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SUMMARY 

The work reported was undertaken In connection with 
a vibration study of helicopter rotors.  The analysis of 
vibration and certain other problems require a knowledge 
not only of the average induced velocity but also of its 
distribution around the rotor disk.  A concept of a 
simplified vortex system of a rotor wake is used in 
obtaining a formula for the normal component of induced 
velocity along the fore-and-aft diameter of the rotor 
disk.  This formula is Intended to represent the main 
effect of the skewed, wake in producing an uneven velocity 
pattern at the rotor.  This Induced velocity is expressed 
in terms of elliptic Integrals as a function of the ske?J 
angle and of the circulation per unit axial length of the 
wake.  A simple approximation to this function consisting 
of the first two terms of a Taylor expansion arid giving 
the value and the slope of the induced-velocity function 
at the center of the disk is also presented. 

An approximate method of representing the induced 
velocity in terms of flight velocity for a given thrust 
has also been Indicated by combining the present theory 
with G-lauert's thrust equation. 

A comparison of the theory with corresponding values 
of Induced velocities computed by Selbel's formula, from 
pitching-moment data published by Wheatley and Bioletti 
is taken as evidence that the most significant factors 
have been taken into account. 

RESTRICTED 
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INTRODUCTION 

The work reported herein was undertaken in connec- 
tion with a vibration study of helicopter rotors.  Although 
for certain purposes the use of an average induced velocity 
assumed constant over the rotor disk gives reasonable 
accuracy, the analysis of vibration and certain other 
problems require a knowledge of the distribution of induced 
velocity around the rotor disk.  Very little such informa- 
tion, however, is available.  Several writers have recog- 
nized that the induced velocity increases toward the rear 
of the rotor disk but have left the magnitude of this 
increase- as a matter of speculation.  Glauert (reference 1) 
and Wheatley (reference 2) have used an induced-velocity 
formula containing a first harmonic term with an unknown 
coefficient K having a value somewhere between 0 and 1. 
Nikolsky (reference 3) has suggested a formula that is 
equivalent to putting K = 2u.,  where \x    is the ratio 
of the flight velocity parallel to the disk to the tip 
speed.  Seibel (reference )|) has recently suggested a 
method of deducing values of the first harmonic induced 
velocity from experimental measurements of the pitching 
moment of a gyroplane by Theat ley and Bioletti (reference 5)« 
Seibel gives an example of the use of such data for 
assumed values of pertinent parameters and shows that the 
resulting variations of induced drag may be expected to 
produce a peak of vibration at around 25 miles per hour 
for a typical case. 

In the present paper a concept of a simplified vortex 
system of a rotor is used for obtaining a formula for the 
normal component of induced velocity along the fore-and- 
aft diameter of the rotor disk. 

BASIS OP ANALYSIS 

The aerodynamic theory of helicopters can be thought 
of as a generalization of propeller theory, thus certain 
analytical methods found in propeller literature can be 
extended to apply to helicopters.  The method used herein 
is based on the assumption of an idealized picture of a 
wake vortex pattern consisting of an elliptic cylinder 
which is, in general, skewed with respect to the rotor 
axis at an angle that depends upon the flight velocity 
and upon the induced velocities.  Enough simplifying 
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assumptions are made about the wake vorticity distribu- 
tion to obtain a tractable form for the integration of 
the Biot and Savart lav/ and thus to represent the main 
effect of the skewed wake in producing an uneven induced- 
velocity pattern at the rotor. 

The wake pattern is assumed, for the present purpose, 
to form a continuous distribution of vortex lines on the 
surface of an elliptic cylinder such as would be formed 
by the vorticity shed from an infinite number of blades 
with constant circulation and very light loading.  The 
analysis is further simplified by making use of the 
property that the induced-velocity field of the helical 
vortex system can be considered formed from two simpler 
vortex systems of which one is composed of circular vortex. 
rings and the other of axial vortex, lines.  (See fig. 1. ) 
The circular rings determine the fore-and-aft distribution 
of velocities, which are the important ones at small 
advance ratios; whereas the axial lines determine the 
rotational velocities of the wake, which are not con- 
sidered important for the present problem. 

