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NONFARAMETRIC DISCRIMINATION:
CONSISTENCY PROPERTIES

l. Introduction

The discrimination problem (two populatisn case) may
be defined as follows: = random variable Z, of observed
value 2z, is distributed over some space (say, p-dimensional)
either according vo d4ais ica T, ar accerding to dfstri-
bution G The mroblem is to decide, on the bhasis of 2,
which of the two distritmtions 7 has.

The problem may be clasesified in vairions wvays iatn
suboroblems., One pertinert method of classification is
according to the amouiit of information assumed to de
availahie about F and G, Ve may distinguish three stages:

(1) F and G are coumpletely known

(11) # and G are known except for the values of one
or more narzmeters

(4ii) F and G ars cdmpletely unknown, except poseilly

for assumptions about existence of densities, etzs,

Subproblam (i) ras peen, in a sense, completely soived.

The sslution is ‘mpliecit in the Neyman-Pearson leamc [11, and

wzs made explicit by wWelch [2]. We zay without loss of
generality assume the sxistence of density functiins, say
f and g, corresponding to F and G, sincs P and 4§ ure abe
solutely ccntinuous with respect to F + G. If £ and g

- - - —— o
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sre known, the discrimination shculd depend oniy on _I%_%,_

L
An approvriate (positive) constant ¢ is chosen, and the
following rule i3 obssrved:

)¢ 4 -ﬁ*i} > ¢, we decide in fevor of F

It -LH. < ¢, we decide in favor of G

If -2*5% = ¢y :2;n:;cision may be made in =1 arbitrary
These procedures are knovn to have optimum properties with
regard tb control of probability of misclassification (prode
ability of wrong decision). We she!l refer to thig as the
"Mikelihood ratio pwocebur-.' and denote it by L(c).

For simplicity, we shall assume throughout ths vacer
that the borderline case £(s) = eg(s) can b= neglescted.
Formally, we vostulate that

P{ £(2) = ¢g(2)) = O
regardless of whether Z coass from F or G, Since the
clsssification is arbitrary vhen f(z2) = cg(s). it hardly
ssemg vorth vhile to introduce complications into the methods
to allow for it, However, it is not d41°fisuit to extend
our methcds to take care of the situation which arises when
P{ £(2) = cg(Z}} > 0.

The choice of ¢ depends on corsiderations relating
to the relative importance of the “wo possible errorss
saying Z is aistriduted according to G wnen in fact it
is distributed according to F, and convarssly. %<wvwo choices

or ¢ have been videly advocated:
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(a) Take e = 1

(b) Choose ¢ so that the two zrobabilities of error

ares egusal,
Choice (a) has been cailed "logical™; cholice {b) yields
e aminimax procedure, In this vepsr we shall not concern
ourselvee with the choice of ¢, but shall assuze that a
given positive ¢ 1s a datum of the problems
The usual aporoach to subproblem (ii) is as follows.

we assume there are available samples from the two distributions,

say
XI. X2. soey xm g Siﬁple from P
Ylv sz XYY Yn $ ml‘ from G.

We aseyme further that F and G s=s *-- = §n form that is.

that we know them excspt for the values or some real parametars.
which may be denotad collectively dy 0. We may denote ihe
distributions corresponding to a given & by Fg» Gb‘ e
orocedure surrsn.iy emrloyed is io use the X's and Yis

A
o estiuste 2, by, sav. Q. and then tn nroceed as undar (1),

-1 a2 — ) 4 -4

(34

using the distrihutions Fé’ Ga as though they were known to
be correct,

The most familiar exanmnle of this orocess is the lineer
discriminant function (3]« There, it is (tacitly) assmed
that F and G are p~variate normal distributicns having the same
(unknowsn) ccvariance matrixz , and unkncwn expectation vectors,
The two expectation vectors and the covariance nmatrix are
estimated fror the samples, and the lixelihocod ratio »ro-

cedure i+ then emrlouyed, using the estimated values as

0 P BBt oo st - - -
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though they were Enown Lo be 20ITslTe

Not much is known about the desiradility of the usual
nethod of attack on (ii). We give in Section 3 a theores
concerning asymrtotic properties of the method, Undoubtedly,
this procddure is reascnable provided the assumed para-
metric form is corrsct. But the validity of ¢hs use of
the iinear discriminant function with data obviously not
normal or, if normal, with obviously unequal covariance
matrices has been oi gozeral ceiicstn. Presumably, very

bad Tesults may ensue if a procedure is nsed, based on

. e, . S e W e b R -~

certain assumptions about parametris forz, when those assumpe

tions are not even approximately correct. i
There secrs to be & need for disecriminasion procadures

