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THIS REPORT CO WS ....
a classification procedure and its accuracy.
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statisticians and personnel responsible for developing classification
procedures.
THE APPLICATIOM FOR THE AIR FORCE IS ....
a possible optimum classification procedure wherein the probabilities
of possible misclassifications are known under certain conditions.
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DISCRIMINATORY ANALYSIS

Nonparemetr;c Discrimination: Small Sample Performance

1. introduction

In an earlier paper [1E concerned with the problem or

nonparametric discrimination, the present authors proposed

several classes of nonparametric disrimination procedures

and proved that these procedures have asymptotic optimum

properties for large samples. The ideas and results of [EJ

are brief'ly smarized in section 2 for the c'mveni.ence of

the reader.

The present paper is concerned with the rerformance ot

some of these procedu.os where tbe samples are small. WhLle

the large sample optinum properties given in [1] are general,

the investigation of seml sample propeortieo is necessarily

special since sma11 sample performance depends ,greatly upon

a number of v&riables connected with the underlying distri-

butions assumed. We have examined in detail certain special

cases which seemed of interest and have tried to give some

4"A4 ,-,•46%.,,1.*Vim 4" a* Jl coo ^ ._P- .,I.%.

present study is given in section 3. The results obtained

axe presented in the remaining sections.

s!.-te..cy ?r-cr.:Prties," was pL;:1Ashed as FPeport No. 4 of this



2. A6"o.s8 of nonparametzic discrininastors and thlirlar, .

pawl@ propertules

In the present section we uumurise some of the 1deas

and results of W1. Let Xl, X2 , o.e, XE bb a satiple from

the p-vtrlats distribution P an4 lot Y1, Y2 , "-9, Yn b

a sample from the p-variate distribution G. We do not sup-

pose that F and G are know", nor even that their para-

metric form Is known. Let Z be an observation known to be

either from F or from G; our problem is to decide which.

To this end, define In the p-dimensional space a notion or

"distance," in terms of which the m + :. observations in the

comblaed samples can be ranked according to their nearness"

to Z. The general idea of the discrimination proccdur63 of

L1] is that Z should be assigned to P if most of the

nearby observations are X's; otbeirwise Z should be assigned

to G. To simplify matters, suppose the sample sizes are

equal (m = n), and select an odd integer k. A specific pro-

ceduro of the general class is obtained by assignng Z to

that distributicn from which came the majority of the k

nearest observation.

In [1I, 4t was shown Ciat several classes of these non-

iDarametric discriminators have asymptotically optimm per-

formance as m and n tend to infinity, in the sense that

the probabilities of ma1claiaassficai~ion,

P = iZ is assigned to GIZ came from P},

P.5 P(Z •s assigned to PIZ cam from G1,
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tend, as a and n tend to ifinitYo to the theoretioal mini-

mum values which they zould have even if 7 and G were

complotely known. The 1'esults do not require any restrictIve

assumptions on the form of F and G, or on the definition

of nearness which is used.

3. Scope of the present study

The optimum large sample property mentioned above, ,o-

gether with the applicationsl simplicity of the procedures,

sug~ests that nonparametric discriminators may be useful al-

ternatives to the commonly employed linear discriminant

fuiaction. The latter is a reasonable procedure if (I) F

and C are p-variate normal distrib-t"l-,r ýnd (i1) F and

G have the same covariance matrix. Many users and also po-

tential users of thb i*Mar discriminant function bave been

disturbed by the apparent and often considerable fal!,.r- to

satisfy conditions (I) and/or (ii) in cases where the pro-

cedure has been applied. In the absence of knowledge of the

performance of the linear discriminant function under other

conditioas than (I) and/or (ii), such uneasiness leads to an

interest in methods whose theoretical justification is free

it would not be reasonable, however, to propose an al-

ternative to the lines.r d•scriminant function solely on the

basis of asymptotic properties. In particular, It Is neces-

sary to ask how much discriminating powAr is lost through

the use of a nonparamerric procedure when samples are small

3,
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and when assumptions (1) and (11) ar valid no that the

linear disorlzmnant funotion In appropriate. The anewer to

this question re.;uires a comparison of the probabilities of

error, P1 and P2, which result when the linear di.crimi-

nant function ia used with the corresponding probabilities

p 1 and P 2 obtained when some alternative discriminating

procedure is used.

The number of parameters on which these probabilities of

error seem L jp•d . .; omfsava.teaeh Ili the dimensionality

p of the observation space (that 1L, t e number of measure-

ments made on vach individual), (ii) the -,--- parameters

of the common covariance matrix, (iii) the `2p coordinates

of rLe two vector expectations and, finally, (iv) the specifi-

er,!or± of the distance funct!ln used in the nonparamot!ric pro-

cedures to order the sample observations according to their

nearness to Z.

We may note that the distance function does not need to

be a metric although any metric will serve, All that is re-

quired is that, of Itwo points u and v, the distance func-

tion sp3cify which is closer to a point z. Geometrically,

this amounts to establishing for each point z a a-stem of

loci, each locuZ c..n-ist-ing of those points at the same din-

tance from z. For example, i' we uzs 1Ruclidean distance,

the loci are just the sux.faces of p-d1zensional byperspheres

centered at Z. As a second example, consider the distance

defined by

4
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Rare the locus or points at a given distance from~f z consists

of the surface of a hyperoube, centered at s, with face*

parallel to the coordinate hyperplanes. The distance

L•(x, z) has the advantage of being easily computed. It

is, incidentally, a metric.