With the assumed picture of the vortex wake, the 
normal component of induced velocity along the fore-and- 
aft diameter of the rotor disk is obtained in closed 
form, as a function of the wake geometry and of the 
strength of the vortex sheet. 

Although the skew angle and the vortex strength are 
the fundamental variables of the present problem, it is 
desirable in applying the theory to have the induced 
velocity expressed in terms of flight velocity for con- 
stant thrust.  One method of representing the results in 
this form has therefore been indicated by combining them 
with Glauert's thrust equation. 

SYMBOLS 

% wake skew angle 

?> rj, t   coordinates relative to skewed wake (see fig. 2) 

x, j,   z   coordinates relative to rotor disk (see fig. 2) 

v„ normal induced-velocity component at rotor disk 
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v„f' , v ' , vJ, v*'   Induced-velocity components in 
J   - ultimate wake 

u    value of induced velocity at center of rotor disk 

u-,    rate of change of induced velocity along fore-and- 
aft diameter of rotor at  r = 0 

u    hovering induced velocity 

V flight  velocity 

V resultant   velocity   at  rotor disk in  Glauert's 
formula 

a    angle of flight path to rotor disk 

r    distance from hub to position on blade; expressed 
nondimensionally in terms of rotor radius 

\|/ azimuth angle of blade position 

T thrust 

p air density 

A area of rotor disk 

C„ thrust coefficient 

d.7, line element 

ANALYSIS 

Consider the vortex wake pattern of figure 1(b). 
Appendix A shows that, if the vortex lines are circles, 
the induced velocities inside the ultimate wake (see 
fig. 2) are related by the equation 

v 
£f _ . % -  t an — (1) 

v *'    "2 

For>v > 5-  TT - %  must be used in place of o^ 
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The   evaluation of  the   induced  velocity  at  the  disk 
is   given  in  appendix B.     The   complete  expression  for  the 
distribution  of   the  component  normal   to  the   disk  along 
the   fore-and-aft   diameter  is 

n  sin 
% 

K(r) 

r(r  +   1) 
/ p p 

I4.TT tarw  \/tanw+ r" 
[% % 

where 

(*i • J2) n(?V0 + (b2 - J2)n(|.-VJ 

(2) 

K(r) and II(—,b-,,j^  are complete elliptic integrals of 

the first and third kinds, respectively, and  b, , bp , 

and 3  are defined following equation (B12) in appendix B. 

For many purposes a sufficient approximation to 
this expression is obtained by using the value and the 
slope of the function at  r = 0  representing the first 
two terms of a Taylor expansion 

vz = u + u -, r c o s \|/ + ... 3) 

IT where, for <y < •*•, 

and, for ^/ > ~, 

u-, u tan 2 

ul = u cot -~ 
2 

That the higher-order terms are small is indicated 
from, the plot of the exact expression for vertical induced 
velocity against radius for the extreme case in 

which ^ = =-,  (See fig. 3«) 



6 NACA  ARR  No.   L5E10 

In  order  to make  use   of  the  expressions  developed 
herein,   the   skew angle    yC   must  be  related  to  other  flight 
parameters.     A  simple method .is   to  combine   equation   (J) 
with the   expressions   given by Wald   (reference  6),   which 
are  based on  Glauert's  formula for   thrust.     The  induced 
velocity    u    in Glauert's  formula 

T = 2pAuV (h) 

is identified with the value at the center of the disk 
in the present theory. 

