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An Analogy Between Transients and. Mathematical Sequences 
and Some Nonlinear Sequence.^to-Sequehce Transforms Suggested 
by It.. Part I,  (Project. N0L-4-Re9d-21-2) 

In mathematics, a=nd in applied mathematics..es^pesAälly, one 
wishes to obtain accurate answers rapidly.. One obstacle often 
met with is that the simplest and most obvious analysis gives 
mathematical sequences which are slowly convergent or even J 

divergent,. The proper treatment of such sequences is therefore 
a general problem of real importance* This memorandum gives 
and discusses some methods of treating such sequences. 

An analogy between mathematical sequences and the transients 
of linear systems is developed. Through each 2K + 1 consecu^ 
tive values of the sequence Aft. one passes a continuous function 
of the form B -+• ÜIaa,„cLi€^'   . The series of exponentials 
either converges to^diverges from, or is asymptotic to the 
constant., B,. An explicit formula for B in terms öf the An. is 
given and this forms the basis of several -nonlinear sequehcse-. 
to^sequence transforms Afj*B,n. The transforms -are applied to 
ä variety of convergent and divergent sequences. The complete 
theory is not given but some theorems are proven arid some 
relations to the Pade Table* and to Thiele's Reciprocal Differ- 
ences are discussed. " * ' 

I 

Jwrd: The data and. conclusions presented here are the opinion of the 
author and do not necessarily represent the final judgment of 
the Laboratory.        , 
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INTRODUCTION 

£**' 

1.  in this, paper we. snail discuss an analogy between transients 
and mathematical sequences0 By the term "physical, transient" we mean 
a physical quantity,, p, which,, when expressed as, a function of time, 
takes the form 

f <X\  « D + 2 ^i^ ** -;- fi) 
It will appear below that it is useful to. regard some mathematical 
sequences,. An>, äs functions of n of tlie form 

a \ z «i <?**" W- 
and. because of this we may call such sequences "mathematical trans* 
ients." 

Ä...  s ,—v^ 

2. We shall be concerned here with the analysis of mathematical 
transients* By the term "analysis" we. mean the determination of t>he 
"amplitudes/" a*; the "frequencies," OC\ ;, and the "base line con- 
stant, " B, of tne^e transients. If all the  eCjhave negative real 
parts, the transient converges to its limit, B. If, one or more öf£ 
has a nonnegative real part the transient is divergent and has ho - 
limit. In such cases we may call B the ''antilimit" of the. transient. 

3. The analogy between transients and sequences is suggested by the 
graphs, of some typical sequences in the (h, A^) plane. Since, in 
general, the sequence is defined only at the integers., n, there is 
nothing to prevent us from^drawing a smooth curve, through these known 
discrete points.       * . 

/+... , If, then,, the sequence converges and oscillates,, the graph may 
look like . 

IK 

or perhaps 

If it diverges it may look like 

or 

NOM 9994 
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If it is asymptotic it iray resemble 

•or 

5. Generallyj for sequences which arise naturally in analysis, the 
graph will look like a transient 'of a linear system- of the form (1) 
and the Idea naturally occurs to experiment with su.cn forms., to treat 
the sequences as if they were transients, and to solve for the limit 
o:r >antil.imit-'B.*.     ,, .-'_."" 

6. Suppose, for instance, we have- 2K + 1 values of' the sequence.of 
partial s.ums- of the slowly .ööhY.er.gÄh.t se.ri.eSi In 2: = .1 r 1/2 + 1/3 
- 1/4 + ...... The. graph of this sequence looks like -. the first graph. 
above» ; It oscillates around and converges to In 2. We can find 
a's,.. pt Is, and a B such that the resulting graph ;(?1 would pass 
through these 2K + 1 pts, Intuitively, it would seem that the" B 
should be.\a good approximation to In 2. - 

7. Suppose we have 2K + 1 values of the sequence of partial sums 
of the. divergent series, In} = 2 - 22 + 2/ - "2^ *='..... = The graph of 

this sequence, looks like the fourth transient aboye,.  It do.es not - 
converge to ,ln3 but it does oscillate around and diverge from ln3. 
And the corresponding B should be a good approximation to lh3»  In 
this analogy the continuity between convergent and divergent sequences 
is similar to the continuity between stable and unstable transients. 
This continuity is a result of the, continuity between öC ~4* with 
negative real parts (in (1).) and those with positive real parts. We 
will,, therefore, take the same attitude toward divergent sequences as 
we. take, toward negative numbers«, . We accept them, - at least tentatively, 
We Will attempt to evaluate them by calculating the antilimit B,  But 
to do this,, we must have an algebra öf transients, 

8. This we Will develop first.  From this algebra we will obtain 
explicit (and relatively simple) formulae for the B's in terms o'f the 
An.  On the basis Qf these formulae we will then develop some nonlinear 
sequence-to-sequence transforms which will convert the original Av, 
Sequence-into new Bp. sequences« In fact we. will have ä variety "of such 
transforms since '(a; we may choose an arbitrary number, K, of exponen- 
tials and (b) we may then iterate the process-:or hot..= ; 

9. If An is. slowly convex ,ent., we wish Bn to be more rapidly convergent 
to the s^ame limit.  If An is divergent, we wish Kn to be semi-convergent 
or, better still., convergent. In either case we are trying to filter- 
out the exponential terras and to reduce the sequence- to its static 
base, B. 

10. We .shall apply these transforms to a variety of mathematical 
sequences and discuss the results. We shall give some.proofs of 
validity -r  but not a complete proof. We shall show the interrelations 
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"between these  tra-ns-fürms and some known algorithms".' 

I. The Algebra, of Transients 

II. The: solution of a linear differential equation with constant 
coefficients,, of order K, and with given initial-conditions is well 
known and understood., , The s.plutiorfi of the inverse problem, although 
it appears in the literature, is nq-t a;s  generally known. The 
problem is this:  Given a tabulated function p(t), to find the 
unknown constants "-of^ > C3Li>and B and the order K of a form (l) 
which will fit the glVen data. Belated problems are the determination 
of", the differential equation and the initial conditions and the 
extrapolation o.frthe- function p;(t)» "Two examples Pf the inverse 
p-roiblem- are..: 

; (,a) Analysis of a mixture of radiöäctively decaying substances.. 
®riven *•;&§ ra.di.at.lpn .as; a func/tion oi  time, find, the number of sub- 
stances-, the relative quantities, and the decay_pef.iQ-u.-3. 

;('b':) Analysis of a, portion pf the "trajeatory^ of a device 
bontrolled "by a linear sarvomechanism'i Find the differential 
equation,,extrapolate the trajectory, determine the stability. 

12. Let us assume 3, = 0, K = j in (1). and that the data, p(t)., is 
known exactlyY. (For least-square versions of the-, formulae which occur 
in the next two paragraphs see references a and b.) Given six values 
of the data: 

IS 

I 
•f^b   (fij) (m s?   o t* s) 

we -have slx:equations 

''»^"H GtW^w 
13) kS 

" «   , , /.  -     v      (*- P to-sf)     " 

from which to evaluate the unknown ==a' s and  OC 's.    '   - : - 

13. What appears to be a troublesome set of transcend^ental equat.iqns 
becomes quite simple if the  r£  are equally spaoed for if we take 

'** 

and 

(4) 

(5) . 
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our equations: 

^n * M Ä* % .("« « © t ö 5") 

are seen to be algebraic. They are, linear In the a's.. If we 
consider the p>*:s transferred to the other side, we obtain- from, 
these homogene bus equations, the conditions: 

1   \ 

ft* o* at   JK_ 
3 

«'• v li ivi  ^ 

i t, 
rfe 

I &»   *a  w3  1-3 

t*j 
or 

(7) 

3 3 

3  ^* 

« 0 

f11*\ 

lor q= .q^'» Q'2» or q3> we, have the obvious: 

i I     I t 

i 

I 

<u % 
z. 

•%*• 

2 

3 

3 (8.) 

Our four determinants form a set of four homogeneous equations in 
the common minors of the last columns. Therefore: 

\T* -ft JPz 1 

-pt -pt -fv a 

#* " 
^% }FH t 

>f3 -Ps 1*1 
(9) 
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or 

3 m3 %   ~ **%. %    + *ng g ^*n0  = ö 
(io) 

? = where m   is. the minor of q. ' Solving this cubic we obtain the 
three q's and the  ©C 's may be obtained by 

<*i* 4?-** %i 
Putting the qf s back in \6>)  we may now find the a1 s- 

14-.. If we had ,a seventh value, p^,, we wo.uld have:. 

