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PREFACE

Whereas the fundamental kinetic laws of physicochemical reactions in the !
narrower sonse were essentially krown to Guidberg and Waage, as well as Ar- ;
rhenius, and have since been thoroughly verified and confirmed experimentally
and theoretically, the theory of the origin of new ph»ses long remained in the
purely descriptive stage. Yet in this very field we have the records of extraor-
dinarily numerous observations over : period of iwo hundred years, and there
has been a more or less widespreac and active interest in these processes
throughout this time - understandably unough, inasmuch as they or their conse-
quences are encountered on every hand, as in meteorological phenomena, in
geological formations, in many industrial processes. notably for the production
of materials, and in biological processes. It was -t nintil very recently that an
integral theoretical treatment was sucressfully ai - ated, leadiny to the incor-
poration of these processes - ai least in vrincipie - into the edificc of the
kinetic theory. The general derivation and exposition of the result‘ng laws
constitutes the purpose of this book, However, it will not be possirle to include
a survey of the enormous body of relevani experimen:al data, The long absence
of a guiding principle, still felt today, iv exprizccd 1a the fact that .nost experi-
mental research has neglected precisely the conirolling conditiuns, so that there
are only isolated instances of exceptionally vai=:1:¥ing ebservat on to be abduced
in support of the theory. At the same time, a 1 2iw7once to eariier erperiences
that fixed current terminology and establisi:ed famailiar erapirica: rules has
seemed necessary, as they have: largely fallen iriv otlivics during the present
generation. These extensive works of earlier days, to which as r-cent a text as
Wilhelm Ostwald’s Lehrbuch der Allgemeinen Chemic (Te:thook of General
Chemistry) devoted over a hundred pages, are praci.cally igrured by modern
treatises and textbovks - which shows how low a value may be plrced on the
sum total of years of purely empirical investigation not integrat-+ with the frame-
work o/ physical chemistry as a whole.

As a guide to the contents, the following note may perhaps be helpful. With-
in the classification of chemical reactions, the origin of new phases ranks kinet-
ically among multiple reversible sequence reacticnz. In characteristic cases,
the number of stages is about 30 to 100, which while not mutually identical are so
similar to each other that an otherwise hopeless analytical treatment becomes
possible. The prerequisite for this is of course a known unit process, as e.g.,
that of molecular transfer between two established phases that a:~ in contact
but not in equilibrium. The formulation of molecular processes of phase transi-
tion gains in clarity and generality from the use of Gibbs’ thermodynamic po-
tentials (th.p.). These functions were specially introduced by Gitbs as particu-
larly suited to the treatment of heterogeneous equilibrium. Two arbitrary
phases I and II containing various components 1, 2, ... are in equilibrium if, at
equal temperatures (equal pressures are not required), the thermodynamic po-
tentials of all components are equal, i.e., & It = %y and so forth. Kinetical-

F-TS-7068-RE i




ly expressed, this means the following: If exchange of heat and molecules can
occur between two phases, then, for like temperature and like thermodynamic
potentials of all components, the resultant flow of energy and molecules is zero.
It is natural, and proves upon closer inspection to be the only possible rational
procedure, to formulate the intensities of the molecular currents occurring when
the temperatures are the same, and the thermodynamic potentials are different,
as functions of the differences in thermodynamic potential between the two
phases. This has been done. However, there remains the danger - particular-
ly with respect to a wider audience - of difficulties of comprehension that would
interfere with the reading of later chapters representing the specific content of
the book. The terms employed have therefore been introduced with all possible
clarity - closely following Gibbs - and, as suggested by the present scope of
inquiry, with sole use of classical thermodynamics and statistics.

The term ‘‘potential’’ in thermodynamics is employed by Gibbs to refer
exclusively to the functions designated by the letter & and de“ned by him, and
not to either of the characteristic functions first introduced by Massieu in 1869
and commonly known in Germany as F (Helmholtz’ free energy) and G. As a
matter of fact, the analogy with mechanical or electrical potential that justifies
the use of this word in thermodynamics holds only for Gibbs’ thermodynamic
potentials. The author has deliberately eschewed more recent terminological
proposals, in the conviction that no enduring nomenclature is possible without
historical correctness. The specific quantities F/n and G/n (n number of mols
or molecules) do not occur in Gibbs’ work, nor are they employed in the present
monograph. In a complete physicochemical thermodynamics, embracing capil-
larity - which occupies about two-fifths of Gibbs’ entire work on the equilibri-
um of heterogeneous substances -, they offer no advantage. In the treatment of
phases of small dimensions, even in one-component systems, we should have to
distinguish carefully between Massieu’s function g = G/n referred to unit con-
centration and the thermodynamic potential © = 2G/ 2n. Only the latter is
of importance, and necessary to a rational treatment.

In the text, a relatively large amount of space is occupied by previously
unpublished analysis and calculations. Where these relate to substautial exten-
sions and modifications within the scope of published works, the permission of
the writers in question has been obtained, and the author wishes to thank them
for their ready acquiescence in his plans.

Special thanks are likewise due to the author’s colleagues K. Neumann and
G. Tohmfor, for critical reading and correction of many details in the manu-
script.

Berlin, March 1939, M. Volmer
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SPECIAL SYMBOLS

energy of activation (work of formation) of nucleus
energy of activation for a surface nucleus

number of molecules in nucleus

radius of a spherical nucleus

surface area of a nucleus

volume of a nucleus

number of nuclei of a new phase II originating in time dt per cublc
centimeter of the old phase I or per square centimeter on a
boundary surface

electromotive force

density -

molar weight

number of molecules per mol

molecular mass

Boltzmann’s constant

gas constant

molar volume in phase I

space required per molecule in phase I

pressure in phase I

coexistence pressure of phases I and II for plane boundary sur-
face (isotropic phases) or infinitely large crystals

(customary symbol in vapor-pressure equilibrium)
pressure in a nucleus

mean volume of oscillation of an atomic center of gravity
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energy of activation for transfer of a molecule from a phase I to
another phase

probability of transition of a molecule from phase I to another
phase within time gt

number of molecules emerging from a phase I per second per cubie
centimeter of boundary surface

number of particles of n molecules each per cubic or square centa-
meter

coefficient of condensation

' ratio of the probabilities of transition oi 1 molecule betwrer, nha &g

I and II, in that order (wp/wyy = WI/WH)

potential energy of a molecule

potential energy of a molecule in the perfect gaseous state
heat of evaporation per mol

heat of evaporation per molecule

free boundary-surface energy per unit area of contact of phases
/a, 6 /1 (abbreviated & when only two phases are involved)

Gibbs’ thermodynamic potential, th.p. (unit of c:oncentration 1
molecule)

same in the perfect gaseous state, at a concentration of 1 molectie
per cubic centimeter

difference in thermodynamic poinntial between two phas ¢ at like

temperature
abbreviation of (kg ko) (T)

thermodynamic potential at i-th po:itici: of a crysisl lattice; abbre-
viation of ('11 - uo) (T)

N =& +HeE. Lange and K. Nagel’s ‘‘electroch:mical potential’’ (H electrical

potential in phase, e charge per unit roncentration, i.e. per ion);
used with same subscripts as i’

In subordinate computations, the use of a few letters as abbreviations with
merely local significance has been unavoidable,
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KINETICS OF PHASE FORMATION
Kinetik der Phasenbildung

Dr. Max Volmer

Professor and Chairman of the Institute
for Physical Chemistry and Electrical Chemistry
at the Technische Hochschule Rerlin

1. HISTORICAL SURVEY

G. Fahrenheit, in 1724, was the first to publish observations on the freez-
ing of water in evacuated vessels, and to describe the phenomenon of supercool-
ing below the freezing point. His account of the various conditicns that may give
rise to the formation of ice possesses the characteristic trait more or less pe-
culiar to all subsequent work in this field; namely an irregularity in the resuits
of the experiments and a resulting difficulty in discovering the essential nature
of the phenomena. For no apparent reason, parallel experiments turned out dif-
ferently, Water was successfully supercooled in some test bulbs but froze in
others. Violent concussion frequently induced crystallization of supsrcooled
water, but only when the degree of supercooling was extreme. Opening of the

vessels produced ice needles on which the ice proceeded to crystallize abun-
dantly.

Of these observations, repeated and extended in the ensuing decades by
various investigators with various degrees of success, the induction of crystal-
lization by preexisting or introduced crystals of the same kind proved consist-
ently reproduceable. J. T. Lowitz (1785), who verified this with particular
care in the case of glacial acetic acid, and demonstrated the ineffectiveness of
unlike crystals, further discovered the strictly analogous behavior of supersat-
urated solutions. On the basis of numerous experiments, he concluded that
supercooling and supersaturation could oceur for all substances, and that pre-
cipitation by crystals of the new type was likewise a general phenomenon.

This work inspired a large number of other investigations, nearly all of
which concerned supersaturated solutions. They chiefly centered upon the
problems of precipitation due to admission of air, contact with foreign bodies,

and mechanical agencies such as concussion and friction on the walls of the
vessel.

Special mention may be made of the work of Gay-Lussac (1819) on this
subject, although it failed to lead to entirely consistent results, notwithstanding
extreme care. The Glauber’s salt solution selected by him was regulariy crys-

F-TS-7068-RE 1




oy e P GRS RIATS ST 4w

- e . A

C g NETE 3T ST TSR

tallizable by introduction of various gases, including air, hydrogen, carbon diox-
ide, nitric oxide, etc. Mechanical shock occasionally produced the same result,
but never in small sealed tubes, not even when these were subjected to rapid
acoustic vibration. Nevertheless, Gay~Lussac later arrived at the (mistaken)
view that crystallization may be directly induced by purely mechanical agencies
such as movement, scratching with rough objects,etc. He also, however, reached
the important and correct conclusion that the liquid-gas transition belongs to

the same group of problems, and he realized that all crystallization is preceded
by supersaturation of a solution.

The numerous works which then appeared contributed many isolated ob-
servations of interest, but without succeeding in clarifying matters. Gradually,
however, the conviction grew that minute traces of foreign solids introduced in-
to the supersaturated solution in various ways were responsible for inducing
crystallization, The nature and effect of such bodies remained obscure; H.
Loewel (1850) classed these processes with the mysterious contact eifects to
which Berzelius had given the name of catalysis.

It was not until the second half of the 19th century that new light was
forthcoming, namely through an association of ideas with the problem of the
spontaneous generation of microscopic organisms. Redi and Spallanzani’s ex-
periments had resolved this problem in favor of the germ theory. As it had ac-
cordingly been shown that the air and all objects that had had contact with it bore
the germs of a biologically varied microcosm, it was natural to suppose that the
same might contain an equally rich variety of invisible particles representing
inanimate nature, so that for each of these supersaturated solutions, the isomor-
phic germs (nuclei) required for inoculation would be more or less plentifully
at hand.

This was an idea that could be experimentally examined and verified.
Filtration and washing of the air eliminated or considerably reduced ‘‘germina-
tion,”’ as did prolonged storage of air at rest prior to experiment, and avoidance
of violent flow when supplying it to the solution; heating of the air above the
melting point of the salt had the same effect. Solid objects which had produced
mechanical precipitation lost this property when washed.

It may be noted that earlier students repeatedly used the same substances,
particularly Glauber’s salt, magnesium sulfate and oiher common salts that were
even analytically traceable in the atmosphere of cities. The air in the room
where any substance is handled always contains traces of the latter. At the same
time, outside air generally proved ineffective.

On the basis of these and similar findings, it gradually became the estab-
lished view - though not without extended controversy - that the observed pre-
cipitations were due to outside infection with the appropriate crystals. Actual-
ly it was only a case of circumstantial evidence, and much remained unexplained.
Contrary to the analogous situation in biology, there happens to be such a thing
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as ‘‘spontaneous generation’’ of crystals, demonstrable beyond a doubt in sealed

vessels. The coexistence of the two possibilities constitutes the essential dif-
ficulty in interpreting the experiments,

An important contribution was made by Lecocq de Boisbaudran (1886),
who noted that spontaneous precipitation occurs only in highly supersaturated
solution, while many slightly supersaturated solutions (apparently) never crys-
tallize spontaneously.

The same author is responsible for extended research on the precipita-
tion of various modifications and hydrates of one and the same salt from its
solutions. The subjects of this study were the vitriols, i.e., sulfates of certain
bivalent metals, including magnesium. Each of these is capable of forming
five distinct solid phases with water. A solution, depending on its concentra-
tion, may be supersaturated with respect to one or more of these phases, and
with respect to several of them in varying degrees, in order of their solubility.
By inoculation with the appropriate crystal, any of these forms may be made to
crystallize out. The various isomorphic crystals can replace each other as
nuclei. Regarding spontaneous crystallizations, earlier observations by Ziz
(1815) and H. Loewel, according to which the resulting phase is not always the
most stable of the possible ones, were confirmed.

D. Gernez (1865-1875) confirmed and enlarged this material by means of
many interesting and very skiilful observations. We may here mention the dis-
covery that an isomorphic nucleus becomes effective at a higher degree of su-
persaturation than a nucleus of the salt itself. He was also one of the first to
do detailed work on supersaturated solutions of gases, which had previously
been little studied except by Schoenbein (1837). It appeared that the precipita-
tion of gas bubbles proceeds quite analogously to that of crystals. In the over-
whelming majority of cases, evolution of gas upon introduction of solid bodies
is due to the entrainment of gas particles, which act as nuclei; as a matter of
fact, any gas whatever will act upon a supersaturated gas solution.

In highly supersaturated gas solutions, spontaneous formation of bubbles
also occurs. The effect of friction on the walls of the vessel upon formation of
bubbles (as well as of crystals) was investigated in detail (H. Schroeder, 1869
and 1871). It turned out that friction was more effective (i.e., would induce
formation of bubbles in solutions with less supersaturation) the greater the
hardness of the body with which the friction was applied. For example, steel
was effective where copper was not, and so forth.

Gernez also attempted to use his results to interpret processes of evolu-
tion of gases in chemical reactions. Thus he developed a theory of catalytic
decomposition of hydrogen peroxide by means of platinum sponge. As another
special case of spontaneous formation of bubbles, he cited Berthelot’s well-
known experiment (1850) on liquids under vacuum. A liquid, deaerated as com-
pletely as possible, is introduced into a tube under vacuum and expanded by
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heating until it fills the tube completely. Upon cooling, the tube remains full,
although the normal volume of the liquid has become less than that of the tube.
Upon further reduction of temperature, a bubble suddenly appears, with an
audible report, and the liquid resumes its normal volume,

The generally known fact that spontaneous crystallization from solution
tends not to occur below a fairly high degree of supersaturation was studied
quantitatively by De Coppet (1872), by cooling solutions that were saturated
at a certain temperature and noting the temperature at which spontaneous crys-
tallization occurred. He thus came to realize the importance of elapsed time
in this connection, and proceeded to determine the average life of solutions
with a given degree of supersaturation.

Wilhelm Ostwald (1897) experimentally attacked the problem of the size
of effective nuclel. The experiments were conducted with melted specimens of
phenyl salicylate (Salol) and solutions of sodium chlorate, among other sub-
stances. An impressive experiment, illustrating the minuteness of the quanti-
ties required, is described as follows:

‘‘A human hair wiil not affect supersaturated Saiol. If a hair is
brushed over a solid crystal of the substance and then introduced
into liquid Salol, it produces solidification at once. Particularly
heavy pressure is not required for this purpose; a light stroke,
with the hair only slightly bent, will suffice in most cases. With
great care, it is sometimes possible to avoid picking up a nucleus
with the hair, so that it will fail to act on the liquid; but this hap-
pens only once in perhaps dozens of trials. Since a hair has a
rough surface that may act like a file on the soft crystal of Salol,
a glass fiber, drawn as fine as possible, was substituted. Again
the effect appeared with great regularity. When, after touching
the crystal, the hair was wiped off between the fingers, as often
as twenty times, it failed to lose its effectiveness. Between two
sheets of soft rubber, however, the Salol was rubbed off rather
easily. If a broken hair is used, the end will often pick up enough
to induce crystallization; this may be avoided by using a plucked
hair. - A glass fiber was activized by contact and then washed in
fine quarts powder. It remained effective, and some of its ef-
fectiveness had been transferred to the powder, some specimens
of which, though not all, induced solidification,”

For the quantitative determination of nucleus size, Ostwald used two
methods of subdividing the effective substance. One was the trituratica of a
sample with nine times the quantity of some indifferent substance (lactose,
powdered quartz), whereby the concentration was reduced to 1/10. By n-fold
repetition of this process, the content of the specimen was reduced to one
10"-th. In the case of Salcl, this method yielded a limit of effectiveness be-
tween 0.022 and 0.045 cubic millimeters, a result which is in flat contradiction
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with the experiment reported above, and which Ostwald himself rejected. His
(doubtless correct) explanation is that the Salol does not remain in the crystal-
line state, but spreads out over the surface of the diluting particles as an ad-
sorption layer, thus losing its effectiveness.

In the case of sodium chlorate, he wetted a platinum spatula with graded
dilute solutions, and evaporated to dryness. This yielded a limiting nuclear
mass of about 10-10g, or 3 . 10-4 cc, Ostwald himself does not appear to have
attached too much importance to this quantitative result. He surmised, in con-
nection with the analogous problem of gas nuclei, that the size of the nuclei de-
pended on the degree of supersaturation, so that these figures are of only con-
ditional significance.

For us there can be no doubt that these values are far too high, and that
the explanation, ‘1 both cases, is to be found in the formation of a probahly
large number of individual minute crystals whose totality corresponded to the
values given, while the nuclear effect depended on the actual size of the in-
dividual.

Ostwald’s importance in this field is only very secondarily due to these
direct observations; it rests rather upon the order and clarity he introduced
into the chaotic multiplicity and confusion of existing data, His summary re-
mains of so much interest today that we shall here quote it at length, merely
omitting, for the sake of brevity, all comments relative to the now familiar as-
pects of equilibrium in general. His theorems are enunciated in terms of su-
persaturated solutions, which alone had been sufficiently studied at that time,
but may be extended mutatis mutandis to supercooled liquids and vapors.

‘‘Solutions whose concentration exceeds that of saturation
with a possible solid phase are said to be supersaturated with
respect to that phase. For this purpose, the concentration is
to be measured for the chemical composition of the solid
phase,

‘‘Alternatively, a supersaturated solution may be defined
purely empirically as a solution in which the solid phase, once
introduced, increases. Thig definition coincides with the pre-
ceding in practice, provided the necessary care is employed
in the definition of concentration.

‘It is essential to note that the definition of supersatura-
tion requires specification of a Particular form of solid phase
as imperatively as the definition of saturation (or of the un-
saturated state).

‘“This relative character of supersaturation was appreci-
ated by Loewel, even though the latter had not yet arrived at

F-TS8-7088-RE 5




o

sufficient clarity concerning the condition of saturation itself.

““If, in any manner, a solution is prepared in which the
concentration is greater than that corresponding to saturation
with a particular solid phase, but in which the solid phase is
not present as the saturation point is passed or thereafter, the
immediate result iz always a supersaturated solution.

*‘Suparsatur-t - soluticas may thus be prepared by any
means thr.ugh v.hic.. the su.stance in question may be brought
into solutwun. The simplest and most familiar method is that
of suitably ~hanging the temperature so as to produce a solu-
ticr: of the so'i4 suvstance in the solvent at a higher concentra-
tic» *han that of a saf “rated solution at the final temperature.
n most cases the ruquired injtial temperature is higher than
the finr.l tempecature, but it may also be lower, provided the
s’ bility of the substance decreases with increasing tempera-
tire,

‘‘Hov over, supersaturated solutions may be prepared as
weil, ¢I rather better (since nuclei of the solid phase are more
readily excluded), by means of any reaction that yields the sub-
“ance in qusation, if the reaction is allowed to take placeina
8.'vent under such conditions that the concentration will assume
the required value,

‘‘Among ¢ :persaturated solutions there are some which, if
nuclei are excluded, will apparently last indefinitely under cer-
tuin conditions, without ever spontaneously forming a solid phase.
Such solutions will be called metastable. -

‘“There are other supersaturated solutions in which, even
if nuclci are excluded, the solid phase will spontaneously appear
after a limited time. Such solutions are called unstable.

‘‘Metastable solutions always have a lower concentration
than unstable solutions of the same substances. Through in-
crease in concentration, therefore, a metastable solution can be
converted to the unstable condition. The concentration at which
this transition occurs may be called the metastable limit.

‘“The metastable limit is primarily a function of the nature
of the substances, of temperature and of pressure. In addition,
it is affected by various other factors that remain to be investi-
gated. At the present time, therefore, we can hardly make any
specific statement concerning the value of the metastable limit
and the means of its determination.

F-TS-7068-RE 6




‘I a supersaturated solution is in the neighborhood of its
metastable limit, it will readily precipitate crystals spontane-
ously when exposed to disturbing effects such as variations in
pressure, temperature, local evaporation or the like. For
since any transgression of the limit, in however small a region,
may at once produce crystallization at that point, with ensuing
propagation throughout the mass, the persistence of such a solu-
tion does not depend on the average value of the variables of con-
dition, as indicated by our ordinary measuring devices, but upon
the most minute deviations in the direction of the limit. Their
persistence is therefore determined by the values that these de-
viations may assume. Hence, and because of the extremely
small quantities in which nuclei are effective, there are many
unknown and uncontrolled factors, as such called accidental,
which can produce crystallization, often long before the metasta-
ble limit for the prevailing average temperature, pressure, ete.,
is reached.

‘‘A possible contrary view is that any passage beyond the
saturated condition yields an inherently transitory formation
which must necessarily precipitate the solid form sooner or la-
ter. The so-called ‘metastable’ conditions would then differ
from the unstable only in that the average time before initiation
of precipitation is very long in the case of the former, amount-
ing to months or years, and a matter of days or hours in the
case of the latter. There would then be no difference in kind
between the two conditions, but only one of degree.

‘“There is no objection in principle to such a conception, but
the view first expounded may be regarded as the more plausible,

‘‘When the supersaturated state is Spontaneously destroyed,
the solid phase produced is not the most stable under the existing
conditions, but the next in order. There is no theoretical diffi-
culty about establishing this theorem as generally valid, since any
exceptions may always be regarded as merely apparent, with the
initial and less stable phases changing instantaneously into more
stable ones. There are some isolated examples in which the ex-
istence of such stages has been demonstrated. While the theorem
can therefore scarcely be refuted experimentally in any conceiva-
ble manner, yet every exception poses the problem of somehow
identifying the hypothetical unstable transitions (e.g., by retarding
the reaction, reducing the scale or the like).

‘‘Supersaturation may be destroyed not only by solid nuclei of

the dissolved substance but also by solid nuclei of substances iso-
morphic with it. However, true isomorphism is required; mere
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similarity of form will not suffice.

‘‘In addition to strictly isomorphic substances, certain others
without that character will also induce precipitation. It remains
to be learned what conditions must be met in order for this to oc-
cur; presumably, miscibility in the solid state is one of these con- ‘
ditions.

‘“The quantity of solid substance required to act as a nucleus
is very small, but not indeterminably so. So far as now known, the
smallest %uantities that have been shown to act as nuclei are be-
tween 10-9 and 10-12 grams of solid.”’

The formation of droplets in vapors - first observed by Coulier (1875)
in the adiabatic expansion of a steam-air mixture, later by Aitken (1), Kiess-
ling (2) and R. von Helmholtz (3) under various auxiliary conditions - was in-
tensively investigated by C.T.R. Wilson (4). His device known as ‘‘Wilson’s
cloud chamber’’ has of course become one of the most important tools of modern
atomic research. In the absence of dust and ions, the metastable range extends
up to about five times the saturation pressure of water vapor. Within this
range, droplets will be formed only in the presence of dust and various vapors
and gases. Supersaturated solutions of liquids in liquids were long held to be
impossible. Experiments by Rothmund (5), Fuechtbauer (8), and Liesegang (D
yielded ambiguous results. It was not until 1918 that Harold S. Davis (8) suc-
ceeded in satisfactorily demonstrating supersaturation for nitrobenzene and
carbon disulfide in water.

A test of the validity of the stage principle was undertaken by G. Tammann
and his pupil F. Becker (9). The aerated vapors of substances were adiabatical-
ly expanded below their melting point. The stage principle would require the
appearance of droplets. The substances used were menthol (m.p. 430), cam-
phene (m.p. 43.59), nitrophenol (m.p. 450), benzophenone (m.p. 489), iodine
(m.p. 1139), camphor (m.p. 1779-1789), borneol (m.p. 2039-2049) and isobor-
neol (m.p. 213°-2149),

In the case of the first four substances, the specimen was introduced into
the expansion vessel as a supercooled liquid. Upon formation of crystalline
nuclei in the vapor, the liquid would be inoculated and solidify. Experiments
performed between 0° and 40° yielded only droplets, consistently with the stage
principle. The last three substances were present in the solid phase. There
was primary crystallization in the vapor, contrary to the stage principle. Io-
dine did not yield any unequivocal result.

According to Ostwald’s quoted remarks, he himself would not have been
inclined to infer the occasional failure of the rule from these findings. However,
we shall hardly share the view he expresses in the words ‘‘any exceptions may
always be regarded as merely apparent, with the initial and less stable phases
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changing instantaneously into more stable ones.”’ This plainly reveals a preju-
dice in favor of the stage principle, which Ostwald extends to all chemical proc-
esses and to which he is inclined to assign the rank of a general natural law, of
decisive importance to the existence of life. We should of course approve a per-
sistent adherence to a theoretically well-founded law; in the case of an empiri-
cally discovered rule, exceptions are to be expected, pending discovery of the
law that embraces rule and exception alike. The rule, notwithstanding its ex~
ceptions, will retain its importance as expressing a natural phenomenon in con-
tradiction with superficial preconceptions, and as alone responsible for our
knowledge of numerous unstable forms.

Ostwald’s concepts of a metastable and an unstable range, separated by
the metastable limit, are in a similar situation. He himself - as appears from
the quotation - considers two possible interpretations, and acknowledged the
possibility, as an alternative to the assumption of an actual limit, of a continu-
ous transition in which an apparent limit was created by a sudden increase in
frequency of nucleus formation with degree of supersaturation. Recent findings
favor the latter interpretation; neverthcless, the concept of the ‘‘metastable
limit”’ is extraordinarily useful for the brief elucidation of many phenomena.
Thus in vapors and solutions, nuclei generally appear so suddenly, and then so
abundantly, with increasing supersaturation, that a metastable limit is practi-
cally realized. -

The sharpness of the limit in solutions is impressively demonstrated by
Liesegang’s rings, for which Ostwald was the first to propose a provisional ex-
planation. The original experiment, readily reproduceable, employs a gelatin
solution with a little potassium dichromate added, spread on a glass plate. Upon
solidification, a drop of fairly concentrated silver nitrate solution is applied. At
the point of contact, there is an immediate precipitation of silver chromate. The
excess silver nitrate then diffuses into the gelatin and produces new silver chro-
mate precipitations, appearing in concentric rings around the drop. ‘‘The extra-
ordinary sharpness and regularity of the rings is evidence that under the condi-
tions in question, the cessation of the supersaturated condition is quite mechan-
ically determined. A decision of the question posed above, whether the distinc-
tion between the metastable and the unstable condition is substantial or merely
temporal, is not, as we shall here expressly emphasize, to be had from the ex-
periments.’’ (Ostwald.)

On the other hand, continuity of transition was first experimentally dem-
onstrated for supercooled liquids by G. Tammann (10) and P. Othmer (11).

Substances were heated in sealed tubes above the melting point and then
kept in a cold bath of definite temperature for a definite period of time. The
nuclei formed, which remained extremely minute because of the slowness of
crystallization, were ‘‘grown’’ to visible size at temperatures somewhat closer
to the melting point, and counted. As an example, consider the results obtained
for piperine (fig. 1). The tubes had been heated to 8C above the melting point
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(1289) and then left for 10 minutes in the baths, with temperatures as shown on
the horizontal axis. The nuclei were grown at 1000 for 4 minutes. The number
of nuclei has a pronounced maximum at about 409, essentially independent of
experimental variants. Thus, e.8., it persists if the liquid is first cooled to 0o
and then placed in the baths.

n & W
Tomprerbur m °C

Fig. 1. Number of Nuclei as Function of Temperature in Supercooled
Liquids (Tammann).

Ordinate: number of nuclei.
Abscissa; temperature, ©°C.

Substantially the same results were obtained with betol, The curve drops
off steeply beyond the melting point, but ultimately turns towards the horizontal
direction. In addition to the substances named, vanillin, stearic acid, lauric
acid, phenol and naphthalene were investigated in this range of small numbers of
nuclei. The rapid nuclear growth found in this temperature range necessitated
a different procedure, The time required for the appearance of the first nucleus
was measured; the reciprocal of this is the number of nuclei per unit time. In

this manner, the continuity of decrease towards the melting point was demonstrated,

In the immediate neighborhood of the melting point, however, no formation of nu-
clei was observable within a reasonable time. Othmer attributes this to a re-
duced capacity for growth.

In any event, the experiments as a whole suggest that the ‘‘metastable
limit” is dependent on time of observation, and hence has no absolute signifi-
cance. It 18 not apparent whether the nucleus formation observed actually oc-
curred in the homogeneous liquid or partly - perhaps even exclusively - on
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foreign particles. Othmer’s observation to the effect that the number of nuclei
was not proportional to the mass but depended on the surface area is note-

worthy.

The fact that small solid particles favor nucleus formation in many cases
was underscored by K. Schaum (12) and compared with the precipitation of drop-
lets in supersaturated vapors. Experimental findings to this effect were con-
firmed by S.W. Young and R.G. Cross (13). Othmer had previously found, in ex-
periments with liquefied dinitrobenzene and naphthalene slowly cooled in sealed
tubes, that different tubes exhibit considerable deviation in behavior, even upon
repetition of the experiment, whereas one and the same tube behaves fairly re-
liably. He concludes that solidification is always due to ‘‘localized causes, es-
pecially particles of any kind.”’

An extremely painstaking inquiry having special reference to these obser-
vations was undertaken by G. Kornfeld {14). The substance selected was Salol
(m.p. 41°), which is readily supercooled. One thousand numbered tubes were
filled with this material. Five hundred of these had been heated to only 56°, and
the other five hundred to-765: The latter were consistently more apt to be su-
percooled, a fact which Kornfeld is inclined to attribute to incipient decomposi-
tion of the substance, After melting the contents of the tubes, the latter were
reheated to about 50° and then stored in a bath at 25°. After 24 hours the tubes
whose contents had crystallized were removed and their number(s) recorded, after
which they were again heated to about 50C and returned to the thermostat. Out
of the first series - 484 tubes after breakage - 244 had not crystallized, 127
had crystallized once, 69 twice, 24 three times and 20 more than three times,
in 32 days. The last 20 were thenceforth eliminated as peripheral, so that 464
tubes remained. A check to determine whether these should be regarded as
equivalent, so that the result would be subject to statistical principles, was con-
ducted by comparison with an experimental game of chance. A set of 464
marked copper coins of the same size and shape was placed in a bag and mixed,
after which a coin was drawn, noted and returned. The drawing was repeated
337 times, corresponding to the 337 observed crystallizations. This series of
drawings was repeated ten times, and it was found that the first half of the
series sufficed to yield uniform average values. Comparison with the results
obtained in the case of the tubes showed fair correspondence. If it is assumed
that there were an additional 10 marginal tubes among those that had crystal-
lized three times, the deviations are not greater than those among the series of
drawings. The average rate was 8.3 crystallized tubes per day.

The second series of tubes, those whose contents had been superheated to
70°, was investigated similarly, but yielded a lower average of 2.1 crystalliza-
tions per day. The conclusion therefore is that similarly processed samples be-
have similarly; for although the crystallizations will occur at diverse times,
these deviations are essentially random.

It was not determined whether the nucleus formation was actually homo-
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geneous or whether foreign particles were involved. The liquid had been fil-
tered, but this does not ensure elimination of minute particles in suspension,
known to be one of the most difficult of laboratory problems /Le Blanc and
Wolski (15)_/. The difference between the two series might therefore be inter-
preted, contrary to Kornfeld, in terms of a destruction of catalytically active
solid particles as a result of the higher temperature.

While most of the experimental works cited contain discussions of a theo- -
retical nature regarding the process of nucleus formation, these do not transcend
the realm of purely qualitative speculations, scarcely of service even as working i
hypotheses. Following Van der Waals, the existence of supersaturated vapors !
and superheated liquids has been referred, down to the present day, to Van der
Waals’ equation of state. It has repeatedly been shown that this equation re-
mains valid for the portions of the curve beyond the line of coexistence, up to
the region where spontaneous nucleus formation occurs and prevents further
verification. For the liquid branch, this was demonstrated with particular thor-
oughness by Julius Meyer (18). This finding has commonly been interpreted in
favor of Van der Waals’ continuity principle.

It must be expressly stated that no justification for this exists. Other-
wise the gas-liquid transition would have to be regarded as something basically
different from the gas-solid or liquid-solid - a view which has as a matter of
fact actually been advanced in this connection,

The truth is that all experiments in this direction merely show that the
intersection of the isotherm of any phase with the line of coexistence, in the ab-
sence of the new phase, is not a particularly specialized point of any kind. Each
phase simply follows its equation of state throughout the region, just as all other
properties, e.g., electrical conductivity, optical refraction, etc., behave continu-
ously. The special property of Van der Waals’ equation, namely that it is ap-
proximately correct for both the gaseous and the liquid phase, has nothing what-
ever to do with the transition.

The only valuable theoretical work, oddly enough, has remained complete-
ly unknown. It is to be found in the second part of LW. Gibbs’ great treatise
On the Equilibrium of Heterogeneous Substances (1876 and 1878), and is conveni-
ently accessible in W, Ostwald’s well-known German translation under the title
of Thermodynamische Studien (17). It is strange that Ostwald, who was special-
ly interested in the subject and who must have thoroughly penetrated the meaning
of the work in the course of translating it, should have failed to recognize its im-
portance. In his Textbook of General Chemistry, which contains a brief summary
of Gibbs’ works, he merely says, ‘‘Passing over a few sections of more abstract
subject matter, concerned with the possibility of formation of a new phase within
a homogeneous liquid or a third phase at the boundary surface of two pre-exist-
ing phases, ete. .. .” Full quotation of the “abstract’’ sections in question is
impracticable, because of numerous special terms and symbols which render
them unintelligible except in conjunction with preceding chapters. Instead, we
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shall quote the corresponding passage from a rnote by Gibbs in which the results
are briefly summarized. He is speaking of the stability of a phase in a region
where a new phase - once present - is more stable. The reason for the con-
tinued existence of the first phase is to be found in the difficulty involved in the
initiation of the discontinuity.

‘‘The study of surfaces of discontinuity throws a considerable
light upon the subject of the stability of such phases of fluids as
have a less pressure than other phases of the same components
with the same temperature and potentials. Let the pressure of the
phase of which the stability is in question be denoted by p’, and
that of the other phase of the same temperature and potentials by
P’’. A spherical mass of the second phase and of a radius deter-
‘mined by the equation

1y 2¢ = (p” - p)r

( é = boundary surface tension) would be in equilibrium with a
surrounding mass of the first phase. This equilibrium, as we
have just seen, is instable, when the surrounding mass is indef-
initely extended. A spherical mass a little larger would tend to
increase indefinitely. The work required to form such a spheri-
call mass, by a reversible process, in the interior of an infinite
mass of the other phase, is given by the equation

W= &g - (pn - pa)vn'

The term & s represents the work spent in forming the surface,
and the term (p” - p’)v"’ the work gained in forming the interior
mass. The second of these quantities is always equal to two-
thirds of the first. The value of W is therefore positive, and the
rhase is in strictness stable, the quantity W affording a kind of
measure of its stability. We may easily express the value of W
in a form which does not involve any geometrical magnitudes,
viz:

3
W= 1?:‘“‘6:2
3’ - p)

where p’’, p’ and 3 may be regarded as functions of the temper-
ature and potentials. It will be seen that the stability, thus mea-
sured, is infinite for an infinitesimal difference of pressure (in-
creases). These conclusions are all, however, practically limited
to the case in which the value of r, as determined by equation (I)
is of sensible magnitude.”
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The treatise thus offers theoretical proof that a phase may persist beyond
the ordinary limit of stability at which it can coexist with another under like
pressure. For it is shown that work must be done in order for the new phase to
appear. The amount of this work is determined by the parameters of condition
of the first phase, and is equal to the amount of work required, under conditions
of reversible isothermic conduction, to form a spherical particle of the new
phase within the old, with components having the same thermodynamic potentials.
But this requirement determines the pressure in the new phase and hence the
radius of the spherical particle. The mere existence of a boundary-surface ten- |
sion will accordingly, under the general principles of thermodynamics, create
the necessary and suificient condition for the existence of a metastable region,
one limit of which will of course be p’ = p”, i.e., the ordinary limit of stability,
and the other (indefinite) limit of which will be at p”’ > P, Le., where the
sphere is of such small dimensions that it cannot be regarded as a phase. Sta-
bility decreases in this direction, namely, expressed in terms of the aforesaid
quantity of work, from W = @ to W = 0.

This exposition may seem quite abstract, since there is no stated relation
between the stability of a supersaturated phase, as thus quantitatively defined,
and its observable behavior, Incidentally, however, we here have the concrete
answer to the problem of the minimum spontaneously extensible quantity of the
new phase, i.e., the problem attacked experimentally by Ostwald. It is true that
the generality of the language obscures the practical meaning of the formula,
This may explain the fact that Gibbs’ remarks on this point remained completely
unnoticed, for which Ostwald’s curt dismissal was likewise largely responsitiie,
in view of the prestige of his text. Consequently, the field of nucleogeny retained
its purely empirical character for decades longer. This situation was not helped
by the fact that, in the course of discovery and analysis of the phenomena of
fluctuation described, it came to be felt that nothing better could be expected.
This view was supported by the statistical character of the phenomena, as con-
vincingly demonstrated by the cited work of Tammann, Othmer and Kornfeld. It
was further utilized in the theoretical discussion broached by F. Haber (18) on
the occasion of some research on ‘‘amorphous precipitates and crystallized sols.””’
The distinguishing characteristic is the property of the latter of yielding definite
interference rings by the Debye-Scherrer method. Both types of solid phase re-
sult from processes of transition. In precipitating reactions, the chemical
process produces a new species of molecules in a concentration that exceeds the
solubility.

Haber, with the support of Smoluchowski and Zsigmondy’s theory of coagu-
lation, assumes a subsequent random accumulation of the molecules into small
aggregates. The rate of accumulation supposedly depends on ‘‘the extent to
which the density of the molecules in question exceeds the solubility and on the
mobility of the molecules in the liquid from which they are to precipitate,’”’ or
in other words on the overconcentration and on the coefficient of diffusion.

Finally, the molecules become arranged in a lattice. The rate of arrange-
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ment, in competition with the rate of accumulation, determines whether the pre-
cipitation will be amorphous or crystalline.

In order to obtain data on the rate of arrangement, Haber proceeds to con-
sider crystallogenesis in supercooled liquids, which represent ‘‘a vast unarranged
accumulation of molecules.’’ It is this discussion, which transcends the special
subject of his work, that particularly concerns us here.

The molecules of a supercooled liquid tend to assume the iattice arrange-
ment at which the potential energy is a minimum. Heat motion both facilitates
the process of arrangement and tends to destroy nascent arrangements. The
stability of the initial arranged aggregates of molecules is less than that of larger
crystals, and their melting point therefore lower. If we assume a small aggre-
gate of spherical shape, the difference between its melting point and the melting
point of normal crystals may be expressed by means of W. Thomson’s equation
as modified by J.J. Thomson (18):

Ts'Tr = 28 M
Tg r-Qg-d

(Tg melting point, Ty melting point of aggregate of radius r, & specific free
boundary-surface energy between crystal and liquid, Qg heat of fusion, d density
of solid phase, M molecular weight.) At very low temperatures, arranged ag-
gregates of minimal size are stable. As the temperature rises, we arrive at a
point where they melt - called by Haber the ‘‘trace melting-point.”’ Below this
trace melting-point, arranged aggregates can arise, and their formation is in

fact favored by increase in temperature up to this point, owing to increased mole-
cular mobility. Beyond the trace melting-point, i.e., between it and the melting
point proper, we have Ostwald’s range of metastability.

In this range, there was not supposed to be any spontaneous crystallogenesis;
according to earlier conceptions, formation ceased discontinuously at the trace
melting-point. In the light of present knowledge, owing to fluctuations in free en-
ergy, the transition is continuous, but the probability of transition decreases
sharply as Tg is approached. Haber’s ‘‘trace melting-point”’ coincides with the
maximum frequency of nucleogenesis.

In application to precipitation from solutions, we have the added factor that
the accumulated condition does not preexist but must precede the process of
crystallogenesis. Depending on whether accumulation takes place rapidly or
slowly relative to arrangement, the precipitated product will be amorphous or
crystalline. For the occurrence of the first crystalline aggregates due to ar-
rangement of amorphous accumulations, we have the same situation as before,
except that temperature is replaced by solubility, so that the controlling relation-
ship becomes

2o M Lr
3rd - RTIn Ly
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where M is the molecular weight of the solute, L, is the trace melting-point
and Ly, is the solubility by mass.

These nuclei then grow by picking up molecules from the solution, and
this is controlled by the difference in concentration,

Following this theoretical discussion, experimental results on the struc-
ture of sols and precipitates, in particular of metal hydroxides, are reported,
but without further use of the foregoing. The explanation in terms of the con-
cepts of rate of accumulation and rate of arrangement has been widely accepted
and repeated in subsequent literature. We shall later see that this suppused ex~-
planation will not bear thorough investigation. We may here remark on Haber’s
view, reminiscent of the stage principle, that a crystalline precipitation is always
preceded by the formation of amorphous aggregates. His general exposition of
the genesis of crystalline nuclei in the liquid are incapable of development i..io
a quantitative theory. This is prevented in particular by the lack of clear defini-
tion of the term ‘‘trace.”

The sequence of ideas that put the author on the track was as follows. In
collaboration with Notboom (20), experiments were made in the production of
Liesegang rings by Pblg. In particular, it was observed that Pblg crystals tend
to be formed on fresh PbSO4 crystals. The Pbly solutions used were rather
highly supersaturated, so that the minute PbSOg-usystals were nol to be regarded
as nuclei, but merely as favoring the formation of nuclei. This idea of a more
or less catalytic effect, in view of the general theory of chemical catalysis, sug-
gested inquiry into the amount of energy serving as energy of activation in nucle-
ogenesis.

The investigation (21) shifted to the simpler case of the formation of drop-
lets, and specifically to the following question: How can external work performed
on the supersaturated vapor produce a droplet just capable of growth. First it
was necessary to determine the size of the droplet when the pressure p’ of the
supersaturated vapor was given. The answer was yielded at once by W. Thomson’s
familiar formula, which when solved for r reads as follows:

2°-d'M

)
d+ RT - In P
To

rs=

(Poo saturation pressure at temperature T).

For reversible formation of a droplet in the interior of the vapor, it was
proposed that the required quantity of vapor be expanded from p’ to P and then
condensed onto a sheet of liquid, the droplets then being formed from the liquid.
Thus the required minimum expenditure of work is obtained as the algebraic sum
of the work gained in expansion and the work lost in formation, viz.
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By a lucky chance, Gibbs’ bock came into the author’s hands just at this
time, and in the circumstances a mere glance at the formula sufficed to reveal
its tdentity with his own, together with the significance of the chapters in ques-
tion.

Gibbs’ derivation proved far more general, and capable of extension to all
the types of nucleogenesis concerned.