We now observe that the problem can be subetantially

Ao-.C. -A -%= Cn"Aftscor- -I -16.44 MAC .).k 1.-*rm

vation space. First, it is always poss.l'e by such a trans-

formation to insure that P and G will have the Identity

covariance matrix; that is, that the p transformed measure-

maents are indep'-rdent in each populavlon, and that each

measurement has unit variance. Second, we can put the expe.•-

tation vector of P at the origin and the expectation vector

of G on the positive first axis. Thus, only two parameters

are required to specify the transformed populations, namely,

p mnd , where

S= E(first coordinate of y)

- distance between the means of the trans-

formcd populations.

it is well known that P1  and P2 for the linear discrimi-

nant fumction are unchanged 1y this transformation. Thus, in

so far as the linear discriminant function is concerned, there

is no loss of generality.

5
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SWhat about the nonparoic procedures? Associated with

e aoh s an each distance from z. there was a locu of point-.e

• -_ ,,-4.i___l space. We may oons•der the transformed lo.,

in the new space, as providing a transformed distance funor

tion. Since the totality of possible diatance funotione In

the original space is mapped one-one into the totality in the

new space, our transformation loses no generas31_y for the non-

parametric procedure either. Therefore, it is sufficient to

consider the transformed populations with the two parameters,

p and A.

It is clear that the totality of iousible distance fuic-

tions forms a very large class; in fact, it is not even a

parametric class. It is also easy to see that the values of

P1  and P2 will d'-per.d vory hearily upon ihe distance ,_--'

ticn used. For example, if we use

S(X, Z) = Ix2 " Z2!

as distance (remembering that in the transformed ropulation=

the expectation vector of F is at the origin and the expec-
.. A -- - • -- *-..,.. 4 J .1 , -...R -,,

tation vector o Z .s Gi a oi t • p . 2 -.M,) a

would have no discriminating power at all and P = P= 1/2.

At the other extreme,
I!

would give cuite good dscvei;ina-io•, wlet± t with r•&llamp•_-

(see section 4). In using the nonparametric discrimInators

C
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proposed hbre, the judgment of the statietician as to the

relative importance of ths various measurements Is of great

consequence. In a sense, the linear discriminant function

makes great demands on the pcpulatonrs being discriminated

but asks of the statistician only a routine (though lengthy)

computation--while the nonparemetric diseriminators which ask

little or nothing of the populations demand considerable judg-

ment on the part of the statistician. Of course, this is not

a clear cut distinction since, for instance, with the linear

discrimination function, A"- A-t -& 4 to diýride whether

or not assumptions (I) and (ii) are sufficiently true in the

case under consideration to permit its use-

We are now able to define the scope cf the presont study.

Througout the entire paper we assume that the sizos of the

samples taken from each population are equal, rn n. Nost of

the computatione have been made using n5 (defined in section

3) as distance function. Also a great part of the work has

dealt with the case where Z is assigned to that population

from which came the individual of the pooled samples who most

closely reaembloa Z, that I;s, k 4' . The vales of P1 = P2.

when 6 is used as distance function, are given in sections

4 L~nd 5for p = 1and 2; A = 1,2, 3; n ýl, 2y3v,4p, 5,
10, 20, 50 and 0o; k = 1. In section 6, values of k > 1

have been considered. Section 7 has a discussion of the of-

fect of dis-qnee function alternative to LŽ . A briae in-

vestigation for .3 : 3 5J:i reported in section 8.I7



Unf orlunately, we are unable to say hoy the values of

P1 = P2 obtained lere ;;ompare with those c.. the linear

disoriminant t0nctinn, ,i tha - .s not yottabled. A

~-4preliminary survey iul ' '' -. _a- ... -

Lua performance characteristic of the linear discriminant

functio0, would require a large computational program. The reý

suit would be of great value and interest but was beyond our

means at this time. We have given the results in ths ufl-i

variate case (section 4) where it is easily cbta.nedi,

•. •rnivariate case
I - - - - ,- - .

Whe• 1, the obvious and natL-ral distance Pnctit.-,a

is ordinary Eucllean distance which in this case coincides
•-It i2. . T~~e 1ines• discriminant funct on is also _-rea-tly

,•._'C LZ zaatrix eo':tniIo ,t -•.rs. One aiinmlv-

-;-f.llpllteg the MGEL,*erI _ *

2

,-,. ,. tn that poDulation whose sampli &rn o.,3 or,

the side of + Y)/2 as does Z itself. z Case the

prcbabilitier of error of the linear discriminax•A'i o

are easily computed. and this We ncw proceed to do.