From the geometry of the wake, it can be seen that 

" V 
cosf-^ + a) (5) 

TT Then by using the relations, for «v < —, 

V _ ,    % —7 = tan '— 
Y 2 (6a) 

for 
%>2 >?, 

and 

it follows that 

=  cot^ 

U   = 
V    ' z 
2 

= 
Vf s 

~2 

2 
V 

tan p 

u cos^X, + a) 

(6b) 

> (7) 

(8) 
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If  Wald's   equation 

u'   +  2u^Y sin  a + u2V2 u o (9) 

Is  written In  the  form 

,   ii. 

VaoJ      - 
1 

•-V 

1  + cL— sm  a + u a)2 

u„ 
_u_V 
u„u 

(10) 

equations (3), (8)5 and (10)   can be used to obtain plots 
of u/u  and u-,/u0  against  V/u  for constant  a. u1/u0 
These plots are shown in Iigure rpl« « ;e   curves  Indicate 
that   the   first  harmonic   velocity term Is   a maximum at   a 
fairly  low  flight   speed,   as  was  expected  from  Seibel's 
interpretation  of  pitching-moment  data.     The   curves   also 
show that   the  height  of the  peak decreases   as   the  angle   a 
Increases   toward  9'3°> which  corresponds   to   vertical   climb 
of a helicopter. 

values 
states 
theory 
cannot 
curves 

Curves are also plotted in figure l\.  for negative 
a  but, since the vortex ring and the turbulent 

of operation are included In this range, the vortex 
based on the assumption of a long cylindrical wake 
be expected to give reliable results.  Part of the 
of figure li. have consequently been plotted as 

dashed, lines to indicate their provisional status. 

A direct experimental check of the applicability of 
the present theory has not been possible because of the 
unavailability of data on Induced velocities.  A tentative 
comparison with Seibel's method has been made, however, 
by computing the induced velocities corresponding to a 
series of test conditions for which pitching-moment data 
are available and then using Seibel's formula to compute 
values of induced velocity for comparison with the results 
of the present theory. 
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A plot of ui/uo  against. V/u0,  determined by 
Seibel's formula and the data of reference 5? is shown 
in figure 5 for two values of the blade pitch setting. 
For comparison, the formula for u,/u0  given, in the 
present paper has been applied /by use of the 

formula _ = — -ü-r— ./-:—-) to the same test conditions 
u0   cos a i/C^ 

specified by the values of a,  Cm,  and \i    in refer- 
ence 5«  The resulting curves are also plotted in fig- 
ure 5? which shows that both methods give peaks of the 
same general appearance.  Systematic errors influencing 
the magnitude of the theoretical peak may be expected 
from several sources, which include assumptions of 

(1) Vortices shed only at blade tips 

(2) No contraction of wake 

(5) Infinite number of blades 

(i|) Slope of induced-velocity function as repre- 
sentative of front and back inequality of 
velocity 

The net effect of these assumptions appears to be to 
underestimate the magnitude of u-,.  The use of an 
effective radius smaller than the actual rotor radius 
would give larger induced velocities for the same total 
thrust and would tend to show closer agreement between 
the curves. 

In view of the various approximations and possible 
sources of error Involved in both methods, the qualitative 
agreement between these two methods is evidence that the 
most significant factors have been taken into account. 
Further testing and refinement of analysis should lead 
to a more detailed understanding of the phenomena 
involved. 

CONCLUSIONS C! 

From theoretical considerations, It was concluded 
that the important variable determining the increase of 
induced velocity toward the rear of a helicopter rotor 
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In  forward  flight   is   the   angle    ,y    by which  the  wake 
axis   is   skewed  from the  rotor  disk  axis.     If   the   induced' 
velocity distribution is  represented by a  series 
expression  of  the   form 

v    = u + tur  cos \|/  +   ... 

integration   of  the   Blot  and  Savart   law  for  a   simplified 
form of   vortex wake   gives   the   value 

un   = u tan 2" 

where 

v normal  component  of  induced   velocity 

u value   of     v       at   center  of  disk 

r nondimensi. onal  radial  coordinate 

ii/ a z I mu t h  an g 1 e 

The exact expression for the normal component of 
the induced velocity along the fore-and-aft diameter for 
the assumed vortex wake was also found, in closed form 
in terms of complete elliptic integrals of the first and 
third kinds. 