The next problem was to specify the ‘‘rate of nucleogenesis,’’ i.e., the
number of nuclei formed per second, for given values of the variables of condi-
tion, on the basis of the known energy of activation. A tentative solution was
proposed in (21) (M. Volmer and A. Weber), at the same time explaining the
catalytic effect of foreign crystals.

Further efforts were directed towards a more rigorous kinetic formula-
tion. This was accomplished by L. Farkas (22) for the case of formation of
droplets, on the basis of an approach suggested by Scillard. The result contained
a remaining arbitrary constant, whose significance was later recognized by R:
Becker and W. Doering (23).

While liquid droplets may change in size quasi-continuously by gain and
loss of molecules, crystalline growth proved to be a stepwise change in volume,
interrupted upon completion of each lattice layer.

In the course of further experiments in crystallogenesis from vapors, the
author (24) came to realize that the addition of a new lattice layer involves a
difficulty strictly analogous to that of ordinary nucleogenesis. Hence, upon
completion of a lattice layer, there is a cessation of growth until formation of a
new two-dimensional nucleus. Following more profound analysis of energy con-
ditions on crystal surfaces by W. Kossel (25) and I. N. Stranski (26), R. Kaischew
and LN, Stranski (27) succeeded in deducing crystalline nucleogenesis from the
kinetic theory. The complete analysis of this process was carried out by R.
Becker and W. Doering, who succeeded in formulating the previously unintelligi-
ble multiplicity of unit molecular processes involved in the generation of crys-
tals.

The extension of the theoretical formulations to other cases of phase gen-
esis offers much in the way of interest but no fundamental difficulties. It turns
out that the laws of nucleogenesis follow strictly from the general kinetic theory,
without requiring the introduction of any further hypothetical factor. This places
us on firm ground in evaluating the various problematical experimental results.
The rules set up by Ostwald receive official formulation, from which their limits
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of validity may be uniquely determined. Moreover, we acquire a guide for quan-
titative experimental research; in particular, the gaps in our knowledge of the
simplest processes are exposed, and it is to be hoped that this may revive ex-
perimental work in this field.

(Note: The earlier works mentioned above are cited explicitly in W. Ostwald’s
Lehrbuch der Allgemeinen Chemie, Leipzig 1886-1902, where the reader
will find the exact bibliographical references.)
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2., PHASE TRANSITION OF SINGLE MOLECULES

A new phase always arises from minute beginnings of molecular dimen-
sions, through the addition of molecules from the parent phase; hence the mole-
cular transition from one phase to another is the elementary process funda-
mental to that of phase formation, and its knowledge is the necessary condition

for a rigorous treatment.

A. ONE-COMPONENT SYSTEMS
a. Gas - Liquid; Liquid - Gas; Gas - Crystal; Crystal - Gas

The molecular transition between the gaseous and liquid states has been
the subject of many works. Heinrich Hertz (28) was the first to relate it to the
postulates of the kinetic theory of gases. The argument is as follows: Let a
liquid (phase II) be in equilibrium with its vapor (phase I), and let the pressure
be so low that the vapor may be regarded as a perfect gas. The kinetic theory
of gases implies that the number of molecules striking the surface of the liquid
per square centimeter per second is nt/4, if n is the number of molecules per
unit volume and ¢ is their mean velocity., Let & be the fraction of these
molecules that passes into the liquid phase, and 1 - a the fraction reflected;
then W = a nc/4 is the flow of molecules entering the liquid per unit area.
At equilibrium, the magnitude of the evaporative flow Wy is the same. As-
suming that the two processes are independent, Wy = W = & nt/4 =
=pa N/ 2 MRT (N Avogadro’s number, R gas constant, M molecular
weight, T absolute temperature, p vapor pressure in dynes per cm2) is the
complete expression for the rate of condensation and evaporation.

Hertz was likewise the first to attempt to verify this result experimental-
ly, by measuring the rate of evaporation of mercury at 100°, Assuming
a = 1, he computed an evaporation of 0.016 g/sec.cm2 (the correct value is
0.0117);/exper1mentally he obtained 0.0018, corresponding approximately to
a = 1 90

A further series of experiments was contributed by M.R. Marcelin (29).
The apparatus consisted of a thin-walled glass tube with an inside diameter of
0.1 to 0.3 mm, fused to a larger bulb. The capillary was filled with the sub-
stance and the bulb used as a condensation chamber; the apparatus was under
a good vacuum. The capillary was dipped in a temperature bath T beyond
the liquid-vapor (solid-vapor) boundary, and the bulb was either cooled to such
an extent that the vapor pressure was negligible or kept at a certain lower tem-
perature Tg at which the vapor pressure of the substance pg <-pi. In this
case the rate of evaporation is Wri(Ty) - (WI(T2) = (pg - :22) a }}/ \/2 ™ MRT] .

The results are shown in Table 1. The entries are the values for 1/ a .
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Table 1

Substance 40° C {45° ¢ | 50° C |55° C [60° C |65° C| 70° C
Nitrobenzene (liquid) 15 10 5 | 6 48 | 4
Naphthalene (solid) 28 20 16 |13 10.8 9 7.4
Iodine (solid) 18 15 | 10.2 | 8.4 | 7 5.8 | 4.8

The average result was « = 1/10, approximately, or about the same as
that of Hertz.

Not long after, the problem was studied with extreme care by M. Knudsen
(30). The substance used was mercury, which is especially convenient for sev-
eral reasons. Its vapor pressures are accurately known over a wide range, so
that it is possible to select temperatures at which the free path of the mercury
atoms is long enough so that a cold surface can be placed at a shorter distance
from the liquid surface, thus eliminating return flow. The high conductivity of
mercury further ensures accurate knowledge of the surface temperature, if
evaporation is sufficiently slow.

Knudsen’s first experiment yielded the surprising low value of a =1/2000.
Knudsen correctly surmised that this was due to contamination of the surface
with impurities. An improved procedure yielded a = 1/9. Finally, extremely
elaborate experiments with dripping mercury, for continuous renewal of the sur-
face, yielded @ = 1, within an error of 1%.

Experiments similar to those of Knudsen were conducted by K. Bennewitz
(31). For cadmium, he at first found a = 1/10 to 1/100. Again, after care-
ful elimination of all possible sources of contamination, increasing values of
a were found, up to between 0.388 and 0.650. In the case of mercury also,
a = 1/10 to 1/20 were initially obtained, until finally a result between 0.851
and 0.185 was obtainable. These experiments show that the determination of o
requires extreme care, and that experimental findings cannot be accepted until
after thorough analysis of conditions.

M. Volmer and I. Estermann (32) have employed three different methods.
A small quantity of mercury was distilled into a double-walled vessel under high
vacuum (evacuated at about 3500), and the vessel sealed. For measurement, a
droplet of mercury was placed on the outside of the inner wall and observed
through a microscope with scale. After immersion of the vessel in a tempera-
ture bath, the inner tube was filled with liquid air and the diameter of the drop-
let measured at definite time intervals.
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Below 0° C, this technique failed to give good results because of the slow-
ness of evaporation. A second method was therefore used, depending on the
measurement of mercury deposits condensed on a very cold surface, by means
of electrical conductivity.

The values of a found by these two methods are shown in the following
table.

Table 2 - Combined Results of Two Evaporation Techniques

Temperature Average Value Number of
ocC of a Observations
59 1.04 5
49 0.94 4
40 0.95 5
30 1.01 6
22 0.99 9

0 1.07 4
-9 0.98 5
-14 0.99 5
-20 1.045 1
-29 1.005 6
-30 1.00 3
-37 0.99 5
-41.5 0.94 5
~45 0.93 1
-55 0.82 3
-84 0.85 2

We see that the values of a for liquid mercury between -39° and +58° C
are consistently and densely clustered around 1. For solid mercury, however,
o appears to be definitely less than 1.

This observation was checked by means of a third method depending on
the measurement of the number of molecules reflected from a moderately cold
surface of solid mercury. This yielded values of a between 0.9 and 0.94.
The values found by the reflection technique are somewhat higher than those
found by the evaporative technique, and are probably more reliable because of
the greater simplicity of the method.

The result of the experiments may be summarized to the effect that for
surfaces of pure liquid mercury, a is 1 regardless of temperature, while
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for solid mercury, o is somewhat less throughout, but differs from 1 by only
6 to 10%.

1. Langmuir (33) first utilized the rate of evaporation of heated filaments
in a high vacuum - computed from weight loss - to determine vapor pressures
and heats of evaporation of the high-boiling-point metals, determining these in-
dustrially as well as theoretically significant data, in collaboration with H.A.
Jones and G.M.J. Mackay (34), for the metals tungsten, molybdenum, platinum,
nickel, iron, copper and silver. A valueof a = 1 was assumed. This as-
sumption appeared to be corroborated by the fact that the results could be ex-
pressed by the general vapor-pressure equation, with use of the Sackur-
Tetrode-Stern chemical constants. A partly experimental and partly mathe-
matical check of the data was made by P. Harteck (35) and A. Eucken (36). The
vapor pressures of copper and silver were measured by Knudsen’s escape meth-
od, repeatedly found highly reliable. It was found that the vapor pressure val-
ues determined by the filament method were about 1/3 to 1/4 toc small. A
critical reanalysis of the experimental findings of Langmuir et al. showed that
the situation was similar for the other metals, excepting platinum.

We may thus conclude that in the majority of cases o is surely to be
taken as less than 1, namely 1/3 to 1/4, while in one case (platinum) o ap-
pears to be about 1.

Except for Marcelin’s measurements, all these experiments concern
monatomic substances, in particular metals.

T. Alty (37), and later Alty and F.H. Nicoll (38), undertook the measure-
ment of the coefficients of condensation of water and carbon tetrachloride. The
difficulty here is the high vapor pressure of these liquids, even at their freez-
ing points. The maximum rate of evaporation is not directly measurable, as
this requires that the cold surface be no farther from the liquid surface then
the length of the free path, and because the cooling due to rapid evaporation
would be extraordinarily great. These authors therefore measured the rate of
vaporization in a space filled with vapor of constant pressure p’, namely the
quantity (p - p’) @ N/ \2 ™ MRT. However, this procedure does not en-
tirely eliminate the difficulty involved in the cooling of the evaporating liquid
and the resulting uncertainty of the surface temperature. Of course, the rate
of vaporization can be reduced at will by reducing the difference p - p’, but
this equally increases the relative error due to the uncertainty of temperature.
The surface temperature was measured with a thermocouple over the junction
of which the evaporating surface was allowed to pass. However, this only gives
an average that is certainly higher than the surface temperature. The value of

a  was found to be about 0.01 for water and approximately 1 for carbon te-
trachloride.

In the repetition of the investigation, by Alty and C.A. Mackay (38), the
surface tension was used as a means of determining surface temperature -
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undoubtedly a basic advance. The resulting value of @ was about 0.036, In
the same work, the authors also attempt to determine Knudsen’s coefficient of
thermal accommodation (40), ¥ = (Tg - T1)/(T§ - T1) (T{ temperature
of arriving molecules, Ty temperature of departing molecules, T¢4 surface
temperature), obtaining a value of 1. This latter result is unacceptable, since
the computation contains a fairly obvious error. The low value of a for wa-
ter is surprising, and calls for further detailed investigation.

Apart from direct measurement, information on the magnitude of a
may be obtained in another way, based on an experimentally and theoretically
well-founded conception of the nature of molecular impacts on solid surfaces.

L. Langmuir (41) first definitely proved that the earlier purely mechanical
conception 18 inadequate. As a molecule approaches a wall, and as soon as the
distance is less than the range of molecular forces of attraction, an accelera-
tion occurs. The resulting increment of kinetic energy is frequently a multiple
of the mean thermal energy. This energy is generally not preserved at impact
of the gas molecule, but is in part passed on to the elastically fixed molecules
of the wall. Consequently the incident molecule is unable to leave the surface
again, but continues to oscillate in the field, with further dissipation of energy
(heat of condensation or adsorption). The molecule remains in this bound state
until the required release energy happens to accumulate at that point, so that a
return to the gas-filled space becomes possible. Reflection thus consists of a
condensation and a re-evaporation. Langmuir documented this intuitively ines-
capable conclusion with overwhelming experimental evidence.

Yet it would be wrong to drop the purely mechanical conception entirely.
In general, analysis of the impact must take account of the following two possi-
bilities:

1) Mechanical reflection
a) Regular
b) Diffuse

2) Condensation and re-evaporation

The difference is that in (1) the impact energy is retained by the mole-
cules directly involved, while in (2) we have a transfer to other molecules,
i.e., evolution of heat.

While it is easy to distinguish regular reflection (1a) from the other
cases, diffuse reflection is experimentally more difficult, and at times impos-
sible, to distinguish from the case of condensation-evaporation, because the
molecules returning from the wall have the same distribution in both cases, in
accordance with the cosine principle for reflection of light from a white surface.
In general, the proportion of regularly reflected molecules, determinable from
measurements of the glide coefficient of gases, is relatively low, about 0 to 10%.
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Predominantly regular reflection (1a), however, was found by O. Stern et al.
(42) in their brilliant experiments demonstrating interference of molecular
beams on surface lattices. The incident particles used were helium atoms and
hydrogen molecules, impinging on sodium fluoride and lithium fluoride cleavage
surfaces. The reason for the almost total lack of energy transfer, and the re-
sulting failure of the particles to become bound to the surface, is the smallness
of the impinging masses relative to those of the surface atoms, which in con-
junction with reduced interactive forces is unfavorable to any energy transfer
upon impact. In the case of hydrogen, which is nevertheless rather intensely
adsorbed, another factor may be that the particles cannot be captured by the
surface except in discrete oscillatory states.

Genuine diffuse reflection (1b) will occur when the same gas particles
impinge on a surface consisting of small random particles of the same crystal
surfaces that would otherwise produce regular reflection. Since the only dif-
ference from case (2) is the lack of energy transfer, the latter seems a prom-
ising criterion for distinguishing them. In this connection, it is desirable to
know the coefficient of accommodation  } = (Tg - Ty)/(T4 - T1), on which
there is an extensive literature (43). The close relationship between this and
the coefficient of condensation is evident. The elementary processes in both
cases are the transfer of kinetic energy from the impinging molecule to the wall
or vice versa. The difference is that in one case the source of kinetic energy
is the temperature difference, while in the other case it is potential energy of
molecular attraction. The coefficient of accommodation, in the case of poly-
atomic molecules, also has component energies of rotation and osecillation.
Without going into detail, we may summarize the general result to the effect
that larger molecules more readily yield condensable gases with § about
equal to 1. The same is true of the inert gases argon and krypton. The com-
pensation of energies of rotation and oscillation is less complete, a fact which
is in line with recent discoveries on the excitation of energy of oscillation by
collisions of polyatomic gas molecules with each other and with inert gas mole-
cules, However, the fact that there is still a partial transfer to the wall indi-
cates that the molecule remains on the surface throughout a rather large num-
ber of periods of oscillation, i.e., that Langmuir’s impact mechanism is gen-
erally present. Unfortunately however, }<< 1 does not tell us whether the in-
completeness of energy transfer is due to brief retention, or whether some of
the molecules suffered true reflection, i.e., without any energy transfer.

In order to complete the ideas gained from these experimental findings,
a purely theoretical discussion of the situation described is necessary. Such
research was done by H. Baule (44) and later by Langmuir (41). However, their
work has perhaps been superseded by the recent and significant investigations
of M. Polany and E. Wigner (45). It is true that the latter consider only the case
of like atoms and like binding forces, but this is just the situation in the condi-
tions of evaporation and condensation to be explained here. Energy fluctuations
within a system of solidly interconnected atoms, then, are due to interference of
oscillations. The result of the calculation is that during one period of oscilla-
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tion (1/y ), the variation at a bond averages about kT, and that a mean time of
7kT

approximately eE /V is required for accumulation of an energy E > kT.
Before release of an atom bound in three space directions, a mean time of

(1/2¥) (k '-I:/E)eE/ kT. This yields a rate of evaporation per square centimeter

of surface of (2V /¢ 2)( A /kTe A/ kT, where O 2 ig the area required by an
atom within the surface and the work of separation E is equated to the atomic
heat of evaporation .

Comparison of this expression with the formula pa N/v 2 WMRT vyields
an a of about 1. The same result is obtained from a consideration of the
process of capture of an atom. An incident atom, for the duration of one period,
is part of the configuration, and there is an appreciable probability of its losing
enough energy in that time (about kT) to be retained.

At this point we may mention some other circumstances that might inter-
fere with condensation and evaporation. First, consider the possible existence
of an energy barrier which the arriving molecule must cross in order to reach
the range of attraction of the surface molecules. Then there would be 8 minimum
required entrance velocity, i.e., an energy of activation u. All slower molecules
would be turned back, with only a fraction @ = gu/kT achieving condensation.
Such an assumption has occasionally been made in the literature (46). Entirely
apart from the fact that no experimental indications of the existence of such a
temperature function, the idea is a priori improbable (47). An energy of activa-
tion does occur, experimentally, when establishment of a bond requires the
breaking or loosening of an old bond. In the case of condensation, however, there
is generally nothing of the kind. The arriving molecule is free; the molecules
at the surface point of impact are bound, of course, but no separation is re~
quired, provided the condensation involves superimposed Van der Waals forces
rather than numerical valence bonds. Phase transitions associated with sub-
stantial changes in electron configuration or other inner molecular properties
will not be considered in this place.

Having disposed of the activation hypothesis, we must give closer attention
to another circumstance, namely the problem of possible steric hindrance, i.e.,
the question whether there are molecules and surface localities that determine
unsuccessful impacts. In the case of pronounced heteropolar molecules, the
total number of possible hits must be reduced by the number of those involving
repulsive forces. Inthis case a must therefore be expected to be consistent-
ly less than 1. Even for nonpolar or only slightly polar molecules, however,
there may well be regions determining unsuccessful impacts. Large molecules
may have groupings that exert only moderate attractive forces upon mutual ap-
proach. Even if the bond energy is appreciably greater than kT, such an impact
will involve only slight energy transfer to the oscillators of the condensate, so
that the molecule is forced to return. If in addition there are prescribed direc-
tions of approach for entry of a molecule into the crystal lattice, a part of the
incident molecules may not be accepted. This necessity of return due to a pre-
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scribed arrangement in the condensate may possibly also occur in the case of
atoms having magnetic axes. In any event, we see that the widespread notion
that @ =1 in all cases is not theoretically demonstrable. If it is recalled
that there is only a single accurately investigated example (mercury) in sup-
port of this notion, the most that can be said today on the basis of available ex-
perimental data is that o is generally of the order of magnitude between 1
and 0.1. Such a tentative formulation of the result is likewise readily recon-
ciled with the foregoing theoretical considerations.

However, this does not exhaust our present knowledge of the condensa-
tion-evaporation process. In the case of crystals, our experimental and theo-
retical insight is considerably more profound. We see at once that complete
knowledge of the process of condensation on crystals includes the solution of
the old and stubborn problem of crystalline growth; after all, the most con-
spicuous peculiarity of crystals, their polyhedral shape, is due to vectorially
distinct rates of deposition. Anticipating the result of the work to be discussed
below, we may say that the primary physical cause of this has been seen to lie
in the varying strengths of the bindings suffered by molecules striking the sur-
face of the crystals at unlike points. Wherever the work of separation is less
than A (molecular heat of evaporation) - namely over nearly the entire sur-
face in the case of growing crystals - the exposure time is relatively short,
and at not excessively low temperatures there should be considerable apparent
reflection, or in earlier terms a<€ 1, contrary to the cited experiments on
solid metals. In the latter case, of course, we have a microcrystalline sub-
stance, rather than large crystals, and yet the number of surface points where
the work of separation becomes A is relatively small.

g

Hg Kristall: Hg crystal

Fig. 2
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This paradox is explained in terms of the surface migration of the mole-
cules. Even though incident molecules re-evaporate quite promptly at many
points, there is still more facility of change of place in the surface, so that
many points are reached during the exposure time. Hence the mobile molecules,
at least under the conditions of the experiments mentioned, are very likely to
reach a point of firmer binding,

This conception was first gained through observation of the origin of mer-
cury crystals on moderately cool glass surfaces (24). In a glass vessel of the
form shown in fig. 2, under high vacuum, there is a small quantity of mercury
at a. This portion is immersed in a temperature bath of -10°, Melting chlo-
roform (-830) is poured into the tube b. During the first few seconds, no dep-
osition of mercury is observed on the cold surface at b, but after about a min-
ute small isolated crystalline flakes, clinging to the glass at one point and hang-
ing down into the gas chamber like follage, become visible. The vapor space
above a is practically at the saturation pressure of mercury for -10°. The
small rhombohedral crystals of mercury grow in a homogeneous vapor at this
pressure - not in a directed jet of vapor, as has often been erroneously sup-
posed in the field of mineralogy - because the glass surface b rejects all
molecules except those which strike the crystals themselves. Microsc%pic
measurement of the dimensions showed a maximum extension of 3 : 10" cm,
while the thickness of the largest transparent flakes was only about 1/104 of
this. grom the number of impacts, the maximum rate of growth is computed at
3°107° cm in a like period of 1 minute. Hence the crystals have grown 1000
times faster in width, and about 10 times slower in thickness, than the impact
theory of condensation would predict. Hence the only possibility is that atoms
striking the wide bases of the crystals have produced growth on the narrow sur-
faces perpendicular to thern. This must have happened in one of two ways, one
of which - the insertion of the newly arrived atoms into the finished lattice
planes of the base - may be eliminated at once from energy considerations.
The only remaining explanation is that while the atoms are retained on the hase
surfaces, they are not actually condensed, but continue their heat motion on the
surface until they find a suitable binding location at the margin., But this is not
the only alternative for the incident atoms, since the crystal does grow in thick-
ness also, however slowly. According to this argument, three things can hap-
pen to atoms incident on the base areas: 1) Re-evaporation, which requires
an energy value of less than A (apparent reflection), 2) Departure from the
surface by migration. 3) Unification of several atoms on the surface to form
the nucleus of a new lattice plane. The optically perfect surface of the base
shows that at first all of the atoms migrating on the surface are deposited at its
margin, until occasional deposition of a new lattice plane.

The experiment has thus revealed three previously unknown effects, each
subsequently confirmed independently of the rest: 1) The diverse binding ca-
pacity of surface points. 2) Surface migration. 3) Two-dimensional nucleo-
genesis.
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The first two of these phenomen are part of the elementary process of
condensation, and will therefore be discussed here. :

¥

/
/
[ ¥ 2
Fig, 3

The energy conditions on crystalline surfaces have been the subject of
profound and instructive theoretical treatment, in terms of the rock salt lattice,
by W. Kossel (25) and I.N. Stranski (26). We shall here employ the particular-
ly simple yet theoretically adequate method of Kossel, taking account only of
the Coulomb lattice forces among absolutely rigid undeformed atoms. Let fig.

3 be a diagram of such a crystal, with an incomplete lattice plane on its cubical
face. A newly arrived ion will be bound by the lattice forces, with varying de-
grees of firmness, depending on its location. The work of detachment of the ion
is obtained by algebraic summation of all binding and repulsion components ex-
erted on the selected ion by the other ions of the lattice. A convenient unit is
the quantity e4/é , i.e., the work of separation of two adjacent ions at an in-
terval & (1/2 of lattice constant). Kossel accomplishes this summation very
conveniently by the use of the work of separation &’ at the end of a row of ions
parallel to the cubical edge, or, in the selected unit, 3’ =1-1/2+1/3 -1/4 +...
= In 2 = 0.68315, and the work of separation of an ion alongside such a row, on
a perpendicular erected at the location of an ion of opposite charge. This work
of separation is plotted as a function of distance in fig. 4. We may note both the
small amount of the energy, hardly more than 1/10 at a distance of only 1, and
its rapid decrease, so that positions of distance 3 and over may be disregarded.
By summation, we at once obtain the work of separation of an ion at the edge of
a lattice plane, 2"= 0.1144, and that of an ion lying on a cubical face of the
crystal, @ = 0.0662. At the point indicated by the arrow (fig. 3), the work
of separation @ = $’+ P”+ §”/= 0.8738, or more than any of the other
selected points. This point has still another important peculiarity; by succes-
sive removal or addition of ions in this location, the crystal may be torn down
or built up in steps of consistently uniform energy. Deviations will occur only
near the margin of the lattice plane, and for sufficiently large crystals these de-
viations become numerically negligible. Hence 2N d w is the total lattice en-
ergy, customarily §eferred to 1 mol of the salt, or 2N ions (Avogadro’s num-
ber N = 6.06 * 102 ). Let a building block at the designated point (subscript w)
be said to be “bound to a half-crystal;’’ let addition or removal of such a block
be called an ‘‘iterable step}’’ and let the point itself be called a ‘‘point of growth.’’
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Variables referring to this position will be subscripted w, whereas the posi-
tion corresponding to ¢*’will henceforth be subscripted ad.

oo

Z B a5
Fig. 4

The quantity 2N ,, will cf course be the final result for any other man-
ner of assembling the ions, but in that event the single components will differ
from each other. If, e.g., we begin by applying single ions to the cubical face of
an aggregate, we obtain only “"= 0,0662. Later, however, in filling the open
spaces between the ions, we get values &=-0.8737; for example, filling an iso-

lated gap in an otherwise finished facial plane involves an energy of 2 @’ +
+20" + P = 1.6814.

In order to approach experimentally obtainable conditions, we must take
account, with Stranski (26), of the fact that the gaseous phase, within the range
of existence of alkali-metal halide crystals, consists of diatomic molecules. The
work of detachment of pairs of ions (molecules), for which we shall use the sub-
script (2), is as follows, disregarding contraction: & 422’ = 0.3863;

0.7475.

" (z) = 0.2288; "' () = 0.1324; w2) = The order is the
same as before, but the values themselves are smaller because the work of dis-

sociation is not included. This is relatively large (unity), which in turn is the
reason for the practical absence of dissociation in the gas.

The binding energies of the building blocks on and in a homopolar lattice
are not accessible to so simple a calculation,but Kossel proposed a schematic
approach that has become important as applied in further researches by Stran-
ski et al. (67), as well as R. Becker and W. Doering (23). Consider a simple
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Cubical atomic lattice. A selected atom in the interior is surrounded by 6 im-
mediate neighbors at distance J , 12 atoms at distance & V2, 8 at distance

8 V3, 6atdistance 2 S , etc, This circumstance will be expressed by the
following notation: 6]12]8|6... If we consider only the neighbors of first,
second and third order, which yields a good approximation to actual conditions

in view of the rapid attenuation of the homopolar forces, the work of separation
from row, face and block of cube become 2'=1/0/0, ®" = 1|2]o, &=
=1|4]4, @ =3 6 4. This tabulation does not give us the various energy
values themsgives, but does show their gradation. We note for example, the changed
order relative to the heteropolar lattice, and the small differences among the val-
ues for the corresponding position. (A new and promising method of determining
the force distribution has been reported by Stranski (48). It is based op the ob-
servation of growth forms of homopolar crystals as a function of the supersatura-
tion of the vapor in which they grow. In the case of cadmium, it was found that
the force decreases faster than the seventh power of the distance increases. The
work of detachment of a building block from the point of growth is more than 96%
attributable to separation from the primary neighbors only.)

This schematic approach may readily be extended to other lattices as
well, We shall here tabulate the values of & w and & .4 for various lattices
and surfaces, as given by Stranski and R. Kaischew (27).

Table 3 - Cubical Lattices

Simple: Space-centered: Face-centered:
by = 36l4 oy = 4318 ¢y = 6/3)12
100 = }ﬂ 100 = 4:1:4 100 = 4/1{ 2
b 110 = 252 ®aq J 110 = 21215 110 = 5/2/10
ady111 - 3;3/4 111 = 1808 Dqq 111 = 313] 8
211 = 3/5I3 211 = 31315 210 = 6/2/10
311 = 5/810
531 = 6/81 0
Closest packed hexagonal: Diamond:

by = 6l311 bw = 2/6/6

0001 = 313i1 100 = 1/5|5

1010 = 4i4/0 110 = 21416

?ad {0112 = 4)211 Paqd 111 = 1]816

1011 = 5)210 311 = 2/5/4

1120 = 5/2/1 310 = 2i6l5

The minimal separation values & ad have been underscored; comparison
with ¢ o shows that the former are generally somewhat more than half the en-
ergy of the iterable step.
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This energy analysis is at present quite unconnected with the research on
condensation and evaporation, workers in the two fields being unaware of each
other. The establishment of a connection is accordingly left to us. To begin
with, instead of the relative values & , we need to know the absolute energy
values. By € p we shall mean the potential energy of a loose building block;
by € i, that of a building block in i-th position, thus, e.g., & w thatof a
point of growth. In general, the energy of the iterable step may be referred to
the heat of evaporation A . If the latter is measured at temperature T, then
the heat oi evaporation at absolute zero may be computed from the molar heats.
Dividing by N, we obtain the molecular heat of evaporation A g at T = 0, and
addition of the zero point energy of oscillation yields the energy of the iterable
step. This procedure is especially practicable in the case of monatomic sub-
stances,

Within the temperature range of the Dulong-Petit law,

(1) e kT

0-8W=AT+2

is a close and convenient approximation. For

3N 3N
- = _b E hv % hY
N(E'O EW)'AT -Z-RT-O- E’—-’- —Z'L'
1 7 -1
ek T -1
for 1 mol (h Planck’s constant, v i frequency of i-th oscillator). In the classi-
cal range hVj << kT,

AN 3N SN
) hv'y E Ry, g hvy
/. Ry = LBy l(hvi>2 =3 RT - -
1 K.y 1 TEC Galers tvol 1
Hence
N(Eo-ew)z AT""iTRT; 80-£w= AT"‘LzT‘ .

Energy values obtained in this or other ways do not, however, sufficiently describe
the kinetics of the process, i.e., do not determine how frequently building blocks
will enter the gas from the various positions and vice versa.

Once more, let us begin by examining the problem for monatomic sub-
stances. We shall call a position on the surface of the crystal ““occupled’ if
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the center of gravity of an atom is to be found within a small neighborhood whose
extent will depend on the range of the binding forces. Within this neighborhood,
the center of gravity of the atom oscillates about a neutral position. We suppose
this region of oscillation to be separated from the gas (I) by a surface f, passage
through which is an act of evaporation in one direction and of condensation in the
other direction. To compute the probability of evaporation wyydt, Polyani and
Wigner (45) employ the model used by Stern (49) for the statistical calculation
of vapor-pressure equilibrium. In the temperature range where the Dulong-
Petit law holds - which alone is of practical importance for this problem - the
bond is to be regarded as quasi-elastic, i.e., the retroactive force is propor-
tional to the distance r of the center of gravity from the neutral position, and
hence equal to -ar. This is not true without restriction; at high elongations,
the force drops off sharply, so that the atom can leave the region of oscillation.
This continuous transition will be replaced by a sudden reduction of the force

to 0 at a definite elongation rg. Let the force be the same in all three space
directions, so that the maximum volume of oscillation is represented by a sphere
of radius rg. The imaginary surface f separating the region of oscillation
from the gas then has anarea f = 47 roz, provided the center of attraction is
freely accessible on all sides. This latter condition, however, is not satisfied,
as only a part of this area, varying in size for different positions, is accessible
for entry; at a point of growth in a simple cubical lattice, only 1 /8, and at a
point on a crystal surface, 1/2.

Assuming half the spherical surface to be available, Polanyi and Wigner
computed the probability of evaporation with the following result:

3 €
(2) - 3 g 0 - _w
wpet = 2v —0=¥ o KT  dt.
Since the justification for this is not stated, we shall here use a deriva-
tion due to H. Pelzer (50):

A bound molecule of mass m, having a radical velocity ¢ and a distance

from rg of less than c-dt, will cross the boundary ry within the next element
of time dt, i.e., will evaporate. The probability of such a position in the

sphere is
ar 6

‘ €n - £
widt 4ﬂ‘r3°92'*"1°“t 4 a \3/2 2( &p- Ey) ‘_'ok'r“W
S e T = <2k'r> ce .
® ., -z " 2
{ 4nrée .dr
0

since arg/z = € - ¢

w Ihe probability of a radical centrifugal velocity
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The probability of simultaneous occurrence of the designated position and
of a velocity between 0 and o in radical direction becomes

@ €o- &y
_|_4 (a \3/2 2(Eg-£€0) KT
Wn“‘-grf—ﬁ? 2ol
0
- _me®
fl_";‘_ <2'l’:,r 172 o 2T o 4 at.

Inviewof a = (2 vy )2m, we have, provided half the spherical surface is ac-
cessible,

wpdt = 2v % W ¢ kT at

This formula derived by Polanyi and Wigner is of great theoretical inter-
est as the first calculation of the correct rate of evaporation in terms of emis-
sion for a physically possible model, For the inverse process we have

widt=jnc-2wrda-lae 2% 22(%0- Sy

(27v)2m
and in viewof T = \/8.‘1('1'/ ;
™m

£ £
widt=1 n 8kT . “g-
1t = 2 VAT - 0w o,
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In the equilibrium case, i.e., if n is the molecular saturation concen-
tration of the vapor, we must have Wy = wr. And in fact, if we substitute the
saturation concentration

.. &
no @rm32ys - e

(k T)3/2

(51), we obtain

€na - ¢ R ™
wrdt 2v—°—k—-,l-,-!-e KT &

as required.

The problem is to what extent the hypothesized model corresponds to re-
ality, The quasi-elastic bond exists only in the neighborhood of the neutral
position, while at high elongations a deviation from the elastic function must be
expected. Figure 6 compares the hypothetical function (broken line) with the
actual one. For an isolated center of attraction, the difference involves an en-
largement of the transition surface, with resulting increase in statistical fre-
quency; but in the calculation of the vapor pressure equilibrium, this inac-
curacy of the model does not enter into the result. For equilibrium, only the
mean region of oscillation of the atomic center of gravity - more briefly
termed the mean volume of oscillation ¥ of the atom - is essential. Its value
is

To _ar2 ® a rl
V=) 4nwr2.¢ 2k'rclr=_f grerl.e 2KT o _
0 0

) (k T2:3/2
(2 Tm)¥/ 4y

The centroid of this integral is always so far from ro that the contribution of
the region near rg may be disregarded.
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Actual conditions on crystal surfaces, however, are considerably more
complicated, because, owing to the variety of surface positions, the actual
transition area at a point depends also on the surroundings. It is hence super-
fluous to inquire where in fig. 5 we are to choose the transition surface, whose
position along the actual curve is to some extent arbitrary. For our purposes,
it is far more desirable to formulate the probability of evaporation in such a
way that the transition area will appear explicitly, because, among other rea-
sons, we are always primarily interested in the ratios B = WI/Wn , in which
the transition areas are eliminated. These B -values are more readily deter-
minable in all cases, and expressible in a form that can be extended to all pos-
sible phase transitions.

Figure 6 represents a point on the surface of an infinitely large crystal
with a position, in particular a point of growth, occupied by an atom. Over this
position there is a small eylinder and piston. For simplicity, we suppose that
this is the only atom that can leave its place, and that it cannot be bound at any
other point of the surface or of the cylinder wall. It will then be located either
at its position w or in the cylinder cavity I. The time of residence in the lat-
ter is proportional to its size, if there is no preference for any particular part
of it. We now adjust the piston so that the atom will be found in the space for
just half of a long period of observation sufficient for many changes of place,
while for the other half of the time it will be found at its position on the surface.
The times of residence in both places will then be equal (T = Ty), or, in
other words, the probabilities of residence are equal. In classical statistical
mechanics, this is the case if the volume vy occupied on the average by one
atom in the gas chamber is equal to the mean volume of oscillation ¥y of the

atom in the bound state multiplied by e kT » Where ( fp - Ey), asbe-

fore, is the required expenditure of energy for bringing the atom from neutral
position into the gas chamber:
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(38) vy=vye or vpe = Ve

(vi is equal to twice the volume of the cylinder in our model, since this volume
contains only half an atom on the average. The volume of oscillation ¥y is
present in our mocel for only haif the time, for it exists only while the atom is
bound. On the average, therefore, the model includes only half the volume of
oscillation. We therefore have the factor 1/2 on both sides of the equation.)
The residence time Ty = Ty is readily specified, being the reciprocal of
the average number of impacts upon the surface of transition f:

4°VI
‘t'I = Tw =

Wetake ny=-kTInvy= gy = €y - &, - kT InVy, obtaining

e | _btw
TI=_4 . @ kT and T'w= 4 - kT.
wa "'fw

The probabilities of condensation and evaporation within time dt, namely
widt = gt—, wydt = at inviewof T = \/8—1:,‘-5- , become

I Tw
d !
(4) widt =ty . (/3o .eET ay
w
Wt =ty -\ e KT at.

We wish to show that this quantity & , initially defined for a poiat of
growth w of an infinitely large monatomic crystal, is equal to the Gibbs ther-
modynamic potential u y1 of a crystal II, referred to that of its vapor at the
same temperature and a_concentration of one atom per cubic centimeter

= 0), Gibbs’ potentials may be defined in various ways; for us the follow-
ing geﬁnition, based on one of Gibbs’ own proposed formulations, is the simplest
and most convenient: ‘‘The thermodynamic potential 1 of a substance 1
in a homogeneous mass II, which may contain various substances 1,2, 3, ...,
is equal to the work required to adjoin a unit quantity (here 1 molecule) of the
substance to this mass, assumed sufficiently large so that its parameters of
condition are not thereby appreciably aftected, at constant volume, out of an
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arbitrarily chosen neutral state at the same temperature, by a reversible proc-
ess.” This form of the definition shows the analogy with mechanical and elec-
trical potential, if we observe that the work determined as stated is independent
of the path, owing to the Second Law.

'
-Jd

T
N

Fig. 6

In the present case, let us imagine two extremely large sealed reservoirs
I and II, respectively filled with vapor and crystals of one and the same pure
substance. The interstices between the crystals may be thought of as filled
with vapor or with some inert fluid permeable to vapor, and having a pressure
in this case equal to the vapor pressure. We take a cylinder and piston with
head permeable only to the vapor and set it against the wall of reservoir I,
which is here sealed with a slide. We open the slide and allow a mol of vapor
to enter the cylinder at its equilibrium pressure p} We thereby gain a quantity
of work pIVi= RT, if Vy is the molar volume of the vapor. We isothermally
and reversibly compress or expand this vapor to the vapor pressure pyj of the
same substance in reservoir I (determined by previous measurement), keep-
ing the permeable head closed. The work required is RT In p/py.  Finally, we
place the cylinder against the wall of reservoir II, make the vapor connection
and push the piston clear down (work required py;Vy = RT). Provided the res-
ervoirs are sufficiently large the removal and ami on of 1 mol at constant tem-
perature and constant volume will not change the pressure. The sum of the two
quantities of work required is by definition equal to the difference between the ‘
thermodynamic potentials of phases I and II; and since we transferred 1 mol, !
i.e., N times our unit, |

P
N*( ¥q- “'1)=RT‘1nTpT' .
Let reservoir I contain the vapor in our arbitrarily but conveniently chosen zero
condition ( » g = 0), namely in a concentration of 1 molecule per cubic centi-

meter. Then p;r = RT/N = kT. The vapor pressure Pyy of the crystals is ob-
tained by applying classical statistical mechanics to the totality of N atoms (52):
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(27 m)3/29 3 . _RT
(1)}

pn:

(¥ geometric mean of all proper frequencies of the crystal; A o total potential
energy of N gas molecules, referred to their potential energy at the neutral po-
sitions of the lattice, i.e., heat of evaporation at absolute zero plus zero energy

of crystal:

SN 1
/\:o=Ao+Z_;L‘
1

Substituting the value of pp, we obtain

2rm)3/27 3
(kT)3/2

l'*..-.n = __N_0+ KT * In

For comparison with the variable we have called A , we note that A'O/N =
= €4 - €&y I wewrite

N
(kvr)a/z 1 _ \[RT >3N/2. 1
2n%m 3 = (2er N
Y

3
nvy
1

then the expression under the radical represents what Gibbs (53) calls the con-
figurational extension for one mol of the crystal. Upon successive evaporation
by iterable steps, this quantity is reduced each time by the same factor ¥,
whence necessarily (kT/2 x m)3/2/5 3 = Vi 1.e., the mean volume of oscil-
lation of an atom at the point of growth is equal to the Nth root of the total con-
figurational extension of the N-atomic crystal. We thus have

un= u-w= Ew- Eo-kT‘anw

and, by (4), wpdt = wgdt. This applies to the iterable step, in particular on an
infinitely large crystal, as no account has been taken of any restriction on its
size. The dependency of kq upon surface area and shape will be taken up in

the following chapter.
We can easily transfer the imaginary experiment of fig. 6 to any other
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possible positions 1 whatever, and shall define the resulting
ﬁ.i=-kT-lnvm)= 51- éo-kT-ln'iii

as the thermodynamic potention of the building block in i-th position, although
we are not as yet prepared actually to express this quantity thermodynamically.
This thermodynamic potential referred to a definite position will be distinguished
by a subscript 1, 2, ..., 1 and a dot on the letter 1 . The dot is to avoid any
possible confusion with the thermodynamic potential within the phase. The ther-
modynamic potentials referred to the phase will be written without dots and with
a phase subscript I, I .... (The relationship between . y; and i § may be
briefly expressed in terms of Massieu’s function G(T,p,n), as follows:

b= 2G/ n, B, =(G,,1 - Gy); where the subscript i indicates
the point where the difference is 1%olhe formed.) The time of residence in i-th
position, as before, becomes

Py
i
ti,‘“’l(i! .l \[2xm , _, KT
fjc 13 kT
and the probability of evaporation becomes
i
- kT ,_k
(6) widt = fj rm . © at.

The ratio B 4 = ‘VI/WI of the probability of condensation to that of evaporation
in a vapor at arbitrary pressure pp is

H-I- U-i

By=¢ T .

In order to bring equation (3) for a monatomic model in the classical
temperature range into a generalizable form, we extend with respect to the
mean impulse volume (51) of a mopatomic molecule, in this case everywhere
constant and equal to (25¢ mkT)3/2. The products % by the spatial volumes
yield the mean phase volumes per atom:

£9 _Ew
”erT—= %w.e kT
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The formulas

hyp= Eo-kT-ln ‘fOI; b= Py= éu-kT-In L

ﬁ.i= éi-kT°1n‘f;1

are the complete expressions, in this instance (by way of exception) not referred

to our isothermic neutral state, for the thermodynamic potentials in the extended
sense. In going on to more than six coordinates (di- and polyatomic molecules),
the following must be noted: The coordinates that concern the internal configu-
ration and movement of the atomic or molecular building blocks may in general
be assumed to occur in the same manner for both phases at the temperatures in
question, thereby becoming irrelevant. However, there are cases where this is
not true and where the application of classical statistics becomes dubious in any
event. At present our understanding of this in the case of phase transition is
less advanced than in the analogous case of the dissociation equilibrium of gas
molecules. In all cases where the inner molecular condition is different in the
two phases, & is likely to be considerably less than 1. We shall confine our-
selves to expounding the kinetic significance of a factor of orientation in the
phase-volume ratio in terms of a fictitious example.

We consider the iterable step on an infinitely large crystal, and presup-
pose that the position of the lattice building-block is subject to a definitely spe-
cified orientation absent in the gaseous state. If we further assume that the
probability of evaporation is not affected by orientatio'n, then

tn
kKT T
Zxm"® dt ,

whdt = fy,

where W is the thermodynamic potential without the orientation term. The
condensation process, however, is different. Since by hypothesis the atoms
can enter the region of oscillation only with proper orientation, the probability
of success is reduced to o’ < 1, Hence the frequency of impact has to be

1/ a’ times as great as formerly in order to maintain equilibrium: and there-
fore the saturation concentration of the vapor is 1/ a’ times as great as, and
the thermodynamic potential kT In 1/ a’ greater than without the prescribed
orientation, or .

