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An Analogy Between Tran31ents and. Nathematlcal Sequences
and Some Nonlinear Sequences= to-Seguence Trdnsforms Suggested
4 I. {Project. NOL=4-Re9d-21-2) .
In matnemaulos, and in applied mathematiecs: esperwany one
wishes to obtain accurate answers rapidly.. One obstacle often

mét with is that the simplest and most oObvieus analysis gives
- mathématical sequences which are slowly convergent or even - -

divergent. The proper treatment of such sequences is therefore
a general problem of real. 1mportance. -This memorandum gives
and dlscusses some methods 0f treating such sequences.

An analegy betweéen mathematlcal sequences and the tran31ents

of linear systems is developed.. Through each 2K + 1 consecu-

tive valuées of the sequence An one passes a continuous function -

of the form B 4 , Qg €° XN « The series of exponentials

either coniverges to, dlverges from, or i§ asymptotic to the
constant, B. An exp11c1L formula for B in terms of the- Ap is
given gnd this forms the basis of several nonlinear .sequence-
to-séquenée transforms Az¥Bp. The transforns are applied to
a varlety of convergent and d1Vergent sequences,
theory is not given but some theorems are proven and some

relations to the Padé Table, and to Thieéle's Re01n"ocal lefer-
. ences are dlscLssed. : :

The data and conclusions presented here are the oplnlon of the
aubthor and do net necessarlly represent the final Judgment of

the Laboratory. ,
(a) Whlttaker E. T. ;nd obinson, Go The Calculus of Obser-‘
vations, Blackle and Son, London, 369 {1944},

(b) ?illgrs, Fo A Practical Analys1s Dover, New York, 355
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INTRODUCTION

1, In this paper we shall alscuss_an analogy between transients

- and mathematical Sequenceés. By the term "phy31cal transient™ ‘Wwe mean -
a physical quant;ty, p, Which, when expressed as. a functlon of tine,

takes the fofin

, ot o
.15(3t) = B + ;F‘ > O e = (1)

It w1ll appear below that 1t is useful to: regard some mathematlcal
sequences, A, @s functions of n of the form :

;A B
= ES + V:E Q; e (=)
=y '
and. because of thls We may call suCth sequences "mathematlcal trans-
iénts " .

’ ';'-fh

2. We shall be concerned hére with the analysis of mathematlcal
transientss By the term “analysis" we Mmean the determination of the
"amplltudes, as; the "frequencies," eti;,and tlHe "basé Yine Gon-
stant,” B, of tﬁese transients. If all the ©¢jhave negative real
parts, the iransient converges to its limit, B. .If oné or moreé oC;
has a nonnegative real part the transient 1s divergent and has. ng.

limit. In such cases we may call B the ™antilimit™ of the transient..

3. The analogy between transients and Sequences is suggested by the

- graphs. of some typical sequences in the (n, An) plané. Since, in

general, the sequence 1is defined only at the integers, n, there is
nothing to prevent us: from drawing a ~smoéoth curve through these known
discrete’ p01nts.

iy If, then, the sequence converges and osclllates, the graph may )

look llkeu

or pernaps

If it diVergés it may look 1like

5o S ' NoOIM 9994
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If it 1s asym@totic it may resemble

.

5. Generally, for sequences which arise naturally in analys1s, the
graph will lodk like a transiént ‘of a linear system of thé form (1)

and the idea natutrally occuls to experiment with such forms, to treat )
the sequences as if they were trans1ents dnd to solve for the limit 7
or: antilimit- B, : -

6

Suppose for 1nstance, we have 2K + 1 values of the sequence of

rar ial sums of the §16WIY convergent series, In 2 =1 = 1/2 + 1/3
/4 + eees The graph of this séquence looks " like- the first graph .
above It os01llates around and converges to ln 2, We can find

a's,. o&'s and a B such that thé Fesulting graph (2) would pass -
through these 2K + 1 pts. Intultlvely, it would séem that the B
should be.a gbood approx1matlon to 1ln 2.

Ve Suppose We have 2K + 1 wvalues 01 the sequﬁnce of partial Sums'

: of the divergent series, 1ln3 = 2 = 22 + 23 + e00n - The graph of

"ZT 3L
thls sequence Jooks llke the fourth trans1ent above. It does not
converge to 1ln3 but it does ose¢illate around and diverge from 1n3.
And” the corresponding B should be a good approximation te 1n3. In
this analogy the continuity between convergeat and divergent sequences
is similar to the continuity between stable and unstable trans1ents.
This continuity is a result of the continuity between ol 4 with
negative real parts (in {1)) and those with positive real parts. ‘We
will, thérefore, take the same attitude toward divergent sequences as

‘we take toward negative numbers. . We accept them - at least tentatively.

We will attempt to evaluate them by calculating the antilimit B. But.
to do thls, we must havé an algéebra of transients, '

8. This we will develop Ilrst. From this algebra'We will obtain e
éxplicit (and relatively simple) formulae for the B's in terms of the

Ape  On the basis of these formulae we will then develop some nonlinear
sequence-to sequence transforms which will convert the original A,

sequence into new B, seguences. In fact we will have a variety’ o? such
transforms since .(a) we may choose an arbltrary number, K, of exponen-
tials and (b) we may then iterate 'the process-'or not. ' .

.‘9. If A, is.s8lowly conve. ,ent, we wish By to be nore rapldly convergent

to the same limit. If A, is divergent, we w1sh Bn to be semi- convergent
or, better still, ¢onvergent. In elther case we are trying to filter
out the ekponentlal terms and to reduce the sequenoe to its statlc

base, ‘B.

10. We .shall apply these transforms to a varlety of mathenatlcal
sequences and discuss the results. We shall give some proofs of
validity - but not a complete proof. ‘e shall show the interrelatiocons

5 © NOIM 999k

>

iy




4

S oa e

' of the data:

" we-have six=e@uations’ o

. between these trausforms and some known algorithms. — -

I. The Algebra of Transients

1X. TPhe. solution of a linear différential equation Wwith constant
coefficients, of order K, and with given 1n1t1a1 conditidns is well

~ known and .understood. . The solution of the inverse problem, although

it appears in the llterature, is not as generally known. The
problem is this: Given a tabulated function p(t), to find the
unkrown constants o3  , @3 ,and B and the order K of a. form (1)

which will f£it tne glven data. Related problems are the determination

of. the dlfferentlal eqeation and the initial conditions and the:
extrapolatlon of the functlon plt ). "Two &xamples of the inverse
problem are: : - : '

2

(a) Analys1s of a mixture of radloaculvely decaying substances.

Given the Fadiation as a function: of time, £ind the numbe? of sub- . °

stances, the relatlve quantltles and the decay perlous.

{v) - Analys1s of a portlon of the "traJectory" of a dev1ce=

" gontrolled by a linear servomechanisms Find the differential
,equatlon, extrapolate the tragectory, determlne the stablllty.

12, Let us assume 3 = 0, K = 3 in (1) and that the data, p(t), is
known exactly.. ( For least—square versions of the formulae which bdccur
in the next two paragraphs -See references a and b ) leen s1X'values

4 (t)) . (n= o a;;)

e:t et _agte
4;9 {f,,) - a,e™", _a’,?__e?‘%“f‘ + a e’

%

‘from which to evaluate the unknown a's and c<”s.h

13. What appears to be a troublesome set of transcendental equations
becomes qulte s1mple if the ;t*‘ are equallv spaced for if we take

e’

S €y ;_ 6, T, 2T, 3T e,y
nd . L ~ . & ! = i o
’% . - T ¢ : s %} \, - {5) .
| T = 4o,
6  womm 9994
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our equations:'

Pn Z,& }:

e

are seen to be algebraic.

n= o To s)

.They are.linear in the a's. IT we

consider the p's fransferred to the othér side, we obtain from
these homogenedus. equatlons, the oondltlons

£)
»
® e
N
1

147 % g

.‘, 7“,

-

1“%&
‘i‘%a

-

5 o
i ' Jl
5 op .

i

2 -%% ':'%Aa ‘

3 % 3%

%z

 For q= qj, 2, or g3, We have the obvious:

il
o

(8)

3 3 | -
"-?'5,3-* [ E

°  Our four determinants form a set of four homogeneous equations in

the common minors of the last columns. Therefore:

1®o

. .

Lee 2
-{93

:'P P ""-
1$2. 1’3 7@
s P ¢

,1?€?§:"4551 C%Bif'

\,.3 L
o -

© NOLM 9994
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or

3%__,,,,2% *’”3 m,.._-»-é (10)

where m; is the minor of q°
three g's and the

Solv1ng this ¢ubic we obtain thé
o 's may be obtained by

'-o(i'ag

4244 ¢8' 'i= . (}%T

Puttlng the q*s back in {6) we may now flnd the a's.

i
1o

-P

This is a crlterlon to determlne 1f K = 3,
for all sets of seven consecutive p's then X = 3.

