Reproduced by

IS ABSOLVED
FROM ANY LITIGATION WHHCH MAY ENSUE FROM ANY INFRINGEMENT ON DONESTIC OR FOREIGN PATENT RIGHTS WHICH MAY BE INVOLVED.

Reproduced
FROM

LOW CONTRAST COPY.

ORIGINALDOCUMENTS MAY BE OBTAINED ON LOAN

FROM
C A (D)
An Analogy Between Transients and Mathematical Sequences and Some Nonlinear Sequence-to-Sequecne Transforms Suggested by It - Part I Shanks, Daniel

An analogy between sequences and transients has been introduced sud developed. A uniform treatment for the evaluation of convergent and divergent sequences was developed on the basis of this analogy. Several nonlinear transforms were successfully applied to a large variety of scquences. The development of the theory is not completed, but some proofs are given and some connections with known algorithms are shown.

Copies of this report obtainable from CADO.
Sciénces, General (33)
Sequencess, Mäthematical Mathematics (3)

Naval Ordnance Laboratory White Oak, Silver Spring l9, Maryland

NAVAI ORDNANCE LABORATORY MEMORANDUMA 9994

From: Danie? Shamks
To:
NOI Files
viá Cnief, Mechantos pivinion
Subj: An Analogy Between Transients and Mathematical Sequences and Sóme Nonlinear Sequence-to-Sequence Transforms Suggested by I.t. Part I. (Project NOI-4-Re9d-21-2)

Abst: In mathenatics, and in applied mathematics especialy one wishes to obtain accurate answers rapidly. one obstacie often met with is that the simplest and most obvicus analysis gives mathematical sequences whịch are slowly convergent or even divergent. Whe proper treatment of such sequences is therefore a general problem of real importance: This memorandum gives and discusses some methods of treating such sequences.

An analogy between mathematical sequences and the transients of innear systems is developed. Through each $2 \mathrm{~K}+1$ consecu. tive values of the sequence A one passes a continuous function of the form $B+\sum_{z=1} a_{i} e^{\alpha_{i}}{ }^{4}$. The series of exponentials either converges to, diverges from, of is asymptotic to the constant, B. An explicit formula for Bin terms of the A_{n} is given and this forms the basis of several nonlinear sequeñe-to-sequence transforms $A \rightarrow B_{n}$. The transforns are applied to a variety of convergent and divergent sequences. Whe complete theory is not given but some theorems are proven arid some relations to the Pade Table, and to Thiele's Reciprocal Differences are discussed.

Fwrd: The data and conclusions presented here are the opinton of the author and do not necessarily iepresent the final judgment of the Laboratory.

Ref. (a) Whittaker, E. T. and Fobinson, G. The Calculus of observations, Blackie and Son, London, 369 (1944).
(b) Wiolers, F. A. Practicai Anajysis, Dover, New York, 355 (1948).
（c）Aitken，A．C．＂On Bernouili＇s Numerieal Solution of Algebraic Equations，＂Proc．of the Roy Soc．of Edinburgh，46，289－305（1926）．
（d）Shortley，G．H．and Weller，R．＂Numerical Solution of Laplace＂s Eguation，＂Joure of Appl．Physe 2 ， 343 （1938）
（e）Samuelson，P．A．＂A Convergent Iterative Prócess，＂dour． of Math．and Phys．，24，131－134（1945）：
（f）Shanks，D．and Walton，T．S．The Use of Rational Functions as Approximate Solutions of Certain Trajectory Problems． NOLM 9524； 13 （1948）。
（g）Milne－Thomson，I．M．The Calculus of Finite Bifferences， Macmillan，London，Chapter v，（1933）．
（h）Wall，Ho Continued Fractions，D，vain Nostrand，New York，Chapter XX（1948）．
（i）Diones，D，The parlor Serieg Oxfond Fondon，321，（1931）．
（j）Knopp，K．Theory and Application of Infinite Seríes． Blackie and Son，Lonhon．Chapter XIII（1928）．
（k）Bromwich，T．Jo An Introduction to the Theory of Infinite Series，Macmillañ，London， 323 （1942）．
（1）Mioore，C．N．Summable Series and Convergence Factors，Am． Mathe Soc．N New York， 3 （1938）
（m）Wentworth，G．and Smith，D．E．Plane and Solid Geometry， Ginn，Boston， 249 （1913）．
（n）Collatz，E。 Eigenwertprobleme，Chelsea，New York， 137 （1948）。
（o）Hardy，G．H．and Wright，E．M．An Introducition to the Theory of Numbers，oxford，London，272－282（1938）．
（p）Tinchmarsh，E．Co Introduction to the Theory of Fourier Integrals，Oxford，London， 66 （1937）．
（q）Fovitt，W．V．Linear Integral Equations，McGraw Hill，New York， 13 （1924）．
（r）Goldstein，S．＂Steady Flow of Viscous Fluid Past a Fixed Spherical Obstacle at Smail Reynolds Number，＂Proc．Roy． Scc．A，123，225（1929）．
（s）Norlund，N．E．Vorlesungen Uber Differenzenrechnung，Springer， Berlin， 432 （1924）．
（ t ）Kronecker，L＂Zur Theorie der Elimination einer Variabeln aus Zwei Algebraische Gleichungen，＂Berlin Berichte， 535－600（1881）．
（u）Encyklopädie der Mathematischen Wissenchaften II，3，1，p． 470 （1921）．
Paragraph No. Page No.
INTRODUCTIION 4
Definitions 4
Graphs of Sequences and Their Implications 4Nonlinear Transforms and Their Use5
Part I THE ALGEBRA CP TEANSIENTS 6
Part II TWO NONLINEAR SEQUENCE-TO-SEQUENCE TRANSFORMS 11
18 Development of the transforms 112426
History of the Transforms 15
Comparison with Linear Transforms 15
Part:III28
29THREE EXAIPLES OF $\tilde{e}^{\prime}$$\overbrace{d}$16
A Slowly Convergent Series for $\ln 2$ 16
A Divergent Sories, $0!-1!+2!=3!+4!=0$ 17
31 An Asymptotic Series for Euler's Constant 18
Part IV GENERAL DISCUSSION RESUMED 19354.0
A Proof 19
Geometric and Nearly Geometric Series 22
43 23
Part V4547
4950
5152.
FURTHER EXAMPIES OF, 25
A Limiting Sequence of Perimeters 25
An Eigenvalue Convergent Sequence 26
A. Continued Esebion sequence for $\sqrt{2}$ 27.
An Infinite Product Sequence for Euler's $28:$
Partition Function
A Nonlinear Differential Equation 28
A Divergent Series for Catalan's Constant 29
53A Sequence which $\stackrel{E}{e}^{0}$ Sums Slowly30
Part VI
TWO EXAMPLES OF \boldsymbol{E}_{2}30
An Integral Equation 30
Goldstein's Formula for the Drag of a Sphere 32
Some Characteristics of the $\boldsymbol{e}_{\boldsymbol{K}}$ and Cedransforms $^{\text {dita }}$ 34
Part VII6164
69
GENERAL DISCUSSION OF THE e_{k} AND $e_{\text {TRANSFORMS }}$ 34
Rational, Approximations
Rational, Approximations
35
35
The Padé Surface 40
70Thiele's Cońtinued Fraction40
7240
74A Theorem of Kronecker41
Part VIII

The Bernoulli Numbers
SUMMARY

INTRODUCTION

1. In this paper we shall discuss an analogy between transients and mathematical sequences. By the term "physical transient" se mean a physical quantity, p, which, when expressed as a function of time, takes the fiorin

$$
\begin{equation*}
p(t) \Rightarrow B+\sum_{i=1}^{K} a_{i} e^{\alpha_{i} t} \tag{1}
\end{equation*}
$$

It will appear below that it is useful to regard some mathematical sequences, A_{n}, ads functions of n of the form

$$
\begin{equation*}
\Delta_{n}=B+\sum_{i=1}^{K} a_{i} e^{\alpha_{i} n} \tag{2}
\end{equation*}
$$

and because of this we may call such sequences "mathematical trans cents."
2. We shall be concerned here with the analysis of mathematical transients. By the term "analysis" wee mean the determination of the "amplitudes, " a_{i}; the "frequencies," \mathcal{O}_{i}; and the "base line eonstent," B, of these transients. If all the $\boldsymbol{\alpha}_{i}$ have negative real parts, the transient converges to its limit, B_{i}. If one or more $\boldsymbol{\alpha}_{\mathbf{i}}$ has a nonnegative real part the transient is divergent and has no limit. In such cases we may cali B the iantilimitit of the transient.
3. The analogy between transients and sequences is suggested by the graphs of some typical sequences in the (n, A_{n}) plane. Since, in general, the sequence is defined only at the integers, n, there is nothing to prevent us from drawing a smooth curve through these known discrete points.
4. If, then, the sequence converges and oscillates, the graph may look like

or perhaps

If it diverges it may look like

4
NOM 9994

If ict is asynptotic it may resemble

5. Generally, for sequences which arise naturally in analysis, the graph will look like a transient of a linear system of the form (l) and the idea naturally occurs to experiment with such forms, to treat the sequences as if they were transients, and to solve for the limit or antilimit B.
6. Suppose, for instance, we have $2 \mathrm{~K}+1$ values of the sequence of partial sums of the sumy onvergent series, In $2=1 \div 1 / 2+1 / 3$. $-1 / 4+\ldots$ The graph of this sequence looks like the first graph above. It oscillates around and converges to $\ln 2$. We can find a's. α :s, and a B such that the resulting graph (2) would pass through these $2 \mathrm{~K}+\mathrm{l}$ pts. Intuitively, it would seem thát thé B should be: a good approximation to $\ln 2$.
7. Suppose we have $2 K+l$ values of the sequence of partial sums of the divergent series, $\ln 3=2-\frac{2^{2}}{2}+\frac{2}{3}-\frac{2}{4}+\cdots$ The graph of this sequence looks like the fourth transient above. It does not converge to $\ln 3$ but it does oscillate around and diverge from $\ln 3$. And the cơresponding B should be a good approximation to ln3. In this analogy the continuity between convergent and divergent sequences is similar to the continuity between stable and unstable transients. This continuity is a result of the continuity between α 's with negative real parts (in (1)) and those with positive real parts. We will, therefore, take the same attitude toward divergent sequences as we take toward negative numberṣ。. We accept them - at least tentatively. We will attempt to evaluate them by calculating the antilimit Bo But to do this, we must have an algebra of transients.
8. This we will develop first. From this algebra we will obtain explicit (and relatively simple) formulae for the B's in terms of the A_{n}. On the basis of these formulae we will then develop some nonlinear sequence-to-sequence transforms which will convert the original An sequence into new B_{n} sequences. In fact we wịll have á variety "f such transforms since (a) we may choose an arbitrary number, K, of exponentials and (b) we may then iterate the process or not.
9. If A_{n} is slowly conve , ent, we wish B_{n} to be more rapidly convergent to the same limit. If A_{n} is divergent, we wish B_{n} to be semi-convergent or, better still, convergent. In either case we are trying to filter out the exponential terms and to reduce the sequence to its static base, B.