Hpe= H'n+kT-1nc-:-;= ® 1
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wpdt = o’ fy 2knTm.ek dt= a’. ¢, -
' 1
1A 1
kT it A g
Sxm kT dt = wyy dt.

For perfect gases, the quantity 79; may always be resolved into two fac-
tors ‘FI = vy + #1, where vy is the mean spatial volume per molecule and
%% contains no terms dependent on the volume. Therefore, if we once more
take the zero thermodynamic potential to be that of a gas molecule at the same
temperature and a molecular concentration of 1, then

Y]

I.J-ia-kT’ln‘VI(i)= Ei' Eo'kT'ln

3
=t

The quotient 3/ % has the dimension of a volume; for brevity, we
shall employ the symbol ¥; for it as well, but remembering that the simple in-
tuitive meaning of the mean volume of oscillation will be restricted to the mon-

atomic case,

Finally we again have

by
T

=

d.

dt = af - kT
{6) wj i T m ©

We now consistently include the factor o as a precaution to take account of
the possibility of unsuccessful impacts upon the transition surface fj; for the
reasons given, such as lack of energy transfer or steric hindrance, hitherto dis-
regarded.

In forming the expression W = w/f for the number of molecules suffer-
ing transition per second per square centimeter of homotropic surface, we
should actually take account of the fact that the molecular transition surfaces
f may not cover the whole surface, leaving insensitive intervals.

Such possible additional steric hindrance would have to be taken care of
by the introduction of a factor a * instead of @ . For simplicity, we shall
dispense with such a distinction between & and a *; we have previously
seen that the factor @ * is normally not substantially smaller than 1, in or-
der of magnitude. As will subsequently appear, it is of no practical importance
in phase formation.
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The thermodynamic potentials in the phase are experimentally given or
readily determinable. The » { values for crystals are at present only approxi-
mately specifiable, by the use of the thermodynamic potentials and a relationship
between 14 and Q. For purposes of numerical orientation, we shall fre-
quently employ the approximation

) By By A2 E1- Ey

(Vg ~ Vy). Let us begin at once with a case that will lead us back to the start-
ing point of our discussion.

The rate of evaporation Wy of a monatomic crystal II, if the entire sur-
face consisted of points of growth, would be

-l owg=a \[ 5T
Wi = - *\Txme

per square centimeter. But if the major portion of the surface is occupied by
more firmly bound atoms inside the uppermost lattice planes (subscript in) as

is actually so in a crystal (fig. 7), then the rate of evaporation will be less,
namely

x| £
"’Ie

b in
K kT
Win = a - 27xm © *
Hence .
Hy~ Pin €w” €in
Wi ) kT " kT
Wy - ° e
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Now in general, ( £ - €+ (g &) =2(Eg = EQ), or

(7) €ad - tw = ¢w - éin

This relationship (25) may be expressed schematically in terms of fig. 8,
which shows that the sum of the work of separation from the block (ad) and out
of the uppermost lattice plane of the block (in) is equal to the work required to re-
move a block from the interior of the lattice, 2 (£ - € ).

Further, by Table 3,

En - €
€p - ‘fad"'-—-o—z—l or £0 = £ad"~-'£a\cl - &y,
atoms resting on the densest lattice planes, of which the surface of the crystal
is chiefly composed.

If we combine this approximate relation with (7), noting that EO - Ew~/1,
we obtain

£ -6
(8) €w - &= ead'EwNEO'Ead"’———oz WN%-

as a suitable basis for estimates.

fws o A A
Yin __ . kKT o 2kT _,  BI4T

Wn

For /M /9.14T we may assume an average value of 5.7 (see below), so that
Win/Wyy ~ 10'5‘7, approximately.

For a crystal bounded essentially by intact lattice planes, therefore, we
should expect a very low rate of evaporation, or, in more old-fashioned terms,
a small coefficient of evaporation, of 10-5 to 10-8. The case of condensation
would be analogous; the majority of the incident atoms strike the lattice planes
at points of low bond energy ( £g - £,4), whence, at not-too-low temperatures,
they shortly return into the gaseous space, or according to the old formulation,
are reflected.

This conclusion is at variance with the cited experimental results accord-
ing to which, even on crystalline metals, the rates of evaporation and condensa-
tion tend to approach the maximum. The explanation is to be found in the sur-
face migration of the building blocks in the course of the processes of construc-
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tion and destruction. This means that there is an indirect opportunity for both
evaporation and condensation. At present our more detailed information relates
chiefly to the case of condensation.

Let us begin our discussion of this process (54) in terms of the model of
a homopolar crystal, namely by determining the energy of activation required
for change of place at the surface. This energy cannot be found by application
of Kossel’s diagram alone, since the position of the atom at the peak of the en-
ergy hump does not correspond to any lattice position. We thus encounter new
atomic distances intermediate between those of the first and second neighbors,
etc. In order to obtain a reasonable estimate, we must therefore introduce as-
sumptions concerning the force function. In the following examples, we have
given the results that follow from the assumption that the work of separation of
two molecules is proportional to the sixth power of the distance. This proced-
ure, which disregards any directionality, is best justified in the case of the most
closely packed lattices, and we shall accordingly restrict it to the cubical space-
and face-centered lattices and the most closely packed hexagonal lattice. Change
of place occurs by way of the saddle (subscript S) - the lowest saddle, in case
of doubt - between two positions of residence on the surface. Regarding these
rest positions (ad), we assume with Stransky that they coincide with the lattice
points of the next plane. As an example of the method of calculation, we have
selected the 1-1-0 surface of a cubical space-centered lattice, for comparison
showing the results for potential decrease with the fifth and seventh power of
the distance as well. We see that the proportion of corresponding @ -values is
only slightly affected by this.
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Table 4

T e e = e .

Number of
Position Building Blocks | Distance n/rb n/r8 n/r1
n r

4 1.000 4.000 | 4.000 | 4.000
Position on half- 3 1.154 1.461 1.263 1.095
crystal 6 1.833 0.516 0,316 0.192
12 1.915 0.466 | 0,243 | 0,120
$ w 6.433 5.822 | 5,407
2 1.000 2.000 | 2,000 | 2,000
Rest position on 2 1.154 0.974 0,842 0,730
1-1-0 surface 5 1.833 0,430 | 0.280 | 0.160
10 1,915 0,380 0,200 | 0,100
?.d 8.784 | 3,302 | 2.990
2 1.000 2,000 | 2.000 | 2.000
2 0.775 0,559 0.432 | 0.336
Position on saddle 2 0.655 0,241 0.158 0.108
between two rest 4 0.577 0,252 0,148 0.085
positions 2 0.570 0,120 0.068 0.089
2 0.516 0.073 0,038 | 0.020

2 0,475 0.048

2 0.474 0.048
és 3.341 2.844 2,588

In the following Table 5 (these tables were prepared with the kind assist-
ance of K. Herrmann), we have the 3 w %a4» Zg values for some further
cases, based on decrease with the sixth power of the distance.
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Table 5

Cubical Cubical Closely Packed
Space-Centered Face-Centered Hexagonal
?, = 5.822 ¢y = 6,915 Ty = 6.761
®.4 110 = 3,302 &.d 110 = 3,756 3,4 110 = 3.650
$g 110 = 2.844 #5110 = 3,101 25110 = 3,007
$2d 100 = 4.861 $ad 100 = 4,633
5100 = 2,622 $5100 = 2,830

In order to obtain the absolute energies from the 4’ values, we take
$ w= €9~ &y~ A. The mean number of changes of place z dur-
ing the period of residence on a surface is given by the quotient
residence time on surface _ T H
residence time at point § - Hence

0" ad £ - &
%t = —9°_8
. KT

€g- €aq
kT

2=~

We want to concretize this result numerically with reference to actual
conditions. For this purpose we should recall that for all substances we are
concerned with practically corresponding temperature ranges, limited above by
the melting point and below by the reduction of vapor pressure. If we assume
104 mm as an approximate limit for experimentally reasonable vapor pres-
sures, and consider that at the melting point most substances have vapor pres-
sures of the order of 1 to 10 mm, then temperatures where the vapor pressure
is 0.1 mm ~ 10~4 atm. are the approximate mean corresponding temperatures.
For further guidance, we employ Nernst’s approximation

L 17510 T + 8.

logp = - o357

If we take log T = 2.5 as the mean for the experimentally more accessible tem-
perature range from 100 to 1000 degrees absolute, then £\ /2.3 RT = 11.4
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(for p = 10~4 atmospheres). Then since A /RT ~ (€g - EQ/T, and
€0 - &g, according to the table, is about 1/3 to 1/2 of £ 0 - €w, we obtain
E 0- Es
kT 4
z=e . = 5-10

as a reasonable mean value for the rate of change of place on the densest lat-
tice plane of such a crystal,

This mean rate of change of place may be related to the ratio of indirect
to direct evaporation or condensation, and we shall go through the reasoning in
an idealized and simplified form for the case of vapor pressure equilibrium.
Without appreciable loss of generality in our results, we may again use the sim-
ple cubical lattice. If we use W to mean the number of incident molecules per
second per square centimeter, and &2 to mean the size of a space, then

2
W= W4

is of the order of magnitude of the number of molecules per second incident up-
on a point of growth directly from the vapor. The factor 1 /4 is due to the fact
that for direct incidence upon an area ¢ 2 at the point of growth, only 1/4 of
the 1800 space-angle at the point of growth is available.

On the surface itself, let there be n stationary molecules per square
centimeter, adsorbed; then Wad = n/ T is the number of particles per second
leaving the surface, and the number of stationary particles present at equilibri-
umis n=Wyq T . Thesideofa square is equal to & , and in a strip of
length 1 centimeter and width ¢ y thereare nd = Wad T4 squares that
are occupied by atoms. Of these, one 4 ¥ -th per second, or Wad T4 /44 ,
will cross either of the two 1-centimeter sides. The factor 1/4 is due to the
fact that only one of the four adjacent squces counts. A boundary line of
length &' , then, will be crossed by Wadd T/41 per second; thatis, a
point of growth, which we shall assume to be accessible from one side only,
will be reached by

_Wag-42%.7
wT- 4_1,.

molecules per second due to migration. Since at equilibrium WI = Waq,
these particles reaching the point of growth from the surface are

* E0"' ES
-ﬂ. = _z__ ~S e kT =
WI ) %

F-TS-7068-RE ' 47




AT IRETLY 2 oty om— e s i1

ST AT T T e

T RRTR =t o B L R o R A e R o e O T e « & @ X N T W 5% ¢

times as numerous as those incident upon the point of growth directly from the
vapor.

The same ratio is obtained when we consider the rates of decay. The
rate of indirect decay wﬁ is the number of exits per second from a point of
growth into the surface. The energy required for such a transition is equal to
the total work of detachment € - €. less the work of detachment from the
block €4 - &R, plus the energy of activation &g - €p for crossing
the saddle, or €p- €y -( €g- ER) + Eg- €p= Eg- Eg
80 that the ratio sought becomes :

£S' ew 50_&
0 kT T

A S =@ =z
w1 E0- Ew
kT

as required in order for (w*/w)p to be equal to (w*/w)g.

We are not yet done. The easiest way for a building block to evaporate
from the point of growth is to go through the following three steps: 1) Detach-
ment from the row and migration along the edge. 2) Detachment from the edge
and migration over the surface. 3) Detachment from the block and transition
to the gaseous phase. For orientation, however, it will suffice to analyze the
two-step path which yielded (w*/w); = (w*/w)p=5 - 104, Even if this number
should be too large for the conditions that occur in actuality, it remains a cor-

rect conclusion that crystalline evaporation and condensation are predominant-

ly indirect in practice. As we retreat from the point of equilibrium in either
direction, the ratio of the indirect to the direct rate gradually becomes less,
though not to such an extent as to effect the essential fact. At the same time,
however, additional processes appear that modify the surface decisively, so that
the schematic approach becomes of no practical importance. For the growth
and decay of the unit crystal, we are concerned only with the immediate neigh-
borhood of equilibrium.,

The foregoing analysis has not as yet been verified by quantitative experi-
ment directly upon crystals. However, there are some measurements on the
migration of metallic atoms over surfaces of other metals, and these may to
some extent confirm the theoretical predictions. The experiments in question
were suggested by study of the technically important electron emission of tung-
sten filaments activized with thorium, caesium or barium. The migration of
such foreign atoms over the surface of filaments, first cbserved by G.A. Becker
(55), has since been widely investigated because it plays an important part in
the process of activation, i.e., in the uniform distribution of atoms over the sur-
face.
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In particular, we may here report the results of the more recent observa-
tions of John B. Taylor and I. Langmuir (56) on caesium atoms and of K.C.L.
Bosworth (57) on potassium atoms, all of which have data of value in this con-
nection. The experimental idea consists in covering only a certain segment of
the length of a filament, with an atomic film of known thickness. Then, at ap-
propriate intermediate temperatures where evaporation remains negligible, the
propagation of atoms over the initially bare sections is observed. For measur-
ing the surface densities, various reliable methods have been developed in the
course of time, most of which make use of thermionic emission or else of the
photoelectric effect, and which require no detailed exposition in this place.
From these measurements, the authors computed the coefficient of diffusion.
They agree in finding that the same increases sharply with the density of the
atomic layer. We must make the comment that, basically, the coefficient of
diffusion has no simple theoretical meaning except in the range of validity of
Fick’s law of diffusion, or in the present case at such low surface density that
the two-dimensional equation for perfect gases will hold, Outside this range, a
law of diffusion extended to non-ideal conditions should be used as a starting
point, and this may be developed either on a kinetic or on a thermodynamic
basis.

For caesium atoms, the coefficient of diffusion Dy, for about 3% average
occupancy of the tungsten surface, is given by the equation log D; = -0.70 -
- 3060/T. Tungsten and caesium form cubical space-centered lattices with
lattice intervals in the ratio of 1:2, The tungsten surface is composed essen-
tially of 1-1-0 faces, the number of tungsten atoms per Square centimeter being
1.425 - 1015, A caesium atom will occupy a lattice position of the following
(unoccupied) lattice plane as rest position. The distance to a neighboring rest
position is a3 = 2.64 108 em. At sufficiently moderate temperatures - suf-
ficiently so that the residence time % 1 may bpe regarded as large relative to
the time required for the step itself -, Dy = af/4 & 1» Whence log & L=

= -15.80 + 3082/T. This yields an energy of activation for change of place of
U1 = 14,100 calories per mol, whereas the authors, by means of other measure-
ments, found the heat of evaporation of caesium atoms from a sparsely occupied
layer to be Lj = 65,000 calories. Ata mean experimental temperature of

T = 5009, the number of changes of place during the total mean residence time
of a caesium atom on the tungsten is computed at z ~ 1014/10-9~ 1025, For
potassium atoms on tungsten, the results are similar,

For purposes of our specific problem concerning the mobility of atoms
on surfaces of their own lattice, the further data on the behavior of caesium
atoms bound in a diffuse second layer on a complete or nearly complete initial
layer of caesium atoms upon tungsten are of particular interest. The heat of
evaporation of these second-layer atoms is substantially less, only A 9 = 17,600
calories, or even less than the heat of evaporation of metallic caesium
(< golid = 28,000 calories; Aliquid = 18,300 calories), In comparing these
figures, we must avoid the erroneous conclusion that the bond is weaker than on
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a pure caesium substratum. A correct picture is obtained if we compare, not
the heat of evaporation of caesium, but the energy of detachment of a caesium
atom on an 0-1-1 face of a caesium crystal. This is about A gg)i4/2~ 11,500
calories, or substantially less than 17,600 calories, showing that the tungsten
substratum favors the bond in the second layer. The authors arrived, by a cer-
tainly not quite unobjectionable inference, at the result that the change of place
in this second layer is given by log %9 = -15.09 + 1000/T, i.e., requires an
energy of activation of only U2 = 4600 calories. At T = 5000, by analogy
with the preceding, we calculate a mean number of changes of place z = 108
during the residence time. This figure exceeds our theoretical prediction, and
is very probably too high in fact; for the argument by analogy upon which the
authors based their calculation gives rise to an error in that direction.

The fact of the very frequent change of place during the extremely short
absolute residence time in the second layer explains the early-discovered cir-
cumstance that each caesium atom incident upon the surface becomes firmly
bound, i.e., bound in the first layer, even when the tungsten wire is already al-
most completely occupied by first-layer caesium atoms. Necessarily, there-
fore, the evaporation of the latter is almost exclusively indirect, i.e., by passage
to the second layer and evaporation from the latter.

!
+

CTe= [+ -+ -+ ]=

Fig. 9

Regarding surface migration of polyatomic molecules, only gquantitative
observations are available. In view of the special importance of the NaCl lat-
tice in the problem of crystalline growth, a theoretical examination of the proc-
ess in terms of this example will be of interest. The molecules of common salt
on the cubical face of the rock-salt lattice can change places, with very small
expenditure of energy, where one ion remains on the surface and another leaves
the surface to hop over it (fig. ). This involves crossing an energy hump of

just abgu;, Yaer #» /2, The mean rate of change of place is accordingly
Z=e .

According to the previous method of calculation for fixed ions, we have,
e.g., for NaCl (d = 2.814:1078) zygg9~ 25 for T = 1000° and
z500 ~ 1000 for T = 500°.

F-TS-7068-RE 50




S

RO L R

IS A P TR BRI T Ty e @ T R Y e

bl ot el AN

B s e gy O

The argument is meaningful only for temperatures somewhat remote from
the triple point, since in the neighborhood of that point, even for merely saturated
vapor, the surface is so densely covered with molecules that account must be
taken of their reciprocal influence, which probably facilitates change of place.

In the immediate neighborhood of the triple point, the surface may be coated with

a liquid film of indeterminate thickness which mediates the molecular vapor-
crystal transition,

Experimentally we have only a qualitative observation of NaCl by Z.
Gyulai (58), who did not however recognize the effect as one of migration. An
NaCl crystal is held in a platinum wire loop that may be heated by an electric
current. There is an observable growth of minute crystals at the cooler points
of the block, at the expense of the heated parts. The author 1s of the opinion that
the transfer of material occurs through the vapor space. A repetition of the ex-
periment by K. Neumann (54), with careful observation of air current conditions
and probing with crystals placed close to the specimen, definitely show that this
conception 18 incorrect, and that the effect is rather one of surface migration.

We may add mention of a few more relevant observations. Lew Kowarski
(69) reports a sort of microscopically visible Brownian movement on the surface
of paratoluidine crystals growing in their own vapor. The experimental appara-
tus is described under C.c) in Chapter 3. At temperatures(agproximately 400)
not too far below the melting point, a small droplet about 103 mm in diameter
might frequently be seen migrating on the surface of the growing crystal lamella.
Such a droplet often exhibits a movement having random or ordered character,
depending on circumstances. When the crystals are growing rapidly, it is driven
into an outermost corner of the lamella as though by a force. The droplet thus
indicates a molecular current from the interior towards the margin during rapid
growth. As was demonstrated by further observations, these droplets consist of
liquid paratoluidine. The surface of the crystal lamellae is apparently not, or
rather not completely, wetted by the (supercooled) liquid. In the neighborhood
of the melting point, the vapor may be supersaturated not only with respect to
the solid but also with respect to the liquid phase. Under these circumstances,
owing to the slow growth of the lamella surfaces, the formation of such a drop-
let, supercooled relative to the lamellae, is possible, It will give off molecules

to the crystal, but is maintained temporarily on its surface by the condensation
of other molecules.

A phenomenon that has been known for some time and that is also due to
surface movement in a fluid or diffuse surface film is the growth of crystals
from supercooled drops of liquid in such a manner as to project beyond the
boundaries of the latter (fig. 10). The relief of frostwork on a windowpane cov-
ered with a film of water is produced in the same manner.,
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Fig. 10 - Crystal of Benzophenone Projecting Beyond Original
Contours (. . .) of Drop from Which Formed.

Surface migration in the decay of a crystal was first demonstrated by
Volmer and Adhikari (60). The second component process of decay, the removal
of the mobile molecules from the surface, took place through a liquid that did
not wet the crystal; for many organic crystals, such a liquid is mercury, which
has the property of strongly adsorbing alcohol, ester, ketone and acid molecules
on its surface. If a continuing sequence of drops is allowed to drip onto the sur-
face of such a crystal, the crystal will gradually decay. It is observed that not
only the points of contact are eroded, the loss of material takes place in neigh-
boring portions also. By the choice of a substance of low volatility at room
temperature (benzophenone), evaporation may be practically excluded, as is
readily verified by suitable control tests. Similar observations on crystals of

phthalic anhydrite have been reported by F. Moll (61).
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b) Crystal I = Crystal II

While our knowledge of the elementary steps in condensation and evapora-
tion may be regarded as fairly advanced, we have no correspondingly developed
insight into any other type of phase transition. Observations or measurements
referring to the transitions of single molecules, directly and in abstraction from
other accompanying phenomena, are wholly lacking. At present, therefore, we
can only use our general knowledge of the kinetics of aggregate states fo form a
theoretical picture and see whether it will fit into the frame of observed phenom-
ena. We shall find that by the aid of experience gained in our investigation of
the condensation-evaporation process, we can nevertheless make a preliminary
statement concerning the frequency of molecular transitions, if not in absolute
magnitude then at least as functions of the parameiers of condition, and that this
statement will later prove sufficient for the formulation of phase generation in
such cases also.

The essential difference between molecular transition from any arbitrary
phase to another as compared to the process of condensation of a perfect vapor,
previously discussed, consists in the fact that the transition requires a detach-
ment of existing bonds, which presupposes an energy of activation, In transi-

... Hon fi:om a perfect vapor into some other phase, this energy is zero as expected,
so that the energy of activation for the inverse process is the required energy of
evaporation itself.

In all other cases, the molecule exits from one milieu in which it is re-
tained by forces and enters into another, and it is to be expected that the direct
and inverse processes will require energies of activation ur and ujy whose
difference will of course always be equal to the energy difference between the
initial and the final state.

We will begin with the molecular transition between two condensed one-
component phases of one and the same substance, and in particular with the
solid-solid case that exists when two modifications or two like crystals have dif-
ferent thermodynamic potentials because of mechanical strain or surface tension.
We shall think of the phases as initially separate, and then gradually bring them
into contact. Figure 11 represents the variation in potential energy of a mole~
cule as we transfer it from a surface position of phase I to one of phase II (both
of which may be positions on the half crystal), Underneath, the positions of the
surfaces of emergence have been diagrammed. When phase I is still some dis-
tance off (a), the molecule will pass through an interval of complete freedom.
The probability of transition is then in each case equal to the probability of evap-
oration per unit area, multiplied by the path length, which is the same both ways:
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Actually we ought also to take account of the distances of the two rest
positions, replacing f by the reciprocal of the resistance, like that of a pipe,
to the molecular flow. However, we may safely neglect the transit time of the
free molecule relative to its residence times, the more so as the quantity { is
going to drop out anyhow.

&
;]
) S— ——--
T
ér R S NN

Fig. 11

If phase I is moved up into contact with phase II (b), then the potential en-
ergy curve along the straight line connecting the two rest positions becomes
more or less as shown in the figure. The peak lies below €, namely at €.
Hence there is a concentration of transition paths about the shortest line con-
necting the rest positions. Instead of investigating the distribution of paths about
this line, we will imagine that a central region of the total transit area f, to be
called the mean transit area f, differs from other portions in that the peak po-
tential energy for all paths passing through f is uniformly about £, while for
all other paths it remains €. Then the ratio of the number of paths passing
through f to the number passing through £ - T is

() f kT

w,(f-f) = f’f

and
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wdt = a kT , kT |f.¢ kT + -0 |.

Nowif € - € is substantially greater than kT, the second term in
the brackets may be neglected, and

o7

k1
widt = a kKT  okT o Kk
I \IZer dt

(9) as well as

B €9-¢

I
wdt:af‘\/ kT o kT o kT
i ¢ T m e e dt.

Both processes are thus accelerated by the same factor e( ¢0-T)/kT.

Hence B = w/wy = o("1 ~"1)/KT i always preserved. If we make
the substitution Ky = €1 - £9-kTln¥, Hp= € - €g - kT In ¥y1,

then
\ , kT 1 '-Ek-'lf
dt = a f- . .
I SRxm ¥ ° dt,
_‘c‘- ¢
kT | kT

dt=af\/- i S
wiI Txm Vg e dat .

The energles of activation are by definition up = € - €}, ug =€ - €.

The factor a f\[kT/2 X m - 1/¥91 has the dimension of reciprocal time; if
we designateitby 1/7 © 1 /T ©» the preceding equations take the form

Uy
WI dat = -g_lto . kT dt
(9a) _ Uy
dt kT
wipdt = —— e dt
T.'no
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If, much as for evaporation above, we leta f = b rg where rg is the dis-

tance from rest position to crest of saddle and b is 3 coefficient of the order
of magnitude of 0.01 or so, and if we consider that rg = 2u/(27 v)2m, at the
/

same time replacing V by its value (k'r)3/ 2/(2:'rm) 2y3 » We obtain
1/t¢ = bv u/kT, and

e 4 _n
det; 11 k

Y h T
det=an§Te dt .

(8b) Wwydt = bVpisce

We see that the 1/‘5'0 ’s are only very slightly dependent on temperature, while
the w’s, owing to the factors e~W/kT, vary sharply with T. Concerning the

quantities uj and up, we can say a priori only that they are smaller than the
heats of evaporation.

Otherwise, it is not easy to obtain a sufficiently clear picture of the
boundary at which two crystals in process of transformation meet, or of the path
taken by the molecules to pass from a position in the old lattice to one in the
new. As it is not to be expected that points of growth of the decaying and the
growing crystal will just match, or that this coincidence would be preseryed if
they did, we become convinced that a migration along the grain surface is gen-
erally required. Such a movement has been demonstrated for foreign atoms
(thorium in the grain boundaries of a tungsten g&a&s%hgnd the surface coeffi-
cient of diffusion measured (62) (D = 0.74 ¢~90; ). The latter was found
to be smaller than the coefficient of diffusion at the free surface of the filament
(D’ = 0.47 ¢766,400/RT), There is no reason to doubt that building blocks
proper to the lattice can also migrate along the grain boundaries.

The heat of activation for exit of building blocks from the old lattice is
probably determined not only by position in the old lattice but also by the nature
of the opposite part of the new lattice. The formula is thus of a provisional and
summary character. Basically, it finds experimental confirmation in the fact
that with substantially unilateral molecular transition - i.e, s in polymorphic
transformations far removed from the transition point - the rate of transforma-
tion rises with temperature, like a chemical speed of reaction. The same sort
of thing has repeatedly been ascertained in the case of recrystallization. This
function may be experimentally determined from point to point, giving a means
for the approximate calculation of u, vy, W, wy.
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¢) Liquid = Crystal

Experimental observation tells us that the crystallization of a liquid pro-
ceeds similarly, by and large, to the transformation of one modification into an-
other. However, a complication is the heat evolved because of the generally
more rapid progress of crystallization. In all more or less rapid processes of
solidification, it is uncertain what temperature should be assumed at the phase
boundary and coordinated with the observed speed. The difference from the
surrounding temperature, under otherwise constant experimental conditions, will
be greater the greater the heat evolved per second, i.e., the more rapid the
crystallization. Beginning at very low temperatures, therefore, we frequently
find an initial gradual increase of speed with the temperature of the bath, until,
upon arrival at a fairly sharp limit, the rate of crystallization suddenly rises
very sharply. The phenomenon is akin to the transition from a slow chemical
reaction to an explosive one due to insufficient removal or distribution of the
heat of reaction. Such rapidly crystallizing liquids have the additional peculiar-
ity that at its maximum, the rate of crystallization is independent of the temper-
ature of the bath within a certain interval (fig. 12 a).

—o Undsrdhdng
Fig. 12a Fig. 12b
Ordinate: linear rate of Ordinate: linear rate of
crystallization crystallization
Abscissa: supercooling Abscissa: supercooling

It may be best to postpone consideration of this complicated phenomenon
until later, since we cannot at the moment relate it to the elementary processes,
at least not without difficulty. We shall find the slow processes of crystalliza-
tion, where the decisive temperature at the boundary is not much different from
the temperature of the bath under suitable experimental conditions, more instruc-
tive (fig. 12b). We shall likewise temporarily disregard the segment in the neigh-
borhood of the melting point, where analysis is possible only with reference to the
specialized properties of crystalline growth, and shall concentrate upon the falling
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branch of the curve, corresponding to a highly supercooled condition. (The in-
verse procedure is not observable over a temperature interval, as attempts to
superheat crystals beyond the melting point do not succeed,) G. Tammann (10)
has surmised that there is a relationship between the fall in rate of crystallizga-
tion with falling temperature and the rise in viscosity of the liquid. J. Frenkel
(63) has submitted a theoretical justification for such a supposition. This is
based on a conception of molecular motion in liquids that deviates from the idea,
going back to Van der Waals, of liquids as closely akin to gases. It is assumed
that the molecules, as in solid bodies, are for the most part in oscillation about
equilibrium positions. In recent years this idea has received substantial sup-
port fr >m X-ray analysis. .In contradistinction to the solid state, however, there
is a very frequent change of place, and this accounts for the property of fluidity.
Change of place requires transgression of an energy hump of magnitude u.
Hence the residence time at a point is calculated at T = Ty eW/kT, This resi-
den%e ti%e determines the coefficient D of ‘‘self diffusion,’”’ viz. D = 6‘2/8 T=

~u/kT /g T, where d is the distance between two points. At the same
time the coefficient of diffusion D = kT/6Tr . The denominator is Stokes’"
expression for the friction on a spherical particle of radius r in a medium of
internal friction I' ., Eliminating D, I"= (t'okT/Jt’rd' ) eu/kT, This equation
is a tolerably accurate expression of the actual behavior of viscosity as a func-
tion of temperature for simple (non-polymerizing) substances.

The energy of activation turns out to be a multiple of the heat of fusion,
and increases slowly with temperature. The approximation is improved if we
introduce a_constant not depending on t;n_}perature in place of the expregsion
TokT/ré2, thus: I = constant + e%/KT, The essential factor is e\ kT,
which occurs in analogous fashion in the expression for the frequency of mole-
cular liquid-to-solid transition, as explained for the solid-solid case (9). I we
adopt Frenkel’s assumption that the energies of activation are about the same,

u - up, then it follows that 1/wy = Ty = constant + I' . However, it must not be
forgotten that this relationship is not to be regarded as either theoretically or
experimentally established. The theoretical uncertainty lies in the fact that the
viscosity assumption cannot now account for the non-dependence of viscosity
upon temperature at constant volume of the liquid, according to the findings of
Warburg and others, This is pointed out by Frenkel himself. It would be worth-
while to study speed of crystallization under the same condition.

Regarding molecular transition between pure condensed phases in contact
with each other, therefore, we can only say that this requires an energy of ac-

tivation that is consistently smaller than the heat of evaporation, but neverthe-
less generally large relative to kT.

The ratio of the probabilities of transition, apart from the diverse behav-
ior of particular locations on the crystal, is

BITHL
KT
B =e

F-TS-7068-RE 68




for both Solid-solid and liquid-solid.

The difference Ky - ity; may be specified in terms of the ratio of the va-
por pressures Pp, Ppy of the two condensed phases as measured at arbitrary

pressures, not compatible with coexistence of the vapor phase, outside walls that
are impermeable to the condensed phase but permeable to the vapor; namely,

b1
kp-b®yqg = leni’_I_I_ .

In the case - with which the kinetics of phase generation is all but exclu-
sively concerned - where two phases are present at like temperature and like
pressure P not equal to the coexistence pressure Py /il» We obtain, by rever-
sible transfer of a sample from one phase (molar volume Vj) to another (Vyy),

P
(10) N.(qg-bp= § (Vf-VpdP
Pr/n
or
<3H1> Vi (W-n Vi
2 P)p N VI 2P )p- N " 'm-

Figure 13 shows the result in-graphical representation on the P,V-diagram. The
shaded area is N(+1 - ky1). For condensed phases it is common practice to
neglect compressibility, writing

(10a) N+ (up-nyq) = (P~ Pl/n) . (VI - VH) .
p“ | rJt
I
P [1!
T ! ":/
e !

Fig. 138 ' Fig. 14
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The thermodynamic potential difference (5 k) between two one-com-
ponent phases at like pressure P and like temperature T not equal to the co-
existence temperature Ty /11 corresponding to P is given by

N“(up-bp) s § - (S-SpdT
T/n

On the temperature-entropy diagram (fig. 14), it is represented by the shaded
area. For condensed phases and moderate temperature ranges, this may be re-
garded as approximately rectangular, taking

Ti/m
) N (y-up= § (Sx'sn)dT’-'TI%(T:/n'T)
T

where Q designates the molar heat of transformation or fusion at the equilibri-
um temperature Tp/. The resultant molecular flow between such phases -

apart from the complication, discussed in Chapter 3, due to crystalline growth -
is given by

w

H
[+ ]
=
[ ]
w
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8
mw_
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(12)

f
o

or abbreviating,

- u_( _Q (TI[II'T))
l1-e

(13) W-Wp = K.e T Ty/oRT | ,

per second per square centimeter of boundary surface,
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B. MIXED PHASES

Two phases of a mixture will generally differ in percentage composition,
80 that molecular transition will be accompanied by changes of concentration in
the neighborhood of the boundary, with partial equalization through diffusion. Of
course, in continued unilateral molecular transition, the supply maintained by
diffusion towards the boundary will frequently be the determining factor in the
speed, so that the process of boundary transition itself is not manifest. It was
upon this premise that Noyes and Nernst (64) arrived at their regular formula-
tion for the precipitation of a component {rom gaseous mixtures or dilute solu-
tions. In the formation of new phases, to which our discussion is directed, this
principle is involved only secondarily. The decisive beginnings of the new
phase actually always embrace a small number of molecules brought together
by processes of fluctuation, and diffusion vestibules of any depth do not appear
until after further growth of the new phase. We feel it is correct to direct our
attention chiefly towards the frequency of boundary transgressions for practical-
ly unchanged composition of the hases, in the hope of thereby grasping the es-
sential foundation for the processes of phase formation from and out of mixed

phases that we are to deal with later on.
Vapor # Condensate

The number of impacts per Square centimeter for one component (1) of
a gaseous mixture is nlil /4, where ny is the number of molecules of this

species per cubic centimeter and €1 is their mean velocity. For molecular
transition to a condensed mixture phase, the probability of condensation is

flad ¢!
_ . kT | kT
(14) L dt = afl 3 % my e dt

where by our convention by = -kTlinvy, with Vi1 = 1/ny. ¥ n isthe
total number of molecules per cubic centimeter and xy1 the molar fraction of
the first component, then n; = nx,. Let 1 ?1 designate the thermodynamic

potential of the p_gg gas of component 1 at the total pressure of the gaseous
mixture; then Wy} = -kT Inv; (where vy = 1/n) and wp, =ud +kTIn Xy -

The rate of condensation of a component from a mixed vapor differs by
its molar fraction as a factor from that of the pure vapor of that component at
the same total pressure.

The rate of evaporation wppdt of a component from a condensed mixture
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II is found from the requirement that the probabilities of evaporation and con-
densation be equal at equilibrium. If we call the thermodynamic potential of
component 1 in the gaseous phase coexistent with phase IT & 11, and that of

the pure gas 1 at the total pressure of the coexistent mixed vapor H ?1* , Wwith
X1 a8 the molar fraction of component 1 in that vapor, then

Zu* _y0% *
“‘nl = “'Il -H?l + kT In xn .

i wﬁdt is the probability of condensation of a molecule of component 1
at equilibrium, then

%
a8 8!
*.dt = o\ ’ kT kT
wn dt —afl mne dt
(14)
H 1
dt = af, - \’ﬂ__. kT
v 1 3% my e dt.
If we write
u-o*
= . k T Ilo x = a L) *
wyry dt afl 20T my . € 1 dt T n 31 X11 dt,

we see that the probability of evaporation is proportional to the saturation con-
centration of the mixed vapor and to the molar fraction in the vapor phase. The
molar fraction in the condensate, on the other hand, generally has no simple
relationship with the rate of evaporation; for it is not generally possible to ex-
press the thermodynamic potentials of the components in a mixed crystal or a
liquid mixture in terms of the thermodynamic potentials of the pure substances
and the molar fractions. Handling of such cases presupposes some directly or
indirectly gained experimental knowledge of the thermodynamic potentials in
the mixture (measurement of partial vapor pressures.).

It is only when a component 2 is present in great excess that its ther-
modynamic potential may readily be specified. Let Xm be the molar fraction

of solute 1 in a large quantity of solvent 2 with molar fraction X9 = 1-x...

The thermodynamic potentig.l of the lattezb referred to its pure phase (super-
- = - - ¥ 0 -

script 0) is then wp, hirg = Enz €mqg - kT In vnz/vHz +kT In (1 xnl).

Now, since a molecule of solvent is practically surrounded by its own kind only,
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€y =Ef9 and ¥ = ¥, so that Lo -M%z = kTIn (1 - xypy). Under
our presupposition xq; €1, then,p ?m =49 = kT Xqpy » regardless of the na-
ture of the solute. This is Babo’s law; for

0 0
0 _ - P2 [ pr. P2- _ .
bda - by lenY); ~ KT popz = kt Xy, ;
2

(pz, pg vapor pressures of solvent). The thermodynamic potential of the solute
1, on the other hand, does depend on the solvent, but since in bm - “'I(il

= - 0 v U
€m 8111 + kT In I 6?11 + kT In X7y + Provided the solution is very

dilute, €m -€ o1 and vn/vfl are constants, bm % ?Il becomes equal to
a constant times kT In xpq; but Xy differs from the molar fraction Xy of
the coexistent vapor, and varies from one solvent to another.

Particular attention may here be drawn to the fact that the dynamics of
mixed crystals is considerably more complicated than that of pure crystals.
We cannot construct a schematic decay in like iterable steps. We shall there-
fore later restrict the kinetic treatment of crystallogenesis to pure crystals,
thereby dispensing with the introduction of thermodynamic potentials ¥ re-
ferred to particular locations. If we successively withdraw a considerable
number n = Ny + ng of building blocks at the point of growth of a binary
mixed crystal, then the total energy expenditure is proportional to n and may

therefore be equated to n(€q - £y), where €0 '-_c_; is the mean energy ex-

penditure per unit. Then we can distribute the total energy expenditure among
the n; and ny terms: n({_o_-"e:) = ny(&g =€)y + mylEq - € Jgs or

£0 - Ew = xl(C0 - Ew)l + (1- xl) (Eo - Cw)z. The mean values for the par-

tial work of decay for the units of the first and second kind are thus obtained as
follows:

A -t
(EO ) Ew)l = (EO-ij + (- xl) 0<:lx1W
(15)
T - . Gty
(50' Ew)z = (Eo EW) xl —El—w— .
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An approximate calculation of the thermodynamic potentials iy and ke ofa

mixed crystal from such energy values and the molar fractions will be found in
a later example.

From the equation
“m

- o\ f kT kT

for the maximum rate of evaporation of a component from a solution, we see
that capillary concentrations are not a factor in the probability of transition,
since the components have the same thermodynamic potentials at the surface
as in the interior. It is true that the molar fractions are different, but at the
same time the energy values are modified in a compensating direction.

Mixed Condensate Phases I & 11

The transition from a solution into another condensate phase and vice
versa may be dealt with analogously to the transition between two pure con-
densed phases (ﬂsctis)sﬂ&above. The evaporation formula acquires an acceler-

ation factor e' 0 in both directions:

ki+Ee-F)y
Wy dt =af, i%rlfl e I dt
1am
+r1+Eg-Fy
Wy dt = of, 2;Tm1 e KT dt

(byp = qpp)/kT
The ratio always becomes B8 1 =¢© I m . In the sequel we shall be

especially interested - as in the case of one-component phases - in the ther-
modynamic potentials as functions of pressure at constant temperature and
composition.

Instead of (10), we obtain

(18) Ny ~bgy) = § vy -vpap
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and

(aun) u (%m) i
P T(nl,nz, « o) N In: P T(nl,nz, ced)

I I

I R
=T " me

where vy and VIIl are the partial molar volumes and i1 and Vi @re the

partial molecular volumes of component 1 in mixtures I and II. If V is the
total volume of a mixture - say mixture I - then

(2V_ =N.[2V ) .
\J o] -( 3“1)1 and Vn N (?nl )1 ’

or in other words, vy; and Vy; are the volume increments of the relatively

very large mass of the mixture upon addition of a molecule or mol, respective-
ly, of component 1; or rather the limits these approach as increasing quanti-
ties of the mixture are taken.

The behavior of the thermodynamic potentials as functions of tempera-
ture works out the same as for single-component phases (11) if the partial en-
tropies and partial heat tones are introduced analogously. Since there has not
yet been any treatment of relevant cases of nucleogenesis where the use of
these relationships is required, their exposition is superfluous for the present.
At any rate, all the necessary information is to be found in textbooks on thermo-
dynamics. The energies of activation for the monatomic case are introduced
as under A.b) above, with the sole difference that instead of 1/ and 1/¥y

we now have xn/i’rn and xm/x’?m. This yields

i
Wy dt = x, by U1 o KT 4
(18a)
U
m
Ym TET dt

"m®* = m " m

As an additional factor, the equation contains the molar fraction in the solution
from which the molecule emerges. Naturally up; and upy are functions of
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the molar fractions. One is tempted, in view of the osmotic law for dilute solu-
tions, to equate the frequency of transition per square centimeter to the kinetic
Tmpact frequency for gases. This is in general incorrect. Itis only for the
case un~ kT (or Uy ™ kT) that this holds approximately, for then

w1 dt & X0 b¥Y n e"l dt. I n’ is the number of molecules of all kinds in a

monomolecular stratum over 1 square centimeter, then the number of mole-
cules passing over per second per square centimeter becomes Wy = Wy ng =

= nj xnwn e L, Moreover, v n"~ 31 /&6, where & is the distance between
two molecules of solution and ¢€; is the mean velocity of molecules 1 as a
gas, if up, =~ kT. Hence we get Wy, ~ n; X b (El/d' )e'l. The factor

ng xn/J = 0y is the number of molecules 1 per unit volume of solution, so
that

1 -
(19) an be nn c

becomes of about the same order of magnitude as the kinetic impact frequency
for gases. Experimental ‘evidence is altogether lacking, as the actual transfer
at the boundary is generally completely masked by the migration towards the
boundary.

F-T38-7068-RE 66

it e




C. ELECTRIC POTENTIAL DIFFERENCES BETWEEN TWO PHASES

Molecular transition may be affected by forces that we have hitherto dis-
regarded. The effect of the gravitational field is slight and may be neglected.
However, something must be said concerning electrical fields. These always
have an effect when the phase transition takes place through ions, as, e.g., in
electrolysis and in the growth or decay of heteropolar lattices.

In electrolytic processes, we are able to influence the potential difference
at will. Consider a cell consisting of two pleces of the same metal and a solu-
tion of a practically completely dissociated salt of that metal. Let one piece
of metal have a relatively very large area - indefinitely many points of growth -
in contact with the electrolyte, and let the other make contact with the electro-
lyte at only one point of growth. The two pieces of metal are provided with
wires by means of which they can be connected to an external source of electric-
ity, so that we can impose a variable potential difference at will upon our two
physically similar electrodes. Because of the difference in surface area of our
electrodes, this changes only the potential difference between the point of
growth and the electrolyte. The addition of a bullding block to the crystal re-
quires transition of an ion from the solution and supply of an electron through
the metallic conduit. The latter process takes place with relatively very high
speed, so that we may neglect its duration. For decay, we have the inverse
procedure. Thus there is no interference with the dependency of the ionic
transition between solution and point of growth upon the externally applied po-
tential.

