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Abstract 

Network security often requires the surveillance of the actual traffic in the network. Methods like 
signature-based attack detection or the detection of traffic anomalies require input from network 
measurements. The IETF currently standardizes the IP Flow Information Export (IPFIX) protocol for 
exporting flow information from routers and probes. The packet sampling (PSAMP) group extends the 
information model of IPFIX with the ability to report per packet information including parts of the 
payload. With this IPFIX and PSAMP provide valuable tools for detecting anomalies and security 
incidents in IP networks. Whereas the basic IPFIX and PSAMP documents are currently finalized, new 
drafts emerge that provide recommendations and IPFIX extensions. This paper shows how IPFIX and 
PSAMP can be used to support network security. Furthermore it is shown which extensions are useful 
and can provide further features for network security. 
 
1. IPFIX and PSAMP 

IPFIX defines a format and a protocol for the export of flow information from routers or 
measurement probes [1]. IPIFX uses a push-based data export, from IPFIX exporters to IPFIX 
collectors, and can run over TCP, UDP and SCTP. Figure 1 shows the process of measurement and 
export of IPFIX and PSAMP data. Core functions are always part of the measurement process. 
Optional functions can be placed in the processing sequence for different operations like post 
processing or data selection.  
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Figure 0: Measurement Model 



[2] specifies observation point, flows, exporting and collecting process. The document also 
defines a metering process that consists of packet header capturing, timestamping, classifying, 
sampling and maintaining flow records. IPFIX Information Elements (IEs) for distinguishing flows 
and for reporting flow characteristics are defined in [3]. PSAMP extends the IPFIX information 
model by IEs for packet header and payload [4]. Furthermore it defines packet selection methods 
like filtering and sampling. 
 
2. Metrics of Interest for Attack Detection 

Network anomaly detection aims at discovering malicious behavior in a network by an analysis of 
the traffic profile. Using statistical means to detect unusual behavior patterns in the network or on 
the target machines, indicators for abuse or attacks are collected. While it can not be known in 
advance how precisely an attack will look like, experience has shown that certain information in 
packet headers provides better evidence than other. Also, some popular attack types can be easily 
detected by metering specific aspects of flow behavior. 

Many detection algorithms base on very simple metrics. A successful detection of brute force 
attacks can be successfully done on data available from IPFIX. Early approaches like [5, 6] use 
simple flow definitions; and [7] successfully detects intrusions using only packet, ICMP packet and 
byte count using artificial immune systems. Most systems however face two difficulties: on the one 
hand, more advanced network intrusions are not easily detected by observing lower layers only. On 
the other, regular network events may produce a legitimate anomaly. The most common example is 
the so-called “flash crowds”, a sudden increases in traffic caused by a reference from another high-
volume Internet service or news site. These events have to be distinguished from malicious attacks. 
Here, many algorithms rely on specialized metrics for popular types of attacks. The difference 
between TCP SYN and FIN packets for example is a clear indicator of ongoing SYN flooding 
attacks [8, 9].  

Other general capabilities of interest for attack detection with IPFIX are: Flow separation by 
transport (e.g., TCP, UDP) or application layer (e.g., HTTP, FTP) protocols [10] or the retrieval of 
information from higher-level protocol headers such as TCP/IP [11] or information from MIB-II 
[12]. Further approaches use specialized statistics for attack detection that model real user behaviour 
more closely; [2] for example defines a question as any number of consecutive packets going from 
the client to the server. The number of questions (and answers resp.) per second is used as parameter 
for configuring self-organized maps. Finally, samples of the full payload information [13] allow 
further insight into transactions.  
 
3. Measurement Requirements and what IPFIX and PSAMP can Offer 

The detection of traffic anomalies requires passive measurements of the traffic in the network. 
IPFIX and PSAMP can be implemented on routers or probes and provide a standardized method to 
export flow and packet information from different points in the network. A variety of metrics are of 
interest for anomaly detection (see section 2). Currently IPFIX defines IEs for all IPv4 header fields 
(except checksum), the main IPv6 header fields (addresses, next header, flow label, etc.), the main 
transport header fields (UDP, TCP ports, sequence numbers, ICMP types), and some sub IP header 
fields (MAC addresses, MPLS labels, etc.). For reporting of flow statistics it defines a variety of 
counters (e.g. bytes, packets, delta and total counters), timestamps (flow start, end, duration) and 
basic statistics (min/max pktlength, min/max TTL, TCP flags, options). PSAMP extends the 
information model by adding IEs for reporting the full header and payload information. A useful 
information element for attack detection would be a counter to report the number of packets with 
specific flags (e.g. SYN, FIN) in a flow (e.g. to a specific destination address). This is currently not 
provided by IPFIX; IPFIX only supports the IE tcpCcontrolBits, which is a bitfield with all TCP 



flags, where bits are set if a particular flag was observed for the flow. Nevertheless, the information 
model can be easily extended to support this counter.  

In order to detect unusual behavior at different granularities or timescales, traffic needs to be 
observed at different aggregation levels. IPFIX provides an extremely flexible flow definition; a 
flow is defined as a set of packets with common properties. Each property is defined as a result of 
applying a function to one or more packet header fields (e.g. destination IP address), to further 
packet properties (e.g. number of MPLS labels) or to values derived from packet treatment (e.g. 
output IF). IEs defined in [3] can be used as flow keys to distinguish flows.  

The analysis of the connection status (e.g. for TCP connections) requires a mapping of both 
directions of a communication. IPFIX currently reports each direction of a flow separately. With 
some additional effort a mapping of both directions is possible without IPFIX extensions. A more 
efficient way that introduces IEs for forward and backward direction is discussed in [14]. 

Distributed metrics often outperform metrics collected at a single observation point (see e.g., 
[15], [16], [17]), therefore data from multiple observation points should be correlated. Using 
identical flow keys at the observation points provides a network-wide picture about the flow 
situation. Synchronized clocks at the involved observation points allow the calculation of time-
related metrics like one-way delay. If packet data needs to be correlated packet arrival events need to 
be recognised at different observation points. This can be done based on the packet content (header 
and optionally payload). For this only fields should be used that are immutable during transport but 
highly variable between different packets. In case the packet content itself is not needed (e.g. when 
calculating delay etc.) a packet ID based on those fields can be generated and post processing will be 
based only on this ID (see [18], [19], [20]). This significantly reduces the traffic that needs to be 
reported.  

Post-incident analysis (network forensics) requires the storage of past data. This is also useful for 
sharing information among providers and to provide training data with “normal” behavior. In [21] 
requirements for an IPFIX file format are discussed and existing solutions for storage of flow 
information are investigated. It is planned to propose an IPFIX file format based on this study. 

The ability to calculate specific metrics (e.g. packet ratios, statistics, etc.) directly on the router is 
a desired feature, since even if it consumes processing power on routers, it increases the speed at 
which incidents can be detected. Furthermore the reporting of derived metrics requires fewer 
transport resources than the export of all raw data. A disadvantage is the inability to derive arbitrary 
other metrics. If one does not know what to look for one can apply different methods on captured 
raw data. This is not possible if only derived metrics are reported. The reporting of derived metrics 
can be realized by extending the information model with new IEs as described in [22]. IPFIX is a 
push-based protocol. Currently the sending of flow records is triggered by flow termination criteria 
(e.g. flow idle time, TCP FIN, etc.) or resource limitations (cache full). If attack detection metrics 
are calculated directly on the router thresholds on these metrics could be used to trigger flow export. 
This would allow to reduce flow export to only those cases were suspicious behavior was observed. 

Re-configuration of measurement processes is useful to zoom in or out based on the actual 
situation. Since the IPFIX group wanted first to concentrate on the protocol, the configuration of 
IPFIX functions was out of scope. Now that the IPFIX protocol is finished, several proposals for 
IPFIX configuration emerged. A first draft for an IPIFX MIB was described in [23]. An XML data 
model for configuration of IPFIX processes was proposed in [24]. Furthermore the Next Steps in 
Signaling (NSIS) group proposed a draft for path-coupled dynamic configuration of metering 
entities [25]. This framework can be used to configure parameters for IPFIX processes. A further 
desired feature is cost efficiency. Resources can be reduced by using filtering or sampling 



techniques as described in [26]. [27] and [28] describe methods for aggregation and sharing of flow 
key information among data records. 

An interoperation of measurement functions with AAA functions provides further features for 
network security [22]. AAA Functions may be able to map the traffic to specific users (e.g. by using 
the src address) and can stop network access for suspicious systems or users. Furthermore AAA 
provides secure channels to neighbor AAA servers and can inform neighbors about incidents or 
suspicious observations. Although most providers are still reluctant to information sharing, the 
ability to share information with neighbor domains is a useful feature. IPFIX provides the means to 
do that: TCP or SCTP can be used as transport protocol to ensure congestion-awareness and IPsec 
and TLS can be used as described in [1] to provide security features.  

Table 1 summarizes the measurement requirements and shows how IPFIX, PSAMP and/or IPFIX 
extensions support specific features. 
 
Measurement 
Requirement 

IPFIX support PSAMP support IPFIX 
extensions 

Network-wide passive 
measurements 

Passive flow measurements 
integrated in routers 

Packet capturing integrated 
in routers 

- 

Different aggregation levels Flexible flow definition Packet selection methods  [27], [28] 

Variety of metrics IEs for flow statistics, 
extensible info model 

IEs for packet capturing, 
extensible info model 

New IEs can be 
easily added 

Analysis of connections TCP flags bitmap Header and payload 
information 

 [14] 

Correlation from multiple 
observation points 

Header fields for packet ID 
generation 

Header and payload info for 
packet ID generation 

 [22] 

Storage of past data - -  [21] 
Export of derived metrics - - [22], further 

planned 

(Re-)configurability - Configuration of packet 
selection methods 

[23], [24], [25] 

Cost efficiency Aggregation,  packet selection Packet selection methods [27], [28] 
Link to AAA functions - - [22] 
Inter-domain data exchange Standard format, congestion-

aware (TCP, SCTP), secure 
(IPsec, TLS) 

Standard format, congestion-
aware(TCP, SCTP), secure 
(IPsec, TLS) 

[22] 

Table 1: IPFIX and PSAMP Support for Anomaly Detection 
 
5. Conclusions 

IPFIX and PSAMP provide standardized measurement methods to support network security 
applications like attack and anomaly detection. A variety of relevant metrics can be derived from 
IPFIX and PSAMP data. Useful IPIFX extensions for correlation, aggregation and storage of IPIFX 
data have been proposed already within the IETF. Approaches for IPFIX configuration are 
underway.  

Fraunhofer FOKUS has developed an open source IPIFX implementation. Besides the standard 
IPFIX IEs it supports proprietary IEs for reporting QoS metrics (loss, delay, jitter), TCP flag 
counters and packet IDs. The FOKUS IPFIX implementation is available at [29]. 
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Measurement Requirements for Network SecurityMeasurement Requirements for Network Security

� Measurement requirements
– Network-wide: get information from multiple observation points

– Flexible: change viewpoints

– Shareable: provide comparable and shareable results

Goal: Detect deviations from normal traffic behavior
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Existing SolutionsExisting Solutions

� Specialized Hardware
+ Extra resources to capture flow and packet data
+ Detailed post-incident analysis possible
- Huge amount of measurement data � high analysis effort
- Network installation required � operators distrust new devices
- High costs � prevent network-wide deployment

� SNMP
– Useful, but too coarse grained information

� Proprietary measurement tools
> 400 different tools (academia, research, operators, etc.) � www.ist-mome.org
- Require additional devices � prevent network-wide deployment
- Different input/output formats � hard to share and compare

� Cisco NetFlow
+ Integrated in routers � network-wide deployment
- Fixed flow definition, no packet data � limited flexibility 
- High resource consumption � Router performance degradation
- UDP transport � potential data loss, no congestion control
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IETF Standardization Efforts: IPFIXIETF Standardization Efforts: IPFIX

� Protocol for flow information export
– Exports flow data from routers and probes (IPv4, IPv6)
– Works on top of UDP, TCP or SCTP
– Similar to Cisco NetFlow but much more flexible

� Upcoming IETF Standard
– Active IETF working group 
– Protocol draft in last call
– First Implementations exist

� Target Applications [RFC3917]
– Usage-based Accounting 
– Traffic Profiling
– Traffic Engineering
– Attack/Intrusion Detection �

– QoS Monitoring

IPFIX - IP Flow Information EXport
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IPFIX DetailsIPFIX Details

� Template-based approach 
– Template Records: define structure of Data Records
– Data Records: contain parameter values
– Option Template Records: provide additional information for 

Collectors

� Push-Model
– Flow records pushed from exporter to collector
– Trigger not defined in IPFIX 

� Measurement configuration out of scope
� Flow termination criteria currently used, but others possible

� Information Elements (IEs)
– Base sets of IEs defined in IPFIX-INFO, PSAMP-INFO
– Attributes that can appear in IPFIX records
– Vendor-specific IEs can be defined
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IETF Standardization Efforts: PSAMPIETF Standardization Efforts: PSAMP

� Exporting packet information with IPFIX
– IEs for reporting packet header and payload

– PSAMP IEs defined in draft-ietf-psamp-info-04.txt 

– PSAMP Framework in draft-ietf-psamp-framework-10.txt

� Packet selection methods
– Filtering: deterministic selection based on packet content 

– Sampling: random or deterministic selection

– PSAMP Schemes in draft-ietf-psamp-sample-tech-07.txt 

PSAMP - Packet Sampling
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IPFIX/PSAMP Measurement ModelIPFIX/PSAMP Measurement Model
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What IPFIX/PSAMP can offer to NW SecurityWhat IPFIX/PSAMP can offer to NW Security

� Network-wide measurements 
– Measurement results from routers
– No extra devices required
– Different transport protocols (e.g. for congestion control)

� Highly flexible measurement definition
– Arbitrary packet and flow information, highly flexible flow definition
– Data selection techniques
– Extensible information model

� Comparable and shareable data
– Standardized data format
– Different aggregation levels and sampling to enhance privacy 
– Secure data exchange (e.g. among domains)

IPFIX applicability statement: draft-ietf-ipfix-as-10.txt
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Reporting Flow Statistics with IPFIXReporting Flow Statistics with IPFIX

� Very flexible flow definition
– Any set of packets with “common properties” defined by flow keys

� Packet header fields (e.g. destination IP address) 
� Packet properties (e.g. number of MPLS labels) 
� Packet treatment (e.g. output IF) 

– Information elements usable as flow keys defined in IPFIX-INFO 
� All IPv4 header fields (except checksum)
� Main IPv6 header fields (addresses, next header, flow label, etc.)
� Main transport header fields (UDP, TCP ports, sequence num., ICMP types)
� Some sub IP header fields (MAC addresses, MPLS labels, etc.)

– Flow termination criteria (currently used)
� Idle timeout (no activity)
� Active timeout (active, but max lifetime expired)
� End of Flow detected (e.g. TCP FIN observed)
� Forced end (external event, e.g. shut down of the Metering Process)
� Cache full (lack of resources)

That’s what IPFIX was designed for!



FloCon 2006 10

Reporting Flow Statistics with IPFIXReporting Flow Statistics with IPFIX

� Variety of information elements to report flow 
characteristics
– Counters (e.g. bytes, packets, delta and total counters)

– Timestamps (flow start, end, duration)

– Statistics (min/max pktlength, min/max TTL, TCP flags, options)

– Others (e.g. flow end reason) 

� Per-flow TCP Flag counters
– Recently introduced in IPFIX-INFO

– E.g. tcpSynTotalCount, tcpFinTotalCount

– Useful for detection of claim&hold attacks (e.g. SYN flood)
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BiBi--directional Flowsdirectional Flows
� Reporting both directions of a communication is useful for NW security

– Connection status: incomplete connections can indicate attacks
– Check request/response pairs (DNS, etc.)

� BUT: IPFIX currently reports each direction as separate flows  � How to report bi-directional flows?
� With standard IPFIX (without extensions)

– Approach 1: Two records with record adjacency
� unidirectional flow records adjacent to each other, collector reassembles
� + extremely simple
� - maintaining right order of flow records is crucial (SCTP or UDP may drop or reorder packets)
� - inefficient (flow key in both records)

– Approach 2: Key-Value separation using IE flowID
� flowID uniquely identifies set of properties
� Flow records (for each direction) carry individual uniflow properties (references keys by 

commonPropertiesID)
� + more efficient
� - additional resources for managing commonPropertiesID (at exporting and collecting process)
� - three records required (instead of two)

� With IPFIX extension
– Definition of new IEs for reverse direction
– Re-use existing IEs and use special vendor ID to separate forward and backward direction

� Approaches currently discussed in draft-trammell-ipfix-biflow-02.txt � best method will be selected

������
������
������
������
������
������
������
��������������� � 	 
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� � 	 
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Packet CapturesPacket Captures

� IPFIX: only header information 
– Define each packet as separate flow
– IP, transport header, and some sub IP information per packet
– Flow keys reported for each packet � inefficient

� IPFIX improved export 
– Sharing flow key information among data records 
– � Methods discussed in reduced redundancy draft 

� With PSAMP 
– Header: ipHeaderPacketSection
– Payload: ipPayloadPacketSection
– Sub IP: dataLinkFrameSection, mplsLabelStackSection, etc.  

� Data reduction
– Aggregation of flows
– Packet selection methods ���� PSAMP
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PSAMP Packet Selection SchemesPSAMP Packet Selection Schemes

� PSAMP offers basic packet selection techniques
– Filtering: deterministic selection based on packet content 

� Mask/match filter
� Hash-based selection
� Router state filter

– Sampling: random or deterministic selection
� Systematic count-based
� Systematic time-based
� Random n-out-of-N
� Random uniform probabilistic
� Random non-uniform probabilistic
� Random non-uniform flow-state

� Packet selection possible at different points in measurement process
� Concatenation of selectors possible (e.g. for stratified sampling)
� Flow sampling 

– Allowed in IPFIX architecture
– Currently not defined in PSAMP 



FloCon 2006 14

Sampling Example: Achievable AccuracySampling Example: Achievable Accuracy
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IPFIX ConfigurationIPFIX Configuration

� Past: Configuration was out of scope for IPFIX
– WG wanted to concentrate on protocol spec
– Proprietary CLI configuration of IPFIX processes always possible

� Now: Several Proposals for IPFIX configuration
– IPFIX MIB (draft-dietz-ipfix-mib-00.txt)

� Monitoring IPFIX exporters and collectors (configuration, statistics)
� Potentially configuration of IPFIX exporters and collectors

– IPFIX XML configuration (draft-muenz-ipfix-configuration-00.txt) 
� Data model for configuration parameters of IPFIX devices
� Configuration by Netconf, SOAP, etc.

