
WebWatcher: A Learning Apprentice for the World Wide Web

Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell
School of Computer Science

Carnegie Mellon University

February 1, 1995

Abstract

We describe an information seeking as-
sistant for the world wide web. This
agent, called WebWatcher, interactively
helps users locate desired information by
employing learned knowledge about which
hyperlinks are likely to lead to the target
information. Our primary focus to date
has been on two issues: (1) organizing
WebWatcher to provide interactive advice
to Mosaic users while logging their suc-
cessful and unsuccessful searches as train-
ing data, and (2) incorporating machine
learning methods to automatically acquire
knowledge for selecting an appropriate hy-
perlink given the current web page viewed
by the user and the user's information
goal. We describe the initial design of
WebWatcher, and the results of our pre-
liminary learning experiments.

1 Overview

Many have noted the need for software to assist peo-
ple in locating information on the world wide web.
This paper1 presents the initial design and imple-
mentation of an agent called WebWatcher that is
intended to assist users both by interactively advis-
ing them as they traverse web links in search of in-
formation, and by searching autonomously on their
behalf. In interactive mode, WebWatcher acts as a
learning apprentice [Mitchell et al., 1985; Mitchell
et. al., 1994], providing interactive advice to the
Mosaic user regarding which hyperlinks to follow
next, then learning by observing the user's reaction
to this advice as well as the eventual success or fail-
ure of the user's actions. The initial implementation
of WebWatcher provides only this interactive mode,
and it does not yet possess su�cient knowledge to
give widely useful search advice. In this paper we
present WebWatcher as a case study in the design of
web-based learning agents for information retrieval.
We focus in particular on the interface that enables
WebWatcher to observe and advise any consenting
user browsing any location on the web, and on re-
sults of initial experiments with its learning meth-
ods.

1This paper is to appear in the 1995 AAAI Spring
Symposium on Information Gathering from Heteroge-

neous, Distributed Environments. March, 1995.

Figure 1: Original page

2 WebWatcher

This section presents the design of WebWatcher
through a scenario of its use. WebWatcher is an
information search agent that is \invoked" by fol-
lowing a web hyperlink to its web page, then �lling
out a Mosaic form to indicate what information is
sought (e.g., a publication by some author). Web-
Watcher then returns the user to (a copy of) the
web page from which he or she came, and assists
the user as they follow hyperlinks forward through
the web in search of the target information. As the
user traverses the web, WebWatcher uses its learned
knowledge to recommend especially promising hy-
perlinks to the user by highlighting these links on
the user's display. At any point, the user may dis-
miss WebWatcher, by clicking one of two indicators
on the WebWatcher icon, indicating either that the
search has succeeded, or that the user wishes to give
up on this search.
The sequence of web pages visited by the user in

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
WebWatcher: A Learning Apprentice for the World Wide Web

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We describe an information seeking as- sistant for the world wide web. This agent, called WebWatcher,
interactively helps users locate desired information by employing learned knowledge about which
hyperlinks are likely to lead to the target information. Our primary focus to date has been on two issues:
(1) organizing WebWatcher to provide interactive advice to Mosaic users while logging their suc- cessful
and unsuccessful searches as train- ing data, and (2) incorporating machine learning methods to
automatically acquire knowledge for selecting an appropriate hy- perlink given the current web page
viewed by the user and the user’s information goal. We describe the initial design of WebWatcher, and the
results of our pre- liminary learning experiments

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Figure 2: WebWatcher front door

Figure 3: Paper search form

Figure 4: Copy of original page with WebWatcher
advice

Figure 5: Next page (user has followed Web-
Watcher's advice)