* 10. We shall apply these transforms to a variety of mathematical sequences and discuss the results. We shall give some proofs of validity - but not a complete proof. We shall show the interrelations
between these transforms and some known algorithms.

I. The Algebra of Transients

11. The solution of a linear differential equation with constant coefficients, of order K , and with given initial conditions is well . known and understood. The solution of the inverse problem, although it appears in the literature, is not as generally known. The problem is this: Given a tabulated function pet), to find the unknown constants α_{i}, a_{i}, and B and the order K of a form (1) which will fit the given data. Related problems are the determination of the differential equation and the initial conditions and the: extrapolation of the function pet). Two examples of the inverse problem are:
(a) Analysis of a mixture of radioactively decaying substances. Given the radiation as function of time, find the number of substances, the relative quantities, and the decay periỡs.
(b) Analysis of a portion of the trajectory of a device controlled by a linear servomechanism. Find the differential equation, extrapolate the trajectory, determine the stability.
12. Let us assume $B=0, \bar{K}=3$ in (1) and that the data, $p(t)$, is known exactly. (For least-square versions of the formulae which occur in the next two paragraphs see references a and b.) Given six values of the data:

$$
p\left(t_{n}\right)
$$

$(\theta=0$ - 0)
we have six: equations

$$
p\left(t_{n}\right)=a_{1} e^{\alpha_{1} t_{n}}+a_{2} e^{\alpha_{2} t_{n}}+a_{3} e^{\alpha_{3} t_{n}}
$$

$$
\left(n=0 \quad t_{0} 5\right)
$$

from which to evaluate the unknown a's and \propto "s.
13. What appears to be a troublesome set of transcendental equations becomes quite simple if the t_{n} are equally spaced for if we take

$$
\left.\begin{array}{r}
t_{n}=0, T, 2 T, 3 T, \text { atc. } \\
\therefore e^{\alpha_{i} T}=g_{i} \tag{5}\\
\quad p_{n}=p_{n}
\end{array}\right\}
$$

our equations:

$$
p_{n}=\sum_{i=1}^{3} a_{i} q_{i}^{n} \quad(n=0 t 05)
$$

are seen to be algebraic. They are linear in the a's. If we consider the pis transferred to the other side, we obtain from. these homogeneous equations, the conditions:

$$
\left|\begin{array}{llll}
1 & 1 & 1 & p_{0} \tag{7}\\
q_{1} & q_{2} & q_{3} & p_{1} \\
q_{1}^{2} & q_{2}^{2} & q_{3}^{2} & p_{1} \\
q_{1}^{3} & q_{2}^{3} & q_{3}^{3} & p_{3}
\end{array}\right|=\left|\begin{array}{llll}
1 & 1 & 1 & p_{1} \\
q_{1} & q_{2} & q_{3} & p_{2} \\
q_{1}^{2} & q_{2}^{2} & q_{3}^{2} & p_{1} \\
q_{1}^{3} & q_{2}^{3} & q_{3}^{3} & p_{4}
\end{array}\right|=\left|\begin{array}{llll}
1 & 1 & 1 & p_{1} \\
q_{1} & q_{2} & q_{3} & p_{3} \\
q_{1}^{2} & q_{2}^{2} & g_{3}^{2} & p_{4} \\
q_{1}^{3} & q_{2}^{3} & q_{3}^{3} & p_{5}
\end{array}\right|=0
$$

For $q=q_{1}, q_{2}$, or q_{3}, we have the obvious:

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 1 \tag{8}\\
q_{1} & q_{2} & q_{3} & q_{4} \\
q_{1}^{2} & q_{2}^{2} & q_{3}^{2} & q_{4}^{2} \\
q_{1}^{3} & q_{2}^{3} & q_{3}^{3} & q_{4}^{3}
\end{array}\right|=0
$$

Our four determinants form a set of four homogeneous equations in the common minors of the last columns. Therefore:

$$
\left.\left|\begin{array}{lll}
p_{0} & p_{1} & p_{2}
\end{array}\right| \begin{array}{lll}
p_{1} & p_{2} & p_{3} \tag{9}
\end{array} q^{p_{2}} \quad p_{3} \quad p_{4} \quad q^{2} \right\rvert\,=0
$$

$$
\begin{equation*}
m_{3} q^{3}-m_{2} q^{2}+m_{1} q-m_{0}=0 \tag{10}
\end{equation*}
$$

where m_{i} is the minor of q. Solving this cubic we obtain the three $q^{7} s$ and the $\boldsymbol{\alpha}$'s may be obtained by

$$
\begin{equation*}
\alpha_{i}=\frac{1}{T} \ln q_{i} \tag{1}
\end{equation*}
$$

Putting the q^{*} s back in (6) we may now find the dis.
14. If we had a seventh value, p_{6}, we would have:

$$
\left|\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3} \tag{12}\\
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{2} & p_{3} & p_{4} & p_{5} \\
p_{3} & p_{4} & p_{5} & p_{6}
\end{array}\right|=0
$$

This is a criterion to determine if $K=3$ 。 If the equation holds for all sets of seven consecutive p 's then $K=3$. If the determinant does not vanish, $K>3$ but if K does equal 3 , (12) givesus the extrapolation formula:
or more generally the recurrence formula

$$
\begin{equation*}
p_{n} m_{3}=p_{n-1} m_{2}-p_{n-2} m_{1}+p_{n-3} m_{0} \tag{14}
\end{equation*}
$$

On the other hand if all the mi vanished, we would assume that $K<3$. The generalization of the formulae (3)-(74) for any K is obvious.
15. For mathematical transients, (2), the a's and α is are
of theoretical interest and they will be discussed in a later paper. But our present purpose is to evaluate the "limit" or "antilimit" (the base line constant) B.
16. Removing the restriction, $B=0$, we have the seven equations for $K=3$:

$$
\begin{equation*}
A_{n}=B+\sum_{i=1}^{3} a_{i} q_{i}^{n} \quad(n=0 \text { to } 0) \tag{1,5}
\end{equation*}
$$

and therefore, from the first four:

$$
B=\left|\begin{array}{lll}
A_{0} & A_{1} & A_{2} \tag{16}\\
1 & A_{3} \\
1 & q_{1} & q_{1}^{2} \\
1 & q_{1}^{3} \\
1 & q_{2}^{2} & q_{2}^{2} \\
q_{2}^{3} \\
q_{3} & q_{3}^{2} & q_{3}^{3}
\end{array}\right| \quad\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & q_{1} & q_{1}^{2} \\
q_{1}^{3} \\
1 & q_{2} & q_{2}^{2} \\
1 & q_{3}^{3} \\
1 & q_{3}^{2} & q_{3}^{3}
\end{array}\right|
$$

But, since the dis are functions of the A 's it should be possible to firid B as a function of the A^{*} s only.
17. If re take

$$
\begin{equation*}
\Delta A_{n}=A_{n+1}-A_{n} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i}=a_{i}\left(q_{i}-1\right) \tag{18}
\end{equation*}
$$

we have from the differences of equations (15), the six equations

$$
\begin{equation*}
\Delta A_{n}=\sum_{i=1}^{3} c_{i} 8_{r}^{n} \quad\left(n=o t_{0} s\right) \tag{19}
\end{equation*}
$$

and, by" comparison with (6), the two determinants:

$$
\left.\left|\begin{array}{llll}
1 & q^{2} & q^{2} & q^{3} \tag{20}\\
1 & q_{1} & q_{1}^{2} & q_{1}^{3} \\
1 & q_{2} & q_{2}^{2} & q_{2}^{3} \\
1 & q_{3} & q_{3}^{2} & q_{3}^{3}
\end{array}\right|=\left|\begin{array}{ccc}
1 & q^{2} & q^{2}
\end{array} q^{3}\right| \begin{array}{ccc}
\Delta A_{0} \Delta A_{1} & \Delta A_{2} & \Delta A_{3} \\
\Delta A_{1} & \Delta A_{2} & \Delta A_{3}
\end{array} \Delta A_{4} \right\rvert\,=0
$$

The ratios of the minors of either determinant are the symmetric functions on the roots, q_{i}, and, therefore, these ratios are equal to each other. That is

$$
\frac{\left|\begin{array}{lll}
1 & q_{1} & q_{1}^{3} \tag{21}\\
1 & q_{2} & q_{2}^{3} \\
1 & q_{3} & q_{3}^{3}
\end{array}\right|}{\left|\begin{array}{lll}
1 & q_{1} & q_{1}^{2} \\
1 & q_{2} & q_{2}^{2} \\
1 & q_{3} & q_{3}^{2}
\end{array}\right|}=q_{1}+q_{3}+q_{3}=\frac{\left|\begin{array}{lll}
\Delta A_{0} & \Delta A_{1} & \Delta A_{3} \\
\Delta A_{1} & \Delta A_{2} & \Delta A_{4} \\
\Delta A_{2} & \Delta A_{3} & \Delta A_{3}
\end{array}\right|}{\left|\begin{array}{lll}
\Delta A_{0} & \Delta A_{1} & \Delta A_{2} \\
\Delta A_{1} & \Delta A_{2} & \Delta A_{3} \\
\Delta A_{2} & \Delta A_{3} & \Delta A_{4}
\end{array}\right|}
$$

and so forth. Therefore, (16) may be replaced by its equal:

$$
\left.B=\left|\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3} \\
\Delta A_{0} & \Delta A_{1} & \Delta A_{2} & \Delta A_{3} \\
\Delta A_{1} & \Delta A_{2} & \Delta A_{3} & \Delta A_{4} \\
\Delta A_{2} & \Delta A_{3} & \Delta A_{4} & \Delta A_{5}
\end{array}\right|| | \begin{array}{cccc}
1 & 1 & 1 & 1 \\
\Delta A_{0} & \Delta A_{1} & \Delta A_{2} & \Delta A_{3} \\
\Delta A_{1} & \Delta A_{2} & \Delta A_{3} & \Delta A_{4} \\
\Delta A_{2} & \Delta A_{3} & \Delta A_{4} & \Delta A_{5}
\end{array} \right\rvert\,(22)
$$