(.11 r 

-irr e 'f% 

fa 

^ V 

==o (i2): 

This is ä criterion to determine if K = 3» If the equation holds 
for all sets of seven'consecutive p's then K = 3« If the 
determinant does not vanish, E > 3 but if K does, equal 3,. (12) 
gives;us the extrapolation formula:     " : 

<f*4 "* s ®   -ps- -.*S -f**# m.'+ >f 3 m© 

or more generally the recurrence formula 

(1J) 

ITI-* - i-|J< " f^Ml *tn-3^> 
(14) 

.On the other hand if all the mi vanished,, we would assume that 
K «< 3» The generalization of.the formulae (3)-(14) for any K 
is obvious, . 

15»' For mathematical transients, (2$, the a's and  Gt 's are 
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of theoretical interest and they will be discussed in ä later 
paper. But our present purpose is to evaluate the "limit" or 
"antilimit" (the base line constant). B. 

16. Removing the restriction, .B = Q, we have the seven equations 
for K « 3: 

ft«*   ©t'E Ä- I 

-and.j th^r,efore., from the. first four :„ 

Af. Ai A3 

(h »o. t# i») (15) 

V 

I 

I« 31   ^3 2L 

i 

I 

I t: 

1 .. ./- v 

But,Since the q's are functions of the A's it should be possible 
to- find B as a function of the A's only. 

17-     If we take 

.   Ä  Ah 
and - ? '- 

sntl -6 (17) 

-," ;   Ci =   äi (^i~ 0 -.••a?)- 
we have from the differences of equations (.15.) ,. the six equations 

and* by comparison with (6)", the two determinants: 

119) 

1 
%        % » 

%> 
•tf tf 

%* %z 
3 

1* 
13 

a.. 

I 

A A©   6.A.,    «^«-»2 

&A<r 

(2<n 
o 
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The ratios ©f the. minors of either determinant are the symmetric 
functions on the roots, q^, and, therefore,- the.se' ratios are equal 
to each other. That is 

\'   1. 
a. 

11       Q 
i;'        P» 

3 

3 

S %* %%* &3S 

% 
3 

UA 
A A,   A\   A A« 

M^ a A* 4A$ a. 
•3>- 

I "... *     ' }. 
Iß A,   4Aa  ^A^l 

(21.) 

and so forth. Therefore,, (16) may he replaced by its equal: 

A0      A,    Az     A3 

#A0    A A,   ^A4   4% 

AA,     v^Äz   4>43 iiAv 
AAVäA?  4A<, £Ar 

III I     ;U22) 

4Äe   4A,    ^A;   An3| 
AA,   AA,I   AA3  4AY| 

£ A* ^ A3 A A», ^ Ar| 

Similar determinantal formulae are,, of course,  obtainable for, 
•^.^  3»    The general formula is 

fir 

A o 

* 

AA« 

k_...   i-1 

I | 
AA6     - "-   - «fc 

iO- 

fS^). 
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.These determinants may" be readily transformed into pother 
interesting forms,. Some of these are-: 

/*o   #*,«,• 'K 

5; ist« i r 

I   $A«1£      A 5      (£3) I 

lK * 
I   A"**-* «.       i.      i.    t zm 
v 
1  SftME    AS    /3il IL-       .__    ^„.  f 

' =   (,23a,.b,c) 

j Ae  A,  .* »       •     —     4) 

•K K4I 

.    A K-Vt 
I 
t 

- -.  A ?*< i 

fc*A0 A*A,   • Ä*AKHI 

a 

A AJ^-J 

i 

V 
I 

,A  A9ac^ '2K«f*l 

II • Two Nonlinear Sequence-to-Seq.uehce Transforms 

18s Let us return t-o- the sequence ef partial sums of the -slowly 
convergent In 2=1- 1/2 + 1/3 - 1/% + .,. We have A0 - 1, 'k± '• 
1/2.,, A2 = 5/6,   etc»    Given the first seven partial sums, AjjfcAfc, 
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we could assume this sequence^ to have  the form   DT|tj wv* v 

with the seven unknowns,  Bt  jCtjand ©f*   ,  and solve foT'tne con- 
stant B>    We obtain from. (22) 

i •x f * 

*"|. 
JL 

'  3    - r 
<JL' 
3 

-JL 

i 
T 7 

JL 

JL 

1 
JL : 

f 
6 

(24) 

Therefore B = 107-3 = 0*69315245• But ln2 equals 0.69314718 and 
1543 -= -    :      ,   ' 

we have obtained a result accurate to five significant figures. 
This is encouraging.., ,    - 

19. 

method is to fit the third order form 

To  improve the approximation,,   two methods will be investigated, 
two more values^    /3-7    and.  /^© ,   to be known...    The .first. 

. The 
second method is to fit a fourth order form jß + -£ ?  cj.,* C'*"»*1 
to the seven quantities /$e-*^?   or to/^Ä-*Ajr 

"er form £.  „ Ä  -^ - 
The first method gives. to tne nine values >%c «•* /$ £- :. 

B =•- 96.07 = 0...69314574 for the set ^ A-,     and- B = 15679 ^ 
' 22620 

9607 

-O.69314766 for the sei; ^ 2 "* ÄJ • "Eh© second method gives 
B = 14161 = O.69314733* Either method>  therefore, improves the 

/ 20430 =   \    _    .      . *    , ;     ' ?= . "'        .   " / 
result. = 

20.    Now we wish to; give :a general formulation of these two 
methods..    Given\2K+1 members of the sequence An>   centered around 
n « N,   (N - KS ng-N •* K).t we may fit these 2K + 1 quantities by 
the K'th order form 

H n 
(25) 

**s 

The quantity 
suffixes are 11 
The transform 

is obtained from formula (23) where all 
ireased by N-K» > 

;he 

N 
"•"$» *sM (26) 
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will be called  a Kth order trans-form of AN*    If,   in  (26);,  N is 
varied from K to   Ö© while K is held constant   (the first method 
above)., we say.we have a Kth order sequence-Tto^s-equence trans- 
form: 

KH \ J'W £ n) 
(2.7) 

We designate;the transform as ^.  and tabulate it as follows: 

a 
a; 
KK 

8K*i k« w» @tt. 

21*= We may call B-~, which in general will 
local base line constant of the sequence An. 
53 for= examples where all the B's are equal.) 
to. lie closer together than the A's since 

vary with n, the 
(See paragraphs 4P, 
We expect the B's 
are all approxi- 

mations to the .base line constant of An.  In the example
1 above 

we saw that B33(0.693152^', B^ (0.,693-1-45-74-) , a=nd; Bye   (O.69314766) 
do have this character* In fact, they are oscillating around and 
converging to- lh2. We say the B- sequence has the same base line 
constant as the- A -sequence. This suggests the iteration: 

n cHAf + 
sat 

K = 

C. =   D H l^w 

HNV 

KNi 

KN* n 

€ KNl n 
(28) 

-1*1 

and so forth.- The Kth order iterated sequence-tp-sequenee trans- 
form:    . .. . 

H Kit   ~*   CKh^    ^ KK 
* » «• *• » • 

(29) 

we designate as the    " "©fe    fcrans-fsria of A^= 
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22. The simplest of the ©^ transforms is Q%. 
symbolized as: 

It is 

"* B. rn •^ Q ir% 

and' tabulated as 
•* 

. ^"©i   --- - 

b 
i:Hr 

it 

$:&<   ®ik   ^ii 

«"»a     «?**   Via      fc',« —        -—       »-—      - -«^,- 

%    ©H   €,**     , 

It is evaluated by the formulae: 

•     •     ••    :• (3-Q.). 

fc* 

- 4& 

2 ^ "   fafN4| * (3D 

Pj,W     ~      BI,W*I      ^tf-i 

^f« S,lH9 !,&-*/ 

S 
(.32). 

etc.. "When using 6» , it is, convenient to drop the subscript 1 
from B, C, etc.,,. and this done In the following pages. 