R

whose validiiy does not rsquire tis amount of ¥mowladie
implied by the normality assumption, the homoscedast’o
assumption, or any assuamption of parametric form. 1The

e veassy s

present paver is, as far ag the authors are aware, the

£4rst one to attack subprodlem (1ii1)s ean reasonatle discrimin-
aticn procedures be found which will werk even if no
parametric form can be assumed?

It 13 not to be expected that any procedure 9a: de
gnarantead to give good resuits withoul any reatricilon
vhatsoever on ths diztributions PF sand G, 70 clarify this
point, ve reed to state a preacise meaning fer Sgood results,®
Thie 15 done ir fection 2, with the introduction of the concept
of “consistency.® We thon proceed ‘n Section 4 to prove.
under veak restrictions cn &e dentities £ and g, the consis-

v e



B ROJECT NUMBER 21-49-0u4¢ REPORT NUMBER 4

wvanr AWmoima @a® —asacsl

tency of a ciass of nopnuvwraweiric prucedures thers prupssil.
A dmodification of these procedurss is then consilersd ia
Section 5. '

It may be noted that all of the mesthods and results
of this paper can be extended without difficulty to the

situation in which thers are mora than two nopnlatisns to

be discriminated,

ihs authors are engaged in further work aiong the
lines here laid down. Specifically, soms sampiing experis
ments are being conducted, intended to throw some light
on the performance of the procedurc: fcr'zsdorato sample
sizes; and asymptotic properties of a class of sequeamtial
nonparametric'discrininatory procedures is Leiug 1avestigated,
it is intended to prepare further reportz setiing forth i! .
results.

2. e notion of consistency.
In setting out to define an optimum prroperty in sty

tistical inference, it is useful to have in mind ths iimit

of excellance beyond which it is nct possidle to go. Tiw
procedures L(c) described in Section 1 provide such a limit
tn the case of nonparametric discriminstion: wis cannot, with
any noaparametric classification procedure, exqec¢t to do

better than the hest which is pcesidle vhen tae densities
themselvss are assumed to be known. Thie feact is inpe

tuitively obviocus, but i Gesired an exact proof is sasily
given., VWnhen f and g are kmown, Z is sufficient for the

classification, with respect to (23 Xj,XoseeesXgs¥y10Y¥20000s Xp)s
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and we may (by usinz randomization) exactly duplicate (with

32 procedure bhased on Z) the per ‘ormance characteristic of
any orocedure based on (Z:XI,XZ.....Xm; Yl’YZ""’Yn)‘

Ttus, no nonparametric procedure can have probabiiiiies
of error less than those of a likelihood ratio viocedure. On
the other hand, we shall prorose in Sections 4 and 5 cissses
of (sequences of) nonparametric procedures which, in the limit
as m and n tend to infinity. have the same yrobabilities of

error &s the procedures L(c). We may therefore reasonably

say that cur procedures are consisteni with the likeliincad

ratic procedures.

There are two different notions of consistency for
sequences of statistic:l decision functions, and it may ba
vorth wnlle to distinguish them. Supnosc %.at the dei!-1.3
space 1s finite (as 1s the case in discriminatory analysis
when there ar> finitely many povvlations). I[et the possible
decisions b2 Aencted hy 6;, d;..... cf; « Now stppuse we
are cocnsidering two sequences = decision functions, say
(Y and {O 7). How should we de . .ne the notion that
these two sequences tend to .. re: with gach other, or be

conzistant witn each other, as n «- 00?7 On the one hard.

ve pignht reauire that fn tha limit thers should be close
agreement between the provebilities of decision; on the other

hand we might require that in the limit there be high probae
bility of agreement of decision. The former requirezeant re-
lates to the pearformance characteristics of the decilsion

functicns; trs latter requirement reletes to the decision
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functicas Shomselvss. We Rkave then Uso definiticnses