3
»
N

- o o

~
%

-
A/

Fig. 15

¥

Let the charge on an ion be e. Let Hy and Hp be the absolute electric

potentials in the interior of the two phases, solution I and metal II. Let the
circles in fig, 15 represent the maximum volumes of oscillation of the ions at
the point of growth and at the neighboring ion hydrate position, Let the electric
potentials at the rest positions be Hi and Hil’ and that in the transition sur-

face Hp. To avoid rendering the following argument unnecessarily obscure, we
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will take Hh equal to Hp and H; equal to the mean electric potential on the

electrolyte side of the Helmholtz stratus, i.e., in the first molecule layer of the
electrolyte. This is not the case absolutely, but the absolute values are not de-
terminable in any case, and the simplification is permissible because the dif-
ferences are constants that cannot be affected by an external electromotive
force. On the other hand, H{ # Hy. The difference Hy - H; is customarily

identified, at rest, with the 9 -potential of colloid chemistry. For the transi-
tion of the ion from the one circle into the other, equations (17) apply, with the
difference that the additional electrical energies (H; - I-lf)e and (l-lII - Hf)e
appear in the exponents. Hence

N-’I = ('Eo'z)_-!- (Hj: Hf)e
kKT kT

wIdt =G-f-

___ Myp+(£9-€) + (Hyp-Ho)e
wpat =af \[ KT . KT at .

In the first equation, u 1 is the thermodynamic potential of the ion in the

Helmholtz stratum; this differs from the thermodynamic potential Ky in the
interior of phase I, viz. at equilibrium

“‘I + HI e = ui + Hi e .
Hence at equilibrium _
“’I + (Eo'r) + (Hr'Hf)e

wydt =af \)i% . e kT dt

By = e kT = 1

and

or kp+He = un+Hne. The functions Wo# Hle =N; and un+Hne=71n

are termed the ‘‘electrochemical potential”’ by E. Lange and K. Nagel (65).
This plays the same role in electrochemical systems as Gibbs’ thermodynamic
potential in non-electric systems.

Now if an external electromotive force dE is applied to the cell de-
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Scribed, the potential difference between the phases will be (Hy - Hyp) + dE,
Let this be distributed among the individual segments as follows: (Hj - Hp +

+ cdE, Hj - He + adE and Ht - Hn + bdE. Pressure, teraperature and concen-
tration in the interior of the solution remain constant, so that ky and Ky are
unchanged. However, u 1 (due to the incipient change of concentration in the
Helmholtz stratum) changes by an amount duf = cedE. We assume that this

change is completed rapidly relative to the actual phase transition. Now we ob-
tain

br+dig+(55-E) + (Hi-H)eva e d E

=af kT kT
wI(d E) dt =a { m e dt,

ul+(éo-'£') + (H-Hp)e + (a+c) ed E

caf kKT kT
(20)
p.n.g. (Eo-'E) * (Hn'Hf)e ~bedE
caf kT kT
wde) dt=af \lzn,me dt,

(@+b+cledE e dE
kT = ¢ kT

Pa E) * ¢

For a finite externally applied voltage E, therefore,

eE
kT

(21) ﬂ(E) = e .

The equation for Wi(r) and YI(E) are accordingly (20), if we may regard the

factors a, b and ¢ as constant. If we drop the requirement that the external
voltage E be the sole variable, then in general

"1-"n
KT

B=¢e

F-TS-7068-RE 69




|

i
i

e

If, in analogy to B;, we introduce a quantity "li for a pure crystal IT, then we
get .
0
kT
Bl = @

~ Introduction of the energies of activation, which are here sums of electrical and

non-electrical components, yields in analogy to (1 8a)

u
I (a+c) Ee
it < y-@+c)Ee BT " pr
bE -2 _bEe
uyr + e kT kT

where uj and upy designate the component of the energies of activation not af-
fected by the applied electromotive force and xp 1is the molar fraction of the

ions in the solution. The formulas are significant only provided the total ener-
gles of activation remain positive., The difference (wy - WII)(E) is proportion-

al to the current i, If we collect the factors nearly independent of E into con-
stants A and B, we obtain (e6)

(a+c)Ee _bEe

1(E) = Ae

This equation assumes the form first stated by Tafel if we regard a, b, ¢ as
independent of E and neglect the second term, which tends to vanish with in-
creasing polarization:

(22) (a+ c)Ee

R kT
i(E) = Ae

Equation (22) has repeatedly been experimentally confirmed, but frequently in-
terpreted otherwise. It holds for the case where speed is determined by the
boundary transition of the ions and not for example by diffusion, inhibitions of
crystalline growth or some associated chemical reaction. This requirement is
met, e.g., in the deposition of nickel, hydrogen and chlorine on suitable elec-
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trodes. In other cases, as in the deposition of mercury and lead, cadmium,
zinc (the latter only on scraped electrodes), diffusion to the boundary is the
determining speed factor; this means that the energy hump between rest posi-
tions of the ion is so low that up~ up ~ kT. In such a case the number of

transitions W; per second per square centimeter may be assumed approxi-

mately equal to the kinetic impact frequency for gases. I the hydration of :the
ions is of predominantly electrostatic character, such a low energy threshold is
probable, because of the considerable range of effectiveness of the forces. How-
ever, if there are still other essential interaction terms such that the slope of
the potential energy curves is greater, the threshold of activation is higher.

In the case of the latter metals - if able to grow undisturbed in crystal-
line form - we also find a polarization other than the concentrational. This
arises from scarcity of points of growth, and vanishes under continued mechan-
ical scraping of the surfaces, or amalgamation (e7).

At the metal-solution boundary, the mobility of the atoms
(ions) along the surface is obviously less than at the metal-
vacuum boundary, so that the retardation of growth and decay,
largely compensated by surface diffusion in the latter case, is
more strongly manifested in the former. Instead of entry into
the points of growth, there is a concentration of ions clinging
to the growth surfaces, and this manifests itself as polariza-
tion.

In the growth of salt crystals from solutions, the rate of
deposition is also occasionally so low that supply of ions by dif-
fusion - if the solution is thoroughly agitated - takes place
relatively quickly, while in the inverse case of reentry into so-
lution the determining speed factor is diffusion.

These processes of crystalline growth and decay will not
be discussed until later, as they are results of interaction among
many molecular unit processes and therefore find their place in
following sections.

The potential difference at the boundaries of heteropolar crystals relative
to their solutions are a matter of indifference for ionic transition, since the
electrical neutrality of the phases means that we are ultimately interested only
in a sequence of enough ionic transitions to constitute transition of a minimal
neutral portion of crystal. In that case the terms of acceleration and retarda-
tion cancel.

The results from this chapter that will be used in the sequel (Chapter 4)
are summarized by the following formulas.
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For any phases of like temperature,

W 1 = v‘n
Wi kT

Similarly, in electrochemical systems,
- "o
B=oe kT ;
Ny-1y

Pi=e kT
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3. GENERAL THEORY OF TRANSGRESSION AND NUCLEOGENESIS

A. TRANSGRESSION

Let fig. 16 be the p,T or ¢,T chart of an arbitrary univariant two-
phase equilibrium. If we start at any point of region I and change the condi-
tion in the direction of region II, we reach the coexistence line. If phase Il is
not then added, or some other suitable catalyst present, the coexistence line
will be transgressed, as we know by experience. Thus for example, phase I
may be had at pressure P; and temperature Ty (point 1). If point 1 is

reached by way of 2, we speak of supercooling; if by way of 8, we speak of
supersaturation. However, we can obviously get from region I to point 1 by
innumerable other paths. Evidently, for the properties of phase I at point 1,
and for further developments, it is quite indifferent by what path this condition
was reached.

The problem of a suitable measure for supersaturation and supercooling
(as well as superheating for the inverse case) is hence of little importance.
The only requirement for unique determination of condition is knowledge of the
parameters of the condition in question and of the coexistence line. If the lat-
ter is known, then (p1 - ps)T or (t:1 - c3)T may be called the supersatura-

tion and ('1‘2 - Tl)p(c) the supercooling, corresponding to the simplest literal

sense of the words. Either specification uniquely determines the point 1. On
the same precondition, namely knowledge of the coexistence line, everything is
likewise determined, e.g., by (pl /pa),r, but it is not logical to call this ratio

the supersaturation, as has become customary in the literature for vapors, fol-
lowing Wilson; for in the case where there is no supersaturation (p1 = p3), we

have pl/ps = 1 instead of 0 as the verbal meaning would require., This de-

fect could be eliminated by introducing a relative supersaturation (Pl ~ 959
Ps /r
but this expression has no advantages over the simple datum (p1 - ps),r . ’

In place of the terms ‘‘supersaturation,’’ ‘‘supercooling,’”’ etc., we will
introduce the general term ‘‘transgression,’ expressing the degree of trans-
gression in terms of differences in thermodynamic potentials at constant tem-
perature. If the phases meet in an equilibrium lire (one-component equilibria,
saturated solutions of a pure substance), then the amount of transgression is
equal to the difference of the thermodynamic potentials in phase I at the given
condition i ; and the equilibrium condition with phase II for like temperature
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W1/ or B qqp - If there are several phases II, OI, 1V, . . . etc., that can be
in univariant equilibrium with I, then multiple transgression is possible:

ete,

Examples: supersaturated vapor below the triple point; solution of a
salt with several modifications or hydrates. The subscript T will henceforth
be abandoned, since we are always concerned with thermodynamic potential
differences at like temperature.

For multicomponent phases of variable composition, defini-
tion becomes progressively arbitrary. Such phases meet in equil-
ibrium surfaces of two and more dimensions, and it becomes
necessary to specify to which of the infinitely many isotherms the
thermodynamic potential difference is to be referred.

The general empirical fact that transgression always occurs, in the ab-
sence of special circumstances, can be explained theoretically. As an exam-
ple we select the transition of a homogeneous substance from one phase to an-
other. Figure 17 is the isothermal p,v diagram of phases I and II. The co-
existence pressure is P/ A change of condition along line abc is possible
only under quite definite cg'cumstance. The indicated coexistence line bc
is traversible only if the two phases meet in a plane. If we pass from a to b,
then in order to proceed towards ¢ we must provide contact with a preexisting
quantity of the new phase II. The latter suffers no change at all, having a
purely catalytic effect. It may sometimes - e.g., if II is a liquid ~ be re-
placed by an arbitrary neutral wall perfectiy wetted by the liquid II. In the ab-
sence of such a catalytic effect, transition from ab to be is impossible. For
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if the quantity of phase I in question forms an interior portion of a larger quan-
tity of the same phase, the new phase can arise only in the interior of the old,
in which case the initial segment of line bc - close to b - fails to exist. For
a small volume of phase II in the interior of phase I necessarily has a different
pressuﬁ from that of phase I, the additional pressure being in fact proportional
to 1/v 8 where v is the volume of the small mass of phase II,

We have exactly the same situation on the other side; coming from d,
we cannot reach the horizontal line ¢b at ¢ because in the homogenous phase
II a small volume of phase I always has a different pressure.

For liquid and gaseous phases, the pressure excess is di-
rectly measurable by experiment. The small masses here of
course assume spherical shape, and the pressure inside a drop-
let can in certain instances be measured directly by means of a
fine tube. The experiment is relatively easy to perform with
mercury (II) inside a glass vessel full of mercury vapor (I), It
turns out that Pnr - Py /1" 26/r, where r is the experimen-

tally varied radius of the sphere; d is a constant, the surface
tension, depending on the nature of the adjacent phases I and II,
and conveniently determinable by other means such as measure-
ment of capillary effect, surface waves, etc. The result of the
experiment can be deduced from a simple argument: If a small
mass dm is added to the sphere through the tube, the work re-
quired is pdv; this increases the surface by do, and pvd = edo,
whence it follows that

N

While the experiment can be performed for certain liquids such
as mercury in the corresponding vapor, the bubble experiment
for the vapor in the liquid cannot be directly realized. However,
© can be measured in various other ways, and it turns out in
practice that about the same 6 -values are obtained with other
gases, with which the bubble experiment may accordingly be per-
formed with the same resuit.

For crystalline phases the optimum form is not the sphere
but a polyhedron depending on the nature of the two phases. This
of course has plane faces, but also vertices and edges. With de-
creasing volume, the surface area decreases faster than the edge
length. This circumstance - as will later be shown in more de-
taill - leads to a behavior quite analogous to that of the isotropic
phase, though the mechanism is quite different: The small crys-
tal has a thermodynamic potential like that of a larger mass under
a higher pressure. Equilibrium between the small crystal and an
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external phase at the same pressure does not exist any more than
in the case of the small droplet or bubble.
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Fig, 18

The general and necessary consequence of this fact is that the coexist-
ence line is not accessible from a pure phase, and that consequently this line
must be transgressed upon continued change of pressure. This result may be
represented for transition at constant pressure on the temperature-entropy
T,S diagram (fig. 18). The coexistence line bec is inaccessible from a or
from d in a homogeneous phase. Conditions corresponding to points on the
isobars near b and c¢ cannot be obtained from ab and dc, respectively;
for in order, e.g., to obtain the entropy value corresponding to the ordinate §’,
the small volume of phase II would have to have a lower temperature than the
surroundings, which is physically impracticable. Hence upon further tempera-
ture change at constant pressure, transgression again necessarily occurs.
Finally, the proof may also be extended to simultaneous temperature and pres-
sure change, since any such change may always be resolved into partial pres-
sure and temperature changes. Extension to mixed phases and introduction of
other parameters of condition likewise introduce nothing new. Hence we have
the generally valid result that within a e phase, the formation of a new

hase cannot possibly occur continuously at or immediately beyond the coexist-

ence boundary, and transgression must necessarily occur upon continued change
of the parameters of condition.

Exceptions to this occur only in the case of extreme similarity of the two
phases, as in the neighborhood of the critical conditions (6= 0, d6/dT = 0),
and perhaps for solid modifications with nearly identical lattices.

Having thus explained the empirical fact of equilibrium transgression,
we now turn our attention to the other empirical fact that upon further advance
into the foreign region of stability, the new phase will ultimately appear spon-
taneously.
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B. NUCLEOGENESIS (21)

One might be inclined to relate the spontaneous formation of new liquid
phases in vapors and gaseous phases in liquids or solutions to Van der Waals’
continuity curve - as has actually been done - and seek the metastable limit at
the turning points of this curve. There are compelling reasons against this.
Empirically, for example, the metastable limit of supersaturation of vapors
(water, alcohol, etc.) at ordinary temperatures remains well within the range of
validity of the equation for perfect gases, far from the turning point of Van der
Waals’ isotherms, indicating that the truth lies elsewhere. Again, in transitions
to crystalline phases, a conception in terms of continuity is generally impossi-
ble, except perhaps for a transition from one lattice to a closely related one.
Yet the typical phenomena of spontaneous phase formation are the same in all

-cases. This forbids reference to the idea of continuity, possible only for special

~ cases, in our search for the general ruling principles.

We are brought back on the track by observation, namely the consistent
experience that the new phase appears at first in microscopic dimensions with-
out any immediate change in the macroscopic parameters of condition. This
indicates that the process is determined by parameter changes locally re-
stricted to small regions.

Now we know that in any thermodynamic system, such changes or fluctua-
tions are found, and are in fact a proper and necessary adjunct of any thermo-
dynamic equilibrium. Any such state of equilibrium is a kinetic interchange of
molecules and energy between various parts of the system. Precisely this con-

-finual exchange is necessary in order for the equilibrium to preserve itself,
i.e., to follow every change in the macroscopic parameters of condition. For
any such external change immediately disturbs the equality of transfer in the
two directions and gives rise to a unilateral displacement of molecules and en-
ergy that lasts until the increasing countertransfer is again equai to it. This
molecular interaction necessarily involves fluctuations of density and energy
in microscopic regions.

Let an observer determine, over a long period of time, the relative dura-
tion w throughout which a selected small portion of the system of mass m is
in a condition deviating from the normal. Further, let it be somehow known
what entropy loss mAs is suffered by the system as a whole when, at constant
energy, this selected subsystem is brought from jits normal to its abnormal
state. Then, in order of magnitude, w = e"™48/% (4 Boltymann’s constant).
The equation represents a transformation of Boltzmann’s definition of entropy
8 = klnMW, first employed in this manner by A. Einstein. It is an extended
formulation of Boltzmann’s c-theorem 10(y)dx = constant e~A(x)/kT ax,

into which it passes over in the case where the selected conditions may be
characterized by a continuously variable parameter x and A(x) is a measure

of the work required for this change of parameter from the normal condition.
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However, we shall need the extended formulation. The probability of a fluctua-

tion, then, is greater the less the associated char_\%e of entropy; hence large
masses will suffer only small specific deviations from the normal state, and
large specific thanges - with which we are here concerned - will be restricted
to small masses.

An important problem will be that of determining the minimum entropy
change associated with the formation of the smallest quantity of the new phase
that can grow in the old phase by further aggregation of molecules. We shall
first discuss the last-mentioned condition, since it determines the minimum
indispensable mass, whose changes of state we shall then be called on to con-
sider.

. Whether a new phase will predominantly take on or give off molecules
depends only, in the case of two arbitrary phases of like temperature in con-
tact with each other, on the difference in the thermodynamic potentials of the
components. If the thermodynamic potential difference between the two phases
is zero for each component, and if contact or a molecularly conductive connec-
tion is established between such phases, then the resultant flow of molecules
(and energy) between the two phases will be zero for all species of molecules.

The new phase II is capable of growth, according to the preceding, if its
thermodynamic potentials are lower than those of a given phase I. However,
the thermodynamic potentials decrease with decreasing quantity of the phase,
and exceed those of phase I in the case of very small portions of phase II. The
lowest allowable limit is at the size where the potentials are just equal.

Thomson’s equation, which has the form

(ur —u‘ ) =-2—E—°V
o7 r I

(where u r and u - are the thermodynamic potentials of a particle of radius
I
r and a mass of indefinite extent, respectively, of phase II; i1 is the mole-

cular volume of the liquid; and ¢ is the specific free surface energy) for drop-
lets of a pure liquid, gives the thermodynamic potential as a function of quanti-
ty. The requirement that the thermodynamic potential of the droplet be equal to
that of the original phase, i.e., 1 o =% determines the minimum size of

particle that can grow. We call that portion of the new phase a nucleus, and
differentiate the corresponding quantities with a subscript K. This definition,
over and above the selected example, is to apply generally for all kinds of new
phases. As we shall show, the nuclear form is not spherical in all cases, but
it is always uniquely determined. For multiple-component nuclei, moreover,
the composition is determinate. For a nucleus of a new phase consisting of
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several components 1, 2, ..., the definition is

u-HK = B 1

1} )
(28) 2rK 2

. e o ‘OII

If we produce such a nucleus in an isothermically reversible manner,
l.e., with minimum expenditure of work, from phase I, and at the same time
remove the same amount of energy as heat, then the energy of the system has
remained constant and its entropy has been reduced by the amount of work
done divided by T. Now it can be shown that this work is in all cases just
equal to one-third of the total free boundary-surface energy of the nucleus, or
in the present example

(24) Ag = 1/3 GOK

Having this data, we can attack the final problem of the frequency with which
spontaneous fluctuations will give rise to the formation of such a nucleus,

An approach to this is offered by Boltzmann’s relationship. However,
this at first yields only the statistical probability of a condition, not the fre-
quency of an event. Unilateral processes are outside the scope of its direct
application. Yet nucleogenesis is unilateral, since it leads to the final genesis

- of the new phase. We must therefore conceive a mechanism that prevents ma-
turation of a nucleus.

In the formation of droplets in vapor, we may think of this as follows:
Imagine the mass m of gas required for a nucleus to be separated from the
much larger remaining vapor space by 2 movable wall in a cylinder. Let the
walls be wholly wet-proof, and neglect gravity, as customary. Then a spheri-
cal particle of liquid can be formed, with resulting displacement of the piston,
but its magnitude can never exceed that determined by the segregated mass.

Then the mass will return to its original condition; i.e., we have a ther-
modynamic equilibrium to which Boltzmann’s equation can be applied. The
probability that a mass m requisite for formation of a nucleus and forming
part of the relatively very large mass of phasxé)ae present as a nucleus of
phase II is, except for a coefficient, v = e~AK/KT

(Here Ag represents the minimum work that - by isothermally reversi-

ble conduction - must be supplied to the system from the outside in order to
produce a nucleus from the original phase in its interior. If we simultaneously
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remove an amount of heat equivalent to the amount of work Ag, the energy of
the system is the same as before; but the entropy has decreased by Ag/T.)
This holds for a specifically bounded portion of mass m of phase I. But the
problem was to find the probability we’ that the total mass of phase I contains
a nucleus. For this we must determine in how many ways we can mark off a
portion of mass m out of the total mass. Let this number be Z; then we ob-
tain for the required probability we’ = Ze~AK/KT, The statistical probability -

- or as previously stated the fraction of the total time of observation during

which the selected condition exists - is equal to the product of the mean dura-
tion T of the condition and the frequency J’ with which the condition is
reached in unit time, i.e., W' = TJ’; whence I’ = W'/r = (2/t)eAK/kT,
This holds - as we may emphasize once more -~ for the case where further
growth is prevented, so that the mass returns to its original state I. If we
may accept this result as valid also for the real situation - where the nuclei
are not necessarily restored but have an equal chance of growing into a phase
II - then the justification for this must be that these irreversible processes
constitute so slight a change in the system (phase I) as to leave its condition
practically unchanged. Theoretically we can imagine the first microscopic
traces of phase Il - i.e., nuclei that have grown just a little - to be artificially
removed. The number per unit time willbe J = I’/2, since half the nuclei on
the average, will recede and only the other half increase. Hence

A

K

(25) ;.2 KT
2T ©

The mean life of a nucleus was designated by = without prior specification of
its meaning. Such specification presupposes an exact knowledge or assump-
tion concerning the kinetics of molecular aggregation to form the nucleus. We
might regard it as the mean time T 1 elapsing until the nucleus has grown or
decayed by one molecule. This is certainly the shortest physically significant
time, and gives us an upper limit of J. A lower limit is obtained by introduc-
ing the substantially longer time T K required for assembly of the required
number of molecules ng for a nucleus by a purely unilateral process, i.e. ,
without resgparation. This time is of the same order of magnitude - about 2
to 5 times longer - as the generally unspecifiable time required for complete
decay of a nucleus into single molecules. For a simple estimate of v , it is
to be noted that the nuclear surface exceeds that of a single molecule by at most
one or two (decimal) orders of magnitude. Thus if we equate T to the time
elapsing between two collisions with a molecule, we cannot be too far wrong.
The number Z must be about of the order of magnitude of the number of mole-
cules in the phase. Actual determination of the factor Z/7 1is not possible by
the present method, and will be delayed pending the complete kinetic analysis
in Chapter 4. The energy Ag definitely plays the part of an energy of activa-
tion for nucleogenesis, and the structure of the equation is fully analogous to
that for the speed of a chemical reaction in the narrower sense. It contains
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everything required for understanding of the earlier empirical discoveries and
rules mentioned in the first chapter. The present derivation is not in the nature
of a rigorous proof, but has the advantage of great general validity and perspicu-
ity, whereby it served to point the way for the kinetic demonstrations. We shall
moreover have occasion to use it again when excessive complications exclude
e kinetic method.

It has been a common error to Suppose that the foregoing theory of nucleo-
genesis involves the hypothesis that the nucleus is formed in a single act, upon
collision of hx molecules. This is by no means the case; no particular assump-
tion concerning the mechanism is hypothesized by the argument. The question
has also been asked whether the equation of nucleogenesis is generally valid or
whether other ways may at times more readily lead to formation of the new
phase (see beginning of this section). The answer is that the foregoing deduc-
tion has revealed a route of minimum energy of activation, and by that same

In conclusion, let us relate the frequency of nucleogenesis J to the other
current terms and concepts in the kinetics of reactions, and discuss the appro-
priateness of the device. The speed of reaction in homogeneous systems is
Customarily defined as -de/dt or +dx/dt, where ¢ is the instantaneous molar
concentration of a diminishing substance, x that of an increasing substance, and
t time. For purposes of comparison with kinetic frequencies of impact, mole-

heterogeneous systems, notation is less uniform, In the familiar Noyes-Nernst
system, the rate of dissolution is expressed by the rate of increase of concentra-
tion +dx/dt. Rate of evaporation, on the other hand, is commonly written as

the number or weight of molecules evaporating per second per square centimeter
of surface. Rate of crystallization is customarily described in terms of the linear
or spatial growth of the crystal, etc.

In the formation of new phases, we might perhaps describe the speed in
terms of the molar or rather molecular diminution of the old phase or growth of
the new. These changes, however, resuit from two superimposed processes
subject to diverse laws, namely the genesis of potentially growing particles of
the new phase and their growth itself. The interpenetration of the two processes
will be reserved for discussion in the last chapter.

The actual problem lies in the first of these two component processes,
For theoretical and experimental purposes of study, therefore, it should be sep-
arated from the second at this stage. Theoretically, this may be done by re-
moving the particles as they appear, as soon as they are stable but still suffi-
ciently small to produce no appreciable change in the parameters of the system
due to reduction of its mass, I the number of particles so “withdrawn’’ at time
t is called Zg, then +dZg/dt is a suitable measure of the rate. As time goes
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on, this procedure alters the condition of the system, and, as we see, the sort
of alteration depends, among other things, on the size of the particles withdrawn.
However, there is no need to go into this, as the experiment is merely imagin-
ary, and intended to abstract from the process of growth, which in actuality
modifies the system much more rapidly. For the present, therefore, it is only
the quantity 1lim dZg/dt = J thatis physically of interest. Experimentally,
t=0
the separation is made by terminating the experiment after a period of observa-
tion t sufficient to detect and count the first few particles. To the extent that
we may neglect their effect on the parameters of condition of the original sys-

tem, we may take

_{J’dt:.'ft
0

In the absence of express statement to the contrary, J is referred to one cubic
centimeter of the parent phase.
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C. ILLUSTRATIONS AND EXAMPLES
a) Thermodynamic Potentials in Phases of Small Dimensions

In the problem of nucleogenesis we are concerned with the behavior of
small particles that appear and dtsappear, grow and decrease in the course of
fluctuations. In applying thermodynamics to the individual particles, caution
is in order, because their parameters of condition, unlike those of ordinary
thermodynamic systems, cannot be determined with sufficient certainty. Hence
a proper examination of the principles employed, and the limits of their valid
application, will be necessary.

The oldest and best-known equation is W. Thomson’s » in the form
RT In p,/py = (20/r)Vy;, for the vapor pressure equilibrium of small drop-
lets of a homogeneous liquid II (pr vapor pressure of droplet of radius r,
Pop Vapor pressure over a plane surface, & surface tension with respect to
the vapor I, V., molar volume of the liquid). This equation, which for the
sake of independence of validity of the gas laws for the vapor we shall write in
the form

(U-r"llm)n = gri i

(vn molecular volume in the droplet) is an approximation.

It is obtained, e.g., by integration of the isothermal thermodynamic re-
lationship (9)

du--n = dpn .

At the ordinary coexistence pressure of the phases on surface of contact (Poo)s
let the thermodynamic potential be W oo+ Then

Pry
(hr - o)y = I Vi depx
P

if Prp is the pressure inside a droplet of radius r. This pressure is com-
posed of the pressure of the vapor Py and the capillary pressure
(r)

Pp - pl(r) = 20/r. Hence
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‘pl(r)+ r.
(br-Rep = j vII dppp -

Po

If we regard the liquid as (approximately) incompressible, then

r v = (3 - Ty p°°> '

As a further simplification, we neglect pl( - Py relative to 20 /r,
r)
obtaining finally
- . 20
(26) br " by =5 "o

We shall continue our verification in terms of this example. A droplet

of radius r surrounded by vapor at a pressure pl( ) by no means represents
r

a state of equilibrium in the ordinary sense. On the contrary, the droplet will
forthwith vanish or else grow to a large mass of liquid. Thermodynamic meth-
ods are therofore not directly applicable. In order to maintain the droplet in
its vapor for an extended period, we must suspend it freely in so small a cham-
ber, i.e., make the vapor space so small, that an upward fluctuation in the size
of the droplet would immediately decrease the vapor pressure to such an extent
that as a result its size would again decrease; while a spontaneous reduction in
size of the droplet would increase the vapor pressure so that condensation would
predominate. If we now set up the customary imaginary experiment for deriva-
tion of the formula - supplying a set of dn molecules from a liquid with plane
surface and withdrawing it again as vapor - then the two amounts of work will
be different, owing to the fluctuations. Under these conditions we can apply
the second law of thermodynamics by frequent repetition of the same process,
thus arriving at a statement about the average. Upon indefinite repetition, ac-
cording to the second law, there will be no macroscopic excess of work. Hence
the mean of the individual amounts of work dn(Kk,, - o) are the same for

the direct and the inverse process, and since 1 oo 18 determined, the mean of

the thermodynamic potential of the droplet is determined by Thomson’s equa-
tion. The law thus determines the mean thermodynamiec potential of the droplet
as a function of its size. We have previously seen that equality of potentials he-
tween two phases in contact is synonymous with the kinetic preposition; that the
transfer of molecules is the same in both directions or that the resultant flow

is 0, ie., B =1, A droplet of instantaneous radius rK and corresponding
potential ¥ rg in a phase of like potential (s r K)II =Kk ¢ has on the average equal
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probabilities of growth and decrease, or in other words the ratio of the two
probabilities, previousl designa%ed by B , is 1. For any other magnitude r,

A becomes equal to e 1 “Hr (II)/ kT. This satisfactory statement of Thom-
son’s formula enters into the subsequent deriva‘ions. The foregoing considera-
tions, in addition to the selected example, are to be applied to every kind of

particle, crystalline or otherwise.

For mixed droplets we obtain the generalized Thomson-Gibbs equation
from @1 vdi, +ngdig Oq = V- dpy, where V is the volume of the
droplet. If we divide by ny + Ng + ... We obtain as factors the molar frac-
tions x,, Xg) e+ ON the left and the mean molecular volume ;II of the liquid

on the right,
@1 dﬂl + X9 du'z + “')n = ;u dpn ’

subject to the same approximations as before, with Por - Pr/m = 20/r, we
obtain

20 -
(27) Bl(ur-um)l +x2 (ur'um)2+"°_7n = -r— Vn H

where [(“'r - l-l-m)1 _7 are the differences in thermodynamic potential
iy oans

between droplet and mixture of like composition with plane surface for the
1st, 2nd, ... component.

If we introduce the partial volumes, e.g., v = dV/dnl, then on the
supposition that these are independent of pressure,

20

(28) Gr-beohp=— Ym -

& /
N e A .
- y 2
2 ! '
K Ay
Fig. 19 Fig. 20
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Crystals are bounded by plane faces meeting at definite angles (fig. 19). We
reversibly transfer dny molecules of volume dV; (the subscript ¢1.” refers,

not to a component, but to a certain face) from an infinitely large crystal to a small one,
the mass being deposited solely on face 1. of area Oy,. This face is thereby

displaced alorig its normal by a distance dhl . This likewise changes the area of
the adjacent faces. If the length of the edge formed by face 1. and face 2. is !2

and the angle ¥g » then the face 2. increases by v 9 dl\l ¢sc xz and face 1. de:
creases by 12' dh, cot y 9. If the specific free surface energi'es are respectively

Sy and dz » then the variation of free surface energy at this point is ( A3, 4 2.

csc ¥q - 61 12 cot 9 ) :lh1 . The total variation is obtained by performing the
summation around face 1.. The work required is

(By, = Y oodydny = X (0 L cse p, - 6, 7, cot y,) dn, .
Since dn; =dV, /vII and dV, =0, dh, , we obtain Gibbs’ expression

X(°1.11,°3°B‘1' S, li. cot)‘i.) =d2(c-51. 0;.) v
(u 1. W m)n = 01. o dvl. . no

The small crystal, which we imagine to be in equilibrium, e.g., with its vapor
(enclosed in a sufficiently small chamber as previously explained), must have the
same potential at all points. Hence the expression must yield the same value for
all faces, i.e., for constant volume all ﬁ ces 84, O;, mustbe a minimum. (17)

G. Wulff (88) has formulated this condition as follows: If from a point in the
interior of the crystal we drop perpendiculars to all possible bounding surfaces,
mark off segments from this point proportional to the corresponding ¢ -values and
pass perpendicular planes through the resulting termini, then the body bounded by
these planes is the required equilibrium form. If we think of this polyhedron as
divided into pyramids (fig. 20) with apexes coinciding at the central point in the
interior, and call the altitude over the 1st face (of area 01.) h1 s then the volume of

the crystal is V = all %y r. O by /8. I the crystal is allowed to grow omnilaterally
without changing shape, then for each pyramid

doy 0z, .
(bh = Hooly= ‘51.'3?‘1"11’ (hp, Bl = °2."W2:"'II”"
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Now dV, = (b, dO, +0, dh, )/3, and dV, =0, dh , whence dv, =h do, /2.
Equality of the potential in all directions requires that & hy = W h2 = ...; hence

261 _ 2¢2 .
(29) (bp = keolp=—g = Y
1. 1. 2.
or
él' = az‘ LYY
hy, by,

This is the proof of Wulff’s statement. In the form (29), the Gibbs-Wulff equation
is analogous to Thomson’s formula (26). For mixed crystals, a formulation cor-
responding to (27) and (28) is obtained. In earlier years, the law was frequently
appealed to in order to explain the forms of growth of macroscopic crystals.

This application is incorrect, as with increasing linear dimension hl.’ hz.,

the differences of by * B hz s +« due to deviations from the equilibrium form

become progressively smaller (29), practically vanishing for macroscopic crystals.
The equation becomes of physical significance only for crystals of linear di-
mensions less than 10-4 cm. Above this limit the thermodynamic potential changes
due to the deviation in form are less than the minimum experimental error of
determination of the parameters of condition T, P, Cy «.. of & phase; and gravity,

for example, becomes of equal importance with regard to shape. The tendency of
crystals to assume the form determined by the relationship given above varies,
as we see from (29), in inverse proportion to their linear dimensions, and is
therefore decisive in determining the shape of nuclei. Moreover, the preceding
equation - a fact first pointed out by I. N. Stranski and R. Kaischew (69) - implies
that with decreasing size of crystal, i.e., with increasing supersaturation of the
other phase, the equilibrium form has progressively fewer faces; for since the
ratio of the central distances is determined by the & -values, therefore as the
size decreases, the faces vanish successively in the order in which their areas
become of submolecular extent. Stranski (48) has extended this argument to
growth centers of macroscopic crystals, whose forms must also have fewer faces
the higher the supersaturation of the nutrient phase. By suitable observations of
:his sort, he was able to arrive at statements concerning the range of molecular
orces.

In the thermodynamic derivation set forth above, a plane polyhedral crystal
boundary, to be preserved upon deposition or removal of mass, was presupposed
from the first. Displacement of a face by dh therefore means a change of mass
by at least one lattice plane. Nothing is said of the intermediate conditions, in
particular not whether the boundary corresponding to equilibrium consists of
complete intact lattice planes or incomplete ones. Change of mass by one lattice
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plane does not imply that the initial and final conditions occur at completion of a
lattice plane. However, this question can also be answered thermodynamically,
namely by reference to the specific free marginal energy of a lattice plane.

This is to be interpreted as the work required to split a lattice plane so as to
produce a free edge 1 cm in length, Introduction of this quantity makes it pos-
sible to specify the size, shape and position of a lattice plane having a particular
thermodynamic potential upon a crystal of like potential.

The results of these analyses, however, are progressively unrealistic because
we are working with quantities not at present experimentally measurable, and this
is essentially in contradiction with the essence of thermodynamics. Even the
specfic free surface energy has hitherto been measured in only one case - on
cleavage surfaces of mica (70). One may well suppose that future progress will
follow upon discovery of the laws of molecular forces. Once these are known,
we can compute the surface energies; but then we shall not need these either,
since the required molocular thermodynamic potentials for each surface position
can be obtained directly, It is Stranski and Kaischew's great achievement (71) to
have derived the Gibbs-Wulif equation for crystals from the molecular energies
of growth, They used, among others, the aforementioned model of a homopolar
crystal, taking account only of the forces between nearest neighbors. However,
the result may also be derived in general, taking the thermodynamic potentials
4 in place of the energy components of the individual steps.

While one and the same molecular thermodynamic potential © r Prevails

throughout a droplet, the building blocks on the surface of a crystal have various
molecular thermodynamic potentials L'Li. according to position. If we supply n

building blocks to a small crystal from an infinitely large one, while preserving
the shape of the former, in such a manner that the base of a pyramidal section
of altitude h;. acquires a full lattice plane of 1. building blocks in single steps,

N, .
then the work required is X ( hy = B )i B oo = "y I8 the thermodynamic
potential of the infinitely large crystal. If the transfer is performed in one operation,

.
ny, % b i
then this work is (uhl. -# n + Therefore IZ hy=ng uhl. orn—L— =
=R, =R, ,
1. hl.

The dependence of the potential on the linear dimension h of the crystal arises
from the fact that the number of marginal building blocks of one lattice plane,
which on removal have a higher thermodynamic potential than ¥ 1.2 relative to
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the number of building blocks interior to the face, which on removal have a lower
thermodynamic potential than B 1 increases with decreasing size of the crystal,

If the molecular thermodynamic potentials D‘i are known, then a crystalline

We whose potential is to be u is determined in size and shape by the
requirement that for each bounclaryh}a'ce 1., 2., .., :

(30) flp.' Zl'lza
L ¥
lT Y Pt BaeTen Ceny

(Stranski and Kaischew),

For crystals whose linear dimensions are large relative to the range of the
molecular forces, 'ﬁl increases linearly with the perimeter-to-area ratio of a
lattice plane; but this ratio is 1/h, whence El. =K + K”/h1 « The meaning of

the constants is determined as follows. In the process of removal of n molecules,
to be used to deposit a layer around the small crystal, from a large crystal, by
single reversible steps, no change in the surface area of the latter crystal occurs.
Upon deposition on the surface of the small crystal, however, its area increases,

viz., for the base of each pyramid 1.,

doy, dO;, 2
AOI‘ = d]_;i-_ nl. = Ev—l—nl. vn =l'l_1- nl. Vu.

The work required to enlarge face 1. by 1 square centimeter is by definition 3 1.}
hence AO; dy.=(2 64, /hl.)“l."n- This amount has been contributed as the sum

n
1:.
of the amounts of work:L': (B 14" 3 m) required for the single steps. Hence

e T 23

b2 | RN WA PR S

3 1.4 L S VR W ¢
and therefore
(30) T B oy o='wh ~ koo

is true for each single face of the crystal.
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Fig. 2la Fig. 2Ib Fig. 21c

It will be profitable to particularize this general result in terms of the very
instructive example given by Stranski and Kaischew, We employ the simple cubical
lattice, considering only the forces between immediate nei hbors. There are then
three energy values E@’ &m, and 6@, corresponding to the number of bindings, and

8@ - S@n: S@- gy Further, by (7), we equate the energy differences to the thermo-

dynamic potential differences. Let fig. 21 represent the upper face 1. of a cubical
erystal (hl. = hg = ...) of edge-length 2hy ; let the edge-length of a building block

be 2r, From an infinitely large crystal of like kind, by iterable steps, we remove
ng, = (hl‘/r)2 building blocks and use them to build a new lattice plane. In doing

this, we choose a definite sequence permitting us to compute the result with ease
(but having nothing to do with the real sequence). First we lay a corner block,

As this is only singly bound, its transfer from the infinitely large crystal, where it
is triply bound, requires an amount of work 5@ - Now we add the edge rows.

This requires transfer of 2 (nll{ 2. 1) building blocks, each doubly bound. Hence

the amount of work is z(nl/ 2. 1) (E@; - €®). Finally we fill up the rest of the face
row by row. The work required for this is (n%/ 2. 1)2(£® - e@ = 0, since the blocks

in our model are now bound exactly as in the infinitely large crystal ( 3@= €p)e

The required amount of ‘work for the entire plane, inasmuch as t‘@ - @)= 2( E@- €@
is

ED-t@* m:./z -1) (eg)- eg) + (n:./z - 1)2(e®-e®) - 2n11/2 tg-tg-

If we divide both sides of the equation by n; , we obtain
&a- &
g - = = ar -
‘1.7 %17 =4, @0
n1 1.
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By our hypothests, (EL - Em)n = (-;i 1, ~® m)ll’ whence

(31) _ ar
(B, - iy = by, (- )

The process has added new surface area, namely at the edge of the new lattice

plane. The free energy for 1 square centimeter of surface, under our presupposition,
is equal to the energy increment for a surface increment of 1 unit of area,

3= (1/2) [1/@@2r)d 7 (€@ - €@)- i.e., half the work of cleavage for a 1-centimeter

cube. The Gibbs-Wulff equation requires that
1
' - E
20 gt 2@ @r)® = 2L(e, -
82) Gy -ugdp=h vg= n, @7 =y (g

. .

Comparison of equations (31) and (32) thus yields T 1, =¥ hl , thus completing the
illustration of the generally established relationship in terms of this special example.

With the aid of the imaginary experiment of fig. 6, we will clarify this re-
sult a little further. If we again erect cylinders over the single elements and ad-
just the pistons so that the residence times in free and bound condition are equal,
then we associate the locations of the first, second and third kind with volumes
i v @ vl@‘ None of these volumes, however, is equal to that corresponding

to the mean volume vl(hl ) of a molecule in a gas of thermodynamic potential
1Y hl ’_‘El.‘ At no locatiom on the small crystal, therefore, is the probability of

presence of a molecule the same as in the gaseous phase with which the crystal
is in equilibrium; nowhere does# = 1. If we shut up the crystal in a very small
chamber so that there are on the average only a few molecules in the gas space,
an observer measuring the gas pressure will not find the value phl required by

the foregoing formula as the equilibrium pressure (u.l11 ko) = KTIn phl /Py

unless his observation is prolonged and the geometric mean is formed so as to
include the rare cases in which the larger gas space contains the whole number
of molecules of the lattice plane.

This is an example which plainly shows that the fluctuations extending over
a larger number of molecules are a necessary aspect of the equilibrium. Even
though the single f -values differ from 1, there is no resultant molecular flow
in one direction, for the product of all B ’s for the complete lattice planes is
equal to 1, thus
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This requirement, however, for given u r is satisfied for only one definite value
of n, namely

The Gibbs-Wulff equation holds only provided the total surface energy of the
crystal can be given by the sum of the products of surface area and specific free
surface energy. This, however, is permissible only if the edge and vertex energy
may be neglected relative to that quantity, i.e., if the size is not too small, In
such cases, where the small crystal may be produced by simple cleavage from
the infinitely large crystal, it is possible to generalize the law by introduction
of specific free edge and vertex energies, as has been shown by Stranski and
Kaischew (72). It is scarcely probable that this will be put to use.

In order to use the Stranski-Kaischew relationship (30), whose application
is not subject to any restriction, for determining size and shape of a crystal be-
longing to a vapor phase of thermodynamic potential w 1» We proceed as follows.