From the symetry of the problem it is clear that P, =

P2- so It suffices to compute P' that is, gwe assume that

Z is distribvted &acor,.•n to F'. A2 2hown in section 3,

we lose no geuer•AO i J by m:ttin E(TI = 0, = A:
2l = c I. Introduce the new variables

x Y~
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S=Y- a. V - - 2
u• -£,D V-X÷Y-2z

n n-
where U4 = xi, nM = Y" Since, as is well known,

" �a nd ,, + Y are independont, we see that U and 'v

are independent normal random variables. with

2 2n4 '" "•E CU 02 = 2/n, E(V) = A,

FcPrthex'more, an error is committed by the linear disec-mirnant

4 iI1 and only if

() Z > 2 and "" L

or

(it} z •- --- 2• Y<

Thu•, an error occurs if and only if UV < 0. Therefor&, It

fo'lows that for the linear discriminant function, when p = 1,

V7V 2+14D' Y2 F'L+ýn-

WjA 4.

r -Owx) 1 1 • au.
J

"ý00

The limiting value for n co is (- A/2) slnce with infi-

nite samples the population means b0scome surely know! "-d P3

is Just the vrobability that Z exceeds A/2. Table I gives

the values of P =P for various values of n and The

1
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exsults are pictur1ed graphically in figures 1 and 2j

-0. us norw oon- idmi' nonny _ ra-m trio dt•uo_•i-inatoi's. rho

mRL'lp0t of these prooed'.i'A- in the ano oorresponding "to k a 1

whi.h oonsists in assigngtux ; to that population from whioh

set neighbor" has oonaiderable elementary irituitive appeal and

Table I

Prob.-.ility of error, linear discrim-Izant function,
univariate normal distributions

'• '• 2 3,=

I--

-•I "-.*- '+% i i11•t

73611 1819.

S.3472 .1744 .0787

";.3376 1; "0763

i0 .3175 .164'6 .0716

20 .3110 .1616 .0692
:• n, ,'o o •A?7

00 .3o05 .1'87 . o668

n = size of sample taken from each population

A = distance between the means of the -'wo populations

Probability of error = P{Z is ass_.ned to GIZ came from F)

= P{Z is assigned to FIZ came fr-m G}

'see formula 4.1) F-



probably corresponds tV porv:tice i. many situatione. Por

,x.-•1 e, It ts posstble that: - t -L 6 UL i'im

enced by the doctor's recoiiec~i~u vZ L"Le su@abquaAnt 1161.W'"-,,7

of an earlter' patient whose symptoms resemble in soie way

i -

K

?I gure1

Pronatilitty --s error P. uA the 11rnear discriminant fturt1nr

II

fur two univarlate normal distributicrzis rtth distance between

r, a !:w of sample from sach population.

Or

h..



those at the current patient, At any Pset it seemed advisable

to begin oos~utations with tkse siMplest proesdare, that is, to

begin. with the cowputation of the probability P, that tba

nearest neighbor to Z. Is one of the Yiss, given that Z :3s

rilo distribution of an X.

L. 2 111-21

0 3 A

Figure 2

ProbaDu!-2.ty of err or P1  of the linear di. crim~inarit function

for two univariate rnorri-al diqtrl~bution.- with distance between

t~qe. meazis = (1 4 plotted as a function of A .n =size of

4 sample from each populatioflz

12
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ow~z techniquo for' perf or"rniz~ this ooznPutatiOz is ats rc"

low&. S-APpose it is 0iven t.'t2 M ý 1 m)dnt

tn ~itoa~pro U 60i.L VD 0% V6W &-MW n 1-

m',tservat~ione to Z isaYj given thatt Z soa Then

00

The calculation of P,(z) is q~aite straight fo.'aVQ-rd.I iT"Cw

(1 .3) Hz( ) = Pi ix - zj'

= Piz - < .1 < 7 + }

pus - - Y A < 4 + J

r.- 'A' + )- A 3)

r",.e-event, Othe nearest samnple value to z is a Y" may be.

classified Into the n exclusive events, "the nearest sample

7alue to z is Yj", i. = 1, 2, ... . n. By symetry these

n events are aquipot~~ Uh evn, to .es am

-2 +i 40 mav be brýken down according to 4theu

'Ustance fro= to Y1 . Thus,
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() -n r-I
',u5) e•(S) a n Jo[i- ,. S )] [. - V( S )]'''•, ')

0

F'ermula. (4.2) and (4.-5, are the basin of all our compu-

~~ .& theW a&er~ Ia*bor rulev," no Aatf-L-a wimLi the

value of p. If p :(- I H() and ( 9 ) are n-,t. of
ui'e- g- !,,-n by the eXp!icIt f--.o.la- /I- an __ 4+) ,,

definition is analogous if one replaces P{IX - z < S by

?t.he %istance of X from z < : in (L.3) snd e1A!!-_llr!

P{jy - z I < S I by P(the distance of Y from z < S I in

(4•.4). The specific evaluation depenud- t.-vin upon the distance

urnction used.

Aside from the case p = 1, n = 1, whicel is given ei-

p:~tI:' .y ffzCIMaIa (4.1) with r . i the b!ilk of th& a-1-

tetion was carried out b7 straight,-mw'n• w-3 Jcg-at: ..

For p=i,

2 2
dr e z• +" a z;• d

The valuee of .( S ). X( £ ) arid dK_ 5 ) d,"', - __-_

tables [2] and [3-. in t• caluui2itior af l,(z) the fine-

nets of the mrah and the quaci-ature rule used dpentded to

some extent on the locaU,-'- nf %-y t- - ' ',- a •,-If. a I p1-

bad been obtained, a finni juadrature (4.2) w"s effeccted t.-

obtain the %&2ue of P-3 Th e_ ;"a i' ren i- taL.e 11--

computed in this way,

14
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The computations that led to the values recorded In tablvs

II are quite heavy. This is especially true in the bivariate

case, p = 2, with which we began computations. Therefore a

search for a simple and sufficiently accurate approximAte

netnod vwa instituted. of 'he nrauerous approximate formulae

tried, the following was the most successful. Let 3 denote

the distance from z at which the nearest sample value lies.