– NSIS proposal (draft-dressler-nsis-metering-nslp-04.txt)
� Path-coupled dynamic configuration of Metering Entities 
� Metering NSIS Signaling Layer Protocol NSLP (M-NSLP), 
� Cooperation between NSIS and IPFIX required
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Storage of DataStorage of Data

� Standardized format for storing IPFIX data
– Post-incident analysis (forensics, research)
– Sharing information (e.g. among providers)
– Provide training data (traces with “normal” behavior)

� IPFIX file format draft (draft-trammell-ipfix-file-01.txt)
– Collects Requirements 

� Extensibility (multiple record types, new fields, etc.)
� Self-Description (interpretation without additional knowledge)
� Data Integrity and Error Correction
� Authentication and Confidentiality
� Indexing and Searching
� Anonymization

� Goal: propose an IPFIX file format 
– Evaluation of existing solutions (ARGUS, SiLK, etc.)
– Collection of requirements
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Support in RoutersSupport in Routers

� IPFIX (Flow Export)
– First Implementations exist
– Cisco plans IPFIX compliance 

� Packet Export
– Resource limitation on routers prevent full packet export 
– Packet export from sampled data possible
– Tradeoff between reported amount of information (#packets, 

snapsize) and required resources

� Sampling Methods
– Cisco: random 1-in-K, systematic sampling
– Conformance to PSAMP if one PSAMP scheme is supported
– No information about support for further schemes
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ConclusionConclusion

� IPFIX/PSAMP 
– Protocol to export flow and packet information

– Upcoming standard

– Can integrate data selection methods

� Provides measurement results
– Network-wide

– Flexible 

– Shareable 

�Powerful standards for network security

FOKUS Open Source IPFIX library available at:

http://ants.fokus.fraunhofer.de/libipfix/



Thank you for your Thank you for your 
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Greetings from Canada
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The anomaly of keynotes
• All of a sudden, I’m being asked to give keynotes at

various conferences and workshops.
• I suspect that it has something to do with advancing

age, approaching senility and the desire of the
organizers to give the jet lagged participants an extra
hour of sleep on the first day.

• Nonetheless, it gives me a chance to express
opinions without having to back them up with facts
that have to pass muster with reviewers.
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Aphorisms
• (1) Pay attention to details. (2) Don't make stuff up.

                                                               - Roy Maxion

• “She got the goldmine, I got the shaft”
                                                   - Song by Jerry Reed

• Your mileage may vary
                             - From the standard EPA disclamer
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Outline - 4 Themes in search of an author
• Parkinson’s law
• Is it good for anything else?
• “Look homeward angel”
• Cast your net broadly
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Parkinson's Law
• Parkinson's Law

• Prof. Cyril Northcote Parkinson , 1958
• “WORK EXPANDS SO AS TO FILL THE TIME

AVAILABLE FOR ITS COMPLETION”
• The corollary is obvious, the answers are not.

• Buy stock in your favorite disk vendor
• Figure out how to break the law
• Lets look a bit at the later
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Distance and precision
• Look at the contact line distribution
• Are there regions where we can usefully abstract

away the details?
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Infrequent  and super frequent contact
• We see that there are a lot of sources that appear

once per hour.
• There are a handfull that appear a lot.
• If we could represent these more efficiently, lots of

space could be saved
• The underlying assumption is that there is not a

single mechanism at work here, but the results of
multiple mechanisms and they can be treated
separately.
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Singletons
• We haven’t really looked too closely at these since

there are millions per hour, but.
• The majority appear to form a small number of

groups based on protocol, ports, flag
combinations, etc.

• I suspect that most are addressed to unoccupied
addresses

• Looking back at data that is months or years old,
do you really care what the individual target was or
when in the hour the flow occurred?

• If not, some lossy compressions are obvious
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More singletons
• Suppose we look at the one/hours over a week

• Again, the majority are never seen again
• This reinforces the earlier discussion
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Hyperactive sources
• Most of these are high volume scanners.
• Most of the scans do not find targets
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Typical scan
• Looking at a single spike, one often finds things like:

             sIP|dPort|pro|packets|   bytes|   flags|

  AA.BB.x.y|     80|  6 |          2|        88|  S       |   96842

  AA.BB.x.y|     80|  6 |          1|        44|  S       |   20233

  AAA.BBB.0.0/16 : 51744 hosts in 228 /24s and 1785 /27s.

• Again, there are obvious compressions that trade
precision for volume

• Note that backscatter is another source of
hyperactivity, but similar processing applies
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Other tricks
• I suspect that treating low levels of activity and high

levels of activity will reduce the volume of the
remaining data by 75 to 95 % (YMMV).

• At that point, further processing of the main stream
might be useful
• Session reconstruction comes to mind
• Aggregation of similar sessions
• Etc.
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When is not a flow, a flow?
• Reduced to its essentials, the SiLK paradigm is a

way of thinking about intermingled time series that
are glued together by common factors.
• Think of the paradigm as a way of reasoning about

large aggregations of event data.
• Convert the data into pseudo flow records and

have at it.
• The essentials are some sort of anchors (IP

addresses), possibly some volumes (1 is a
perfectly good default), and maybe some other
stuff (tags, flags, ports, etc.)
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Packets are obvious
• For a DARPA project I worked on at CERT, it was

extremely useful to apply SiLK style filtering to packet
data.

• My vision was “rwpfilter”, a program that would bring
the power of rwfilter to packet data and extract
pass/fail files containing both packets and
degenerate (1/pkt) flows.  For packets,it would be
possible to filter payload with regular expressions

• A prototype was built, but it has been an uphill battle
to bring this into the main stream.  I have a MS
student who is going to try, and the latest rwptoflow
starts to be a building block.
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Other issues
• DHCP

• Especially in wireless networks
• NAT
• Sensor identification issues, etc.
• Inside to outside distinction and grouping

• In -> Out
• Out -> In
• In -> In
• Out -> Out ???
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Crawdad / predict / etc.
• Dartmouth has a repository of 4 months of pkt

headers from their wireless network
• 160GB compressed / 18 sensors
• Anonymized (badly)
• 17000 MAC addresses also badly anonymized

• Converted to hourly flows in early 2006 and used in
my course.

• Students were able to identify a number of interesting
things including several worm infestations, but …

• DHS may bring the predict archive on line soon
• This is a potential source of data, but … YMMV
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Other sources
• With a text to flow program and a few text processing

scripts, the possibilities are interesting.
• Log data from firewalls, IDS, etc.
• Pilot study involving data from a large managed

services company looked promising and could
produce “top N” reports easily.
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Generalize, Generalize, Generalize
• Extend SiLK tools for filtering, set and bag

production, etc. to all scalar fields in the archive
format.
• Sets of sensors make sense
• So do sets of flags, etc.
• In a strange way, so do sets of times or durations.
• I experimented with Bloom filters for detecting

connection level service activity (SIP, DIP, service)
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Plagiarize, Plagiarize, Plagiarize,
Only, please, call it research

• Support set and bag structures, along with hash
trees, Bloom filters, perfect hashes, etc. at a library
level for specialized analyses.

• The dynamic library concept allows a lot of creative
use of the concepts.  Make it easy on the researcher
analyst to use the bits and pieces of the tools
• Internals documentation?
• Builders guide?
• Skeleton programs?



Faculty of Computer Science
Privacy and Security Lab

© 2006 by John McHugh

Know thy network!
• Much of the SiLK work at CERT has been focused on

border data from a large network.
• There is growing evidence that continuous monitoring

at the small enterprise level is useful for all sorts of
things, including security, but also for provisioning.

• You will see two papers later in the workshop on one
such effort performed by Ron McLeod.

• Even if there are no large scale compromises, such
monitoring often provides interesting insights
• Why do both of the cases in which we monitored a

cable modem show 95% ARP?
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More Data, More Data …
• The sources represented at this meeting are largely

big institutional networks.
• Several people have recently suggested a co-op

approach to data collection and sharing.
• Eurecom has a honeypot co-op.  Contribute by

running their honeypot system and you get access
to all the reported data.

• Anyone for a flow co-op from your home DSL /
cable modem drop?

• There are a number of collectors and ideas for
better ones …
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Thanks
• Tim for inviting me.
• SLK for seizing the moment
• Tom Longstaff for creating the environment that

made it all possible
• Mike for keeping the spirit alive in trying times
• All the developers for their support, understanding

and willingness to take suggestions.

• QUESTIONS …
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If it ain’t broke -
Don’t IPFIX it.
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Abstract

This paper describes a network flow analyzer that is ca-
pable of attribution and aggregation of different flows
into single activity events for the purposes of identifying
suspicious and illegitimate behaviors. Flows are corre-
lated with security events using the Process Query Sys-
tem (PQS) infrastructure. We show results from initial
experiments and describe plans for extending the effort.
The correlation of networks flows with security events
appears to have high potential for aggregating disparate
network and host activity and for classifying network ac-
tivity as either benign or suspicious.

1 Introduction

A flow sensor emits observations as detailed flows. The
system generates a very large continuous quantity of data
that cannot be processed by humans practically. A skilled
security analyst that tries to analyze the flow characteris-
tics may recognize an illegitimate connection but is likely
to miss some malicious traffic. The fact that a flow is un-
justifiable can be related to the flow breaking some crite-
rion described in a policy file or to the fact that intrusion
detection systems (IDS) or other sensors had evidence
classifying the flow as illegal. For example, if we no-
tice that a flow contains an FTP session and the initiator
of the connection is a host that triggered a Snort sen-
sor, the flow must be categorized as malicious. A system
administrator might miss this correlation and report the
connection as legitimate.

We have designed and implemented an approach to
correlating network flows with security events, such as
those generated by IDS, for the purposes of aggregat-
ing and attributing flows. This capability achieves data
compression and provides insights to the analyst about
whether flows are benign or suspicious. Our temporal
and multi-sensor correlation system is based on a Pro-
cess Query System which is designed to correlate differ-

ent data based on the process models that it runs. Models
serve to correlate data coming from flow anomaly detec-
tors and other security tools.

Process Query Systems (PQS) [2, 7] are software
systems that allow users to interact with multiple data
sources, such as traditional databases and real-time sen-
sor feeds, in a new and powerful way. In traditional
databases, users specify queries expressed as constraints
on the field values of records stored in a database or data
recorded by sensors, as allowed by SQL and its variants
for streaming data. By contrast, PQS allows users to
define processes and to make queries against databases
and real-time sensor data feeds by submitting those pro-
cess definitions. A PQS parses the process description
and performs sequences of queries against available data
resources, searching for evidence that instances of the
specified process or processes exist.

The strength of the system relies on the fact that the
same PQS engine can be easily adapted to different pro-
cesses. PQS has been successfully applied to ground ve-
hicle tracking [6], social networks [4], and plume source
detection [10]. For each of the preceding applications,
the observations gathered are, respectively: positions as
recorded by sensors, evidence of particular activity in the
social network (initiator of a conversation, broker, etc.)
and concentrations of a particular gas at a fixed location.

PQS is also a very powerful and efficient tool to per-
form network security monitoring. In this framework the
system collects data from many different sensors and im-
plements multilevel models that evaluate the data. As a
result it returns conclusions that can be very specific or
more general depending on which PQS tier is used. Pre-
vious implementations of PQS models [8, 9, 1] have de-
tected malicious hacker behaviors, insider threat behav-
iors, network failures, worms, viruses and covert chan-
nels. In this implementation of the system we want to
disambiguate between benign and malicious behavior in
terms of flows. We want to develop a framework for us-
ing flow attribution and flow aggregation as part of se-



curity analysis. Flow attribution consists of detecting
logs that can explain a flow. The final goal is attribut-
ing the flow to a person but intermediate steps are a re-
quired part of the attribution process. Flow aggregation
means recognizing that different flows, apparently totally
unrelated, nevertheless belong to the same broader event.
Single flows are defined as components and groups of re-
lated flows are defined as events. Examples are an FTP
connection followed by data transfer or surfing the web
and connecting to different web pages following links
present in the pages.

Flow attribution has been investigated mostly with
the purpose of enhancing quality of service [5, 3] while
the present work is devoted to security uses of network
flows.

The paper is organized in the following way. Section
2 describes the flow sensor together with a description of
the network in which it was deployed. Section 3 presents
some of the other sensors used in our analysis. Section
4 shows results of an experiment that we ran and antici-
pates other experiments. Section 5 gives a brief overview
about how to measure improvements in this framework.

2 Flow Sensor Description

The flow sensor that we built was deployed on an unse-
cured production network [1]. Although the network is
small compared to an actual enterprise-class network, it
features a wide range of systems and servers that are typ-
ical of larger organizations. Behind the firewall there are
64 addresses available (.192/26) which are split between
a Workstations and a Demilitarized Zone server network,
both (/27). The uplink connects directly to the internet
and all addresses are globally routable. The Worksta-
tion network features several Windows XP clients, Linux
2.4 and 2.6 systems, several Solaris workstations, and a
Solaris 9 server to which multiple thin-clients are con-
nected. All these systems are used daily by researchers
and students, and so the traffic on this network is typical
for a normal operating organization where users browse
the web, print documents, and download files during
business hours.

Our flow sensor is based on the libpcap interface for
packet capturing. Traffic flows was collected for a pe-
riod of two months. Packets with the same source IP
address, destination IP address, source port and destina-
tion port and protocol were aggregate in a single flow
which remain active until no other packets with the same
characteristic arrive for a period of 5 minute.. Each flow
is characterized by fields that are used to infer quantities
given as observations to the PQS models. These fields
are:

1. Timestamp of the first packet.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 319400  319500  319600  319700  319800  319900  320000  320100  320200  320300

N
um

be
r 

of
 b

yt
es

 tr
an

sf
er

re
d 

pe
r 

ho
ur

Time in hours  since January 1 1970

Bytes Density per hour

Byte Density per hour

Figure 1: Bytes Density per hour from June 09 2006
04:00:00 to July 16 16:00:00

2. Timestamp of the last packet.

3. Number of packets from the source to the destina-
tion

4. Number of packets from the source to the destina-
tion

5. Number of bytes from the source to the destination

6. Number of bytes from the destination to the source

7. The IP address of the source machine

8. The IP address of the destination machine

9. The protocol

10. The source port

11. The destination port

12. An array containing the delays, in microseconds,
between two consecutive packets

13. An array containing the number of bytes in each
packets.

These quantities allow us to infer interesting statistics
on the network traffic on our network. Figure 1 and Fig-
ure 2 show the density of flows and bytes transferred per
hour respectively. We notice for example that the num-
ber of flows per hour is mostly between 50 and 100 with
some sporadic spikes.

The delays between packets and the distribution of
bytes in each flow embed information that can be used
to investigate situations of covert channel embedded in
inter-packets delays and also provide statistics on the dis-
tribution of load in each flow which will be relevant to the
development of higher-level security tools.
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3 Host and network sensors

PQSnet is our implementation of a PQS to the domain
of computer security. Since the beginning of the PQS-
net project three years ago, we have used a number of
sensors based on common host and network security ap-
plications.

The Snort and Dragon sensors are both signature-
matching Intrusion Detection Systems (IDS). The sen-
sor’s observations give information on source and desti-
nation IPs, ports, and which rule or signature was vio-
lated.

The Web log sensor reports information from Apache,
IIS and SSL error logs. Observations from this sen-
sor contain information about suspicious URLs that have
succeeded or failed, as well as web server errors.

The Samhain sensor reports alerts from the Samhain host
file integrity monitor. Samhain frequently checks crit-
ical system files on a host for additions, modifications
and deletions. Any changes are immediately logged lo-
cally or reported to a remote log server. Samhain sensor
observations include timestamps of changes, filenames,
violation type, and changes in the system kernel. Ob-
servations from this sensor allows correlation of network
and host based activity.

The NetFlow sensor classifies a communication between
two or more machines in terms of volume of data trans-
fer, length of the transmission and number of packets in-
volved. The sensor monitors network packets and aggre-
gates them in groups of the same source IP, destination
IP, source port, and destination port. As packets in the
same flow arrive, the number of bytes of new packets
are recorded. The flow is considered closed if transmis-
sion stops for the duration of a specified time threshold.

Volume Packets Duration Balance %

1: one packet 0: < 1 s Zero
0: 0 2: two packets 1: 1-10 s Very Small
1: 1-128b Tiny 3: 3-9 2: 10-100 s Small 1: IN
2: 128b-1Kb Small 4: 10-99 3: 100-1000 s Medium 2: OUT N
3: 1Kb-100Kb Med. 5: 100-999 4: 1000-10000 s Large 3: PAR
4: > 100Kb large 6: > 1000 5: 10000-100000 s Very Large

6: > 100000 s Very Very Large

Table 1: NetFlow sensor classifications

At that point, the number of packets and total duration
of the flow is computed. These quantities are then clas-
sified as shown in Table 1. This is the first version of
network flow sensor that we built. We still use it since it
is useful to get observations that feed models like large
upload, low and slow download, that are instantiated ac-
cording to the volume, number of packets, duration and
balance. Percentage is the actual percentage above 50 of
data movement in the direction of the balance field.