We start from any simple crystalline form and successively remove all
elements for which s i>H1 This exposes all faces belonging to the equilibrium

form. Now we vary the face areas until, for each of the surface lattice planes,
1., 2., cc. =14 1+ This eliminates any remaining faces not belonging to the equi-

librium form, and the size and shape of the crystal satisfy the equilibrium condition.

b. Work of Nucleogenesis
a) Nuclei within Homogeneous Phases

When the supersaturated phase and the new phase belong to the gaseous or
liquid state, then the following method of determining the work of nucleogenesis
is always feasible (17), even for mixed phases. It is always possible to bring
phase II into such a condition, at constant temperature, that it has the same
thermodynamic potentials as phase 1. If the latter is supersaturated, then the
pressure on phase II must necessarily be different from that in phase I; in mixed
phases, the molar fractions of the components will moreover in general be dif-
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ferent in the two phases. But if the thermodynamic potentials of phase I are given,
then the pressure and composition of phase II are uniquely determined. Once the
phase I has been brought into this condition, the two phases can be placed in
contact without bringing about & change by means of a suitable wall that will trans-
mit the molecules but support the pressure difference. Now let us imagine that

a cylinder containing phase II, and having such a wall at its end, is placed en-
tirely within the comparatively very large phase I. The piston forming the

closure is subjected to the required additional pressure Ppx - Pr By infinitesimal

reduction of this pressure, a small mass of phase I can be reversibly converted to
phase II. Thereby we gain an amount of work (ple - pI)VK’ if Vi is the volume

increment of phase II. Let the stroke of the piston be so adjusted that the volume
Vg, concelved as a free sphere of phase II within phase I, is subject to precisely

the additional pressure (pnx = pp) as a result of capillarity, so that Vg = 41‘%/3,

wherer K= 28/ (an - pl). Next we actually form this sphere. To do this we replace

the porous wall by a wall with a minute aperture in the center and expel the volume
Vi as a sphere from this aperture. This requires an amount of work

r
K20  4wrlyr- 4rr s,
[ 7T

0

This sphere of phase II has the same thermodynamic potentials as phase I, and is
therefore the nucleus.

The work of nucleogenesis expended is

(32) Ax=4rcr;6 )Vx=41rr26 -2¢ 4.3 _4,..2,4.1lg s,

" (g - Py k° rg 3Tk ™K® "3k
This is the work of nucleogenesis for isotropic nuclei in isotropic phases. If for

one-component systems we introduce the thermodynamic potentials in place of
rg by means of equation (26), then

- 16 mss vn2

(32a)

s T
by~ k1100

For multicomponent systems we similarly obtain from (27)

16 1?63 7.2 1
AK = ——-—————n—. _ _:'7-
3 L=y U - M) * "2(“12 W)t
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In the case of crystals, the foregoing imaginary experiment is not readily
performed. We shall employ the molecular method for the example of a one-
component crystal. The molecular thermodynamic potential of the isotropic
phase I in which the nucleus is to appear is uj. Let the crystalline nucleus contain

ng molecules; the required work of formation is equal to the sum of the individual
ng
steps, or Ag = 57 (R " “y). This sum may be resolved as follows:

1

"k
Ay = f: (B =¥ o) = PR(* [ = ¥ o) The first term is the work of formation

of the nucleus from an infinitely large crystal of like kind. If we successively with-
draw ng molecules from the infinitely large half-crystal and progressively build

up the nucleus from them, we enlarge the surface, namely by the surface area of
the nucleus, for withdrawal from the half-crystal does not change the surface

area of the large crystal. Thﬂ ucleus is to be constructed within phase I. We
write this amount of work as ( ‘11 -k NToo) © Zai.oi_x, where the summation

is to be taken over the entirelsurface; we neglect edge and vertex energies. So

much for the first term. The second is obtained from the fact that 1 " o =
= (28 1./h1.)vn. If V;, isthe volume of the pyramid on O, (fig. 20) and n, the
number of molecules contained therein, then Vl‘ = 01.h1./3 and n = V1 /vI:l =

;ielld': ./3vn; hence nl.(ul B ufllw) = 261,01'/ 3. Summation over all pyramids

2
- = 9 6
ng( - by = 3200

with the summation taken over all base areas of the cog:ponent pyramids, i.e.,
K
over the faces of the nucleus. In the expression AK = 12 (u-i - “nm) - nK( u-l -

) for the work of nucleogenesis, therefore, the second term is 2/3 of the

b 1 O
first; hence
n)_% 1 ;’K 1
@) Ag =1 (by-up) =5 | (&) "wpe) =7 "kl “bne)
1
= -3— Z 61.01.K.
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For crystalline nuclel bounded by only one kind of face, hy_ = hy = ry, i.e., the

radius of the inscribed sphere. Then Ag= w r2 ¢ /3, where ® is a geomtrical
coefficient. Introducing the thermodynamic potentials,

) A 40s? v
34 - -
( KT Grwpe®

From the twoexplicitly presented examples of the calculation of the work of
nucleogenesis, we see that this amount of work is made up of two terms an

Ag = Ag - Ay

Ao is the work required to form the nucleus from a large mass of the new phase II,
This work is always equal to the increment of free surface energy, or

Ag = Zsiolx.

is the work gained when a small particle of phase I, namely the prospective

mass of the nucleus, is brought from the existing (supersaturated) state into
equilibrium with the large mass of phase II. The value of Av is not so immediately

obvious as that of Ao. Calculation shows, however, that Av = ZAO/S in all cases,
and that therefore Ay = /3)x “1.°1.x°

Nuclei of mixed crystals are determined in composition, size and shape by
the thermodynamic potentials of the components of the parent phase I. The cal-
culation of Av Proceeds analogously to the one-component case, by

Ap= 27 n(np-wu . Eguation (28) holds for each co ent q:
V  comp. q( I IIoo)q quation (28) s for each component q
(b= bpglg =@, /m dvp,

where vnq is the space required by an element of the qth component in phase II.
If v1 q is the volume occupied by the nl.q molecules of the q-th component through-~
out the volume V,  of the Ist pyramid, then nl.q = Vl.q/vnq, and

20
1. . vl

g (M1 ey =T

1. q.
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Summation over the components yields

26
5T ) _ 4%,
comp. "1.q (b1 - Hnelq By

=2
. v1. - 3 61.01.

and summation over all pyramids, or surfaces, of the nucleus yields

2
ny gk M1 =3 Z 40

= > .
Ay pyr. (K) co;n'p. all faces &* K

Hence the work of nucleogenesis becomes

=A -A =1
(38) Ag=Ag-Ay=3Z o0 o

8 ) Nuclei on Boundary Surfaces; Two-Dimensional Nuclel

Hitherto we have considered exclusively the genesis of nuclei in the interior
of a phase. In supersaturated polyphase systems (e.g., liquid-vapor in equi-
librium below the temperature of the triple point), we have the additional pos-
sibility of formation of nuclei of a new phase at the boundary surfaces. The same
is true of nucleogenesis on boundary surfaces of contact with bodies free or
practically free from the supersaturated components, e.g., the wall of a vessel.
This discussion is not one of special artifical examples but concerns extremely common
cases, and without it our understanding of the entire group of phenomena would

be defective.

Fig. 22 Fig. 23
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Gaseous or liquid nuclei (17) at the boundary between a liquid and a gaseous
or other liquid phase generally assume a lenticular shape (tig. 22). The two ex-
tended phases are I and Il. Let the lenticle contain the new phase III; let ry and

ryp be the radii of curvature, hy and hn the altitudes of the spherical segments,

and r the radius of the circle of intersection of the lenticular surfaces. (We
suppress the subscript K on the r’s, h’s and O’s.) The work required to form
the new surface in producing the lenticle is

Ao = °1/mOy/m * °m/mCu/m - *i/n* Oy

(()I /= Tt'r2 is the plane area eliminated between the original phases; OI /T and
OII /1 are the lenticular surfaces formed). The work gained in forming the

volume of the lens is

Av = Vm/1(Pm - B + Vynp/n(Pr - P
where
2 2
Vi = g™y - 3 rrd(ey - 1y

and

3 2., 1 a
Vm/n =30 g 37 g - by

are the volumes of the spherical segments that together form the volume of the
lenticle, and py, Py Prnp are the pressures prevailing in the phases. The Thomson-

Gibbs equation requires that p;; - py = 51 /m/rI and pr; - P = 2¢ I /m/rn.
Substituting, the volume energy Av gained is found to be

_4 2 92 4 M-h 4
AV‘s“"x/m’r“x gmre. 1/ P *3"°n/mrn"n
2. .24 o - by
)1}
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Equilibrium of forces at the periphery of the lenticle requires that

ry - h I'es = h :
I 1 Lo g
Sym —— * *mm —— = o
1 I
Hence
_4 4 -3y 4 .
Av=3™oym™ s Syt ST G
Now
21tthI = OI/III; 2 1't'rnhII = OII/III; rd = OI/II
Consequently

Ay = % (°t/mO1/m * *u/mCu/m - *1/nCyn

The work of nucleogenesis is

(36) Ax = 40~ Av = 58ym + Oy/m * 4m/m - On/m * %y - Oy

Provided 81 )& é.ll /I =0 1/m the work of nucleogenesis is positive, since

o /> Ot/ 204 Opy />0y /py: ‘But in the event that % /mt o /m = Sy
the lenticle degenerates into a plane surface, so that 0I /m = Ol /10 0n /I = 0I /I

and AK = (.

In the case where phaseI is in contact with a plane solid wall II (fig. 28),
and we are to find the work of nucleogenesis of a gaseous or liquid phase III at
this wall,

(37) AK = -;-frrl /m ¢ 4 /m(z - 2 cos ¢ - 2 sin? P cos ).

is the work of nucleogenesis, since 0II /m = C1/n and

& . 0 r-h
1/0° ‘ym* °n/m v = %y/m + Cn/a - cos @,
where ¢ is the capillary angle. Again, Ag = 0 for % = dl /m GII /I i.e.,
¥ =0
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Compared to the work of nucleogenesis in the interior of phase I, the work of
nucleogenesis at the wall is always smaller provided the marginal angle between
the wall and a droplet of the new phase is less than 180°. At 90° the work is
reduced by half, and continues to decrease with decreasing marginal angie, van-
ishing for perfect adhesion. Since supersaturation is never possible except when
AK> 0, the presence of an adhesive wall implies impossibility of transgression

in the neighborhood of such a wall. I the wall is convex, the work of nucleogenesis

is greater than on a plane wall; if concave, the work becomes less, but the differences
become noticeable only at very high curvature. Even the surface of microscopic
particles is to be regarded as practically plane. It is their presence in all liquids

and gases that is responsible for the great difficulty of subjecting strictly homogeneous
nucleogenesis to observation. If the surface is indented, i.e., extremely concave,
nucleogenesis is particularly favored, since the work of nucleogenesis may become

0 even for imperfect adhesion.

Upon wetting, the cavities contain the new phase even below the saturation
point (capillary condensation).

In fact, practically all genesis of liquid or gaseous phases due to small or
moderate transgression, in natire and in the laboratory, takes place on boundary
surfaces, and special measures are always required to prevent this and permit
observation of homogeneous nucleogenesis.

At lines of intersection of two boundary surfaces, and at points of intersection
of such lines, there are still other conditions that may further promote nucleo-
genesis (17). We may dispense with the analysis, as experimental data is at
present lacking. It is entirely possible, however, that such cases may acquire
new significance in the future.

Genesis of new phases on surfaces, in the limiting case A, = 0, is found
upon closer consideration to be possible in other ways. The minimum thickness
of a liquid lenticle is equal to the depth of a molecular stratum. The circumference
of the disk is the seat of an additional energy that may be expressed as the
product of a specific free marginal energy ¢ by the length of the margin 1. The
specific free marginal energy of liquid films manifests itself in a force that
tends to reduce the circumference - a marginal tension. This marginal tension
firstly renders the disk circular and secondly, in the case of small circular disks
(radius r), gives rise to a higher thermodynamic potential. We have

(up - wedg=¢Ss o  or

(38) (e wgly= e -Op

where o is the area required by a molecule. The generation of such a disk requires
a work of nucleogenesis xK, which in turn may be resolved into *K = ﬁ -Kx .
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Similarly to the three-dimensional case, # = 2%, whence (78)

=1
(39) -A-K =3 Slg
(lK circumference of nuclear disk). However, there remains the possibility that

xx = 0, If, e.g., we gradually compress a vapor isothermally, beginning with the

unsaturated state, the adsorption layer on the wall may go over from the diffuse
to the condensed state either continuously or discontinuously. Examples of the
first case are the low fatty acids, of the second case the higher fatty acids on
water. The latter, even in the neighborhood uf the saturation pressure, form a
very sparse expanded film from which the monomolecular liquid film is suddenly
formed, but not until after transgression of the coexistence line between the ex-
panded and the condensed film. This process may even take place below the
vapor pressure of saturation; as the latter is approached, the monomoleculur
film goes over into a multimolecular one, becoming of indeterminate thickness
of saturation. This two-dimensional nucleogenesis in mobile adsorption layers
is physically of subordinate importance, and has been mentioned only with reference
to the analogous process for stepwise lattice formation, to be discussed below.

Isotropic three-dimensional nucleogenesis on surfaces includes the initial
genesis of vapor or liquiduon the surface of a erystal. Absence of the vapor phase
might be achieved for volatile crystals by immersion in a high-boiling-point
liquid. Reduction of pressure below the normal vapor pressure of the crystal would
render the crystal superheated with respect to the vapor phase. Vapor nucleogenesis,
evidently, depends on the nature of the immersion liquid. Experimental data is
not yet at hand, Genesis of the liquid on crystal surfaces is of greater interest.

As is known, crystals melting in the absence of chemical processes consistently

fail to become superheated, as innumerable experiments indicate. This circumstance
is due to the fact that the surface of the crystal is always locally more or less
capable of being wetted by its liquid phase. Hence, upon minimal transgression,

the liquid more or less coats the crystalline surface, beginning at the corners

and edges, which are the points of loosest binding. It is only if heating is confined

to the interior of extremely compact and wet-resistant surfaces that some slight
local superheating can be achieved (74).

Let us turn to crystalline nuclei on surfaces of growth of other crystals. The
consequences of such nucleogenesis are frequently observable in nature as
systematic hybrids of diverse crystals.

The equilibrium shape is given by the condition that the mean of the molecular
thermodynamic potential for all participating surfaces must be the same as in the
supersaturated phase. Calculation of the work of nucleogenesis yields AK = (1/3)

6, 0; . Inthis summation, to be performed over all faces, the values

P g
all faces 1.1 K
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- the edge, and the work of nucleogenesis (73) is g = (1/2) 2 1

for eliminated boundary surfaces are to be reckoned as negative, as in the case

of the lenticles. In an important group of cases, the specific free boundary-surface
energy at the point of grafting is relatively small compared to the sum of the

free surface energies of the two separated surfaces. This requires that the

lattice forces be of like kind, thus, e.g., predominantly Coulomb forces in the

case of ionic lattices or London forces in the case of homopolar lattices, Further,
there must be simple relations between the elementary intervals. This causes

the nucleus to grow with a definite face as base, and mareover in definite orientation
with respect to the lattice of the substratum.

In the limiting case of full identity of the lattices, the boundary surface
energy at the point of grafting becomes @ = 0, and the nucleus appears as a
monomolecular layer, the eliminated area of the original crystal being replaced
by an equal area of like specific surface energy. The only new contribution is

1 [ ]
. OK
In contradistinction to the deposition of liquids on boundary surfaces, the
genesis of any crystalline layer - even if monomolecular - always requires
nucleogenetic work., This work of nucleogenesis necessarily occurs even if the
given crystal is identical with that to be deposited, for this is precisely the case
of fully identical lattices.

The shape of a two-dimensional nucleus is determined by the fact that the
free marginal energy is to be a minimum. This minimum shape, as may readily
be shown, is subject to a law analogous to Wulif’s law for three-dimensional crystals,
namely £/h = constant. If we imagine the crystalline disk to be divided into
triangles with vertices meeting at Wulff’s point, then for the first triangle

f1.,
(40) ( u-hl. . m)n = T on'

The size of the two-dimensional nucleus is found from

hiy T My T by

As in the three-dimensional case, the law may be expressed in terms of the
molecular thermodynamic potentials, as follows: The mean of the thermodynamic
tentials of the elements of each boundary line 1., 2., ... of a two-dimensional
nucleus must be the same, namel ual to the thermodynamic potential of the

environment, viz. ( 1" %m=t1” MO T 2 s’i. hi. o5+ The work of

nucleogenesis is

o ng
B A (M- g e (%1 - o) = ng (Mg - ) = By - %
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(nK number of elements in two-dimensional nudeus). The first term A margin
¢ 1.}y x- In view of equation (40), in analogy to equation (33), we find the second

term (1/2) ma%gin 91.1

A and the two-dimensional work of nucleogenesis

_1
(41) Xp-1 1

mazl"gin saio 10K'

In the case of finite crystals, it remains of interest to inquire where the two-
dimensional work of nucleogenesis is least. For homopolar crystals this happens
in the interior of the faces; in the NaCl lattice at the edges. The latter follows
from the fact that the marginal energy is less at the edge than in the interior of
the cubicai face, or in other words that in the course of successive growth the
elements at the edge are more firmly bound than those in the face. As in the
case of boundary surfaces in the three-dimensional case, boundary lines may
present special conditions for two-dimensional nucleogenesis. The specific
investigation remains to be carried out, but it is readily seen that re-entrant
angles like those at points of grafting or points of contact of individuals of the
same substance will specially facilitate two-dimensional nucleogenesis.

Before reporting the experiments that support this theoretically acquired
conception of two-dimensional nucleogenesis on genuine surfaces of growth,
we may mention the more sweeping theoretical requirement that two-dimensional
nuclei must arise from successively growing rows of elements. These rows in
turn must have reached a minimal length depending on the thermodynamic potential
uI of the parent phase in order to be capable of further growth. This length is

given by the fact that the thermodynamic potential of the loosest terminal element
or elements A = Wy The length of the row need not necessarily be an integral

multiple of the linear molecular dimension; W, may lie between the n-values of

two successive elements. The row then ends on the average at a fraction of the
last element. (The same is correspondingly true of two- and three-dimensional
nuclei.) A row of this length may be called a one-dimensional nucleus. Its work

of nucleogenesis is 27 (- W),
elements of row 1 I

The ideal crystalline nucleus in a phase of thermodynamic potential H
1) of the

thus has the same value A as average thermodynamic potential (1)
elements of each existing lattice e, (2) of the elements of each e of the
two-dimensional nuclei on such lattice planes, (3) of the corner element of a one-

dimensional nucleus (71).

To avoid misunderstanding of the expression ‘‘ideal nucleus,’’ we may add the
following explanation. It is by no means the case that an observer equipped with
sufficientlydelicate instruments could actually identify this form. On the contrary,
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it exists only as a transitional stage having the lowest free energy threshold that
must be overcome, at least, in the genesis of a crystal from another phase; the
ideal nucleus is accordingly the easiest, and hence the naturally preponderant,
transitional stage in the genesis of a crystalline phase.

c. Forms of Growth and Dissolution of Crystals

At this point, without advancing any claim to completeness, let us go into
some of the fundamentals of growth and dissolution of crystals that we were
unable to bring up in Chapter 2 because the combined action of many single
molecular steps - processes of one- and two-dimensional nucleogenesis - is

essential to the phenomena involved.

Beginning with empirical observation, we may premise a fact which the
attentive observer or experimental investigator encounters at every turn, co-
incidentally but - with absolute consistency. This fact is that a crystal will grow
more regularly the lower the supersaturation of the medium. With increasing
supersaturation disturbances appear until at extreme degrees of supersaturation
the aggregates formed consist entirely of a large number of single minute crystals.

Next, there are certain empirical facts that the author has learned from his
own experiments, notably in the range of slight supersaturation. Among these
experiments, those concerning processes of growth and dissolution on initial
crystals of spherical and hollow-spherical form may deserve special attention,
as they obviously involve all conceivable types of surface of the crystal. We will
make this our point of departure. The external phase, throughout the experiments,
was a solution; this in itself represents a complication for purposes of theoretical
interpretation, but the points we shall make here are presumably of general
validity. Ground and polished spheres of crystal, when allowed to grow, acquire
a dull surface except for certain orientéd regions distinguished by a luster or sheen.
In the dull places, the surface advances more rapidly, until it reaches the level
of the smooth regions. Thus the delimitation of the crystal by plane surfaces is
begun. Thereafter the faces increase in extent, and the dull intervening regions
ultimately contract to vertices and edges. Simultaneously, a variation in rate of
growth among the faces is observed, so that the more rapid ultimately disappear.
The resulting final product of growth is bounded only by a relatively small number
of plane faces, and thereafter retains its shape unchanged. This enables us to
distinguish three types of surface regions: (1) proper or permanent growth surfaces,

(2) intermediate growth surfaces and (3) indiscriminate surface regions.

The dissolution of spherical crystals proceeds quite otherwise. Plane faces
are not formed, the residual body being ultimately enclosed by curved surfaces
meeting in more or less acute ridges and corners. Conversely, for hollow spheres :
(or rather hemispheres), dissolution produces plane boundaries while growth yields *
an irregular wall surface. :

The interpretation of these facts on the basis of molecular theory has been
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attempted for the NaCl lattice in particular, with some degree of success. It is
true that we are unprepared to answer even the question of which surface

elements of the sphere will appear upon growth as visible planes. At present
we must content ourselves with finding a number of theoretical expectations

realized in practice.

We will imagine that the polish of the initial sphere is of a molecular grade
of fineness - which of course is not the case even for the highest luster. Then
the sphere has surface regions corresponding to all conceivable sections through
the lattice. These elementary faces in some (few) instances consist entirely of
one kind of point, in other instances of several kinds of point. In NaCl, the former
include the 001, 011 and 111 planes, while the 320 plane belongs to the second
group. Let such a sphere be within a slightly suparsaturated vapor I whose *q

is not much greater than the * Moo of an infinitely large crystal, in other words
My > Too® If we are to permit replacement of the vapor by a solution, we must

suppose that the solvent affects all Ry (I? values by the same factor. From this
saturated solution, molecules are deposited on the surface in a -manner varyin
supersatur ution, po ﬁg ‘Pil) /E%r rying

from point to point, in accordance with 8 = e . The 001 points are
specially distinguished. Their characteristic is that a single imposed unit - say

a molecule of NaCl - has a thermodynamic potential of Hy= W= Bppoy SO that

relatively few of them are to be found stationary on the surface. Neighboring points,
however, are favored, and the points around two or three adjacent units also,

though not to such an extent that 8 >1 for continued occupancy. Hence the surface
will be preserved until chance locally assembles enough elements to form a small
lattice plane of a certain size to which more elements can be progressively added,
now that g =1, Growth of the 001 face proceeds by two-dimensional nucleogenesis,
which occurs so rarely under moderate supersaturation that molecular smoothness
is ensured for some time,

It is otherwise with the 111 plane, which is composed entirely of similarly
charged ions. Here an individual unit is deposited at iz M= Wi, but now its

neighboring points are disfavored. Hence the molecular smoothness is destroyed
at once. The behavior of the 110 face is intermediate between the two. For the
initial unit, n> W= P11+ Neighboring points are variously affected, since in one

direction the sequence of ions is alternately charged (rows) while at right angles

we have ions of like charge at slightly greater intervals. The adjacent points along
the row are favored, the others disfavored. The consequence is that if a row happens
to reach a certain length so that br> 111 for the sequence, the row will mature. This

gives rise to isolated rows, with their lateral environs largely unoccupied, so that
molecular smoothness is again impaired. Further analysis of possibilities shows
that progressive enlargement will occur. We may mention incidentally that the
roughening of the 111 and 011 surfaces necessarily occurs spontaneously even

at 1= Pl i.e., at equilibrium in the absence of growth.
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We will define the resulting difference in behavior of the faces as follows:

Faces of the first kind are molecularly plane faces upon which a single
added element has a = g 2= WMo a0nd such a unit must be additionally bound

in two lateral directions, making a binding in three directions in space, in order
for A = k= Mo The minimum required molecular aggregate in the surface,

which aggregate in turn must have no loosely bound units, is a two-dimensional
nucleus with extreme row of the same length as a one-dimensional nucleus. It

is readily seen that these faces of the first kind are always those previously

called proper or permanent growth surfaces. All possible proper growth surfaces,
in the limiting case of minimal supersaturation ( Bl ”'Iloo) are present in the

final product of growth. With increasing b their number decreases, as they

contract to vertices and edges on the final form, when the binding of the last
unit in one (or two) directions in space suffices to make 1} = W1 >H1pe In NaCl,

only the 001 cubical face is a face of the first kind, or proper growth surface.
The reader will readily convince himself that even the loosest units on an ideal
cube - namely the vertex units - are more tightly bound than a unit on the half-
crystal. In the ideal homopolar crystal this is not the case.

The classification of the remaining lattice sections on the basis of molecular
theory in such a manner as to distinguish designated portions of the surface
phenomenologically as intermediate growth surfaces is a substantially more
difficult and as yet incompletely solved problem. All these surfaces share the
property that in the course of growth, the structure of the plane section is not
permanently maintained, but suffers roughening. It would be natural to distinguish
surfaces on which a newly imposed unit requires an additional binding in one
direction in order that Hy> H,, l.e., which require one-dimensional nucleogenesis
for growth, from the remaining surfaces. Upon continued roughening, they may
exhibit an optically observable striation in the theoretically expected direction
of the rows, as in the case of the spherical growth of NaCl on the 110 face.
Otherwise, however, they are not phenomenologically well defined. Thus the 110
surface of NaCl is considerably less in evidence than the 111 and 210, and
vanishes sooner than the latter.

A more significant classification would be that introduced by I. N. Stranski
where the roughened surfaces are included. This distinguishes uniform and non-
uniform surfaces. An example of a uniform surface would be the 110 face,
consisting entirely of equal steps of two or more atoms in height. The step height
may be indicated by a subscript (order). The 110 surface of first order, (110)1,
is the ideal 110 section; (1 10)2 consists of equal two-ion steps. Continuing, we
can form (110),, (110)4, etc. A non-uniform surface has steps of varying height.

This classification can also be extended to surfaces of types 210 and 310, where
the subscript refers to the shortest step edge. A uniform surface of the first
order, (210)y, is the plane section with the two widths of step 1 and 2, while that
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of second order, (210)g, has widths of step 2 and 4. Then there are composite sur-

faces, having steps of varying height in fixed sequence. According to Stranski’s
energy analysis, deposition can take place on uniform and composite-uniform surfaces
in such a manner that the structure is preserved; such surfaces, in Stranski’s
phrase, grow ‘‘iterably’’ (wiederholbar). This occasionally happens, because

the (ultimately inevitable) roughening requires a fluctuation. We shall now
establish, by checking the individual amounts of energy involved in deposition,

that the growth of such iterable surfaces requires transition of higher energy
thresholds than that ¢f noniterable surfaces of like structure. Surface elements

of a sphere where deposition of units is rather likely to form uniform iterable
surfaces will accordingly grow more slowly than neighboring portions, and appear
more or less plane optically. It seems reasonable to suppose that these include

the surfaces of growth which we have classified phenomenologically as intermediate.
In fact, Stranski was able to show that the 210, 110 and 111 pirfaces of NaCl, more
than any others of the (001) zone (except of course the 001 proper growth surface
itself), exhibit the largest number of possible ordered surfaces. This 18 expressed
in the following table:

Table 8

Surfaces of | Number of Uniform | Number of Iterable
(001) Zone Surfaces Surfaces

110 70 35

650 12 12

540 15 15

430 20 20

320 27 27

210 44 42

310 31 14

410 24 23

510 19 8

810 16 15

In thé first column, the surfaces are entered in order from (110) to (100),
which were investigated up to a step height of 100 jons. The number of possible
uniform surfaces (0, h, k) is computed at 100/ Y/ hé + k2.

The surfaces with smallest indices (h, k) are most frequently obtainable as
uniform surfaces. This is reminiscent of the rule according to which faces of
low index predominate in growth. However, the occurrence of the surfaces is
not primarily determined by the number of uniform but rather by the included
number of iterably growing surfaces (column 3). We see that the greatest number
of chances exists for the surfaces 110 and 210, which actually appear in the
spherical growth experiment. The table covers only the 001 zone. Without going
into all of the remaining multiplexity, Stranski shows that the 111 octahedral
surface is distinguished by a particularly high number of uniform and in fact
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compositely uniform surfaces classified as iterable. This is because in this

case each of the surfaces can occur in three different ways; this explains the
experimental occurrence of this surface (always as a surface of higher order).
Thus the idea seems to be that, in addition to the surfaces of the first kind, there may
be intermediate surfaces that grow iterably as surfaces of higher order, and
among these in particular those having relatively the largest number of chances.
Doubtless, however, it is to be supposed that the magnitude of the fluctuation
required to disturb iterable ordered growth, i.e., the ‘‘stability”’ of the iterable
surface, as distinguished from its ‘‘statistical weight,” may well play a major and
probably even decisive role. At any rate, it 1s necessary to direct attention to
this point and determine the quantity of energy essentially involved. In surfaces
of the first kind, the magnitude of the two-dimensional ‘work of nucleogenesis
relative to kT ensures ordered growth. Since it becomes infinite when W& W

the assurance of plane growth becomes arbitrarily large in the immediate neighbor-
hood of saturation.

We see that the conditions of growth in terms of molecular theory, even for
the simplest lattices, are quite complex if we do not confine ourselves to the
proper growth surfaces themselves. The spherical growth experiment, devised
to simplify matters, turns out in reality to be a highly complicated case.

The spherical solution experiment has not as yet been studied in terms of
molecular theory to the same extent as the growth experiment. We shall accordingly
merely compare the regions corresponding to proper surfaces of growth with the
remaining portion. In the surfaces of growth the elements are more tightly bound
than in any other portion. This is causally related to the fact that they are most
loosely bound on these surfaces. By (7), the sum of the works of separation from
the block and out of the upper lattice plane of the block is equal to the work re-
quired to remove a block from the interior of the lattice, i.e., (80 - E‘ad) - ( Eo -

- Gm) =2(¢&, - Ew). Smallness of one term thus necessarily occasions largeness

of the other. It is only after a gap has been made in the uppermost lattice plane that
removable elements appear. The smallest gap having marginal elements of
averageji> My <'*Ilm is the two-dimensional negative nucleus. It is apparent

that a negative nucleus for a subsaturation Ap coincides exactly in size and

shape with a two-dimensional nucleus on a lattice plane for a supersaturation

Al of like magnitude. The other portions of the surface have no such work of
two-dimensional negative nucleogenesis. They therefore decay more readily.
Consequently it is to be expected that in dissolution, the proper growth surfaces
will be troken down only gradually from the sides. The condition for the formation
of plane faces is nowhere satisfied, so that we ultimately have a body with a rounded
surface on which the regions of proper growth surfaces project as blunt corners

or ridges.

The wall of a hollow sphere, on the other hand, must gradually acquire

plane faces, in the course of decay, identical with the proper surfaces of growth
of the convex crystal. Removal of the more readily loosened units here increases

F-T§-7088-RE 107

=, R,




o T T T

-
'
Tt

the extent of the growth surfaces. Since these meet in re-entrant vertices and
edges, there is no purchase where decay might set in as on the convex body.
Attack on the faces here requires two-dimensional negative nucleogenesis.

The rarity of such an event relative to the decay of a lattice plane once attacked
ensures molecularly plane advance of the faces. The hollow=hody solution ex-
periment frequently takes place on a small scale within the growth surfaces of
crystals subjected to decay in some manner, in the form of so-called etched
figures. These occur on pre-existing cracks or flaws in the structure of the
surfaces.

The growth experiment for a hollow hemisphere, as might be expected, again
yields no planar delimitation but rather a rough wall composed of subindividuals.

The theory is able, as we see, to predict essential phenomena involved in the
growth and decay of unitary crystals satisfactorily, and this in still other details
that must here be passed over. It is likewise able to explain the general empirical
fact mentioned above that clear unitary crystal growth requires sufficiently moderate
supersaturation, With increasing supersaturation, the work of two-dimensional
nucleogenesis becomes less. New deposition becomes progressively more
frequent relative to maturation. This leads successively to formation of multiple
layers, ordered mosaic crystals with increasing cleavage and inclusion of faults
and flaws, and finally, when divergent orientations also become possible, to the
unordered crystalline aggregate. In irregular crystals, order may be preserved
longer in one direction than in the other, yielding fibrous structure.

This survey presupposes ideal purity of the substance, never actually ob-
tainable. Foreign molecules decisively affect growth, sometimes even in minimal
traces, particularly when they cannot be incorporated as mixed-crystal components
(A. Smekal, 76). Such alien substances may alter the external appearance of growing
crystals, or they may contribute to the occurrence of internal flaws in the lattice
during growth. Such flaws are responsible for many of the physical properties
of crystals. They also manifest themselves in the course of decay by giving rise
to the crumbling off of larger blocks of elements ).

Of course, the problem of lattice flaws and their responsibility for various
physical phenomena is a highly controversial matter. The following may perhaps
be considered established: there are several causes that may produce inter-
ference with the ideal lattice, and correspondingly several types of lattice flaws:

1) Elementary gaps and occupled interstitial positions belonging to the
thermal equilibrium of the crystal (J. Frenkel, 78; W. Schottky, 79;
C. Wagner, 80). Sucha pattern, established at a higher temperature,
may at times be maintained in frozen condition at low temperature.

2) Flaws arising in the course of growth, as described in the paragraphs
above (76).

3) Internal and surface clefts and cracks due to mechanical and thermal stresses
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or surface injuries (A. Griffith, 81; E. Orowan, 82).

Each of thesa types of flaw - and there may be others - may be primarily
responsible for specific physical properties. This must be determined in each
particular case. In this connection it may be mentioned that the idea of a regular
‘‘guper-structure’’ or ordered sequence of flaws must be considered erroneous.
Ostensible theoretical demonstrations have been refuted (Orowan, 83). Experi-
mental evidence has likewise militated against this view (Remminger, 84).

Fig. 24

Experimental evidence of the existence of the two-dimensional nucleogenesis
required by the theory may also be cited in this place. Continuing observations
by M. J. Perrin (85) on the discontinuous change in thickness of soap lamellae,
René Marcelin (860, applied the same method to thin crystal flakes. The method
consists in microscopic determination of interference colors. He succeeded in
verifying that both split flakes of mica and growing or dissolving crystal flakes

of paratoluidine (CHs-Q_NHZ) also exhibit only discontinuous differences

of thickness from place to place. Fairly large portions exhibited perfectly constant
coloration, the transition to portions of another shade being discontinuous. The
minimum difference of thickness found was 1 layer of molecules for mica and 2

“layers of molecules for paratoluidine. The growth in thickness of paratoluidine
flakes deposited from solutibn occurred by successive application of layers. The
edges of these layers were rectilinear and followed the crystalline form. Similar
results were obtained in deposition by sublimation. M. André Marcellin and §.
Boudin (87) further developed the technique, which was finally employed with
especial success by Lew Kowarski (88). Figure 24 shows the apparatus. Aisa
brass vessel in whose bottom there is a considerable amount of the material

F-TS-7088-RE 109




TR TSI B et m s gyt . -

o B IER RN

Ind vl
—TT

N ot HGRBAY R AR, e o< TR

AT TR

e T,

Riad Lk Tadinds

(parataluidine) and which can be set on a hotplate. On the cover there is a tank B
for cooling water, with laterally attached razor blade C projecting into the
chamber A. A microscope D with illuminator permits observation of the crystals
formed by sublimation on the edge of the razor blade. Among many other

minute crystals, there are flakes projecting downward into space in the plane of
the blade, and these are suitable for observation. Formation of layers was
visible on these, always initiating at points of contact with neighboring crystals.
Between blue-green and yellow-green, Kowarski was able to distinguish about

20 tones in favorable cases. The total color interval corresponds to 370 A
20th of this is 18.5 & leccordlng to Jean Wyart (89), paratoluidine crystalkzes
rhombically, in the Vh space group of very common occurrence in organic

substances. The elementary body has axes a = 5.98 X, b =9.05 X, ¢ =23.3 3,
and contains 8 molecules. These molecules have the para direction of the sub-
stituents nearly perpendicular to the 001 cleavage plane. The depth of the individual
layer is ¢/2 = 11,65 A It we compare this figure with Kowarski’s, we see that

he observed both mono- and bi-molecular layers, It should be mentioned that

these observations were made in considerably supersaturated vapor, which explains
the curvilinear boundary of the lattice planes in process of growth; at the offsets,

B >1 for every incident molecule, and growth by rows is not required. Further,
the two-dimensional nucleogenesis does not occur in the interior but at a point

of contact of two crystals, where it is facilitated.

In addition to these short steps, polymolecular layers are also.found,
generally more slowly propagated over the surface but otherwise a grosser
image of the former. The occurrence of polymolecular layers is in itself to oe
regarded as a deviation from the ideal, due to high supersaturation or other
circumstances, Nucleogenesis of multiple lattice-planes is a common process at
high supersaturation, and may be further promoted by other conditions. The steps
are built up by monomolecular layers overtaking them, and enter the range of

microscopic visibility. Such polymolecular layers have repeatedly been observed (85).

These observations may serve to demonstrate the stratified. deposition of
lattice planes, even though monomolecular layers were not alway identifiable.
However, the conception of two-dimensional nucleogenesis is experimentally
further reinforced by the circumstance that a definite supersaturation is requisite
for growth, in contradistinction to deposition on liquid drops, which takes place even
upon minimal transgression.

In growth experiments on crystals in very slightly supersaturated solution,
it was long since repeatedly observed t hat single surfaces failed to grow measurably.
Recently this has been confirmed by A. Neuhaus (90) for cubical faces of NaCl.
More in particular, it was found that growth of crystal faces failed to occur when
these were bounded by other apparent growth surfaces. This phenomenon evidently
is related to the fact that two-dimensional nucleogenesis normally takes place at
the vertices (or edges). Here, however, at junction with rapidly growing faces,

a lower supersaturation obtains, no doubt partly because of the formation of a
diffusionvestibule and perhaps partly because of a loss of elements onto the
neighboring surfaces.
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Ordinate: rate of condensation in mm/hr.

Experiments in solutions are always somewhat doubtful of interpretation because
of the multitude of possibly important conditions. Thus it is scarcely possible
to obtain a purity sufficient to exclude the possibility of blockage of the surfaces,
or, in this case particularly, of vertices and edges. The findings therefore re-
quire to be confirmed by growth experiments in pure vapor. This was successfully
done by M. Volmer and W, Schultze (91) for iodine, A U-tube was charged with
specially purified iodine, thoroughly evacuated and fused shut. The supply of
jodine was in one branch, while in the other a small iodine crystal on the inside
wall was observed andits growth measured. Between the two branches it was
possible to maintain small temperature differences for many days. The one branch
was dipped into a Dewar vessel containing an intimate mixture of cracked ice
and pure water. The other was dipped in a Dewar vessel containing a cryohydrate,
i.e., ice, the saturated solutionof a salt and sufficient salt as solid phase. The
apparatus is sketched in fig, 25. Agitation in both vessels was accomplished by
means of rising air bubbles. To retard melting, the compressed air was precooled;
it was passed through a cooling coil contained in an ice-cooled Dewar vessel. For
the ice-salt mixture, Dewar vessels with ‘“inspection slits’’ were used, i.e., with
narrow stripes bare of coating on either side. Ah electric bulb was placed at one
slit, with the observation microscope by means of which the crystal inside - the
U-tube was observed at the other. Salts particularly suitable for the colder
temperature bath were the following: KClOg for -0.76°, Na,HPO, for -0.45°,

ammonium alum for -0.28%, KC104 for -0.165°, PbCly for -0.07%, and CasS0, for

-0.087°. The salts for the baths were again purified by recrystallization, and the
temperatures could then be kept extremely constant, as was found by means of a
Beckmann thermometer and still more accurately by means of a thermopyle. After
testing the apparatus with mercury, which yielded correspondence with the theoretical
calculation, repeated experiments were made with iodine. The result is shown in

fig. 26. The rate of condensation at A T = 0.037° was definitely less than 0.00001 mm
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per hour, or less than 1/4000 of the value computed from the impact formula.
This establishes the latency range, more or less in the expected order of
magnitude. This experimert completes the confirmation of the theoretical pre-

diction that the growth of a crystal bounded by fts proper growth surfaces requires
twﬁmensionaf nucleogenesis for the addition of any new lattice plane. The work

of nucleogenesis tK even before the limi ng Case Wy = wpo g = {s reached,

becomes extremely large relative to kT, so that the process of growth is determined

solely by the occurrence of the very rare event of two-dimensional nucleogenesis.

It is a widespread naive error to ascribe inhibition of growth to the difficulty
of the first step namely of laying the first new element on a finished lattice plane.
Even at the equilibrium of a crystal, each surface of growth is covered with ex-
tremely many elements, and there are likewise always many elementary gaps in
the uppermost lattice planes.

For the vapor pressure equilibrium of an atomic lattice, we have about the
following situation:

At equilibrium, HWp= B= By = lgq +kT In Xad = Byp ~kTIn (1 - %),
where X.d is the proportion of occupied points on the lattice plane and 1 - Xin is the

proportion of unoccupied lattice points in the uppermost lattice plane. This equation
holds for each [1{ if the i-th position in question on or in the crystal is repeated
sufficiently often so that the temporal probability of presence or absence of an
element at a point may be replaced by the proportion of occupied or unoccupied
points, and x; or 1- X, as the case may be, is small relative to 1. These result

immediately from the developments of the latter part of Chapter 1.A.a) above. Thus

bw=- kad €w " Ead

KT o ET

xad=e

BKin = My €in - &y

l-xm=e kT ~e kT

-5.7 1

and, by (8), X34~ 1 - X, ~ 10 ; i.e., there are about 109 to 10

and gaps in the uppermost lattice plane per square centimeter of crystal surface
continually present at vapor pressure equilibrium under the hypothesized conditions,
corresponding to those ordinarily encountered experimentally.
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4. KINETIC ANALYSIS OF TYPICAL SPECIAL CASES, WITH
EXPERIMENTAL VERIFICATION

A. DROPLETS IN VAPORS

The kinetic calculation of the rate of nucleogenesis selects, among the
many possibilities, a particular one that is favored in actual fact. Two mole-
cular aggregates will of course occasionally collide, or a larger aggregate di-
vide in two, but such events are very rare relative to the taking on and giving
off of single molecules. It is hence justified to take account only of this depo-
sition and separation of single molecules. Loss is more probable than gain
provided the nuclear size is not reached. This kinetic interaction leads to a
permanent distribution of such subnuclear particles so that the number Zn of
aggregates of any given number of molecules n has a constant average pro-
vided the number of molecules Z) of the parent phase is kept constant and the
droplets are removed after transgression of the nuclear size nw. We may
suppose the constant addition of enough material as vapor to replace the drop-
lets removed. Then there will be a stationary flow throughout the entire dis-
tribution, passing from smaller to larger aggregates and everywhere the same,
We shall formulate it for the case of particles of molecular number n—n + 1.

The probability of transition of a molecule from a vapor I to a particle
of n molecules is taken as WiO(n)dt, and that of exit of a molecule from an

(n + 1) -particle of surface area Ony1 as Wyp(ns1) Op,1dt. The flow at
n—n+ 1 is then equal to the difference between the number of particles gaining
one molecule so as to become (n + 1) ~particles and the number of those losing
one molecule so as to become n-particles.

Jdt = Z(n) on(n)dt - Z(!H-l) Wno(n +1)dt.

Here Wj is the number of impacts of vapor molecules per square centimeter
per second, multiplied (. . . omission in the original text. Translator.) desig-
nates (. ..) coefficient of condensation; Wn(n +1) is dependent on the particle

size (n+ 1), namely in accordance with Thomson’s equation. This formula-
tion has been hypothesized for all of our preceding calculations. Before we
proceed, let us examine it critically, and in particular verify whether the intro-
duction of the surface areas in this form is unobjectionable. In the first place,
highly convex surfaces do not have the same impact rate as plane surfaces un-
less the molecules are geometrical points. Otherwise we must take account of
the extension of the molecules, which we can do in the following way. We im-
agine the droplet to be enclosed in a sphere of radius exceeding its own by that
of a molecule; we call this sphere the effective surface (fig. 27). A condensa-
tion consists in the passage of the center of gravity of a molecule through the
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Fig. 27

effective surface. This enlarges the droplet, but the exit of a molecule from
this enlarged droplet is exactly the inverse process, namely the passage of the
center of gravity of a molecule through the same spherical surface, since the
droplet has returned to its original size when the center of gravity of the de-
parting molecule has just reached this effective surface. We shall take the ef-
fective surface for the condensation of a molecule upon a droplet of n mole-
cules and for the evaporation of a molecule from a droplet of n + 1 molecules
as of area O, . In place of the Previous formulation of the flow, we then have

(42) Jdt = Z,Wy Ojdt - Z(n+1) Wn(n+1) Opat.
Introducing
M _ s
wII(m-l) N+l
we obtain
I
n+l
W0, - Zn Bne1 - Znet s

for every number n.