' Ja

A5,
e a

*?a
’fia *?54
%’q' -f’s-

3

v |
b

Pb_

4o IT we had a Seventh va;ue, Pgs We would hawve:

If the equation holds
If the S

determinant does not vanish, ¥ > 3 but- if K does equal 3, (12)
=g1ve3us the extrapolation formula. . _

1’6 '“'s

¢

or more generally the recurrence formula

‘fn- ma. - Fn»zm * ’Pn—3m°' :

N

195 m,,_ "P*I m, + ’F"3 Mes - (.lBé)

(14)

On the other hand if all the mi vanlshed we would assume that

K < 3.
is obvious.

|—J

The generallzatlon of the formulae (3)—(") for any K

5.'-Forlma%hératiéalftr &I 1euts, {2}, the a's and © 73 are

NOLM 9994
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of theoretical interest and they w1ll he dlscussed in a later
paper. But our present purpose is to evaluate the "limit" or
Pantilimit" (the .base line censtant) B.

- 16. Rem0v1ng the restriction, B = = 0, we hayé the geven equations

for K = 3

H B--rﬁ @y %; _‘ _(l?i_%.o:_ta ©) (;157):

and ; thérefore, from the flrsg_four”

ARe AcAS AL
1y ¢\ e 93\ /I . . v |
Lk " . » ’ ?' 3';; 5 _ __:"__ i ‘ by %:‘ b -..-
L B S s
l %3 %3 %3"\ o Ll %3 93

But .since the q? s are functions of the A's it should b° p@SSlhle
ofo2 flnd B as a. functlon of the A's only. .

®
!

17. If we take' R : |
B A, = f‘qmtu_“\ﬂn":,‘- : S

and . Pe

A‘Ah = Z c . m-;e% 5) a9

=l

and byécomparisonEWith (6), he two determlnants.

%3

2’ >

RO S S T R S S

[
o
o

[} L 1" laam 2 AR AA

9 | © NOLM 9994 -

;'c’ir‘ ‘ (%z ) ' . - z'“-_(als)’

we have from the dlfferences of equaulons tlS), the'si;‘equatiOns‘

; 3 laa Aﬂ aa, @A S
2 %|°%o % o ° 3 ' (: —).

- .

o 0
R .
g

13
—)'/‘
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The ratios of the:minors of either determinant are the symmetrlc '
functions on the roots, qi, and, “therefore,. these ;atlos are equal
.%o each Ouher. .

i: ‘%\
X Q.

L aﬂ_.

v

s

That is

N

%a:, :

,q;,

| L I %
B £

o “and so forth,

. "Aas
A A,

- Y f;
% %

y g3

AR

o+ ?a,

»

a0

3

w 8

Therefore,

A Ay Ag

T AA, AA, 4A;.
.‘5;%1 45;Q3 Aﬂ/\q

1

83

| B8R AA;
laa, a4, a4, |
':;‘fiz z;f§3 4s‘9S1'_

R |
A7y

(1)

1

4A,

'-A A,

Slmllar determ1nantal formulae are, of course,

K.F 3.

b

e L e

W s

g e s o T e

e e wpe =

The ‘general formula is
Ay -

i\o

0
"
bl
)

aa, A\
aA, 4A3'
_AA MgaAa,

(16) may be replaced by itslequai: \ -

1
|aA, an, 24, aAg}
AA . AA, AR, 4Ay
DA, 453" A Ay ARgY

obtainable for.

e e mh. ' ! -. N e A' i N G 5

i 3 (22):

m

PRI
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These determinants may be readily transformed into other'
1nterest1ng torms.: Some of these are:

iad MU on S 2
‘o’ e St D
ORI s e £
" ., ' e R
D

AME AS (23)

. 1A Ay

’ v
l_: !.

>

“ ) & '~--r

> & o

(e-r A - o
AA:Q v e a B} @AK . «

' - |
At el
| sAME As 2} »
' " (23a,b, c)

=‘t=o .~ a &k

‘Ah AK.“-- i AaKi'

v

A o
[ i " .
¢
S \

B= —

e @ 13

II. Two Nonllnear Sequence-to—Sequence Transforms

R 3 a‘ .
A" Ay~

AaAa a* A

. ‘a_la .. ) . .
A fgeay -
1%

- KBy

N ]
- R
1]

18. Lef ns return to the

_convergent in 2 = 1 - 1/2
1/2, Ay = 5/6, et09 Given the firs

1 S womm 9994 4
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H
<l kS
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artigd aums of the silc )
s We have A S l, Al =

veh pa rtlal sums, Agrdg,




. . 3
“we could assume this sequence to have the fofm 8+ é

_ second method is to fit a f‘ourth order form B+-ZTY

O(h

with the seven unknowns, B, Q and a( , and solve b r the con-
stant B. We obtaln from (22) °

4

NEEE TR - :
o =« 2 21
{1 1 & -4} oy
B= |3 % | (24)
AP R SR SR M | o
L £ -t %5

Therefore B = 1073 = -0'669311521,-5. But 1n2 equals 0. 69311,718 and

i i54 .
Wwe have obtalned a result aceurate to flve sn.gnlflcant flgures.
THiS is gncouraging. . ;

19'._- To improve the approximation, two methods w111 be 1nvest1gated.
Assume two more velues, /g and Ag, to be known. The, flrst

‘mebthod is to fit the thlrd order form B+ I3 a; é

. OT t0 A, %Az . ‘I‘he-"'

QQ c ("‘"

to t‘hz nine va%ues Ag~® A‘jﬁg - The Tirst method' ,glves6 s
9607 = O 931457h for the set - A and B = 15079 =
13860 Ay > Aq : '2'2'6'21‘0

to the seven quantltles

- L3¢
-O 69311,»766 for the set Az2*Ag « The ‘Second method gives

= 14161 = O. 69311-»733. Elther method, therefore, 1mprmres the .
"20L30 .- 2 . . . .

res_u.lt'. ]

2—0; Now we wn.sh to give a general formulatlon of these two

methods. Given 2K+l members of the sequence Anh, centered ‘around

- n=VN, (N-K€nSN + K), we may fit these 2K + L quantltles ’oy
E the K'th order form . :

Cen: I
> Xwi T e
Ah 'KN* z at«wa € L o :(25)
" aai R : . .
’:Thé q‘uapti'ty is Obtaﬁned from 101‘-“1111& (23) whére all ohe

suffixes are 4% reased by N-K,

The trensform S L R o
ﬁ'N-j-%»' Bean o o (26)

12 NouM 999
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will be called a Kth order transform of Ay . If, im (26), N is
varied from K to ©® while K is heéld constant (thée first méthod
above), We say we have a th order sequernce-to-sequence ‘trans-

form:

(27)

o We de31gnate the trans;orm as {%ﬁ and tabulate it aé folqus:

,i§1; o . .
. l§| L :_o_
- Pligay E5=w5&33 . o o N
: °A_a_<;§i BR 2 ete, '
" 21.. We may call Bﬁ , which in general w1ll vary w1th.n, the
local base line cofiBtant of the sequence Ap. (See paragraphs 40,
53 for examples where all the B's are equal.) We expect the B's
~ to lie closer together than the A's sSince they are all approxi=
mations to the. base liné constant of Ap.  In the eAample above
| ) we saw that B33(0.69315245), By, (0. 6931h57L,, and Bss (0.69314766)
= do have this character. In fact, they are ostillating around and
' : ) converging to 1ln2. We say the B sequence has the same base Iine :
N - _constant as the A sequence. ThlS suggests the 1terat10n .
B _ - & Buni N '
n' S CK(N +,‘Z g.(“i‘e’ . N )
- ;. R :_—"’a,"- = P - . i R B -
= CoLL RS  (28)
gL .
C.= Dt 2 % CALLARS |
= 5 “ - KN .‘~‘. - KN& : 2
TN ¢
and so forth.f_The-Kth order iterated éequenceétb-sequenee %rqngp i
form: : } : . - . .
Ah—% BK&" ] C‘Khi" DK“ «-a%~ v e e srn‘ : . (29)
_ , o - N ) : . |
- we shail 6331gna te as the @y btransferm of Ag.
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i _ 22. The simplest of the @, transforms is €,
\

|

-
q

; symbolized as:

) . TS -~ Souai 3
SR G L5 ¥

AR B ?C 2D D e (30)

©and tabulated as ‘ B I ‘
T E ] go S B e e e
; - - ﬂﬂa B. - R ek

e - L Ra -Bu '
. S e 7"'3' 5;13 :

| ‘ o D 2‘# gm . .

., gy 5 . .. ) '.
It is eva.iua-t‘ed\by {he, fof'muiae':

. | o - 1
' - ’ . o : AN ‘- AN*' AN"' N S j

za,, (,qm,m.,,.) A 0

~ z o C, - al N - B. N-ﬂ B}.v N'@"i‘ ' ,i, : ) o U

|- -GN = Do T (32 . |
ST R L B - _ .

| T &E,N (Bmﬂ“" Bs N»ﬂ) I S e

- éte, Nhen as1ng e , 1t is convenlen’c to drop the subsr'rlpt L
' _frbm B, C, etc., and this done 1in the foll@wlng pages.