Similar determinantal formulae are, of course, obtainable for K. \neq " 3 : The general formula is

$$
E=\frac{\left|\begin{array}{cccc}
A_{0} & A_{1} & \cdots & A_{K} \tag{23}\\
\Delta A_{0} & \ddots & \cdots & \Delta A_{K} \\
\vdots & & \ddots & \vdots \\
A_{K}-1 & \cdots & \cdots & \Delta A_{Z K-1}
\end{array}\right|}{\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\Delta A_{0} & \ddots & \cdots & \Delta A_{K} \\
\Delta A_{K-1} & & \cdots & \Delta A_{2 K}
\end{array}\right|}
$$

These determinants may be readily transformed into other interesting forms. Some of these are:
II. Two Nonlinear Sequence-to-Sequence Transforms
18. Let us return to the sequence of partisan sums of the slowly convergent $\ln 2=1-1 / 2+1 / 3-1 / 4+\ldots$ We have $A_{0}=1, A_{1}=$ $1 / 2, A_{2}=5 / 6$, etc, Given the first seven partial sums, $A_{0} \rightarrow A_{6}$,
we could assume this sequence to have the form $B+\sum_{i=1}^{3} a_{i} e^{\alpha_{i} n}$ with the seven unknowns, B, \mathbf{a}_{i} and \boldsymbol{o}_{i}, and solve for the constand B. We obtain from (22)
$B=\left|\begin{array}{cccc}1 & \frac{1}{2} & \frac{5}{6} & \frac{1}{12} \\ -\frac{1}{2} & \frac{1}{3} & -\frac{1}{4} & \frac{3}{5} \\ \frac{1}{3} & -\frac{1}{4} & \frac{1}{5} & -\frac{1}{6} \\ -\frac{1}{4} & \frac{1}{5} & -\frac{1}{6} & \frac{1}{7}\end{array}\right|\left|\begin{array}{ccc}1 & 1 & 1 \\ -\frac{1}{2} & \frac{1}{3} & -\frac{1}{4} \\ \frac{1}{3} & -\frac{1}{4} & \frac{1}{5} \\ -\frac{1}{6} \\ -\frac{1}{4} & \frac{1}{5} & -\frac{1}{6}\end{array}\right|$

Therefore $B=\frac{1073}{1548}=0.69315245$. But $\ln 2$ equals 0.69314718 and we have obtained a result accurate to five significant figures. This is encouraging.
19. To improve the approximation, two methods will be investigated. Assume two mere values, A. and Ag, to be known. The first method is to fit the third order form $\mathcal{B}+\sum_{i}^{3} a_{i} e^{\alpha} \alpha_{i}$ to the seven quantities $A_{8} \rightarrow A_{1}$ or to $A_{2} \rightarrow A_{8} \quad$ The second method is to fit a fourth order form $B+\leq y a_{i} \in$ kin to the nine values $A_{0} \rightarrow A 8$: The first method gives $B=\frac{9607}{13860}=0.69314574$ for the set $A_{1} \rightarrow A_{7}$ and $B=\frac{15679}{22620}=$ 0.69314766 for the set $A z \rightarrow$ A8. The second method gives $B=\frac{14161}{20430}=0.69314733$. Either method, therefore, improves the result.
20. Now we wish to give a general formulation of these two methods. Given $2 K+1$ members of the sequence A_{n}, centered around $n=N,(N-K \leq n \leq N+K)$, we may fit these $2 K+1$ quantities by the K! th order form

$$
\begin{equation*}
A_{n}=B_{K N}+\sum_{i=1}^{K} a_{K N i} e^{x_{K N i} n} \tag{25}
\end{equation*}
$$

The quantity B er is obtained from formula (23) where all the suffixes are increased by $\mathrm{N}-\mathrm{K}$. The transform

$$
\begin{equation*}
A_{N} \rightarrow B_{K N} \tag{26}
\end{equation*}
$$

will be called a Kith order transform of $A_{N} \cdot$ If, in (id), N is varied from K to 0 while K is held constant (the first method above, we say we have a Kth order sequence-to-sequence transform:

$$
\begin{equation*}
A_{n} \rightarrow B_{k n} \quad(n \neq k) \tag{2.7}
\end{equation*}
$$

We designate the transform as en and tabulate it as follows:

$$
\begin{array}{ll}
A_{0} & \\
A_{1} & \\
A_{k} & B_{k i k} \\
A_{k N} & B_{k}
\end{array}
$$

$A_{\mathrm{K}+2} \mathrm{BrNTZ}_{\mathrm{KN}}$ etc.
21. : We may call $B_{\text {, }}$, which in general will vary with n, the local base line contestant of the sequence A_{n}. (See paragraphs 40 , 53 for examples where all the B^{\prime} s are equal.) We expect the $\mathrm{B}^{\prime} \mathrm{s}^{\prime}$ to lie closer together than the A's since they are all approximotions to the base line constant of A_{n}. In the example above we saw that B33(0.69315245), B34 (0.69314574), and B.35 (0.69314766) do have this character. In fact, they are oscillating around and converging to lin 2. We say the B. sequence has the same base line constant as the A sequence. This suggests the iteration:

$$
\left.\begin{array}{l}
B_{n}=c_{k N}+\sum_{i=1}^{N} b_{K N i} e^{\beta_{k N i}}{ }^{n} \tag{28}\\
C_{n}=D_{k N}+\sum_{i=1}^{n} c_{k N i} e^{\gamma_{k N i}}
\end{array}\right\}
$$

and so forth. The Nth order iterated sequence-to-sequence transform:

$$
\begin{equation*}
A_{n} \rightarrow B_{k n} \rightarrow C_{k n} \rightarrow D_{K n} \rightarrow \cdots \cdots . \tag{29}
\end{equation*}
$$

we shall designate as the Oo transform of An
22. The simplest of the $\tilde{\mathrm{e}}_{\mathcal{K}}$ transforms is $\hat{\mathbf{Q}}_{\mathrm{i}}$. It is symbolized as:

$$
\begin{equation*}
A_{n} \rightarrow B_{m} \rightarrow C_{i n} \rightarrow D_{i n} \rightarrow \cdots \tag{30}
\end{equation*}
$$

and tabulated as
Ar
$A_{i} B$
$A_{2} \theta_{12} C_{12}$
$A_{3} \theta_{1,} C_{3} D_{13}$
$A_{4} B_{14} C_{14}$.
As $B_{15} \because$
It is evaluated by the formulae:
$B_{N N}=\frac{A_{N}^{2}-A_{N+1} A_{N-1}}{2 A_{N}-\left(A_{N+1}+A_{N-1}\right)}$,

$$
\begin{equation*}
c_{1, N}=\frac{B_{1, N}^{2}-B_{1, N+1} B_{1, N-1}}{2 B_{1, N}-\left(B_{1, N+1}+B_{1, N-N}\right)} \tag{32}
\end{equation*}
$$

etc. When using $\widetilde{\mathbf{E}}_{\text {g }}$ it is convenient to drop the subscript 1 from B, C, etc., and this done in the following pages.
23. The second type of transform is:

$$
\begin{equation*}
A_{n} \rightarrow B_{n n} \tag{33}
\end{equation*}
$$

From A_{0}, A_{1}, and A_{2} we derive By by first-order transform. From $A_{0}, A_{1}, A_{2}, A_{3}$, and A_{4} we derive B_{2} by a second-order transform,
etc. This transform we winl call the "diagonal" transform ow A_{n} and we will designate it as ed. It may also be iterated. The term "diagonal" should not be confused with the diagonal in the anray of $\widetilde{e_{i}}$ numbers above.
24. Fornula (31) or its equivalent has been used by A. C. Aitken (reference c), G. Shortiey and R. Weller (reference d), P. A. Samuelson (reference e), and D. Ghanks and T. B. Walton (reference f). Shortiey and Weller used it to extrapolate an iterative equation and the differences of which have a neariy constant ratio. Samuelison, and Shanks and Walton have used it to extrapolate an iterative sequence (the differences of which have a nearly constant ratio) which arises in the iterative solution of an equation of the form

$$
\begin{equation*}
N=f(x) \tag{34}
\end{equation*}
$$

Aitiken used what we call the \hat{e}_{1} process in its entitety (30) to speed the convergence of a sequence which arises in Daniel Bernoulli!s jterative solution of an algebraic equation (reference, a, p. 98). In the examples which follow, the author applies e. and the other transforms to sequences arising from infinite series and produets, continued fractions, integral and differential equations, eigenvalue convergents, etc. He believes this to be new.
25. The ek and ed transforms and their iterations are also believed to be new in a general sense. When applied to the partial sums of a power series, however, the $\mathbf{e x}_{\mathrm{k}}$ and $\boldsymbol{C}_{\boldsymbol{d}}$ transforms are intimately related to Thiele!s reciprocal differences (reference g), to the P'adé Tabla (reference b), and to. Kronecker's theorem on the power series of rational functions (reference i). This relationship will be discussed in Part VII. Samuelson (reference e) in reference to the solution of (34) suggests a form which is a special case of our (2) where $(23)^{2}=(27), \alpha_{1} \alpha_{3}(29)=3 \alpha_{1}$, etc., but he does not develop our
36. If we compare e_{K} or e_{d} with the cesaro, Holder, Abel, Euler, Riesz, Borel, LeRoy, and general Toeplitz summation processes (reference j) the most obvious difference is that all these processes are linear in the A_{n} whereas e od is nonlinear. If we consider the two determinants (23) to bel expanded according to their first rows, we see that. e_{k}, of is a weighted average of the An. So are the above linear processes. In them, the weights are preassigned numbers or functions but in eod the weights are minors whose elements are differences of the An themselves. There is an obvious advantage of such a device. If we were summing a convergent series it would be desirable to weight the latex A_{n} heavily - but if it were divergent it would be desmeble to weight the early A_{n} heavily. No preassigned
numbers can do voth. In the fod processes, we allow the sequence (so to speak) to choose its own appropriate weighting.
27. There is nothing to prevent us from combining e processes of various orders with each other, with ed processes and with linear processes such as the Cesaro. Occasion for this will arise in some of the examples below. We now defer any further general discussion until some examples have been giveñ.
III. Three Exariples of 仑्仑.
28. LR $2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$