Delinition 1. We shall say that the sequerces m;,} and

(L;n} are consistent in the scnss of perforeance characteristics

if, whatevor be the true distridutions, and 'hntcvn; be ¢ >0,

there oxzists a number N such that vhenever 2> ¥ and n>» N,

1] ]
"A-'sz""“n'%}!" |

for every decision 313

. - 1Al
Definition 2, We shall say thet the sequences ;An} and

B — e s b

{ A;} are nonsistent in ths sense oi decision functions if,
whatever be the tie 'dutribut:lom. and whatever bs ¢ > 0, there
exists &« number X such that whenev:: mn> B and B > ¥- ’

?!A; x A;} >1 - s. f

we observe that consistency in the second sense implies that
in the first, 3ainve P(A;ﬁ 6:) is not less than each of the

quantities P(3) = 8§, and A4k §,)EMAL« 8,i-RA, = 8.

The definitions are not equivalent nowever, 2s the following
trivial example shows, If A' and A" esch denotes (for
any myn) the process cf choosing betwsen two slternatives

Sl ani 5'2 by tossiag & coin, then P = A') .%o

while

MA' = §)=mA = 5)eF for ia1,2
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Inasmuci: c. 't ia customary to eveluate decision functions

snloly in terma of their performance characleristics, Defl-

aitvicsa 1 1s the mers natural., However ail procfs of conaistency

given ir thls paper provide consistency in the stronger senso

of the gecond definition, and consequently we shall adcst LS.
Since our procedures arc based on two samplss, wve must

consider a double limit process as hoth m and 2 tend to

infiaity. To svoid difficulties which woula ctherwise uria=

in Section 5, we shall assums :throughout that m and n ap-

proach infinity at the same speed. Precliseliy, sa asximae %

and g' are both bcunded away froc 0O as nem ——» c©. Wanen-

ever we write "m,n-—>co" this restriction should be under-
8tood:. Our restriction has the effect of reducing tne limitia-
proc~ss from a dovkle to e single one.

In the saquel wa hall be vcmparing certain discrimina*sry

rocedinr-es with procedures of the type L{s). It lae corveniant

Definitica 3. A segusnce {A_ | of discriminatory pro-
— g mell

cedures, dased cn Z and on san;'Ag Xy: X2:°’;. Xy from P
and Y, Ypevee, Y, from G, 1s sald to be conslisient witn
L(e) 1f, vhatever be the distributions F and @G, regard-
less of wihether 2 ia disiributed accoxrding i9 F or acoord-

ing to G, and whatsver be ¢ > O, we can assurs

M Al_

,a and L{c) jield the ssme classification cf 2} > 1 =~ ¢
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providecd oaniy vowd B &ri & are sulficleatly iarge.

We may also Geli.ue a corresponiing notion of uniform con-
slsteuwcy. 1If, in Definitic 3, the bound on probability of
agreement can be assured fo» ail F and G with & single
size specification on m end n, we =ay that {A-.n} is

uniformiy consistent withr Lia),

3« Coneistency for the parametric cass.

We shall now damonstrate that. the analogy of the notion
of consistency just introduced with the like-named notion i=
polint estimation, 1s more than foreal. Consi >y the probla;
of paramciric dlscrimlination (subprstieam (1i)) of Section 1.

#e 2nall fro.. time to time have occasion Lo consider
probabiiities uomputed under the e<ea~—_-Iizpn that 32z ig a3
buted sccording Su Fs or according to G, ii is3 converient
to ist P1 and P. denote nrobabilities computad under these

rospective assumptiions.

Let 3 and 3 be clssses of densities paremetrized nyv
paramsters denoted eolloctivoi_y by 0. Let theve be & notiom
of convergence introdnced in ihe space @ 5 rarsmeter vzlues,

Suppose thera is given a sezusnce {B!m} ol estimates for 4,

3m.n boing a function of .il’ XZ,O”‘, XE and Il’ 12'900. n*

“hsores 1. g
R 4

{a)} Lus =sctlmsiea {3,0“} are consistent.

{(p) for swsry O, foi{e) and 39(3) are contiruous

fanctions of @ fop every 32 exoept perhaps for s ¢ zo. hore

Y
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<. PylZgi = 0; 1 =1, 2, then the sequence of disurimimeticn pic-

:._ codures u.! nic!} obtainad by applying the likelihood ratio

N
w2
o 4

%! principle witn crivical vaiud ¢ > 0 to g (2) and &8_
n =;

w4

gi? is ccnsiatent with L{S;.