! - : o :'2C3. '.Ehe second type of transform 13' .
’ '_—,' N e T ’ : ::4 . ) X "' » -' \h
o Ag™ Bpn - (33)

‘?rom AO, Al, ana Ap we derive Bllby .Ilrst-erder transform. From '
'\AG, Al, Ag, Az, and Ah we derlve Bas by a second&order transform,

bt ond

% Co \. : T L _: o _') S ' oL
- e NOLM 999 il
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gte,  This transform we will call the "dlagonal" transiorm of A,
cand we will deSignate it as eg. It may also be iterated. The
term'“alagogg;" should not be ¢enfused w1th the dlagonal in the
array of .e[ numbera above.

! o . 24 nornuld (31) or its equivalent has been used by &. C. Altken
} S (reference c), G. Shortley and R. Weller (reference d),

' ‘P. A, Samuelson (reference e), and D, Shanks and T, 3. Walton

(reference £). Shortley and Neller used it to extrapclate an
: - Iterative equatlon and the differences of which have a nearly
3 . == - constant ratios oamuemson° and Shanks. and Walton have used it
, E ' - to extrapolate an 1£erat1ve sequence (the differences of which .
? . * have:a hearly constant ratio) which arises in the iterative -
: © solution of an equatlon of the form . .

i

ﬁ" ! i'i'ﬁbi" i D L .?_“.‘

£34)

(f\ !

%= %3

[ o AitKen used what we cal]' the e. process in luS entltety, .
S {30); to speed the: convergence of a sequenée which ariseés in -

: : Danlel Bernoulli's iterative solution of an algebraic equation -
(reference &, p. 98). In the examples which follow, the guthor
applies - €, and the other transforms to séquences. arising from
infinite series and produets, continued fractions, integral and

P . : differential equatlons,‘elgenvalue convergents, etc. He belleves
b - :this to be new., -

. - 29, The @ and € tradsforms and their iterations are also
- : believed to be new in & general sense. When applied to the I |
- partial sums of a power .serie$, however, the €gand @« : : ;?
, transforms are intimatély related to Thiele !'s reciprocal differ- '
- ences (reféerence g), to the Padé Table (reference h), and to : _
: ’ Kronecker's theovem on thée power series of rational functions ' i)
 (reference i), This relationship will be discussed in Part VII, - =

: , Sanuelson (reference e) in referencé to the solution of (34}
L , suggests a form which is a special case of our (2) where

o g ) T 3 &, etc., but he does not develop our
'(23), (27), or (29). L =

26, If we compare eg Or eg with the Cesaro, Holder Abei, Euler,
,Riesz Boerel, LeRoy, and ggneral Toeplitz summatlon processes
(reference j3 the most obvious difference is that all these
processes are linear in the A whereas . € x is nonlinear, - ]
If we consider the two determlnants (23) to ﬁe expanded according R
“to their first rows, we See that: @k K, is a-weighted average ST
of the Ap. 8o are the above linear processes. In them,*bhe'
weights are pregssigned numbers -or functions but in. -
the weights are minors whose elements are differences of %he Ay
thefiselves, . There is an ohvious adVantage of such a device, ?f'
‘we weré gumming a ‘convergent Series it would.be desirable to ;
Ly L weight the later Ap heavily - bug if it were divergent it would
oo T ber desirable to welght the early Ay heavily° No preassﬂgned o

B
TR M

e e

Aol

i e ) . R . _ T:-_\ '; = _ :,- $
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numbers can do ooth. In the eﬁ d processes, We allow t{le
seguence {so to soeak, to. choose 1ts own approprlaue welghulng.r

27. There 1s néthing +o prevent us from combining eKﬂprocesses

- of warious ordéers with each other, with eq processes and with

linéar procesSes such a8 the Cesaro. Occasion for bhis will arise

'in some of the éxamples below. We now defer any further general

dlscuss1on until some examples have been givei.
>

111 Three Exemples dfi:fe. '; )

280 L\en aw':‘:" .L* 3 ’ q + .,s *
Direct summation is 1mprudent since a bllllen terms would be
reguired to obtain nine de01mg1 places. The_ same dccuracy

__however is inhérent in the first eleven ("‘*‘ Bven ‘nme) terms

g -a.,-\al,-n I\'P theo

‘and is obtalnable if we goncentrate NOL -0 The HESaEX bhe

- graph but on the base lineé. - TransfTorming the partial suns. of -

'10 de01qals places, we obtaln.

this series by (30), (31), and {32) and keeping our results to

1,00000 00000 _
50000 06000 70000 00000 : e
83333 33333 69047 61805 69327 73109

| 58333 33333 69444 44444 69310 57564 69514 88693

78355 33333 69242 42424 69316 33407 69314 66820 69314 71961 ST

61666 ssséé 69358 97430 69313 99011. 69314 73541 :69314'?1?61: é9314 71807

>

75952 :38096 69285 71429 69515 08287 69314 71120 69314 71821
| 6B452.88096 69334 73390 69314 51963 69314 72107 o
© 74563 49207 69300 33418 69314 83323

64563 49207 69325 39683

Mg - 73654 40116

An Ba G P By R,

Each seguenee is the local base line. eonstant of the prev1ous
squence, snd oscillates around 1n2 with a smaller ampllnude than

-the previous ‘Sequencss«Fy = Os A03“-'7180*7 and 1n2 =.0.69314718656.,

- Since we are only Keeplné ten places we could not ‘expect the last—

iplaoe of- F5 to be correct. It is possable te obtaln tde eawe ----- L
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result from the njne values A -> Agif we treat the result<
ing Jlower dlagonal A@, BZ é g etc. as a new sequence ahd
subgect it to GL s, hewe¥er; may bé unréliable as a
genpral procedure 51nce the sequence termlnates after 5 terms.

29, A similar calculatlon on the 51m11ar, “put dlvergent series,

In3 22 = %?, so Eives ln3 correct to 8 places from the first.

- 11 terms. In greater detall we take g
7w1ldly dlvergent tYPev . t as our next e{gmplg a more

J‘ Ca (e - tret~t +--)abt = ./-,-;/{'+2-,i 3!+l =
H-x: ,_13: ‘ S '

W, mﬁah 0. QVQTHQfP t.he 1ntepral. Eroceealng Forim:

this alternatlng series of factorials which i8 of s I
theory of divergent series (see referenCe K, and Js )

Knopp states that 'ii cannot be summed by . t“v Borel pracequ "the
most powerful of the processes which are aseful in practlce" It

5
£
o)

.- dbes no good to ‘tell us that the Stieltjes sum of thé seéries is

the integral . | f” =% e . (reference: j, D 555) betause
‘ o ¢¥ ’ g :
that is what we started with. It is s>t our purpose to a831gn a
"meaning" to the series. We already know its meaning. It .is a
series which arises from the integral and whose partlal sums -

oscillate around the- integral. Our soile purposée ig a pxaco¢ual -
one. We wish to evaluate the’ integral numerically. o

6666 6667
5000 0000, o6O7L 4286
.8000.0000 45818 1818 45977, 8113

<0000 0000 46250 0000 +5943.5788 - #5965 0983

TR | 2.8571 4286 5194 8052 6001 5250 -5961 0532 5963 6273 -

620 21040000 6000 8620 6897 45867 3183 5968 1315
4220 - _u'SOkGOOb'OOOO =35405 4054, 46272 4810
35,500 =388 6000 0000. & 04347 8261

3, 301 s“o "‘f':J . e e -'_;=,j

__--3é6~sso 2910.9090 9091
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Each sequence osolllates less v1gorous1y than the prev1ous
- sequences. They all diverge but the diagenal 1, 66066667,
“ 60714286, etc. - converges. Treating. thig sequence by €>
: obtain .

L 1;@@06'6660-
6666 6667 5942 0290 .
6071 4286 5960 3395 5963 5910°
5977. 8113 5963 1007 5963 L808 -
5965 0983 . 5963 L348

i.‘ S - EINEIE T .55963 ~62FF—— - - '%;;i —
;.' = ‘and from the new diagonal sequenoe we obtaln - 5963 4779 '
: ' o Pt % ex - = =
30, But 1 f & ye o8 . (w’; A [ €T e
L R Ygaet, T TR T TR TwRITR T TR T
R T S S
; C+ 1. 2:2¢ 3.3!:.4"’-’_ = @0 T

where: C is ‘E,uler"s constant. Thus we find that fa 1+t
i is egual to 0.5963 4L736. Our second example is thus alsc amenabls .
i to @, . Perhaps the reader is surprised that the later An

.35; 906 ~326,980; 3,301,820, etc. do not spoil the ecalculation.

Tne op9031te 18 true. Eacn one improves the result. The reason

which the sequence is oscillating.

3 B By Be 0 C
(: & * 2 f'f o ¢ + .

- . This is a formula of Buler's and gives his constant (0.57721 56649)

) . as a "sum" of Bernoulli numbers (reference j, DP. 541)s It is
asymptotlc ‘and after: the fourth term it d1verges rapidly. Of ‘these
asymptotlc series, Knopp says "we are not in position -+ not even
in theory - to obtain any degree of accuracy whatever in thé -
evaluation of f(x) -~---, The.degree of accuracy therefore cannot
be lowered below the value of the least térm of the series.™ -
Since the fourth partial sum of the series above is 0.57896 82540

= and the fifth is 0.57480 15873 ‘it .would appear that the accuracy
of Euler's formulae is not very hlgh°= Knopp, in fact, states that
Buler's "sum™ is "not valid, however, even:from the general view=

~ -point of § 59", (summatlon of divergent series) ™for the
1nvest1gations of § 64" (asymptotlc serieg) "have provided no

. - pricess by whicli-the sum in question may be obtained from the

! - : parsial sums.of Lhﬁ serles by a convergent prooess, as was always’

- ' supposed " : . .