Thb conditional value of P (z). given S, may be seen to be

dKz C)

1 K 2( S )(1.6) -. ... =qz
dKz( 'S) dHz( S )l" .) +HS

it is notable tnat q(z, S") is independent of n. The idea

of thle approximation is that Pl(z) may be replaced by its

conditional value, q(z, 5*) where S is in some reason-

able zense an average value of S . In order that q(z, ' )

be an adequate replacement for Pl(z), it is clear that S
2.t ..... t 4,, decreas•n fun ction of n, The function

of 5* which served best was arrived at by treating the

n observations from each population as a pocled sample of

size 2n. An average value of S was thought to be one

which would make the pr'obability that at least one of the

-cmbined saeiple values would fall within the prescribed

distance of z equal to the probability that a sample value

would fall outside thois prescribed distance. Tb-h value of
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S for a giwvn n wax then chomen to sati•ty the feallc-

ing equationt

•~~~{-(% +- (l') .{l•:((=-}S-*-)"

it waR finri1 easier to solve the a-'ove tn±,qnti fo- t•he .

of n, say i , corresponding to a given value of S , Then,

if q(z, • ) is regarded as a function of n , thA vIIuA of

q~z; ^ corresponding t-o_ :_a ..-.en n can be r,.n" by interp ,-

lation, useing Aitken1s method. Table I-T ,-7it extended to larter

vilues of n in this way and the results are shown in tale

I>-A. Figure 3 in based on ci oombined data of tab.es ii and

--n~ ~ ~ •t appyr to&ao of1 f7w- -ve ......

sec-fically for the bivariate case and it appeara to b a t,

approximation for small n under these conditions than in the

univariate case. Time permitted us to mc.zke only a limited search

for an approximation which would be more satisfactory for the

univarlate norial di tributiunu. It may be of sorme inte!re3t +o

give the first tor-mns of the expansion of a ",, arc .n-

4ebted -o Mr. T. A. Jeeves of this Laboratory for bringing tis

expansion to our attention. In thi3 connection, see L14] and

16
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Table II
Probability of error, nonparametric discriminator

with k 1 1. ur•ivarlate normal distribution

n Jz1 A-2 A-3

1 .4175 .25.Q .1235

2 .Wo86 .2364. .10,84

3 4I052 .2307 .1036

4 .4032 .2280 .10114

Tablo II-A
Approximate probability of error, nonparametric discriminator

with k = 1, univariate normal distribution

n A=a A=2 A.=3

1 .403 .226 .102

.4o01 .225 .110

10 .399 .223 .098

20 e398 .224 .098

50 .398 *225 .098

.398 .225 .098

n = size of sample ftrmo each population

= distance between the means of the two populations

k = odd integer such that Z is assigned to that population from

which came the majority of the k nearest observ-stionz--

k = 1 is the "rule of nearest neighbor."
probability of error = P(Z is assigned to GiZ came from F)

= P{Z is assigned to GIZ came from GI

(see formulae 4.2 - 4.5)

Distance function = A (x,z) = Ix - Z7

17



dKt(O)

dýH.M+dUZ(O)

I dZ(EdK;(O)(dHZ(O)Jz,20)

1 d X5 (O(O"dBZ(O)indIZ(O)dB )

+_

~2 £dB2(O)+dK~(3)J 3  dý (O )+4K (

The limiting value for n --+ a may bc approached in another

way. When n is large, S will be small,, so that in the limit,

ID~)will simply be q(z,O) = dK()g)
d2Kz(O)+dBZ(O) f( 1gz

Vhe,'# f' and g are the density functions aorreapond.dng to

F and G. respectively. This argtment is quite generalT for

large n,

~ ~g(Z) 1 f(z)g(z)

A simple application of Scawartzfs inequality shown th's lat-

ter intagral to be at most 1/2. We can thus assert that,

Preceding Page Blank 1
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whatever be tho populations being disorimInated, the Waule

of nearest neighbor" will have in the limit, as m a n--+c o,

equal probabilities of error at moat 1/2. While this remmark

is of no practical interest, it is theoretically interesting

because the "optimum" maxiL.m likelihood rule, "assign z

to that population with the larger density at z,* possesses

no such nontrivial general bound on the individual probabili-

ties of error.

The easiest and most vivid method of comparing the figures

of tables I, II and II-A is graphically. Therefore, in figure

4, the probabilities of misclassification for paired values

of X are plotted against n while figure 5 shows the same

valuc3 plotted thIs time against a for selected vslues of

n. it oeems needless to discuss the grawhs at .Ingth since

in arny practicH1 came the experimentor must make up his m!n'i

whether or not the simplicity of operation glvsn by the non-

parametr'ic discriminator =akes up for the loss of efficiency.

Zn the univariate case the question seems somewhat pointless

since the linear discriminant function is easy to compute

and also it is little work to derive itz performance charac-

teristic. The univariate investigation was undertaken for

the sake of completeness of presentation and because it pro-

vidas a simple case on which to illustrate the use on non-

parametric discriminators.