23. .The second type.of transform is: 

**n. (33.) 

From Ä0, ;%,  and Ä2 we derive BTQ by a first-order transform.    Erqm 
AG,  Ai,  Aj§, A3,  and A^ we derive B22 by a second-order transform, 
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S-fc-e* This transform w.e will call the "diagonal.". transform of A^ 
and we will designate it as e^,. It may also be iterated. The ' 
term "diagonal"' should not be confused with the diagonal in the. 
array of  e£ numbers above. 

24. Formula (.31) •©? i't'S equivalent has been used by A. C. Aitken 
(reference c), G. Shortley and R-.. 7/eller (reference d), 
P., Ä. Samuelson (reference e), and D. Shanks and T. |. Walton 
(reference f) i Shortley and Weiler used it to extrapolate an j 
iterative equation, and the differences of which have a nearly 
constant ratio. Samuels ©n| and.S,hanks and Walton have used it 
to. •extrapolate an iterative sequence* (the differences of which '. 
havea nearly constant ratio) which arises in the iterative - 
solution of an equation of the form 

5£" — -: •**. /«fc-V -- . -f'^4-5 

•• ' /*>• - ' 

Aitken used what we call the     <g|     process  in its entltety, , 
(.3©)j  t© speed the- convergence  of a sequenbe which arises in    = > 
Daniel Bernoulli's_iterative solution of an algebraic equation 
(reference^a, p.  98)»    In the examples which follow,  the author 
applies    -.©      and the other transforms to sequences, arising from 
infinite series and products,   continued fractions,  integral, and 
differential equations-,ä eigenvalue convergents,  etc.    He believes 

: this to be new. *   - . •    ' '••'•• 

25. The    '€?K.-äriä   €tf transforms- and their  iterations, are also 
beclieved to be new in a general sense.    When applied to the 
partial sums  of a power-series,  however,  the    €?i<and     €*( 
transforms are  intimately related to Thiele!s reciprocal differ- 
enced (reference g), to the Pade Table  (reference h), and to 
Kronecker's theorem on the power series  of rational functions 
(reference  i).    This relationship will be discussed, in Part VII. 
Samuelson (reference e)  in reference to the solution of (3s*) 
suggests a, f orm which is; a special case of our  (2) where5 

he t s Z. «, oc 3 «    3 -PC f.  etc., but he does not develop our 
£23);,  (27),  or  (29)/ ;     .;•   .. <    , 

2,6.    If we compare e^ or e^ with the Cesaro, Holder0, Abel,Euler, 
Riesz, Borel,  LeRoy, and general Toeplitz summation processes 
(-reference 3-3 -the most obvious difference is- that all these 
processes are linear in the A^ whereas :   <J? /</•(      is. nonlinear. 
If we consider ,the two determinants (23) to be expanded according 
to their first rows^ we see- that-   S^,«^   is a1 weighted average       ! 

of the A^.    äo are the above .linear processes.    In them, "the 
weights are pre as signed numbers or functions but in.   €?/<«* 
the Weights are minors whose elements are differences of the A« 
themselves.    There is an obvious advantage, of such a device,    if 
we; were aumming a convergent series it would" be desirable to 
weight the "later A« heavily - but if it were, divergent it would 
be^d#Mtab3^ to weight the earlv.An heavily.    No preassigned 
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numbers dan d© both.. In the €'^<< processes, we allow the 
sequence (so to speak) to choose its own appropriate weighting*. 

27» There is nothing to prevent us from combining eK processes 
of various <orders with öach other^ with eä processes and With ^ 
linear processes, s'uch as the aesaro. Occasion for this will arise 
in some, of the exaxaples below. We now defer any further" general 
discussion until some examples hav^e been given. 

» • 

III. Three Examples of ., ft v .' 

28.  U £  « , / - £ *-* - ^ * .#j- 
Direct summation is imprudent since a billion terms w^ould,be 
required, to "obtain nine decimal places. The, same accuracy 
however.., is inherent in the first eleven- U-r • even nine:.) terms 
and is obtainable if we concentrate not >©n"the Peäks -sf i:f t->=' 

•• praph but on the base line. -Transforming the. partial spurns;, of = 
this series by (30), (ji)T a-nd (32-1 and keeping our results to 
10 decimals places, we obtain.: , ,     _ 

Ap   1.00000 ooooo . 

&l 5000P 00000 70000 00000 ;     ' •     '. 

Ag   83333 33333,: 69.04=7 61905. 6932-7 .7310.9     \ "'' 

A3   58333 33333 69444 44444 69310 57564 69314 88693 

A4   7833333333 69242 42424 69316 33407 6931,4 66820 69314 71961 " 

Ac   61666 66667 69358 97436 69313 99011, 69314 73541 ,69314 71761 69314 71807 

75952 38096 69285 71429 69315 08287 69314 71120 69314 7-1821 

63452 3-8096 69334 7339Ö 69314,51963, 69314 72107 

A8   74563 49207 60300 =33418 69314 83323 ' 

A9   64563 49207 69325 39683 J 

73654 4G116 " 

5 

A7 

V 

*10 

a. 6 &V c n E W; 
Each :Seg.uenGe, is the local base liiae. constant of the= prgvipus 
sequence, and oscillates around ln2^ with a. smaller amplitude than 
the.previous SÄquenö-ss-%.^ 0*6-931.47,180:7 and ln.2 -..Q-*o$3147l806.*. 
Since w§ are only keeping- ten places we- öT>uid not expect the; last- 
-place of - Fr to be" correct.^ It is1 possible, to^obtajn the same. -— 
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result from the nine values A ö"^ Ay if we treat the result- 
ing lower diagonal &*$,  %, Cx, D.4, etc. as a new- s-equence and 
subject it to" ^ . This? however* may be unreliable äs a 
general procedure since the sequence terminates, after 5 terms. 

2.9v A- similar calculation on the. similar, but divergeht series, 
ln3 =' 2-22. .# .gives ln3,r correct to 8 places' from'the first.. 

2 - ' - 
11 terms... In .greater detailj we take- as our next example a more 
wildly divergeht type0' =   . -   = =. ,'<> . - 

'- e 

•^\«*-sfe, to evaluate-- t-foa Integra 1... Proceeding formally, jwe^obtain^ 
this "alternating series of factorials which is, of §öme" räme in t he- 
theory of divergent series (see reference k, and j > p. 520) ? ; 
Knopp states that it" .cannot be summed by.the Bo-re.l proce.as-v »the 
Jiost powerful of the processes which are useful in practice . ^ It 
does "'no £ood to tell us that the Stieltjes sum of the series is 
the integral    f *° g~* jj?        (reference<j, p. 555) because 

that is what we started with.  It is * rt our purpose to assign a r 
"meaning" to the series. We already know its meaning. It is. a 
series which .aris.e.s from the integral and whose partial sums 
oscillate around the'integral. Our sole purpose is a practical : r 
one.' We wish to evaluate the integral numerically. 

1 . , . - 

0   .*      .6666 6667 '                                  . 

2 •       .5000 0000^ .6071 4286       ; ., .   - , 

~4          .8000 0000  <»:5S18 1818. .5977.8113            _"             . 

. 20 .0000 0000 .6250 0000 ' .5943^5788 .5965 0983 

-100       2o8571 4286 .5194 8052 .60015250. .5961 0532 5963 6273 '. 

620 »10.0000 Ö00Q .8620 6897 ,5867 3183 .5968 1315 / 

-4420  -: - 6O«GO0ChOOQO -»5405 .4054. ,6272 4810 .--'.'-' 

35,900 -348*000.0 000.0 6.4-347 8261 " - "- 

-326*980 2910.;9090 9091 

3.301.820 

K       : CH        K      ^      h 

JP 
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Each sequence oscillates less vigorously than the previous 
sequences. They ail dl verge- but. the diagonal 1, .j66.6jb'66'6'7., 
.60714286,- etc, converges« Treating, this sequence by ^> , we 
obtain 

1.0000 O0©O 
6666 66,67 5*942 O29.O 
6Ö7I 4286 5960 3395 5:963 5910' 
5977- 8113 5963 1007 5-9&3: 4808 
5565 -0983 3963 4348 " 

,5f63-6;2-7^    - — 

H 

and from the new',diagonal sequence we. obtain 0.| 

30,     But. =   if    " 

4770. 
I 

* *%» /f'fc /.   A 
© o 

-*c * 
Z2i 3-3? -.'•   4 

-w-   -*-- ,. ••#•- 

where: C is 
is  eg^ual 
to 

Euler'1 s constant. 
0© Ä_*£ 

eC#- 
Thus we find that JL© /•*•* 

to O.5963 4736.  Our second example is thus also amenable 
~~ ,,  . Perhaps the reader is surprised that the later An, 
.35*900; ,-326,980; 3,301,820, etc. do not spoil the calculation../ 
The opposite is. true,.  Each one improves, the. result. The reasonr 
is that each one gives further data on the base line constant around 
which the sequence is oscillating. 