Direct summation is imprudent since a biijion terms would be required to obtain nine decimal places. The same accuracy however, is inherent in the first eleven (eperen nine) terms and is obtainable if we concentrate not on the peaks of the graph but on the base line. Transforming the partial suns of this series by (30), (33), and (32) and keeping our results to 10 decimals places., we obtain:

A0 1.00000000000
$A_{1} \quad 5000000000 \quad 7000000000$
$\begin{array}{cccccccc}A_{2} & 83333 & 33333 & 69047 & 61905 & 69327 & 73109 & \\ & & & & & & & \\ A_{3} & 58333 & 33333 & 69444 & 44444 & 69310 & 57564 & 69314 \\ & & 88693\end{array}$

$\begin{array}{llllllllllllll}A_{6} & 75952: 38096 & 69285 & 71429 & 69315 & 08287 & 69314 & 71120 & 69314 & 71821\end{array}$
$A_{7} \quad 63452,580966933473390 \quad 69314,51963,6931472107$
$A_{8}: \quad 74563 \quad 49207$ 69\%300 $33418 \quad 6931483323$
$\begin{array}{llllll}A_{9} & 64563 & 49207 & 69325 & 3968 \hat{3}\end{array}$
$A_{10}: 7365440176$
$A_{n} \quad B_{n} \quad C_{n} \quad D_{n} \quad E_{n} \quad F_{n}$

Each sequence is the local base line constant of the previous sequence, and osciliates around In2 with a smaller amplatude than the previous sequences-Fe $=0.693167807$ and $1 n 2=0.693471806$ Since we are only keoping ten places we dould not erxect the lastHisce of F_{5} to be correct. It is possible to obtain the same
result from the nj ae values $A_{0} \rightarrow A_{8}$ if we treat the resulting lower diagonal Ag, $\mathrm{B}_{7}, \mathrm{C}_{6}, \mathrm{D}_{5}$, etc. as a new sequence and subject it to $\widetilde{e_{1}}$. This, however; may be unreliable as a general procedure since the sequence terminates after 5 terms.
29. A. similar calculation on the similar, but divergent series, $\ln 3=2-\frac{2^{2}}{2} \ldots$ gives $\ln 3$ correct to 8 places from the first
17 terms. In greater detail, we take as our next example a more wild iv divergent type

we wish to evaluate the integral. Proceed and formally, we obtain this alternating series of factorials which iss of some fame in the theory of divergent series (see reference k, and $j, p,{ }^{520}$). Knop states that it cannot be summed by the Bowel process "the most powerful of the processes which are useful in practice". It does ho good to tell us that the Stielitjes sum of the series is the integral. $\int_{0}^{\infty} \frac{e^{-t}}{1+t} d t$. (referenc es, p. 555) because that is what we started with. It is, our purpose to assign a "meaning" to the series. We already know its meaning. It is a series which arises from the integral and whose partial sums oscillate around the integral. our sole purpose iss a practical one. We wish to evaluate the integral numerically.

$$
B_{n}^{3,301,820} C_{n} D_{n} E_{n} F_{n}
$$

Each sequence oscillates less vigorously than the previous sequences. They all diverge but the diagonal 1,06666667 , .60714286 , etc, converges. Treating this sequence by $\widehat{\boldsymbol{O}}_{\boldsymbol{1}}$, we obtain

1.0000	0000				
6666	6667	5942	0290		
6071	4286	5960	3395	5963	5910
5977	81.13	5963	9007	5963	4808
5965	0983	5963	4348		
59663	6273				

and from the new diagonal sequence we obtain 0.59634770.
30. But $\quad \int_{0}^{\infty} \frac{e^{-t}}{1+x} d x=\int_{0}^{\infty} \frac{e^{-x}}{x} d x=\int_{0}^{\infty}\left(e^{-x} \frac{1}{1+2} d x=\int_{0}^{x} \frac{e^{-x}}{x} d x=\right.$

$$
-C+1-\frac{1}{2 \cdot 2!}+\frac{1}{3!3!}-\frac{1}{4 \cdot 4!}+
$$

where C is Euler's constant. Thus we find that $\int_{0}^{\infty} \frac{e^{-t}}{1+t} d t$ is equal to 0.5963 4736. Our second example is thus also amenable to © . Perhaps the reader is surprised that the later A_{n}, 35,900; -326,980; 3,301,820, etc. do not spoil the calculation. The opposite is tue. Each one improves the result. The reason is that each one gives further data on the base line constant around which the sequence is oscillating.
31.

$$
C=\frac{1}{2}+\frac{B_{2}}{2}+\frac{B_{y}}{4}+\frac{B_{6}}{6}+\cdots
$$

This is a formula of Euler's and gives his constant (0.57721 56649) as a "sum" of Bernoulli numbers (reference j, p. 54l) © It is asymptotic and after the fourth term it diverges rapidly. Of these asymptotic series, Knop says "we are not in position - not even in theory - to obtain any degree of accuracy whatever in the evaluation of $f(x)$--.. The degree of accuracy therefore cannot be lowered below the value of the least term of the series." Since the fourth partial sum of the series above is $0 . .5789682540$ and the fifth is 0.5748015873 it would appear that the accuracy of Euler's formulae is not very high. Kop, in fact, states that Euler's "sum" is "not valid, however, even from the general viewpoint of 959 F ., (summation of divergent series) "for the investigations of 64 " (asymptotic series') "have provided no process by which the sum in question may be obtained from the partial sums of the series by a convergent process; as was always supposed."

32: On the other hamd Euler says (reference li), "Whenever an infinte series is obtadned as the development of some closed expression, it may be used in mathematical operations as the equivalent of that expression, even for values of the variable for which the series divenges."
33. Bromwich (reference.k, p. 325) says that Euler fregarded" his constant as the "sum" of the series but does not commit himseif as to his own opinion. He does say "from this series we cannot obtain a eloser approximation than 54 " (.5790).
34. Firally, tre $\tilde{e}_{\text {e }}$ process gives:

But $C=0.5772156649$ and we must agree wjth Euler. We now return to a more general discussion of e.
IV. General Discussion Resumed
35. Up to now our discussion has been based on qualitative and intuitive argument, on physial analogy and on numerical evidence. A mathematician will naturally $\mathrm{m} i \mathrm{sh}$ a more rigorôus treatment. Some proofs are readily obtafrable but the author does not have the complete theory at this time. A single e. process is not entirely regular. "If we apply it to the rather artificial.
convergent series

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\cdots \tag{35}
\end{equation*}
$$

we see from (3I) that B_{1}, B_{3}, B_{5}, etc, are all © . (This does not mean that (35) is not summable by a second -order process, e_{2}.) Can we prove that © is valid for the partial sums of the convergent in 2 series (our first example)? Specifically, can we prove that each derived sequence ($B n^{\prime}, \mathrm{Cn}$, etc) converges to the Same limit as A_{n} (In) and further, that it converges more rapidly than the previous sequence?
-36. Transforming (32) and using (17) we obtain:

$$
\left.\begin{array}{c}
B_{N}=A_{N}+\frac{\Delta A_{N}}{1-\frac{\Delta A_{N}}{\Delta A_{N-i}}} \tag{36}\\
A_{N N}+\frac{\Delta A_{N}}{1-\frac{\Delta A_{N+1}}{\Delta A_{N}}}
\end{array}\right\}
$$

If te A_{n} are the partial sums of a convergent infinite series和数

$$
\begin{equation*}
\Delta A_{n} \rightarrow 0 \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\operatorname{dn}+\sqrt{n-1}}{\operatorname{dn}} \leq R<1 \tag{38}
\end{equation*}
$$

we see rom (36) that B_{n} converges to the same limit as A_{n}. Therefore single $e_{\text {, process is obviously valid if the series }}$ is es bier of the alternating type ($\Delta A_{n}\left|\leqslant\left|\Delta A_{n-l}\right|\right.$, $\left.\Delta A_{n}\right| \Delta A_{n}<0$) of of the ratio test type $\left(\triangle A_{n} \geqslant 0, \quad \triangle A_{n} \Delta A_{n-1}<R<1\right)^{\circ}$ But May it he iterated?
39. The difference of formulae (36) gives the term of the trans-

$$
\Delta B N=\frac{\Delta A_{N+1}}{\Delta A_{N}}-\frac{\Delta A_{N}}{\Delta A_{N-1}}\left(1-\frac{\Delta A_{N+1}}{\Delta A_{N}}\right)\left(1-\frac{\Delta A_{N}}{\Delta A_{N-1}}\right)
$$

If we now take a sequence of the alternating type where

$$
\begin{align*}
& A_{N}=\sum_{i=0}^{N} t_{i} \tag{40}\\
& \Delta A_{N}=t_{N+1} \tag{41}
\end{align*}
$$

and

$$
\begin{equation*}
t=(-1) \frac{f(n)}{f(n)} \tag{42}
\end{equation*}
$$

where $f(n)$ is a Fth degree polynomial in n and $g(n)$ is a G^{\prime} th degree polynomial in n. (39) becomes

$$
\begin{equation*}
\Delta B_{N}=\Delta A_{N} \frac{f^{2}(N+1) g(N) g(N+2)-g^{2}(N+1) f(N) f(N+2)}{[f(N) g(N+1)+f(N+1) g(N)][f(N+1) g(N+2)+f(N+2) g(N+1)]} \tag{43}
\end{equation*}
$$