It is believed that systematic errors due to the 
use of an Idealized wake may be partly compensated by 
using an effective radius smaller than the actual rotor- 
radius „ 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronaut!! 

Langley Field,, Va. 
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APPENDIX A 

VELOCITIES IN THE ULTIMATE WAKE 

The assumption of circular vortex lines on the 
surface of an elliptic cylinder forming the ultimate wake 
is shown to imply a velocity which is constant inside 
the wake and. such that 

The method is first to try to satisfy all the require- 
ments of the problem by assuming that inside the cylinder 
the velocity components  v*.f  and  v*}  are constant but 

of undetermined magnitude.  Their constancy means that 
the wake cylinder moves as though It were a rigid cylinder 
and the flow outside is consequently the same as the 
well-known velocity field outside a solid cylinder. 
The vortex strength can then be determined in terms of 
the assumed, velocities by evaluating the line integral 
of velocity around a suitable path enclosing a portion 
of the surface of the cylinder and equating this Integral 
to the total circulation of vortex lines that thread the 
path of Integration.  This equation yields an expression 
for the slope of vortex lines on the cylinder, which can 
be integrated, to give an equation of the vortex lines. 
Comparison with the equation for circles shows that 

-£~ = tan & 
Y ^ 

Consider the line integral of velocity around, path A 
of figure 6.  If the circulation per unit axial distance 
along the wake is denoted by P/s,  the line integral 
around path A  shows that 

E = v 
s    C 
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Now consider the velocity -integral for path B in 
the  £ri-plane of figure 6,  Referred to axes fixed, in still 
air, the velocity potential on the outside surface for the 
motions in the  £rj-plane is 

0 -  -v ' a cos 6 

where  v-'  refers to the constant velocity inside the 
d 

cylinder»"  This potential is the same &s in the flow at 
the surface of an elliptic cylinder moving through an 
incompressible fluid that is at rest at infinity.  Then 

/ v . dl   = ^~ de - v.' d£T 

= v»' (a + b) sin 0 d9 

This  integral  is   equal   to   the   total   circulation  threaded 
at     B.     If  the   slope   of  the  vortex   lines  is   represented 
by     d£/dG,     the  number  of  lines   that   thread  the  path    B 
is 

s   dG 

Consequently 

Tn d 
= v,, ' i a + bj sin 9 

and, after integration, this equation becomes 

v;,. • H 

I -   -  —•>,-- ( &   +  b) cos 9 

The equation of a circular vortex, line, however, is 

t ~  -c cos 9 
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where 

Hence, 

c = ya2 - b2 

V»'S    V»1 

C    a + b 

sin % 
1 + cos X 

= tan ~ 
2 

It should, be noted that this relation Implies that, 
inside the ultimate-wake cylinder, 

v ' = v - * i 
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APPENDIX B 

INDUCED«VELOCITY FIELD AT ROTOR DISK 

As stated previously, the entire vortex wake is 
considered to "be an elliptic cylinder composed of a 
continuous distribution of circular vortex filaments 
parallel to the rotor disk.  (See fig. 7») ->J  using 
the Blot and Savart law, the velocity vector induced by 
the vortex wake at any point  P having coordinates 
(r,ty )  in the plane of the rotor disk Is given by 

2TT     co 

v = r   Vl+m 

6»o   z-o 

r j k 

r  cosl}/+cos B   -z  tan'/C   -sin 6 -r  sin\j,f       z 

sin 6 cos 9 0; 

dz d9 

where 

P/s axial-vortex strength 

r nondimenslonal distance  In  termer of rotor radius 

m =  tan /C 

i,   J,   k      unit  vectors   along    x,   y,     and    z     directions, 
respectively 

p distance  from point   (r, ty )   to  element    d8     dz  of 
wake   surface 

The  value  of     p     is   given by 

p2 = 1+ r2+ z2 (1+ m.2 )  -  2rzm cos ty -2m cos 0   +2r  cos("^ - 6 ) 