31. c* i 4 ^ 
This, is a formula, of Euier's and gives his constant (0.57721 5.6649) 
as a "sum" of Bernoulli numbers (reference j, p.. 541) .c It is 
asymptotic and after the fourth term it diverges rapidly.  Of these 
asymptotic series, Knopp says "we are not in position - not even 
in theory - to obtain any degree of accuracy whatever in the Y 
evaluation of f(x) . The.degree'of accuracy therefore cannot 
be lowered below the value of the least term,of the series." 
Since the fourth partial sum of the series above is 0.57896 82540 
and the' fifth is 0.'5748Ö 15873 it .would appear that the accuracy 
of Euler's formulae Is not very high»= Knopp, in fact, states that 
Euler's "sum" is "not valid, however, even from the general vlew^ 
point of  ^59", (summation of divergent series)' ";for the 
iny.estigations of % 64" (asymptotic series) "have provided no 
process by which the sum in question may be obtained from the 
partial sums of the series by a convergent, process," as was always 
supposed." „...-•-" \ ' '  """T .  - 

-l\ 

"I 
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A5 

* 

„:.JJ 

3-2.;     On. the other hand Euler  says   (reference 1,)',,   "Whenever an   - 
infinite series is obtained as the, development of some closed 
expressioni,   it may he- ujsed in matkeina-tieai-. operations as the 
equivalent  of fchat ^expressions even for values  of the variable 
for which the series diverges»/' 

33-.    Bromwlch» \reference k^  p,   3:2.5)   says  that Euler  ''-regarded?"- 
his  constant as  theJ"sum" of the series hut does  not  commit 
himself as  to his: own opinion«.    @e, does  say "from, this series we. 
c^rino^-obtain, a "closer appröxima^tiph than Sy"   (.5790)*, 

34. laaly,. the «', process gives: 

5748Ö 158/3 57748 
,58237 73^-4-9    57680 
56128 45488    578II 

'57721 5679§ 

5772a 49167 

,64461 

3. 
-23, 
258. 

25531 
20089 
2 

7882-1 
80782 
24085 
97327 
52148. 

57447 
58843 
51740' 

68590 
20439^ 

WS*?  42410\ 
-5771%  13956 
57736 2433.8 

5772% 55832, 

57720 
05432 
65727 
77443 

57721 
a 

63481 = 57902 ,02119 

But C = 0,57721 56649 arid we -must agree w^th Euler,. We'now 
return to- a more- general discus-ai-oh o,f g> , - 

IT. General bis"c?ussion Resumed - Ar •- 

35. Up to now öur discussion has been .based on qualitative arid 
intuitive argument,, on physical analogy and on numerical evidence. 
A mathematician will naturally"v?ish a more rigorous treatment .> 
Some proofs are readily öbtatnsefcle but the author do.=es no* hkve 
the complete theory at this t'i-me, A single Q9   process is not° r 
entirely regular. * Tt we- &pp.ly it. to" the rather artificial 

i 

i 1 

|1 
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convergent series 

I +i + i -*- £+ •£ •*•• ^ * 
"•A 

# 

«f* (35) 

we see from -(31)' that- B1, B3, Bs, etc, are all °^! .  (This, does - 
not mean tnart (35) is not summa Die by a second—order process, C^..,) 
C!an we- prove that" *©* is valid for the partial Srums of the con- 
vergent In 2 series '(pur first example).?- Specifically, can we 
prove that each d?erived sequence (.Bhj Grt, etcs) converges tö the 
same limit as, An tlh2). and fürtther.j that it converges more

v rapidly 
than the- previous sequence?  . 

-"34v-, S'ranaforming (3=1) and- Using (17)) % obtairi: 

vH :=?• AH    + 
ga r*v fof 

I ~" - &JSL M 

'••N 
•jr' 

4& ^ *y-f 

&frN 
ä-^e-A    are. the partial sums of a, convergent infinite series 

iwi- 

& ft H., 

••and 
<     K   <   I 

(37) 

(38) 

WeV ;s;e«: Isout [%•)  that Bn converges to the same limit as An. 
Therefore•••& siftgle   6-8 process is obviously valid if the 'Series' 
iSi- seiLther of tfee alternating type (\&fthi< j A"»t-<f , AA$&**^°) 
Ä.öf...the ratio test type  (ÄÄ^o      ^V       < R< 1^*  '***** 

.>i^evy-_4-t,i-feer iterated? *»'""» ^A»«TT 

-.^?*."v3?]lie.;ä4'f.f^reJD.ce of formulae   (36)   gives the term of the trans- 
^fö'iia6ii---s4ri>e:s.:    -/--'" ,   1 -  . 

1   -. A fhi± I       «^        jSjZSi-   "' 
-: ""•"-:-' AM* A/W~f 

& A1 /"* 
t^'A^i^ 

A A wH / 

1 
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If we now» take a sequence- of the alternating type where 

* * 

(42) 

n 
where f^n); iff a F'th degree päljraöMal in n and gin.)- is a G'th 

.  ä^r^ö.0- Tswlfebmiäi In. h..   (59')"  becomes 
—  VAVI»)* %-r—  J^—-Try --_ * - -     —-     - - - 

|Wl) f ^ f <^^ "^»»^^ ^f"*x'     J43) 

Expanding the f r^otioi-r in powers of N we obtain 

_ ""^ •  - ---     ~ -      ABB» — <w 

For G >"F_i and .gfn) dgs o,  A/lte ?-*! O and the sequence An. 
converges. From (3'6), (33) and (44)> Bn converges to the same 
limit,, but more rapidly. Likewise from (43)' and (44) we may- 
iterate the process since the.B series, is again of the alternating 
type with a term, g    ..«"H^H  TJvfit) 

where = ' . °     (.45) 

... : &,-F, = r-Fte 
Since ln2 = 1 - 1/2 + 1/3 - l/k,+, ?•• is ä special Vase of (42) 
we have formally proved that ' %t is valid for the partial sums 
of this; series; (the numerical evidence was very convincing), 

.38. Likewise it would increase- the rapidity of convergence of:- 
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(^   •    | -,      3* **-     ^x 7-»- (47) 

.and sp. forth.-.    Equation  ('45)   shows' further tha-t .altho-ugh 

1-2+3-4.. o. -.     (49> 

diverges,, a single G\  process converts it into a convergent 
sequence (series-) 7 This sequence converges to 2/4• Simiüjarl^ 
two successive processes transform ; 

1 ,_ 22 + 32 - 42 + ..,* HO) 

ißtö- g convergent sequence (se/Meä) which- converges to '©-*. *£&$• 
processes will also transform / . 

;"  1 - o3 * 3? r 4? + e8.p =(51;); : 

into a convergent sequence, and so forth.. -We will return to these, 
divergent series later and show how they may he summed --  not merely 
in a limiting sense = but exactly •?  to rational multiples of the 
Bernoulli Numbers. -• 

39. We could undoubtedly show that: !ß%    is also valid for a more 
general series than C42)', such as would, include, for instance 

jr. vl *• 4? ."" & "* **"   '     ^ ' -t52i. 

and . 