?;:: Frouvi. Thne idsa of the proof is very simpls: Since 3.,,'
zia consistent, & ;. ¥1ll probably be nesr @ If m as2 =
:"‘f%ve large. BEut since f, and 8c sre continuwous, this msans

33 that fgn n vill probably he near fg, and &y, wiil
:,‘f ’ ,“.

probably be near cgg. Therefore, L. i3 not likely to make much

=+ ; £h wal or fo and
’ e “urm

©
h')
(J)
.
o
v
-

)
h
®©
m

S. FPiod ¢ » 0 bo smuij toer

iZ) - cgngH 2 S} <®we, 1 =102, {™his 12 noszihle

2 ¢
H

(1i2.(2) = ch{Z)! G; 48 the cumulssive functles of

-\ fre\ ! - - .
L) - cBQ‘“” 8IQ NBOCS 135 vont-irauuus

tght, axd by sssumption takes on the value O when

uma that 3 doss not lis in Zg. thus axe
%cl aéing an evsnt of zero propariliry. Since f (z) is a
corrtiruous finction of @ for all 3z; we can aszociate with

jevery 2 a cuantity 9 {z; > 0 such that
4

V]

]ta(z) - f‘,{z)i < wherever 25 - 9§ < 71(51.

2A like functicn ¥ _(t} arises if  is replaced by cg. Let

T} Steseit gy
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Nig! =min { 7,(%}» ¥,(z)} and find j > O such that

1
Using finally the consistency of ihe estimates, choose X

and X large snough 80 that whenever m > X and n> ¥,
P{ |6,,,_n - 3| > \) } < 2];- ¢. Combining the above, & disagreiasnt

. A
petween L{c) and L, n(c) w11l arisas with probabilisy lsas
»

than €.
Remarks. (1) The dependence of the discontinuity sats

-

Zg on @ Is important. Were we to domend the stronger propertT
that f.(z) and go(z} be continucus tn Q@ for all = ¢ 2,

4 8 fixed set, P3i2) =0, i =1, 2, we ahould sxciude many
Ca5e3 which are included under the theorem as =iveun.

\2; Twc notions: of copvsrgeuns in €@ are invoiveds i i
with respect to which the estimatss are consisteat, and that wi-h
udus. Tnese Leovd ol ba
ies the l1atter,

(3} If uniformity is addsd to the hypotheses of theorem
1, it may also be added to the conclusions. Specifically, if

the ectimates §_ _  are uniforaly consistent, if the Aansities

Hapaa

f end z sarée uniformly coatliauous functlons of 2, uniformly
ir Z, and ii toe 3 of the uroof of ineorsam i may be I.Xsd
indscandsntily of &. then that proof goes through for all @
using ths sans valus of €. We can then conciunde tae uaiiosrm
consistency of fi AC}}e

Le RNouparameirie diszcriminaiion and iis conslsteney.

+8T us next consiier the discrimination problea of the

P
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thira kingd delineated in Saection 1. wWe admit tha poasihility

that ihe densities { or X and g for Y may be any in
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to be characterized by & finite number of parametsrs. Thus,
3' and 3 may consist of ell uniformly continucus densities,
or of al' continuous denslities, or of all densities continuous
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gave at mcet a 5. Caa wé i1mve any uis-

crimination procedures which ars reasonable tc us: sThen 20

- L] . ) 1,
i O v ad
‘ecall that, cnce ¢ has

¥

cen sciecis
served to have the value 3z, the onlv i-fopmation needs? %o
carry out tke procedure L{c) eare the two real numvers f(z)

tnd g{z}. In the procedure 'gh':(c); we emp.cyed the estimate
for & as e mesns of ohteining estimetes s ro(g) 83 o (2,

~

iu the aonparametric case there ia no & to be estimated, but
wve may Instead proceed to estimate the numbers f(z) end glz)

directiy., Once astimates have been cbtalacd, ¥ mey apply the

procedurns Lic), wedins thoas sstlimatss dnstsag o8 £z ana2
P . 2 n A A
giz.: We snall designete such procedires by L (¢; £, g), whore
A
f end g ars the egtimetea for £ and g