4 Investigated scenarios

4.1 Flow attribution

4.1.1 Packets in a flow triggered IDS alerts

The PQS instantiates models based on observations com-
ing from the flow and the Snort sensors. An example of
a track formed is shown in Table 2. The columns rep-
resent the timestamp, the sensor type (F = Flow Sen-
sor and S = Snort), the IP address of the initiator of the
communication, the destination IP address, and the pro-
tocol respectively. This particular track shows that a sin-
gle flow between two hosts triggered many Snort alerts.
The numbers next to the Snort sensor type represent the
particular Snort rule that was violated. Snort rule 1560
(WEB-MISC /doc/access) generates an alert when an at-
tempt is made to exploit a known vulnerability on a web
server or a web application. Snort rule 1852 (WEB-MISC
robots.txt access Summary) generates an alert when an
attempt is made to access the ’robots.txt’ file directly.
Also we must notice the starting and ending timestamp
of the flow. As we can see the flow ends but the model
keeps correlating the flow with snort alerts generated af-
ter the flow finished.

4.2 Flow aggregation

The number of flows collected over a network can be
very high and belong to disconnected activities like chat-
ting or retrieving a web page. But flows apparently un-
related to one another might still belong to a single user

3



Timestamp Sensor src IP dst IP Proto

Jul 09 16:28:32 S1852 65.54.188.140 208.253.154.195 TCP
Jul 09 16:29:35 S1852 65.54.188.140 208.253.154.195 TCP
Jul 09 16:44:44 S1560 65.54.188.140 208.253.154.195 TCP
Jul 09 18:26:08 S1560 65.54.188.140 208.253.154.195 TCP
Jul 09 21:05:03 S1852 65.54.188.140 208.253.154.195 TCP
Jul 09 22:31:08 S1852 65.54.188.140 208.253.154.195 TCP
Jul 09 22:31:08 S1560 65.54.188.140 208.253.154.195 TCP
Jul 10 02:45:19 S1852 65.54.188.140 208.253.154.195 TCP
Jul 10 02:45:23 S1852 65.54.188.140 208.253.154.195 TCP
Jul 10 09:21:15 S1852 65.54.188.140 208.253.154.195 TCP
Jul 10 14:33:43 S1852 65.54.188.140 208.253.154.195 TCP
Jul 10 17:54:54 S1852 65.54.188.140 208.253.154.195 TCP
Jul 10 22:07:02 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 01:38:09 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 04:05:54 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 04:20:00 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 04:20:00 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 11:07:12 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 11:56:12 S1852 65.54.188.140 208.253.154.195 TCP
Jul 11 17:16:59 S1852 65.54.188.140 208.253.154.195 TCP
S Jul 10 02:30:27 F 65.54.188.140 208.253.154.195 TCP
E Jul 10 23:55:56

Table 2: A sample track of correlated IDS and Flow
events

event or action. Our goal is to correlate all these flows to
a single user activity.

4.2.1 Surfing the web

The full retrieval of a web page is a classical example
of this situation. The first flow represents a DNS query
to retrieve the IP address of the web server. An HTTP
query to the web server generates a second flow. At this
point many other flows may be generated (for example,
as images download).

Another more challenging example is the following.
Users often start connecting to a web page, and then fol-
low links present in the page they visit. Since each page
might have different flow characteristics this activity re-
sults in many different flows. But it is reasonable to think
about these flows as part of the same event. Time stamps
can be used to discriminate different instantiations of the
same event. The challenge is to identify unrelated flows
as part of a single event.

Building models for web browsing aggregation re-
quires retrieving flows with destination port 80, parsing
the web pages and following the links. If an IP address
or URL linked by the web page is present in one of the
flows it might be that the two requests are connected.

5 Improvements metrics

While developing a framework for flow tracking it is im-
portant to measure the success of our system. We must
therefore find ways to quantify progress. One way of
measuring improvement in our method is checking the
size of the group of actions to which a given observable

or flow may be attributed. If the size as well as the ambi-
guity reduces the methodology becomes more and more
precise. Each attribution or aggregation must be sup-
ported by a level of confidence quantified with a number
indicating how certain we are of the conclusions. Also,
we can improve the system by increasing the number and
type of observations that it can aggregate into a set of ba-
sic components.

6 Conclusion and Future Work

Process Query Systems are powerful tools to perform
sensor observation correlation. We applied the system
to correlate flow observation with other IDS observations
successfully. We plan to run experiments to perform flow
aggregation in order to identify flows belonging to a sin-
gle user event. We believe that this would lead to signif-
icant improvements in security analysis.
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Why flow data
The context in which we are interested in flow analysis is the following.

• We believe that automated correlation is hard to do. 

• The world consists of processes so our approach to correlation is 
process-based..

• Introduction, in 2003, of generic process-based correlation engine 
concept and implementation, Process Query System (PQS).

• Integration of multiple existing and new sensor types and attacks 
models

• Flow aggregation and correlations between flow data with security 
events

• Implementation of a PQS based process detection for Cyber 
Situational Awareness.

• Need for flow data.
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Process Query System
Observable events coming from sensorsObservable events coming from sensors

ModelsModels

Tracking 
Algorithms

Tracking 
Algorithms

PQS
ENGINE

HypothesisHypothesis

Implemented for:

Vehicle Tracking
Computer Security
Social Network
Plume Tracking
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Cyber Situational Awareness
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Internet
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Sensors and Models

Noisy Internet Worm Propagation – fast scanning

Email Virus Propagation – hosts aggressively send emails

Low&Slow Stealthy Scans – of our entire network

Unauthorized Insider Document Access – insider information theft

Multistage Attack – several penetrations, inside our network

DATA movement

TIER 2 models
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Samba SMB server - file access reporting4

IPtables Linux Netfilter firewall, log based3

Snort, Dragon Signature Matching IDS2

Tripwire Host filesystem integrity checker7

Se
ns

or
s

M
od

el
s



7Flow  and Covert 
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Multi Stage Attack Example: Phishing
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Phishing Attack Observables
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Flow Sensor
Based on the libpcap interface for packet capturing.
Packets with the same source IP, destination IP, source port, destination     

port, protocol are aggregated into the same flow.

• Timestamp of the last packet
• # packets from Source to Destination
• # packets from Destination to Source
• # bytes from Source to Destination
• # bytes from Destination to Source
• Array containing delays in microseconds between packets in the flow
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Two Models Based on the Flow Sensor

Volume Packets Duration Balance Percentage
Tiny: 1-128b
Small: 128b-1Kb

4:10-99
5: 100-999 
6: > 1000

4: 1000-10000 s 
5: 10000-100000 s 
6: > 100000 s

Out >80

Low and Slow  UPLOAD

Volume Packets Duration Balance Percentage

Tiny: 1-128b
Small: 128b-1Kb
Medium: 1Kb-100Kb 
Large: > 100Kb 

1: one packet 
2: two pckts
3: 3-9 
4: 10-99 
5: 100-999 
6: > 1000

0: < 1 s   
1: 1-10 s 
2: 10-100 s 
3: 100-1000 s 
4: 1000-10000 s 
5: 10000-100000 s 
6: > 100000 s

Out >80

UPLOAD
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Aggregation
Flow aggregation. Activity aggregation.

Recognizing that similar activities 
occur regularly at the same time, or 
dissimilar activities occur regularly in 
the same sequence.
We correlate activities into activity 
groups, patterns.

Recognizing that different flows, 
apparently totally unrelated, 
nevertheless belong to the same 
broader event (activity).
Flows are aggregated from captured 
network packets.
We aggregate flows into activities.

Example:

User requests a webpage (all DNS 
and HTTP flows aggregated)

Examples:

• Nightly backups to all servers (each 
backup is an activity)
• User requests a sequence of web-
pages every morning.

Packet = Aggregated Bytes
Flow = Correlated Packets
Activity = Correlated Flows
Pattern = Correlated Activities
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1. The browser communicates with a name server to translate the 
server name "www.dartmouth.edu" into an IP Address, which it uses to 
connect to the server machine. 

2. The browser forms a connection to the web server at that IP 
address on port 80. 

3. Following the HTTP protocol, the browser sends a GET request to the 
server, asking for the file "http://www.dartmouth.edu/index.html." 

4. The web server sends the HTML text for the Web page to the browser. 

5. The browser reads the HTML tags and formatted the page onto your 
screen. 

6. Browser possibly initiates more DNS requests for media such as 
images and video.

7. Browser initiates more HTTP and/or FTP requests for media.

Web Surfing in Detail
A FLOW IS 
INITIATED

A FLOW IS 
INITIATED

MULTIPLE 
FLOWS ARE 
INITIATED…
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Resulting Flows and Activity

Activity

Flows in
the activity
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Activities and Flows

UDP Flow
TCP Flow

Activity

Long Flow



16

Correlated
Network
Flows
Within
a LAN

Complex Activities ....
TCP portscan

UDP portscan

Regular browsing/ 
download behavior

Regular UDP 
broadcasts (NTP)

System upgrade
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Packets in a flow triggered IDS alerts
PQS instantiates models based on observation coming from flow and snort sensor.

Snort rule 1560
generates an alert 
when an attempt
is made to exploit a 
known vulnerability in 
a web server or a web
application. 

Snort rule 1852 
generates an alert 
when an attempt is 
made to access the 
'robots.txt' file 
directly. FLOW

SNORT 
ALERTS

The flow can be characterized as malicious and further investigation must be done.



18

Future Direction
Theoretical approach for clustering aggregated flows.

Flow = As defined
Activity = Aggregated flows 
Pattern = Correlated Activities

Approach: Graph theory (flows are the nodes and the edges are between 
correlated nodes).
We are thinking about defining a metric that captures the closeness 
between two different activities to allow grouping into patterns.

x

s

t

y
x

s
t

yz

w

Activity 1. Activity 2.
Can they be grouped in one 
pattern?
Notion of distance between 
activities.
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www.pqsnet.net
agiani@ists.dartmouth.edu
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PQS-Net Network

Student and researcher use this network to browse the web, print
documents, send upload and download files…

5
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Web Surfing
208.253.154.210  host name
208.253.154.195  dns.pqsnet.net
129.170.16.4        ns.dartmouth.edu

1. ns.pqsnet.net requests 
www.nytimes.com ip
address to 
ns.dartmouth.edu

2. ns.dartmouth.edu returns 
the ip address –
199.239.136.245

3. TCP three-way handshake 
between the host machine 
and the web server.

4. HTTP GET request to 
199.239.136.245

5. TCP ACK from the web 
server

6. Other packets exchanges 
between the web server 
and the host

All these network connections are related to the same host activity.
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The Effect of Packet Sampling on Anomaly
Detection

Daniela Brauckhoff, Bernhard Tellenbach, Arno Wagner, Anukool Lakhina, Martin May

Abstract—
Packet sampling methods such as Cisco’s NetFlow are widely

employed by large networks to reduce the amount of traffic data
measured. A key problem with packet sampling is that it is inher-
ently a lossy process, discarding (potentially useful) information.
In this paper, we empirically evaluate the impact of sampling on
anomaly detection. Starting with unsampled traffic records col-
lected during the Blaster worm outbreak, we reconstruct the un-
derlying packet trace and simulate packet sampling at increas-
ing rates. We then use our knowledge of the Blaster anomaly to
build a baseline of normal traffic (without Blaster), against which
we can measure the anomaly size at various sampling rates. This
approach allows us to evaluate the impact of packet sampling on
anomaly detection without being restricted to (or biased by) a par-
ticular anomaly detection method.

We find that packet sampling does not disturb the anomaly size
when measured in volume metrics such as the number of bytes
and number of packets, but grossly biases the number of flows.
However, we find that recently proposed entropy-based summa-
rizations of packet and flow counts are affected less by sampling,
and expose the Blaster worm outbreak even at higher sampling
rates. Our findings suggest that entropy summarizations are more
resilient to sampling than volume metrics. Thus, while not perfect,
sampling still preserves sufficient distributional structure, which
when harnessed by tools like entropy, can expose hard-to-detect
scanning anomalies.

I. INTRODUCTION

Traffic sampling has emerged as the dominant means to sum-
marize the vast amount of traffic data continuously collected for
network monitoring. The most prevalent and widely-deployed
method of sampling traffic is packet sampling, where a router
inspects every n-th packet (uniformly at random), and records
its features (addresses, ports, protocol, and flags).

But, while being attractive because of efficiency and avail-
ability, sampling is inherently a lossy process, where many
packets are discarded without inspection. Thus sampled traf-
fic is an incomplete and more importantly, a biased approxima-
tion of the underlying traffic trace, as small flows are likely to
be missed entirely. Previous work has largely focused on an-
alyzing this bias, devising better sampling strategies [3], and
recovering statistics (moments and distribution) of the underly-
ing traffic trace using inference [5, 6, 8].

There is comparatively little previous work on how sampling
impacts network monitoring applications, such as anomaly de-
tection. Indeed sampled traffic views have recently been used
for signature-based security analysis and anomaly detection

D. Brauckhoff, B. Tellenbach, A. Wagner and M. May are with the Depart-
ment of Information Technology and Electrical Engineering, Swiss Federal In-
stitute of Technology (ETH), Zurich, Switzerland; email: {brauckhoff, tellen-
bach, wagner, may}@tik.ee.ethz.ch. A. Lakhina is with the Department of
Computer Science at Boston University; email: anukool@cs.bu.edu

with considerable success [10, 12]. But, little is known about
the fidelity of the sampled stream for these applications, and
basic questions remain unanswered; for example: how com-
plete are the detections revealed by these methods on sampled
traffic? and: what kind of anomalies are discarded by packet
sampling? Clearly signature-based security detection schemes
– which look for specific, often detailed, packet-level connec-
tion patterns in traffic – will be very sensitive to missing pack-
ets, and will be impacted by packet sampling. However, the
impact of packet sampling on anomaly detection is less clear.
This is because anomaly detection is concerned not with find-
ing specific packet patterns in sampled traffic, but rather with
exposing incidents that deviate significantly from typical traffic
behavior. Indeed, anomaly detection methods work by build-
ing models for “normal” traffic over a period of time (typically
days to week), and then reporting events that are outliers (ac-
cording to some distance measure) from this baseline normal
model. Therefore, for packet sampling to impact anomaly de-
tection it has to either: (1) disturb the baseline model of normal
traffic drastically, or (2) dwarf the anomaly significantly so that
it does not deviate from the baseline in any detectable manner.

In this paper, we empirically study the impact of packet sam-
pling on anomaly detection, focusing on how sampling dwarfs a
known anomaly, when compared to a baseline. For our evalua-
tion, we rely on a unique week-long dataset of unsampled traffic
records with the Blaster worm anomaly, collected from back-
bone routers of a national ISP. We then simulate packet sam-
pling to construct sampled views of the same traffic trace and
ask how the sampled view differs from the original trace, from
an anomaly detection standpoint. Rather than focus on a partic-
ular anomaly detection method, we adopt a general methodol-
ogy. Because we know the exact characteristics of the anomaly
in our trace, we can build the ideal normal baseline, that all
anomaly detection methods would strive to build. We then
study the size of the worm anomaly, which is measured as the
distance from this ideal baseline, at increasing sampling rates.

As a starting point, we investigate how packet sampling
impacts the three principal volume metrics (number of bytes,
packets and flows), which have been used widely by many de-
tection methods [1, 2, 11]. We find that packet sampling im-
pacts byte counts and packet counts little, but impacts flow
counts radically. This finding suggests that anomalies that im-
pact packet and byte volume only will stand out even in sampled
traffic, but anomalies that impact flow counts alone (such as the
Blaster worm in our data) are likely to be discarded by packet
sampling. Therefore detection schemes based on flow volume
alone are likely to be inadequate for sampled traffic.

In addition to volume metrics, we also study the impact of
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packet sampling on feature entropy metrics [12, 14]. The au-
thors of [12] showed that changes in distributions of traffic fea-
tures (ports and addresses), when summarized by entropy, re-
veal a broad spectrum of anomalies. We evaluated how effec-
tive entropy is at exposing anomalies at increasing sampling
rates. Our results here are surprising: we find that while flow
volume is grossly impacted by packet sampling, flow entropy
is disturbed little. In particular, the Blaster worm in our data
when measured in flow counts is dwarfed significantly and vir-
tually undetectable at higher sampling rates, but the worm re-
mains largely unaffected by sampling when measured from a
baseline entropy. Thus, the structure of the Blaster worm, as
captured by entropy, is preserved even at high sampling rates of
1 in 1000. Our findings provide hope that even though packet
sampling produces imperfect traffic views for anomaly detec-
tion, there are metrics (such as entropy) that allow us to harness
useful information in sampled traces.

The rest of this paper is organized as follows. We next pro-
vide an overview of our methodology. In Section 3, we in-
troduce our anomaly detection model and study the impact of
packet sampling on detecting flow-based anomalies. In Section
4, we conclude and outline directions for future work.

II. METHODOLOGY

In order to systematically evaluate the impact of packet sam-
pling on anomaly detection, one requires packet-level traces (at
various sampling rates) that ideally meet two criteria: (1) the
traces contain known anomalies, and (2) the traces span a long
duration (days to week). Known anomalies make evaluation
simpler, as ground truth is known a priori. And, longer traces
are needed since many anomaly detection methods require a
considerable training period in order to profile the normal traf-
fic behavior. Unfortunately, legal requirements (data protec-
tion) and technical limitations (storage space), make it difficult
to collect such detailed packet-level data.

To circumvent the lack of suitable long-term packet traces,
we instead decided to work with unsampled flow records, de-
veloped a method to reconstruct packet-level traces from these
flow traces.

A. Reconstructing Packet Traces

Our method to reconstruct the packet traces takes (unsam-
pled) NetFlow records from the Swiss Academic and Research
Network (SWITCH) [13] as input and generates the corre-
sponding packet traces. The output format of the packet traces
is again flow records with ”flows” that contain only one packet
and that have the same start- and end-time. In contrast to real
NetFlow records, the packet traces contain ”flows” that are
sorted according to their start time.

The reconstruction algorithm processes the flows in the order
as they are stored in the flow traces. For each of these flows it
does the following: First, the size of the packet is calculated by
dividing the total number of bytes B by the number of packets
N in the corresponding flow. Afterwards, the time stamp of
the packet is randomly selected within flow bounds and with a
resolution of one millisecond. With this, the expected size of a

packet in the flow is equal to B/N and the expected number of
transferred bytes per millisecond is N/M .