To evaluate this we employ the method of R, Becker and W. Doering (23),
writing

JB g
J'Bs
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The subseript s refers to droplets that have become stable and capable of
growth, and which we suppose to be continually removed. In other words, Zg
is kept at zero. In addition to Zg, we know the number of vapor molecules
Z1, which we keep constant. The problem therefore is to eliminate all inter-
vening Z,’s from the equations. For this purpose we divide each elementary
equation by the product By... f,1. We then add the equations, obtaining

fl

Zg.1 Bg - Zg

J 1 1 1
WI (Oi*-ﬂzo,z'ﬁasso,s*.o.

(43)

1 1
+ = a A teee# ~Y = z ’
az Bs... Bnon Bz %ooo Bs-l Os‘1> 1’

(since Zg = 0). We now express the fs in terms of the thermodynamic po-
tentials, making use of the formulas de~ived in Chapter 2. The product

n
(m-Duy - X Wy

n _2
ﬁ2.53...6nis I 51=e kT
2

We take

n n
(-1) uy- X “1=(n-1)(ul-unw)-(z’ui-(n-nunw).
2 2

In the first term, we replace uj by Wy, the thermodynamic potential of the
nucleus with number of molecules ng, radius rg and surface area OK‘ By

Thomson’s equation, (ug - kgl = 20V /rg = 260K/nK3. The second paren-
thesis is evaluated as follows: the total isothermic work of formation of a drop-

F-TS-7068-RE 115




N o TR I e m iy - L

i

let of n molecules from a like mass forming a component part of a large quan-

n
tity of liquidis X' uj-nup o = SOy, where O, is the surface area of
1

this droplet. The parenthesis, however, expresses the work of formation from

the second molecule on, and is therefore less by the

Substituting, we obtain

amount of work required

‘to detach a molecule from the large mass of liquid, namely (Fo - euquid)'

zeox

(n-l) H1~ Zz: u-1="°°_0n+(50 liquid)"'(n ) ——// .nK

-0 -ox[(-a’;?)”" -3 %] + (5

-E 2.6.0K -
liquid)— 3 ng

The last two terms are the work of detachment of a molecule from the
liquid less the work gained for one molecule upon expansion from supersaturated
to saturated condition. We replace this by the molecular heat of evaporation

A  the resulting error being insignificant. Then

60 n\2/8 2n oA
n - KT (n_ “3ng [ kT
2
: s-1
We replace the summation D ...__.’:n___. by the integral
1 0.1 8
2
s-1 ¢ Og r /n\2/8
1 -2/3 3T [3 -2 (@] &
———n-—— dn = (nK e dn.
2

Substituting (n/ng)}/3 = 1 + x, we obtain
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2/8 _ o 3 1,38
3 (L —éd—=1-3x"-2x" and -— (-~ dn = dx.
(nx n N nx)
Hence
8. 60
- -1 Ok
rs 1 e ~¥r 31:';K T~ Bxaaxd)
m = -o—;K— « @ . 8 . e dx.
b 12”1
1 1

An experimentally important condition is ¢ OK/kT> 1; hence the integrand
has values appreciably different from 0 only &n the immediate neighborhood
of x = 0, For this reason we may neglect 2x° relative to 3x2 and integrate
between - and +m. This is clear from fig. 28, in which the exponent and
the integrand are plotted. The physical interpretation is as follows: I the

Fig. 28

number of molecules in the nuecleus is fairly large - as is the case under the
practical conditions involved - then the part of the integral due to the range of
aggregates of individual molecules tends to vanish, as well as that due to drop-
lets that are large relative to the nucleus. Thus it makes no difference that we
have assumed the smallest aggregates to be also of spherical shape. On the
other hand, the size of droplets of s molecules becomes indifferent as soon as
they appreciably exceed nuclear size. Accordingly

©-0
+Q K
{ “ET O F ‘/Wk'r
e & =/ 8°0 )
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If we further introduce the abbreviation © Og/3 = Ag, then

A
+A _ K
(44) J'dt___wl ZI'Ok --ix_ce kToe kT dt.
D 3*kT
H
We also make the substitution OK/Srk 2 vn/r
Ao
%) '1%" Wi-vg S Ag “E'fl'("‘
Jdt=218 . TPIT—.G dt;

Tk

where len,’rK =1 /t'K is the reciprocal of the growth period of a nucleus for
a completely unilateral process. For dv/dt = 41rr2WIvn

rgx ‘!‘.’jl‘( . rK
dr = Wi vpp dt; K= .
0 0 Wi vn
Hence A A
kT K
21 . 3 AK - KT .
Jdt= —?;{_ TET e dt,

where Ag = 6ox/3 is the quantity previously called the work of nucleogenesis,

The formula is essentially the same as that obtained from the general analysis
in chapter 3. We may clarity the relationship by the following consideration,

The determining factor e IK arose in the kinetic derivation through eval-
-

n
uation of the summation 7 (1/ T A). The n-th term of this summation may
1 1

be written in the form eA(n)/ kT, where A(n) is the reversible work of for-

mation of a droplet from n molecules of the old phase. The quantity of work .
A(n) 18 plotted as a function of n in fig. 20, It has a maximum Ag atthe E

point ng, where iA(n)/ dn = 0. Now

o
»
s i

—‘gl=“' .
n )
on
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at the maximum, (BA(n)_/‘On)K =0 g - My

The droplet of maximum work of formation, then, is identical with the
droplet we have called a nucleus, i.e., the droplet that has the same thermo-
dynamic potential as the parent phase. Thus we might define a nucleus alter-

Apy
Act

I;'( n
Fig. 29

natively as a droplet whose formation from molecules of the old phase requires
a maximum work of formation (second definition of a nucleus). This definition,
as will further appear from the kinetic analysis of the examples below, is trans-
ferable to all types of nuclei. It eliminates the Thomson-Gibbs equation and the
concept of specific free surface energy, and is accordingly applicable funda-
mentally to nuclei of arbitrarily small number of molecules. The arrangement
of the molecules in the nucleus is then determined by the further requirement
that the work of formation for like number of molecules be a minimum.

If we resolve Ag =S0k/3 into the two terms
30 - ng (¥ - by )
and write

ng (b - kg o) = KT m(i%)nx

(o Py, Pressures of supersaturated and saturated vapors), then

. .
z .ekT T3 A P °K ——6—2-1-(-
Tdt =L \/"k%_( 1) e KT 4
tK poo

ng
The factor (pl/pm)

according to which the formation of an ng-molecular complex advances with

is the expression of the conventional mass action law,
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the ng-th power of the vapor pressure. However, a vapor pressure rise also
changes the number Ny itself, thus affecting the energy of activation, and this

is expressed by the exponent COx/kT. The effect on the other factors is in-
significant,

The formula derived differs from those previously reported in the litera-
ture in having the factor Ok in place of O1 y and - a difference of far greater

weight - in containing the factor et kT, heretofore disregarded or neglected.
This is not permissible, as it changes the result by about 5 to 7 powers of 10.
It happens to be offset, however, by another factor, which remains to be taken
into account here. In our derivation we have assumed that the value of the co-
efficient of condensation a ~1 is preserved down to the smallest aggregates.
This cannot possibly be correct. While for droplets of many molecules the
energy of condensation of an incident molecule can be distributed, and there is
time for it to be carried off by the far more numerous impacts of supporting
gas molecules (e.g., air), the smallest aggregations of 1,2,... molecules will
suffer a larger number of separations after impact due to lack of energy re-
moval. In particular, for monatomic vapors, a triple collision is required to
Produce a double atom; in the equation for J this is reflected by the occurrence
of a reduction factor, this factor being given by the ratio of the life of a high-
energy pair of atoms to the mean time between two impacts of a gas molecule.
For monatomic gases, the life of a pfér is equal to the reciprocal of the fre-
quency of oscillation, or about %'&0' seconds. At atmospheric pressure col-
lisions occur about every 2:10°1Y seconds, so that a factor of at least 103
must be included in the formula to take account of the inhibition of the first step
of deposition alone. The next step calls for another factor, but one of only
about 1074 because of the longer life of the triatomic complex (45). The life

of a tetratomic complex lies within the order of magnitude of the mean impact
interval, so that thenceforth the correction may be suppressed, leaving a total
factor of about 10-5 to 10-8. In polyatomic gases, where there can be a dis-
tribution of energy between the atomic oscillation, the life of aggregates may be

initially longer and the factor therefore smaller. However, molecules such as b

Hp0, etc., probably do not differ essentially from monatomic gases in this re-
spect, as the oscillations of hydrogen atoms are not appreciably excited. In

any event, energy transfer to the internal degrees of freedom is poor (45) be-
cause the atomic bond within the molecule is far stronger than the Van der Waals
bond among complete molecules.

We shall therefore always have a reduction factor of the order of magni-
tude of 107° to 10‘3, and we see that th}glgutherto disregarded factor compen-
sates the likewise neglected factor e** within about 1 (decimal) order of
magnitude. If we accept this, then we have instead ff (45)

K
Z. W, v 3A -
(46) - 171'n
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For practical application of the formula, the following simplification is general-
ly permissible. If in equation (46) we replace vy/rx by (1/3) 0, (rl/rx)

(01 surface area and ry; radius of a molecule), then in the range where nucleo-

genesis is at all appreciable the factor (1/3) (ry/rg) \’3AK/'“' kT =1, and we
have approximately Ag

(47) Jdt = 24 WjOp e kT dt.

But Z,WjO;dt is about the number of collisions of two vapor molecules within
the time dt.

All of these simplifications are allowable - as will appear more clearly
from the following discussion of specific experimental examples - because the
experimentally determinable variables of condition are involved in the work of
nucleogenesis Ap, which appears in the important exponent of the formula.

The limitations of precision of measurement thus produce a dispersion of from
one to two powers of ten with respect to J. For this reason the values of the
coefficients preceding the power of e are of interest only in order of magni-
tude.

Comparison with Observation

Of course, the supersaturated state of vapors can be maintained only
briefly and in the presence of a supporting gas, since otherwise the liquid will
precipitate on the walls of the container. The usual means of supersaturating
a saturated vapor consists in adiabatic expansion. We can only observe the de-
gree of expansion (supersaturation) at which the formation of droplets just be-
comes noticeable (critical expansion or transgression). The theory, however,
yields the stationary rate of genesis of the droplets. The number J, according
to the theory, increases very rapidly from immeasurably minute values with in-
creasing transgression, so that the theoretical meaning of “critical transgres-
sion,”’ or Ostwald’s ‘‘metastable limit,’’ is the point at which the process be-
comes noticeable. This may here be numerically illustrated, by way of an-
ticipation, for the example of water vapor.

Table 7
Py
P 1.01 1.1 2 3 4 5
Ag
23 -kr | 480,000 | 5000 | o4 | 37 | 24 | 17
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Table 7 shows various vapor pressure ratios at T = 300°, together with
the corresponding exponents for the nucleogenesis equation (47). The coefficient
of the power is relatively slightly affected by pressure and temperature, and is
about 1025 per cc for 1 second and 1 cublc cenlimeter. We see, e.g., that even

at pl/pm =2, I = 1025.10-94 - 10'39; that is, one droplet per cc will ap-
pear, on the average, after 1069 seconds, or 1062 years, For pI/pm = 3, the

mean time of formation is still several thousand years. Between 4- and 5-
fold supersaturation, we find the transition to observability, the number of nu-
clei per second rising from 1 to 1010, practice, however, such an increase
represents a sharp limit, so far as observation is concerned.

Careful observations in the absence of ions have recently been conducted
by Hakon Flood (92), and may serve for comparison.

The metastable limits of supersaturated water vapor were measured at -
two temperatures,and those of several other vapors at one temperature. The !
obvious procedure would be to measure the droplet frequency as a function of
supersaturation and compare it with the theory. Such measurements have been
performed by L. Andrén (83); they show a slower rise of nuclear frequency ‘
with supersaturation than that calculated from the theory, if the experimental
supersaturations are computed on the assumption that both the amount of con-
densed vapor and the heat of condensation liberated are negligible. This would -
be correct if the time required for the droplets to mature into visible structures
were large compared to the duration of adiabatic cooling, which, as a simple
calculation will show, is not the case. Supersaturations at the so-called dew
point, often reported in the literature, have accordingly been much over-valued.

The measurements were made by means of an apparatus essentially
similar to that of Wilson. Figure 30 shows the set-up; A is an expansion cylin-
der of about 1000 cc capacity. It is closed off below by the piston E floating
in mercury. Expansions are produced by withdrawing the stopper E, thereby
connecting the airspace under the piston with the water-jet vacuum in the ves-
sel C (5 liters capacity). The liquid whoce vapor is being investigated is con-
tained in the tube D and in the expansion cylinder A. To vary the degree of
expansion, a little liquid is allowed to overflow from the cylinder into the tube,
thereby lifting piston E and increasing the expansion without altering the
quantity of air in the expansion chamber. The pressures in cylinder A before
and after expansion are measured by means of manometer F. The mercury on
the right side of the manometer is kept at the mark G. The indicated pressure
difference requires a slight correction to take account of the change in liquid
level over the piston due to expansion. The mercury head in the left branch of :
the manometer, corresponding to atmospheric pressure, is adjusted before each 4
series of measurements by opening the valve H. After completion of expansion, ‘
the piston is returned to its original position by replacing the stopper B and :
admitting air through pinchcock 1.
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Fig. 30

The formation of droplets is performed directly above the piston under
lateral illumination by a 500-watt bulb whose heat radiation is absorbed by a
cooled copper-sulfate solution. To eliminate the interference of ions, a voltage
of 250 volts is applied between the piston and the electrode K.

Droplet formation sets in fairly sharply at the critical expansion. If the
expansjon is increased, the number of droplets formed increases suddenly.
Frequently, however, the manifestation is more complex; splashes or turbu-
lences produce isolated observable droplets even below the actual critical limit
of expansion. The criterion for the required critical expansion in these cases
is the appearance of a definite increase in number of droplets due to a small in-
crease in expansion,

In measurements without applied electric field, i.e., in the presence of
the usual gas ions, the limit is generally determinable without difficulty within
+0.1 cm, or very often only +0.05 cm, for expansions of about 15 em. In the
presence of the electric field, the determination of the limit is more arbitrary,
as had previously been noted by Wilson (4) and Laby (94). Here +0.1 to 0.2
cm is the best that can be expected. This is perhaps related to the fact that the
gas ions are only incompletely removed by the electric field if its lines of force
do not traverse the entire volume of gas (e.g., by missing the small space be-
hind the electrode), so that individual ions are still occasionally present.

The ratio of the existing vapor pressure to the saturation pressure for
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the same temperature, i.e., pl/pm, is computed from the expansion factor

Vg/vl, or in other words from the difference between the observed pressures
before and after expansion.

For evaluation of the experiments, an insight into the behavior of temper-
ature as a function of time after expansion is very importunt. Little is known of
this, and a diversity of opinions prevails. Flood (95) has performed some di-
rect temperature measurements for purposes of clarification, A loop of Wol-
laston wire (diam. 8u, about 10 cm in length) with a resistance of 360 ohms was
suspended at about the center of the expansion chamber. A small glass weight
kept the wire from swaying. The circuit was a simplification of that deseribed
by Lummer and Pringsheim. In the neutral branch there was an AC amplifier
which stepped up the voltage about 500-fold. The amplified voltage was recti-
fied and passed through an oscillograph with a lag of about 0.05 seconds. The
measurements therefore yield no statement concerning the cooling at the mo-
ment of expansion, but show the behavior of the temperature after about 0.1
second with an error of 5 to 10 percent of the adiabatic cooling. The deflections
of the oscillograph were measured for known resistance changes with the circuit

o+ = 1.38
Vi

Fig. 31 - Temperature Movement for Adiabatic Expansion of Air

One centimeter cbrrespond to about 1 sec.
Ordinate: temperature. Abscissa: time,

otherwise unchanged and the resulting calibration curve used to interpret the
expansion oscillograms (fig. 31). As expansion sets in, the temperature drops
to a point where it remains constant for about 1 second before heating occurs.
This period of constancy at the minimum decreases with increasing expansion,
and ceases to be noticeable at expansions of about 1.40. Two or three oscillo-
grams were recorded for each expansion, with generally almost complete iden-
tity of results. The maximum deflections were measured and plotted as a
function of the expansion factor in fig. 82. An adiabatic is plotted in the same
diagram. As we See, there is no noticeable difference in cooling as between
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Fig. 32 - Change of Resistance as Function of Expansion Factor

Ordinate: reduction of resistance.

Abscissa: expansion factor (Vg/Vy).

o oo Rapid expansion, approx. 1 /%00 to 2/100 sec.

. « . Slow expansion, approx. 1/10 to 2/10 sec.
Adiabatic

slow and rapid expansions. We also see that for expansions up to about 1.40,
there is good agreement with the calculated curve. Above this limit, of course,
the cooling seems to be less than as adiabatically computed. The same indica-~
tion resuits from the fact that the constancy at the temperature minimum van-
ishes at this limit. As the true cooling at the moment of expansion cannot be
found from the oscillograms, we must of course be careful in assigning an adia-
batic limit; but we can perhaps say that it seems doubtful whether expansions
above 1.50 are adiabatic. Investigations above this limit would accordingly re-
quire the use of expansion cylinders of substantially larger dimensions.

In investigating the movement of temperature in air saturated with water
vapor, it was found that the cooling of the resistance thermometer was far too
small, owing of course to the fact that water condensed on the wire and there-
by prevented its complete cooling.

No method for measuring the true cooling of vapor-saturated air has
been reported, although such research might yield very interesting results on
the relationship between frequency. of droplets and supersaturation. In C.T.R.
Wilson and L. Andrén’s investigations in this field, the missing link is precisely
the knowledge of the heating of the gas upon growth of the first droplet. Wilson
made the assumption that the period of growth was large relative to the period
of expansion, but this assumption is scarcely sound. If this is not true, however,
then we no longer know anything at all about the actual supersaturation once
several droplets have been formed. A water droplet of diameter 102 ¢cm
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liberates enough heat to raise the temperature of 1 ce of air by 19,

The reason for the deviations found by Anderson and Froemke (96) for

very rapid expansions may be found, judging from the author’s own experience,
in disturbances due to turbulences and splashes. Such disturbances are also
indicated by the unusual scatter of the results they obtain. In view of the re-
sults of the temperature measurements, the later expansion tests on organic
vapors were performed with relatively deliberate expansion (about 0.1 sec).
The cylinder contained a considerable amount of liquid, standing about 2 to 3 cm
above the piston. This procedure permits convenient observation of any disturb-
ance due to splashing or rising air bubbles. In addition, any impurities are dis-
tributed through a large body of liquid.

Data on critical supersaturation of water vapor as a function of tempera-
ture are to be found in the earlier literature, but they are rather qualitative in
nature and were determined in the absence of an electric field, C.T.R. Wilson
(89) reports that within the short temperature range from -10° to +2° (cooling
temperatures), he fourid a constant critical expansion of 1.25 + 0.01. K. Pfibram
(87), by means of a special apparatus not employing a manometer, found that the
eritical ;bxpansion at +259 was the same as at -59, within an error of observa-
tion of 4%.

In Flood’s experiments, the temperature was varied simply by keeping
the entire laboratory room at constant temperature between 120 and 30°. Ob-
servations were taken alternately at 12° to 16° and at 28° to 82°. The resuits
are assembled in Table 8.

Table 8
\'/
T1 (%)cr T2 (B%)cr
1 303.0 1.2604 2175.3 4,22
2 302.8 1.2684 275.2 4.21
3 300.9 1.258g 274.3 4.08
4 301.7 1.287, 274.3 4,21
5 288.3 1.2754 261.4 4.91
8 288.2 1.2794 261.0 5.04
7 288.1 1.2784 261.0 5.02
8 2817.1 1.273; 260.5 4.89
9 287.5 1.278¢ 260.4 5.06
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Since the expansions involved are below 1.3, adiabatic computation is per-
missible. The duration of the supersaturated state is t ~0.5 second.

In order to compare the experimental results with the theory, we compute

t
{ Tdt~Jt, where t is the duration of the condition of maximum supersatura-

0
tion, i.e., of minimum temperature. As soon as the temperature rises slightly,

J decreases extremely fast, 80 that the time before and after may be neglected.
Depending on the degree of expansion required, in view of Flood’'s cited tempera-
ture measurements, we take t = 1, 1/2 and 1/4 second. We calculate Jt for
the temperature Tg after expansion. I in equation (48)

X
Zy Wyvp  [3Ag ~
(46) yat - 2101 n‘/ﬂk%‘* KT 4
X

we express all the variables in terms of directly measurable quantities, then
a -ﬁ-Na/z pmz F-M pl 2
Jt - 12— ( < > .
V& R T/ 4 \py

6 M\2 /é&\3 1
i ?}r 11:2 (T) (71‘—) VAR TN

- | <1n B.L)z
‘e Po/ 4

(d specific gravity of liquid, M molar weight of vapor). We provisionally
assume a coefficient of condensation a = 1, and shall later discuss the error
that may result from this. Substituting the values of the absolute constants, we

obtain 9
P = 9
Vé:M /N
Tt = 9.5-1025< (mm§ ( l) .

T d Po

n .

ana- (8 (* 75 |
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(P saturation pressure of liquid at T, measured in millimeters of

(mm)
mercury).
1th=1nt+1n9.5'1025+1n(—-('1-?n—n% ___d___
s S M\2 (6.3 1
In -—
) Poo
Substituting the values of the material constants, Py , and T, we have

(mm)
left In Jt as a function of In pl/pm alone, and shall represent it graphically

as such. The value of pI/pm corresponding to In J t~ 0 is to be compared

with the experimentally determined critical value at which droplets begin to be
formed.

In Table 8, the results of measurements on some organic vapors are re-
corded.

Table 9
b T Vs Py
Substance (— T _>
1 V1 cr Py, /ST
Methy!l alcohol 295 1.285 279.0 3.20 + 0.1
Ethyl alcohol 289.5 1.172 273.2 2.34 + 0.05
n-propyl alcohol 289 1.190 270.4 3.05 + 0.05
Isopropyl alcohol 283.2 1.180 264.7 2.80 + 0.07
n-butyl alcohol 291 1.208 270.2 4.60 + 0.13
Nitromethane 291.5 1.462 252.2 6.05 + 0.15
Ethyl acetate 290 1,715 240 12.3
1.670 244 8.6

T, initial temperature, (V,/V,).. critical expansion, T minimum
1 2/ "Ver

temperature following expansion, (pl/poa)cr ratio of partial pressure
of vapor to saturation pressure of liquid at T./
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InJt

2.)
InJt
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pl >
pw cr

Water

75.23 .l
1
18 7L
lz [ ] 1 y 4
1/2 sec I sy oy e MO B
261.0 -7
77.28
.,}
Fig. 33
1
=844+2In B— - 11575 ——0 |
Poo (ln -p—l—>
Peg
=54d4+2ln P——1471 —L1
pm <1 pI )
n ——
P
computed observed
1.) 4.16 4.21
2.) 4,96 5.03
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Al aC . -l

p————

BUTIET & e .,

Methyl Alcohol

o}
T = 270
2|
M = 32.0 (—pl->
1 Pw /er
d = 0.81
¢ - 24.8 "*ﬂ—i&ﬁfv‘ﬁ" computed 1.8
-1} observed 3.
t = 1/2 sec.
-2
Fig. 34
InJt=260.08+21In ;-I— - 21,12 —1—2 .
> ]
Poo
Ethy! Alcohol
4
indh
T = 273
M = 46 &L ('p_l'
Po /or
d = 0081 7L
computed 2.28
© = 24,0 "F d
8 29" Ao observed 2.34
t = 1sec. -1l
-2|
Fig. 35
InTt = 56.9+21npi_.39.415_1_2 .
® In fl.)
P
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270
60.1

0.82

o o B 4

25.4
2.81

1 sec.

InJt =

265
60.1

0.81
23.1
3.4

o o B X

1 sec.

-
I

InJt-=
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n-Propyl Alcohol

' (

. »
WO %% — computed 3.22

Py

pm cr

observed 3.05

l

Fig. 36
P 1
544+ 21n o 78.2 3
@ <ln i)
P
Isopropyl Alcohol
Py
(5
computed 2.89
observed 2.80
Fig. 37
1
54.87 + 2 In p—pl— - 63.77 3
@ In i
p
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Butyl Alcohol

T = 270 1\
inJ¢
M = 74.1
T (35
d = 0.83 L Py, /cr
S .
26.1 , . B> computed 4.53
Pp = 1.12 . observed 4.80
t = 1/2 sec.
-2
Fig. 38.
PI 1
InJt = 52.1+21ni;—"125.9 ;N2 °
© <1n .BI_.>
P
Nitromethane
T = 252
M = 61 pl
d = 1.2 (3; cr
S = 40.8 computed 6,22
= 2.39 tn 2 — b
Pp = 2 observed 6.05
t = 1/3 sec. .

Fig. 39

InJt = 53.06+21ni—189 3
T (e)
P
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Ethyl Acetate

T = 242
M - 88.11 ( Py
P /O
d = 0.94 @
computed 10.37
S - 30.8
' observed 8.6 to 12.3
t = 1/10 sec.
Fig. 40
PI 1
InJt=523+2Iln— - 310.6 —8— ,
pm p 2
(m _1_>
Py

The theoretical calculation for each of these examples and water is rep-
resented in figs. 33-40.

In the case of 7 of the 8 substances investigated (including water), there
is satisfactory agreement between calculation and experiment. The calculation
was based on the assumption @ = 1. I a <1, the computed values of
(pl/pm) op Increase; e.g., for water (275.2) we have 4.31 instead of 4.18,

whereas the observed value was 4.21. We see that the effect of the coefficient
of condensation is insignificant provided a remains of the order of magnitude
of unity. Similarly, it is indifferent whether the critical value is taken at the
formation of one or several droplets per cubic centimeter. Even the duration
t of the supersaturated state need only be approximately known. Incidentally,
strictly speaking, & should not be the value measured at the vapor pressure
of saturation of the liquid, but the value corresponding to the higher pressure
of the supersaturated vapor.

Methyl alcohol, unlike the other substances, exhibits a considerable dis-
crepancy. Probably the error is on the part of the experiment. The partial
pressure of the methyl alcohol vapor was 14% in the mixture. At such a high
vapor concentration, the protective effect of the carrier gas against condensa-
tion on the walls may well be insufficient. For pure vapor, expansion would
not produce any appreciable supersaturation at all. It would be necessary to
determine in what manner the obtainable supersaturation for like expansion de-
pends on the mixture ratio in passing from pure vapor to the air-vapor mixture.
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Ethyl acetate is also not a particularly convenient substance for experi-
ment. The vapor pressure is again uncomfortably high, so that cp/ev is un-

certain. Further, the expansion factors are so high that adiabatic calculation
becomes questionable. The experimental expansion values are unusually scat-

tered in this case.

Fig. 41

Curves from top to bottom:
ethyl acetate
nitromethane
water
ethyl alcohol

The suitability of a vapor for such expansion experiments may be esti-
mated, according to Flood (92), by comparison of the nucleogenesis-tempera-
ture curve with the transgression-temperature curve for adiabatic expansion.
Figure 41 shows this relationship. The broken curves are the critical super-
saturations, computed by the formula

Py 3 3/2 M
log (;; >cr = constant (—.17 ) ("d—) ’
where © was assumed as a linear function of temperature. The nearly straight
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solid curves, which originate at Ty = 293°%, are obtained from the formula
(ﬁl_)r c Por V1 T
Poo P2 v2 Tl

(T cooling temperature, Ty initial temperature). The calculation is per-
formed by means of the equation

1

P Ty -T V T ! :
1 A 1- 1 1 v
log (——) =—am ¢ e and = —)

( A heat of evap.ration, cp/cv ratio of molar heats of air-vapor mixtures at
constant pressure and constant volume). Then

c

p
P T, _T c, T
log(....l_ = -__7A N S Y .1l -1,
Cv

The intersections of the two curves thus represent the critical cooling
temperatures to be expected.

As we see, the condition that log (pI/pm)T increase rapidly with cooling
is that A and cp/cv have the highest values possible. Again, the required
supersaturation for a given cooling, according to the theory, in order fo; rop-
lets to be formed, is less the smaller the value of the expression (3/T) / (M/d).
If these conditions are not met within a certain range, the two curves will fail
to intersect at all, anc condensation of droplets will not be expected even at
arbitrarily high expansions. Since the two conditions ordinarily exclude each
other, it is understandable that few vapors can be induced to form droplets by
moderate expansion.

H. Flood and L. Tronstad (98) have further investigated the formation of
droplets in D9O vapor. These experiments are of interest because they have
led to the detection of errors of observation in the determination of the surface
tension of DgO. P. M. Selwood and A. A. Frost (89) found 6D20 = 67.8

dynes per centimeter at T = 293, as compared to 61-120 = 73.75. This dif-
ference should result in a substantial difference in the critical limit (pl/pm) er
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for like experimental temperature, with

2

ln ———
Pm)cr HqO - <6H20 3/2 - ';3.75)3/2
P 6D 0 7.8

In (— 2

i (Poo):r D90

The experiments showed, however, that this is not the case, and that within the
errors of observation HgO and D9O have the same critical values at like tem-

perature. In fact, upon remeasurement of the surface tensions it was found
thatat T = 278 the difference 61)20 - 6;{20 ~ 0.17 dynes was only slightly

beyond the limits of accuracy of the measurements, in agreement with inter-
vening observations by H. Lachs and I. Minkow (100). The critical expansions
(vz/vl)c, are nevertheless different, namely because the vapor pressure

Po DO’ owing to the higher heat of evaporation of D9O (101), decreases

more rapidly with the temperature than Poo H-O° At an initial temperature of
2
289°%, (Vo/Vy)ep D0 2 found to be 1.252 + 0.003, whereas

(Va/Vi)er H 50 * 1.276. The adiabatic temperature drop must therefore be

greater for HoO in order for the critical limit to be reached; but the (Pl/pm)cr
curves coincide for DgO and HyO. Figure 42 illustrates the situation.

Fig. 42

Broken curve; metastable limit
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No other measurements suitable for quantitative comparisons are at
present at hand. It remains to mention the high critical limits (13 to 20) ob-
tained in experiments with hydrocarbons and monobasic fatty acids. These ob-
servations are not to be accepted quantitatively since the temperature calcula-
tion is not feasible, for the reasons given. Theoretical calculation also yields
very high values, because of the large molecular volumes (molecular weight of
fatty acids two times formula weight). In all such cases of very high super-
saturation, purity requirements are extremely critical; for example, traces of
water in fatty acids or benzene suffice to reduce the metastable limit sharply
(cf. section on mixed droplets).

A far easier experiment than adiabatic expansion in the Wilson chamber
is R. von Helmholtz’ and F. Richards’ vapor jet experiment. Hitherto this has
been successfully applied only to the qualitative verification of the catalytic ef-
fect of dust, ions and foreign vapors. The effect of the latter was formerly the
subject of extremely confused opinions. Actually, it involves an augmentation
of pl/poo due to the reduction of p, (8O3, PgO;, HNOg, HCl, NE,CI). This

may be such, as is well known, that droplets are formed even in unsaturated
water vapor (fog formation). Another group of vapors (acetone, glacial acetic
acid, ether, chloroform, etc.) acts so as to reduce the surface tension of water
by adsorption. Since & appears in the work of nucleogenesis as a third
power, this amount of work is substantially reduced, and droplets are formed
at slight supersaturation.

B. DROPLETS ON GAS IONS (102)

Precipitation by ions is of special interest in view of the circumstance
that the Wilson chamber has become one of the most important tools of modern
physics. No complete quantitative theory of droplet formation on ions has been
successfully advanced, for reasons that will shortly appear. We shall begin by
following J. J. Thomson (103) in an attempt to deal with water droplets as con-
ductors having the charge of one ion (4.8 - 1010 e,s.u.). The work required to
produce a charged droplet of radius r from the same amount of liquid as part
of a large mass is

G, - G, = &0 L &
r ® = () *+ ry —r— constant

(© surface tension of water, disregarding the effect of the charge; e charge on
droplet). Differentiating with respect to the molecular number n of the struc-
ture, we get

(48) (k. -u )y=(kTIn Pr)=2° e?
r "o/l’” P/ T n—m"n
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Fig. 43

In fig. 43, Inp./p,, is plotted as a function of r for waterat T = 265, ©-=
77 dynes per centimeter, both for charged (a) and uncharged (c) droplets.
While for the latter In pr/p(IJ increases without limit with decreasing r, for
charged droplets p./p,, passes through a maximum at r = 6.5+ 10™° cm.
The right branch of the curve asymptotically approaches In pr/}:aoo =0 at
r = o, while the left branch intersects this axis. This means that even in un-

saturated vapor an ion will be surrounded by single water molecules (at
Inpr/py = -1, r %3.6+ 1078 and n¢) = 8). The possibility of droplet forma-

tion, of course, only appears at values In pr/pm>0.

J. J. Thomson assumes that this requires that the value (In pr/pm)max
be reached. Under the hypothesized condition, this is 4.63, whereas in air,
with a natural average ion content of Z; = lob/cc, a critical expansion has
repeatedly been found at a value of (pl/pw) er © 4.1, Superficially this looks
pretty good, but actually there is neither satisfactory correspondence with ob-

servation nor theoretical plausibility. For according to this quasistatic theory
of Thomson’s, (pl/pm)cr should be independent of the number of ions, whereas

experimentally it decreases with increasing number of ions. In other words, at
values under (pl/poo)max’ no visible droplets should be formed, while at that

value all ions should mature to visible droplets simultaneously.
The problem requires the same sort of fluctuation theory as all other in-
stances of nucleogenesis. The elementary formulation is the same as for un-

charged droplets, (42), but the summation (43) must be formed differently. The
initial state is not the single water molecule but an ion, which by fig. 43 has al-
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ready bound a number of water molecules. We call the number of such initial
aggregates Z, and the number of their molecules n,.

In place of equation (43) we have

J ( 1, 1 ‘e 1 -
'] . I . s e . ]
Wi ona ana-bl ona+1 ﬂna+1 ﬁla+2 A Op
1 )
+ . e T = Za .
Bna+1 Bna-'-z -1 OG5y

The product q‘a 4 an ***B_ 1is

q+2 n
n
(n-na) L PN by
ng+1

e kT

The numerator of the exponent resolves into

n
(= ng) (by= by ey = 20 (Hy = by o) -

na+1
We have
28 o2 ) {26 e2 )
My = H =( == - r v = - \ A
1 I 4 /' 4,0
Ta 81Tral rK 8nr

and Ny = 4n'r3/3. If we further consider that

n
23 (“i'“nm)=4ﬂ6(r2-r§)+i2.(_1._-1_)
ng+1 2 \r I'a

then after collecting terms and simplifying,
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n
(n - ng) kg - 22 Mg
ng+l

2

38 r 274 _ 113

] 4M(rz_2_r___§)_s_<__ r ....)

l: rg 3 2 3r, 3r; r
2 3 2
[ererk{ez SYEE JVEY }
rg 8 \rg $\rp /.

2 -1
RIEECIRCONE

10*

Substituting r/rK = 1 + x and expanding the powers of r/rK in series, we
have in £first approximation

(i)2=1+2x+x2; (—,—.i-)a=1+3x+3x2;

-1

r 2 .
—— =1 - x + x4
rx) !

hence

n
(- ngdup- X uy
na+1
_l4 _2 _2e2/1 1 2 o2 z]
[ ™e (rg ry) 3 \¢ rK) + (41T6rK - ?k—) X ’
and n
(n-ng)ug- 3 w4
n ng+l
T g=e ¥
ng+1
2
1[ (2 2e%/ 1 1:’1[ 2 e]z
- = |=7é(rs-p° - — - =]+ =|4n°rs - =— Ix
ekT3 Kz) 31'3=1 rK)kT KrK
= 9
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The required summation (43) is again replaced by the integral

s-1
! o dn
o I[ By
ng+l
g
+ 0
14 2 . 2681 1\ 1[,. . 2 e s
Sng k'r[a""éx 2 S(ra rxj k'rE”“’ Tk rK:[‘ ax
= o, . e
K
-

14 .02 o(l _r
Sng \/ ™. kT ek'r[a""éx r)-ge rg K]

2 _ .2y . 2 1 1)\,
The work of nucleogenesis is (4/3)7 3 (rK ra) (2e4/3) (i‘; ﬁi> Ag,
as is easily shown directly.

The final nucleogenesis formula becomes

0! 41T°r§— —e-z- Ag

(49) Idt=ZaWI§n—I:{-- _ k'rK'e KT 4,

If, in accordance with the experimental conditions, we take T = 265°,
6= 77 dynes per cm, 2y = 103, = 1 second and a= 1, then the result is

2 8. /1 _ 1
(49) InJt=16+1nZ, - [0.907-1016 (rg - r2) - 430-1078. <§ - TK—):I

The equation may be solved with the aid of the graph for In pr/p = f(r),
from which the values of ry; and rg belonging to a given In Pr/Pm may be
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read off. For Z, = 103, we compute (Pr/pm)cr =3.2, ry = 4.8 10'8,
rg = 10.2 - 108 (see fig. 44a).

Fig. 44

There has been much experimental research on formation of droplets in
air containing water vapor in the absence of a field, i.e., in the presence of the
slight natural ionization (Z3 = 109). The results of earlier works, in some
instances recalculated by E. X. Anderson and J. A. Froemke (98), are given in
Table 10. Out of ten authors, five agree closely on (py /pco)cr = 4.1. Another
close figure is 4.2. The other three values are peripheral, The result of 4.1
has further been confirmed by V. Bayerl (104). On the other hand, Anderson
and Froemke get an average of 3.0, a value approaching the result of our calcu-
lation, but nevertheless doubtless not so reliable as the figure of 4.1. The

Table 10
Expansion Factor
Name Temperature 2) (.l.’.l_
ok Vi‘er P’/ cx
Aitken, . . . . ... .. 261 1.333 6.8
Wilson. . . ... N 267.9 1.252 4.1
Donnan, . . « « ¢ ¢ o oo 264.7 1.29 5.0
Barus . « . ¢ ¢ 6 0 s . 259 1.3683 7.3
Laby. ¢ ¢ ¢ ¢ ¢ 0 00 v 267.6 1.256 4.2
Besson. . . .. ... .. 268.1 1.25 4.1
Strieder . . . . ... .. 267.8 1.253 4.1
Andrén. . ........ 267.8 1.253 4.1
Anderson and Froemke . 271.1 1.200 3.0
Flood . . ........ 265 1.252 4.1
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last-mentioned authors used high rates of expansion in order to avoid the tem-
perature errors which they suspected in earlier work. According to H. Flood’s
observations, however, these doubts are groundless, and excessively sudden
expansion gives rise to errors of its own.

In on the basis of these considerations we accept the value 4.1 as cor-
rect, then we are faced with a discrepancy with respect to the theoretical cal-
culation; and in fact, the facilitation due to the charge on the particles is not
nearly so great as the calculation would suggest. The error very probably lies
in the assumption that the small HoO aggregates are conductive spheres. The
dissociation factor of water is about 3-10-10, j.e,, only one dissociated mole-
cule is to be expected among 3:10°9 molecules. Droplets of 10 to 100 molecules
must evidently be regarded as dielectric structures with an internal charge. If
D is the dielectric constant, then in all formulas e requires the coefficient
(1 - 1/D). Now if we take Dy _o = 80, the result is practically unchanged,

but it is not permissible to apply the dielectric constant of water to the aggre-
gates of a few molecules. For if the water dipoles are oriented with the elec-
tric field of the ion, they are disadvantageously placed relative to each cther,
so that the energy of condensation does not become fully effective; but if they
are favorably oriented, they cannot adjust themselves to the field, and the re-
duction in surface tension will not have the computed value. By trial, we find
that D = 1.85 yields correspondence to the experimental results.

The proposed value of 1.85 for the dielectric constant of the aggregate
lies within the range from 1.1 to 6, where U. Glemser (105) places the di-
electric constants of water bound to dipoles. The relation between pr/pm and
r then becomes

Pr /26 e2
KT In X =(4° _ 0.46 . Vrp o
Poo < r grrd/ I

This function is plotted in fig.43 as the curve b. The nucleogenesis
equation is now

= - . 16 2- 2 - . -8 _1.__._1_
(50) InJTt=16+InZ, E).eo'z 1016 (r§ - rd) - 198-108(L rx)].

For natural and artificial ionization of varying intensity (fig. 44b), the re-

sult is
Table 11
Za (.Bl_)
Pm/cr
108 4.1
104 3.99
109 3.9
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The-data in the literature for (pr/pcn)cr under artificial ionization di-
verge widely.

Table 12
Temperature | Vg Pr
0 — —_—

Name K (ke () o Tonized With
Wilson, . . ... 293.1 1.000 | 1.0 Strong ultraviolet light
Wilson. . . . . . 268.2 1.249 4.0 Uranium oxide
Wilson. .. ... 268.3 1.247 4.0 X-rays
Pfibram .. ... 266.8 1.265 | 4.4 Ra material
Barus . .. ... 261.8 1.325 5.9 Radium
Barus ¢ o o o e o 26203 10320 5.0 X"l‘ays
Mme. Curie . . . 293.1 1.000 1.0 Radon
Laby. . . . ... 269.3 1.238 3.8 X-rays
Besson, . . .. . 269.4 1.235 3.7 X-rays
Besson, . ... . 269.4 1.285 3.7 Radium
(Leibfried. . . . . 202.5 1.005 1.03 | X-rays
Conrad, .. ... 293.1 1.000 | 1.0 X-rays
Strieder . . . . . 293.1 1.000 1.0 X-rays
Andrén. . ... . 270.4 1.223 3.6 Ra material
Powell. .. ... 268.8 1.244 | 4.0 Gamma rays

However, apart from the experiments in which no supersaturation resulted
- i.e., which were apparently falsified by some circumstances not now deter-
minable - as well as the surely extreme data of P¥ibram and Barus, we are
left with seven different figures between 3.8 and 4.0. These likewise accord
with exploratory observations by T. Glosios (108), who at the same time deter-
mined approximate ionic content. At present we can only conclude that the
metastable limit falls slightly with increased ionic content, and that agreement
with the equation given, upon careful repetition of the measurements, would not
be improbable.