a typical scenario is illustrated in �gures 1 through
5. The �rst screen shows a typical web page, 2 pro-
viding information about Machine Learning. Notice
in the third paragraph, this page invites the user to
try out WebWatcher. If the user clicks on this link,
he or she arrives at the front door WebWatcher page
(Figure 2), which allows the user to identify the type
of information he seeks. In this scenario the user in-
dicates that the goal is to locate a paper, so he is
shown a new screen (Figure 3) with a form to elabo-
rate this information request. Once completed, the
user is returned to the original page (Figure 4), with
WebWatcher now \looking over his shoulder". No-
tice the WebWatcher icon at the top of the screen,
and the highlighted link (bracketed by the Web-
Watcher eyes icon) halfway down the screen. This
highlighted link indicates WebWatcher's advice that
the user follow the link to the University of Illinois
/ Urbana (UIUC) AI / ML Page. The user decides
to select this recommended link, and arrives at the
new web page shown in Figure 5, which contains
new advice from WebWatcher. The search contin-
ues in this way, with the user directing the search
and WebWatcher highlighting recommended links,
until the user dismisses WebWatcher by clicking on
\I found it" or \I give up".
From the user's perspective WebWatcher is an

agent with specialized knowledge about how to
search outward from the page on which it was in-
voked. While WebWatcher suggests which hyper-
link the user should take, the user remains �rmly in
control, and may ignore the system's advice at any
step. We feel it is important for the user to remain
in control, because WebWatcher's knowledge may
provide imperfect advice, and because WebWatcher
might not perfectly understand the user's informa-
tion seeking goal.
From WebWatcher's perspective, the above sce-

nario looks somewhat di�erent. When �rst invoked
it accepts an argument, encoded in the URL that ac-
cesses it, which contains the user's \return address."
The return address is the URL of the web page from
which the user came. Once the user �lls out the
form specifying his or her information seeking goal,
WebWatcher sends the user back to a copy of this
original page, after making three changes. First, the
WebWatcher banner is added to the top of the page.
Second, each hyperlink URL in the original page
is replaced by a new URL that points back to the
WebWatcher. Third, if the WebWatcher �nds that
any of the hyperlinks on this page are strongly rec-
ommended by its search control knowledge, then it
highlights the most promising links in order to sug-
gest them to the user. It sends this modi�ed copy
of the return page to the user, and opens a �le to
begin logging this user's information search as train-
ing data. While it waits for the user's next step, it
prefetches any web pages it has just recommended

2This is a copy of the web page
http://www.ai.univie.ac.at/oefai/ml/ml-ressources.html,
to which we have added the third paragraph inviting
the user to invoke WebWatcher.

to the user, and begins to process these pages to
determine their most promising outgoing hyperlink.
When the user clicks on the next hyperlink, Web-
Watcher updates the log for this search, retrieves
the page (unless it has already been prefetched),
performs similar substitutions, and returns the copy
to the user.
This process continues, with WebWatcher track-

ing the user's search across the Web, providing ad-
vice at each step, until the user elects to dismiss the
agent. At this point, the WebWatcher closes the
log �le for this session (indicating either success or
failure in the search, depending on which button the
user selected when dismissingWebWatcher), and re-
turns the user to the original, unsubstituted copy of
the web page he is currently at.
The above scenario describes a typical interac-

tion with the current WebWatcher. We plan to ex-
tend the initial system in several ways. For example,
WebWatcher could be made to search several pages
ahead, by following its own advice while waiting for
the user's next input, in order to improve upon the
quality of advice it provides. In addition, if it en-
counters an especially promising page while search-
ing ahead, it might suggest that the user jump di-
rectly to this page rather than follow tediously along
the path that the agent has already traversed.

3 Learning

The success of WebWatcher depends crucially on
the quality of its knowledge for guiding search. Be-
cause of the di�culty of hand-crafting this knowl-
edge, and because we wish for many di�erent copies
of WebWatcher to become knowledgeable about
many di�erent regions of the Web, we are explor-
ing methods for automatically learning this search
control knowledge from experience.

3.1 What Should be Learned?

What is the form of the knowledge required by Web-
Watcher? In general, its task is to suggest an ap-
propriate link given the current user, goal, and web
page. Hence, one general form of knowledge that
would be useful corresponds to knowledge of the
function:

LinkUtility : Page �Goal � User � Link ! [0;1]

where Page is the current web page, Goal is the in-
formation sought by the user, User is the identity of
the user, and Link is one of the hyperlinks found on
Page. The value of LinkUtility is the probability
that following Link from Page leads along a short-
est path to a page that satis�es the current Goal for
the current User.
In the learning experiments reported here, we

consider learning a simpler function for which train-
ing data is more readily available, and which is still
of considerable practical use. This function is:

UserChoice? : Page� Goal � Link ! [0;1]

200 words 200 words 100 words � 30 words
Underlined Sentence Heading User goal

Table 1: Encoding of selected information for a
given Page, Link, and Goal.

