY PR LT { LD &
o et P

n | T s} SO :
U/q Ej %y Wiy 8 as +..J/il§; Buwu,a ds '
D v=1 5 hy v=r
2 - I N T
f/l‘*’o Z%“’v ) o levee

will be a minimum

3 ¢ It is observed that it 18 possible also to use the
Chaplygin solutions. See, for instance, reference 2, pp. 18-

22.
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If the boundary valie probléfi has a solution (possessing

certain propertiee on the ‘poundary h) and if the evstem ':wv

i'g complete. then it is possldble to show (under certaln. eddl-
,tional conditions) that the limit function obtained by this
‘vrocess will yield the solution, ) o4 .

.
[y

'fﬁt 18 A Remark Concerning tpe Apnlication=of the -~

Hodograph Method in the Three-Dimeneional Gase,;

‘The:method. developed in this paper ylelds a’ general
formula for the stream functliong of possible Compressible
fluid flow patterns

. As indicated fn referenceé 2 (secs. & to'8) there exist
other methods of obtaining particular solutions of equation
(32); and for deriving from them solutions of (117). 'They:
often are not very convenient for practical purposes, and in
many instances represent a flow only in a part:of its domailn
of definition.

In the following will be.indicated a method of obtaining
particular solutidns of equation (32) which has the disadvan-
tages indicated but which can also be applied in the three-
dimensional case, L

As 1is well known, the'Velooity aq = (u,v) of an irrota~
tional fluid flow satisfies the equations

V(p §) = 0, v x 4§ =0, (Cauchy-Riemann equation) (189)

) o

This suggests considering three-dimensional flowe where the
velocity { = (-u.—v,-w) satisfies the equation

vip q) = O Vx3=0 (190)

p = p(V) dbeing function of v =_(n2 + v? + ﬁzjg alone,
It follows from the segond equation of (196) that there
exlsts a potential ¢, such that Ltead _

ST -1 =.?§$;' - 'T?" C ’ "(191)
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Inserting this value in the first eguation of (190) yields

3(p 3¢/3x) . 3(p 3d/ay) _ 3lp ad/3z) _ , (192)
f ax . &0 ay o o az . -‘ 0 :

(192) is a very complicated nonlinear partial differential
equation, ‘e ) ) L

The introduction of w, v, w as new variables leads to

o

a much simpler nonlinear differential egquation. S LS

Introduce as new variables A
= a¢ v = ég- ﬁ = 22 . (193)

ax’ . ay’ dz .. &
and as'the new unknown function
A= xu+yv 4 zw -9 ' m;’ ' (194)

Use (193) to obtain from (192)

3(pu) . a(pv) a(pw) r dw L3, w
dx - oy L u _5; P 3 Py 3%
au av dw du v
) i w
e .+ [wa + p:' —a-; = 0 (195)
It followe from (194) that
A = 3= oy 9z _ 3¢ 3x 3% oy _ 3% 3z _
u r+u a v ou v u 3x du Jdy du dz du
: ' ' (196)
>\v =Y, >\w = 2 -t :

and
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ax

ou .

=24
ow

From. .

there 1s obtained

where

‘ov

dx

"tk

2z

du

3u

ou

ov

au
3w

du

ax

ou

-ax

ou

ax

":D

ox

‘ow

av

3

':u.u

L du”

ay'

.au 'A
oy

du.:. -

3y

denotes the detdrminant

A
A
By

uv

uw

LT

vwe
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uY{
VA
Avw = 0
Agw = O

so forth

Ay _
v - Ay

(197)

? (198)

(199)

Substituting the values obtained in (199) into (195} yields

‘he following equation for

At
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: N )
[ Avv >‘vw ST Auvn-kvw ' Aav  Aev
Pu * PJ - Pyt PR
. _Avw aww o Maw  Aww . Auw Avw.
' i r“ Auv Muy _ "% uu Auw Agulkuv
- Pyv + [p;v + p] = PyY i
Avw AWW Awu 7\ww Aav Mvv
Auv‘ Auw . -Auu 7‘u.w L Aiy Auv ;
I oV 4 . — PV . + (p w+p) =0
,; Avv }‘vw : g Auv :xww' ) }\U-Y Ayv

Here .p-= p(u® + v® + w®)® 1¢.2 known funotion., ..
{:There now arises the problem of determining particular
solutions of (200}. -Clearly, this can be dohe byiusing the

series developments

S ;.5? A By ByP
m,n,p

(201)

which satigfy ‘squation (200). [

}(200

U IR ] 5 0
- .o

Such a series develonment which represents- (in the hodo-

graph space) the potential function ¢ of a possible flow
pattern of a compressible fluid converges only in the nelgh-
borhood of * the origin - o Lo _ ..
However, theres exist methods-of dete¥mining ¢, 'in the
whole region of the real (u,v,w) space where ¢ 1is regular.
Such a - representation, for 1nstance, is given 1n many cases
By o . - , .o . .
. . . v e e p'
oxigiz) = im .. N mnp 2V
k—=>0 L pr1+ x(m +n +3p)]
n,p .

m,



g | NACA TN ¥o. .g72

R ' OONOLUDING ‘REMARKS - g
’ . W0 :
w e St '
. The main result of the present report consists in deriv-
ing a “formula which-transforms an arbitrary analvtic funection
of'a complex.yariable into a stream function of =a compressi—

bl subsonic flow. o i

TS

This formula yields compressible flows around symmetric

- (and éertain - nonsymmetric) obstsacles.