Expanding the fraction fr em of N we obtain

$$
\begin{equation*}
A B_{N}=N_{N}\left[\frac{F-G}{4 N^{2}}+O\left(\frac{1}{N}\right)\right] \tag{44}
\end{equation*}
$$

FOP $G \geqslant F$, and $g(n) \neq 0, \Delta A_{n} \rightarrow 0$ and the sequence A_{n} converges. From (36), (38) and $(44), B_{n}$ converges to the same Imit, but more rapidly. Likewise from (43) and (44) we may iterate the process since the B series is again of the alternating type with a term.

$$
\begin{equation*}
(-1)^{n+1} \frac{-f_{0}(n)}{g_{0}(n)} \tag{45}
\end{equation*}
$$

where

$$
G_{1}-F=G-F+2
$$

Since $\ln 2=1-1 / 2+1 / 3-1 / 4+\ldots$ is a special case of (42) we have formally proved that \boldsymbol{E}. is valid for the partial sums of this series; (the numerical evidence was very convincing).
38. Likewise it would increase the rapidity of convergence of:-

$$
\begin{equation*}
T / 4=\frac{1}{4}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{2} \ldots \cdots \tag{46}
\end{equation*}
$$

$$
\begin{align*}
& G=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots \tag{47}\\
& \frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \tag{48}
\end{align*}
$$

and so forth equation (45) shows further that gl though

$$
\begin{equation*}
1-2+3-4 \cdots \tag{49}
\end{equation*}
$$

diverges, a single e process converts it into a convergent sequence (sexiest. This sequence converges to $1 / 4$. Similarly two successive processes transform

$$
\begin{equation*}
1-2^{2}+3^{2}-4^{2}+\ldots \tag{50}
\end{equation*}
$$

into a convergent sequence (series when converges to oo. mine processes will also transform

$$
\begin{equation*}
1-2^{3}+3^{3}-4^{3}+00 \tag{51}
\end{equation*}
$$

into a convergent sequence, and so forth. We will return to these divergent series later and show how they may be summed - not merely in a limiting sense = but exactly - to rational multiples of the Bernoulli Numbers.
39. We could undoubtedly show that $\hat{\boldsymbol{e}}_{\text {i }}$ is also valid for a more general series than (. $4 \hat{1}$), such as would include, for instance

$$
\begin{equation*}
1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{2}\right)-\frac{\left(\frac{1}{2}\right)^{2}}{2}+\frac{\left(\frac{1}{2}\right)^{3}}{3}-\frac{\left(\frac{1}{2}\right)^{4}}{4}+\cdots \tag{53}
\end{equation*}
$$

but since wo not have an exhaustive theory of the range and speed of e_{0} as applied to series (let alone sequences derived more simply from products, continued fractions, etc.), we will forego such proofs. We will show later that if a power series (convergent or divergent) is obtained by dividing out a rational function of x, we may sum the series to its sum - the rational function - not merely in a limiting sense - but exactly by a single EAppocess (with sufficiently large K). Some other formal proofs will also be given.
40. First we wish to point out that if a single e, process is applied to any three consecutive partial sums of a geometric series

$c+c n^{2}+c \Omega^{2}+c \Omega^{3}+\cdots$

$\frac{C}{2-\mu}$ That is, our entire B_{n} sequence is a constant, we obtain \quad Er Thus at is, our entire B_{n} sequence is a constant exactly. Divergence and convergence of the series are of course irrelevant. Since the partial sums are

$$
A_{n}=\frac{c}{1-a}-\frac{c}{1-R} e \ln \cdot m
$$

we see that we have a simple transient, (2), with $B=\frac{1}{6}$ and $=\frac{R}{G-\lambda}, \quad \alpha=\ln$
47. If we applied (32) to this constant. Bn sequence we would obtain indeterminate expressions for Ch . Let us agree, then, to the consistent convention that if any tire e consecutive members of a sequence are equal, the e transform of the center member is also equal to the same quantity. Let us also agree to the generalization of this convention for the case of the ektransform of any $2 K+1$ equal; consecutive members of a sequence. With this convention theory we may say that a geometric series is exactly summable by either \vec{e}_{f} or $\vec{e}_{\boldsymbol{f}}$ -
42. The series for ln 2 is not geometric but it is "nearly geometric" in the sense that the ratio of the terms rapidly approach a constant, -1. Further, in 2 is not rational. Thus, although we cannot sum ind exactly by $\widetilde{e}_{\text {e }}$ we can sum it in a limiting sense. And since the series converges and becomes "more geometric as n increases, it is clear that the ${ }^{\prime}$. process will have a more rapid convergence when applied to An with n large. As long as the series is making an effort to converge (n small) we may allow it to do so and defer the $e_{\text {, process until a nearly }}$ geometric character sets in. Thus from the seven partial sums of in 2; $A_{17}(.6532106783)$ to $A_{17}(.6661398243)$, we obtain D_{14} (.6931471802) which is correct to 9 places: We do more addition to obtain the An with larger n but we more than make up for it by doing less e, calculation.
43. In connection with thess calculations we wish to point out five characteristics of the transform.
I. It is local. No quantity above or below these two diagonals:

can affect any quantity between them. We used this idea in the calculation just performed and in the asymptotic series for filer ${ }^{\dagger}$ c. (see paragraph 34).
II. An may be multiplied by a constant. For $\boldsymbol{e}_{\boldsymbol{p}}$ applied to $m A_{n-1}, m A_{n}$, and m A_{n+1} gives or B_{n}
III. A constant may be added to or subtracted from A_{n}. For e
 we wish to transform
$\left\{\begin{array}{l}6931470376 \\ 6931472835 \\ 69314710.53\end{array}\right.$ we may transform $\left\{\begin{array}{l}0376 \\ 2835 \\ 10.53\end{array}\right.$
ada 6931470000
IV. Generally there is no loss of significant figures. From an A_{n} sequence accurate to 10 significant figures we will obtain a B_{n} sequence of the same accuracy:. This may be seen from (36). only when ΔA_{n} is nearly equal to +1 will be a less accurate B_{n} sequence $\underset{r}{ }$ result.
V. The $\widehat{\text { e process may be readily mechanized. With modern }}$ large-scale calculators the B_{n}, C_{n}, etc, sequences may be calculated almost as fast as the A_{n} sequence is fed in.
44. Finally we should give a rough indication of the types of sequences for which the $\mathbb{e}_{\text {p }}$ process should be useful. If the sequence is nearly geometric, that is if Δ 民
($\ddagger+1$), we might expect $\widehat{Q_{0}}$ to work. If the graph of A_{n} looks like a simple damped or growing oscillation or a simple growing or decaying exponential, we might expect \vec{e}_{0} to work. But if the sequence is derived from a structure like.

it would seem more reasonable to use a second-order process We could, however, use a first-order process on the alternate memobor of such a sequence, that is, on $A_{0}, A_{2},{ }^{\prime} A_{4}$, etc., or A_{1}, A_{3}, A5, etc. In no cease where the sequence has been artificially and
randomly put together (for example, out of numbers in a telephone book) would we attempt to use $\widehat{\mathbf{e}}$ or any other of these transforms. Although certain classical mathematical operations frequently produce sequences of a transient character, this is no indication that all operations will do sol. We now return to our examples and apply \widetilde{e}, to some sequences not derived from infinite series. V. Further Examples of $\tilde{\mathcal{E}}_{1}$
45. $A_{n}=P_{6.2} \rightarrow 2 \pi$

A limiting sequence of considerable antiquity is the sequence of the perimeters of $6 . \hat{\lambda}_{\text {n }}$ sided regular polygons inscribed in a unit circle. A table of such perimeters ($n=0$ to ${ }^{\circ}$) is given by Wentworth and Smith in reference (m). The sequence converges to 2. If with inoderate sped. The speed may be accelerated by e_{1} but when this was first done the G_{n} sequence had a noticeably nonsmooth character. This suggested an error in the Wentworth-Smith table:" A new calculation wal therefore made:

From the new data we obtain $\mathrm{C}_{3}=6.283185307$ correct to the ten significant figures. Generally speaking, \mathbf{e}, is sensitive to small errors and is a means of detecting them.
46. The reader may wish to try $\widetilde{\tilde{e}_{0}}$ on other limiting sequences. Two such sequences are:

$$
\begin{equation*}
\left(1+\frac{1}{2^{n}}\right)^{2} \rightarrow e \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(2^{\frac{1}{2^{n}}}-1\right) \cdot 2^{n} \rightarrow \ln 2 \tag{58}
\end{equation*}
$$

He may also wish to experiment with linear transforms. If, in the perimeter sequence above, we take
and

$$
\begin{align*}
& B_{n}=\frac{4 A_{n}-A_{n-1}}{3} \tag{50}\\
& C_{n}=\frac{16 B_{n}-B_{n-1}}{15}
\end{align*}
$$

we again obtain $C_{5}=6.283185307$. This calculation is undeubtedly more rapid than the previous one but it assumes knowledge of the weighting factors in (59). These were obtained by:

From these formulae the reader sees the connection between $\tilde{\mathbf{P}}_{\mathbf{1}}$ and this in near process. E depends on local weighting factors but the linear process depends on extrapolated weights. The author calls this linear process "geometric extrapolation"

47. An Eigen-value Problem

Most approximate methods of finding eigenvalues have a rather low accuracy, (say i/10 of 1%), unless a large number of approximations are calculated. A simple eigenvalue problem is:

Find the lowest eigenvalue. Collate, (reference n) by using Courant!s "Maximum-Minimum-Prinzip" finds the first three upper and lower bounds.: Applying $\widehat{Q}_{!}$to these we obtain:

$$
\begin{aligned}
& 3=3.0000000 \\
& \frac{12}{5}=2.40000002 .4857143 \\
& \frac{5}{2}={ }^{`} 2.5000000 \quad 2.4709302 \quad 2.4673381 \\
& \frac{150}{61}=2.4590164 \quad 2.4680403=2.4674162 \\
& \frac{42}{17}=2.4705882 \quad 2.46=75271 \\
& \frac{3416}{1385}=\begin{array}{r}
2.4664260 \\
A_{n}
\end{array} \\
& B_{n} \\
& c_{n}
\end{aligned}
$$

Since the lowest eigenvalue is $\frac{\frac{\pi}{4}^{2}}{4}=2.4674011$ we have obtained two extra decimal places. To the important question, "How can we know a priory what the accuracy is?" the author replies that if
we have a long sequence, A_{m}, a study of the differences within and between the derived sequences will give a reasonable estimate of the accuracy; but if we have only a few terms of A_{n}, the question is more difficult.
48. In the Rayleighofitz method the approximating functions are usually chosen in such a way that the resulting approximateeigenvalue sequence converges, as rapidly as possible. This choice, however, usually complicates the calculation. It seems possible that one could choose simple functions in a regular manner such that, while the resulting sequence converged slowly, a large number of terms could be readily calculated. Ne would then rely on $E_{\text {, }}$ or some other process to secure the necessary accuracy from the rough but abundant data.