P 

(Bl) 

(B2) 

the 
The vertical component of the induced velocity v7 

point (r,ty) can be written from equation (Bl) as 
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'.-? X + m 

1+rr 

2TT 

e=o "z*o 

1 - zm cos 9  + r cos (\J/ -   8) 
dz d9 (B3) 

The  value   of     vz     along  the  fore-and-aft  diameter of the 
rotor disk can be  determined by setting     \j/ = TT    in 
equations   (B2)   and  (BJ);   thus 

tyfcTf 

= v JJL - (zm+ r)   cos 9]   dz d8 

8=0vz=0 
l + r2 + z2(l + m ) + 2rzm- 2(mz + r) cos 6 

3/2 

(Bto 

where  P/s  has been replaced by the vertical induced 
velocity in the ultimate wake  vz'.  (See appendix A.) 
The integration with respect to  z  can be readily 
performed by use of formula 200 of Peirce's "A Short 
Table of Integrals."  The result is 

> 

_ vz     p 

^8=0 

1 + 
r cos 9 - rc 'Vl + m2 

1 + r2 •> 2r cos 9 + m    sin 8   m\A + r2 - 2r cos 9 

r\A + m2 vl - 2r cos 8 + r 
•mm    ....n». ••••••»•«•i   nwiw..—• —in.ni.— *i ••••— 

m(l + r   - 2r cos 8 + m2  sin29/ 

d9 (B5) 

in which the   limits have been  changed to     0     to    tr 
the  integrand is   an even  function of    9. 

since 

The value of r  is assumed to be positive in the 
integrations.  For negative values of  r,  the substitu- 
tion  9 = TT - 0    converts the integral into one similar 
to the integral for positive values of r.  The integral 
of the second term of equation (B5) is shown later to be 
identically zero for all values of  |r| < 1.  It can 
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then toe  seen that     u,     which Is   the   average  value 
of    v„     across  the  fore-and-aft diameter,  is  equal  to 
the value of v5 
the curve of v2 

If     r    Is   put   equal  to  zero  in   equation   (B5), 

at   the  center  of  the  rotor  disk since 
against     r     is   symmetric  about     r = 0. 

vr 
r=0 

~ u 

v 
2 

-"» 

> (B6) 

The  rate   of   change   of     vz     along  the   fore-and-aft 
diameter   can  be   immediately  found   from equation   (B5)   by 
differentiating  within  the   integral   sign   (this 
differentiation  is   permissible  since   the  denominators 
are   always   greater  than   zero  for      |r|   •< 1),   setting 
r  = 0,     and   then  evaluating  the   resultant  Integrals.     The 
result  is 

dv 

dr 
=     ~Un 

v-0 

v   ' _z_ 
2 

1 + iri 
2 

m 

JT 
d( 

* ifl=n   1 + m2   sin2 6 

vz '   ,/l + m2  / 1 
m 1- 

yi + m2/ 

vz'   ¥       % 
— tan 2 (B7) 

and  from equation   (B6) 

X u-,   = u tan <~ (B8) 
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The complete evaluation of equation (B5) is performed 
most readily by integrating each term separately.  The 
integration is restricted to the case of |r| < 1,  that 
is, within the rotor disk. 

The integral of the first term of equation (335) is 

evidently TT. 