“

PO S as .o moim 999

is that each one gives further data on the base line constant around
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32, On the etnel hand Euler says (reference 1), "Whenéver an -
1nf1nue series is obtained as the developient of some. closed
expre331on, it may bé: used in mathematicald operations as the -
equlvalent of thdm expre351on, e ven for values of the variable

33. Bromw1ch (reference K; P 3&;) says that Buler. "regdrdeu
his c¢onstant -as the "Sum" of the Series but doe€s not commit
himself as to his own opinidtn. He dces say "from this series we
canno obtaln a closer approx1mat10n than Sh (s 5790) B
Flﬁal..;y, whe 7.1;8'

>

: “:'-:-.' K | - - .
= 57720 9@15% - .

' “57721 49167

‘57748 97594

" - 4 e "577?1 55832

57680 35056 T5772 42410 :

57811 68590 - 57715 13956 57722 054 2\

- 57449 20439L
58843 62340
51740 63481
“98219 13367

.57896 82540
. 57480 15873

.58237 73449
.56128 45488

- ¢64461 78821
.20135 80782
3425531 24085
-23 20089 97127

57676 63050 57723 77443
57902 02119 E

>

258.25924 52148 T T o f_-f:-;..e' I

But C = 0.,57721 566&9 and we - must agree W, th Euler. ~ We now

return-te a more: general- dlscue81on of e .

iVL_ General Dlscusslon Resumed <EE

35. Up to now our discussion has been .based on qualitative and

intuitive argument, on physigal aralogy and on numerical evidence. 7

A mathematicilan will naturally wish a more rigordus treatment.:
Some proofs areé readily obtamnﬁ%le but the author does not have
the complete theory'at this time. A single @, process is not’
entirely regular. ° If we apply it to theé ratner artlfwclal

I NOILM 9994

process glves.‘ - - PR

57736 24338 57720 65727 57721 62196‘ :
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convergent series

ﬂi*trjéiﬁ: Lrh+ g 1% + fj;r + o -39

we see from (31) that By, ete, are-all oc ., (This does
not mean that (‘35)’3‘8 not summagle by a second—order probess,ea
Can we provée that '@, is valid for she partial sume of the con-
{ S vergent 1n 2 series (our first example)? Speclflcally, ¢an we
H ' ‘ ' prove that each derived Sequence (Brn, €n, ~etc.) converges to-the
s

P ' -game 1limit as Ap (1n2) and further; that it converges more rapldlv;
_— than the pre\flous sequence‘f .

s ;‘jBré,,;;: ;mrafng;fg;+vmizng ( 3:1) and U.Sl ng (17) ..@ thaln'

~ ‘» 7;7 l_:‘“:; ; L £ ,,f .- A ) :‘_A' ) . o Q ,-’-7, _
o B A iy ‘ (36)
- A‘N = - A Ansy
‘ e ' . A Ay : B
. A ‘ge: A, are +he pa rtigl sums of a convergent infinite serier
R wm,m, = S S - - .
S aAg o 7

o and T -7 _ : : B
o e wzréﬁe% ST -
. °o N ° o - ) - "‘7“"{— i ét:giﬁ- I”% “ﬂ# B ) : = ) -
‘ S “we ges Trom (36) that By converges to the same limit as Ape
e ; ThersTore & §ingle €, process is obviously wvalid 1if the geries
L isel ,,m,r of the alterna ir(xg type (& Apl<s] ORI, “’}/éa <0)
. g™ of the ratio test type (A A2 aa B_Q'\_tj
ek be 11’;31’&’03& - w=0, %ﬂ“ < g< ! '

\ ¥ 'mm dmméerence of formulae (36) glves the term of the trans-

QE&I:LG’S. e
- - : &ﬁﬂiﬂ - AHN

- : : O ey err L

A - | A Aw Aﬂw»c

LR o Eman T Ta A/

e 20 NOLM 9994
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If we now: take a sequence of the alternatlng type where

An= Z <3
) ~ (40) -
. B N- T S S (k1)
@ ga e Emo W
. V‘ 5 E ‘@ﬁ; ) . . " H P R T
L : g. t’n)
whe re ( ) is a :E‘ th degree polynomlal in n and g( n) is a G'th
© Gegres pb signomial in o, (39) becomes = : S
AB‘ - A, "§(N'ﬂ) gm» %(Nﬂ) - 5 (&‘ﬁ) 'ftm —Fm«m B (13) )
B, * ' i
g 9" -§ (M) g (me) +-§m+t)g (n_]ffmﬂ) 3 (n ﬂ; +50t12) g (mt)] 1
' *f“andlnp the 1 a t’i@;ﬁ" in powefs of N we obtain o . si
‘ . T4 . —L- N . o !
: AEN K- ‘9’ O '(g}?) : (k)
. R 4N7- SR : |
For I }»F, and g\n) = O, N =3 © and the sequence A — 4
converges. From (36), (38) and L4), Bp converges to the same
limit, but more rapidly. Likewise from (43) and (44) we may
1terate the process since the. B serles is again of the alternatlng £
ﬂtype with a term ( ')h'l-' -f‘ Cn) : : e
T g. (H, - .
Where : (45)
| G F G F+2a | |
Since ln2 =1 - 1/2 + 1/3 - l/ + s is a spec:1a1 “case of (l+2)
we have formally proved that e is valid for the partial sunms )
) of thls series; (the numerlcal ev1dence was very convincing) » {
38, Likew1se 1t would 1ncrease the rapldlty of convergence of:-
1"/5@ l - }f 'Q‘ ‘? . "L “#" é e 6 8 4 _; - Ml‘— (46) “ i
21 . NOLM 9994
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, v

g

- -

= 32 (47)
- R z N ) B )
E-’: 5. ' 2% + 32 &fe + s |
and so forth. Equation (45) shows fufther thet slthough
1“2.'4;?3-114'0-1 o C - ; e ('}4'9)‘

dlverges, a gingle 5? ‘pro¢éss converts it into a convergent
sequence (series). Tnls Sequence converges to 1/&. Similarly -
~two Successive nrocesses transform

A

1l = 22 + 32 Llrz + oo . \'50)
" into a coOnvergent sequeics {series) which convenges %o U Twd
processes will also transf Im ’ ) : _
1~23%33 13+ 00 - ' (513 -

-into a convergent sequence, and so forth. We will return to these
'dlvergent series later and show how they nay be summed - not merely
in a llmltlng sense = but exactly - to raxlonal multlples of the
Bernoulli Numbers.

39. We.could undoubtedly show that. 63. is also valld for a more
géneral series than (42), such as ‘would. 1nclude, for 1nstance

S I N 3
and . ‘°° SR .;'”-?:” | P
L A (2P Y -
-G G- G o

but since yg do not have an exhaustive theory of the range and
_speed of @, as applled to series (let alone sequences derived
more simply from products, continued fractions, etc. )5 we will
.forego such proofs. We will show later .that 1f a power. series
(convergent or dlvergent) is obtained by d1v1d1ng out. a rational
function ¢f X, we may sum the series to6 -its sum = the ratlonal
- function - not merely in a limiting sense - but exacnly by a

single é%‘pvocess (with sufficiently large K). Some other formal
proofs wilk also be given. :

- 40, First we w1sh to point out that 1f a s:J.ngle .é, process is
applled to any three congecutive partlal sums of a geometrlc serles

22 NoTM 9991
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-y
. C +* A +=C NV +CNA 4+ -5 o _ -
T o (5L) |
» ’ C' ) 5 :
we obtain é&=A . That is, our entlre B, Sequence is a constant,,
. Be SA-n  .Thus a single €, process Suns a geometric Series
. . éxactly. Divergence and convergence of the serles are of course -
irrelevant. Sinece the partial_sums areée )
_ . C LA -
R Y =) W

'we _seé that we have & simple tran's-le-n-t- .65.21-)';_ with B = -;;5;\ )
Bl =3 ' = ‘s" N o = ,Qm P T

hl. If we applled (32) to this ccqstant By, sequence we. would
obtain indeterminate expressions for C Eet us agx‘eé, 'thén, to
the comsistent convention that if any tnree gonsecutive membérs of
a Séguende are equal, the €@, transformd of the <¢enter member is
also equal to the same guantity. ZLet us also agree to the
generalization: of this convention for the case of the e,‘transform
of any 2K + 1 equal, consecutive members of a sequence.\ With this
conventidon theory we may saL that a ‘geometric series is exactly
summable by elther e or e' . .