Furthermore, by choosing the same packet size for all pack-
ets, we preserve (on average) the often assumed (e.g., [7], [9])
constant throughput property of flows even if they are split over
two intervals. Recently, the authors of [15] presented empirical
evidence demonstrating that the constant throughput property
is a good approximation of the behavior of large flows (heavy
hitter, elephant flows) while still being a reasonalbe approxima-
tion for small ones (mice flows).

B. Effects of Sampling on Byte, Packet, and Flow Metrics

Having reconstructed the packet traces from our NetFlow
data, we can now look at how timeseries of volume and feature
entropy metrics are impacted by packet sampling. Therefore,
we sampled our one-week data set at four different sampling
rates of 1 out of 10, 1 out of 100, 1 out of 250, and 1 out of
1000. The sampling method we applied is random probabilistic
packet sampling. Thus, sampling at a rate of q we indepen-
dently select each packet with a probability of q or discard it
with a probability of 1 − q. Subsequently, we computed the
timeseries of volume metrics (byte, packet, and flow counts),
and feature entropy metrics (packet and flow entropy of IP ad-
dresses and port numbers).

To illustrate the following discussion on sampling effects, a
selection of meaningful timeseries is depicted in Fig. 1. As
expected, Fig. 1(a) shows that packet counts are not disturbed
by packet sampling. The unsampled values can simply be es-
timated by multiplying the sampled value with a factor of 1/q.
This is due to the fact that the variation of packet sizes by a fac-
tor of 100 (between 40 and 1500 Bytes) is very small compared
to the overall number of Bytes (≈ 1010) within one interval of
15 minutes. On the contrary, flow counts are heavily disturbed
by packet sampling even at a sampling rate as low as 1 out of
10 (see Figure 1(b)). This can be explained with the fact that
small flows (with only few packets) are sampled with a smaller
probability compared to larger flows [6].

More interestingly, flow entropy metrics (Fig. 1(c)) are well
preserved even at higher sampling rates. Though we see that
packet sampling disturbs entropy metrics (the unsampled value
cannot easily be computed from the sampled value as for byte
and packet counts), the main traffic pattern is still visible in the
sampled trace. This insight was the main motivation for this
work.

III. IMPACT OF SAMPLING ON ANOMALY DETECTION

In this section, we study the impact of sampling on anomaly
detection methods. Rather than apply a particular anomaly de-
tection method on sampled views of traffic, we adopt a more
general strategy based on the observation that fundamentally
all anomaly detection methods must first define “normal” be-
havior; anomalies then become deviations from this baseline
behavior. So if we can build the “perfect” baseline (an objec-
tive that all anomaly detection methods will strive towards), we
can gain insight into the fundamental impact of packet sampling
on any anomaly detection method, in particular, the detection
schemes with the “best” models for baseline behavior.
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Fig. 1. Impact of Sampling on Timeseries of Selected Metrics.
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Fig. 2. Baselines for Selected Metrics.

A. Determining the Baseline
Since our intention is to analyze the effect of sampling on

anomaly detection, we need to quantify and measure the factor
by which sampling disturbs a certain metric.

An accurate method to determine the level of disturbance is
to measure the distance (or normalized distance) between “nor-
mal” traffic (from hereon called baseline) and “abnormal” traf-
fic (traffic containing network anomalies). The difficulty, how-
ever, as for every anomaly detection method is to correctly de-
termine this baseline. For our study, we have the huge advan-
tage that we know the Blaster anomaly in our trace very well.
Thus, we are able to construct an “ideal” baseline by removing
the traffic that constitutes to the anomaly. In our case, that is
removing all traffic that matches a Blaster heuristic: all packets
with destination port 135 and packet sizes of 40, 44, or 48 are
removed.

The baseline and the original unsampled trace are depicted
for packet counts (Figure 2(a)), flow counts (Figure 2(b)), and
flow destination IP address entropy (Figure 2(c)). While packet
counts do only show a minor increase in distance before and af-
ter the Blaster outbreak, the other three metrics indicate a more
drastic and visible change.

B. Measuring Anomaly Size
Having constructed the baselines and packet traces for dif-

ferent sampling rates and metrics, we now answer the question:
How is anomaly detection impacted by packet sampling? To
address this question, we measure the anomaly size at differ-
ent sampling rates instead of focusing on a particular anomaly
detection method. We define anomaly size as the distance be-
tween a sampled view x and the corresponding baseline x̂. We
determine the anomaly size, by measuring deviation from the
baseline at each timebin using two distance measures:

• the relative difference, defined as: (x− x̂)/x̂
• the l2 difference:

√∑
((x− x̂)2)/

∑
(x̂2)

For the relative difference, we computed the distance for each
interval individually, and afterwards averaged over a time pe-
riod starting from the Blaster outbreak on 11/08/2006 at 17:00
until midnight of the same day. For the l2 difference, we com-
puted the sum over the same period for all distances, which was
then normed over the sum of all baseline values in this period.
Doing this is reasonable since we observe more or less constant
Blaster traffic for the whole period (see Fig. 1).

In Fig. 3 we plot the sampling rate vs. the relative differ-
ence as well as the sampling rate vs. the l2 difference for packet
counts, flow counts, flow destination IP entropy, and packet des-
tination IP entropy. The figure shows four curves, one for each
metric under investigation, at each sampling rate. For the flow
count metrics the relative difference as well as the l2 difference
decrease drastically when sampling is applied.

Packet counts, in contrast, are not impacted by packet sam-
pling and consequently the relative difference as well as the
l2 difference for packet counts remain constant. However,
the problem with packet counts is that Blaster-type anomalies
which usually represent only a very small fraction of all packets
(less than 1% in our backbone trace) are not very visible even
in the unsampled data traces.

The flow and the packet entropy curves stand in sharp con-
trast to flow counts. The relative difference as well as the l2
difference decrease only very slightly even for sampling rates
as high as 1 out of 1000 for both the entropy metrics, imply-
ing that the size of the Blaster worm remains unaffected when
viewed using entropy.

To summarize, our results collectively demonstrate that
entropy-based metrics have two key benefits over volume-based
metrics: (1) they capture the Blaster worm in unsampled traffic,
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even though the Blaster worm is not clearly visible in packet
and byte counts; and more importantly: (2) they are impacted
little by sampling when compared to flow counts.
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Fig. 3. Anomaly Size (measured as deviation from the baseline) vs. Sampling
Rates for four metrics.

C. Metric Sensitivity to Anomaly Intensity
To evaluate the sensitivity of entropy towards sampling, we

use the given trace and attenuate or amplify the strength of the
Blaster anomaly signal. To amplify the Blaster anomaly, we
duplicate the attack packets by a factor of 2; for an attenuated
attack, we keep only 50%, 20%, and 10% of the attack packets
in the packet trace.

Fig. 4. Normalized anomaly deviation from the baseline for flow counts and
flow entropy across increasing sampling rates and different intensities.

Figure 4 presents the anomaly size (l2 difference from the
baseline) as captured in two metrics, the flow count (dark gray)
and the flow entropy (light gray), across increasing sampling
rates and different intensities1. It provides considerable insight
into the efficacy of flow counts and flow entropy in exposing the
Blaster anomaly at various intensities and at various sampling
rates.

As expected, the stronger the anomaly the more easily the
anomaly will be detected for both metrics. But, flow counts de-
crease sharply as the Blaster worm is attenuated, even with un-
sampled traffic. Moreover, this decrease in flow counts is even
sharper as the sampling rate increases. In contrast, flow entropy
decreases remarkably slow, both with increasing sampling rate
and for varying intensities of the Blaster attack.

We conclude from this figure that flow entropy is far more
robust to packet sampling than simple flow count based sum-
maries, when exposing the Blaster worm at various intensities.

1For presentation purposes, we normalized each surface by the maximum
size for that metric, so that the size of the anomaly for each metric falls between
0 and 1.

IV. CONCLUSION

In this paper, we empirically evaluated the impact of packet
sampling on anomaly detection. With a week-long dataset of
unsampled traffic records containing the Blaster worm, we em-
ployed a general detection methodology (the deviation from an
idealized baseline) to evaluate the fidelity of sampled traffic in
exposing anomalies.

Our first finding is somewhat expected: we found that packet
sampling produces accurate estimates of byte and packet counts
(when compared to the underlying trace). However, packet
sampling produces grossly inaccurate estimates of flow counts.
Thus, anomalies that only impact packet counts or byte counts,
are likely to be visible in sampled views, but anomalies that im-
pact flow counts (such as the Blaster worm in our data) will not
be visible.

We then evaluated the effect of packet sampling on feature
entropy. Surprisingly, we found that while the Blaster worm
is entirely undetectable in flow counts of sampled traces, it is
visible in flow entropy. While sampled traffic views are neces-
sarily incomplete and imperfect, they are not completely use-
less; in fact, this paper shows that sampled traffic has utility for
anomaly diagnosis, if it is analyzed using the appropriate met-
rics, such as entropy. The results presented in this paper open
up new directions for research on devising detection metrics
that are robust to packet sampling.
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Motivation

The general opinion about sampling: 
With sampling valuable information lost about anomalies
But sampling needs to be used anyway...

- Cannot get unsampled netflow from some routers

Interesting questions arise:
How much information is actually lost?
Are all anomalies equally affected by sampling?
Are all detection metrics equally affected by sampling?
At which sampling rate is a certain anomaly still detectable?
Can we estimate the original anomaly size from a sampled view?
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Data & Experiments

A week-long dataset of unsampled Netflow records
from a backbone router of a national ISP
Known Blaster outbreak in our data

Goal: Study impact of packet sampling on Blaster worm
Focus on visibility of Blaster worm
Focus on anomaly detection metrics

- Bytes, Packets, Flows, Traffic Features, ...
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Typical Traffic Port scan

One destination 
(victim) dominates 

~ 450 new 
destination portsDest. 

Ports

Dest. 
IPs

# 
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ts
# 
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ts

Summarize using 
sample entropy of 
histogram X

Dispersed 
Histogram
High Entropy

Concentrated
Histogram
Low Entropy

Entropy as a Detection Metric [LCD:SIGCOMM05]
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H(Dst IP)

# Bytes

# Packets

H(DstPort) But stands out in 
feature entropy, 
which also reveals
its structure

Worm scan dwarfed 
in volume metrics…

Traffic from SNVA to NYC

The Power of Entropy
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Which AD metrics to look at?

Flow counts

Flow destination IP entropy
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Methodology: Packet Sampling

Determine the packet size (bytes) and timestamps for 
individual packets in the flow trace
Each packet of a flow is recorded in it‘s own flow record 
with

packet_size = flow_size/num_packets (average packet size)
timestamp randomly chosen within flow bounds

Randomly sample every 10th, 100th, 250th, and 1000th 
packet

Not exactly what Cisco does, but pretty close...
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Timeseries of Detection Metrics

unsampled 10 100 1000

Flow counts

Flow dst IP entropy
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Methodology: Determine the Baseline

AD algorithms measure distance from (predicted) baseline to 
(actual) observed metrics
Each AD method uses it‘s own handcrafted algorithm to determine 
the baseline model
Since we know the anomaly very well we can construct an „ideal 
baseline“ by removing all blaster packets from the observed trace

Heuristic: blaster packet = packet with destination port 135, protocol 
TCP, and length of 40, 44, 48 bytes

One baseline per metric and sampling rate
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Methodology: Measure anomaly distance

Absolute difference between 
trace y and baseline ŷ

abs = y – ŷ

Absolute difference normalized 
to the baseline ŷ

rel = (y – ŷ)/ ŷŷ

yabs
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Anomaly Distance vs Sampling Rate

Absolute distance Relative distance

Volume: Expo-
nential decrease

Entropy: Linear 
decrease

Flow counts: Expo-
nential decrease

Entropy: Linear 
decrease

Q: What do these distance measures tell us?
A: In this scenario entropy is less disturbed by sampling…

Sampling rate
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Scaling the Blaster Worm

Identification of Blaster packets based on heuristic 
dst port, packet size, tcp

Amplification of the Blaster worm
Insertion of new packets with same src IP, and dst IP randomly 
selected from SWITCH IP range

Attenuation of the Blaster worm
Randomly throwing out of some of the Blaster packets (e.g., 
select each packet with probability of 50%)
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Relative Distance for Scaled Blaster

Scaling factor: 0.5 Scaling factor: 1 Scaling factor: 2

Q: What do these scaled distance measures tell us?
A: For faster and slower Blaster-like worms, entropy is less disturbed by 
sampling than flow counts…
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Sampling rate
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Conclusion and Future Work

What did we learn? 
Some metrics are more resilient to sampling than others
Flow DST IP entropy is most resilient to sampling for Blaster-type 
anomalies (in our traces)

What still needs to be studied...
Other types of anomalies, anomaly intensities
Other distance metrics (considering a metrics‘ variance)
Different bin sizes
Further anomaly metrics
Anomaly detectability at different sampling rates
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Questions?

Daniela Brauckhoff
ETH Zurich, Switzerland
brauckhoff@tik.ee.ethz.ch
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Baselines for AD Metrics (unsampled)
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Volume Time Series

1000                               100 10 unsampled
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Entropy Time Series

1000 100 10 unsampled
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Anomaly Distance vs Sampling Rate

17:00 17:15 17:30  17:45

Absolute distance

Relative distance



A Case for Packet SamplingA Case for Packet Sampling

Tanja Zseby, zseby@fokus.fhg.de

Competence Center for Autonomic Networking Technologies 



FloCon 2006 Panel 2

Motivation: Motivation: FloConFloCon 20052005

FloCon05 participants: 

“We don’t believe in Sampling”

� Happy to use flow data

� Very skeptical to packet sampling
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The Problem: Limited ResourcesThe Problem: Limited Resources

� Full packet capture at each node not feasible
– Increasing data rates

– Hardware costs

– Privacy concerns

� Resources are limited
– Storage

– Processing

– Transmission

We cannot measure everything

Additional CPU load for running NetFlow on different routers*

*source: NetFlow Performance Analysis, Cisco white paper 
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/ntfo_wpa.jpg
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Solution1: Flow DataSolution1: Flow Data

� Grouping of packets into flows (classification)

� Reporting of flow information only

� Disadvantages:
– Per-packet information is lost

– Information and effort depends on flow definition

Classification

Record Generation

2x 1x5xFlow Info:
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Flow Data GenerationFlow Data Generation

� Information about packets is discarded
� Available information depends on 

– Flow definition
– Flow characteristics that are reported

Aggregation

Classification

Aggregation Aggregation

FlowID 1: 
<s1, t1, c1> 
<s4, t4, c4> 
<s8, t8, c8>

FlowID 2: 
<s2, t2, c2> 
<s3, t3, c3> 
<s6, t6, c6>

FlowID 3: 
<s5, t5, c5> 
<s7, t7, c7> 
<s9, t9, c9>

Flow Characteristics:

<s1, t1, c1>, <s2, t2, c2>, ...  <sN, tN, cN>Traffic Mix:

Flows:

<Nf, µf, f, …> <Nf, µf, f, …> <Nf, µf, f, …> 

Aggregation

Classification

Aggregation Aggregation

FlowID 1: 
<s1, t1, c1> 
<s4, t4, c4> 
<s8, t8, c8>

FlowID 2: 
<s2, t2, c2> 
<s3, t3, c3> 
<s6, t6, c6>

FlowID 3: 
<s5, t5, c5> 
<s7, t7, c7> 
<s9, t9, c9>

Flow Characteristics:

<s1, t1, c1>, <s2, t2, c2>, ...  <sN, tN, cN>Traffic Mix:

Flows:

<Nf, µf, f, …> <Nf, µf, f, …> <Nf, µf, f, …> 

Record 
Generation

Record 
Generation

Record 
Generation
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Solution2: Packet SamplingSolution2: Packet Sampling

� Random Selection of some packets
– Report parts or full packet information

– Estimation of metrics based on sample

� Provides different viewpoint 
– Packet data can reveal further information

– Sampled data sufficient for some metrics

� Helps to protect measurement infrastructure during attack

Sampling

Packet Inspection
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Sampling: State of ArtSampling: State of Art

1990 200520001995

adaptive
[EsKM04]

sample+hold
[EsVa01]

flow volume

2001 2003 20042002

adaptive 
[DrCh98]

packet-count

total volume

adaptive
[ChPZ02]

[AmCa89]

[JePP92]

packet-count per flow 2-run
[KoLM04]

flow
sampling
[DuLT01]

time vs. count
[ClPB93]

First Sampling 
Workshop 

2005

stratified
[Zseb05]

SLA/QoS

ATM
[CoGi98]

proportion
[Zseb02]

stratified
[Zseb03]

(trajectory)
[DuGr00]

hash emulation
[NiMD04], [MoND05]

IPFIX

anomaly detection with
hypothesis testing

load change detection

sFlow
[RFC3176] PSAMP

attack detection as 
target application

DDos detection

protect infrastructure
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Packet SamplingPacket Sampling

Real metric substituted by estimate

� Accuracy statement is essential

Accuracy depends on 
– Sampling scheme

– Estimation method

– Position of sampling process in measurement sequence

– Population characteristics (e.g. variance of metric of 
interest)
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A Simple ExampleA Simple Example

( )ˆ ˆ
ˆ ˆ 1c cP P

Prob P z P P zσ σ α− ⋅ ≤ ≤ + ⋅ = −

M
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N
= ˆ m

P
n

=Real proportion: Estimate: 

Estimation Accuracy (random n-of-N): 
( )

ˆ

1

1P

P P N n

n N
σ

⋅ − −= ⋅
−

Confidence Limits: 

Works with other packet properties, too!

ˆ 0.9P = ˆ 0.03
P

σ = � 0.8226 � P � 0.977, with 99% confidence�

ˆ 0.5P = ˆ 0.05
P

σ =(worst case) � � 0.371 � P � 0.629, with 99% confidence

Goal: Estimation of packet proportions (e.g. TCP-SYN packets in a flow)

ˆ 0.1P = � same accuracy

Example: - Measurement interval with N=10,000 packets
- Random packet selection 1% (n=100)
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AdviseAdvise

� Don’t restrict your analysis to flow data
– Include further viewpoints
– Use sampling in addition or as alternative to flow data

� Trust the power of statistics
– It’s a mature and well established field 
� full range of proven techniques

� Use sampling where applicable
– Applicability depends on traffic profile, metric of interest, accuracy demand

� Sampled data sufficient to detect large events (high volumes, high 
packet counts)

� May be sufficient to estimate #pkts with specific properties (e.g.  SYN, 
VoIP packets, small packets, packets with same content, etc.)