'*•'.. ."«^--^iv 

but since WJJ do not have ah exhaustive theory of the rahge and 
speed of &%   as applied to series (let alone sequences derived 
more simply from products, continued fractions, etc.), we will 
forego such proofs. We will show.later that if a poWer=series 
(convergent or divergent) is obtained by dividing out a rational 
function of x, we may sum the series to its sum - the rational 
function - not merely in a limiting sense - but exactly by" a 
single ^xprocess (with sufficiently large K). Some other formal 
proofs; will also. -be. given.- * -, „ 

40. First we wish to point put that if., ä single 4?, process is 
applied to any three consecutive partial sums of a geometric series 
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c * cvt 4= c A* *•• c yv* •*- 
(54) 

-we obtain  JH/fc  ... That is, our en-tire Bn, sequence is a constant,. 
3«?  9l*A  .Thus a single €;, process sums a geometric- series 
exactly. Divergence and conv-ergencie of the. series are of course 
irrelevant». Since the partial,sums are 

r»K   ,/>v^.     V-^t 
we see that we have ä simple tra-nslfeh^, (2.) r  with  0 *? "05L 

41. IT we applied ('32) to this constant B^ sequence we. would 
obtain indeterminate expressions for Cn._ Let us agree,, then, to 
the consistent convention that if any three consecutive members of 
a sequence are ..equal, the <#,. transform of the center member is 
also equal tö the same quantity. Let us also,- agree to the 
generalization of this convention for the ca.Se of the €>^ trans form 
of any 2K + 1 equalj consecutive, members of a sequence./"With this 
convention theory we may say^ that a geometric series is exactly 
saimmable by either, €> or <?: .       = 

42» The series for In 2 is not geometric but. it is "nearly 
geometric" in the sense that the ratio of the terms rapidly 
approach a constant, -1. Further,, In g^is not rational. Thus, 
although we cannot sum ln2 'exactly by iß-,/-we can sum it in. a 
limiting sense. Andsince the series converges änd^becomes "more 
geometric'" as n increases, it, is clear that the  £e  process 
will have a more rapid convergence when applied to An.with n large. 
As»long as the series is making an effort to converge (n small) we 
may allow it to do so and defer the <?» process until a nearly 
geometric character sets in. Thus from the seven partial sums of 
In. 2-, An (.653210;6783) to Ay (.6661398243)-, we obtain D14 . 
(.6.931471802) which, is correct to 9 places.. We do more addition 
to obtain th^e. An with larger n but we more than make, up for it by 
d'oihg less -<® calculation. 

43._ In connection with thesv. calculations we'wish to point out 
five characteristics of the; ^» transform. 

c I. It is local. No quantity above or below these two 
diagonals: 

A 

(.561 
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can affect any quantity between them. We used this ictea in the 
calculation just performed and in the asymptotic series for Euler's 
C (see paragraph 34)* 

II, An. may he multiplied by a •constant. For €, applied to 

III o A constant =may be added to or subtracted from A-. For 
.#.,- ap-pli-ed to Ap-1 '+ a, An + a, and An+1 + a- gives Bn< •" a. If : 

we wish" to trans-form (6931470376  we 'may £ra=hsförm jr0376 .and 
l693i472B35 - 42835 
.69314710-53 * ilQ'53 

IV. Generally=there is no loss1 of significant figures. , From 
an An sequence accurate to 10 significant figures we will.obtain a 
Bn sequence of the same- accuracy* This may be seea from :(36|. 
0nly°when J& A^    is nearly equal to +1 will be a less accurate 

'A  An-I 
Bn,.sequence result. = '- 

Vi  The ^»process may be readily mechanized.. With modern 
large-scale calculators .the Bn, C^, etc.} sequences may be calculated 
almost as fast as -the An sequence is fed in. 

44.^ Finally we should give a rough indication of the types of 
sequences for which the ©eprocess should be useful..  If the sequence 
is nearly geometric., that is if 'ÄäM approaches "a constant 

(=F + 1), we might expect. «B» to work". If the graph Of A^ looks 
like a simple damped or growing oscillation or a simple growing or 
decaying exponential,, we might" expect jg, to- work. But if the 
sequence is derived .from a structure .like = 

^  ^  ^       lfA 
»• t ^ t + ^F * * - £ ~ 7 *  _    l>i 

"-J+Jt'\ 

it would seem more reasonable to use a second-order process 
.We could,  however,  use a firsts-order process on the alternate mem~ 
berof such a sequence,  that is,  on A0,  Ä2»A^,etc.,  or A^,- &ys 
A/^etc.    In no case where the sequence has been artificially and 
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randomly put together (for example., out of. numbers in a telephone, 
book) would we attempt to use g> or any other of these transforms. 
Although certain classical mathematical operations frequently 
produce=sequences of a transient character, this is ho indication 
that all operations will do so*. We now- return to our examples 
and apply Z to some sequences not derived from, infinite series* 

V.  Further Exampies of !?i ,., 

Au =    P ,'»% *^ air 
is the sequence of 
inscribed in a unit 
7)   is -given by 

45.   r\H*     r^.z 
A limiting sequence, of considerable antiquity 
t he ~ perimeters•. of 5.2 n-si#ed regulär- polygons 
circle* A table of such perimeters (n =? 0 to 
Vfentworth and Smith in reference ,(m). The sequence converges to 
2. Ti" Witfr moderate' speed. The speed may be ae-cei-erated by jg, but 
when this was first done the Gn sequence had. a noticeably non- 
smooth character. This suggested an. error in- the Vv':entworth-Smith 
table.'; A new Calculation'was therefore made: 

'-S 

1 

n 
=0 
1 
2 
3 
4 
5 

Wen twor t h-Sml th 
6,000,0. 0000 •     ~ 
6.2116 .5708 
6.26-52  572.2 
6.,2787 0041    = 
6,^2820 639,6 
6.282.9. 0510 

Mew .6 al.C:Ul at Inn. 
6.0.000, 00000  *' 
6.2116 57082 
612652 5722.6 ; 

6.2787 Ö04O.B". ' 
6.282O 6390I ; 

6.2-829 :04:94^ 

From the new data we obta 
significant figures. Genera 
errors and is a means of detecting them. 

in C3 = 6..2831 85^0.7 correct to the ten 
.erally speaking, •©, is sensitive to small 

4-6. The= reader may wish to try @t  on other limiting sequences. 
Two such sequences are: ' =  w 

(1 )' «^ e 
and 

H 
— 1) e ^¥ % 

He may also wish to experiment with linear transforms 
perimeter sequence above, we take 

and 

e /& 

3 

•*» 

(571 

If, in the 

- •- (59)"; 

«>-/ 

i$r 
we again obtain G5 = 6.2831 853.0?. This calculation is undoubt- 
edly more rapid than the previous One but it assumes; khowied-ge of 
the'weighting factors in (59). These, were obtained by:: : 

r 
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A A, 

A AH.t 
JL 

^^wi    um 

.{.60). 

/«- 

From, these formulae the reader sees- the connection between €r« 
and. this linear process. ^    depends on local weighting factors 
but the linear process depends on. extrapolated weights^, The' 
author calls this linear process "geometric extrapolation" i 

47. ; An Ei-geh-value problem. 

•Most approximate methods of finding eigenvalues have a rather low 
accuracy, (say l/lCfc Of !%•),, unless a large number of approximations 
are„ calculated. A simple eigenvalue problem is:. 

(61) 

\4 /©) s? ai f ••) SB Q      J 

Find the lowest eigenvalue. Coilaltz; (reference n) by using 
Coüränt'cS "Maximum-Midiimum-Prinzip" finds the first three upper 
and lower bounds. = Applying &   to these we obtain': 

3 — 3 ..00 00000. 

12 
5> 

= 2.40 0ÖÖÖ0' 2.48 57143 

i- 
2 

5 S - 
v 2**50 00000 2*47 093.02 

15Q = 2.45 90164- 2.46 8O403. 2.-46.7416,2- 
ol . -. "              -                 ,      '-•.-•-,_     -„ 

42 = "- 2,,47 058.82 2.46 75271 
17" . 

2i46, 64260 

Since the lowest eigenvalue is- «jp = 2.46 74011 we have obtained 
-two extra, decimal places. To the important- question, "How can we 
know a priori what the accuracy is?" the author replies "that if 
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we have a long sequence, A&, ä study of the differences within 
and between the derived sequences will give a reasonable estimate, 
of the- accuracy; but if we have only a few terms of An., the 
question Is more difficult, - 

48.-> In the RayleighpRltz method the approximating functions are 
usually chosen in S4*ch a way that the resulting approximate- 
eigenvalue sequence converges, as rapidly as possible,. This choice, 
however, .usually complicates the calculation.. It seems possible 
tha*- ea.e. ^o-uid-chöose simple function^ in a regular manner such 
that, while the resulting, sequence converged slowly,, a large 
•number of "terms could be readily calculated..  '.Ve. would thfen rely 
on 3C or some other process to secure the necessary accuracy 
from the .rough "but abundant data. 