- v_‘ni_ifevé—-‘ -

42. The series for 1n 2 is not geometric but it is "nearly ,
geometric” ju the sense that the ratio of the terms rapidly , . ]
: approach a constant, -l. Further, 1ln 2.is not rational. Thus, b
. - although we cannot sum 1n2 exactly by @,'we can sum it in a
limiting sense.. Andsince the series converges and becomes "more ) ,
. geometrlc" as n increases, it is clear that the e, process .
- will have a more I‘apld convergence when applied to A with n large.
As long as the series is making .an ef'@rt to converge (n small) we
- may allow it to- do so and defer the @, process until & nearly . '
" geometric character sets in. ‘Thus from the seven partial sums of‘
1n 2; Ay (.6532106783) to A3y (.6661398243), We obtain Dj,, .
(o 6931471802) which is correct to 9 placess "We do ‘more addition
- to obtain ’cl;;g A, with, larger n but we more than make up for 1t by -
> -d01ng less- e5 calculatlon.

., 43._ In connectlon W1th thes;'calculatlons we w1sh t6 point out’
T five characterlstlcs of the '@, transform. ‘

“I. It is local. No quantity agbove or beiow';&hese two
diagonals. N : . ‘

L wiDT

- —— - C

(56) - 7
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G {see paragraph 3L)

MAL , MAR and i Ay Gives B,

B

. :almost as fast as -the An sequence is fed in.

it would seem more reasonable to use a .seécond-order process

can affect any quantity betiveen them. We used this idea in the
calculation just performed and in the asvmptotlc geries for n.uler's

II. Ay, may be multlplled by a constant. For é, applied to

- III. A constant .may be added to or subtracted from An.- For
e, applied to Ap+] + @&, Ap + &, and An+% + .8 gives Bp g A
ransform- {0376 and -

we wilsh to transform 69311.,70376 we may
T . {§931A72835 2835
_693111»771053 1053
& 6931470000 N o

IV. Generally:-there is no. loss of gignificant flgures. From
an Ap sequence accurate to 1O significant flgures we will ohtaln a
By, Sequence of the same accuracy. Thig may be Seen from {36} .

Only°“when D A oy ©is nearly equal to +1 will be a less accurate

D Ane-t
sequéence resylt. -

Ve The e. process may be read11y mechanlzed._ With modern .
large-scale calculators .the Bp, Cn, etc.,sequences may be calculated

hh. Flnally we -should ve a rough- 1ndlcatlon of the types of
sequences for which the process.snould be useful. If the sequence
is nearly geometrlc, that 1s if '-&--u‘%_g' approaches a constant

QD Ap o
3+ 1), we might expect e. to work'. If the graph of Ay looks
like a simple damped or growing OSClllaLlon or a simple growing or
decaying exponentlal we might expect &, to work. Bui 6 the '
seq_uence is derlved Irom a Structure llke '

2.5_ -L’ - ’ . ¢
S

" 4
L 3t}
) . " ks - ’~L "L e o ’ )
led=3t § +F-0 -7+ _ a"’é
2 - ' +y
M B '- B zc}oo.

We could, however, use a first—order process on the alternate mem-
ber .of such a Sequence, that is, on Ay, A2, A),etc., or Ay, 1\3_
Agy,etc. In no case where the sequcnce has been artlfmcially and
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randomly put together (for exaggle, out of numhers in g telephone
book) would we attempt to use €, or any other of these transforus.
Although ecertain c¢lassical mathematical operations frequently
produce-seguences o0f a trahsiemnt character, this is no indication
that all operatlons will do s6.. Wé now return to our examples

- and apply e to seme sequenoes not derived from infinite serles.

-v, Further Examples of eu S
15, A= Pg.gn > 2w ™

A limiting sequence of considerable antiquity is the sequence of
thé perimeters of b6.R0-sided regular. polygons inscribed in a wnd:t
circle. A table of such pefimeters (n = 0 to 7) is given by :
Wentworth and Smith in reference (m). The sequernce converges to
2 Trwith moderate speed. The speed may be accelerated by e, but
whén this was first done the Cp- sequefice had a noticeably non-
smeoth character. This suggested an error in the Wentworth- Smi th
table.. A new calculatlon was therefore mades =

h' i ntwortn=Sm1tn R New: Calourafwon
.0 g b 0000 0000 - ' - 06,0000: 00000
. 1 “ 6. 2%16 57@8 S 2 2%16 57082 :
2 6.2652 5722 ’ 2652 57226 -
3 6.2787 QCLL - 6. 2787 00408 .
L 6.:2820 6396 : . 6.,2820 63901 -
5. 2829 2 ] '6,2829 Oh9hb
i From the new data we obtaln G 642831 85;v7 correct té the ten
significant figures. Generalzy speaking, e, 1s sensltlve to small

errors and is a means of detectlng them.

. Two suech sequeérnces are: e . S
: :('9*"" ;n) > e : ,(57){2
and. . a : S '( o)
: . I 58)
(aa-—i)a‘-»«@«a
-He nay. also w1sh to experlment Nlth llnear transforms. If, im the-
perlmeter sequence above, we take
e L . 'EBV =é ‘v‘qin = ’qi\*l .
. et 3 © e £59)

~ and’

" s

we again obtain Cg = 6, 2831 85307. This caloulatlon is undoubt-
edly more rapid than the previous one but it assumes: knowledge of

the weighting factors in (59) - These were obtained by

R o © NOLM 9994 -
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L46. - The reader may wish to try é’ on other llmltlng sequenoes. '
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L ““ 5 L

A Ay, 9
A Ba o (60)
o L. - = %‘.‘ -'L

From t—hese formulaé the reader sees the copnection between €,

and this linear process. ’é‘ depends on local welgnf.lng factors

but the iineaf procéss depends on: extrapolated weights.. The '
: author calls this 11near orecess "geometrlc extrapolatl/on"

1.,.7. An mgen-value Problem :

‘-Most approxunate methdds of flndlng elpenvalues have a rather low
accuracy, { say 1/10 of 1%), unless a large number of approx1mat10ns
are, calcul*ated. A simple ‘eigenvalue problem is:

£xs . . . =

o 3: | &Y d— A Y = O
| 11,0) ld(l):ao

Find +he lowest elgenvalue. Collatz, {reference n) by using.
-Courant's "Mammum-fﬁlnlmum-Prlnz1p" finds the first three upper

X and lower bounds. - Applying - @ to these we obtaln.
. '3 = 3.00 00000.
12 = 2.40 00000 2.48 57143
5 L. B ' ‘s
5 = ‘2450 00000 247 09302 2.46 73381
150 = 2045 9016h  2.46 80403, 2.46 Th162. ..
UYL . - , R :
L2 = - 2.47 05882 . 2.46 75271
= 2.46 65260
| '-‘--A.e,;-. gy e Gy
: Since the lowest elgenvalue is- e = 2. L6 7,011 we have obtained
two extra decimal places. To the 1mpertant questlon,_"How can we
know a prlorl what the accuracy is?" the author replles ‘that ir
126 - _ NOLM 9994
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weé have a long sequence, An, & study of the differences. within

L ) _ - and between thé derived sequences will give a reasonable estimaté
| . - Of the accuracy; but if we have only a few térms of Ap, the

; : LT _questlon is more dlfflcult. : ) ) '

I . o ’

I ’ * L8+ In the Raylelgh-thz method the approx1mat1ng functlons are

{ : usually chosen in such a way that the resulting approximate-
’ - - eigenvalue geéquence comHVerges. as rapldly as possible. This c¢hoice,

L“ e however, usually complicates the calculation. It seems possible

;’ - 7 - - - that one.couldnchoose simple functions in-a regular manner such
B - that, whilé the resulting sequence converged slowly, g large

l ’ numbgg of terms coéuld be readlly calculated. Ve would then rély

i ) & - _on @, or some other process te secure the necessary accuracy

| .. from the rough bwt abundant data. _

!~ - 49, A Continwed Fraction Sequence

#ﬁ= L .- From \FT J* Z-tJ‘ : ;' ; we derive a sequehce of
L _ =1fconvergents. We process these by e, and obtainm convergents.
[ ‘ which are farther along the sequence. L :
| _ L. |
R X, “ :
I . ) ’ :
f . 3 17 .
| ) 7 99 19601 = 1.41421356k
| ‘ ©5 70 13880 '
| 17 577 , ;
l 12 468 ’
] ~ . E‘t )
; bk
- 2. S
1. ' 6. is correct to 9 gignifi¢ant flgures. The e transform of any DR £
: S—_— N Pghvergent here LS the same as that obtained by - ) : j?:
B,= 2fan + &Y . o~ .. S
|l . - D S , : = S CRE - {62) R
= : - - .12 e L. + oo ) (62 ) )
| S . . i!v ' 3'( ta” t?mv '
] _ . ‘ But this is Newton's 1terat1ve method of taklng souare roots. Bach .
r D iteration doubles the humber of correct deeimal places. - (See - s
;(_ reference a, page- 794y - : 5 : ;
|£ 5 - | - - o ' ’
| - ' T o . i
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'50. Euler's Partition Function

~This function (reﬁerence-o)imay be expressed as:

-f(x\ T lex +zs + 3x’+5'x"+ Tr?+ 4t x® e (63)

where the coefflclent of x1 ig p( ), the number of pos31b1e
SR partltlons of -n. It may also be expressed as the infinte product:

O f";‘?’-_ ) n-x‘) (1= x3) (:-—x") f(&)’

OF as the re01procal of a-power series w1th paps

s HNS : R . 3 :i,‘ i S
S e — %)
‘ ' l-x X +xf+x -x"‘-—x"ffx""--f_- _-{‘54)
Because of the 1ncrea31ngly long gaps in (65), the é@ﬁVerpenée ot
_this series for x = 1/2 is rapid . and from the first nine Non-zero
_terms we obtaln ten flgure accuracy

:On the other hand from the flrst,ulne partlal products of {64) we
:Obtdln ohly three figure accuracy .