Next to the "rule of nearest neighbor," the simplest

nonpara=etric discriminator is obtained by setting k = 3

&ajd using the "rule of two out of thees," that is, assign
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Z to that population from which came the majority of the

nrrest three observations in the pooled samples. For finite

n, tho problem of misclassification reduces to the following.

.3

S 9 3 5 .tO 2 ..O ,0 .100

Fibure I,.

Comperisc.n of the probability of error P as a functlion1

of n for the linear discriminant function and the non-

pers-etric discriminator, distance function =A, k 1 ,

for two normal univariate populetions with distance between

ea -S , n size of sample from each population.
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'Aet X1, X2 , X3 denote the values obtained from F and y

Y20 Y3 the values from G. Then the conditional probability

that two of the three values nearest to Z will be Yes

given that Z belongs to P and Z - z is

Fi~ure

,on~nrlsr cM .0th probsRoiilty of' error, P, as a function of

,_6 '! ~stance between the meqns f'or the llnear discriml--

na,..l~'-1-iflc tion and the nonparametric di7scrimnator', distanCe

fu-nct:1--- A ,k = 1, -for tw1,x nor'mal uarivariate populations

n = S:*:e tf samople frir each population. n = 1 4.3 identical

for bcli --- indicztes the nonparimetric procedure.



(3)P,)(z) - 6~P~lL Y'_ and X, arse =arer to z than x2 while

X3 is farLher from z than x2 )

."8Pjp YO- A1 are nneaer z t.. while

and Y, are farther from z than X2)

6(3

P(3)

•s 't -- • oo P., may be shown (th- argiment is similar

t:; ie one u:zed when n--O,, k - I) to appruah

GO

- I Fp~z) 3 ~3E~~'f(z *,

1 ()Ji.,

"-00

it is noteworthy that r-s ir--+ oo, the value of for

fixed v!A]ues of k, however small, are independent of tbe

dimcnsionality p of the sample space.

From tais formula, the middle colimn of table ITI was

computed. Correzponding resulta fro tables I and Il-A sre

repeated for comparison. As shown in [1, •s n---o0 and
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k--j no (more slowly, however, than n), the linear dis-

criminant function and the nonpararmetric discriminators have

a common limiting behavior, shown in line t1i-c0o of table lII.

Thus, for 4 = 2, p = i, arid large n, the "rule of tw-o ou

of t-hree" has a 19.2 per cent chance of misclassification as

against 15.9 per zznt for the optimum. Figxre 6 illustrate•3

these results graphically.

LimiiAng probabilities of error as n--too,
for the p-variate normal distrib"-in

k=i k=3 k=co

^ CO) (" 00 n

.368

.08o .067

4.034 02"o .023

.oc .9007 .oo6

a = si z a a. ,L.Saple -fro each& popul-Rt+on

= ditan.ce -between the muean of the transformed

pop' ,lations

k - odd integer such that Z is assigned to that

population from which A came the majoPrit7 of

the k nearest observationz.

Prcbability of error = P{Z is assigned to GIZ cane from Fk

= P{Z is assigned to FIZ came from Gj.

The probability of error for n large i- Ladependent of p.

24
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5. Bivalate ni-.1 4is-tribution

F.or p a 2, we have employed methods analogous to thou.

described in section Ii,. to obtain the probabilities of error

for the nonparametric dieeriminators with k - 1; A m 1, 2, 3;

P1

' \\

.0

0 2 a- 5

F1bure 6

Liiinbproab~itiS o eror P sns n, the size of

semole from eacfl pop~urii~or,--+00, fox- two P-variate

normal distI'i~u~uz1ua -Ostancc function~ A k

"number nnsrest individuaI3 on ,which the nonorermetrie

.rocedre i•

25
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and n I, 2, 3, 4#. 5 10, 20, 50. 0o. The results are su-

marized in table IV. All finite values or n 4 were obtain-

ed by the approximate method discussed in the last section. A

comparrison of the values obtained by numeAcal interatLion

with those given by the approximation are shown in table IV-"

To enable the reader to get a clearer picture of the

change in probabilities of misclassification with a change in

A , figure 7 shows the va1ves of table IV plotted against 'A'

Unfortunately we do not have available the comparable

figures for the linear discritninant function. However, as e.

measure of the efficiency of the nonparametrie discriminators

we have Included the optimum limiting behavior to which both

the nonparametric discriminator and the linear discriminant

function tend.

6. -- = 3 for the -mnivariat oan bi9ariate normal distribut ions

As k is increased the computations become much more la-

borioust so much so that the actual numerical integrations were

carried out in ornly a very few instances for the "two out of

three -ul_." Th-'e following met-hz- may, however, be used to

estimate the effect of k = 3. Let us consider an alterna-

tive discriminator which we shall denota as (r, n',, k'). Sup-

pose k = rk, and n = rn,. partition the 2n sample values

at random into r sets of 2n, each and for each set observe

the ppulation-or-origin cf the majority of the ki obser-

vations nearest to Z. Assign Z to that population whose

elements are In the majority for a majority of the r sets.