49: A Continued. Fraction Sequence
From $\sqrt{2}=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \quad$ we derive a sequence of convergents. We process these by $\tilde{\boldsymbol{e}}_{\boldsymbol{i}}$ and obtain convergents which are farther along the sequence.

$\frac{7}{5} \frac{99}{70} \frac{19601}{13860}=1.424213564$
$\frac{17}{12} \quad \frac{577}{408}$
$\frac{47}{29}$
C_{3} is correct to 9 significant figures. The el transform of any convergent here is the same as that obtained by:

$$
\begin{align*}
& B_{N}=\frac{1}{2}\left(A_{N}+\frac{2}{A_{N}}\right) \tag{62}\\
& C_{N}=\frac{1}{2}\left(B_{N}+\frac{2}{B_{N}}\right)
\end{align*}
$$

But this is Newton's iterative method of taking square roots. Bach iteration doubles the number of correct decimal places. USe reference a, page 79.)

50. Euler's Partition Function

This function (reference o) may be expressed as:
$f(x)=1+x+2 x^{2}+3 x^{5}+5 x^{4}+7 x^{5}+16 x^{6}+\cdots$
where the coefficient of x^{n} ins $p(n)$, the number of possible partitions of n. It may also be expressed as the infinte product:

$$
\begin{equation*}
f(x)=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{4}\right)} \tag{64}
\end{equation*}
$$

or as the reciprocal of a power series with gaps:

$$
\begin{equation*}
f(x)=\frac{1}{1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+x^{22}+\cdots} \tag{65}
\end{equation*}
$$

Because of the increasingly long gaps in (65), the convergence of this series for $x=1 / 2$ is rapid and from the first nine nonzero terms we obtain ten figure accuracy:

$$
\begin{equation*}
f\left(\frac{1}{2}\right)=3.462746619 \tag{66}
\end{equation*}
$$

On the other hand from the first nine partial products of (64) we obtain only three figure accuracy:

$$
\begin{equation*}
A_{8}=3.455987843 \tag{67}
\end{equation*}
$$

But if we use $\tilde{C}_{\text {e }}$ on these nine partial products, we again find:

$$
\begin{equation*}
E_{4}=3.462746619 \tag{'68}
\end{equation*}
$$

51. A Nonlinear Differential Equation Given

$$
\begin{equation*}
\ddot{y}+32.17+0.11534 e^{-\frac{y}{27880}}=0 \tag{69}
\end{equation*}
$$

with the initial conditions:

$$
\begin{equation*}
y(0)=0 \quad \dot{y}(0)=6400 \tag{70}
\end{equation*}
$$

evaluate y for $t=9$. (See reference f, page 2.) We introduce

$$
S=0.11534 \mathrm{t} \text { and } \mathrm{z}=\frac{\mathrm{y}}{27,800}
$$

and solve the resulting equation by the power series:

$$
\begin{equation*}
z=1.99598 s-1.04147 s^{6}+1.01114 s^{3}-1.10380 s^{9}+1.28005 s^{5}= \tag{72}
\end{equation*}
$$

The neariy-geometric character of this series is apparent. For $t \equiv 9(S=1.0306)$ the series oscillates we apply en to the first five partial sums and obtain:

$$
\begin{equation*}
y(9)=41,456 \tag{73}
\end{equation*}
$$

A solution of (69) by numerical integration gives

$$
y(9)=41,440
$$

while series (7,2) directly gives the false value:

$$
\begin{equation*}
y(9)=65,106 \tag{75}
\end{equation*}
$$

52. A Divergent Series for Catalanº Constant

We may derive a divergent series for Catalan ts constant, (47), from a formula of Titchmarsh (reference p).

$$
\begin{aligned}
& (\pi / 2))^{\rho}\left((-s) \cos \left(\frac{s \pi}{2}\right)<(1-s)=<(s)\right. \\
& \text { where } L(s)=1-\frac{1}{35}+\frac{1}{5 s}-\frac{1}{75}+\cdots
\end{aligned}
$$

Since $G=I(2)$, we find from (76) with $S=-1$

$$
\begin{equation*}
\frac{2}{\pi} G=\frac{1-3+5-7+\cdots}{\cos (-\pi / 2)} \tag{97}
\end{equation*}
$$

But the denominator vanishes and the numerator may be sunned to zero. Proceeding in the eulerian manner, we write:

$$
\begin{align*}
& \frac{2}{\pi} G=\left.\frac{\frac{d}{d_{s}} L(s)}{\frac{\alpha_{s}}{\alpha_{s}} \cos \left(s \pi_{2}\right)}\right|_{s=-1} \tag{78}\\
& \text { or }\left(\frac{2}{T}\right)^{2} G=3 \ln 3-5 \ln 5+7 \ln 7-\cdots \tag{79}
\end{align*}
$$

The first seven partial sums of this divergent series may be summed to

$$
\begin{equation*}
\left(\frac{2}{\pi}\right)^{2} G=0.5831 \tag{80}
\end{equation*}
$$

Since $G=0.9159655942$ we calculate

$$
\begin{equation*}
\left(\frac{2}{\pi}\right)^{2} G=0.3712268726 \tag{81}
\end{equation*}
$$

The agreement is not perfect. As it happens, though

$$
\begin{equation*}
\left(\frac{\underline{\Sigma}}{\pi}\right) G=0.5831218080 \tag{82}
\end{equation*}
$$

and this suggests, that formula (76) pas a typographical error of a factor of a to That this is the case may be seen by taking, $s=1 / 2$ in $(76)=0$ Then
$(\pi / 2)^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) \frac{\sqrt{2}}{2}=1 \quad$ But actually $\left(\frac{\pi}{2}\right)^{\frac{1}{2}-1} \Gamma\left(\frac{1}{2}\right) \frac{\sqrt{2}}{2}=1$
53. Other applications of $\widetilde{\mathrm{E}}_{\mathrm{i}}$ could be given but we must now turn to the study of the higher order Eutransforms. A compelling reason for this study is the fact that $\hat{\text { e }}$, does not work well for some simple series. for instance, take the divergent series

$$
\begin{equation*}
1+2 \cdot 2+3 \cdot 2^{2}+4 \cdot 2^{3}+5 \cdot 2^{4}+\cdots \tag{84}
\end{equation*}
$$

which may be derived from the rational function $\frac{1}{(1-x) 2}$ with $x=2$. The partial sums of this series diverge from a definite value, namely, +l. However, the e, process requires at least four iterations before any appreciable convergence takes place (after that it goes much mare rapidly). In other words, it is slow. On the other hand, from the first five for any five consecutive) partial sums, a second-order process, \mathbf{e}_{2}, yields the exact sum

$$
\frac{\left|\begin{array}{ccc}
1 & 5 & 17 \tag{85}\\
4 & 2 & 32 \\
12 & 32 & 80
\end{array}\right|}{\left|\begin{array}{lll}
1 & 1 & 1 \\
4 & 22 & 32 \\
12 & 32 & 80
\end{array}\right|}=+1
$$

54. Another type of slow convergence of the $\stackrel{\rightharpoonup}{\mathbf{e}}$ process, and two more difficulties - local nonuniform convergence and local nonconvergence - will be discussed in a later paper. Some of the main ideas of the ers transforms are illustrated in the next two examples.
VI. Two Examples of e_{z}
55. $u(x)=\frac{x}{2}-\frac{1}{3}+\int_{0}^{\prime}(x+t) u(t) d t$

The second-order process, \mathbf{Q}_{2}, is useful in the solution of this simple integral equation by the method of Successive Substitution (reference q). This method, when applied to the above equation, gives the divergent series:
$u(x)=\left(\frac{x}{2}-\frac{1}{3}\right)-\left(\frac{x}{12}+0\right)-\left(\frac{x}{24}+\frac{1}{36}\right)-\left(\frac{7 x}{144}+\frac{1}{36}\right)-\left(\frac{15 x}{288}+\frac{13}{432}\right)-(86)$ We apply e_{2} to the first five partial sums and obtain

$$
\begin{equation*}
u(x)=x \tag{87}
\end{equation*}
$$

Any other five consecutive partial sums of (86) will give the same result. The vector series, $(86 \%$, is therefore exactly summable by e_{2} to the exact solution of the integral equation.
56. This example is a particularly clear one since we can show exactly why e_{2} is successful. The integration process whereby each vector term of (86) is obtained from the previous term is equivalent to a matrix multiplication. That is

$$
\left(\begin{array}{ll}
\frac{1}{2} & 1 \tag{88}\\
\frac{1}{3} & \frac{1}{2}
\end{array}\right)\left(y_{n-1}\right) \equiv\left(v_{n}\right)
$$

or $\quad\left(\begin{array}{ll}\frac{1}{2} & 1 \\ \frac{1}{3} & \frac{1}{2}\end{array}\right)^{n}\left(v_{0}\right)=\left(v_{n}\right)$
where

$$
\begin{equation*}
\left(v_{0}\right)=\binom{\frac{x}{2}}{-\frac{1}{3}} \tag{90}
\end{equation*}
$$