_;;' A3 = 3&;5“5“?&7&’43 e e

But 1f we - use G% on bhese nlne partlal products, we again flna
g‘., = 3462 7 Y6619 (e
'51. A Nonllnear leferentlal Equatlon - ' e
given - ' . ' o Y if:. s S '
Zg + 32 7 + o, 115‘3%6’2{ @ WEv -, - (69)
w1th the initiak condltlons' =: : I o
yley=o 11 Co) = é,‘-/@ﬂ L (e)
evéluatéty,for t . = 9. - (See reference T, page 2,) We introduce
R s -—-'"O.~',;‘Li’53i;£t and z = . .
: ' ] 2’7 800 ' : _(71')
f, S and SOLVe the resultlng equat1on by the power “series:
i )
! ] . , ,
K .
- 28 ~ NOLM 9994
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S U : (72)
The nearly-geometric character of this series is appa;gnt. For

% =9 (8 = 1.03806) the series oseillatess We apply €, to the’
. flrst flve partial sums an& obtainz _ .

S A a;lut-i'on of (69) by n-umerl‘c:‘alv 1°nte'gra:’i.ig5n,gixfe's; o
T R L L )

while §=é1iies '('72) dlrectly gives ’ohe f‘alse value

...--.__.1,._.
|
!

‘ . '-'21(4‘}‘.'?:- 65, -w.sf

. T 52, A Dlvergent Series for Catalan's Constant -

. We- may derlv‘e a dlvergent serles for Catalan‘ constant, (47), from
. a-formula of Titchmarsh (re;erence p) - : .

I ”’2‘) r'""" ’W(S } L tr-35) = lkg}-.-

-

e e Lesyr 1o s v (sl R

.+ ¢ 'since @ = L(2), we find from (76) with's = -1,

g_ :-:° :—~3+s~ =74 ]
m(- 'W/a.) :

‘But the denomlnator vanlshes and the numerator may be summed to
26T 0. Proceedlng in the eulerlan manner we wrlte ..

26 = . & 1,,;_@_%&__ \ o
'«%s : (311?)55‘:-.; -
”:0” (§-) G ”"3 S,@“y.,. 7«(2«7 - TR

The first seven partlal sums ot thls divergent serles may be summed"
S  to .

R |

g
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S .. 53, (Other appllcatlons of én could be given but we must now turn
‘ to the study of thé higher ofder egtransforms. A compelllng reason

Since ¢ = 0.9159655942 we. caloulate E
o (B = o37izz 6726 S |
| SRR ¢ R R - e -
: s The agreement is not perfect. As it happens,. though _ ] E
: S and this sugg ests that formula (76). has. a. t;&PQgraI)hi¢al error --éf__ o
P o . a factor of @f9Ts That this s the case may be seen bay' taki ﬁ-g,,, _ 2
o S S = 1/2 in (76) Then L e 1
L (‘;’a.) INIEY) 2 s ) But actually(z) ["{é) \f‘? _.; I I |

i s : - for this study is the fact that e, does not WOTk. weéll for some
. _ s1nmJte series. Fer 1nstance, tgl_c,e the divergent ‘series . _ )
~ o o ‘L R e ‘.r_-”"_ . . ’ T -(
I+ -2:2 +# 3.2 '-.9"1’-*«?._3 + g“’.g- seo (84} -~ ..
- which may'b‘e -d:eal-'_‘-imed.‘f*-v-m the rational fungtion 1 - W':'t'th -

. . . : l-x e e
P x = 2., The par’clal sums of thls s,erles d;verge from a aeflnlte ‘
‘ - .. value, namely, +l. However, the @, process requires at least ' &

four 1terat10ns before any appre01a'ble convergence takes place
z (after that it goes much mere rapidly). In other words, it is :
< L - . sSlow. On the other hand, froh the first five (or any flve con- ) R
secutive) partial sums, a second—order process ea ) ylelds the e
exact sun - . '-, i _ : [
P 149 1 - 3;-&.-; : i
| ' bz 32 el
‘ o . - ““\ L
Jou v ok A (85)
. &S L33 3 : B : .
2 32 g?a_;__
5:4._ Another type of slow convérgence of the ?. process, and two g
more difficulties - 1loecal nonuniform convergence and local non-
caonvergence = will be discussed in a later paper., Some of ‘the 5.
main ideas of vhe @, transforms are 1llustrated 1n the next two. R ‘
‘ . examples. o s _ : ] 1
. VI. Two, h*camples of . eg_ o . L . g
| Y S AP S ~L =e- ((x t) @ 72 ) X
N - 7T o wmwey = F 3 - . .
R ' : : , : Yo . ’ : :
. I e 30 . NOIM 9994 _
. _ , : | S ¥
4 |
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ae second—order process, @?3_, ‘is useful ifA the solution of this
simple integral e&quation by the method of Successive Substitution
(reference q)s This method, when applled to the above equdtion,

~ givés the dlvergent séries:

) e ) $x . 3
Ul = (£ =$) - (& vo) (£ +£)- (,W +%)- (m«»%a’)_.(so
We apply e to the 11rst flve partlal sums -and obtain

@iy = (87

Any other five céonsecutive partlal sums of (86) will give tle same
result. The vector series; (86), is therefore exactly summable by
egajw the exact. solutlon of the 1ntegral oquatlon.

56, - This example is a particularly cléar one since We can ‘show
exactly’ why @ais successfule. The 1ntegratlon process ‘whereby each
veector terim of (86) is obtained from the prev1ouq term is equivalent

. to a matrix’ multlpllcatlon.' That is

I+ o)
(4» )" <"*" AR

(88)

o £ W ( PO 2 DT e
T 3 o\ . e ¢
where RS | 490).
. ( .) =‘-.--9-v

But the matrlx«can ‘be expanded into a pair of unit orthogonal B}
matrices (for 1nstance, by the algebralc apparatus of PRart I) and
therefore we: have . ) .

é 5
k.

N ., ‘(3'%.4.5)."’ '&*

e
o
®~

0
]

i s S — Sy nmp - &
YL e or Sy ) s AR s
E - It £ .
: : it o S s SR S -




Finally

| T .
; o AgE Z(w)=x- '(3+62r-_)
1 .

n=o

and we see that thé seguence of partlal sums is a’ second‘order
transient. The sécond term, (3+1J’) (3,13_"3,( - 2-+ )tsmonotonlc ,

and dlvergent the third term is a danmped osclllatlon, and the
f1rst term,. x, ‘is the basge llne constant. :

'57. Goldsteln s Formula for Drag :

|

|

I

; , Goldsteln, (reference r), -has investigated the drag of a sphere _

[ in a viscous fluid as a functlon of theé Reynolds numbérs This ’ B
, 1nvest1gat1on is' based On the llnearlzed (Oseen) theory and results ’

| .t
|

1

|

i,; 1n the following -séries formula . ) )

< r

o K.g.’ﬁ'— 3,5. lfl"?éf‘ « i 30:7?:2" ,,rzzrm &Y 10 |
| P RET 76T 296 T pogeo 3Wowa~o Seopvagm |

—oori

I ' The seriés converges for R = 2, oscillates for R = 4, and diverges -
. badly for R = 6. In view of this, Goldstein abandons thé series

H, ‘ ) (which had beern obtained witkh much labor) and resorts to an

i approxiniate, numeéricéal solution for R >-2. g

l

l

| Eemmse

58. Series {93) is neariy geometrlc and wé could sum it by §% .
For any fixed wvalue of R, this wéuld be the simplest, thing to do. N
However, we would like a formula for Kp in terms of R and for » -
this purposeée it is simpler to usSe a second=order progcess. We
apply €5 to the first flve terms of (93) and obtain the rational

'approx1matlon ”_ . ) R
. a : oL : :
fK -.g; 5;2“ 295, 6 &0 + - 033 ZooR + ta g&0 R I .