It is easy to show that this disc;'iminator will determine the

26



Table. IV

ProbeW,1a1ties of error, nonparLmetric discrim-inators,

k - 1, bivariate normal distribution

2 -.135

3 33 .259 .125
ij - 20 .252 .120

4.1-7

o ,.2 0

- - 1-r% - -I- -nf-

Table TV-A

Compari~on of the values obtained by numerleKP integr•+cn

integration approximation

- 3,

2 -. .2951

-; 2 .25i.,o
_2 .2525 -'.254o

i 3 ~~.1572 50

n = size cf sample from each population

S- dta.oce beten t• means of the tr VAfo-% ..... & " ....

Probability of error = P{Z is assiged to 7 1Z cam e Ifro.l G}

= F{Z is assigned to GIZ came from F)

k odd inttger such t1at Z is assigned to thQt prnnl-ti-n

from which came t+heIo. majority of tho k nearest obser-

vat.ions I = 1 is "nearest netebhor rule."

Distarece functic- = fI - z I, !x2 - z2 11

4,
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4X

"If

I -| I

ir-ab`lltv 1 of error P ,f t e nonaramaetrarc s scriA -" ~1

o dmal ]istribiitions w4ith distance between zaans A
n size of sample from eaclh poDpl3tion. k = p, t-e

rule of nearest nel&h6.1. - --- indicates t-Ie cptimim

li 1(eihood ratio vrcce-ure.

28%
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ar.sigent of Z on the basis of observations A.ss close te

7 than would be the case if we employed the ozrdinry dis-

ormitntor using the k olosest of the entire sample ot 2ni.

Hence it is intuitive that the probabilities of error of

(r. n, V) will exceed those of the usual rule (n,k). We

do not know a proof of this, however.

The computation of P1 for (r, n,, k,) once P1 has

been obtained for (ni, kQ) is relatively easy. For fixed

z, the r seta can be ressaykle as r independent trials

each with constant probability Pl(z) for (n,, k,) of suc-

cess (success is here defined as the eve%. that Z will be

wisclassIfled). The values of P1 (z) for (r, n,' k,) can

then be found from the tablss of the binoam. distribution [6].

Tab* V tR V, ;IvA thoe results for the univariate and

bivariate normal distributions, respectively. The first line

in table V1 has the values calculated for the two out of three

rule. The second line gives the probability of error when a

sample of three observations from each population is considered

aa a set of three independent trials and the individual Z is

assigned to that popuiation in which the majority of the trials

pleced him. One notices that while the corresponding proba-

bilitin in the two lines ar,- aztr--- o.--y ecae= the fures bear

out onsts intuition nentioned above. The tables have been ar-

zanged 3o that comparison between differont u•ses of thi same

total number of individuals Iin the sanple will be convenient

and an idea of the most effective discriminator (r, n', k,)

caxi bo obtained. The same recu1tz are illustrated graphically

In figures 8 and 9.
2)
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Table V

probabilities of error, nonparametrio disor~ninator,
univariate normal distribution

n r k" 2

3 1 3 1 •415 .231
3 3 1 .335 .203

9 9 1 1 .173

10 1 10 1 .399 492e

2029 1 1 .32k. .1614

50 1 .39.8 o225

n = total size of sample from each population

r = number of sets in the partition of the total sample

n, = size of each of the r sats; n - nir

k, = 1 = rule of nearest neighbor

= distance betweon the maan3 of the transformned

populations

Probability of error = P{Z is assigned to GIZ came from FI

= P{Z is assigned to FIZ came from G)

Distarnce function =
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Table TI

Pro'babiltles of error, nomparnetzric discrivLimtor,

bivaiat, normal distribuf ion

n r ni' kI A-i 2 3

I 3 3 4o08 .238 ;1lo

3 1 1 40.2.39 v112

1 15 41.0I* 2,6"

15 3 5 1 .3•84 .207

3 1 .375 .198

591 .1 .096

4L 4a .090

3 1 ID "'J.

-- - •371 • 195 .077

-= total tJite c! sample frc each pnpulation

r =number of iets in =9 partituia of the Lcta.•

= sizs of each of thp- r sets; n = nir

k, = 1 = rule of izearest neighbor

k' = 3 = rule of two out of three

- distance between the means of the transformed popul=tio-ns

Probability of error = PF!Z 4- a3signed to G:f came frc ?}

= P{Z fs assigned to FIz came from f"I

Zis•tnce function =L

starred values were read from graphs

2j
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A =

10~~II AE 0 A

,41stance f'uzm:-`on At fortw ousin
Wit astance between 3ein- Aofr =size o! sr1w



* f CT i-4 - .,; 2 -- --

.... , ..... N4_- 7.-PI-•.d_ 3ru -%i.R;

Ir
P2

- (A-

. I --- *i

em I £ r . I I

j 3 5 a9 ZO SO p S..

FVIP- 9
p%-ba, ,i' dicrmiatr

Probability of error P of the nonpa dscrianat~r

distance function = , for two bivariate norml distri-

butions, r= 1 with k= I and r=n with k' 1.
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7. Alternative distiwc;* lunctions for the normal bevariate

distribution

The despAndunce of- 21 on the distance function was empha-

sized in section 3. The numericai results which are given in

this section are intended to show the ma"It,.de of the effect

on P1  of certain moderate changes in the distance function.