But the matrix can be expanded into a pair of unit orthogonal matrices (for instance, by the algebraic apparatus of Part I.) and therefore we have

$$
\left(\begin{array}{ll}
\frac{1}{2} & 1 \tag{91}\\
\frac{1}{3} & \frac{1}{2}
\end{array}\right)^{n}=\left(\frac{3+2 \sqrt{3}}{6}\right)^{4}\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{6} & \frac{1}{2}
\end{array}\right)+\left(\frac{3-2 \sqrt{3}}{6}\right)\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{6} & \frac{1}{2}
\end{array}\right)
$$

Finaliy
$A_{N}=\sum_{n=0}^{N}\left(v_{n}\right)=x-\left(\frac{3+2 \sqrt{3}}{6}\right)^{N}\binom{\frac{3+2 \sqrt{3}}{12} x}{\frac{2+\sqrt{3}}{12}}-\left(\frac{3-2 \sqrt{3}}{6}\right)^{N}\binom{\frac{3-2 \sqrt{3}}{12} x}{\frac{2-\sqrt{3}}{12}}$ (92)
and we see that the sequence of partial sums is á second-order transient. The second term, $\left(\frac{3+2 \sqrt{3}}{6}\right)^{m}\left(\frac{3+2 \sqrt{3}}{12} x+\frac{2+\sqrt{3}}{12}\right)$ is monotonic and divergent; the third term is a damped oscillation; and the firist terin, x_{j}, is the base fine constant.

57. Goldsteini S Formula for Brag

Goidstein, (reference r), has investigated the drag of a sphere in a viscous fluid as a function of the Reynolds number. This investigation is based on the inearized (Oseen) theory and result.s in the following series formula.
$K_{D}=\frac{12}{R}\left[1+\frac{3 R}{16}-\frac{19 R^{2}}{1280}+\frac{71 R^{3}}{20480}-\frac{30179 R^{4}}{34406,400}+\frac{122519 R^{5}}{560,742,400}-1931\right.$
The series converges for $R=2$, osciliates for $R=4$, and diverges bàly for $R=6$. In view of this, Goldstein abandons thê series (which had been obtained with much labor) and resorts to an approxinate, numerical solution for $R>2$.
58. Series (93) tis nearly geometric and we could sum it by ê For any fixed value of R, this would be the simplest thing to do. However, we would like a formula for $K D$ in terms of R and for this purpose it is simpler to ușe a second-order process. We apply ea to the finst five terms of (9.3) and obtain the rational approximation

$$
\begin{equation*}
K_{D}=\frac{12}{R} \frac{295680+133,200 R+10880 R^{2}}{295680+77760 R+689 R^{2}} \tag{94}
\end{equation*}
$$

In the table which follows we compare (93) and (94) with Goldstein's numerical solution.

Table 1
(9.3) Series Solution
14.106
8.01 .8
6.018
5.0201
5.122
5.803
6.331
21.523
43.282
33.9 .518
351.232

Numerical Solution
14.17
8.00
5.93
4.0 .27
4.22
3.78
3.21
2.85
2.60
2.28
2.08
(94) Rational Approx.
140.1051
8.0043
5. 9287
4.8688
4.2195
3.7776
3.2088
2. 8532
2.6060
2. 2777
2.0630

If we apply e_{2} to the last five partial sums of (93) the agreement is not quite as good. The last term of (93) is wrong or at least it does not follow from the λ^{\prime} 's of Goldstein's paper (references s). When we correct it:

$$
\begin{equation*}
\frac{122,519 \mathrm{R}^{5}}{550,502,400} \quad \text { instead of } \frac{122,519 \mathrm{R}^{5}}{560,742,400} \tag{95}
\end{equation*}
$$

we find that the last five terms now give
$K_{0}=\frac{12}{R} \cdot \frac{18,520,320+8,32,800 R+677,120 R^{2}-300 R^{3}}{18,520,320+4,860,240 R+40,736 R^{2}}$
which agrees with (94) to three or four significant figures up to $\mathrm{R}=20$.
59. Series (93) may be written
$\frac{12}{R}\left[1+\frac{3}{4}\left(\frac{R}{4}\right)-\frac{19}{80}\left(\frac{R}{4}\right)^{2}+\frac{21}{320}\left(\frac{R}{4}\right)^{3}-\frac{30,179}{134,700}\left(\frac{R}{4}\right)^{4}+\frac{123,519}{533,600}\left(\frac{8}{4}\right)^{5}\right.$
while its reciprocal is
$\frac{R}{12}\left[1-\frac{3}{4}\left(\frac{R}{4}\right)+\frac{4}{5}\left(\frac{R}{4}\right)^{2}-\left(\frac{R}{4}\right)^{3}+\frac{559}{420}\left(\frac{R}{4}\right)^{4}-\frac{38}{21}\left(\frac{R}{4}\right)^{5}\right.$
The relative simplicity of (98) suggests that it might be simpler, in any future work on drag in this range of Reynolds number, to work with $\frac{1}{K_{D}}$ instead of $K_{\text {g }}$ directly.
60. In the last two examples we have illustrated:
(a) the utility of reciprocal series
(b) the accuracy of rational approximations
(c) the numerical simplicity of \boldsymbol{e}_{1} versus the analytic simplicity of e_{k} or e_{d}, and
(d) the exact summation of series whose sum is rational.

These mathematical phenomena are tightly interwoven, together wi th the Fade Table, the algorithms of continued fractions and rational approximations, a theorem of Kronecker's, and Thieve's reciprocal differences in the theory of the e_{k} and e_{d} transforms.
VII. General Discussion of the Ekand ed Transforms
61. We now return to the application of higher order processes to the series for $\ln (1+x)$, as introduced in paragraph 18 . A zero order process applied to the first term of

$$
\begin{equation*}
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{y}}{4}+\cdots \tag{99}
\end{equation*}
$$

gives

$$
\begin{equation*}
\ln (1+x)=x=B_{00} \tag{100}
\end{equation*}
$$

An ep process applied to the first three terms gives

$$
\begin{equation*}
\ln (1+x)=x \cdot \frac{6+x}{6+4 x}=B_{11} \tag{101}
\end{equation*}
$$

An eipocess applied to the first five terms gives

$$
\begin{equation*}
\ln (1+x) \approx \frac{30+21 x+x^{2}}{30+36 x+9 x^{2}}=822 \tag{162}
\end{equation*}
$$

A continuation of this process (the Cetransform) gives:

$$
\ln (1+x)=x \cdot \frac{420 x 510 x+04 x^{4}+3 x^{3}}{4204720 x+360 x^{2}+48 x^{3}}=\theta_{33} \text { (103) }
$$

and so forth. This sequence of rational approximations for $\ln (1+\infty)$ converges rapidy for all x (except the real cut -1 to - $-\infty$ to the value $\ln (1+x)$. For example, from (103) we have

$\ln 2$	$-\frac{1073}{1548}=0.69315$
$\ln 3$	$\ln =\frac{1012}{92}=1.0988$

NOLR 9994.
correct to five and four significant figures. Rational approxinations for any analytic function may be oftained by a similar calculation.
62. If we now take a known continued fraction for in(lla)
(reference h, page 34)
$\ln (1+x)=\frac{x}{1}+\frac{1^{2} x}{2}+\frac{4^{2} x}{3}+\frac{2^{2} x}{4}+\frac{2^{2} x}{5}+\frac{3^{2} x}{6}+\cdots(105)$
we find that the first, third, ifth, eteooonvergents of this fraction are exacty the rational approximations we have just obtained.
63. Stimiarly, if we apply Pa to the series

$$
1-1!+2!-3!+4!-\cdots
$$

(see paragraph 29) we obtain the following rational approximations:
$\int_{0}^{\infty} \frac{e^{-t}}{1+t} d t=\frac{1}{1}, \frac{3}{3}, \frac{8}{13}, \frac{44}{73}, \frac{300}{501}, \frac{2420}{4051}, 8 t$
These approximations are likewise obtainable from the odd onvergents of a known continued fraction (reference h, page 356).
$\int_{0}^{\infty} \frac{e}{1+t} d t=\frac{1}{1}+\frac{1}{1+}+\frac{1}{1}+\frac{2}{1}+\frac{3}{1}+\frac{3}{1}+\cdots \cdot$
Euler, in fact, knew of this fraction and used it to sum the series to four decimal places (reference k): The fraction converges rather slowly. The 17^{\prime} th convergent, $A_{17}=0.5964599995$, is only correct to three decimal places. We can accelerate its convergence by applying $\underset{E}{ }$ to it. But the fraction, as it stands, (707), has a double structure such as was discussed in paragraph 44: We prefer, therefore, to appy $\mathcal{E}_{\text {, }}$ to the alternate members of the convergents sequence - namely, to our rational approximations, (i06) orm the first nine appoximations, that is, up to the A_{17} mentioned above, we obtain nine-place accuracy (0.596347362). Here, then, we have a combination process. First, a diagonal transform to produce a slowly convergent sequencé, and then an $\overrightarrow{\mathbf{E}}_{\text {, process to }}$ extriapolate" it.
64. We now shift to a somewhat different topic but we will soon show its relation to our nonlinear transforms. Here is an algorithm for the calculation of e consider the table of fractions:

N69	$\frac{\mathrm{NOS}}{\mathrm{O}_{0}}$	$\frac{A_{02}}{D_{02}}$	
NO_{0}	N_{01}	\sim_{3}	Na_{6}
Oo	Dol	D, 2	D,3
	N_{21}	.	-
	D20		

NOLM 9994
and the rules:

$$
\begin{align*}
& \frac{N_{R C}}{D_{R c}}=\frac{N_{R-1, c}+N_{R-1, c+1}}{D_{R-1, c}+D_{R-1, c}} \tag{108}\\
& \frac{N_{0 c}}{D_{0 c}}=\frac{(c-1) N_{1}, c-2}{(C-1) D_{1}, c-2} ; \frac{N_{00}}{D_{00}}=1 ; \frac{1}{D_{01}}=\frac{1}{0}
\end{align*}
$$