� Others � depends on scenario
– Difficulties with rare events (stealth attacks, slow port scans)
– Not suitable to re-assemble connections (but filtering may be)
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System Requirements

Due to the ever increasing number of network applications, and the proliferation of threats, 
requirements on flow processing systems are increasing dramatically with time. The main 
requirements are:

• Performance – this is currently in the 1 Gbps to 10 Gbps range, and increasing

• Scalability – the system architecture must be capable of addressing the requirements at 
lower and higher end applications economically, by scaling the available compute resources

• Functionality – the numbers and types of applications to be supported are increasing every 
year. In addition to general processing capabilities, these applications require special 
functions to be accelerated. Common functions are:

• cryptography

• compression

• regular expression matching

• Manageability – this is a key function for almost all situations, and includes a number of 
functions such as the ability to configure, monitor, and maintain.

• Application maintainability and portability – this is often overlooked. The architecture 
should be general enough so that applications can maintain generality, and address special 
needs through appropriate APIs. The cost of transforming applications to suit special 
architectures has been proven to be very costly, again and again.
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A General Architecture that 
meets these requirements

We propose the following clustering architecture, and show how it meets all the 
requirements we have listed. Such a system has been implemented for commercial use.

 

Architecture for Flow Processing 

APP

CPU-1 

APP

CPU-2 

APP

CPU-N 

NPU

High speed, 
extensible 
backplane 

Network 
Interfaces 

MGMT

This architecture has the following 
highlights:

• General purpose CPUs with facilities 
(over PCI) for specialized coprocessors

• A Network Processing Unit (NPU) for 
managing flow distribution

• An extensible, high-speed backplane 
for interconnecting CPUs and NPU

• A designated CPU for system 
management

• Facilities to attach multiple types of 
network interface cards to NPU
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The Application Environment -
Software

Software Environment

• All application CPUs run the Linux operating system. They are loosely coupled, and run 
identical versions of the kernel and system applications.

• In the current implementation, each CPU is a PPC 7447A processor. The architecture does 
not depend on the processor type, though. In the next generation, each CPU is a multi-core 
unit that can be configured to run as single cores or in SMP mode.

• There is no shared memory between the CPUs. All communication is over the system 
backplane.

• Each CPU has attached to it a PCI bus. This enables to attach coprocessor/accelerator 
units to each CPU.

• The management CPU has storage attached to it, that is accessible to all the application 
processor CPUs.

• All of the system management and configuration functions – the databases, CLI, GUI – run 
on MGMT.
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The Application Environment –
Networking, File System

Network Environment is identical in every CPU

• The backplane forms a private network which is accessed through a special Ethernet 
interface.

• Each external Ethernet interface is virtually extended into each CPU, so the external 
networks are accessed as though they were directly attached to each CPU. The NPU (Agere
APP 540) is transparent.

• Applications (running in CPUs and MGMT) communicate with each other using standard 
internet protocols over standard socket mechanisms.

• Routing protocols run on MGMT, but forwarding tables are propagated to application CPUs.

• Interfaces are configured on MGMT, and interfaces states are propagated to application 
CPUs.

File system environment is identical in every CPU

• All CPUs boot over the backplane using standard protocols with MGMT serving as the boot 
server.

• File system is mounted from MGMT

• Each CPU has local directories so applications can have individual logs or temporary 
storage.
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NPU Functions

The NPU (Agere APP 540) performs the following functions:

• Load-share flows to application CPUs based on multiple (configurable) algorithms

• Support special APIs for

• Cutting through flows that are not interesting to applications

• Bind specified flows to specific CPUs (application instances)

• Perform QoS functions

• Maintain and report flow statistics as required by applications

• Partition traffic between different applications using the Configurable Inspection Groups 
(CIG) feature

• (Future) Provide hooks for third parties to insert special inspection routines to maintain 
application specific state. This is not possible in the current generation, but will be an 
integral part of the next generation system.
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Bivio Architecture Overview

• System architecture optimized 
for Packet Handling

• Multi-dimensional scaling
• Key hardware elements:

• Powerful computation platform
• Hardware acceleration

• Network computing platform
• Integrated management
• Extensive QoS features
• Built-in high availability options
• Architectural survivability

• Open development 
environment
• Linux execution environment
• Full featured SDK

APCAPC
•• Scalable processing Scalable processing 

power for any IP power for any IP 
serviceservice

NPCNPC
•• Scalable wireScalable wire--speed speed 

intelligent packet intelligent packet 
forwardingforwarding

UltraWideUltraWide--4 SCSI4 SCSI
•• RAIDRAID--1 capable1 capable
•• NonNon--spinning media spinning media 

optionoption

1+1 Power1+1 Power
SupplySupply

Network Interface Network Interface 
ModulesModules

StackingStacking
ConnectorsConnectors

FanFan
TrayTray
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NPC: Network Processor Card

• 3 Gbps aggregate throughput
• Wire speed intelligent 

forwarding operations
• Packet inspection & classification 
• Modification & transformation (NAT)
• Traffic Management

• Diffserv, Intserv ..
• CPU load sharing control
• Internal Dual SCSI HD and 

RAID support
• Chassis-level management 
• DB-9 and 10/100 RJ-45 

management ports
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NPCNPC

Packet 
RAM Tables

NPC Functional Overview

• PowerPC-based 
Application and 
Admin Processors
• ~6,000 MIPS on local 

APs for application 
processing

• Network Processor 
and Traffic 
Management 
subsystem
• 5Gbit/s full duplex 

performance
• QoS processing

NP+TM2.5
Gbit/s

NIM1NIM1

NIM2NIM2
5Gbit/s SBI

Admin
Processor

Admin

App App

10 Gbit/s10 Gbit/s

To 
Stack-Bus

MgmtMgmt

SCSISCSI

RAM

Acc.

RAM

Acc.

Application
Processor

Application
Processor

RAM
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APC: Application Processor 
Card

• Fully redundant computing 
architecture 

• Parallel Motorola PowerPC 
subsystems

• Modular hardware acceleration 
per CPU

• Standard Linux execution 
environment

• Flows distributed across CPU 
cluster by NPC
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APCAPC

APC Functional Overview

• PowerPC-based Application
• Any number of APCs can be 

stacked

SBI

App App

10 Gbit/s10 Gbit/s

To 
Stack-Bus
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Application
Processor

Application
Processor
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Scaling

• 10 Gbps full duplex stack 
interface

• Multi-dimensional scaling
• Additional APCs scale 

processing
• Additional NPCs scale 

throughput
• Uniquely suited to demands 

of current and future Packet 
Handling applications

US Patent Application #10/078,324US Patent Application #10/078,324
“Systems and methods for fair “Systems and methods for fair 
arbitration between multiple request arbitration between multiple request 
signals”signals”

NPC
APC1

APC2
APC3

APC4
APC5

APC6
APC7

Stack Interface
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SoftwareSoftware

Open Software Architecture

• Standard Linux execution 
environment, enhanced 
with:

• Performance booster 
features such as 
ZeroCopy drivers

• Congestion control 
mechanisms

• Configurable Inspection 
Group feature

• SDK enables applications 
to leverage platform 
features

• FW/VPN
• IPS/IDS
• Load balancing
• Managed services
• UTM
• Any proxy applications

• Application porting support

HardwareHardware

MgmtMgmt
IOIO HDHD RAMRAM

CPUCPUCPUCPUCPUCPUCPUCPU NPUNPU
TMTM

Network Network 
driversdrivers

Network Network 
protocolsprotocols

SchedulerScheduler

Memory Memory 
MgmtMgmt

File File 
systemsystemIO DriversIO Drivers

Process Process 
MgmtMgmt

Linux APILinux API

Bivio APIBivio API

Bivio API ClientsBivio API Clients Bivio API ClientsBivio API Clients
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Configurable Inspection Groups

• Advanced Modes
• Multiple Inspection Groups
• Copy mode
• Tap mode
• Load balancing
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Performance & Scalability

Until recently, Moore’s law ensured that performance goals could always be met using more and 
more powerful processing units. But this has changed recently, as evidenced by the move by 
major processor vendors to multi-core chips. However, this too has some problems:

• SMP units are bound by memory bandwidth. Even with two memory controllers, the classic 
architecture of a powerful dual-core SMP CPU operating on very fast memory (600+ Mhz 
DDR2 memory) will be hard pressed to do a 1-2 Gbps of flow processing. There is no way to 
get to 10 Gpbs with such an architecture, even with multiple cores, operating on a single 
memory subsystem.

• ASICs are limited by the same issues. Ultimately, an ASIC incorporates some sort of a 
special purpose CPU operating on special memory. For extremely special purposes, high 
performance can be obtained, at the cost of flexibility and maintainability of software. Even 
these have to be clustered for 10 Gbps and beyond.

• When multiple applications need to be working in a cooperative environment, such as in a 
Unified Threat Management System (UTM), each with differing requirements on processing 
and memory resources, a cleaner separation than afforded by an SMP is sometimes 
preferable. Virtual architectures provide the separation, but are often performance limited 
due to the overheads.

One of the great advantages of the Clustering architecture we have presented is the inherent 
linear scalability. There is also a lot of built-in redundancy, since CPUs can be used 
interchangeably.
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Scalability - continued

The NPU makes a big contribution to system scalability, if used appropriately.

NPUs are typically good at traffic processing, and a certain level of inspection. In our architecture, 
we do not depend on NPUs to perform special functions such as RegEx or Cryptographic 
processing. These are performed on CPUs, and so can be scaled.

Within NPUs, we do the following:

• Intelligent load sharing, to ensure that both directions of a flow are processed in the same 
CPU. This cuts out a lot of synchronization traffic between CPUs.

• (Future) Deep packet inspection to ensure that related flows will stay on the same CPUs. A 
simple example is the SIP signaling and media sessions, or the FTP control and data 
sessions. This also reduces synchronization traffic drastically.

• Configure special computing groups for special traffic classes. This feature organizes the 
available computing resources into groups that process special (specified) traffic classes.

• Recognize failed CPUs and redistribute traffic to other compute resources.

Doing these, we have found that performance and functionality can be scaled LINEARLY by adding 
more CPUs and NPUs. We believe that the biggest cause of less than linear scaling is 
synchronization traffic, and reducing this is one the NPUs very important contributions to this 
architecture.
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System Manageability

This is such an important feature that we have dedicated a CPU for management. This has the 
following benefits:

• The system is always accessible, configurable, and manageable under the heaviest load 
conditions. The importance of this property cannot be overemphasized since there are many 
situations that need to be addressed immediately, and delays cannot be tolerated.

• The application CPUs are spared some of the more expensive management functions involving 
log processing, configuration updates, etc.

• MGMT in our architecture does some special functions such as system health monitoring, and 
upon detecting critical failures, can trigger failovers with very small latency.

• Many system maintenance functions can be done on the fly.
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Summary & Ongoing Work

In summary, we have presented a simple architecture that has the following features:

• Scalable for CPU performance

• Scalable for specialized coprocessor functions

• Scalable NPU capabilities

• Linearly scalable by choosing the appropriate mode of operation for NPU

• Standard application environment that promotes ease of maintenance and application 
portability

• Manageability

In addition, this architecture has been implemented for commercial applications, in a highly 
integrated 2U chassis.

The next version of this product is under development, and will incorporate more powerful 
processors, utilizing the best of SMP and Clustering features in CPUs, faster backplane, and 
incorporate an NPU that can support 10 Gbps operation.
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Abstract
As tools for collecting flow data and other network met-
ric information improve, we must more often consider
how to present that data to end users for analysis. Ex-
isting approaches tightly couple generation of analytical
products with the presentation of those products. Un-
fortunately, this tight coupling forces tradeoffs between
analytical power and interface usability.

The Retrospective Analysis and Visualization Envi-
ronment (RAVE) provides data analysis and visualiza-
tion capabilities independent of user interface. Applica-
tions may interact with RAVE analyses directly: using
RAVE as a software library acting on local data, or re-
motely: communicating with a central server over the
network. In both configurations, RAVE caches interme-
diate and final analytical products for use by multiple ap-
plications.

In this paper, we present RAVE as an analysis service
provider. We discuss problems we encountered imple-
menting RAVE and a web-based network monitoring in-
terface that uses it. Finally, we identify places where
RAVE can be improved and expanded, and ideas for pos-
sible enhancements that require further evaluation.

1
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Scalable flow analysis
Abhishek Kumar Sapan Bhatia

Abstract

While current toolkits for analysis of flow-records such as
SiLK are powerful and versatile, real-time analysis of flow
records at very large flow collection installations continues
to be a challenge. In this paper we present a new approach
for summarization and analysis of flow records. Through
the use of approximate data structures, a large bulk of flow
records is reduced to a compact representation that is 100
times smaller in volume than the original flow records. The
techniques are suitable for implenting a small number of
predefined queries that are evaluated repeatedly in a periodic
manner. The operations involved in summarization and query
processing are fast enough to keep up with 2.5 million flows
per second in a software implementation running on general
purpose hardware.

I. I NTRODUCTION

Collecting flow records is the dominant method for retaining
state about the traffic observed at various links in a network.
Large flow collection installations primarily face bottlenecks
of four types. First, the generation of flow records from the
packet stream is a challenging task, especially at the higher end
of link speeds. Second, the transmission of the flow records to
a central operations center is problematic due to the large (and
unpredictable) volume of flow records. The third issue is that
of the vast amounts of storage and its management required
in large flow collection installations. Finally, analyzinga large
number of flow records has a high computational overhead that
often grows super-linearly with the number of flow records
being analyzed together.

In this paper, we present a new approach to flow analysis.
Instead of providing deterministic answers that are guaranteed
to be precise and accurate, this approach uses probabilistic
techniques and provides approximate answers to most queries.
But relaxing the requirement for deterministic accuracy inthe
favor of probabilistic guarantees allows for a solution that is
significantly faster and more efficient in its communication
and storage requirements.

The approach presented in this paper is not meant to
be a replacement for deterministic flow analysis tools such
as SiLK [1], [2], [3]. Instead, we believe the two to be
complementary . Deterministic analysis provides precise and
unambiguous solutions, and provides a high degree of flexibil-
ity in the definition of the queries, albeit at high computational,
storage and transmission overheads. The approach presented
here trades off the deterministic guarantees for efficiencygains
that allow such analysis to be performed at scales that are two
to three orders of magnitude larger. The improved scalability
of this approach implies that it provides an excellent means
to perform routine analysis for a high volume of flow records,
identifying a small number of suspicious cases that merit

further investigation. It is also a suitable candidate to build
situational awareness systems that evaluate a fixed set of
queries over the flow data in a periodic fashion.

In the next section we provide a taxonomy of queries posed
during flow analysis. Section III looks at an example query and
provides a solution using the proposed approach. Section IV
generalizes this solution to present a comprehensive summa-
rization and analysis system for automated, routine analysis of
flow data. We discuss the advantages and limitations of this
approach in section V and conclude with pointers to future
work in section VI.

II. TAXONOMY OF QUERIES

We divide the universe of queries that can be posed
against flow records into three classes. First, there are the
aggregate queries, that refer to various totals among the
dataset in question. Typical examples of aggregate queries
are estimating the total number of flows, the total number
of sources by IP, the total number of destinations identified
by IP alone or by<destination IP, destination
port, protocol> tuples. Such aggregate quantities are
the broadest and most important indicators capturing the
details of network activity.

The second family of queries coversdistributional queries,
pertaining to questions such as “what is number of sources that
have contacted exactly one destination within my network?”or
“what fraction flows have less than 10 packets?”. The broadest
distributional queries ask for the entire observed distribution
of a metric, such as the distribution of flow sizes, or the
distribution of number of destinations contacted by various
sources. Answers to distributional queries are more precise and
more sensitive indicators of various kinds of network activity
and attacks. For example, a small DoS attack on a web-server
might not show up as a large increase in the total number
of flows, but it will cause a more significant change in the
number of single-packet flows.

Finally, identity queries try to identify specific entities that
are outliers according to some metric evaluated over the
dataset. For example, “which sources have contacted more
than a hundred unique destinations” or “which destinations
have received more than two thousand flows” are queries that
identify individuals that exceed respective thresholds for the
number of unique destinations and the total number of flows.

In theory, there is an immense number of possible queries
that can be posed against a given collection of flow records.
But in practice, there are two kinds of queries that are actually
evaluated. The first set is that ofroutine queries that are
evaluated regularly, in a periodic manner, over the flow records
collected in regular monitoring intervals. Typically thisset
includes a small number of queries of all three types described
above. The results to these queries can be used to visualize the
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Number of Sources 32 64 128 256 512 1024
Execution Time (sec) 9 50 581 922 1573 2464

TABLE I

T IME TAKEN TO EXECUTE AN EXAMPLE SILK QUERY OVER512K (219)

FLOW RECORDS.

current status of the network traffic, or in other words, provide
situational awareness about the network traffic. Anomaly de-
tection systems can track the results of such queries to detect
and flag significant deviations from the norm, perhaps raising
an alarm for an analyst to evaluate additional, non-routine
queries. This second set represents what we callforensic
queries. Such queries are typically part of an investigation
prompted by specific network events or perhaps even an
alarm raised on the basis of the information provided by the
routine queries. The range and objective of forensic queries is
significantly larger than that of routine queries. In this paper,
we propose a more efficient approach for evaluating routine
queries, keeping in mind that such queries are evaluated
repeatedly and over all data that is collected. Forensic queries
on the other hand, are evaluated less frequently , and are better
implemented using traditional flow analysis tools such as the
SiLKtools that can support a range of complex queries, albeit
with significantly higher costs in computational, storage and
transmission complexity. We now provide an example query
and its probabilistic implementation. We will generalize from
that implementation to present a broader system for routine
analysis of flow data.