It is now shown that the integral of the second 
term of equation (B5) is identically zero.  By using the 
conventional transformation 

becomes 

0, t an ~ =  z, the   integral 

(cos 9 -r)d9 
= 2r 

1- z2- r (l+z2)] dz 

l + r2-2r  cos9+m2  sin2 9 ^^ (l + r
2)(l + z2)2-2r(l- z^) + i,jn

2
Z' 

(B9) 

The  integrand  is   finite  everywhere,   approaches   zero  as    z 
becomes  infinite,   and is   zero  and changes  sign  only  at 

the  point 

parts: 

z2 = LJUL, 
1  + r 

Divide  the  integral into  two 

J. 
r 
z=0 

( )   dz  = 

z=0 

(   )  dz + (   )  dz (BIO) 

If  the   transformation z = 
1 - 1  r _ 
1 + r w is applied to the 

second integral  of the   right-hand  side  of  equation  (BIO), 
this   integral  is   seen   to   be  identically equal  to   the 
negative  of  the first  integral.     The   total  integral  of 
equation   (BIO),   or  equation   (B9),   thus   is   zero.     This 
Integral  Is not   zero,  however,   If      |rj   > 1. 
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The integral of  the   third  term of  equation  (B5)   is 
equal  to 

ryl  + m' 
m 

2 
-TT 

9=0 

de 

1 +  r     -  2r cos  8 

.. =       2rV3-  +  m' 
2 

m 
K(r) 

where     K(r)     is  the complete  elliptic  integral  of  the 
first kind. 

The   integral  of  the   last   term of  equation   (B5)   is 
evaluated by  first using the   substitution    tan — -  z, 

then separating into  partial fractions,   and  thus 
obtaining 

»TT 

5 yl + m2 1 - 2r cos 8 + r2 

'9-0  1 - 2r cos 8  + r^ + xcr  sin^Q 2„,•2 
.de 

r(l+ r)     P 

z=0 
2my4n2 + r 

where 

1 + z2) (k2 + 2
2 

z   + m-| 

I+^ZEL±Z1 
P 

z    + m> 2 

k2 = A-^' 
U  +  r, 

2 

dz 

(Bll) 

m-, 
yrr2 + 1  + ^Art2  +  r2 

r  +   1 

m 
\/m^  +   1   - \M~  +  r" 

2 

2   .   „2 

r +  1 



18 NACA ARR No. L^ElO 

It is noted that m-j_ > 1  and mp < 1 for all positive 
values of r  less than 1.  By using the substitution 

z2  +  1 
y 2' 

the  integral  of  equation   (Bll)   is  trans- 

formed into  the  following form after again being 
separated into  partial   fractions: 

r(r + 1) 

2mym2 + r2 -y-0 •J 
*r\A - 32y2 AA - j2y2 

  :    • + *=         '" 

(l + b^y2) Vi-y2     (l - b2y2 ) vR 
dy     (B12) 

where     b-^  = m-^     -   1,     b^  =  1  -  iru   ,     and     j     =  1   -   k   . 
Integral   (B12)   Is   immediately  transformed  Into  complete 
elliptic   Integrals   of  the   third kind by multiplying  the 

numerators   and denominators  by    yl  -   j2y       and  separating 
into  elliptic  integrals  of  the   third kind. 

By  collecting  the  various  integrals,   the   complete 
evaluation  of    vr for positive   values   of     r     is 

J\|/=TT 

'x, 

TT    SI n% 
K(r) 

r(r + 1) 

i+TT tan V \/ban V + r 
(bi+ J2) nd'bi> j) + (b2 - J

2
) n(g.-*2- J) (B13) 

For negative values of r,  the sign of the second 
and third terms of equation (B13) should be changed and 
r should be considered a positive number throughout the 
resultant formula. 
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Figure 1.- Representation of skewed helical vortex wake by circular and linear vortex 
wakes. 
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Figure Z>-  Axes and velocity components' of wake. 
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Figure 4.- u    ui v Induced velocities —- and — against flight speed —. uo     o o 
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Figure 5.- Comparison of theoretical induced velocities with values deduced 
from pitching-moment data of reference 5. 
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Figure 6.- Integration paths A and B of wake 
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Figure  7 .• Coordinate   system  for   obtaining  induced 
velocities   at   rotor  disk. 
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