' R’ 724f, ¢80 + 17, JeoR + 687 R> (9% o

’:numerlcal solutlon.

wip

|

l

|

|

l

i

|

l

| _

: o ~In the table which follows we compare (93) and (9#) Wlth GOldStel“ s
| - | '
|

|

|

| . . _

| 32 : o NOLM 9994
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‘Table 1
R (93) Series Solution _querihal_So;qtion {94} Rational Approx,
1 . . i . : '
1 14,206 S 14,11 : - 14,1051
2 8 918 8.00 o © 08,0043
3 6,018 ;5w93 . 549287
L . 75,201 £+87 4.8688 :
£ . 5,122 L e22 Lo2195 P &
6 5.803 3.78 3.7776 4
8 - 6.331 XAl 3.2088 Ty
10 . .. 21. 523 ., “2.85" 2+8532 )
12 - 3 282 5 2.60 2060»607 N i
16 139.518 2.28 22777 5
201 351, 2’-3‘2 2.08 2.,0630
. If we apply' ez,to the laSu five partlal sums of’ (93) the agreement .
is net quite as good. ‘The last term of (93) is wrong or at least - 5
it dces not follow from the )\ § of Goldsteln's paper (reference ,T
shs When we correct it: C 5
- 122,519 RS . 122,519 RS - 1
) °550“502'"LO®' S instead of  560; 742 L00- (95) 1
i we find that the 1abt five terms now give o A
N -—-' 3 = 3 3
Kp s 2 185203120 + 3332F00R + 6‘77l10ﬂ 3ok (96) |
1,820,320 F 4,260,290R * 0,736 R‘*L T !
which agrees w1th 94 to thr°e or four"- 31gn1flcant flgures up o '}
R = 20. : : R
59. Serles (93 may be" wrltten ) ) E ;,-_f
l+ 3 (R) R ﬁ) 30,17 e‘i‘?(ﬂ) (4,9 } . ¥
( 32.0 ¥ I?Y ‘76"9 §33, 6@ 97 F
whlle its. recipwocal is ' v i h
zi’ 3 RY ( } Cz K) 3? K) SRR |
"’ {m of o § e C— 5 . PR
R’RL™ Y9 T F qu I 2 LU
- ' .The relatlve 81mp1101ty of (98) suggests. that ik mlght be Simpler, :}
in any: ;uture work on drag in this range of Reynolds number, to . :
) work with s instead of Kn. directly:s
| ° 33. : NOLM 999%- :
. [
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o 3o+ .ilx-e-x

':anc‘r . e .3 =2 -k

60:; In the last two-éXamples we have illustrated:

(a) the utility of reclprocal series

b) the accuracy.of rational appr,p,x:.matlons

:.'o')' the numerical simplicity of €, versus the analytlc'“'
ricity of e,( or €4 , and :

:d) the exacu summatlon of serles whose sum is ratlonal.

'These mathema’tlcal phenomena are tightly 1nterWQven, together with
the Padé Tablé, the adgerithms of ‘continued fractions and rational ~

- ‘approximations, a théorem of Kronecker's, and Thiele's reciproéea
ulfferences in the theory of the QK and edtransforms. )

T{II General D:Lscuss1on of the e& and 'ed- Tra‘nsforms

61., -We now return to the appllcatlon of hlgher order processes
to the séries for. 111(_'l+x) as introduced in paragraph 18. A
zero.. order process applled to. the f1rst term of .

o _ . :,;e" 3. x" Coo. | "(995
A (14x) = k=& «-T%";:rf*; T
gives R ce _
’ y a o - (100!
%(a:—(—\t), = X = agc. . ( )
An@ precess applled to the first three terms glves S “
" L é-hf . B ‘ IR :
f-.-:é,'e’: = 8 . ’
.,@u(e K} 6*‘43{ Pu . o (Jth),

A f’ process applled to the first .lee terms glves

“@"("’“‘) = "':'*' 30 + 34 xtaxt =

A contlnuatlon of tnls process {the 'e,gtransform-) giveS“ i

e ~

420 $0x sevekt 4 3x3

ﬂm(wk)“ X = 833 (103)'.

Y20+ T25% +36okt -4%:(3

and 80° forth. ‘This sequence of rational approximation$for ,QM (H»\s)

converges rapidi: for all x (except the real cut =1 to = e& ) to
the value ln{l+x). For pxample, from (103) we have

L fma = 2073 o 58352 N

iy f

W

Aaéf? A .
iy _ A o

3 . NOEM 999k

Bar  (1oe)
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(reference h, page 3L2)

eorrect to five and four significant figures. Rational &pprox-
imations for any analytac ;unctlon may be obtained by & s1m11ar

ealculation.

62. If we now také a known contlnued fractlon for n(14x)

K oarx . itX 22x atx 3*%

Mﬂ e

;%:(w-x.);.a”"’. 2+ 3 + 94+ 5 0+ 6'."*"-“ (x05)

we £ind thai tne first, third, Tifth, etc.,cenvergents of this

fraction are exactl +he ratlonal approx1met10ns we have Just

- obtained.

63. Similarly, if We apply Ga £6 tne series
b= 4 2 =3 g = e

_(see paragraph 29) we obtain the fellow1ng rational approx1matlons

N = & 2 3 49 309 400
e AT T, W75 For 0 g e (106)

These approximatiodns are likewise obtalnable from the odd Conver-
gents of a known continued fragtion (reference h, pags ?qe). : '

e R Y S S
c-t-e’u I R B U b+ T+ p e o 207)

Wuler in fact knew of this fractlon and used it to sum the series
to four declmal places (reference k), The. fraction converges rather’
slowly, The 17%th convergent, Al7r" 0.5964599995, is only correct -

- to three degg¢imal places. We Can accelerate its convergence by

applying ¢ p te. it. But the fraction, asé it stands; (107), as a
doubls structure such as. was dlscussed in Daragraph Ll.. We préfer,
therefore, to apply <e to the alternate members of the convergents
sequence - namely, to our rational approx1mat10ns (106). Tron

the first niné approximatiens; that is, up.to the A 17 mentioned
abové, we obtain nine=place accuracy (O. 5963&7362) Here, %then,

we have a combination process. First, a dlagonal transform to
produce a slowly convergent. sequence, and then an @i process to
extrapolate it. o ) .

64. We now. shlft to a gomewhat different topic but we Wlll S0k
show 4its relation to our monlinear transforms. Here is an algo-
Tithm for ths calculatlon 01 e . Con31der the table of fractlons
‘Ngg; Ne: Noa

e KH

Pe6 . oy . Dga 00 e o e
Nie . Ny gy Dz T
B Bn B B T
v o -4—” ! c. e C ’ -
= Dag -

% ML 999k

R A RS R g | ¢




ig'

- D“c 7 pﬁ c,c + Dﬁ-c, ctd A (108)
DPee . Te-0 B. = 9@ 4 Doy ©
We thus o‘)taln .
S AR N & 6 2y IZO .
2 3 & 3¢ "
T % 3w .
£ 4 3 0¥
a , ‘4 Al X2 > . - -
e 43 2= -,
& X4 kI S
. ‘ v i - [4 P . - o ‘
The £irst columns; -L ) 3:- A "% o ,7etc.mls the :
e "- .-
sequence of partlal Jumd of the series I«of 2 T 1A
. and thus CONVerges to € .- The .LlI'St row, 3;. 6/ Letca;
: is the seguence of the reclprocals of the pértlal shms %f the
;reciprocal series ; - ,,-g- - ,L 3, - L, - and thus
. . converges 1o € . ‘ - ¥
o The step—llke patns. — = e S
Y S N N i Y oA A
- b r G A 3 ) v ) \ ) “ejt"
+, %.. iE X P - R 7 B ) (209)
2 £ _tL oy aer (370 P )
2, 0407 5 =
are 'sgguéns\e‘s of convergents of “the :fellowing con’clnued fractlons
f@l‘ g : * ‘ 2 ) o ~ 2
RPN TR N =z oz
_:€=f RN S St A o
; RS 1 owe
’ « L - € a-é ‘%.E - %‘ :’ie-‘ %’“ =% = k - i 2- :
-and the zmg-—zagpa,th:- RN T e = LA S

and. t‘h@ rulest

ﬁﬁ.‘_ - N'?— Q + Nﬂ«-u c-H

4oL o2 2

Y-
s -0y 7T Y r ¥ 3

(1)
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glves theé regular con tinued fraction (dumérators all -_rl') for €

R A
€=l+o+a+ 1+ 2 (112)
In 'general one may proceed througn the table in any south-easterls

) direction and obtain a convergent sequence for e . This is a
Padé Table. for € . (See reference he)-

- 65 :What 1s the connectlon between the Pade Table and the € and
€ transforms? Simply this: If we apply G, 10 the first column
we obtain the second colufin, Nir /' D3y , from-i =1 to 1 = @0

If we apply Gg t6 the first column we obtain the third c¢olumn, Nu/pu
from i = 2 do 1 = o0 , and sO on., This a¢counts for the half
of the Pa(it’2 Pable- below the diagonal. (This _array should not be
-gonfused with the §imilar-looking array of ‘9;, ‘gdequences dlscussed
in paragraph 22.,) The other half of the table may be obtained by
the reciprocal . .of the e " transférm of the reclprocal of the
first row, the reciprocal of the ea_transfcrm of the reciprotal
of the first row and so forth. The diagonal may be obtained vy
applying theé diagonal transform, _€d.,. to the first column or by the
recliprocal of thé diagonédl transform of the reciprocal of 'the flrst
row,. : Thus the name, "dlagenal" transformo : g .