III. A N EXAMPLE QUERY

Consider a query for identifying sources that have con-
tacted an unusually large number of destinations within the
monitored network. For a large network, evaluating such a
query periodically over the flow records corresponding to
the inbound traffic can expose a variety of activity such as
port scans, flooding attacks and automated worm or botnet
spreading attempts. Tracking the set of heavy hitters in this
query, i.e., the sources sending the largest number of flows
into the network, and changes in this set, can yield a list of
suspects warranting further investigation.

Using SiLK, an implementation of this query might look
like:
%rwuniq --distinct-destinations data.raw
As demonstrated in Table I, the total running time for this
query increases with the total number of sources. More sig-
nificant is the fact that all the half million flow records in this
example need to be available at the analysis station for this
query to be evaluated. Also, the amount of memory required
to implement this query and the total number of memory
accesses both increase no slower than the total number of
flows, the total number of sources, and the number of distinct
destinations per source. In the event of an actual attack or
scan, the situation is further exacerbated due to the increase
in the number of distinct sources and/or destinations, often by
several orders of magnitude, caused by such events.

We now describe a probabilistic solution implementing this
query. Consider a simple array of counters, indexed by a hash

function, such that the range of the hash function equals the
number of counters in the array. Now for every flow record, a
hash of the source IP can be used as an index into the counter
array, to locate the corresponding counter. This counter can
be incremented for every flow, thus accumulating the count of
the total number of flows from the corresponding source IP.
Sources sending a large number of flows can be identified
by selecting the flows that cause any counter to reach a
predetermined threshold value. This solution is approximate in
the sense that collisions in hashing can result in counter values
being incremented due to more than one source IP hashing to
the same location. However, with a reasonably large array,
say with2

18 counters, the probability of collisions among two
large sources is quite small. Such data structures, also known
as sketches, have been studied recently for their suitability in
estimating various statistics about network traffic. We refer the
reader to [4], [5] for a detailed treatment of the accuracy of
estimation using such sketches.

This solution can track the total number of flows corre-
sponding to each source, but requires another component to
track the set of unique destinations contacted by each source.
We implement this functionality by adding a Bloom Filter
to estimate whether a<source IP, destination IP>
tuple is unique. Bloom Filters [6] are probabilistic data struc-
tures capable of answering set membership queries in very
efficient manner. To count the number of unique destinations
contacted by each source in an approximate manner, a second
counter array is maintained, but updated only for previously
unseen<source IP, destination IP> tuples.

Figure 1 depicts the overall solution, consisting of two
counter arrays and a Bloom Filter for determining new unique
destinations for a given source. The first array provides the
total number of flows per source and the second array pro-
vides the total number of unique destinations per source. The
estimation techniques developed by Kumar et al. [4], enable
the computation of the entire distribution of the number of
flows sent by individual sources, and the number of unique
destinations contacted by individual sources. This answers
all distributional and aggregate queries about the statistics of
total number of flows by source and total number of unique
destinations by source. Finally, simple threshold sampling
rules can be used to select a small number of records from
sources that have sent more thanTtotal number of flows or
contacted more thanTunique destinations. This allows for the
identification of individual sources that have exceeded theset
thresholds, thereby answering the identity queries about the
outliers along these metrics.

In this section we have designed a solution that answers the
aggregate, distributional, and identity queries for two metrics,
the total number of flows by source and the number of unique
destinations contacted by each source. The following section
discusses how this approach can be further generalized to
design a comprehensive system for routine analysis of flow
data.

IV. A COMPREHENSIVE SYSTEM FOR ROUTINE ANALYSIS

The solution designed in the previous section used two
arrays of counters and a Bloom Filter for resolving uniqueness
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Threshold  Sampling

= Ttotal ?

Increment
Counter

Increment
Counter

Flow
Record h(src IP)

Bloom 
Filter

Key=<src IP, dst IP>

+
Query
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"No"
(new 
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unique=T        ?

Select flow
Yes

Yes

Fig. 1. Solution to track total flows and total unique destinations by source IP

Metric Key field(s) Aggregate Queries Distributional Queries Identity Queries
Bytes Flow (5-tuple) Total Flows Flows with x ≤ bytes≤ y Large flows
Packets Flow (5-tuple) Total Flows Flows with x packets Large flows
Total Flows Source IP Total sources Sources sendingx flows Sources sending many flows (> Ttotal)
Unique Destinations Source IP Total sources Sources contactingx destinations Sources contacting many destinations

(i.e., contacting≥ Tunique destinations)
Total Flows Destination IP Total destinations Destinations receivingx flows Destinations receiving many flows
Unique Sources Destination IP Total destinations Destinations contacted byx sources Destinations contacted by many sources
Total Flows DDP-tuple Total DDP-tuples DDP-tuples receivingx flows DDP-tuples receiving many flows
Unique Sources DDP-tuple Total DDP tuples DDP-tuples contacted byx sources DDP-tuples contacted by many sources

TABLE II

METRICS TRACKED BY PROPOSED SYSTEM AND EXAMPLES OF SUPPORTEDQUERIES.

of tuples to answer queries along two important metrics: the
total number of flows and unique destinations by source IP.
This solution can be generalized to comprehensively support
routine analysis queries. Two observations facilitate this gen-
eralization: (i) The total number of metrics that are interesting
enough to be tracked on a routine basis are very small, and
(ii) A single Bloom Filter can be used universally to resolve
all uniqueness questions.

Given the high dimensionality of flow data, it is somewhat
counterintuitive that only a few metrics are of routine interest.
Indeed, in a forensic investigation, an analyst might need to
slice up the flow data along unusual dimensions. However,
the key point here is that forroutine analysis, only a small
number of metrics are actually tracked. In practice, informa-
tion about the eight metrics listed in Table II is adequate to
provide situational awareness with enough sensitivity to flag
most anomalies. This table also provides examples of queries
supported by the sketches tracking the respective metrics.The
abbreviation DDP-tuple stand for a<destination IP,

destination port, protocol> tuple.
One may argue with the exact composition of the list of

metrics in Table II, and we do believe that it can be improved
with inputs from the community of analysts, but the interesting
point here is that all the metrics in this list can be covered by
eight corresponding arrays (sketches). The first two arrays,
would track the number of packets and bytes on a per flow
basis, in an approximate manner. To accommodate a huge
number of flows in an array with fewer counters than flows, we
can resort to multi-resolution techniques as presented in [4],
using 1 million counters to track up to 50 million flows. The
remaining six metrics can be tracked comfortably by arrays
with 2

18 or 256k counters each. With 32 bit counters, the
overall size of these data structures would be 14 MB.

Threshold sampling would identify a small number of
records that are interesting because they correspond to an out-
lier for one of the metrics. Note that for routine analysis, the
goal is to identify a small number of interesting outliers. We
assume that the detailed data will be available independently
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for subsequent forensic analysis. For 50 million flows in a
measurement, we conservatively estimate2

16 or 64K flow
records, easily fitting within 2MB before compression, using
a compact representation such as the SiLK raw format.

The second observation is that a single Bloom Filter can
be used to determine uniqueness of tuples across the entire
system. Bloom filters use an array of bits, or bit-vector, anda
collection ofk hash functions to insert and query for elements.
For insertion, all k hash functions are computed and the
corresponding bits are set to ’1’. Upon being queried for a
key, again allk hash functions are computed over the key,
and the corresponding bits looked up. If all the bits are ’1’,
the answer is “yes”, i.e. the key was inserted previously, while
if one or more bit is ’0’, the answer is “No”, implying the key
is a new unique item. Now, if the hash functions are chosen so
they can take variable length inputs, the rest of the operations
are transparent to the semantics of the keys, hence allowingus
to use the same Bloom Filter for determining the uniqueness
of various tuples with different fields. Continuing with thegoal
of processing 50 million flow records in one period, a Bloom
Filter with a single hash function and 16 MB of storage would
be sufficient to determine the uniqueness of various tuples with
acceptable accuracy. If additional memory is available, these
parameters can be tuned to provide optimal accuracy according
to the method provided in [7]. Note that the Bloom filter is
used as a local data structure used only while updating the
sketches for each flow record. Once this process is complete,
the Bloom Filter can be discarded; it does not need to be stored
or transmitted.

The sketches and selected records corresponding to outliers
together make up the summary representation of the flow
records. Here, they correspond to a total size of 16 MB
before compression. For our example of 50 million flows in an
observation period, this is roughly 100 times smaller than the
actual flow records and can be transmitted easily to a central
analysis server. The analysis server can then compute various
estimates over these sketches, feeding a situational awareness
or anomaly detection system. The next section discusses the
benefits and limitations of this solution approach.

V. BENEFITS AND LIMITATIONS

As identified before, the solution approach presented here
is complementary to the more flexible flow analysis paradigm
and tools available to analysts today. The benefits of this
approach lie in its speed and succinctness, while its limitations
lie in the restricted set of queries that such a system can
support.

• Speed: The first major benefit of the proposed approach
is its high speed. Updating the sketches involves a small
number of hash computations and memory lookups. A
software implementation running on a 2.0 Ghz dual-
Opteron system can process 2.5 million records per sec-
ond, preparing the 16 MB of summaries to be shipped to
the central analysis server. Running estimation algorithms
at the analysis server is equally fast, taking under one
processor-minute per sketch.

• Succinctness: Large flow monitoring installations typ-
ically have a distributed deployment, withcollectors

deployed at various locations in a network collecting flow
records from adjacent router(s) and packing them into
more succinct intermediate formats, before transmission
to a central analysis installation. The approach presented
in this paper enables creation of succinct summaries
at distributed collectors that are about 100 times more
compact than the packed formats of SiLK. This changes
the issue of transmission bandwidth (and storage at the
central server) from a major concern to a trivial overhead.
Indeed in current installations, the large volume of flow
records being transmitted, especially during attacks, are
a major overhead in large ISPs, and cited as one of the
main reasons against the deployment of flow-collection
in the core.

• Low Flexibility: The benefits of this approach come with
a significant limitation - the analysis only addresses a
set of predefined queries. This implies that any forensic
investigation into network events is likely to require eval-
uation of queries not supported by the sketches generated
into this system. But this problem can be addressed by
retaining the complete flow records at the distributed
“collectors” till such time when a forensic investigation
requires records from the corresponding period to be
“pulled” to the central analysis station. Since such inves-
tigations are likely to be infrequent, at least relative to
the repetitive evaluation of routine queries, such a 2-tier
solution will provide all efficiency benefits of the sketch-
based system while making available to the analyst all the
power and flexibility of conventional flow analysis tools
during specific investigations.

VI. CONCLUSIONS

Routine flow analysis tasks that periodically evaluate a fixed
set of queries over the flow data collected in the corresponding
period can be made significantly more efficient if approximate
answers are acceptable in lieu of deterministic accuracy. The
approach presented in this paper delivers a 100 fold reduction
in the amount of data sent to a central analysis server for
routine analysis. Future work on this subject includes the
identification of important metrics to track and performance
study of a complete, deployed system.
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Queries that are run by analysts in the 
course of an  investigation.
How many outside sources contacted 
exactly X destinations, x=1,2,5-20,... ?

Aggregate
Query

Which outside sources contacted > X 
destinations?

How many outside sources contacted 
destinations inside the network ?

Queries run that are periodically (e.g. 
everyday)  over regular intervals.

An  informal  Taxonomy

Distributional
Query

Identity
Query

Routine
Query

Drill-down 
(forensic)
Query
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An example query
List all sources that 
contacted over 15 
destinations inside 
the networks.
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Bloom filter (insert)

h3h2h1
Insert (X)

h1(X)
h2(X)
h3(X)

1

1

1



7

Bloom filter  (query)
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Bloom filter (query)
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0
1

1
...... dstIP7 srcIP9

h(sIP)
Source sIP2:
Total flows ~ 19
Unique dsts ~ 15

Source sIP9:
Total flows ~ 217
Unique dsts ~ 175
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Can we build  a more  
comprehensive system  ?

8

Bloom Filter

...... dstIP3 srcIP2
Flow Records

...... dstIP7 srcIP9
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What will it track ?

Metric Key Field(s) Aggregate Queries Distributional queries Idenity Queries

Bytes 5-tuple Total Bytes, Flows Flows with x<bytes<y Large Flows

Packets 5-tuple Total Pkts, Flows Flows with x Pkts Large flows by pkts

Total  
Flows

Source IP Total  sources Sources sending x flows Sources sending  many 
flows (> Threshold)

Unique
Destinations

Source IP Total  sources Sources contacting x 
destinations

Sources contacting  many  
destinations

Total  
Flows

Dest IP Total  Destinations Destinations receiving x 
flows

Destinations receiving
many flows

Unique
Sources

Dest IP Total  Destinations Destinations contacted by 
x sources

Destinations contacted  by 
many sources

Total  
Flows

<dIP, dPort, 
proto>

Total  3-tuples 3-tuples receiving x flows 3-tuples receiving many 
flows

Unique
Sources

<dIP, dPort, 
proto>

Total  3-tuples 3-tuples contacted by x 
sources

3-tuples contacted  by many 
sources
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16MB

How much space for 50 M  
flows?

8

Bloom Filter

...... dstIP3 srcIP2
Flow Records

...... dstIP7 srcIP9

1M*32bits=4MB 256K*32bits=1MB

~ 64K selected 
flows * 22B < 2MB
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Flow Collection and Analysis  
Architecture

50M Flow Records

Packets

Router/sens
or

Collection/ 
packing

Central Analyzer

Query

Response
Compact digests
(16 MB)

Local 
storage
(1.1 GB)
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Thank you !
Questions and comments
Contact:  akumar@cc.gatech.edu
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Abstract 
 
With the ever growing array of threats to computer systems, security applications have 
evolved from simple firewalls to extremely complex entities with very sophisticated 
requirements. These requirements need to address functionality, performance, and 
scalability. Functionality spans firewalls, VPNs (IPSec and SSL), IDS/IPS, AV/AS, and 
server off-load functions, among other things. Performance includes both the ability to 
pass packets through the system at multi-gigabit rates, as well as being able to do deep 
packet inspection/processing at high speeds. Scalability must address both of these 
aspects of performance - i.e. packet throughput and processing power. It is also important 
to consider system management, maintainability, ease of use, and reliability. In this 
paper, we examine these aspects of the system, and propose an architecture that not only 
meets these requirements, but will also be flexible enough to support future application 
needs. 
 

Introduction 
 
In this paper, we first describe an architecture for processing flows. We then take a look 
at each aspect of the architecture, and qualitatively describe how it meets the 
requirements for processing flows in an optimal way. 

Flow Processing Requirements 
The following requirements are addressed in this document. 
 

• Performance – while we don’t state a specific number, it is clear that today’s 
performance requirements are in the multi-gigabit range. Small and large 
packets must be processed at wire speeds, which could range from 1Gbps to 
10Gbps or higher. 

• Scalability – the system architecture must be scalable so that different 
performance requirements can be addressed with meaningful cost structures. 

• Functionality – the architecture must be versatile, in that it should support 
multiple applications. This translates to the requirement to be able to process 
flows of different types. Flows may constitute single or multiple network 
associations (i.e. connections, for example) between cooperating applications 
distributed over a network. 



• Manageability – the architecture should be easily manageable. Ease of 
configuration, management and maintenance are crucial to the adoption of this 
architecture. 

• Application maintenance and portability – when applications are developed 
for this architecture, they should still maintain a general flavor that will 
support other architectures. The architecture must shield applications from 
getting locked into specific hardware or software features. 

 

System Architecture 
 
The following diagram shows our proposed system architecture. 
 

 

Architecture for Flow Processing 

APP 

CPU-1 

APP 

CPU-2 

APP 

CPU-N 

NPU

High speed, 
extensible 
backplane 

Network 
Interfaces 

MGMT

 
 
This architecture utilizes a combination of general purpose processors (CPUs) running 
the Linux operating system, and a new generation Network Processing Unit (NPU) for 
performing various flow operations. One processor (MGMT), also running Linux, is 
reserved for purely management functions, while other CPUs run applications. All of the 



CPUs and the NPU reside on, and communicate over, an extensible, high speed 
backplane that operates at multiples of 10Gbps. The external network interfaces, 
consisting typically of 1Gbps or 10Gbps Ethernet, are connected to the NPU. 
 
In addition, each application CPU has attached to it one or more co-processors over a 
very fast bus (PCI Express, for example). These co-processors typically perform such 
functions as cryptographic encryption and decryption, key generation, regular expression 
processing, etc. 
 
The MGMT CPU will typically have its own private Ethernet port and console port for 
management purposes. It will also support storage, for example, in the form of an 
attached SCSI/RAID disk system. 
 

The Networking Environment 
The system supports one or more network interface cards, with each card supporting 
multiple ports (for example, eth0, eth1, and so on). All configurations are done on 
MGMT. Through a process of virtualization, these interfaces are replicated on every 
application CPU. The system software ensures that interface states are identical on all the 
processors. Thus, applications have direct access to the external interfaces, from every 
processor on the system. There is a special Ethernet interface in each CPU – bp0 – that 
enables applications to communicate over the backplane. The backplane essentially looks 
like a very high speed, private Ethernet network, not visible from the external network. 
Applications may communicate with each other over the backplane using standard socket 
based communication methods. Thus, every processor, including MGMT, has an 
identical networking environment. 
 

The File System Environment 
Application CPUs all boot using standard protocols from the management CPU, and 
mount the storage attached to MGMT. Thus all CPUs have identical file system 
environments. 
 

NPU Functions 
The NPU performs the following functions: 
 

• Load-balance incoming traffic to applications based on multiple algorithms. 
• Support bindings, set using special APIs, that enable special flow processing. For 

example: 
o Cut through flows. 
o Direct specific flows to applications requesting them. 

• Perform QoS functions. 
• Maintain, and report full flow statistics. 



• Support application specific flow processing, either dynamically through APIs, or 
statically through application specific code, linked to NPU processing through 
architected hooks for intercepting packets between input and output. 

 
NPU bindings are set by applications over the backplane using protocols designed for this 
purpose. These bindings must be such that the API calls used to set them must have very 
low latency. 
 