Befors considering the provlem cf estimatinug the adensitier,
let uc note the propertiss which such estimates shculd have 1f

we are o be able to prove the consiatency of L¥{c, 2, ﬁ) with

s

L{e

*

- - { 3 A . -
Theorem z. If ?n.n‘z) and Gm,n(‘) are conaistent esti

mates for £{z) and g(z) for 811 = except possibly =2 ¢ 2¢,6
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woers PyiZ. ) =0 1 =1,2, then (I (cs T, &)} 1e con-

s'stent with L{c).
The pruof follows lines similar to that of theorem 1, and

will be omitted. ¥
Our problem is now to find ccnsistent estimates for {2}

end gz{z). We shall for brevity consider f(z) only, as anaic-
gous remarks epply to gf{z)e We fix 2, since the argumsat is
the same¢ for each valus. Our basi: idea iz This: tThe proportiion
of the m X's which fall in a statad (smell) neighborhcod of 3
may be used to estimate the X=probability in that neighborhcod.

The ratio of this estimatsad probabllity to the measure of tha

neighborhood is then an estimate cf *ac aversge velue of f(x)

near 2. This is in tarn an estimate ¢f f(z! tsslf if we

F-J

make some assumption about ithe smocianess of f. To obtain

[ %
LAREY

consi

(2]

cv. we may let *he nelglhborhood srx".’ down 5 L as

—>» 00, 80 that the aversge of f(x) over the neighborhood

2]

%11l appiroach f£(2); but we wlll taks car: ¢c have the nelgnborhooid é
shrink slowly snough s¢ thet <ths propoirtion of the Xis tnerein

will heve & maonitize exvectation. This willl assure that the prc-
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It iz obvicus that =s cannot hope to sstimatc £z} I»:
- \d = - o P Py - . iy - & mow- ~ o
Xlr Xzo“'. Rm unless zome continully assumptici 1z ==da. ST »
]

therwise we could alter {(z) arbitrarily without in any wey !
changing the distribution of X;, X3»°** , &ud thus withouli chang-
ng the distribution ¢f any sequence of estimates ctased ox :

}Lo‘xa' IR f
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Now let 4« denote Lebesgus measurs in owr (p-dimensionsl;

sample space, and lot |x - y! denote the {Euciid.an) di:ztsuce

between pointz x ard y of tnis space.

(%
»
LT
(8

Lemua jo If f{x} 15 ccatinucus ai

W
]
1]
L]
3
Ce
L

is & ssgquenced of sets such that

xr-.}aﬁa: deR lz=a| = ©.
i}

and lm m-u(l,) » o, and 1f M 1s the auabsr of X;s:Xa0*°*,X
2—$ €O

which lie in A.. then {;7‘—?3':}'} is a consistent esatimave for

r(z).
P(A)
Proof. Observe theh =—————te 5 f(z) as m—> o0, If
SRS
AV
flz‘l > C’y m Pil:ln)""mo 31!.160 I“(IA“'-'“ 0, P(AZ’.‘ _
and we conclude H. p-yl. Combining l‘/‘\ —_— (2}
mE (D) man (g F
' ¥ P(Al)
a8 was to bs shown, If f£(s) =0, B A ) = A > 0
!!,“ ( ) Iad .)

end ths ¥arkoff leama ocomplstes tha proof.

%e have in lemma 2 a clas3 of estimates, any of which. by
virtue of theorexz 2, wiil crcvide ccnsissent diacrimination cf
any (nonpareratric) classss J sand ‘d  whose members are continu-

ow {axaspt posnsibly for a set of values cf sero measire).

G. Alteawnstive rmaceduras,
- = sEe= T e bl - -

-

of the last

* | . L]
Thile the procedures L (c, muld,) ’ n/‘(A:g))
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Secticn pr cgids censistont discriminetion. ine quesiion of their
applicabilicy whei m and n ere nct large remains ¢pea. (Lika
icism may of course 08 appried to wny asymptotic theovrem. )
We sihiall in ths present section suggsst soie alternative esti-
mates for fi(z) eand g(z), whicii seem cn intuitive grou:ds move
likely to give good results than the eatimatss prcposed defore.
The Tormsr e2timetes are bthe naturel ones whan thinkins oL the
simplicity of consistency prcofs, but need not ve 2:3irable ia
Ti*Rttice.