Wee thus obtain

$\frac{1}{1}$	$\frac{1}{6}$	$\frac{2}{1}$	$\frac{6}{2}$	$\frac{24}{8}$
$\frac{2}{1}$	$\frac{3}{1}$	$\frac{20}{34}$		
$\frac{5}{2}$	$\frac{31}{4}$	$\frac{30}{14}$	$\frac{374}{64}$	
$\frac{16}{6}$	$\frac{49}{18}$	$\frac{212}{78}$		

 sequence of partial sums of the ser row, eco, is the sequence of the reciprocals of the partial" sums of the reciprocal series $\quad-\frac{1}{1!}+\frac{k}{2}!-\frac{1}{3!}$ and thus converges to e .
The step-iike paths:
$\frac{1}{1}, \frac{1}{0}, \frac{3}{3}, \frac{88}{34}, \frac{274}{64}$ e et.
$\frac{1}{1} \frac{2}{7} \frac{11}{4}, \frac{38}{14}, \frac{28}{78}$, eire.
$\frac{2}{1}, \frac{5}{2}, \frac{11}{4}, \frac{y 9}{18}, \frac{212}{78}, \frac{1370}{504}$, et
are sequences of convergent of the following continued fractions for :

$$
e=\frac{1}{1}-\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{2}{4}-\frac{2}{5}+\cdots
$$

$$
\begin{equation*}
0=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{2}{1}+\frac{2}{3}+\ldots \tag{110}
\end{equation*}
$$

$$
\begin{equation*}
\text { et ct } \frac{1}{2}-\frac{2}{3}+\frac{3}{4}=\frac{2}{6}-\frac{4}{7}+\frac{3}{8}-\ldots \tag{111}
\end{equation*}
$$

and the zigzag path:
$\frac{1}{4}, \frac{2}{1}, \frac{3}{1}, \frac{8}{3}, \frac{11}{4}, \frac{38}{14}, \frac{17 y}{6 y}, \frac{t}{4}$,
gives the regular continued fraction (numerators all +1) for e

$$
\begin{equation*}
e=1+\frac{1}{b}+\frac{1}{1}+\frac{1}{1}+\frac{1}{2}+\frac{1}{1}+\frac{1}{t}+\frac{1}{4}+\cdots \tag{112}
\end{equation*}
$$

\# In general, one may proceed through the table in any southeasterly direction and obtain a convergent sequence fore. This is a Fade Table for e (See reference h.).
65. What is the connection between the Made Table and the land - Oof transforms? Simply this: If we apply e, to the first column we obtain the second column, Nil/ Di, , Prom $i=1$ to $i=0$ If we apply e to the first column we obtain the third column, Nix Dix from $i=2$ to $i=\infty$, and so on This accounts for the half of the Fade table below the diagonal. (This array should not be confused with the similar-looking array of $\hat{\theta}_{\text {o }}$ sequences discussed in paragraph 22.) The other half of the table may be obtained by the reciprocal of the e transform of the reciprocal of the first row the reciprocal of the eatransform of the reciprocal of the first row and so for tho The diagond may be obtained by applying the diagonal transorim, ed, to the first column or by the reciprocal of the diagonal transform of the reciprocal of the first rowe : Thus the name, "diagonal" transform. 66. The Fade Table for the more general $e^{x} i s$

$$
\begin{aligned}
& \frac{1}{1}=\frac{1}{1-x}=\frac{2}{2-2 x+x^{2}} \\
& \frac{1+x}{1}=\frac{6+x}{6-4 x+x^{2}}
\end{aligned}
$$

$$
\frac{2+2 x+x^{2}}{2}
$$

By definition, in the normal Made Table we have those rational approximations for e^{x} which have the following two properties: (a) The fraction Nac/Dre is made up of a numerator polynomial of the r! th degree and a denominator polynomial of the eth degree; (b) When this fraction is divided through we obtain the power series for ex correct to the term involving x^{x+c}
67. The relation between this more general Made Table and the transforms is the same as that for the simpler table for e This, in fact, quite simple to prove. Consider the sequence of partial suns of a power series

$$
\begin{equation*}
A_{N}=\sum_{i=0}^{N} c_{i} x^{i} \tag{113}
\end{equation*}
$$

Then the e_{k} transform of A_{A} is

By multiplying and dividing the rows and column by powers of x, this becomes

$$
\left.B_{K N}=\frac{\left|\begin{array}{llll}
x^{K} A_{N-K} & K^{K-1} A_{N+K+1} & \cdots & X^{0} A_{N} \tag{115}\\
C_{N-K+1} & C_{N-K} & \ddots & \cdots
\end{array}\right|}{\substack{C_{N+1} \\
C_{N}}} \begin{array}{llll}
X_{N K} & x^{K-1} & & \cdots
\end{array} \right\rvert\,
$$

In general, then, unless the lower right minor vanishes, the numerator is a polynomial of the Neth degree, and the denominator
 upper determinant of (114) together, it becomes

$$
B_{K N}=\frac{\left|\begin{array}{ccc}
A_{N} A N+1 & \cdots & A_{N+K} \tag{116}\\
S A M E & A N(0)
\end{array}\right|}{\left|\begin{array}{lll}
\text { SHE } & (1,4)
\end{array}\right|}
$$

Wo may subtract the value $A_{\text {w }}$ from the first row (see 23b) and therefore

Finally, by the above transformation, (115), we find

Since the smallest possible exponent of x in the numerator determinant is $N+\mathbb{N}+$ and since the denominator has a constant term (unless the lower left minor vanishes) B KN agrees with AN +K up to, at least, the term involving XNTK. If the minors vanish, see paragraph 72 below.
68. In their application to the partial sums of power series the ers transforms, then, give the same results as the ped t Table. But the transforms aria broader conception since (a) they may be applied to other types of sequences, and (b) they may be iterated, giving \widetilde{e}_{k} and \ddot{e}_{d}.
69. An interestidg, and perhaps useful, conception is that of a Pade Surface. Through the discrate points of a Pade Table, for instance, that for e, paragraph 64, we may conceive a smooth surface. This woud be a two dimensional generalization of our transient-like graphs of paxazmaph 4. The Pade Surface fore is interesting, It has a pole at (1,0), an oscillating character along its rows, a monotonic eharauter along its column and a limiting plane towards the southeast. por we have a family of Padé Surfaces. We cannot, at this time, develop this concept further.
70. We have shōw doove how we may start with a power series; apply a diagonal transform, obtain a sequence of rational approximations, and from these a continued fraction. The order of these operations may be altered. An interesting way of obtaining the continued fraction is by the method of interpolation known as Thiele's reciprocal differences (reference g). The Praction thus obtained will have as its convergents a sequence of rational approximations. These may be expressed as the ratio of two determinants and this had been done by Nơrlund (reference of. His determinants are essentially the same as our (ilis), etc.
71. When applied to a power series, then, the diagonal transform is essentialiy equivalent to Thiele's Continued Fractionz. The former algorithm, however, is broader in scope, and in addition, the author believes;-it has a simpler intuitive basis.
72. A third mathematic related to our transforms is a theorem of Kronecker (references i, t, u) on the powef series of rational functions. MHEOREM: If

$$
D_{\lambda}^{(\mu)}=\left|\begin{array}{cccc}
a_{\lambda} & a_{\lambda+1} & \cdots & a_{\lambda+\mu} \tag{119}\\
a_{\lambda+1} & & \vdots \\
\vdots & \ddots & \vdots \\
a_{\lambda+\mu} & \cdots & a_{\lambda+\mu \mu}
\end{array}\right|
$$

the necessary and sufficient oondition that ${ }^{2}$ an zen should 73. This resembles our criterion of the order of a transient, (12), paragraph 14. We have alreay shown examples where a power series is summed exactiy to its rationel sum. This suggests that in general a power series which represents a rational function can always be summed exactly by a single ers process of a sufficiently large K. This is true. Wow from the rationainty of the sum it
follows that $D_{0}^{(n)}=0$ for $m \geq N$ and from this it follows that $D_{i} \lambda^{(n)}=0$ for $\rightarrow N \geqslant 0$ (reference i). Hence it

$$
\left|\begin{array}{cccc}
a_{\lambda} x^{\lambda} & a_{\lambda+1} x^{\lambda+i} & \cdots & \tag{120}\\
a_{\lambda+1} x^{\lambda+1} & & \ddots & \\
\vdots & & \ddots & \ddots
\end{array}\right|=0
$$

for all λ Therefore from our criterion, (ic), it follows that the sequence $A_{i} x a_{i} x^{2}$ may be represented exactly by a transient of the form, (3). Finally, it follows, by summation of the geometric series, that the partial sums, $\sum_{j=0} x^{i}$ may be represented by a form (2).
74. An example of each exact summation is that of the Riemann Zeta function This function, while transcendental fer positive integer arguments, ie rational for negative integer arguments and may be expressed (in Kop's terminology) as

$$
\begin{equation*}
S(-s)=-\frac{B s+1}{5+1}=\frac{1-2^{5}+3^{5}-4^{5}+}{1-2 \cdot 2^{5}} \tag{121}
\end{equation*}
$$

where the B's are the Bernoulli numbers (reference \mathcal{J}, page 533). These numbers are all rational and we should be able to obtain them by summing exactly the divergent series:

$$
\left.\begin{array}{l}
1-1+1-1+1-\cdots \\
1-2+3-4+5-\cdots \\
1-4+9-1+25-\cdots
\end{array}\right\}
$$

Compare paragraph 38. In fact, we sum the first series by e, the second by ea, and so on, and thus obtain explicit formula for the Bernoulli humber s as the ratio of two determinants. These may then be reduced and we find that the partial sums of (i22) should be weighted by the binomial coefficients. Therefore

$$
\begin{align*}
& B_{1}=\frac{1}{1+1}=\frac{1+1}{1+1+(-1)+12} \\
& B_{2}=\frac{1+2+1}{3}=\frac{1}{7} \tag{123}\\
& B_{3}=\frac{11+3(-3)+3}{1+3+2+1}=1(-10)
\end{align*}
$$

and in general

Daniel Sha kes

D. Shainks