In view of the importance of the Wilson chamber for observing cloud tracks,
it is of further interest to know the value of pI/p at which each ion produces a
droplet with a probability of 1. From the curve, this value is 4.4, or definitely
below 4.9, the critical value in deionized vapor referred to the same initial tem-
perature. This is of prime importance in the application of the Wilson chamber.
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C. MIXED DROPLETS

There is as yet no complete kinetics of the formation of mixed droplets.
An analysis by the thermodynamic method (Chapter 8), with experimental veri-
fication of the results, has been performed by H. Flood (106) for the example
of alcohol-water mixture,

Determination of the work of nucleogenesis takes the following form. In
a supersaturated alcohol (1) - water (2) vapor-mixture (I), let the thermody-
namic potentials of the components be 1 y; and Kig. Then, by our definition, a
nucleus is a droplet of like thermodynamic potentials HIIIK = H11sM 9K = M9
This condition uniquely determines its size and composition,

We have (ug - FoolT1 = 2 6Vn1/rK and (Ux L oims = 26vn2/rx,
where H110p and HI9qo are the thermodynamic potentials of a liquid alcohol-

water mixture of nuclear composition but at the pressure of coexistence with a
vapor phase on a plane surface, and Vi and Virg are the partial molecular

volumes in the liquid at that composition. Eliminating rg, we have

In ﬂ

(51) (g = Bt =<V_1 ) (k1 -1 Tt __ Py
bg-woodom ‘\Vaar (i -kpels o D2

P2

With the aid of the measurements of partial molecular volumes and partial vapor
pressures p, ., Py of alcohol-water mixtures, this formula makes it possible

to determine the nuclear composition for any supersaturated vapor mixture of
partial pressures pyy and pp,, namely by plotting (vi/vg)y and

(In pyy /pml)/(ln pm/pmz) as functions of x and reading off the intersection of
the curves. Let xg and (- x)K be the molar fractions of components 1 and
2 so found; then we further have

26
xg (M1 - M) + (1 = xp) bp “Fme) =1 Voo

where Vg is the mean molecular volume of the mixture in question. Thence
computing Iy, and substituting the expression in the equation for the work of
nucleogenesis, we obtain
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water mixtures, required for evaluation, are sufficiently accurately known from
measurement and interpolation. For mixed droplets, instead of (pI/poo)cr’ we
x 1-x
compute S, =<p—pl- IK(‘?-)Z K. For this purpose, in the nucleogenesis
(0 4]
/KT

equation Jt = Ce K y Flood equates the slightly variable factor C to the
constant for pure water droplets; the resulting error is insignificant.

SKM

@ 02 03 0y a5 G5 07 48 G910y
DRHT & 07 78 09 7%,

Fig. 45

The experiments are of course conducted by charging the Wilson appara-
tus with alcohol-water mixtures of various compositions, and the critical ex-
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pansion factors determined by adiabatic expansion of the overlying vapor. How-
ever, these do not immediately yield the Ser values. Determination of the lat-
ter requires knowledge of the partial vapor pressures of each mixture at the
initial temperature and at the final temperature after expansion. In the present
example, the computation is facilitated by the circumstance that the ratio of the
molar fractions in the vapor and liquid varies only slightly with temperature.
We thus obtain py4, Py and T (pressures and temperature after critical ex-

pansion). By graphical solution of equation (61) we get XK, and then find the
values (pool’ Pgoa: & Vn)x from the tables. Experimentally known Ser
K

values are plotted in fig. 45 (crosses), in terms of the nuclear composition xg
and the composition of the substrate liquid Xp in the Wilson chamber. The
solid curve is the theoretically computed function. The data themselves are
given in Table 13. There is qualitative agreement, but there is a unilateral de-
viation which is especially great for small alcohol contents, and which exceeds
the error of observation.

Table 13
100,, T 100xK Scr €xp. S,y theor.
0.0 263.7 0.0 4.85 (4.85)
3.86 272.8 0.8 2.64 3.3
11.5 275.8 3.7 1.97 2.45
35. 280.4 8.5 1.75 1.92
67.1 277.0 25.0 1.62 1.70
17.9 274.9 81.0 1.7 1.97
80.3 273.8 82.0 2.07 2.18
100.0 273.2 100.0 2.34 2.30

W. Doering and K. Neumann have made a new attack upon the theory of
mixed droplets, in an as yet unpublished work. They proceed from the second
definition of a nucleus (end of Chapter 3) and inquire into the work of forma-
tion of droplets of arbitrary size and composition. They find that droplets of
nuclear composition have distinguished work-of-formation values, with a max-
imum at the nuclear size. Thus far we have agreement with Flood’s approach.
It turns out, however, that within certain ranges of composition and for small
radii there are other distinguished work-of-formation values, which may be
less than those of droplets of equal size and nuclear composition. These ener-
gy values likewise pass through a maximum as the radius increases, and this
maximum is lower than the work of nucleogenesis. This implies that such
mixed droplets may arise by some other route than by way of the regular nuclei.
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We shall call critical droplets of this kind collateral nuclei. It turns out that
instead of the condition

OA(ny, ny) _ WAy, ng)
anl 'dn2 -

0;

(n; and ng molecular numbers of the droplets) for regular nuclei, they satisfy
the requirement

(bn1> bA(nl, ny) (Onz aA(np ng) -
X

dr %nl or /g * 21,

Here it must be noted that n; and ng are not directly connected with the mo-

lar fractions x and 1 - x in the interior of the droplet, but are the total molec-
ular numbers of the droplets, taking account of the capillary membrane.

The values computed from W. Doering and K. Neumann’s theory are plot-
ted in fig. 45 as circles. The agreement with experiment is considerably closer,
and is within the errors generated by the experimental data.

The new theoretical analysis therefore deserves special attention in the
future, as such collateral nuclei are always to be expected in mixed phases if
they contain components of marked capillary activity and the critical radii are
sufficiently small. In the range of slight supersaturation (metastable range),
the new theory likewise yields the regular nuclei only.

The formation of droplets in vapors is closely related to the precipita-
tion of droplets in liquid mixtures (or solutions). The theoretical derivation is
the same in all respects if the variables of phase transition are substituted.
Absolute calculation of J is at present excluded by lack of knowledge of Wiy,
the molecular rate of transfer between the two liquid phases. Experimentally,
it has not been possible to eliminate the catalytic action of foreign particles.
Such floating bodies are present even in all gases, and in nucleogenesis experi-
ments they require to be eliminated by several preceding expansions in which
the droplets generated induce their precipitation. In the case of liquid mixtures,
no such technique of purification is available. The preparation of liquids of
reasonable optical clarity is sufficiently difficult in itself, and there is no sure
means of eliminating the remaining amicrons, which are nucleogenetically ef-
fective. The degree of supersaturation successfully observed by H.S. Davis (8)
in aqueous solutions of nitrobenzene and carbon disulfide is far below the theo-
retical metastable limit for homogeneous nucleogenesis. High degrees of trans-
gression have been achieved only in the formation of mercury droplets, as this
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metal does not wet the suspended particles unless they happen to consist of
readily amalgamable metals,

D. BUBBLES IN LIQUIDS; TENSILE STRENGTH OF LIQUIDS

The theory of droplet formation is exceeded in complexity by that of va-
por nucleogenesis in the interior of liquids, owing to a less simple relationship
between the radius r and the number of molecules n of a bubble, particularly
important in the case of liquids under negative pressure. This theory has been
worked out by W. Doering (107) for the single-component case. Determination
of the relationship between r and n, if compressibility cannot be neglected,
requires knowledge of the equation of condition, as in the case of condensable
phases. Following W. Doering, we proceed by hypothesizing the equation for
perfect gases as a basis for calculation, and subsequently estimating the maxi-
mum extent of the resulting error. If p, is the pressure in the interior of a
bubble of n molecules and radius r, then by the gas equation

3
Pn41;r =nkT.

The pressure p, is composed of the pressure on the liquid (subscript I) and
the capillary pressure; that is,

_ 26
pn—pl-t--;-

and
<p1+%?>_437!r3=nk'r.

Fig. 46
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For positive pressures Pp, n increases monatonmiically with r. For negative
pressures, however, n passes through a maximum; hence this case will call
for special attention later. The vapor nucleus is a bubble of size such that its
interior thermodynamic potential bk = Hp 1.e., the thermodynamic poten-
tial in the liquid phase I. It is of interest to inquire approximately what pres-
sures are here involved. The thermodynamic potential in the liquid, uy, is
primarily determined by temperature only, and varies only slightly with the
pressure p;. For the liquid to be superheated means that P<Pqy Where p.,

is the pressure of coexistence at the same temperature. Figure 46 illustrates
the situation. Let Py be any pressure, say between P and 0; then Pg is
to be such that the areas Poo: P, I and pg, Pk, U become equal. Provided

the difference between the molar volumes of the two phases is large, i.e., pro-
vided we remain at some distance from the critical temperature, and except
for high negative pressures within the liquid, pm/pK ~1, li.e., the vapor nu-

cleus has approximately the normal saturation pressure of the vapor at the
same temperature. By (32), the work of nucleogenesis becomes

n
K
&
Ag = X (I-Li'“I)=°°K'(pK'pI)vK=°°K'23— K
1
1

L = J -
3 %O =5 (g - P) Vi .
If we take bpg = Pg - pp and vax = nKkT (gas equation), then

The kinetic derivation of the frequency of nucleogenesis Jdt takes the
same form as for droplets. From the elementary formulation

Jdt = (2n Wy Op - Z(n,1) Wir(ns1) Of) dt

we again obtain the fundamental equation

I /1 1 1
(52) ——< LU S S
WI\Gp P 01" B B0y

1 =
51'51'33'”%-1'%-1) %0

where Z( is the number of bubbles present in the liquid that contains 0 mole-
cules - a notion to be interpreted presently. We now compute an arbitrary
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one of the products

n
Z (P-I“La)
1
n
kKT
I R=e
1
as follows:
We have
&
3 S P+ 22

where r is the radius of a bubble of i molecules; py the pressure in the
liquid phase I, or py + 26/r the pressure in a bubble of radius r; and PR

the prevailing pressure - determined by uy - in the nuclear bubble of radius
rg. If we introduce

Pg-P 20

b= =
Pk TPk

and x = r/rg, we obtain

ulk:rui = - ln(l-b-o-l;-).

n
The summation 2 (p,I W i)/kT is replaced by the integral
1
n
| -1n(1-b+."=‘. . dn.
1 X

To express n in terms of the variable x, we use the gas equation and obtain

n rd.p p1+—2e> b

= n_ 3____z_=3<1-b _>.
X b 4 +

ng rk.Pg P x
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Then
dn = ng /3 (1 - b) x2 + 2b x7 dx

and
S )
IZ“IkT“:g .m(1-b+g)nxﬁ(1-b)x2+sz_7dx

- - - b - b b
= nx,:é. b+it)ln<1 b+§)x3+2-x2] .
) e- ng [6-!)4-9 In (J.-b-rg) . x3+§ xz]

The absolute value of the exponent, in the range of positive pressures Py, has
a maximum at x = 1, so that the expression 1/ 1’% B4 has a very sharp max-
1

Finally we obtain

n
I A
1

imum at the same point.

In the summation 32 (1/ f Bg...By0]) (52), therefore, only terms in

the immediate neighborhood of x = 1 are of weight. We substitute 1 +y fbr
x and obtain -

n
ngb ngb
Z(Lll‘ui)=——l—§-—+ g 3-b)y2+...

1

Moreover,

n=(s-1)
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®
ngb J ngb (3 -b) y2

ng (3 - b) 2 2
0
ngb
- Pg(@-b) ar 2
Ok g b (3 - D) .
In view of bng/2 = Ag/kT, we finally obtain
A
K
o) A - c—
_ K K, kT
Tat=2Zo Wy oo \/(3-b)1rk-r° at
(68) A

= Zn Wy O3 b .o KT

a formula which is exceedingly similar to the equation for droplet formation.
We have only to consider the meaning of Z,. Here Z is the ‘“‘number of

elementary bubbles,’’ i.e., the number of cavities due to thermal fluctuations
but containing no molecules. To extract a molecule from the interior of the
liquid and introduce it into the cavity, about twice the molecular heat of evap-
oration is required. If we condense the molecule without augmentation of sur-
face, we regain the heat of evaporation itself, leaving the molecular cavity,
whose formation accordingly also requires the same molecular heat of evapora-
tion,

This argument leads us to the equation

Zo=zle

(21 number of liquid molecules per cc, A molecular heat of evaporation at
temperature T).

It is worthy of remark that if we replace ngh/2 by Ag/kT, and consider
that in general Ag =©0g/3, the formula for Jdt becomes identical with that
for droplet formation, apart from practically insignificant differences, and no

F-TS-7068-RE 153




longer contains any essential variables that depend on the validity of the equa-
tion for perfect gases. It may therefore be employed everywhere but in the im-
mediate neighborhood of the critical temperature. For comparison with experi-
mental data, it is convenient to eliminate the factor Og by means of

26/rg = by - P We have Og - 4rrg = 16me2/(py - pp?  and
Ag = 18™65/3(pk - pl)z. In the coefficients of the power of e, we may safely
take pg = Py OF W = W I/ID and hence (o ~1)

“'I[II D
WI = kT . e kT - (¢ o]
2rm 27m
Moreover
Ok 3kT (pm - pl)
nK ~ pm zﬁs— .
So we have
-2 - _l_f.flfi?‘_,z
kT 8 6 3 kT (pg -Pp)
4 t Z . K
(54) Jdt *2Zye S~y | © dt
for b<3.

a) Liquids Under Stress; Ultimate Strength

The formula just derived for J continues to hold at first upon transition
from positive to negative pressures in the liquid. At the limit b = 3, however,
the equation ceases to have physical significance, since the radical factor be-
comes infinite. For the range of negative pressures, therefore, we require a
new derivation. In a bubble in the interior of a liquid of pressure p; = - 5 I

3
(55) <2—r6-— I>413rr =n+kT.
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labiler Zweig: unstable branch

This establishes a relationship between the radius r and the number of mole-
cules n in the bubble, as plotted in fig. 47. If by progressive growth a gas
bubble reaches the number of molecules ny., and hence the radius rpg,, it

becomes unstable, i.e., it enlarges spontaneously without necessarily any fur-

ther evaporation - the liquid fails in tension, thus destroying the state of tensile
stress. Failure is thus not a purely mechanical effect but represents a process

locally initiated by thermal fluctuation. However, this type of nucleus is not
determined by equality of thermodynamic potentials in the liquid and in the bub-
ble of radlus rg, but by attainment of the limit rp,a.. So long as rpygy >ry,
i.e., under low tension, the earlier equation remains valid. As tension in-

creases, the formation of nuclear bubbles of the old type ceases to be possible;
instead, spontaneous disruption occurs when the size rpgx is reached, From

(55) we obtain -

r = =2 and x = =
max 5 max 33 TR 391

To determine the frequency of failure, we must conceive such bubbles of radius
’'max to be extracted from the liquid as soon as formed in order to determine

the number J per second. In the expression (52), )

I (1 . 1 ..., 1 >=z
wl(oo B1.0 By-B..Bg .05 7 0
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the terms less than rpyay remain unchanged, but the summation is now to end
with the term

1
P1 Pa: By e By ax) * O'max

The summation is again replaced by an integral:

n Mmax
max 1 1
X ——= — @ dn
1 o ]11 B o) II’,
1

_ Ny xszax(xn::x>2 . enK lil-b-rg) In (1-b+}-:> x3 +§ xz:l .
0 .
*/3(1-b)x2 + 2bx7 dx.

The maximum of the integral is now at the limit of integration Dmaxe We
therefore expand by powers of y = Xmax - X and obtain

n dng . b2 (S-l 3) b1, 3
max . [ A X224l
> 1 2bne  2MO-DZ (7 *3) PKPln T +3
ol = o, » € L) ydy
1 0;1 ]Ipi max
1
dng . b2 b1, 3
1 T (-1 ‘1"<‘z_+§>

= . e
O’max.lnp_i_l-

If we consider that ngb/2 = GOK/akT and /3b/(3b - 11_72 = (rmax/rK)z ,
the exponent assumes the form (4Og/3kT) /1 + (2/3) In (b - 1)/2/, and we

finally obtain
6.0max /. 2 . pb-1
b-1 3kT \1t3 "ln—5-
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for b>3. The exponent, in the course of the transition from b >3 to b<<3,
passes continuously into the previous expression, but the coefficient of the
power of e passes through 0 to complex values. Physically this has no more
significance than the infinite increase of the earlier expression., Both results
are consequences of the approximations, which become impermissible in the
transition range. An idea of the behavior of the coefficients B, = ‘/ b/2m(3 -b)ng

and B2 = In (b - 1)/2 may be had from fig. 48. In the interval not covered by

the calculations, the coefficient approximately follows the interpolated curve, as
is confirmed by a particular computation for b = 3.

e e e e e

i
E'N

Fig. 48

1. Factor B; 2. lower approximation;
3. actual curve; 4. upper approximation.

b) Comparison With Experimental Data

The tensile strength of liquids has not as yet been investigated with suf-
ficient precision to permit qualitative comparison with the theory. Earlier work
by Donny, Berthelot, Moser, H. von Helmholtz and Dixon has not been repeated
with the necessary precautions. Research by Worthington and Reynolds, as
well as J. Meyer (119), relates chiefly to the equation of condition in the nega-
tive pressure range, tensile strength being considered only incidentally. On the
other hand, the limit of superheat at positive pressures has been recently in-
vestigated by Wismer (110), and by Kenrick, Gilbert and Wismer (111). Wis-
mer used a U-shaped capillary, connected to a screw compressor, as a con-
tainer for the liquid. For pressure measurement, there was a metal manom-
eter for. the higher pressures and a unilaterally closed mercury-air manometer
for lower pressures. The U-tube was dipped in a thermostat. The experiments
were conducted by bringing the liquid to an initially high pressure at the temper-
ature in question, and then suddenly reducing the pressure to a low value by
means of the compression screw. Spontaneous formation of bubbles was then
observed. The results of the experiments fluctuated widely throughout. Since
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all sources of error would necessarily give rise to reduction of the limit of
superheat, the only significant data are the upper limits attained, i.e.,the mini-
mum pressures reached at a given temperature without Precipitation during the
pressure drop. These results are graphically reported by Wismer for ether.
The value corresponding to 143°C and 1 atmosphere was confirmed in the sec-
ond work cited. The method used was very simple: freshly-drawn capillary
U-tubes were sucked full of freshly-boiled liquid and then dipped about 4 cm in-
to the temperature bath at the lower end. The time elapsed before explosion
was noted. For the numerous data recorded, which are of particular impor-
tance for any resumption of experiments of this kind, reference must be made
to the original sources. Following W. Doering, we shall compute the example
of ethyl ether only. If we introduce the time t and volume of the capillary V
into equation (54), then

— A 16 &S
kT 86 ~ 8KT(pK - P2
JvtﬂthIQ \/m L <] pK pI .

From Wismer’s density measurements on superheated ether, the number
of molecules per cubic centimeter is found to be Z1 =~ 4.1021, The time
elapsed before precipitation was of the order of 1 second; we take the volume
of the capillary as 0.1 cc, and obtain 25 - 1028 as the coefficient of the power
of e, with only slight variation throughout the series of experiments. The
limit of superheat at positive pressures is accordingly:

18re3d
T 3KT(pk - D)2
TVtala25.1028, 3KT(PK-pD)

In the exponent, allowance is to be made for the difference of Pg and Poo
and pg 1is to be obtained from

In P _ Mng - )
Pk dRT

(M molar weight, d density of ether). For negative pressures, the exponent
of (53) is to be evaluated similarly. The resulting curve, which gives the
critical limit of superheat as a function of Pr and T, is plotted in fig. 49. The
crosses are the values determined experimentally by K. L. Wismer. The cor-
respondence is surprisingly good. An essential future problem is a more exact
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determination of the & -values, since errors of 5% generate a variation by 5
powers of 10 in the rate of nucleogenesis. The circle represents a value ob-
tained by J. Meyer at py = 0; this is exterior to the theoretical and experi-

mental curve, and must be due to some secondary cause. Finally, fig. 49 also
contains the curve of lowest pressure minimums as plotted from Van der Waals’
equation, using Ramsay and Young’s experimental results for purposes of ex-
trapolation, We see that the minima - contrary to the opinion expressed by J.
Meyer - are in fact never reached. Nucleogenesis, i.e., formation of bubbles
due to local fluctuation, always sets in first, and causes the state of superten-
sion to collapse.
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E. GENESIS OF CRYSTAL NUCLEI

a) Crystals in Vapors

The complete kinetic analysis of the formation of crystaline nuclei ex-
hibits interesting novelties as compared to the isotropic phases. The difference
lies in the difference in order of magnitude of the displaceability of molecules
within the phase. In gaseous and liquid nuclei, this displaceability is so great
that a spherical shape is always established. Therefore, and neglecting devia-
tions conditioned by thermal capillary oscillations - we have dealt exclusively
with molecular aggregates of this shape, whether of nuclear or subnuclear size.
Hence their condition at given temperature and given pressure was sufficiently
defined by sole specification of either the radius r or the number of molecules
n.

For crystals no such simple procedure is available, complete descrip-
tion requiring the further determination of the arrangement of the molecules, so
that formations of like molecular number may nevertheless exhibit extremely
wide multiplicity of form. This multiplicity is fortunately restricted by the fact
that the majority of possible forms is eliminated in practice, leaving only those
immediately approximating the arrangement of minimum free energy. This
selection takes place both through the interchange of molecules between parent
phase and nuclear aggregate and through the change of place among surface mole-
cules of the latter. Change of place, as we have seen in Chapter 2a), occurs far
more frequently than interchange with the other phase, so that it is in face re-
sponsible for the regimentation of the randomly incident units into the minimal
shape or an immediate approximation to it. Now even though the surface migra-
tion of molecules in crystals is thus in some sense a substitute for the internal
displacement of molecules in gaseous and liquid phases, for purposes of adjust-
ment to the minimum, there remains a profound difference. The ideal geomet-
ric minimal shape is possible only for quite definite discrete numbers of mole-
cules, for which the outer lattice plane is exactly complete. Intermediately,
there are conditions of incomplete lattice plane which, quite in general, may
again afford a considerable multiformity. Within this multiformity, however, it
is possible in practice to make a restriction to the arrangements of minimum
free energy, characterized in that the new units tend in turn to form two-dimen-
sional closed arrays of minimum edge-energy upon the complete lattice planes.
Such incomplete lattice planes may be arranged in changing but dynamically not
very different positions with respect to the substrate. The geometrically ideal
minimal shape of the two-dimensional structures, however, is again possible
only for discrete molecular numbers at which the edges are exactly complete.
The addition of new molecules at the edges of the two-dimensional structures
may still be subject to considerable variety; in practice, it occurs through the
formation of continuous rows of molecules, again because these have less ener-
gy than singly added units. According to this argument, the kinetic analysis of
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crystalline nucleogenesis falls naturally into three stages: 1. Formation of
linear rows; 2. Formation of two-dimensional lattice planes; 3. Three-dimen-

sional nucleogenesis.

R. Kaischew and I. N. Stranski (27) were the first to offer a partially
kinetic derivation of crystalline nucleogenesis in restriction to the conditions of
ideal minimal shape, regarding the addition of compleie lattice planes as un-
analyzed elementary acts whose frequency was based on the previous formula-
tion of two-dimensional nucleogenesis from general statistical considerations.

Fig. 50

The complete (i.e., reduced to singular molecular steps) kinetic deriva-
tion is due to R. Becker and W. Doering (23). It does not presuppose any
a priori restriction upon the possible manner of addition of units, nor any sec-
ondary rearrangement into optimum shapes by surface migration, but embraces
all conceivable strange shapes and all transitions among them. They succeed
in the organized treatment of this apparently hopeless complexity of material by
reducing the problem to a more familiar mechanism, namely the conduction of
electric current through a wire net. The idea of this interesting approach will
here be illnsirated, following Becker and Doering, in terms of our now familiar
simple cubical model, with building blocks bound exclusively by their immediate
neighbors. In this model, there are only three energy values

depending on the number of bonds. Similarly there are three g-values, and in

fact we shall assume that ;1@-;1@= D.@- L'L@a D" 5®= ®" 5@* 5@'E®,

where 80 is the energy of a free unit. The three coordindte B-values are

St ul-ﬂ® ul_;l
B®=e kT ; B®=e kT ; B®= e%

(B@)/B ® = B@/ 3®). Figure 50 represents such a crystal in a particular stage

of growth. The complete lattice plane is overlaid with an incomplete one, upon
which in turn a row is being formed. Let the newly added layer have the edge
lengths 1 and w4, measured in number of atoms, and let the incomplete row

.
L
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be of length 4 . Its addition produces the (L + 1)-st row of length we. We
shall first consider this process, thus regarding only % as variable. If we
identify the units in order of addition by the subscripts 1 923,¢e0, #, then the in-
dividual thermal potentials g » as they are added, are gy aﬁ@, Ry = hg = ...

Ay = ;1@. Let the crystal be in a supersaturated vapor of thermodynamic
potential k1. Then the corresponding rates of transition per second are

Ky /k
wy = f YkT/27m e v T, where we have - somewhat erroneously - failed
to distinguish between f; and f §e

‘2 '®

=f -ﬂ.. kT‘ = = kT . T.
w ]/211111 e”"; wa=wg=¢ Snm ° H
h-Ag) e Sl 1= F oo

We consider a large number of crystals each of which is at the described
stage of growth (L,ne, {, 451, w) and which differ only in that the new row has
various possible positions and lengths. The number of crystals in which the new
row is precisely of length 4 and is located in a particular position along the edge
will be called Z",; similarly, let Z . +1 be the number of crystals generated
from the preceding by addition of an atom at a particular end of the row. The
number of transitions in this direction is WiZ4; the number of reverse processes

1.s w 3 +lz je1? and hence the resultant stationary flow (57) J,’ = le1 - w{ +12Z 4+1 ;

(57) 3 By

v %P1 " B4

Each row has two free ends, i.e., two possible points of addition, with the excep-
tion of rows one of whose ends terminates at a face. For a row of length 4 on
an edge of length v , there are (wm - 4 + 1) possible different positions,
Hence there are 2(u - t+1) -2=2(m- 4 ) possibilities of addition, all-
told for the (4 + 1)-st atom of the row. Only for § = 0, i.e., for the addition
of the first atom, there are w free places. As in the case of droplet forma-
tion, we imagine a stationary condition to be maintained by removal of all crys-
tals having a row of length 8 and simultaneous introduction of erystals without
new rows of the particular kind (w, 1). The total flow from the length-~of-row

to the length-of-row { + 1, regardless of the position of the row, is

= 2(w - 4)J;, if we assume that all partial flows }; are equal, or if, what
amounts to the same thing, all positions of the new row are equally frequent.
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The equations for the stationary flow, which (as in the case of droplets) is the
same at all points 4 , are

W W = Zo B - Zg;

J )
Twy w-1 Z1P2- 2
i Bi+1
Twy -7 - 2iPG41) - 2

b
2wy Pon = zm-l B Zon-

These equations are handled in the following way:

The first equation is divided by B1, the second by B - Bg and the 4-th
by 81 8... B‘i » This reduces them to the general form

j Ri = w*' - m1'+1 s
which is Ohm’s law for an intensity J, where ¥ " )01- +1 18 the voltage over
a resistance R . Here

1 2
Rj= 2 wy (m-})oﬁl...B?-’ wt' '6_1’—...3’.‘

To determine the current J s We proceed by calculating the total resistance be-
tween two points ¥ 0 and )08 of known potential difference. For this purpose

we regard )00 = Zp, i.e., the number of crystals without any new row at all,

as given; and by removing the crystals for which the row has reached a length
S <€ m, we obtain Zg = 0, )08 = 0. Adding the individual equations, we ob-
tain

(58) IR =i (R +Ry...Rg) = Wy - X,

The total resistance R is thus equal to the sum of the resistances Ri, Ro,.usy
R in series; each of these terms consists of several individual resistances

R=_1_1[2, 1 PO 1
2W[ W (m-1)Byg (m-s+1)Bl...Bs_1 )
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in parallel. Since in our model B; *B® and Bg=Bg=...= B@, and s€m,

\:'l= 1 2+-——-1—--(852+ B&;s+---+1)

2wywm 8-2
B B
@ O
-1
B@ -
= 1 2 +

B
: 1
=T By-DEg

be2wwmzy (By-1) 22
B
@
The number of rows of the selected kind formed per secondis 7. If we take
I/2Zy = Wiy, We may define Wi(wydt as the probability that a new row will

be precipitated from the vapor along an edge of length wa+ within a period of
time dt.

—————e—

Viwy = 2 W (B - 1) .;% .

Formation of new lattice planes.

If we omit to remove the crystals at length of row s, they will mature
to wu, but some of them will disappear instead. This makes the genesis and
decay of the rows a reversible process like the condensation and evaporation of
the individual molecules. The equation for this action and reaction is obtained
from equation (58) if instead of taking Wg =0, we pursue the process as far

as \Om . We obtain

59 i’ﬁ:z-_ﬂ_‘_s_z_w_s_,
(59) 0 - 3 3 B

This equation gives the partial flow for the stationary layer formation obtained
if we remove the crystals whose incomplete layers have attained a certain
size s,s’, as was previously done for the rows. To be exact, it is the partial
flow corresponding to the transition of w, 1 layers in a certain position to
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w (L +1) by addition of the new row to a particular edge. We express this fact
by writing equation (59) as follows:
Jml - Z“,L _ Zu, (L+1
I(a,1) By (L41)

or

b

w,l B - . ]
Tty o041 T Bl P lel) T B te) ¢

We write Yiw L) instead of W1 6m) because - not in our particular model,

but otherwise in general - the probability of addition of a new row depends on
w and 1. We have now brought the partial equation for the addition of a row
into the same form as that for the addition of a molecule (57).

The total flow from an w,1 layer to an w¢, 1+ 1 layer, regardless of
the position of the layer and the point of addition of a row, is again obtained by
multiplying into a factor specifying the number of possibilities, assuming as
before that all possibilities are equally likely. If the size of the substrate is
e, L , then there are 2(Wt -w) (L~ 1 + 1) possibilities in all, or

Fri=20t-w (L-1+1) 3, ,

and
3Nl 8 . -
E) (nt"w") (& -1+ 1) wl('m,l) m,(1.+1) B ZM’L a“s(lﬁ'l) zm(l+1) j

similarly

I B =2 .8 -7 :
2 -m+1) (L -1) i) m+1),1 T Cuyl T(m4l),1 T “(mal),1

For the start of the layer w+ = 1,1 =1, i.e., for the addition of the first
molecule to the substrate, we have

d1,1
W PO Z0,0°0 " i1

These equations may again be put in the form of Ohm’s law, Jﬂ,l R«-,t =
XOM’L - Ww,1,1» namely by dividing through by the product of all B-values
involved in the construction of a layer. But this product, by definition of 8,
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is equal to the product of all of the molecular B-values involved. Hence

Z.1 . _ o
Vol = G E Ll T V0™ Zo g WL
"0 °® ®
R . = 1 . 1 .
“wl 2 (- (£-L41) Wy (w+l-2) (m-1) (L-1)
) o g

Introducing (58)

g

becomes

= 1 . 1
Rt 4wy (Rt-w) (L-1+1)m (B®- 1 By 36-»1.-1 561. “wm-T

The first factor, which varies only slightly with v+ and 1, will be abbreviated

by

- 1
1 Tw W XL+ Dwm (Bg - D

~N PNy o W oo
L) ) §

T 37T

Fig. 51

The solution of the problem of determining the total flow T reduces it-
self to calculating the resistance between two points of known potential differ-
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ence, l.e,, YW 0,0 = ZO,0 and \Os g = 0. The resistance pattern, however,

is not a mere sequence of partial resistances as before, but a resistance lat-
tice (fig. 51). The partial currents J* L, and J ::L issue from one and the
]

H
same point w, 1 and lead to two distinct conditions we+1,1 and w, L + 1.
From each of these points the same bifurcation is repeated. The process is
thus fully isomorphic with the ramification of 2 galvanic current in a wire net
composed of unlike partial resistances. To find the path of the current, we in-
troduce, in the second factor of Q.,t' namaely

Rl 1
q

M lamal

wil=~1
!3® . B® . %}
that edge-length w = | = % for which Bm 1= 1. This corresponds to that
H

square layer for which probability of growth and evaporation of the last row
are equal, previously referred to as a two- melr)\sional nucleus. The condi- "
tion am’L = 1 1is synonymous with B® B® =1, or B®/B®=B®/5® B¥.

Then

EGML .3 nwt' 1 2-1“- -
___q:....=e®.s®(+) Wy =aé+¥ (w=¥) (1-%)

We take wvv = § +§ y L=3§- S » l.e., we transform to coordinates in the di-
rection of the diagonal (§) and perpendicular to it (3).

Rl . x4 . =(-w0? _S2
—L;'—- B@ B@ B@

The factor Béz signifies that the resistanceswm’t have a minimum on the
diagonal itself (S = 0). Upon removal from the 4latter by distances $=1,2, 3,
the resistances are increased by factors B@, B@, BM, ... In practice,
therefore, the current flows along the diagonal, i.e., m~1, the layers are

nearly always square. In the direction of the diagonal (B® ~(5-%) ), the re-
sistance has a similarly sharp maximum at § = ¥, whereafter it is reduced

-4 -8
by B@ , B® B® as we reach distances from ¥ of & = 1, 2, 3. The

current accordingly flows in a narrow channel along the diagonal, traversing a
high saddle at § = Y. The total resistance R 1is therefore practically equal
- to the partial resistance

N = 1 Bx+)€2 ’
v T+ D Bg-1) @
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at this point, presupposing of course that L and WY are large relative to 3t .
The nuclear flow thus becomes

2
(60) T = 4- " Zp,0 Wy (Wt-x) (L -3+ 1) (Bg - 1)1:',(:}‘)""c

If crystals at the pointw =1L = 5 are not removed, the process becomes re-
versible; the nuclei mature over the entire surface £ , ®¢, and the layers may
likewise decay. We have

e .0 z

J. R = - W, 4L
) STV
= &
= ZO,O - 1% + .

B(g-z) (L =)=

But if W{~JL » 3¢, then the subtrahend tends to vanish and we again have equa-
tion (60), which we write in simplified form, simultaneously dividing by Zo 0
to obtain the work of formation of a two-dimensional nucleus on a single
crystal:

22
" Wige = 4w Lk By 18

20,0

If for moderate supersaturation we take B@ -=1=1In B@, and introduce
In B@ = (B - unm)/kT, then

kT

K By =
(60a) T e 4w WL L O® kT
Z5.0 X kT
H

This is the equation for the growth of a surface on a macroscopic crystal, ex-
pressed in lattice planes per second. In this form, the equation holds only for
the model crystal selected. For purposes of generalization, we consider that
(1/2) (u@ u@ is the free edge-energy per atom, so that x(u® - u®) is
half the free edge-energy of the nucleus, or the work of formation Ak ofa

two-dimensional nucleus. The exponent on the second exponential is the free
energy A at the ends of a row; wyWtL= WiF is the number of vapor mole-

cules incident on area F per second. We can thus bring the equation of
growth into a more general form by further introducing g = T 6‘720 o as the
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rate of growth in centimeters per second (& height of a lattice plane):

A _ZEx
(80b) g=W 6§ Full k):’rnoo e KT , KT

This equation is essentially independent from the model, provided we are deal-
ing with homopolar crystals. For heteropolar lattices, it is true only in very
large crystals. In this connection, it remains to note that there are three pos-
sibilities of addition of nuclei - at vertices, along edges and in the interior of
faces. Which of these cases predominates depends on the size of the crystal,
since the chance of addition at the vertices is independent of size, while the
other two increase linearly and quadratically with edge length, respectively.

In small heteropolar crystals, owing to least energy of nucleogenesis, addition
takes place at the edges only.

Crystalline nucleogenesis

The transition to the three-dimensional case is accomplished analogously
to that from row to layer. Equation (60) expresses a partial flow for station-
ary crystalline growth, namely the flow of transition of crystals w = W,
l=4, ftocrystals m =W, L =L, (§+ 1) by addition of an (4+ 1)-st
layer on one side. Since we now regard the three coordinates as variable, we
write equation (680) as

J3ld L, - Zwlge)
wl(ﬂ'"”'p b B“')ts (&*‘1)

For, by analogy with the earlier procedure, we may regard the addition of an
entire layer as a reversible elementary act and regard

s, o
Zg’o—= WI(M,L’*)-_- 4WI (m-)t) (L")f) A (B®_ 1)B®x b4

as the appropriate quantity corresponding to wyp for the incidence of a single
molecule while

b-2 -1) (t-1 %) (L -x) - %2
B,,,1,(4+1) =20 8@ Bé@ ) ( he&" ) (L-x)-x

corresponds to the quantity 8, ; for the molecular process. Since addition
on either of two opposite sides has the same effect, 1., | , = 271 | ¢ and
M:' H * 1“’ [} '&

we obtain
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2wl(m t,*) . Bmsb’ (&4‘1) = Zm’t’*B‘“)ts@*‘l)-zm,'r,(*-i-l).

w,l, (§+1) wli(§+1)
This partial equation is divided by “TI” Bgyz= TI]  B; tobring
1, 1,1, 1

it into the form

J‘“,Ls‘} * W:t:* =w‘“"sl‘:‘} ) w"‘,"’*"'l

This division cancels the factor B_m,,, ,(J+1) on the left side, so that we have

w L,% wl
only to form [1 Bx,y,z = _{_fﬁi . Since in forming the latter, the
4,1,1

sequence of factors is arbitrary, we select the following conceptually conveni-
ent mode of formation of the crystal w , 1, $:

On a single atom, we attach free linear rows of w -1 -1, §-1 atoms
in the directions of the three axes; each occasions a factor é@‘ Then we com-
plete the faces, which calls for a factor B@ occurring (w=-1) (L -1)

+(L-1) (4-1) + (m=1) (- 1) times. Finally we complete the volume,
yielding the factor B@, (w-1)(L-1) (4- 1) times. Thus

w,l,4 wl
_I_I Bx’Y9z: = Tf Bi
1

1,1,1
g3 Qe DD LD DD (1) - DE-D G-
"0 ® ®

8 -x(m1+m}+1.})+m-b{+ 3x-1

Hence
- 1
W‘”:L:‘; - w,l,
2w ] ] B
I(w 1) 1, 1,1 X,y,2
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Bwp - (L-%)x (Pg-1) "g @

We abbreviate the nearly constant first factor as Q:

w2+l +wefilp) = wdle 24 1
nm,t,* = Q- B@

The resistance R, 9 4 may now be symbolized by a three-dimensional wire

lattice, and the problem is to determine the current between two points of
known potential. One of these we select as the lower vertex \01,1’1 = 21,1’1

of the lattice, i.e., the number of gas molecules per cubic centimeter. As be-
fore, the second point is given by the requirement that we are to remove all
growing crystals at a certain size w,l, § =~ s,8’,5"", thus setting \os,s’,s»

= 0. To examine the resistance between these points of the lattice, we intro-
duce the following transformation of coordinates. On the space diagonal, we
drop a perpendicular p from the point P:(w,l,4). The foot of this perpen-
dicular has the coordinates § ,§,8. We now take the foot of the perpendicular
as origin of a coordinate system parallel to the original system. In this sys-
tem, the point P has the coordinates P1, 92, ¢3 Then

w= § + 04
l=2§ +¢g9
=8 +g¢3
91+92+?3=0
and
1,.2 .2 .2 1.2
®152 +%2% +%1% = - 3 (1 +ef+ed) = - L¢P,
For

witmfrly= 342 3 ¢

thisrfurther yields
W-L-&=83 '%8§2+ 91'92‘?3-

From this, for the essential terms of the exponent, we obtain
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whmlswfslp) ~amlf= 3520 - 53 %(5‘”) 62 - ¢192% -

The term (1/2) (§ -3)92 in the exponent, within the determining range § >,
produces a still more rapid increase of resistance with distance from the di-
agonal than in the two-dimensional case, so that in practice the current flows
only along the diagonal. The term 352y - 43 gives rise to an extremely
sharp maximum at § = 2%, so that the total resistance is

Ray 2y, 2y = 1 B4x3+x2-zx+1
% 3,3 7 g w0 (B - 1)
Thus the required rate of nucleogenesis is

3 ~4u3-22+2y-1
J = BWI' Z1’1’1 R (ﬂ@ - 1) ‘B@

Since in practice nucleogenesis occurs only if 8@ is a multiple of 1, we can
set B@- 1 =S®, approximately, obtaining

e 3 B-4u3-x2+2u 3 3w -4ud-ud-w

j =8wlz1’1’1x ® =8WI 21’1’1\{ B@&@ .

If we make the substitutions

H@ - H®) E@ - h
kT o kT

Bé = e = and 3 (@) - ég) = & - é@ )
we obtain 9
60 - EQ -4 (£®- 9@ -u(&@- e@) -(& Q-e)@
(61) .j. = 8w zl,l,l x3 e kT ¥ kT ‘e kT ‘e kT

The second exponent is synonymous with

AK_ 60K .
kT 3kT °

for (1/2) (E® - &@) is the surface energy per atom, and, under the general
hypothesis of constant inean volume of oscillation, the corresponding free
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energy also. The edge length of the nuclear cube in number of atoms is 21,
in our model twice as great as the edge length % of the two-dimensional
nucleus. Hence

s0g _ 1 21 = 402 .
is the work of nucleogenesis. The first exponent (&g - é@/k’l‘ ~ A/KT arises

from the fact that in the kinetic analysis, we regard the first building block
as given. The work of nucleogenesis

K
%O0x .
-3 ;(D-i'ul)

however, also includes the energy deficit due to the first building block. This
amounts to exactly &g - E@. In the third exponent we again have the work of

nucleogenesis for the two-dimensional case. The factor xS = (2\:)3 is ng,

the number of molecules in the crystalline nucleus. Therefore, again replac-
ing. J and 21,1,1 by simply J and Z;, we can write

» @ *xr A

kT kT = kT = kT

Jdt = wy Zynge e € e dt
or, since
5®-£®~—A ’
2.2 _*x _A
(82) Tat=wzyngel e T o g,

In this derivation we have not considered all possibilities of aggregation,
but only the closed shapes. For completeness, we shall now check whether
this affects our formula. To describe such generalized shapes, we posit an
imaginary lattice in which we incorporate atoms at random, numbering them
in order of selection. Let such a configuration of n atoms become a certain
other configuration of n + 1 atoms. The partial resistance corresponding
to this operation is determined by the product of all B;-values involved,
namely
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;ui-n-ul

kT
Bloﬂz'oc-% =@

The partial resistance, then, is greater the greater the work of addition re-
quired. For a given number of atoms, however, this is simply determined by
the free surface energy, which is greater the more creviced or otherwise ir-
regular the shape becomes. The disregarded shapes, in our resistance pat-
tern, therefore represent additional conductors of very high resistance, and
for that very reason are negligible so far as conduction through the lattice is
concerned.

This argument suffices to convince us that the formula derived above is
inherently independent of the model selected. The model merely determines
the particular character of the resistance patterns. The path of least resistance,
however, always proceeds very closely along the crystalline shapes of minimum
free surface energy. Along this path, the resistance rises to a sharp maximum
at the nuclear magnitude, to such an extent that in all cases the total resistance
is practically (reduced) to this partial resistance Ry, which in addition to

the molecular rate of incidence exhibits the decisive factor e-AK/kT .

If the crystalline growth is taking place in some phase other than vapor,
the entire argument will be unchanged if the proper corresponding magnitudes
W g , etc., are substituted.

There are no quantitative data available on crystalline nucleogenesis
from vapor; in any event, comparison with the theory would at present be im-
possible, in the absence of knowledge of the free surface energies.
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b) Crystals in Supercooled Liquids

It is possible, however, to set up a qualitative comparison between the
implications of our formula and observations of nucleogenesis in supercooled
liquids. For this purplc:%e we simplify equation (62) by regarding all factors

except wp and e K as constants. This is permissible for the following

reasons: in the factor e2 A/3kT the heat of evaporation is replaced by the
heat of fusion, reducing it to the order of magnitude of 1; in the range of ob-
servable three-dimensional nucleogenesis, the work of formation of a two-
dimensional nucleus is about a twelfth or fifteenth of that of a three-dimensional

nucleus, so that the factor e--K-K kT is of the order of magnitude of 10°2 to
10-3 » and only slightly dependent on temperature; while the number of mole-
cules in the nucleus and the number of molecules Z3 per unit volume of liquid

are a fortiori of constant order of magnitude. For wp we introduce the ab-

-u
breviated expression Wy = constant - e I » Where uy is the energy of
activation for the phase transition from I to II, and obtain

ug Ak
(63) Jdt = Ke kT e kT dat.