66. The- Pade mble for the mo¥é general e is

] | |_-:-)L¢. ﬂ 2- x.q.xﬁ- B e
X Zﬂf 6+ X , I r
v 2% - q¥ -\-x L
24 2%4x* - R el .
a?—ﬂ ."-, \ e N "({‘- -Q

By deflnltlon, in the normal Paad Table we have those ramdnal
approximations for e"wm.ch have the follow:.ng two properties:

(a) The. fractlonN,s,c/pM is made up of a numerator polynomial of the

rtth degree and a denominator polynomial of thé ¢'th degree; (b)-
When this fraction is divided through we obtain the pcwer series
for @* ¢orrect to the term 1nvolv1ng x&*c

6’7. The relation between this nore general Pade Table and the
transforms is the yame a8 that for the simpler table for € . -

- This, in facs, éﬁ quite Simple to prove. Gonsxder the sequence

of partial-§ums of a power Ser.les
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Then the @ transform of Ay is

o Nt
: cN»K.ﬂ X - - =
- 'Y v ° ) i .

.

‘A—ﬂﬂ&. Awa—&q-\ s AN-

-

*

Cux™ - oo SR
" By multip'lying and dividing the rows and columns by powers of X, ’
this becomes | E ' e : S
% o ; L
X B . K Anr o X An
“C_u;-&-ﬂ Ca¢ - - = Cn#l
' 1s)
Bun & o
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In general thcn, unless the. lower ilght mipor vanishes, the

. numerator is a pol.rnomial 6f the N'th degréeyand the denominator
a polynomis> -o¥ the K'th degree. By adding all the rows o6f thé

upper dete:rmlnant; of' (114) together, it becomesd .

AN AN"" b.l.l ~'¢IO‘AN*&.

f&ME As (u ")

Bren® = | , R W ¢+ S
i . -"“;%:(-‘?4"5 A g .(7:/ V) \i . C

_ We may subtract che valuP Awnsr from the £irst row (see 23b) and
therefore- : . o

i

. "(Aw": A'a;;d»&)?‘(‘ﬁfﬁﬂ ~ Angic) ”' ~ @ ‘ ’

T sawmE AS Gvh. b g
Brn = Aan+x + ..l . 1 ' |

S - SAME AS () ‘ -
Finally, by the above transformatlon,, (115), we i‘lnd
B | (Aa"ﬁn-m)x (ﬁu-u "Au-m)x . e}

q 1 JAHE ,«w msv O (118)
"B A‘N'ﬂ‘ — e — e _; p— o
o - \ A JAME Aas @y

Since the smallest possible e*tponent of X in the numerator deter-
minant is N + K + 1 and since the denominator has & conshmt term

{unless the lower left minor vanishes) BgN agrees viith Ay, Up to, -

. at least, tie term involving XN*K, If the minops Vanish, See’ :
: paragrsiph 72 below. : . .
68. In their application to the partial sums of power series the | 3

- ¥, o trangforms, then, give the same results as the Pad€ Table, o E
But t’ he. transforms are a broader congeption since (&} they may be = ,
applied Lo other types of sequences and (b) they may be 1terated : ¥
giving e and ed . . , - .
C39 0 oNemd 99
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69, An interestiig, and perhaps useful, conception’ls that of a
pad€ Surfaée, Through the discrcte points of a Padé Table, for
instance, that for @ , paragraph 64, we may conceive a smooth B
surface. This would be a two-dimensional genéralization of our
transient-like graphs of'pasa@reph L. ‘The Padé Surface for €

is interesting, It has a pois ab £1,0), an oseillating chsracter
along its rows, a monotonic eraracter along its columns and a
1imiting plane towards the southsast. For @“we have a famlly of
Padé Surfaces. We cannot, at this time develep nhis concept
further.

70, We ‘haveée shown #bové ‘how we may sStart w1th a pouer series,

apply a diagonal transform, obtain a sequence of raulonal apyrox-
inmations, and from these a continied fractlon. The order of these

“operations may be altered, An interesilng way of obtaining the

5 ('“ ) ﬁ;‘*‘ o . - ,,
- . IDA. = . ': a'f\ _I:%-_f h"f 5 1i1§75§=—
QX - - 7 Rpdag R ‘
. - e ~” : ’:_- o ]
the necessary and suffictent condition Shat 255 Gn 2" shoula
represent a rational funmtion-is that 2>00 e for

continued fraction is by the méthod of inter olation known as
Thiele's reciprocal differences (referénce g The fraction
thus obtained will have as its convergents & sequence of rational
approxidations. These may be expréssed as. the ratio of two .
determinen%s and this had been done by Norlund (reference &l.

His determinahts are essentially the same as. our (115) etcs

7. When applied to a powér series then, the diagonal transform
is essentially equivalent to Thiele g Comnvinued Fractien.. The
former algorithm; however, is broader in scope, and in addltlon,
the author believes,> it has a 81mpler intuitiveée basis.

72. A third mathematic related to o6ur transforms is a theorem of -
Kronecker {references i, t, u) on the power series of rational
functions. *THEOREM' ir

73 This resembles our criterlon of the order of a translent (12)

s ——JL!“‘:
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paragraph L. We have alrseady shewn examples Where a power serles
is summed exactly to its rational sum. 'This suggests that in
general a power sseries which represents a rgtional function can
always be summed exectly by a single e procegys of a suffleiently
large K. -This is true. for from the rabionalrty of the sum it -

K0 NOmE 999k




- follows thﬁt PDo'z2z0 for = N and from this it follows
| that Pax™ = ofor w2 N A = o  (reference i), Hemce it
: follews that - T e g
A Va4 % g AT
’ )\ a"._)&s&s-x oo
Q Ay X Ay :
| o . SRR =@
e T T : - (220)
T Aanl
| P = ai\-%-zn“ o |

for all XN . Thereﬁore2 erm our criterion, (12) , it follows that
the sequence A; » @3 X® may be représented exactly by a
transient of the form, (3). Finally, it follow§, by summation 6f
the geometric series, that the- partial suns, f- & x may
beé represented by a form (2). ,ﬂ, -—

71+. An example of sgch exact summatlon is that o:t‘ the Riémann

Zieta functicn. This function, while transééndental for positive

integer- arguments, ig ratlonal for negative integer arguments and
. may be exprnssed hn Knopp's termlnologg) as

- _ <( _)_ B,.ﬂ 1—2 +3_‘l ;»"t_‘* _)

; s S«!—ﬁ . ’-— 2 25 . Beforciat

where the B's are the Bernoulli numbers (reﬂerence ¥ page 533)..
These numbers are all rational and we 8hould bé able to obtain-

them by summ1ng exact Ly the dlvergent series. , _
. . - ‘d" ‘ *l’ - % * l - ¢ e e ' ‘ ~ _ - i (I(lé;vz)r.
: . oy B o B % L B o i T

,_ ol _._'_ 7 - '“N’&q"“$'@'ﬁ"" etc,, .

COmpare paragraph 38, 1In fact, we sum the first series by 9. P
the second by @4 ,-and- ga on, and thus obtain explicit formulse
"Tor -the Bernoulli nunbers as the ratio of two determinantss These
‘may then be reduced amd we find that the partial sums of (122)
should be weighted by the ‘binomial coefflclents. Therefore

P R 1 N 0 - S D L .
L _?lt.r. \__‘\-0' . .+. i = i Z—;— . . _ ' 3
. ‘ - g :-- a- B f-»\‘? LV u- ' g e
. R o ' 8+'L-&-! L)
z .. - 3 =
8 } 3 o -~




" and in genez‘-'a-i
n‘l

e s ) + Y {1-2 3 o+ ﬁ“- s :‘h)éi.—z ] ol v;-H

B“= ....r'_.« ( ) LY L SR {”- ‘ _,ﬂi( )( ) i( 214,)
~ L iy Y )

b - . &% 2" '
It is not contended that (124) is a practical way 6 calculate the
Bernoulli numbers. Its chief interest is that it was obtained by
the exact summation of d:.vergent- series.

i S —

o - - vIII Summar‘y L ) o s ¥

; . 75. We have introduced and developed an a)alogy between sequences
.and trans:.ent On the oaszs of thl nalogy we nave developed a.
s:equences,, Several nonlinear transforms have been developed and 8
applied successfully to a large var:.e’cy of sequences. The complete

3 theory has not been developed; but some proofs are gived and some

‘ conhéctions with khown algmrith:ns are shown. .

5 _ 76. In a forthcoming memorandu.m the author w1ll d:v.scuss furthel
aspects of these fransforms‘. These are:

P ” A A general:.zatlon L f E, which i§ espec:.ally adapted for .. :

: S th$ sSummation of mdnotonie sequenceés where D ) :

A";/AA“_, -> 'é'!

B. @ccas:.onal nonun:.form convergence of e to the wrong
2 S ;answer. :

Ce @ccasional nonconvergence of @. of sequences assoclated : 5
with mult:.valued Tunct:.ons and their branch len'tS. . i

D. 'I.'he analysis of ma‘bhematlcal tran31ents 1nto ’chelr spectla,
and the. relation between dnscrete and continucus spectra. ;

E. A relation betwesn the edtransform aﬁnd Gauss' nethod of
numerlcal 1ntegrat:v.on. _ .

>

¥, ‘The pxjegud:.&c.,e against .dsi"ire"r*e;;t segquénces. . T L
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