4'9> A' Continued', fraction Sequence 

From _ !l't* £ --j. x ^ , we derive Ja sequence of 
'"' x+ 

-convergents.    We process these by   ©j   and obtain convergents, 
which are  farther along the sequence. -   .  *   5 

1 , 
"1 > 

- 

3 
2 '1.2 , 

= . 

7 
5 . 

"99' 
70 

19601 
- 138'0'Q 

= „1.41421-3^64 

11 
12 

577 
4©$ 

>. - 

hi' - 
-   . -" 

@~ is correct to 9 significant figures.    The 63/transform of any 
convergent here is the same as that, obtained by: =. 

». »        f : <62>       -1 

But this is Newton's iterative method of taking square roots.1 Each - 
iteration doubles- the number of correct decimal places.  iSee 
reference a,  page -79.) • 
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50*   ,Euler's,Partition, function - 

This  function  (reference o)  may.be Expressed as:  \ 

'•ftto *• |^*-+•£.«*'+ i*r-f ir*v + 1*?+ it x V • • •      (63) 
where the coefficient öf xn is* .p(:n)., the number of possible 
partitions of h. It may ; als O' be expressed as the infinte product: 

or as th-e reciprocal of a power series with gaps: 

Because of the increasingly long gaps in ('65) , the con" verge nee of 
this series for x ~ 1/Z is rapid/and from the, first nine nön--zero 
terms we obtain teh figure accuracy: 

On t'he. o.ther hand from the first- nine partial products of (64) we 
obtain only three figure-, aöcuracy': 

Af -9  $.4SrS?f&7?*3 " 167) 
But if we use &$  on these nine partial products, we again find: 

My,-      $.W27*?6 4I? ' ('68) 

51.     A Nonlinear Differential "Eq.ua tioji 

= Give*i >'' . «y 
«« 

+    S2./7    +     O, ItS3*/ Hf   f       "*V*** s: O     '    (69) 

with the initial conditions:  = 

U(p1>~0    :      %f (e) ^ &H40 ,(7€.) 

evaluate y for  t,= 9»     (See reference f,  page 2..) 'We introduce 

"      S ='0«1153Vt    and z =     = . y- . in\\ 
-     < -  -                                      -27', 300-,   ' . l'   ' 

and  solve the resulting-equation by the power"'seri.ee: 
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U__£l 

z «/.nms - /.^v/*?^* /.OWV- A**3HS
Y

+ iziwr sr~- 
\ (72) 

The nearly^-geometric character of this s.erie.s is' apparent. For 
t = 9 CS = I.0'j8#6.;)'' the s:er>i.£s •o-sc-iHätes-* 'W=e- -apply -{g»=. to. fche.; 
f irst five partial sums .arid: obtains ''..=' 

"A solution, of (69) hy numerical; integration gives 

- -*/?y-¥V» ._•"'• i74)- 

while series (72) directly gives the false value: 

..-'.* '- = V  * "" "" • - ' , 
52. A Diver-gent Series for -Catalan's Constant 

We may derive a divergent series for Catalan1 s .constants (47).; from, 
a=formula of Titchmarsh (reference =p). 

C%fF0-sXC^i^ -L (t-$)   te   i/<*>- 

,4.   *   --*-!  * 

Since & = L(2I).,. we find  from  (76)  with ^ = -1   = 

i .(76)- 

But the denominator cvanishes and the numerator may he summed to 
zero. Proceeding in the euleriah manner, we writer      = = 

* * - ,;•«»-,•    .,—  -1 .^ (78) 
f,   C^>^T5i) Irr   *t 

OT{%)*&~       J    Jk;3    W^J^r    **     7-£~7     -     -•        . <79).- 
The first seven partial sums of this divergent series may he summed 
to ~ . *     „/.      . >= -    - 

VtrJ : (so). 
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Since G == 0.9159655942 we, calculate 

The agreement is not perfect. As it happens,;„ though 

(81) 

(82) 

f 

and t-his suggests that formula (7'6) has, a. typographical error of 
a. factor- of '«/tTs1 That 
S = 1/2 in (76)=. Then 

*Cir**& / 

-this is the :c-a:se. ma;y he seen, bf  taking. 

Rut actually^)* ^~V£) )S s J  ;(8.3:)
: 

53. 'Other applications of 6» could be given hut we must now turn 
to the study of the higher order :Cgtrsansforms-.- . A compelling' reason 
for this study is the fact that ^ does not work well for some 
simple sieries* Far instance,- take the divergent series . 

/ *   ZZ   -h    3-1-   4V-2 + r* t--^ (84): 

sav he d-e-rived from the rä-t^ö^ai fun^-ti-oi _ „1  
- "~r" " 1X^1*2- 

with 

x - 2.  The partial sums of this series diverge frpm a definite 
value, namely, -+1. However, the ^ process requires at least 
four iterations before any appreciable Convergence takes place 
(.after that it goes much more rapidly).. In other words., it is 
slow.* On the other hand,, from the first five (or any five eon/-, 
secutive) partial sums., a second—order process,o <?4 , yields the 
exact sum *-      , « -     -. = ", 

I    S   ' -if 
* 9fS              : = 3-V 
t* 3\ so 

I •" 1.   .- 1 

*$ ri 31. 

w *  -H 
(85) 

; IZ-    37L    • H 

54. Another type of slow convergence of the €*,-process, and two 
more difficulties - local nonuniform convergence and loc.al non- 
convergence - will be= discussed in a later paper. Some of the 
main ideas .of ühe £K transforms are illustrated in the next two 
examples. 

VI. Two. Examples of <?a 

55. .ä.Jf  ^W\ f 
^, 

:+%) *L(-£) 
ä 
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The second-carder process^ &2 ,  is useful in the solution of this 
simple integral equation by the method of Successive Substitution 
(reference q.) . This method, when applied to the above equation,, 
gives the divergent Series-: 

um *a*n-(it •.)•-(* +h\- (% * *H8 - #)- • 
We apply £«.to the first five partial sums •a 

2*3 
and obtain 

(86) 

U. CK) = X (•8?) 

Any other five consecutive' partial sums of (86-). will give the same 
result*. The vector series^ (86)., is therefore exactly summable by 
<g*.tp the exact\ solution of the integral equation. 

56,. This example is ä .particularly clear one since we can show 
exactly Why @^is successful.» The integration process whereby each 
vector term of (86) is^ obtained-, from the previous term .is equivalent 
to a matrix'multiplication. That is 

I. A 

188) 

1XJL. 

I     \    I \      . 
X ifi    , a. «s 

or (89) 

where 

V. 

<90); 

But the matrix, «can be expanded into a pair Of unit orthogonal 
matrices .(for instance, by^the algebraic apparatus of ,Pai*t I) and 
therefore we- have  ?. N   '   , ,  1. 

n 
1 '•»• -FPTu X 
3 

3-*V|\* 
* irz^t 

(91) 

iimiii.aui • 



Finally J 

ainci we see that the sequence of partial sums Is a' secondr-order 
transient;.    The second term,,, i\ + a>jS\N t\*2ßw  & ^+§kismojaöt.önlc 

anö divergent.;   the third term is a damped oscillation;, and the   ? 
first term,, x^. is^ the base line comstaht. 

57.     Goldstein's Formula, for5 Drag '        °  . 

Goldstein,   (reference r) j  has, investigated the drag of a sphere 
in a viscous fluid -as a function of the Reynolds   'number*    This 
investigation- is based on the linearized./(Os.een)   theory and results 
in the fo.-1-law.ihg .series formula , 

K* &*[,+ m~ £2Sl + list ^ *wz&*r ti2£tig£„-f93-) ' 
* ) V    * )      " J - 

The series converges for R = 2, oscillates for R = 4, and diverges 
badly for R =• 6„  In. view pf this,, Goldstein, abandons the series 
(whibhhad been ojbt&ined1 with much labor) and resorts to an 
approximate, numerical solution for R >• 2. 