The surface area Og of the nucleus may always be expressed in terms of a
linear quantity - say the altitude hl. of the component pyramids, or, for
simple shapes, the radius hy, = rg of the inscribed sphere. Thus Ok =wr¥{,
where w is a geometrical coefficient. If we introduce the thermodynamic po-
tentials, by equation (34), then

&3 2
I

3 3 (M ~Appe)?

For the transition from liquid to solid it is convenient to write (11)

2
W.p? . B
AK= : K =4w

Tg - T
N (nr-ppe) = Qg ‘(‘S—Té—)

(Qg molar heat of fusion, Tg melting point). Thus we obtain
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a/ @, .

and

3 2
4w/ MO8 Tg 1

- - (d Q@ (T,-T2- T
(64) Jdt=Ke *T C at .

The determining variable in this expression is T, For suitable intermediate
values of Qg, dand 4,

~(sL + B )
Tat=Ke KT (Tg-T¥ T4

(o208 ),

Q?

Now while uj and likewise B are unknown in all cases, there nevertheless
exist approximative limitations. Thus up 1s certainly smaller than the heat

of evaporation, and approximately deducible from the behavior of the linear
rate of crystallization as a function of temperature. The factor B contains
the crystal-liquid boundary-surface energy as an unknown. For want of better
data, one can try to estimate this quantity as follows. The specific free sur-
face energy of the crystalline faces adjacent to the vapor is very roughly about
the same as the surface tension of the liquid. This, multiplied by the quotient
of heat of fusion over heat of evaporation, might seem a reasonable estimate
of the required free surface energy.

If we express J as a function of T in terms of such estimates (fig.

52), we obtain a curve of the type found by G. Tammann (112) and his pupils
in numerous experiments on nucleogenesis in supercooled liquids (cf. fig. 1).

F-TS-7068-RE 176




2okl der Keime (J-£)

.'~Ernpavbn

Fig. 52

Ordinate: number of nuclei Jt
Abscissa: temperature

The maximum rate of growth of nuclei, once formed, is to be found at
higher temperatures than the maximum nucleogenesis. This rate of growth
has been the subject of much research, in particular by G. Tamman and his
school (10). The usual techniques of measurement consist in following the
progress of the crystallization of a liquid in a glass tube. What is measured
is the displacement of the macroscopically visible boundary (in mm per minute
in Tammann’s case) with the tube immersed in a constant-temperature bath.
The speed-temperature curves have been determined for many organic sub-
stances. Two types are distinguishable. If the rate of crystallization g is
greater than 3 mm per minute - which is so at the maximum for the majority
cf substances - then this maximum consists in a fairly long temperature range
of constant speed (fig. 12a). Substances that crystallize very slowly, however,
yield the form of curve in fig. 12b.

The former case is the more complex, since the heat of fusion evolved
is not conducted away rapidly enough to maintain the bath temperature at the
phase boundary. G. Tammann (10) maintained the view that in the range of
maximum rate of crystallization, the temperature at the boundary rises to the
melting point, and that at the broad maximum, the melting-point temperature
is always sustained. However, this cannot very well be; for one thing, the rate
of crystallization at the melting point ought to be zero, and for another, when
the velocity is constant the heat evolved per second is constant too; but since
the bath temperature is different, the derivative is different, and the boundary
temperature must necessarily fall with decreasing bath temperature. Experi-
ments by R. Nacken (112) likewise refute Tammann’s supposition.
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Determination of the true boundary temperature is difficult, but it has
been measured by H. Pollatschek (113) to such a close approximation that the
untenability of the cited opinion may be regarded as even experimentally estab-
lished. The problem of the reason for the conspicuous constancy of the maxi-
mum rate of crystallization over an extended temperature interval has not as
yet been definitely solved. Th. Foerster (114) correctly points out that the
shape of the boundary surface is not plane, and the temperature in it must vary ‘
locally. He has succeeded, by dealing with heat conduction accordingly, in
devising an instructive interpretation of the experimental result. According to
him, the same speed-temperature curve ought in principle to be expected as in
the case of slowly crystallizing substances if it were possible to dispose of the
complications to which the conventional experiment is subject.

In this as yet unsettled state of affairs, it is desirable first to discuss
the cases of the type of fig. 12b, where the temperature compensation is rapid
relative to the evolution of heat. In the case of glycerine, H. Marder (115)
was able to show that the temperature of the two phases practically coincided
with the bath temperature clear to the boundary (maximum deviation 0.129).

The theoretical interpretation (116) is nevertheless unsatisfactory. If
we at first disregard the necessity for two-dimensional nucleogenesis in the
growth of the solid phase, g should be proportional to (Wy - Wyp). By (13),

uy ( _ Qg (Ts"T_)_>
“RT_-T
KT 1-e RT,

It turns out that this equation fails to reproduce the observed curve. In par-
ticular, the point of inflection in the neighborhood of the melting point is ab-
sent. But just this is the result of two-dimensional nucleogenesis. If we -
incorrectly - conceive crystallization throughout the temperature range as
‘‘unit ctystal growth near equilibrium,’”’ we a /rive at equation (60b), which in
simplified form - with Wj = constant : ¢ “U - may be written

I T 4
gaK-e 5.o KT

g=W-Wnpvg=K-e

For -A'K, in simple forms, we obtain Wre £/2 (er perimeter of two-

dimensional nucleus, £ free edge-energy), or, introducing the thermody-
namic potentials and the heat of fusion analogously as in the three-dimensional
case,
wM e2 Tg ‘
*K " 748Q5(T5- 1) ;

F-TS-7068-RE 178




: wme2 T
(3 thickness of lattice plane). Finally, with the abbreviation B = 3355k

(s B
f-K-o KT = (Tg-T): T

This equation, with suitably chosen values, yields a somewhat improved repre-
sentation, but is still far removed from true correspondence. This is not sur-
prising, for the process is not the unit crystal growth we have analyzed; instead,
the solid phase is progressively more finely crystalline with decreasing tem-
perature. The experiment lacks the physical simplicity required for a simple
formal description., Likewise, the energy of activation Uy remains indeter-

minate within a certain interval,

Incidentally, metamorphosis between two solid modifications exhibits an
analogous temperature function.

¢) Crystals in the Interior of Mixed Crystals

The theory of homogeneous nucleogenesis in the interior of crystals is
in general a difficult problem. If the molar volume of the new crystal differs
appreciably from that of the old, the formation of a nucleus will involve stresses
that may play a greater part in determining the thermodynamic potentials than
the surface energies do. Consequently the problem requires further special
elucidation. At this point we may welcome an exploratory experiment by R.
Becker (117) upon a particularly simple example, an experiment which - not-
withstanding some otherwise exceptionable oversimplifications - may pos-
sibly point a future course of development. It concerns a mixed crystal de-
composing into two crystalline mixed phases. The diagram of condition is
shown in fig. 53. The abscissas x; represent the molar proportion of com-

r
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ponent 1; the ordinates are temperatures. The mixed crystal I is stable above
the curve and unstable below it. The mixed crystal - say of composition xj -
enters this unstable region by cooling, passing through temperature T’. I«f
there is no transgression, precipitation of phase II, the richer in this compo-
nent, should occur at this point; and upon further cooling the composition of
the two phases at equilibrium should coincide with the intersections of the tem-
perature co-ordinates with the two branches of the curve. Actually, however,
transgression does occur, and precipitation does not proceed with any rapidity
until after considerable supercooling. The precipitation has a maximum at a
certain temperature, and becomes inappreciable upon cooling t{o very low tem-
peratures. Qualitatively, the phenomenon shows the same general pattern as
crystal formation in supercooled liguids, and is governed by an equation for
the rate of nucleogenesis corresponding to (63):
A TR <
Jd=K-e kT ‘e kT dt .

The problem consists in determining the energy values u and Ag, the latter

as a function of temperature. This is approximately possible only in especial-
ly simple cases. Such a case is singled out by R. Becker; namely, the two
phases I and II are to have the same lattice and very nearly the same lattice
constant. The energy of activation for transition of a molecule from phase I
to phase 1II, v, may then be assumed about equal to the energy of activation

for a change of place within the lattice, u; which may be calculated from the
coefficient of diffusion as a function of temperature. Determination of the work
of nucleogenesis, or the specific free boundary-surface energy which this re-
quires, turns out to be more difficult. Becker assumes that it is equal to the
energy required to create a boundary surface of 1 cm. between the two phases.
To compute this, following Bragg and Williams (118), it is assumed that the
atoms are bound only by their immediate neighbors. In the simple cubical lat-
tice, on which further calculation is based, b = 6. The bond energy of an
atom is to be additively composed of its bindings to its six neighbors. The en-
ergy of a mixed crystal of the two atomic species 1 and 2 may then be repre-
sented as a sum involving three different amounts of energy ¢ 1,10 [0/ 2,2’

¢ 1,2» Peculiar tothe 1-1, 2-2 and 1-2 bindings. If n =ny + ny 1s the
total number of units in the mixed crystal, andif ny/n = x; and ng/n =

X9 = 1 - x; are the molar proportions of the components, then for statis-
tical distribution the number of 1-2 bonds is equal to nbxixo. If we dis-
mantle this mixed crystal and add the n; atoms to a pure crystal 1 and the
ng atoms to a pure crystal 2, then the totality of 1-2 bonds will be replaced

by 1-1 and 2-2 bonds in equal numbers. The energy of the mixed crystal,

Em’ referred to the two pure crystals of n; and ng atoms, is accordingly
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Em=n-bxy - x EP1,2—-;7(¢1,1+@2,2)]=n-bx1-xzq§ =ne,

where we have applied the abbreviations & =@y 5 - (451,1 + ¢2,2)/2 and
E,/n = €. Resolving,

or
B=xp 81+ -x)Ey
de .
-a-x—l-‘;'el‘Ez,
E1=e+(1-x1)-_§.§§;_=bq>'(1-x1)2;
de 9
22=E-x1_--a—xT=b§>x1.

The thermodynamic potentials of the two components in the mixed crystal,
referred to the pure crystals, will be called uq and ug; then, neglecting

the differences in mean volume of oscillation between the mixed crystal and
the two pure crystals,

Ap=% +kTlnzxy =b¢ (1-x)% + kT Inx

(64)
fg=fa+kTIn (1l -%)=b@ x2 4+ KT In (1 - x;) .

The behavior of the thermodynamic potentials, then, under the hypothesized
conditions, is perfectly symmetrical. This symmetry, for the coexisting
phases, implies that

b (l-x) +kTinx =b® x3 + kKT In (1 - x;)

or
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(64a) I-% "~ 5% °
In

X1

Distinguished values of ¥u;/%2x; = 0 are to be found at
1 1
=7t \T "3y

The temperature at which the square root becomes 0 is the critical temper-
ature Tqp, below which the two-phase interval begins. If this temperature

is experimentally determined, then the quantity of energy & 1is given by

2 kTep
(65) Lk

This energy is intimately related to the required boundary-surface energy be-
tween two tangent phases I and II with molar proportions Xy and X of

component 1.

A crystalline cube of 0.5 cm2 cross-section of each of the phases I and
II is split in two and the fraiments counterchanged. This generates two 1/1I
boundary surfaces of 0.5 cm“ each; let each of them contain 0.5 n atoms.
Then the energy expended is the required specific boundary-surface energy.
In the presupposed simple cubical model with lattice constants equal, each atom
of the cleavage area participates in the process to the extent of one bond. The
three types of bonds 1-1, 2-2, and 1-2 are represented, e.g., in the propor-
tions =xypyxmy, (1 -xpp) (1 - xqpy) and xpp (1 - xqqp) + Xy (1 - %) in the

final result. The algebraic sum of all properly denumerated bonds, each mul-
tiplied by the appropriate energy values & 1,1 o 2,2 ¢ 1,2’ yields the re-

quired specific boundary surface energy 4 =v & (xn - xm)z, where ¥ |is

equal to the square of the reciprocal of the lattice constant and ® is given if
the critical temperature of the solid solution is known. Actually, however,

the resulting ¢ is not that of the specific free boundary-surface energy re-
quired in the sequel. The latter is smaller because of the displacement of con-
centration towards the boundaries due to infinite retardation of the process.
This circumstance will require special attention in future exact treatment of
the subject. If we regard the free boundary-surface energy as correctly de-
termined, then the length of the radius of the inscribed sphere in the nucleus
becomes rg = 26 vl/(pl - A /1)1 » or the length of the edge of the cube
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ag = 4 ¢ (x; - xg1 /I)f/(pl -Myr/1)1, expressed in numbers of molecules.
This presupposes that the nucleus has the composition of the new extended
equilibrium phase. Xy is experimentally given, /1 is found for each tem-

perature from (64a), and the thermodynamic potentials are calculated from
(64). The work of nucleogenesis, finally, is

AK"—' %-60K .

As a specific example of the process of calculation, we shall hypothesize
a critical temperature cf 1500 and presuppose that the energy of activation of
change of place is given as u = 39,000/N cal. from diffusion measurements.
Where b = 8, (85) yields © =~ 1000/N cal.

Table 14
. Sl 4
T 11 X ap AK * N e kT
1211 0.15 0.85 ® ® 0
1092 0.10 0.90 7.0 55,300 | 1.352 10719
1032 0.08 0.92 4.7 26,100 | 1.59 10714
959 0.06 0.94 3.4 14,100 | 7.76 -10°13
917 0.05 0.95 2.9 10,600 | 1.452 - 10-12
869 0.04 0.96 2.5 8,100 | 1.384 - 10°12
811 0.03 0.97 2.1 6,100 | 6.855 . 10°13
740 0.02 0.98 1.8 4,500 | 1.422 10713
640 0.01 0.99 1.5 3,100 | 4.083 - 10-12

Table 14 indicates the resulting molar proportions of the coexisting
phases for certain temperatures. The other columns of the table refer to a
mixed crystal with xj = 0.15. Upon cooling, transgression takes place at

T = 12119, The quantities ag (with lattice constant as unit) and Ag de-
termining the frequency of nucleogenesis are entered in the next columns, and

finally there is the expression Jpgp = e (ug + AR)/ kT, defining the relative
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rate of nucleogenesis. This is graphically represented in fig. 54.

S0 @0 W0 800 300 W00 0T,

Fig. 54

1 Stunde: 1 hour

The calculated result can be related to experiments by C. H. Johansson
and G. Hagsten (118) in which the change in electrical resistance of Au-Pt
alloys upon tempering was observed. Figure 55 shows the results obtained
with an alloy containing an atomic proportion of 30% platinum. Above 954°C
the homogeneous mixed crystal is stable and the resistance rises linearly with
temperature. Prolongation of this straight line in the direction of lower tem-
peratures yields the resistance curve for the supercooled mixed crystal. In
this range, however, the resistance fails to be constant with respect to time,
but falls off owing to the gradual decomposition of the mixed crystal into the
two new phases. If the equilibrium condition is reached at each temperature,
the resistance-temperature curve assumes the form of the lower solid curve.
But if the mixed crystal is suddenly cooled to each temperature and then meas-
ured after 1, 5, 10 and 20 hours, we obtain resistance curves of the type
shown dotted. These curves therefore give an idea of the rate of decomposi-
tion of the mixed crystal as a function of temperature. We see that this is ex-
tremely small immediately below 8549, has a flat maximum at 740° and an-
other sharper maximum at 5759, again becoming inappreciable at more re-
duced temperatures.

The alloy in question has approximately the characteristics of the model
hypothesized in our calculation. The heat of activation of 39,000 cal/mol for
change of place was reported for this case by W. Jost (120) on the basis of
diffusion measurements.

Comparison shows a better correspondence in the position of the max-
ima than could reasonably have been expected in view of the errors neglected.

The pronounced experimental maximum is 3500 below the equilibrium
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temperature, whereas the calculation placed the maximum nucleogenesis 300°
below the equilibrium temperature.

It remains to note that the maximum rate of nucleogenesis (calculation)
does not in general coincide with the maximum rate of precipitation (experi-
ment) because the rate of growth of the nuclei, whose maximum value lies at
a different temperature, displaces the precipitation maximum.

As for the second experimentally observed maximum, its explanation is
presumably to be sought in the existence of favored points where nucleogenesis
is facilitated.

F. NUCLEOGENESIS ON BOUNDARY SURFACES

a) Grafting of Crystals

An idealized example of the grafting of one ionic erystal upon another
has been thoroughly analyzed by I. N. Stranski and L. Krastanow (121). Let
an fonic crystal Ct'*An” of the NaCl lattice type but with double ionic charge
be suspended in a supersaturated vapor of a crystal of like type and same lat-
tice constant but single ionic charge, Ct'An’. A priori, the possibility of
nucleogenesis in the homogeneous vapor is also given. The problem is to show
that nucleogenesis occurs far more readily on the surface of the Ct**An’’ crys-
tal. However, there are several other possibilities; it is conceivable that
the lattice planes of the new crystal may be generated successively upon one
another, or that two, three or more layers may be formed in the nuclear stage
itself. In determining which alternative occurs in practice, we must determine
the frequency of these events, and this depends primarily on the energies of
nucleogenesis.

First, then, we are to determine these energies. For this purpose,
following Stranski (122), we regard the individual lattice planes or even layers
of several lattice planes, as two-dimensional phases. Each of these phases is
associated with a particular thermodynamic potential. This thermodynamic
potential follows at once from the energy and volume of oscillation of a mole-
cule, i.e., a pair of ions, at a point of growth, computed for layers of infinite
extent. The thermodynamic potential in the two-dimensional nuclear stage is
determined by the specific free edge-energy. For purposes of calculation we
again introduce the simplification of neglecting differences in volumes of
oscillation and operating with straight energy values. Let the thermodynamic
potential of the Ct'An’ vapor be g, that of the future extended solid phase

of the Ct"An’ crystal Wy, The forms M1 Hgs Mg, eue designate the
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thermodynamic potentials of the extended single lattice planes 1st, 2nd,
3rd, ... in order above the top lattice plane of the given Ct**An’ crystal.
Let 1, _q be the mean thermodynamic potential of a layer three lattice

planes in thickness, l.e., Ky _g = (K +Hg + ”3.)/3' The interpretation of

the energy values €y5; ©;, €9, €g,... is analogous. For simplicity of

notation, we suppress the subscript o, which properly belongs on all of these
w’s and €’'s. For the calculation of these energy values from the lattice po-
tentials, reference is made to the original source. The values, expressed in
units of e2/& (e elementary charge, 6 lattice constant), are as follows:

by, = Hpp= gy - Ep=- 020408 by o -Bo =€, o =€ =4 0.00156

Hg, = by = Eq = &y = +0.00809; hg.-5. = Mg = &g .5, - Ep = +0.00078

- €. = + 0.00052

= - 0.00004; It

hee = E

Mg, = M = &3 - Eq o 7, "% = &y.n,

Mg, = bp=€y €= 0.

From the 4th lattice plane on, then, the new phase II may be regarded as
formed. The energies of the multiple layers are given from the second on.
Since £ < €p, andaccordingly y,{Wg4lPyy thefirst Ct'An’ lattice

plane is occupied even in the unsaturated vapor, let alone in the supersaturated.
The nucleogenetic difficulty lies in the second layer, since € 9. >E& n and

Ko > Ky Instead of the formation of the second lattice plane, however, a
multiple addition may preferably occur, since the mean thermodynamic poten-
tials of such multiple layers are all less than kg . It mustbe noted, how-

ever, that the thermodynamic potentials of these muitiple layers rise far more
sharply with decreasing size (i.e., in the nuclear range) owing to their higher
free edge-energy. The specific free edge-energy of a single lattice plane in
the cube direction is always the sanae segardless of the substrate, namely
£y, = 92. = f‘s = .., = 0.1604 e4/64, But the edge lengths 1.0 ¥g 50

of the square nuclei are dependent on the subscript, since the thermodynamic
potentials of the extended lattice planes are. The specific free edge-energies
of the multiple layers are

2, _ 2, _
$ 9.-3. = 0.2160 f’z” £9.-5, = 0.3364 =33 52.-1.= Fa.5, + (S5, F,-3.) -

The edge lengths ¥ of the nuclei are given by the requirement that the
thermodynamic potentials
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1. K T M2 K*** T Hg -3 K = HI

be equal. Thus, e.g.,
?1 '82 ?1. ‘5’2
ety (eptep) - (E -Ep 0

fl 062 92 _3 . 82
x = » = » L]
2.-3. © Wy-Tag T (M -Bp -(Eg.3 -Ep

Finally we obtain the energies of nucleogenesis from -A-l = 2)4:1 $’1 H

Kgg, = Wy Sy ; Hge .3 = 2%y _3.59 3. 5 +++ etc. For the frequency of

occurrence of the various nucleogeneses, we have equation (59b), which we ab-
breviate

- Txlo - TK!z.'s.!
kT kT
.Tl=K°e } see Jz._s.ﬂx°e

The coufficient K of the exponential, of constant order of magnitude through-
out, is arbitrarily set by the authors at 1020, For practical evaluation, they

further take § = 5.6 - 10”8 cm and T = 800. The following table contains

the energies of nucleogenesis in ergs-lOlo for various layers, omitting the
first, of interest only in subsaturated vapors. The quantity A refers to

nuclei in the homogeneous vapor. Instead of the difference M = b =
= kT In p/p,,, the table shows the ratios P1/Py, Of the supersaturated va-
por to the saturated vapor at T = 900.
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Table 15

ﬁ- = 1.2 2.0 3.0 4.0 5.1
P
AK 4.49 0.31 0.12 0.08 0.056
Ay o, 0.871 | 016 | 0088 | 0.054 | 0.045
‘RK (2.-3.) 0.479 0.007 0.059 0.047 0.039
Kgg.-5) | 0488 | 0118 | 0065 | 0058 | 0.047
Agg.-7) | 0865 | 0138 | o086 | 0068 | 0.058

! X ! J| Moz
14

la
J

0 ’ -

7] 20 40 &0 <0
Ao g %;‘i‘- ﬁ‘ —
Fig. 56

Figure 56 represents the resulting J-values, to be regarded as numbers
of nuclei formed per second per unit surface area of the Ct'*An” crystal, or
per unit vglume of vapor. For the latter case, the authors select the coeffi-
cients 1020 () and 1025 (J’). We see that the double layer 2.-3. is by far
the most frequent nucleogenetically, i.e., becomes the sole alternative with
increasing supersaturation. Homogeneous nucleogenesis can only occur when
high degrees of supersaturation are suddenly established, so that deposition on
the surface is determined not by nucleogenesis but by supply of molecules.

Finally, it must be emphasized that the calculation definitely does not
correspond to the practical course of the phenomenon. In the experimental
case, nucleogenesis will hardly occur on the face but on the vertices and edges,
particularly on the inevitable lattice plane steps of the actual Ct:*An” crystal
and its reentrant vertices. Calculation of such instances is laborious at best.
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It is easily seen, however, that the deposition of Ct°An’ molecules here oc-
curs with special ease, thus reducing the sum total of molecular energy com-
ponents of the work of nucleogenesis. The vapor experiment is not readily
performed, but it is to be assumed that the gradation of the Ag-values is

similar in solution, and that the description given will be generally correct for
precipitation of crystals from solutions also. A survey of grafting phenomena
will be found in a report by H. Seifert on anomalous mixed crystals (123). i

b) Nucleogenesis on Electrodes (102)

The electrolytic deposition of an element on an electrode from a foreign
material is accompanied by an excess tension arising from a transgression of
the state of equilibrium and eliminated by nucleogenesis; quantitative calcula-
tion, in the general case, requires knowledge of three boundary-surface ener-
gles. We call the electrolyte phase I, the substance to be precipitated phase
II, and the material of the electrode III. Then we have the specific free
boundary-surface energies 61 /e Sn /m and 61 /I The necessary data

are at present accessible only in the case where the new phase II is gaseous
or liquid. As an example, we select the deposition of mercury from a mercu-
rous solution on an electrode not completely wetted by mercury. Let fig. 57
represent the experimental set-up. On the bottom of the electrolytic cell there
is an anode consisting of a quantity of mercury I’, in contact with the electro-

| Fig. 57

lyte (Hg;'*) over a large area. In the latter is dipped a cathode of material

III on which the new phase II - namely mercury - is to be deposited. Current
is supplied by the indicated potentiometer circuit; a millivoltmeter indicates
the applied electromotive force E. Between I’ and I, at the minimal current
intensities used, a permanent state of equilibrium prevails, which fact is ex-
pressed in terms of the electrochemical potentials previously defined (N =1 +
+H-.e) by N =" - If the new phase II presented a plane surface to the
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electrolyte in contact with the electrode III, its electrochemical potential would
be Ny =Hpy - Hn-e. Since up = Wpp ,

qn=nn) + (Hn"Hn’)ne =nn, -Ee=ﬂI-E-e,

where E is the applied voltage.

At its genesis, the new phase II traverses the range of small dimensions.
Let the mercury form a lenticle of angle of adhesion @ on the electrode, at the
applied electromotive force E. If the radius of curvature of the lenticle is r,
then Thomson’s equation becomes

2%y/m Vo
r

('Tr “")m)n =

for this case. If q is the capacitance of the layer per square centimeter,
then

1
61/11 (B) © °I/II (max) ~ —2' (B - Emax)z *q .

Weset q =7é/4, i.e., we regard the sheet as a plate condenser where &

is equal to the plate interval divided by the dielectric constant. According to
Gouy’s measurements, $ lies between 0.2 « 10-8 and 0.5 - 10"8, and is there-
fore small relative to molecular dimensions. € 1/1I (max) is the maximum

boundary-surface tension, occurring for 0 charge on the condenser and the
corresponding electromotive force E, ... Hence

(E - Epgy)?
S/I(E) = ®1/M(max) = —57 g -

To determine the frequency of nucleogenesis we imagine the cathode surface

III to bear a large number of lenticles of subnuclear size, taking on and giving
off ions. If one of these configurations comes to transgress the nuclear thresh-
old, it matures into a lens which we remove when it contains s atoms - say
by letting it drip off. The formulation is so far analogous to that employed for
droplet formation in vapor (42). From the formulas for the elementary
process,

J=Wp*2p°0y - Wp(n41) * Op
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we obtain

1 (1 1 1
Wx<°o TR0 "B By 0g t

1 1
+ + ess =z .
BL*Ba- Py - 0p _Bi'sz"'ﬁs-roé-l/ °

Here Z(, the number of places per square centimeter of cathode area, re-
places Zj, the number of vapor molecules. We first compute the product

n
“'FI"f"li
= B KT
Bl~62---ﬁn' IIBi e
1

The summation in the exponent is resolved as before:

n n
n"II "Z’“ =n (']I'V\nm) '(Z"i - ’”lmn> ¢
1 1

We introduce the nuclear radius rg of the lenticle, determined by the fact
that ']m.K =Ny. Then

261/n- Vn _ 211"1'3(2-2 cosS @~ sinz (P * COS P) 6I/n
rg B Srg

2 (M- Nppeg) =1 *

since nvy is equal to the volume of a lenticle of radius of curvature r,
namely,

n-.vyg= .%_wr3 (2-2cos¢- sin . cos ¢)

The second term is the work required for reversible forination of the lenticle
from a large mass of mercury conductively connected to the cathode III. This
is a pure surface energy Ay, and in fact
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Ao = [3ym* Oym + (Gyym - éym) On/m 7 5
= dl/n . OI/H 'SI/H ¢ c°¢° on/m .
I € is the radius of the eircular surface 0II /I then
On/m =1r32 =mwrd. gin? ¢ ;

furthermore,

OI/II =27rh=2wr2 (1 - cos @) ;

(h altitude of lenticle); hence

Ao = dr/n . v rd (2 - 2 cos - 1n2q’- cose) .

The entire summation is accordingly

n
nr\I"Z 14
1

'éI/II on'ré 2 -2 cos ¢ - sin2 ¢ + cos @) [:(-%)z - -g- (;I;-jj

he [t )1 )]

where

Ag ='%61/II -n'ré (2 - 2 cos ¢ - sin? ¢ cos ¢p)

is the work of nucleogenesis. Further calculation proceeds analogously to
that reported at the beginning of the chapter; the result is
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Since
(E - B\
9 [6 - (max)
o yn@eve | LVE@SNT ey :
K 7 1° 7nco E-e
(E-E,__ )32
41 [dl/ll(max) B a‘ns?ax) ] "’fx (2 - 2cos ¢ - sin?¢ - cos @)
AK: 3 7?. ejf .
Moreover,
Z, + O A
0' VK ~ .
ng | 3wkT 20" 9

(ctf. above)., Zg Wi O; 1is about the number of incident ions per area of 1 em?2.

Comparison with observation is possible by the use of Gouy’s measure-
ments (124) on the electrocapillarity of mercury. It turns out, indeed, that in
general the functionality of the Hg ‘electrolyte boundary surface tension in terms
of the potential is not specifiable throughout by a formula Sy /IL(E) =
= &, /11 (max) " (B - E(max))z/sn'(s. In the range involved in nucleogenesis,

however, it is possible by suitable choice of the constants ¢ 1/1I (max) and

d to establish a perfectly adequate connection with Gouy’s measurements. In
practice, we proceed by calculating In Jt for a few voltages E, taking the
corresponding 61 /1(E) values directly from Gouy’s graphs. Here it is to be

noted that our E values are referred to the electrode I/II’, whereas his are
based on the standard calomel electrode. The combination 1/II’ employed is
thus to be measured in comparison with the calomel electrode.

Observations on nucleogenesis have been conducted by T. Erdey-Griz
and H. Wick (125). The electrolyte chosen was a saturated solution of mercu-
rous acetate in 1IN acetic acid. It was 0.0009 normal. The use of such
highly dilute solutions is desirable because after successful nucleogenesis, the

F-TS-7068-RE 193




solution in the immediate neighborhood of the mercury lenticle becomes so
poor in mercury ions that no further deposition takes place at that point, and
the state of polarization of the cathode due to the locally incipient concentra-
tion polarization remains unchanged, so that the observation can be continued.
Gouy performed serviceable measurements of surface tension in 1N acetic
acid. Unfortunately he reports only relative potentials, arbitrarily setting

E = 2 (by convention) for GI /n (E) = 384 dynes/cm on the falling cathodic

branch of the electrocapillary curve. On the basis of data available for other
acids of similar ionic concentration, about N/100, we assume the value
Epq) = -1.18 volts, referred to the IN calomel electrode. This involves an

error of at most 0.01 to 0.02 volts, since the cathodic branches of all curves
are almost coincident, absolutely, The rest potential of the 1/I' anode used
by Erdey~Griz and Wick with the IN calomel electrode was determined as
+0.384 volts. In the range in question, the boundary-surface tension may be
represented by the formula .

(B-E,)2

mov

- dyresscm
87+ 0.3 « 10

GI/II(E) = 425 --

(B - E ax in absolute electrostatic units); 425 dynes/cm is not the true

value of 61 Mmax® DPuta constant which yields the correct value of
(<) 1/1I max rom the formula in the important interval.

Determination of the marginal angle is in general difficult, as a high de-
gree of precision is required. Only in the case where ¢ approaches 180°
will an approximate determination suffice. For the carbon slectrodes used, it
was subsequently determined that under the conditions present in the experi-
ment, mercury droplets adhered over a circular area of diameter about 1/3
of the spherical diameter. From this we compute ® = 1468042,

2-2cos¢ - sind pcos P= 2 + 2:0.944 + 0.1 = 3.988 ~ 4, and

3
16T 6 gy V121

3(E e

AK=

or the same as for a full sphere. Any error of observation for such obtuse
angles of adhesion is therefore quite insignificant,

The lonic transfer of the mercury takes place without appreciable polar-
ization, i.e., the energy of activation is only about kT. In this case W is

given with sufficient accuracy by the rates of incidence of the ions per square
centimeter per second according to the kinetic theory of gases. Since the
acetic acid is in excess, the layer is built up almost exclusively from its ions,
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and any elevation of the rate of incidence with the 3 -potential is negligibls,
For the given conditions this yields W = anEHg/‘i %1021. The area %
the cathode was Om = 0.1 cmz; the time interval between nucleogeneses
about 10 seconds. The equation for In JtOny is thus

18 63 . 2 ¢3
In JtOp; = 48.3 - 1L - 483 - 0.074 - 1077 JALE)
3(E-e). kT E

Fig. 58

Figure 58a shows In JtOr; as a function of E. The metastable limit is seen

to lie at 0.34 volts, The first experimental formations of nuclei on carbon
electrodes with flawless surface took place at E ~ 0.2 volts, and were ob-
servable up to 0.27 volts. They are detected in a sudden depression of voltage
and rise of current. As we see, the theoretical value of 0.34 volts was not
reached. The explanation is obvious. The microscopically observable marginal
angle is not the determining one at all points of the carbon surface. It is suffi-
clent that regions of about 10 times atomic size, linearly, be more wettable due
to special arrangement of the carbon atoms in order to provide ‘‘points of ac-
tivity’’ which facilitate nucleogenesis. I, e.8., ¢ = 900 at such points, we
would have an A’K = 0.5 AK locally, and if these localities occupied a 104-th

part of the surface, then

Y ER.
81‘(6(E) Vi

3 (E - ¢)2 kT

In ItOin = 39 -

The curve of fig. 58b corresponds to this equation; the metastable limit is at
0.28 volts. In addition, even very carefully prepared surfaces are not perfect-
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ly smooth, even with high luster. Every reentrant depression reduces the
work of nucleogenesis. On dull surfaces, nucleogenesis was observable at as
low as 0.15 volts. Traces of metal reduce the threshold still more drastical-
ly; for example, grasping of the carbon rods with tweezers previously used
for weighing purposes sufficed to reduce the excess voltages practically to the
vanishing point. An evaluation of experiments with platinum and tantalum
cathodes, which are imperfectly wetted by mercury only because of a passivity
stratum, may be dispensed with, since here the measurable marginal angles
were certainly not the determining factor; instead, nucleogenesis occurred at
points of disturbance of the passivity layer covering the two metals at the po-
tentials in question. Deposition on a gold cathode (¢= 0 and Ag = 0) sets

in at immeasurably small transgressions of the equilibrium potential, im-
mediately and with sharp rise in amperage. Similar phenomena as in the elec-
trolysis of mercury are observed in the deposition of solid metals, but calcu-
lation is at present excluded because of ignorance of the required boundary-
surface energies.

Formerly the excess voltage for hydrogen was occasionally regarded as
another phenomenon of transgression and bubble formation. This has since
been recognized as erroneous. The current-voltage curves in the deposition
of hydrogen, as well as of other gases, pass continuously with decreasing vol-
tage of decomposition into the range where no formation of bubbles occurs,
and where the gas merely diffuses into the electrolyte in dissolved condition.
The processes of nucleogenesis, computed to lie in the centivolt range, are
not manifested. For metals of higher excess hydrogen voltage (0.1 to 1 volt),
the amperage is determined solely by Wy - i.e,, by the intensity of the en-

ergy of activation of ionic transfer - whereas Ag has become about equal
to kT at these voltages.
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5. IDENTITY OF THE NEW PHASE (STEP PRINCIPLE)

If the parameters of condition of a phase I are so varied as to transgress
two or more lines of coexistence with other phases II, III, the question arises
as to which of these phases will be the first to appear spontaneously.

Figure 59 represents the regions of stability of a gaseous phase I and
two condensed phases II and Il of a pure substance, meeting in the two vapor
pressure curves aa and bb and the coexistence line cc of the condensed
phases. If for example the vapor is cooled isobarically along the arrow, then
upon intersection with the vapor pressure curve aa we enter the stability
region of phase ili. Upon conunued cooling, we finally transgress also the va-
por pressure curve bb, so that the vapor is now supersaturated with respect
to phase II aiso, a: the genasis of either phase becomes possible. The
graphiral siiuntios fur the case of a liquid phase or solution in place of the va-
por is esscatiauy the same. Further, the figure may readily be modified for
cases of multiple transgression and any direction of transgression,

Fig. 59
A priori one is tempted to suppose that below the triple point, phase

IlI, whose region of existence is first reached, would have the greatest chance
of appearing, especially as other eligible phases (IT) are not actually stable
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but would ultimately go over into phase III anyway. Expressed in different
words, the idea is that the affinity of transformation would be greatest in
transition from I to phase III, from which the thermodynamicist would suppose
that this transformation would be favored., In actuality, however, the contrary
is very often observed - namely the appearance of the intermediate stage
(phase II). It is not surprising that W. Ostwald should have seen a new law of
nature in this astonishing result, later according it a wide scope of application
and profound significance.

I. N, Stranski and D. Totomanow (126), however, correctly held that no
special natural principle was involved, and that the formulas for the rate of
nucleogenesis offer the correct answer to the question of the identity of the
nascent phase. In practice, the decision requires only knowledge of the ener-
gies of nucleogenesis, which determine the frequencies with which the nuclei
are formed. We here have a special case of the general fact embracing all ap-
plications of the supposed rule, that it is not the magnitude of the affinity of a
reaction but the smallness of the required energy of ac*ivation which deter-
mines the speed and the identity of the process. In the genesis of new phases,
in particular, owing to the catalytic effect of the first nuclei formed, if the de-
gree of transgression is not excessive, the preferred phase with respect to
rate of formation is generally the only one formed.

Departing somewhat from the frame of reference of Stranski and Toto-
manow, as well as R. Becker and W. Doering (23), the situation may be de-
scribed with especial clarity by returning to the oft-mentioned cuncept of the
metastable limit, i.e., that degree of transgression at which one nucleus
occurs, on the average per second per cubic centimeter of the original phase.
We proceed with the example introduced above, merely choosing In p and
1/T as coordinates, in the interests of a convenient and roughly correct dia-
gram (fig. 60). The curves aa, bb have the same meaning as before. The
vapor-pressure curve bb is coordinated with a metastable-limit curve b'd’
whose position in the drawing corresponds approximately to the case of liquid
water. It is closely approximated by the condition that the determining ex-
ponent in the nucleogenesis formula have a particular value AK/kT. We
write this exponent in the form

Ag| 4w M2 &3 1
KT |. 38R% k dfl Pler
I

T3 1n2
P

where Prer designates the pressure of the supersaturated vapor at the
metastable limit and P /1 the pressure of coexistence with phase II at the

same temperature; w is a coefficient depending on the shape of the nucleus -
e.g., 4T in the case of a sphere, 4-8 in the case of a cube. The form of the
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limit curve is obtained approximately if we regard 63/d121_[ as independent of
temperature, in first approximation; then

ln?rcr Py = Ky Wlf.

Fig. 60

The limiting curve, marked b’b’, is thus slightly curved, and passes
alongside the vapor pressure curve bb at a distance which increases with
falling temperature. There is a similar limiting curve a’a’ corresponding to
the vapor-pressure curve aa. The position of the two curves a’a’ and b’b’
completely determines which phase, II or HI, will be formed in the vapor I
after any sort of transgression. While in the case of a liquid phase (say II)
we are prepared to specify the curve b’b’, we do not have this ability at pres-
ent with respect to the solid modifications, owing to ignorance of the 6 -values.
We must therefore confine ourselves to the discussion of scme fictiticus cases.
Often, no doubt, it will not be far from wrong to assume that & 1/~ Gy /I

and dpy ~ dyy- Then the geometrical coefficient W becomes determining;

if the nucleus of phase II is a sphere (liquid) and that of phase III a polyhedron,
then K, /III> KI /1 and the distance of the limiting curve a’a’ from the
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vapor-pressure curve aa is greater than the distance of b’b’ from bb.
Assuming cubical form for the III nucleus, K /m = (6/1!)1/ 2 K /I = 1.38 K1 1i1g

The plotted curve a’a’ corresponds to these conditions. We see, e.g., that
if we cool off the vapor isobarically in a temperature range below the triple
point but above the intarsection of a’a’ and b’b’, then while the vapor-pres-
sure curve aa is first intersected, yet the limiting curve b’b’ is reached
sooner than the curve a’a’; hence the liquid phase appears, i.e., in this case
the step principle holds. The solid phase occurs only after cooling of the va-
por below the temperature of intersection of the limiting curves (contrary to
step principle). Analogously, the result may be read off from the figure for
isothermal compression, and for any arbitrary path of transgression. Natu-
rally the position of the limiting curve may he quite different. It is possible a
priori that occasionally KI /I 4 KI /m’ in which case the primary appearance

of phase III would he expected even above the triple point of two modifications;
no such observations have been reported to my knowledge.

On the other hand, we may have KI /m»xl e so that the boundary

curves a’a’ and b’b’ fail to intersect - a case realized in an example the-
oretically analyzed by Stranski and Totomanow. It is there assumed that a
species of atom with homopolar binding may form a simple cubical or a face-
centered cubical lattice, without changing the distance between two immediate~
ly neighboring atoms. The forces are supposed to be proportional to r-7,

For further simplification, it is assumed that the nuclei are perfect cubes, or
octahedra, i.e., that in each case only the faces of minimum & appear. The
lowest energy form, stable at lower temperatures, is the octahedrally crystal-
lized face-centered (III). In the usual strictly dynamic notation, we have
y/m/% /= 2.8, as wellas dp,/dp; = V2 and w m/®y = 0.87. Hence

Ky /III/KI /= V7.44. Although the example can hardly be realized in nature,

it is nevertheless instructive; we see how the various. modes of packing of the
atoms greatly affect the surface energies, thus determining the choice in favor
of the formation of phase II.

In nature and experimental observation, however, the decision nearly
always depends on another circumstance. It was previously emphasized that
homogeneous nucleogenesis in natural processes was the exception, and that
the points of deposition are usually on existing boundary surfaces. This is
especially so of liquid nuclei, which nearly always arise on wettable dust or
floating particles. I these are not removed by special means - which is
scarcely possible in solutions - the metastable-limit curve moves close to the
coexistence curve. Since such floating particles are generally less effective
in the formation of crystalline nuclei - unless isomorphous particles happen
to be present - the limit curve a’a’ of the solid phase remains more or less
in place. The primary genesis of solid nuclei may then take place only below
a point of intersection of the coexistence line bb with the limit curve a’a’.
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These examples are illustrated by solutions in simple manual experiments.
For example, aqueous solutions of naphthalene of various concentrations are
prepared ai higher temperatures, and specimens are cooled rather rapidly in
test tubes. In the solutions of higher concentration, there is a milky turbidity
of liquid naphthalene droplets which appears at a certain temperature and dis-
appears again at a temperature about 0.2° higher. The droplets thus appear
immediately upon transgression of the solubility curve of liquid naphthalene,
which can thus be traced down to about 55° below the melting point. Below
this temperature limit, i.e., upon cooling of solutions of low concentration
that have not yet appeared turbid, no such curve appears; instead, upon pro-
gressive cooling, the formation of crystalline flakelets is observed, chiefly
on the glass wall.

- Formation of ciow* 214 foy 3 e atmosphere takes place analogously.
Down to far below the freezing point, water droplets are formed primarily,
on common salt particl»s and other kinds of dust. Snow and hail formation
are initiated by secondary nucleogenesis within the liquid phase, which oc-
curs far more readily because of the low solid/liquid boundary-surface en-
ergy. Primary condensation of ice is to be expected only at very low tem-
peratures and extremely small water-vapor pressures.

Competition between two crystalline precipitations may of course also
be affected by suitable boundary surfaces. From the cited work of Stransiki
and Totomanow, we may take the example of NaBr in aqueous solution.
Below 50.79C, the hydrate NaBr-2H20 is stable; above that temperature,
the pure salt NaBr. On PbS crystals (same structure as NaBr), pre-
cipitation of NaBr 1is observable below 50.7° down to a not-exactly-known
temperature limit,