Benefits of Proposed Architecture for Meeting Flow 
Requirements 
We are now ready to consider the benefits of this architecture in fulfilling flow 
requirements. We start by with comparing the architecture with specialized hardware 
implementations. 
 

Comparison with Specialized Hardware 
One approach to flow processing is to use hardware developed specifically to process 
flows in certain ways. There is no doubt that specialized hardware will outperform more 
general systems for specific functions. However, such systems necessitate a number of 
compromises, among which are: 
 

• Flexibility. Unlike general purpose hardware which is programmable, often 
ASICs are designed to be used in very limited ways, with limited 
programmability. These are okay for well established protocols which operate at 
low levels, but definitely not for generalized flows where applications are 
constantly evolving. It is not feasible to require a new spin of an ASIC in order to 
present new features to customers, for most application vendors. 

• Scalability. Often, ASICs lack the general purpose hardware’s ability to be 
clustered, or stacked. Thus scalability needs to be built with external “glue” 
hardware, often at a huge cost. 

• Performance. This may seem like a contradiction, since ASICs are built with 
performance in mind (in addition to volume considerations for decreasing cost). 
However, we need to keep in mind that in order to make ASICs support multiple 
applications, some amount of generality needs to be embedded in it. This makes it 
more like a CPU, and often, it runs at a fairly low clock frequency. Thus, while a 
specific function (such as cutting through flows, or bulk encryption) may outstrip 
the capabilities of generalized hardware, combinations of functions will severely 
limit performance. 

• Application portability. When portions (or all of) applications are changed to use 
specialized hardware, the application will lose its generality. It is often a huge 
effort to split an application so that certain portions of processing are delegated to 
special hardware. This makes it very hard to maintain the applications portability 
to other systems – for example, in a product range that meets different 



performance levels – and locks in the application to the specific hardware 
components. 

 
Thus, where all of the above requirements are important, and it is of utmost importance to 
be able to change quickly to conform to new conditions, a more generalized hardware 
would be the most appropriate way to go. Note that what we say about ASICs applies to 
FPGAs also. 
 

Performance 
Until recently, simple architectures sufficed for a couple of reasons: firstly, performance 
requirements have not been very high for flow processing applications, and CPU speeds 
have been keeping up with Moore’s Law. Both of these considerations have undergone 
major changes recently. 
 
Flow processing speeds are now required to be in the 10Gbps range by service providers. 
Even though CPU speeds are very high – Intel processors run close to 4GHz – flow 
throughput is still being limited by factors other than CPU speed. One of the limiting 
factors is memory access. Even with the fastest memory (DDR2, 600 MHz, 64-bit 
access), practical considerations limit access to well under 10Gbps. This bandwidth needs 
to be utilized for processing (running code and accessing local variables), as well as for 
transferring data in and out of memory. Thus, however fast the CPU may be, memory 
bandwidth considerations will limit the amount of data that can be processed to a few 
hundred megabytes of small packets to a few (usually 2) gigabits of large packets. This is 
true even for SMP clusters, since such a cluster will operate on a single memory (even if 
distributed among multiple banks using dual controllers). 
 
Moreover, if there is a need to integrate multiple applications – as in the case of UTMs 
(Unified Threat Management systems) – in order to meet complex flow processing 
requirements, the amount of processing that needs to be done for each flow increases 
drastically. Since Moore’s law seems to have hit a limit (witness Intel’s emphasis on dual 
cores now) the only way to scale is to use more processors in a loosely coupled scheme. 
Each processor may be a multi-core unit in the above architecture, so one gets the best of 
both worlds. 
 

Scalability 
The most common design for a flow processing consists of a CPU subsystem (an Intel 
dual-core, typically) attached over a fast bus such as PCI Express to an NPU that 
incorporates a crypto engine, and a regular expression processing engine. Aside from the 
single system performance considerations we have noted above, one huge drawback of 
such system is their scalability. The missing piece is really the extensible backplane 
incorporated in the architecture we have presented. This backplane allows additional 
CPUs, NPUs, and their associated resources, to be added to the system. 
 



One of the tremendous advantages of the architecture we have presented is that scaling is 
almost linear when more CPUs are added. This depends on the NPU to perform a clean 
partitioning of flows, so that the need to synchronize with other CPUs is minimized. We 
will discuss this some more later. 
 
Also, having specialized engines for cryptographic functions and regular expression 
processing be attached to each CPU via a fast bus such as PCI Express allows scaling of 
applications that use these functions. If these resources were combined with the NPU – as 
do many architectures – two problems present themselves. One problem is that 
communication between the CPUs and the NPU could become considerable, thus 
affecting scaling. Secondly, since a given NPU has fixed co-processing capability, this 
resource cannot be easily scaled. 
 
A good side-effect of our architecture is the built-in redundancy. With multiple CPUs 
available, if one CPU fails, it can be backed up using multiple schemes. Typically, the 
NPU will detect this condition, and load-share the flows targeted at the failed CPU 
among the active CPUs. 
 

Functionality 
By keeping the primary functionality in the application CPUs, and using a generally 
accepted operating system such as Linux, one maximizes the ease with which new 
functionality can be introduced. Indeed, there is a plethora of software available in the 
realm of open and free source for Linux, and it will be fairly easy (usually requiring a 
compilation only) to port this software to our architecture. Indeed, we have done 
precisely this in our implementation. Moreover, there are architected means to employ 
multiple applications in the same CPU, as well as divide CPUs into groups where each 
group processes flows requiring a specific application. 
 
We are not saying that it is impossible to provide new functionality in other architectures. 
Only that it will be a non-trivial port, often requiring NPU specialists. 
 

Manageability 
This is very often an overlooked function, which requires considerable resources from the 
system. In most systems, management has to coexist with applications in the same CPU. 
If the system is busy, response time will be very poor when an administrator tries to 
perform configuration or maintenance. This is not acceptable when there are situations 
which require immediate action (such as a breach of security). 
 
In our architecture, this problem is solved by dedicating a CPU (MGMT) which is solely 
used for management purposes. The CLI and GUI run on this CPU. It has its own, 
dedicated, management Ethernet port over which the system is always accessible and 
response is guaranteed to be immediate. This CPU can be used to consolidate and 
preprocess log information and statistics, if necessary, thus freeing the application CPUs 
for flow processing. 



 
One very important function performed by the management CPU is general monitoring of 
system health. It watches hardware, the system environment (such as temperature), and 
the running applications. When a failure is detected, the criticality of the failure will be 
assessed, and corrective action will be taken immediately. This action may be to restart a 
failed application, shutdown a non-functioning CPU, signal a secondary (active or 
standby) system to take over, reroute traffic on a failed link, or failopen interfaces (for an 
IPS application, for example) to take the system offline due to non-recoverable errors. 
 
Thus, the importance of a clean separation of management functions from applications 
cannot be overemphasized. 
 

Application Maintenance and Portability 
Common sense dictates that this is an important consideration for commercial ventures. 
The architecture we have proposed ensures this by providing a full Linux environment 
for applications, requiring only minimal changes, if any, for functioning in this 
environment. Indeed, we have ported open source applications to this architecture with 
only a recompilation. A beneficial side-effect is that applications do not get locked in to a 
particular architecture. 
 

Some Additional Scaling Considerations 
We said before that scaling using this architecture is linear. In this section, we expand on 
this statement. 
 
Scaling is a term that applies to multiple features of a system. It can apply, for example, 
to network throughput, or to compute power. This architecture promotes scaling in both 
dimensions. 
 
In order to increase the network throughput of the base system, an additional NPU can be 
added to the extended backplane. In practice, the additional NPU would be part of a 
board that might contain additional CPUs. The effect of the additional NPU is to increase 
the IO capability of the system. We have done this on a similar architecture with very 
little change to the base code. The main requirement is that the system be aware of the 
NPUs and their addresses on the backplane. 
 
To increase the available compute power, additional CPUs can be added to an extended 
backplane. This enables more processing for each flow, for a given maximum system 
throughput. With enough compute power, wire-speed can be attained for any type of flow 
processing within reason (it is always possible to create pathological examples that are 
hard to accommodate). 
 
In an SMP configuration of CPUs, we already saw how memory bandwidth affects 
throughput. Inherently, scaling using SMP configuration is not linear, because of the 



effects memory contention, and use of locking to arbitrate contention for critical 
resources. 
 
In the loosely coupled CPU architecture we have described, scaling can be linear if the 
NPU is used appropriately. Essentially, by recognizing and grouping associations into 
sets of related flows that are processed by the same CPU, the need for synchronization 
between CPUs is drastically minimized. Synchronization may still need to be done for 
slow-path control functions such as configuration, but these do not affect the fast-path 
data processing. Aggregation functions such as statistics over the full set of flows (not 
visible to a particular CPU in its entirety), detecting certain types of anomalies, QoS, etc. 
are good candidates for implementation in the NPU. Not requiring CPUs to synchronize 
for these features makes CPU scaling linear. 
 

Summary 
In this paper, we have described an architecture which we believe is most suitable for 
general flow processing.  Requirements for flow processing were enumerated, and an 
architecture for implementing these requirements was proposed. Each aspect of the 
architecture was discussed qualitatively, and shown to be of benefit in realizing flow 
processing requirements. 
 
We have implemented this architecture and it has been deployed for processing flows 
commercially. 
 



 
 
 

A Traffic Analysis of a Small Private Network Compromised by an On-line Gaming Host 
Ron McLeod, BCSc, MCSc. 

 Director - Corporate Development Telecom Applications Research Alliance 
Doctoral Student, Faculty of Computer Science, Dalhousie University 

 
Abs tract 
 
In the early months of 2006 a small private network (the Network) suffered a noticeable degrading of its 
network performance. A network traffic capture and analysis was conducted and used to investigate the 
network performance issues. This paper presents partial results of that analysis. The network traffic 
capture formed part of an experimental use of the SilkTools tm [1] capture and analysis suite developed by 
CERT personnel at Carnegie Mellon University. During the first analysis of the captured data it was 
discovered that the Network contained a host that had been compromised at some time in the past and 
was currently being used to support the on-line gaming activity of over 174,000 distinct player source 
addresses around the globe. These players were believed to be participating in the Half-life tm  [2] first-
person shooter game (the Game). The initial finding was the result of a manual investigation of unusual 
time and volume traffic spikes from arbitrarily chosen time slices. Subsequent work was conducted on 
searching for a traffic signature which could be representative of the presence of the Game such that 
future discovery of Game activity could be automated. Gaming traffic is predominantly UDP traffic of 
high byte volumes, typically targeted at  a given range of destination ports. This analysis also searches for 
a specific TCP traffic pattern that is suggestive of a Game signature. Network traffic patterns that emerge 
after access to the compromised host has been closed are labeled as SCAR traffic, for Severed 
Connection Anomalous Records 
 
1. Methodology and Experimentation 
 
1.1. The Network Sampling Environment 

 
On February 3, 2006 an ongoing traffic capture was initiated within the Network. This was accomplished 
by instructing the primary edge router to construct netflow [3] records and to deliver those records to a 
single collection point within the Network. The Network used for experimentation is comprised of four 
/24’s, one of which has been divided into /27’s. In total, the entire Network consists of approximately 40 
user assigned hosts, although the actual number of hosts is subject to minor fluctuations over time. 
Approximately an additional 40 special purpose hosts also exist within the address space although these 
hosts are not assigned to individual users. Many of the hosts are the property of separate owners and are 
subject to separate administration. However, traffic from each passes through a single edge router and it 
is at this router that the author did his data collection. For reasons of privacy, payload data was neither 
collected nor examined. It was further understood that the author would not have access to the content of 
specific hosts for further investigation purposes. Although, the owners of each host for which anomalous 
activity (if any) was discovered would be informed immediately of any observed anomaly in their 
machines and full disclosure of the analysis results would be made upon request. For confidentiality 
reasons the identity of the Network is not specified in this document. For purpose of analysis, only the 
non-port 80 traffic and non-null traffic was initially considered.  

 
1.2 Network Analysis – The Discovery of an Intruder 

 
On February 11, 2006 the first sample of network traffic was extracted for analysis. The time period from 
midnight to 7:00 AM local time on February 8 was chosen for the first data slice. This was partially a 
random choice and partially due to the fact that the author expected minimal traffic volumes during this 
time. The analysis tools were instructed to access each flow record for the time in question and to extract 
Source IP address, Destination IP address, Source Port, Destination Port, Protocol, Bytes (the number of 
bytes in the flow record), TCP Flags, Start Time (of the flow record) and End Time (of the flow record). 



Figure 2 

Figure 1 

Figure 1 shows a profile of the sampled traffic data that corresponds to a three tuple consisting of the 
Flow Record Number (in order of appearance), Protocol Number and Bytes 
per flow record for the hour of 12:00 – 1:00 AM. 
 
Figure 1 shows a clear grouping of the data into four 
distinct bands corresponding to five separate protocol 
clusters.  They are:  
 

1. Protocols 50 and 53 used by IPSEC and 
SWIPE respectively. 

2. Protocol 17 used by UDP traffic. 
3. Protocol 6 used by TCP. 
4. Protocol 1 used by ICMP. 

 
Within these bands the largest consistent 
byte volume is within the UDP (Protocol 
17) Band.  
The first point of interest was the volume 
of flow records. There were 
approximately 27,000 records between 12 midnight and 1:00 AM, when no users were 
present. The records were then ordered by byte size. This was the first attempt to search 
for outliers within the data.  
 
From this sorting it was discovered that a small group of SourceIPs using protocol 17 
appeared to be responsible for a large portion of the traffic bytes. These were referred to as 
the Heavy-Traffic-Hosts. However, given the size of the database it was not immediately 
apparent if there was a subset of the Heavy-Traffic -Hosts that were unusually heavier than 
the rest. The traffic was then sorted by Source IP and the total bytes over all flow records 
were accumulated for each SourceIP. The result was striking. One SourceIP accounted for 
more than 56% (79,865,126 bytes) of the traffic volume measured in bytes during the hour 
in question. This SourceIP was labeled as the Suspicious Host 
 
The next step in the analysis was to examine the remaining available data about Suspicious 
Host. It was found that out of 27,477 flow records for the hour, the Suspicious Host was 
the SourceIP in 9, 235, or 34% of all flow records during the 
hour. It was found that the Suspicious Host communicated with 
5,987 separate DestinationIP’s during the hour. 
These DestinationIP’s were distributed around 
the globe. Further analysis of the ports targeted 
by more than 10,000 flows revealed that almost 
all traffic from SourceIP’s that targeted the 
Suspicious Host as the DestinationIP was using 

protocol 17 and destination port 27015 (Table 1). Also, a 
significant amount of the traffic to and from Suspicious Host 
was directed at university campuses in the United States and 
consumer ISP’s around the world. Although not elaborated on 
herein due to space limitations, the reader should note the 
somewhat uniform distribution of flows using ports 27,000 - 
27,005 and 27,010 in Table 1. 
 
Figure 2 shows the bytes per flow for traffic where either source or destination port was set to 27015.The 
slice presented in Figure 2 covers a period of approximately 2 hours, or approximately 65,000 
consecutive flow records. The repeating pattern of low, medium and high byte volumes is indicative of 
the presumed  
 

Port Flows
53 260596

123 16139
137 37586
138 26875
161 40799
500 28151

1027 10170
1031 18241
1954 13445
2008 11777
2967 51571
5060 81821
6346 16320

25383 141890
26900 72348
27000 13173
27001 13342
27002 13174
27003 13233
27005 34933
27010 13039
27015 6061263
27243 64616

   Table 1 



application protocol. This behavior is manifest as low followed by medium volume for all external 
SourceIP’s followed by regular high volume by a smaller set of SourceIP’s. Finally, the Suspicious Host 
was identified as an experimental development machine that had been part of a development and testing 
project in the previous year. Although it was still connected to the network it was not supposed to have 
any active users. The known facts about the Suspicious Host are summarized below.  

 
A search of the Internet revealed that (with the 
exception of the last feature) this is the 
behavior pattern of a server involved the Half-
Lifetm on-line first person shooter game. It 
appeared that at some time in the past this host 
had been compromised and was now being 

used as part of a worldwide on-line gaming community. 
 
It is important to point out that since the experimenter had no access to the actual machine or payload 
data this conclusion is simply conjecture. However, it is one with which the author is exceedingly 
comfortable. Furthermore, it is important to point out that Valve Software, the maker of Half-Life tm is a 
legitimate company that would never knowingly allow its products to be part  of an unauthorized network 
compromise. Indeed, in these circumstances, companies such as Valve Software are as much a victim as 
the owner of the compromised network. The Half-life tm game, like other such on-line games, contains 
Client and Server software. The player installs the client software on their own machine and then searches 
for an available server. These servers are run by other players or by server hosts. This particular game 
uses a third component known as Meta-Servers [4] or Master Servers [5] which provide a list of known 
game servers. Without access to the suspect machine to search for installed software we are left to 
speculate as to whether a Server or Meta-Server was installed. Further analysis of the traffic pattern of the 
compromised machine and comparison to the traffic that one would see from actual known Servers and 
Meta-Servers would most likely resolve this ambiguity. Such a comparison does not form part of this 
analysis. 

  

On February 13, the owner of the compromised host was advised of the infection. The owner indicated 
his intention to immediately bock subsequent access to the machine by the gaming community. The 
author recommended against this action. However, the machine owner decided to proceed with shutting 
down access. This action proved unsuccessful and gaming traffic continued for another month. 
 
2. The Search for a Behavioral Signature 
 
An investigation was undertaken to attempt to discover a TCP signature that could be associated with 
game traffic. 
 
2.1. Separating Normal from Infected Traffic  
 
Each action listed below is accompanied by an example Silktools Command used to achieve the desired 
result. In order to discover an un-infected model of the Network traffic it was necessary to remove the 
traffic which could be attributed to those hosts involved in the gaming traffic, thus creating an artificial 
normal traffic sample. This normal traffic would then be compared to the infected traffic in an attempt to 
find distinguishing characteristics. To achieve this separation, a filtering of the data was done to extract 
all SourceIP’s that specified either the source or destination port as 27005, 27014 or 27015 within a 24-
hour period when infection was known to be present. The resultant file was labeled as the half-life traffic 
(rwfilter  - -aport=27005,27014,27015  - -pass=hltraffic.f  out*   % out* will open each flow record 
file for the day in sequence). 
 