The main difficultv arises -in adapting the formula to a
glven shape of the obstacle. Avproximate methods for solving
this problem are indicated in section 16.

Since all expresslions appearing in the theory of a com-—
pressihle fluid flow are much more complicated than those
occurring in the study of incompressible flows, a careful
investigation of the numerical methods to be applied is nec—

essary.

A conglderable part of the numerilcal work con? ts in
n

'preparing tables of au¥Xiliary fénetions such as which
have to be used 1n all particuler .cases. In thls paper the
functions Q(n) are computed uv to n = 4, for k = 1,4,

Tables for the Q(n)'s for higher values of the.superscript
n will be necessary if flows with maximum Mach number ap-

‘proaching l are to be considered

Eaech particular problem also involves the-performance
of certain integration processes. In order to advance the.
application of thies theory it would be necessary to use ef-
ficient modern computing devices. .

The present paper doals onlv with subsonic flowe. It -
should be emphasized that the development of the theory wiill
permit consideration ¢f flows for which the maximal veloclty
exceeds that of sound. (See sec. 17.) .

Brown University,
Providence, R. I,, May 15, 1944,
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R Table Ils
The values of F, H, Q(l)for k = -0.5
22 ¥ T v/, | B2 F(2» Qm(zn
- 0 1 o 1 0 0
-2.82 | 0.265 | 0.964 | 0.272 | 1.000 | 0.0007 | -0.0299
-1.96 | 0.403 | 0.915 | 0.430 | 1.001 | 0.0048 | -0.0602
-1.622| 0.473 | o.881 | o.518 | 1.002 | 0.0105 | -0.0909
-1.51 | 0.497 | 0.867 | 0.551 | 1.003 | 0.0138 }| -0.1115
-1.388| 0.528 | 0.849 | 0.593 | 1.004 | 0.0187 | -0.1267
-0.79 | 0.690 | 0.723 | 0.861 | 1.015 | 0.1135 | -0.3009
-0.394| 0.820 | 0.572 | 1.165 | 1.046 | 0.6430 | -0.7033
-0.188| 0.901 | 0.433 | 1.440 | 1.111 | 3.6330 | -1.5871
-0.132] 0.921 | 0.388 | 1.527 | 1.145 | 6.9763 | -2.2682
fable ITb. Ths valuss of F, E, @, R®  for k=1
23 u |ve,| ¢ | & U 2 o) 8| g v @ 23
- e | .0000).0000| .o0000]1.0000f .0000| .o000 0000 .0000 0000 0000 0000
-3.8772 | .1000 | .0999] .oo0p|1.0000{ .oc00O| .OOOL -.0001 .0002{ 9.9600] .0010| =-.0020 .0000
-2.5096 | .2000|.1992| .o0o011[1.0002| -.0009| .0015 ~.0013 .0008 | 4.9197| .0030] -.0103 0148
-1.7327 | .3000 }.2972| .0064]1.0014] -.0056] .o0085 -.0083 .0064 | 3.2141] .0090] -.0411 L0870
1.2071 | .4000 [.3938| .0256|1.0042| -.0199| .0342 -.0395 <037 | 2.3371] .G235] -.1203 2307
-.8238 | '.5000 | 4879 | .0866]1.0110]| -.0574| .1160 -.1680 21161 1.7947} .0520] -.3152 -7600
-.6706 | 5500 |.5341| .1565}1.0167]| -.0935 .210L —.34%6 «5211 | 1.5901} .0755] -.5082 1.4060
5364 | .6000 }.5795| .2839{1.0247| -.1501] .3823 -9 1.3527 | 1.4150| .1088] -.8277 2.6949
-d4204 | 6500 { 622 5245 ] 1.0359 | -.2401 7089 | =1.6847 3.7802 { 1.2620] .1566| =-1.3796 5.4353
-.3203 | .7000 |.6680 | 1.0060 {1.0515] -.3870 | 1.3663| -4.0770 11,7558 | 1.1254| .2275] -2.39%46| 11.8168
2207 | 7500 | 7210 2.0623 {1.0811| -.6959 | 2.8304| -12.7121 51.4676
-.1615 | .8000 |.7532 | 4.6583 | 1.1049 | -1.0896 | 6.4088 | -35.1357 | 194.4562| .8847{ .5248] -9.0763] 81.6373
=.2025 | .8500 |.7945 | 12.5662 | 1.1517 | -2.0186 | 17.4338 [ -149.6938 | 954.643 | .7T717| .B743| -21.9464| 306.6745
-.0535 | .9000 | .8349 | 46.6378 } 1.2275 | —-4.3787 | 65.3783 | -997.3960 | 16412.652 | .6555|1.6804] -71.6427] 1772.362)
.0000 |1.0000 | .9129 o0 oo - o0 oo - o0 - .0000 o0 -0 oo
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