58» Series ('93) is nearly geometric a-nd we could- sum. it by '-^,t   . 
For any fixed value of R, this would be the simplest thing to do. 
However, we would like a formula for Kp in terms o;f = R. and for 
this purpose it is simpler to use a .second-order process.. We 
apply €?& to- the first- five terms, of (93) »Ad; obtain the rational ; 
approximation  ; .       •- 

H   ä »*   £3J«6$<0- * f& 3,2*0.-1«. +• /4. ?*Q & 

In the table which follows we compare. (93) and (94) with Goldstein's 
=numerical solution. .  , 
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' 

Tafele i 

- 

- 

c 

-- 

R (93 )• Series •_ Solution 

14.106 

.Numerical Solution (94)' Rational Approx, 

14-1051 X 14.11 
2 8..Ö-1-8 8.:0,0 '   8.0043 s 6..-Ö28- ' = 5.93 5-9287                 -            j 
4 -r 5-.20i 4...81 4.8688 
5   » • 5.122 4.22 4.2l:9;5 •                           1 
6 =    5,. 80 3. 3,78 3.77?6                          -   : 

5 8 6.331 '3*21   - 3.2088                             ; 

10   .. •21.523'   -c = "   -2.85 2.-8532          '•_," = 
12 43.-28:2 2.-60 :,. 2.6Ö6Ö. 
1.6 139.518 2*28 2..277?:                         - 
20 351.232 2.08  .. 2.0630 

If we apply 'Q± to the "last five partial sums of (93) the agreement 
is not quite as good. 'The~last term of (93) is wrong or at least '- = 
it does not follow from the /\ 'ai of Goldstein's paper (reference 
s)'i    When we correct it:- • ' 

122,519 R? 
\55D',,502,. 406 

122,519 R^ 
Instead p.f      560*742, 400 (95) 

w-ec find that the last five  terms now give ; - 

which agrees with (94)   to three or fpur= significant =figures up to 
R  *   20 .=" 

-59«   -S.er.les .(.93) iaay he written 

«I 
while its' reciprocal is 

ftfe-V^:* Jitf - (1% 38«) :-•'# :®". 

(97,) 

(98) 

The relative simplicity of (98) suggests that it might be simpler, 
In any'future work on drag in this range of Reynolds number, to 
work with -Li. instead of .|£fe directly» 

K© 
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60* In the. last two examples WB= have illustrated.: 

• (a) the' utility öf reciprocal series - 
(•h) the' accuracy, of rational approximations 
(•&)• the numerical simplicity of €,, versus the analytic" 

simplicity of t?j< or € «j| , • and 
, ' f/d) " the exact summation of series whose sum- is rational* 

These mathematical phenomena are tightly interwoven,, together with 
the Pad-e Table, the klgorithms öf continued fractions and rational 
-approximations, a theorem of Krohecker-' s,: and Thiele's reciprocal 
differences in the: theory of the <g,K and ^transforms. 

¥11.-general Discussion of the ^gcahd €'aj Transforms 

61. We now return to the application of.higher order processes . 
•t;0- the series for- InXl+x.)',. äs introduced in "paragraph 18. A 
zero, , orde£ process applied to, the fi-rs't' term of -.' ° . 

gives ° 

rl**\ 

(99) 

(1.00) 
<9 © 

An ©, process applied =to the first thfcee sterms gives 

.Jh*(l*Kf «   X fc-f U 

0; "&>- 

An-C^process applied to t,he. first five terms gives 

A coiitinuation of this process   (the ^transform)  givesr 

4f^Q»<#.- = J"VO»e  -five*"   + ?K*   ••= „ 

A****? * • ?n^**v ******+***; ?J 

(101) 

C102J 

(103)- 

and.; so- forth.= .This s=eeL,uen,ce Qf rational approximations for .-*<*t (Vtts) 
converges, rapidly for all x- (except the real cut -1 to - '«öv ) to 
the value lW.i*£) * For example, from :(103,) we have 

and 

JU% *" « ^> '  A* 9 5/fl 

4104) 
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correct to five and four significant figures. Rational approx- 
imations for any analytic function may be. obtained by a similar 
calculation. 

•62. If. we now take a known continued fraction fo~r liti(l4x) 
(reference h,, page 3421 

&*:0,4X) - "f .*. ~ -K '3 +•  V **  5*'  •* 4'-*•/" (105? 

j- - -. we find thai tee. first,  third,, fifth,  etc*, convergent s of this. 
fraction are  exact-ly the rational approximations we have, just 

u . » obtained-. 

63."   Similarly.,, if we  apply    6$ to the series " 

/-> ./ .' **z. 1   -31 ._+• *t *~   * "'*   = 

(see paragraph.. 29)  we obtain the following rational approximations: 

fi-tit* i.  1   ill   £^    ^v^e     ^ 
= The&e approximations are likewise obtainable from the odd.conger- 
gents of a known continued fraction, preference h, page- 316)'. 

t4t      ~~   1 •*" •'"* * •*" I "*" '* *• T •*   T •* ~* ••-    (I07^ 
Suler,. in .fact,,, knew of this fraction and used it to sum the series 
to four decimal places (reference k), 0 The fraction, conv.erg.es. rather 
slowly,. The 17« th convergent, A'  = 0,5/964599995, is only correct - = 

to three decimal places. We can accelerate its convergence by 
applying W*   to. it.. But the fraction,, as it stands^ (10?), has a 
double structure such ..as.was discussed in paragraph 44. We. prefer, 
therefore-, to apply 9^ to the' alternate members of the. cohVergents 
sequence - namely, to our rational approximations,. (i.Q-6).. ffröä 
the first nine appröxima=t:i.©hs^ that is, uprt& "the A^y, mentioned 
above, we .obtain nine-place accuracy (0.596347362:) . Here, then, 
we have a combination process. Firsts a .diagonal transform to 
produce a slowly convergent sequence,- and then an ^T process to- 
extrapolate' it,.  --. . * . .. 

64, We now = shift to ä somewhat, different topic put we will soon 
show its relation to our.nonlinear transforms* Here is an algp- ; 
rithm for the calculation of 6": ., Consider the table of" fractions-. 

j£3 

Ma. 
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and.the rulest 

(T0'8). 

We  i/hus  obtain 

T 

i 

a. 

Ik 
• 

r': 
ä 
3 
M 
Ft 
friz 

2 

s It 

4 V 

2 V 
4 ' 

_£.   '   2.      * *>     . "   'fcr Cetc. «'is  the 
The .first column-,• f- ,   -r   * thf'riMV+J7  W=*-£. ••*• -£-»  • seauence of partial sums of the series    /*/-' x.        *• 
anf thus .converges to e .   .^^S  /^^^laAksIf the 
is the sequence of the geaipppflals of the P*«W_ :        and th 

jet.c.j, 

reciprocal series-  / ^ ~JL.    ^ JL     — «4L "•*• -£-- — .. .. . and thus 
converges to 
The ßit'lp-tite paths:" 

£       JL        A    i   J| 
>i . # V   > 

(I 

are sequence, of convergers of the allowing c«ntinued^ fractions 

fGr e x   JL    J,   'J.---  5," -*-,/ ' 

/9   — •f*-    f »•  i   •*   *" *••  ^   -*•   T 
(no). 

.».' <»•    ->' **•* *fei *R&- 

-g -F  -"-£*•  •    5LC    ^    f"" s¥   V 
and the zig-zag path: 

&      ^      i£        ^ 
r -*-   &  «   7 -f  <p»- 

(my 

36 1M0IM .9994 

wcnmam 



gives the regular continued fraction (numerators all +1) for g; 

In 'generalj >©ne may proceed through the table in any south>easterlj 
direction and obtain a convergent sequence for <g . This is ä 
Fade. Table- for g ...  (See, reference h.}, 

6$* -What is: the connection between the Pad;e Table and "the"<?«,and 
c ##C transforms? Simply this:. If we) apply Gf  to, the first column 
we obtain the s.econd column, Ni>/ Pit   ., from- i •= 1 to- I =, cüp". 
If we .apply &% to~the first column we obtain the: third cöinimn.,. W»ViPf*. 
from i == 2 to i = ö»p , and so oil. s This accounts for the half 
of the iPää:t $abie-belov; the diagonal.  (This: ^rray should not be 
confused with the similar-lpölcing array of ©t  sequences discussed 
in paragraph 22,) The other half of the table may be obtained by 
the reciprocal of the € ,. transform of the reciprocal of the 
first row, the reciprocal of the. g^transform^pf the reciprocal 
of the first row and so forth* The ""diagonal-may be obtained by 
applying the diagonal transform,. £«(,,, to the .first column or by the 
reciprocal of the diagonal transform of the reciprocal of the first 
row« = Thus the name, "diagonal" transform» 