During the tconputations which are reported in section 5,

we noticed that the value of P1(ODO), the conditional proba-

bility of error given that Z is at the origin ( the ex-

pectod positior of Z), was remarkably consistont wt•t the

value of P1 . Since we felt that it wuld be more worthwhile

to survey a larger area of problems than to concentrate on

the complote answer to one, we decided to rake use of the Zact

7',t- 5, V abov CO Ld to arecalaulate the •alues c-4 ?1(0,O) to -

various distance functions. In table VII, the values of

Pi(O,-• and- Pi are given, together with the difference

P2 - P(.O-O)- The fcirth colimn gives and approximation for

P1  ob"mtined by adding a crude correction term to piOj,3)

namely,

1 . -P,(0,O)

b'5 bing the value of Pl( A/2, x2 ). it is oum belief that

the or6er of the magnitude of the change in P1 with th

iLiange of distance lunction will be shown by the effect of the

distane, function on P!'O,O).
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Table VII

Comparison of the probabilities of error Po with the

oondittonal probability of error P1(0,0) given that

Z La at the o'lg!n. Nonaazmtrc die"frmrton!r'

norua! pivarla-;. ditibuLion, p a 1, 2,, k a 1, 3.
-- 1 . AL mm 27 |L _- Sn •lU

Mi.".D,2 It • -,, k =1

"P•1  P(0,°) D P1  P (0,0) D

I0.35 .0. .14 .104 * 2892 ' *49 U35 .1 142 .6 10 .
0423 383 014 it, 11 .2,61

j C/..%. 1 .210* *2•tb
14.40, -382,.069 6 .2* .462 25 -, 110,. 7 381 .036 :4. . 9250 . .1i4-9 .1-1 .2,9

0 11 7 9 .06• ',""oo ..14"

.io :o1 .0, .60 2.44 .125 .109 *2- .98 , -! .070n91459 Y23 .121 . 00

3 -=5 02I k I /5= 3, 4.': i k A= I

1 .- 157 .* .106 .151 .910 6o1 .o41 .a1;
I.135 07., .3ns s132.o9 *oQ 0 .

I* 1 .2.5 . 119'e~I .3L05 .098 .011 .08 .1

.120 .u1 .3 128 .03 .368 .35 .io

.117 Vic no 4J

31=t 
-o

! 111 .n .1. .J•03 45

".3.2

.003 .011 .087 .120 V.39S .378 .020 .1459
=39 p 2, k=

19I k03 11 3,9 19

145; :t~" .18 263 l:j v03 09 1
2 .1.- .112 *2 11z. 1019 002 .123

14 ?3 -110 .11 2~ 4-_3. ~ 22
2125 .11c5 01g .24~ O Q ~

.20 ia 1,'* I c- ALL .98 .011 9087 *120
5 .225 .119 3105 .24L I 098 o011 o088 .12o

-~45 ui9 ,lo6 246 I, - 01 *'7 .120

P., y!io0

?~I 2[.05 ) -(0!').

p.-.= P 1 0,0 L _ ____ ___



p RolEr-- NuhzzR -4OQ.P.E!ORT NUMBER 11
3n aelecting the altez-_ativo distances, we had Ir. mind

thats, in general, we were dealing with a transformed space

and were interested in the offect on the probabilitv of

rrucif. wig- used ae U'at-ka-ce £un-tion in h

original space. The distas-ne flunctions chosen are as fol-

lows. Tje defixition -- f A is repeated for the sake of

'ompleteness.

The locus _of Doints at a given distance from z is a souare.

cmntered at z, with sides parallel to the axes.

I )("]P-iJ ) + -x Y

ThU A, is ".Lry Euclideanr - , peS-baps a mo-'e

natural d"stance fuuation than A ). The locus of points at

a 4iven distance from z is a circle centered at z.

(•.i) 5 [(xlx•)(z,,,] ! -zi, 31K•-- ,I.
2 1 2 2)] 91 ax ( 1 -z I£2 ý B

T, '---s of pcuntz at a glven d'-ta.... from z is a raQ-

tangle cente-ed at. z whose -0des are parallel to the axes

and in -he ratio of one to Uhree,

(iv) - ('-3F'-.1 (z19  J] ---max (3 "., -1X-

L%~ o'I -_ '2 2 -------- z211

T locus of points Rt _ -a given di-st-,-e ef=- is M- rac

tear!e cent.red at z with .- dFA pnalal'A tro t#.be exes *end in

the ratio of thiee to one.
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Dist-nee ca.±tiona A 2 end 3 ar* the transforms

if the original distributions is independent normal bivarlate

but the varianoes of the-two measuremonts are unequal.

(v) Distance functions denoted by Z ( p = a). The

lIcus of points is a square centered at x but whose sides

are not parallel to the axes. The values of p are a =

.25, .50s .75. This is the transform of it if the origiNal

dietribution is joint normal bivariate with the two ,ar.ate

having unit var-iances and covariance = .

The comparison of values of PI(0,0) for thc various

distance functions is given in table VYII and in figure 10.

It will be seen that for all practical purposes it makes no

difference whether 6 or I1 (Euclidean distance) is used.

However, thq Mff''s i the other w .unUtions is mark-

ed. This bears out the statement made previously that a

burden is placed upon the statistician for- selecting the ap-

propriate diitnce function.