A set of unique SourceIP’s was then created using the half-life traffic file as input and labeled hlsipfile.set 
(rwset  - -s ip-file=hlsipfile.set hltraffic.f). 
 
We now had a list of unique SourceIP’s allegedly involved in the game traffic. To remove the ambiguity 
of action which is naturally associated with UDP traffic it was decided to see how much (if any) TCP 

Suspicious Host    
Responsible for 56% of Network Non-Port 80 Byte Volume  
Responsible for 34% of Network Non-Port 80 Flow Volume 
Some Preference for University Campuses and Consumer ISP’s 
Primarily uses UDP Port 27015  
Should Have Little or No Traffic  



Figure 3 

traffic these game SourceIP’s participated in, and what was the nature of that traffic. A set of unique 
SourceIP’s for all TCP traffic was created. This was done in two steps. First the TCP traffic was isolated 
from the rest (rwfilter - -proto=6 - -pass=tcptraffic.f out* ). Next a set of unique SourceIP’s was 
created (rwset - - s ip-file=tcpsipfile.set tcptraffic.f). 
 
The Game SourceIP’s involved in TCP traffic are given by the intersection of the two previous sets and 
placed in the file hltcp.set (setintersect  - -add-set=hlsipfile.set - -add-set=tcptraffic.f - -set-
file=hltcp.set). 
 
Upon completion hltcp.set contained only four unique SourceIP’s, one of which was the Suspicious Host. 
The other three were not within the address space of the Network. By removing traffic involving these 
SourceIP’s from the total TCP traffic we are left with a file of TCP transactions where the participating 
game players and the Suspicious host have been removed. This TCP traffic we label as normal, or 
without-infection. Figure 3 shows two images  of the data. The figure on the left shows a small area of the 
plot of destination ports versus Bytes per flow in the presence of the infection. The image on the right of 
the figure shows the same area of the solution space when the infecting traffic has been removed. 

    
 

 
From the two images one can discover a set of TCP traffic contained in the Destination Port range 
27,030, 27,033 and 27,034 with Bytes Per Flow sizes ranging from the low 800’s to slightly more than 
1000 with a noticeable outlier at a pproximately 1600. This traffic is absent in the artificial normal data 
set. This traffic was labeled as possible game Signature Traffic. It was originally the author’s hypothesis 
that this data set represents the possible presence of a Game Server in a network (i.e. a signature). This 
hypothesis has yet to be examined fully and tested. 
 
3. Future Work  
 
Work on this dataset will continue in August 2006, at which time further searching for a TCP signature 
indicative of the administrative layer of the game network will be sought. This activity will expand the 
search to include Port 80 and Null traffic. In addition, the author hypothesizes that the loss of the game 
server from the network will create a continuing repeating pattern of attempted logins by players. The 
author has labeled this type of traffic as SCAR traffic, for Severed Connection Anomalous Records. This 
Scar traffic may indicate the recent presence of a game server (unauthorized) on a network. 
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Abstract
(Abridged)

In the early months of 2006 a small private network (the Network) suffered a
Noticeable degrading of its network performance. A network traffic capture and
analysis was conducted and used to investigate the network performance
issues. This paper presents partial results of that analysis. During the first
analysis of the captured data it was discovered that the Network contained a
host that had been compromised at some time in the past and was currently
being used to support the on-line gaming activity of over 174,000 distinct player
source addresses around the globe. The initial finding was the result of a
manual investigation of unusual time and volume traffic spikes from arbitrarily
chosen time slices. Subsequent work was conducted on searching for a traffic
signature which could be representative of the presence of the Game such that
future discovery of Game activity could be automated. Gaming traffic is
predominantly UDP traffic of high byte volumes, typically targeted at a given
range of destination ports. This analysis also searches for a specific TCP traffic
pattern that is suggestive of a Game signature. Network traffic patterns that
emerge after access to the compromised host has been closed are labeled as
SCAR traffic, for Severed Connection Anomalous Records



Presentation Outline

• Summary of the event 
• A UDP Profile of the Infection
• The Search for a TCP Signature
• The Search for Residual Traffic (SCAR)
• Concluding Remarks



Event Chronology
• A Traffic Capture was initiated on February 3.
• On February 11 the first slice of data was extracted for 

analysis.
• On February 13 a Game Server was discovered on a 

compromised host.
• For the next 30 days this server supported the on-line 

Game playing of over 174,000 unique Source 
Addresses.

• During this time the traffic to and from the game server 
accounted for greater than 50% of the traffic byte volume 
and 34% of the network flows.



Network Description
• A Multi-tenant Network consisting of:

– ~ 40 user assigned hosts, actual number subject to 
minor fluctuations over time.

– ~40 special hosts not assigned to individual users. 
These hosts form parts of various temporary 
development and experimental environments.

– Users were apprised that Network flow data was now 
being captured for experimental and management 
reasons.

– Payload data was neither collected nor examined.
– Analysts did not have access to the content of specific 

hosts for further investigation. 
– For confidentiality reasons the identity of the Network is 

not specified in this Presentation. 



First Capture
• On February 11 the first sample of network 

traffic (Slice) was extracted for analysis.
• The time period from midnight to 7:00 AM local 

time on February 8 was chosen for the first slice.
• This was partially a random choice and partially 

due to the fact that the author expected minimal 
traffic volumes during this time. The institution 
which houses the Network is closed during these 
hours.

• Only Non-port 80 and Non-Null traffic was 
initially examined.



The First Capture Image



First Traffic Capture Observations

• Protocols are as one would expect (1,6,17,50*,53*).
• Size raised suspicion: 27,000+ records per hour seemed

large for a network with no active users. 
Pro      bytes    flags               sTime               eTime sPort dPort Pro Pro      bytes

6 133 F RPA   08/02/2006 0:00 08/02/2006 0:00 1684 143 260 260 387
17 53     A   08/02/2006 0:00 08/02/2006 0:00 50167 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 50167 291 291 428

6 354 FSRPA   08/02/2006 0:00 08/02/2006 0:00 45510 110 702 702 1050
17 53     A   08/02/2006 0:00 08/02/2006 0:00 3244 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 3244 291 291 428
17 53     A   08/02/2006 0:00 08/02/2006 0:00 32222 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 32222 291 291 428
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1966 27015 89 89 125
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1851 27015 89 89 125
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1054 27015 89 89 125
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1330 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 1330 291 291 428
17 53     A   08/02/2006 0:00 08/02/2006 0:00 2388 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 2388 291 291 428
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1406 27015 89 89 125
17 154     A   08/02/2006 0:00 08/02/2006 0:00 27015 1406 291 291 428
17 53     A   08/02/2006 0:00 08/02/2006 0:00 1395 27015 89 89 125



First Traffic Capture Observations

• Records were then ordered by byte size
Pro      bytes    flags               sTime               eTime sPort dPort

50 8254305     A   08/02/2006 0:37 08/02/2006 0:39 13285 53738

17 5858053     A   08/02/2006 0:14 08/02/2006 0:44 27015 27005

17 5690609     A   08/02/2006 0:01 08/02/2006 0:31 27015 27005

17 5146013     A   08/02/2006 0:00 08/02/2006 0:30 27015 43620

17 2733352     A   08/02/2006 0:01 08/02/2006 0:31 27005 27015

17 101620     A   08/02/2006 0:44 08/02/2006 0:46 27005 27015

50 101199     A   08/02/2006 0:42 08/02/2006 1:12 4945 58243

50 101199     A   08/02/2006 0:42 08/02/2006 1:12 39538 8788

17 101083     A   08/02/2006 0:13 08/02/2006 0:13 27015 27005

50 89085     A   08/02/2006 0:15 08/02/2006 0:42 20002 63939

50 89085     A   08/02/2006 0:15 08/02/2006 0:42 51221 31213

17 88030     A   08/02/2006 0:03 08/02/2006 0:33 5061 5061

50 5288     A   08/02/2006 0:52 08/02/2006 0:52 49580 16013

6 5141 FS PA   08/02/2006 0:54 08/02/2006 0:54 3432 25

6 4845 FS PA   08/02/2006 0:48 08/02/2006 0:48 3405 25

6 4825 FS PA   08/02/2006 0:32 08/02/2006 0:32 3360 25

17 1386     A   08/02/2006 0:13 08/02/2006 0:14 27015 3119

17 1368     A   08/02/2006 0:56 08/02/2006 0:57 500 500
50 1368     A   08/02/2006 0:59 08/02/2006 0:59 6043 2233
50 1360     A   08/02/2006 0:52 08/02/2006 0:52 49580 16013
6 1342    PA   08/02/2006 0:05 08/02/2006 0:05 1863 2227



First Traffic Capture Observations
From this sorting it was discovered that a small group of SourceIPs using
protocol 17 appeared to be responsible for a large portion of the traffic
bytes.

However, given the size of the database it was not immediately apparent if
There was a subset of these hosts that were unusually heavier than the rest.

The traffic was then sorted by Source IP and the total bytes over all flow
Records were accumulated for each SourceIP.

One SourceIp, labeled Suspicious Host, accounted for more than 56% of the
traffic volume in bytes

Total Bytes for 12:00 – 1:00AM                                             142,129,799
Total Byte Volume for Suspicious Host 12:00 – 1:00AM        79,865,126



Feb 08 UDP Traffic

12:00 – 2:00 AM

Bytes



First Traffic Capture Observations

The Next Step was to examine the use of
UDP Ports.
This was done by creating Port Bags and
reporting on Key counts greater than
10,000.



Port Bag For Key Counts > 10,000
Port Number Number of Flows Using Port

53 260,596
123 16,139
137 37,586
138 26,875
161 40,799
500 28,151

1027 10,170
1031 18,241
1954 13,445
2008 11,777
2967 51,571
5060 81,821
6346 16,320

25383 141,890
26900 72,348
27000 13,173
27001 13,342
27002 13,174
27003 13,233
27005 34,933
27010 13,039
27015 6,061,263
27243 64,616



Port Bag For Key Counts > 10,000
Port Number Number of Flows Using Port

53 260,596
123 16,139
137 37,586
138 26,875
161 40,799
500 28,151

1027 10,170
1031 18,241
1954 13,445
2008 11,777
2967 51,571
5060 81,821
6346 16,320

25383 141,890
26900 72,348
27000 13,173
27001 13,342
27002 13,174
27003 13,233
27005 34,933
27010 13,039
27015 6,061,263
27243 64,616

Ah hah!



Port Bag For Key Counts > 10,000
Port Number Number of Flows Using Port

53 260596
123 16139
137 37586
138 26875
161 40799
500 28151

1027 10170
1031 18241
1954 13445
2008 11777
2967 51571
5060 81821
6346 16320

25383 141890
26900 72348
27000 13173
27001 13342
27002 13174
27003 13233
27005 34933
27010 13039
27015 6061263
27243 64616

Also note 
for future
reference



First Traffic Capture Observations

• Next we look at the pattern of traffic 
accessing 27015



UDP Traffic Any Port = 27015



First Traffic Capture Observations

• Then we do a side by side Comparison to 
the behavioural pattern with the total UDP 
traffic.



Influence of Port 27015 on All UDP

This dominating behavioural pattern was assumed to represent a single
application's protocol.



First Traffic Capture Observations

• Additional information on the characteristics of the 
Suspicious Host:
– Suspicious Host was the 34% of all flow records during the hour 

tested.
– Suspicious Host communicated with 5,987 separate DestinationIP’s

during the hour.
– Almost all traffic from SourceIP’s that targeted the Suspicious Host 

as the DestinationIP was using protocol 17 and destination port 
27015

– A significant amount of the traffic to and from Suspicious Host was 
directed at a university campuses in the United States and consumer 
ISP’s around the world.

– Finally, the Suspicious Host was identified as an experimental 
development machine that had been part of a development and 
testing project in the previous year. Although it was still connected to 
the network it was not supposed to have any active users. 



Summary Characteristics of 
Suspicious Host

•Responsible for 56% of Network Non-Port 80 Byte Volume

•Responsible for 34% of Network Non-Port 80 Flow Volume

•Constant Communication with Thousands of Hosts around the World

•Some Preference for University Campuses and Consumer ISP’s

•Primarily uses UDP Port 27015

•Should Have Little or No Traffic

•WHAT AM I?



Half-Lifetm

• An on-line First 
Person Shooter 
Game produced by 
Valve Software

• Based on earlier 
versions of on-line 
game engines 
(Quake) and exists in 
many variations.



IMPORTANT DISCLAIMER

It is important to point out that Valve 
Software, the maker of Half-Lifetm is a 
legitimate company that would never 
knowingly allow its products to be part of 
an unauthorized network compromise. 
Indeed, in these circumstances, 
companies such as Valve Software are as 
much a victim as the owner of the 
compromised network.



FURTHER DISCLAIMER

It is important to point out that since the
experimenter had no access to the actual
machine or payload data this conclusion is
simply conjecture. 



Game Characteristics

• Clients communicate with Servers on 
destination port 27015.

• Game Servers may be initiated by players.
• Meta or Master Servers track available 

game servers.
• Game servers communicate with Meta 

servers on UDP port 27010.
• Some TCP Traffic associated with game 

network management.



Recall the Presence of Uniform Access 
in the 27,000 – 27,010 Port Range

Port Number Number of Flows Using Port

53 260596
123 16139
137 37586
138 26875
161 40799
500 28151

1027 10170
1031 18241
1954 13445
2008 11777
2967 51571
5060 81821
6346 16320

25383 141890
26900 72348
27000 13173
27001 13342
27002 13174
27003 13233
27005 34933
27010 13039
27015 6061263
27243 64616

Also note 
for future
reference



Signature is By No Means Unique

• UDP port can be chosen by any 
application.  

• Large byte volume is a relative term
• User demographic (Consumer ISP’s, 

Campus networks) is determined by 
looking.

• Would like to find a TCP management 
signature



Strategy To Isolate TCP signature

• We know that one exist’s from on-line 
developer discussions.

• Build a set of Game SIP’s.
• Slice out all TCP traffic.
• Isolate the TCP traffic associated with the 

Player SIP’s.



Strategy To Isolate TCP signature

• Build a set of Game SIP’s.
– Create a game host file:

• rwfilter - -aport=27,005,27,014,27015  - -pass=hltraffic.f out*
– Create a set of unique IP’s for Game Hosts

• rwset - -sip-file=hlsipfile.set hltraffic.f

• Slice out all TCP traffic.
• rwfilter - -proto=6 - -pass=tcptraffic.f out* 

– Create a set of Unique IP’s for the TCP traffic
• rwset - - sip-file=tcpsipfile.set tcptraffic.f

• Intersect the sets to get the Game hosts using TCP
• setintersect - -add-set=hlsipfile.set - -add-set=tcptraffic.f - -set-

file=hltcp.set



TCP Game Traffic

• Upon completion hltcp.set contained only four 
unique SourceIP’s, one of which was the 
Suspicious Host. The other three were not within 
the address space of the Network. 

• Removing these SIP’s from the complete file of 
TCP traffic created an artificial normal TCP 
traffic slice 

• Comparing the Artificial Normal Data to the 
actual data revealed a distinguishing pattern.



A TCP Signature?

TCP traffic contained in the Destination Port range 27,030, 27,033 and 27,034 with
Bytes Per Flow sizes ranging from the low 800’s to slightly more than 1000 with a
noticeable outlier at approximately 1600. This traffic is absent in the artificial normal
data set. 



A TCP Signature?
Probably Not



Be Careful of Assumptions

• This Host was not supposed to have any 
active users.

• At least half of the SourceIP’s creating the 
TCP Signature were immediately known to 
the Owner.



Be Careful of Assumptions

• This Host was not supposed to have any 
active users.

• At least half of the SourceIP’s creating the 
TCP Signature were immediately known to 
the Owner.

• However – An on-line discussion mentions
Server to server communication to a 
European address range that exists in the 
data and communication on port 27010



Port Bag For Key Counts > 10,000
Port Number Number of Flows Using Port

53 260596
123 16139
137 37586
138 26875
161 40799
500 28151

1027 10170
1031 18241
1954 13445
2008 11777
2967 51571
5060 81821
6346 16320

25383 141890
26900 72348
27000 13173
27001 13342
27002 13174
27003 13233
27005 34933
27010 13039
27015 6061263
27243 64616



The Search for a Scar

• Is there a unique traffic signature for a 
network that previously contained a game 
server host?

• Is there a residual SCAR in the traffic -
Severed Connection Anomalous Records



The Search for a Scar

• Unfortunately, Game Server was 
disconnected from the network.

• A search of Null Traffic was conducted 
which revealed two interesting anomalies



SCAR Traffic?
dPort pro      bytes    flags

27015 17 53     A   
27015 17 106     A   
27015 17 53     A   
27015 17 106     A   
27015 17 106     A   
27015 17 106     A   
27015 17 106     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 106     A   
27015 17 106     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   



SCAR Traffic?
dPort pro      bytes    flags

27015 17 53     A   
27015 17 106     A   
27015 17 53     A   
27015 17 106     A   
27015 17 106     A   
27015 17 106     A   
27015 17 106     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 106     A   
27015 17 106     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   
27015 17 53     A   

This same traffic exists in Null while Game server is active???



Null UDP Traffic on Apr 1



Null Game Traffic Only on Apr 1



New Traffic Pattern
Non-Null Non-Port 80
April 1, 2006 Feb 8, 2006



Observations on Gaming Traffic

• Much of the existing traffic profiling is 
aimed at providing a better game 
experience.

• Consumes considerable Resources.
• Represents a Level 7 WAN Network for 

Communication.
• Provides a channel to hide Malicious 

Traffic.



Future Work

• Anonomize the data so that it might be 
shared.

• Study the form and distribution of players, 
servers and meta-servers.

• A search for Management and other 
signatures continues.

• It was found that a virulent worm entered 
the network through this server. More on 
this in session 2.
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