- >     '.<.= " "" x 
66.    The Bade Table for the more general €, is 

2*X fe f- a.* 

• 24a*-f*4    • \,    . '.--        •".„""'; .  "     „ = 
- •• *- n _ - ^IIIIIIIB    I II IB II 

°        2 • '-"•'• -• "... ' 
• .. =      • "-     ' 

By definition, in the normal Pade Table we. have those rational '_ 
approximations for e*which have the following two properties: 
(a) The. fractionA/^/p^is made up of a. numerator polynomial of the 
r?th degree and a denominator polynomial of the G'th degree; (b> 
When this fraction is divided throughwe pbtain the power series 
fpr g*  correct to- the term involving x**** 

6?. The relation between this more general Pade Table and the 
transforms is. th^-aame äs that for the simpler table for: •€* . '_-_ 
This,,, in fact, ^.quit.p simple to prove. Qonsider the sequence 
of partial • suras x>f a power series 

N 

"  •- .  ' •-. U13) 

37      = M)LM 99m 

"•"    " ' 11 1 iiiiriiiiiin 1' m IIIIHIIIHIIHI imiwiiiiinmijii 1 



Then the 6K transform öf A^ is 

C. M-K+l VMJI ** 
tf+S 

^•*i 

*K/» 
Cw^ Vfjf4l<" 

r^KiiX 

I 
1 

••*»*ll 

V-ft*. X 
M '*d -X 

By multiplying 
this becomes 

and dividing, the rows' and columns by powers: of xy 

'm 

I»I*K 

;yv   - -/\'j 

41 

C*e-t* 

«e^f» 

•_     •«.      »     •• 

0-15'^ 

4. 
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In. general, --t-he-a-y unless the lower right minor Vanishes,, the 
numerator is a polynomial of the. N'th degree^and the denominator 
i& a polynomis" -at  the K^th degree,. By adding ail the rows of the 
upper determinant of (114) together, it becomes 

N N4N 

'KIV 

-&Ji3 ? *N!f   /* S     (it * > 
r 

W;e may subtract the value   A***«   from the first row  (s/ee 
therefore , 

— —   - -    ml iftnl    ft?    £it*f) 

SfiH:s    ins   (if 

and 

(117) 

Finally, by the above transformation,,, KL15),; we find 

I 

®m~ ®N+K* ..*-*- 

ICH 

JV%HC    ^r   Otr) t 

(118) 

Since the smallest possible exponent of x in the numerator deter- 
minant is. N *"-K"+ i and. since the denominator has a constant- term' 
.(unless the lower left minor vanishes) B^ agrees with _•%+£ UP to> 
aixeast,.:the term involving;^

+K. If the minors vanish, see" 
paragraph, 72 below. 

68;. In their application to the; partial sums of power series the 
&K*«?"transforms, then, give the same, results äs/the Bade Table* 

But tfhe. transforms ara ä broader conception since (a) they may be 
applied to other^types of sequences, and (b) they may be iterated, 
giving- ^Kanä 
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6%    An int-ereatrLig, and perhaps useful, conception^is that of ä 
PäM Surface. Through the discrete points of a Bade' Table.j for- - 
instance, that for ^ , paragraph 64, we may conceive a smgothj, 
surface.. This would be a two-dimensional generalization of our 
transient-like graphs of-pasa^.aph 4. The. Pad a Surf aoe fo£ & 
is. interesting.*." It has a pole at £1,0).* an oscillating character 
al=ong its rows,, a monotonic character along, its columns and ä 
limiting plane'towards the southeast, for fp:we have a faMily of 
Pad.e Surfaces. We cannot, at this time,, develop this concept 
further. 

12 

70. We have shown above- how we. may start with a power series^ 
appiy a diagonal transform, obtain a sequence, ,of rational approx- 
imations,, and from these a continued fraction. The order of these 
operations may be altered. Ah interesting way of Obtaining the.. 
continued fraction is by the method of interpolationknown as 
Thiele^s reciprocal differences (reference g3 . The fraction 
thus .Obtained will have as its eonvergents a sequence of rational 
äpproximatio.ii^i* These may be expressed' as. the- ratio of two , 
determinants and this had been done by Noriund tpejferences). 
His determinants are essentially the same as, our (ii5)^etc* 

71. When applied: to a power series', then, the diagonal transform 
is essentially equivalent to Thiele'a Cxjhtinued Fractions, The 
former algorithm^ however, is broader in scope, and in addition, 
the author b.elieves.y- it has ä aimpler intuitive basis. 

72.. A third' mathematic related to our transforms is a theorem of 
Kronecker preferences i, t*. u) on the power series of rational 
f unc t ions .   ^.THEOREM; If 

(H 
<a 

11 . 

[ 
V 

:CL 

the necessary and sufficient condition that JEST ft» 3.    should 
represent a rational function is that *****)  ^    for    _ A. 

  &o   .» Q ' H  2Z N., - 
73> This resembles our criterion of the order of a transieht'\   (12), 
paragraph 14. We have already shown examples wiicü?.e a power aeries" 
is summed exactly to its rational sum. This suggests that in 
general a power series- which repreaenta a rational function can 
always be summed exactly -by a single |j^ pro/cess of a sufficiently 
large. K. This is true. $or from the rationality Of the aura it 
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L 

r~ =. » 

-IS r*»> 
follows that Mo    »£>       for H  ^ JV   and from this it follows 
that "P^   's © for *, at  tu A > o  (referen.ee i). Hence it 
follows "hat        . "*   f ,n -^ 

Ai.*.***-« i 

(220) 

for all   A    .    Therefore?. frQiQ our criterion,.   (,12) ,   it follows that 
the sequence      A\--*    a«   X*      may he represented exactly by a 
transient of the foral, " (3-)~    Finally,   it follows*  by summation of 
the gepmetriö series^ that the-partial s-uma,      jr*    gy . x*    =may 
he represented .by a form  (-g,).; $«»© x 

74* Ari example j>f sash exact summation is that of the Riemahh 
'JjSeta function... This function^ while transcendental for positive 
integer arguments., ist rational for negative integer arguments and 
may be -expressed (in Knqpp's terminology,) as   . 

' ***** . V" 2S,t 3S^**•• 

where the B's are the Bernoulli numbers (reference, j,, page 533). 
These numbers are all rational and We should be able to obtain ;them by summing exactly the. divergent aeries: 

isr jt "-#» -*H +r - •*•-- 1 
.i: I**4* •#'*?." «•-** **f - ;a* • !_:ßtc. 
compare paragraph 3$.    In fäctfe we, sum the first series by   €?#; ., 
the second? by   @%~,  and- so on,, and thus, obtain explicit formulae 
for the Bernoulli humlaers'as the ratio of two determinants«    These 
may then be reduced and we find thai, the partial aura* of  (122) 
should be weighted' by the binomial coefficients;..    Therefore 

1+3 if  ^^f 
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and in general 

It is.not- contended thät fl-2=4:): is ä practical way to Calculate the 
Bernoulli numbers. Its chief'interest is.that- it was obtained by 
the exact summation öf' divergent series*. 

Till,.: Summary " 

75« We have, introduced and developed an aamLogy .between seg.ue.nces 
and transients. On the basis of'this analogy we h>ve developed a 
•aniform treatment for the .evaluation of .convergent and divergent 
sequences« Several nonlinear transforms have been developed and 
applied, successfully to a large variety pf sequences. The complete 
theory has hot been developed« but some proofs are given and some 
connections with known algorithms, are. shown* -  - 

76. In a forthcoming memorandum the author will discuss further 
aspects of these transforms«* = -These are; 

A. A generalization ,;f 0', which is especially adapted for 
thö s;ummätioh of mono tonic sequences where «& ~/KMS -a* _&i 

- ^    /AAn^i ^ "*'* 
B. Occasional nonuniform convergence of €?   to the wrong 

.answer. / - ' 

C. Occasional nonconvergenCe of  <6* of sequences associated 
with multivalued functions and their branch points«, 

D».    The analysis of mathematical "transients  into their spectra, 
and the.relation between, discrete1 and continuous spectra* 

E:.    A relation between the ^'^ trans form and GausB'  method^; 
niamerlcai integration. 

;   F.    The prejudice against dliverge-nt sequences»1 

-. -    - « -     . p.. Shank» 
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