The main practical difficulty in using toe former satimates
Zles in thne cholce of the regloas {£_,}. (and the corresponding

rogions for g, say L/\h)). 1f these regions ars made too

s3mall, the numbers M and N of sampls coinis falling in‘o ther
will Us too small, en tast the ;pepertione E and g 411, nat
¢ accurate eastimatas for the corresponding probabilities

it i‘m). Po(/\}. On the other hand, i1 the mecions are made
100 lirge, these probabllitias will not be good approximations

~ . N A \ o o\ .. i A
an. SRS v 41 @ha KLE)

end muet 2teer a mldidle sourse. We might, Zor example, decide
the smallast velues of M and N ws could tonlerste, and choose

A, end Jﬁh just big enough to include the cncsen number of

points., But tc 3o so alters the probablilistic proparties; now
M and N ere fixed snd A and ‘A are random, Are the results
of lemrs 1 still walidey

Even if they are w2 may atilil be in difficuities. It may

heppen tLat near ¢ there are numa2vous X's, dbut few Y's: dut
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s e e §
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hy going 2 little further we f£ind the ziituation reversed. The

indlcation is clearly for W, but If ws take separate S and
/\. the ostimatad f end g oAy be ciose, To avoid this
difficulty the following idea is suggested: Chcoes & nsber X,
and taike in ths nsighborhood of = a single regionm, A;,n’
containing & btotal ¢f k piints of sithsr sample. Intulilively
this procedurs seems sou:xis. Oout since N ¢+ N == ¥ we have iniro-
duced der: ndence of cur estimates and further eltered the proha-~
bilistic properties. The quesstion which now arises is whether
or not sstimates for f£(x) and g(z) besed on M and XN,

vhen so determined, are astill consiatent.
As a first astep in answering these queations, cbserve that

we maYy by aeans of a preliminaxy iransformation reduce our space
from p dimensiors to omw. Let =! . .,. denote a non--egetivwe

real valusd funsciivan of peires (x,y) of points in ths sampie
space. Supposs P 1s 80 occnstructed that when 3.—» x,

pix , x)—> 0, and suppose furtner ibat Jcr each s, eveept
] 44

perhsps for x ¢ 2 where Pi(zt.g) al, im=1, 2; ."’:Xt‘)

r.g

anA A IV ) awa we
- pas gy -— W

222 1 random verishl: o

X3

f,{x} and g,{x), continuous and not bot. U at 0. (These
propertios are satisfled, for example, by p (2.7) =V {x-y|).
We now replace the problem of deciding whetlhor £(z) or oglz)

s the larger, b7 the problem of deciding whether £, (0) or

08, (0} 1s larger; and further replace the serples X;,X,.tee,¥_

and Ylofar"'.i’n [3Y {J(Ilsl)o e(Iz.s)."‘.f(!!.:) and

(’(Yl.:). fr‘('x'z.s)."'. .p(Yn.z). respectively. We may now, with-

e al GEe ¢ gt te o SEITVER SR B ol AL s B N RIS WIS AIBRERY - e ¥ -

N B A Chun . St

. o
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out s2al 13:3s oL ganerslity, assume that £ and g are deunsi-

vies of nonenegative univariste random variables, and that x = 0.
Toeorem io Lot X and Y Yo non-negative. Let £ aend

€ Ue wuaiilivs and continmous et €. Let k(m,n} be a poaitive-

integer-valued functicn such thet ki(m,n)—p o, liimnro— 0.

and },; kimyn;~>» 0, 88 m and n-—)oo. (This teadency being
restricted so that 3 1s bounded away from O and ). Definms

U = kB smallest value of combined samples oi X's and Y's,
M = number of X'sﬁv,

N = number of Y's = U,

Then ;'a- is & consistent estimate for f£{0) and L 4s & con-

nd

sistent estimate for g{(0).

Proo?y Pix >0 and 3 ¥ 0, pofinc =z (=) aud
= a— &

ky({men} wmr(0)
k~(rnen) by ¥.(men) ¢ k-(mn.n) = ¥(m,n) and ‘ - ——
- * = i imen} ngiv)

iy (mn) k) (m,2)
Lefine vw(m:n) m === - and elm.n) -~ -
nf(0)(1+ )% =ei0) 2~ §)7
k,(m.n XKo{(m,n)
Observe v(m,n) m ——= . ) i and w(m,n) = Juais 5
ng(0){1: $) ngid)(1~ §)¢
Define
!‘;.n = number of X'y < v(m,a},
!:'n.n = numder of X's < ¥im,n) ,
l' = nxoder of Y's € wi{mea),
BN

o W EB ey
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v
'an.n = rumber of V's < wlm,n).