-p 2 for the p-Tariate noral distribution

This section is an attempt to give an indication of the

influente that an i-iereass in pr the number of dimensions of

the sample space, will produce on the probability of misclasal-

Aication. W havy again capoted only 'he conditionail proba-

bility PI(O) for z at the orgin, Two alternative dis-

tna uc n a._-:ioza worn used, =w•eiy'

:• 37
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S-'Table VIII

Probabilities of error, nonparametric discriminator,

normal bimariate distribution, k 1.

'
3

2 13
A n P3(O-O)" r:. PI(0"0) P (OO I I(0 0) A

1 1 .391 .- 35 .389 .463

2 1 .18k .2Q2.*184 e289 .383 *L22 ol.6 .22C
2 2 .300 26§9 .300 .367 .128 .211

221 .52 .26 .3 1 22 0
.2 .252 . 317 .122 .200

3 1 .051 .15? U053 .152

8 = A( P: =Ko) 6( n' -. 25) 6 f=-.50) a (F: =.75)

2 ~10.4 .9 :179 .2860 ,* ?
2 . ,,26b ..2§ .23

T29 2 fO 140 .260 .111 2~. O06 .208
2. • • 2 .2,2 .133 .255 102 .235 .0i149 .199

A = distance between the means of tha traneformed populations

n = size of saxple from each population

k = 1 = nearat neighbor rule

Pl(O,oi) = conditional probability that for z at the origin.,

Z will be misclassified

P, = probability of misclassification

o r ' a_-stiate of PI ... The fIgtre., to be ecompare are

the P,%1O,0)

""iu-zI!t i ons "as are as defined in the preceding

paragraphs



p. max~

L--tp- V /T

!%nrd thn- computatione were cazrrL'd out frc n I ~ k =1.

The risults a"e snowvn in table -OL and figure 11.~ As One

woul expe--r- f.-e resul.ts depena ratn- er heavily mrn tne dimeri

.2

I Af

'-165e 1

PrIeiiyu :ro-o onnaerA "q1Imnko o

twob~v-rateiirmaI ithJA.stnc Ittwen l~I~~~~~~~~~~~~~~~~~, ________________________ ______W____-!on.________
ir,-ýns el.18 to forvarius lstanA f1rr-c
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Table 31

Conditional pr'obabilities PI,0,0) of error given that
Z is at the origin, nrmparmetpic discriminctor, nomrl

p-va-iate distribution, n k 1, I - 1

o.
Al A

:1J 226 .230 :062
2.25;9 .105;

10 .29 295;

sionslit1 of the apace when n is fixed. -d-ttad'? -t

is i! met hbuiroory glance at the situation for p dimensions.

The fact that the figures refer to n = ?. k = 1, means of

cour.3e that the figures have no practical value. Neverthe-

less, we decided to include them since it seemed that the

behavior in this izpVI.st case migt povike some indication

of what might be expected is tha almensionality p is In-

creased,

�. Concluion

The choice between parametric and nonparametric ruloe

will in any gtven situation depend upon (i) ihe stro.neth of

th'o% statistician's belief in his parametric model, (II) the

loss hp. would suffer by using the nonparametric r-ule if in

fact the pare.'etric form is correct and (liI) the loss he

wr.uid swffarr by using tba Paramstric rule if the actual den-

sities depart from the parametric for= a1ssm~ed. In [IM, it

was aacertainea that If the sample size increase and at the

40
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eameo time the number of r-.ea•set neighbors on 'vhi.ýh t•.h o,

prametric proaedure3 base its deoision io increased ut

-...... - h In tA h ..... the

probabilities of error will be thozo of the optlm= likeli-

hood ratio rule whatever the population densities. However,

A -3

.21

.0

?robaollity of error P, of nonparamet-ric dlscriminatoro

distance function = A for two p-variate distributions

with distance between the means = A . n - ., k - 1.
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the matter of greatest practical inter'jat is the performance

of the rules when the saales s"• -

in thb_ p -ers ziave boon concerned with (ii) for the

special case of greatest interest, the linear deieriminant

funct1ion We s.cceoded in finding the probabilities of mis-

elassijtflation for some nonparametric procedures. However,

the computation of tte performence characterlstic -f t h

linear discriminant function proved to be too lengthy. It

would be of extreme value, eepAcially when one thinks of the

wide use to which the linear discriminant function is put if

its probabilities of misclassification in representative situ-

ations would be tabulated.

In summary, let us indicate the nature of the situations

in which a n.'-rr.ramatric vuiscrinz4' m 4y .* preferablo to

the !Anear diserinminant function. and convermaly. If the

populations to be discriminated are well known, and hcrwr blz--

investigated to establish that the normal distribution gives

a good fit and that the variances and correlations do not

ch]arge much when the means are chan ed, and if the cla.sifi-

cation to be made warrents the labor of matrix inversion,

then the line-r discrim4"ant function should certainly be

used. I' on the other hni:. the populations are either not

well known, or are known not to be approximately rcrmal,, or

to 1rsve vei. different covazianoe matrices; or if the discrimi-

aation is one in which small decreases In probability of error

are not wpre ri ertenavea wth=eat>ion3, than to ha- e al A.

parameotric rule, perhaps with kc 3., seems to have the edge.
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Tn 00nallusions we would like to rms -:;z-'
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preparet .on of this paper. Especially we would like to thank

Mrs. jeanne Lovuslbh and Mrs. Eloise Putz, who eoaputed the

tablet for us.
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