Using the continuicy and positivensss of £ and g at G, find

q » 0 so amall that when Oﬁxgq; !;(o"-li<3 and

ISPy - a . _
ié'ﬁ-"—-.a%< ¢ « Find my, DNy such that when m > m, and

n>n, wia;n) <q, and nake these restclcotiziz., JThas,ve

v(n.n)
BK' ) am

mend %

mf{0) v(men)(le§ ) < BIY _) < wliv} v{m,m)(1+$).

C
L]
b
'2-
o
b
~
5
1y

Similarly observe
mf (0) wimynj(2=d) < B(My ) < {0} wimm)(1+ §)

ng(0) v(myn)(le§) < BN, ) < ug(0) v(m,n)(1+$)

F'¥e

ugivs wimpnjile &) < S\N /) < ng(0) wim,n)(1+§)
&y (mon) - LIRSy

Taus, BN ) < = 5 ! BOC ;) > =T ¢
pavare § - v - = ¢
ka(msn) - X,\(men)

v iz — i .

?'(H'.!.a!:) < 1 ¢ ’ E“n'a’ > 1 -8

Tra random variables inavolvel are binonials, whcoae expectations

terd to 00, hut more slowiy than ths numbers of triels, as

Tyl ~— M. Tnerejiors, If wa trore mwm., n_ lerce annazh. wa
o .

LB Y]

caAn assurs
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P(H;.n < k.a(n.n)) >1 g

(%’n > k. lfj,g)) >) - g

iy

P(!:m > kz(m.n)) >1 ¢

8g gcon as =B > B> and n > ne -hi..h reatriction w6 nov make,

Combining, using the fact that U wilil sxceed v(m,n) if
v v
Moea * ¥y,u € kimen); we Dave

»(v > v(n.n)) > 1 « 2¢,
P(’J < v(n.nf) »>1 = 2€,

The event U > v(men) implies tne event that il X's < v{m,n}

are smans the firal k& X's and Y'a and hencs the avant

O - N R PN . ,
R, =¥ Therefors, Pl , = M) = P(U > vim,2)) > 1 = 2,
— e .. % - .
olintieriys Silgy,n ® ¥ > 1« 2¢, Restricting = > !3’ n>n_.
#8 Cal ruruiss assure
-\
<
P(M _ > me(O) viz.n){le §) I> 1 - <.
s ( Q0] /
A -, 0~ é
P(My,n < mf{o) wimyn}{i+3 ) /> 1 - 6.
Combining,
iy . 2 .
F{E < £{0) w(z,m)(2+ §)°) » 1 - 3¢,
123 . -~ 2'\
P(2 > 210} wimenjide 317} > 1 - 32,
- ! !_i.! n) £ a ‘.%\2 S . st "(m.:‘) L \2)
deuce P{I(O) #la,wV la= 0] < gy ~ Wi ° §Ty,n) {1+9) 3 >
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8inca :—'?ﬂl w{l=s) » the conclusion i.ﬁ' —l-,-) £{(0) is at band.

(w.n) c

A similar ascgument shows %-—33 g(0;j.

A situation in which one of the densities is O at O can
be dealt ¥ith by e corsespondiug buf simpler argument which we
omit. Tne elfect of theorem i is to assure us of satisfactory

large semple results ir we employ proceduiss <f the following

Shcose k. a positlive integer which is large but small come
pared %o the sample sizes. Specify a metric 1in the sammle space;
fcr exampls ordinary Buclidean distance. Pool the two samrics

ndi find, of the k values in the pccled samplss which are near-

"

A=

220 VO ép the nxiter M wvhich are i's. Let N = kel U+ "o

numoer #hich are Y¢s. Zrrocesd with (e likalthond ratic Sis-
2l matlain. nafimr Wasatveaw ! In nTana Af ri{e) ans -4 4n
L IO AL W Eh P sy \Q-Qoe SOBw VW ¢ v ‘ a3 E--—-'- - -: caa g *ese W ‘—_z' - e

rlace of g{z). That is, asvign Z to F 1if and onljy ir

X -y
- < Cc %,
) L
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