Where the value of UserChoice? is the probability
that an arbitrary user will select Link given the cur-
rent Page and Goal. Notice here the User is not an
explicit input, and the function value predicts only
whether users tend to select Link { not whether it
leads optimally toward to the goal. Notice also that
information about the search trajectory by which
the user arrived at the current page is not consid-
ered.
One reason for focusing on UserChoice? in our

initial experiments is that the data automatically
logged by WebWatcher provides training examples
of this function. In particular, each time the user
selects a new hyperlink, a training example is logged
for each hyperlink on the current page, correspond-
ing to the Page, Goal, Link, and whether the user
chose this Link.

3.2 How Should Pages, Links and
Goals be Represented?

In order to learn and utilize knowledge of the tar-
get function UserChoice?, it is necessary to �rst
choose an appropriate representation for Page �
Goal � Link. This representation must be com-
patible with available learning methods, and must
allow the agent to evaluate learned knowledge ef-
�ciently (i.e., with a delay negligible compared to
typical page access delays on the web). Notice that
one issue here is that web pages, information asso-
ciated with hyperlinks, and user information goals
are all predominantly text-based, whereas most ma-
chine learning methods assume a more structured
data representation such as a feature vector. We
have experimented with a variety of representations
that re-represent the arbitrary-length text associ-
ated with pages, links, and goals as a �xed-length
feature vector. This idea is commonwithin informa-
tion retrieval retrieval systems [Salton and McGill,
1983]. It o�ers the advantage that the information
in an arbitrary amount of text is summarized in
a �xed length feature vector compatible with cur-
rent machine learning methods. It also carries the
disadvantage that much information is lost by this
re-representation.
The experiments described here all use the same

representation. Information about the current
Page, the user's information search Goal, and a
particular outgoing Link is represented by a vec-
tor of approximately 530 boolean features, each fea-
ture indicating the occurrence of a particular word
within the text that originally de�nes these three
attributes. The vector of 530 features is composed
of four concatenated subvectors:

1. Underlined words in the hyperlink. 200 boolean
features are allocated to encode selected words

that occur within the scope of the hypertext
link (i.e., the underlined words seen by the
user). These 200 features correspond to only
the 200 words found to be most informative
over all links in the training data (see below.)

2. Words in the sentence containing the hyperlink.
200 boolean features are allocated to indicate
the occurrence of 200 selected words within the
sentence (if any) that contains Link.

3. Words in the headings associated with the hy-
perlink. 100 boolean features are allocated to
indicate selected words that occur in the head-
ings (if any) under which Link is found. This
includes words occurring in headings at any
level of nesting, as long as Link is within the
scope of the heading. For example, in Fig-
ure 4, any of the words in the headingsMachine
Learning Information Services and General ML
Information Sources may be used as features to
describe the link that was highlighted.

4. Words used to de�ne the user goal. These fea-
tures indicate words entered by the user while
de�ning the information search goal. In our
experiments, the only goals considered were
searches for technical papers, for which the user
could optionally enter the title, author, organi-
zation, etc. (see Figure 3). All words entered
in this way throughout the training set were
included (approximately 30 words, though the
exact number varied with the training set used
in the particular experiment). The encoding of
the boolean feature in this case is assigned a 1 if
and only if the word occurs in the user-speci�ed
goal and occurs in the hyperlink, sentence, or
headings associated with this example.

To choose the encodings for the �rst three �elds,
it was necessary to select which words would be
considered. In each case, the words were selected
by �rst gathering every distinct word that occurred
over the training set, then ranking these accord-
ing to their mutual information with respect to
correctly classifying the training data, and �nally
choosing the top N words in this ranking.3 Mutual
information is a common statistical measure (see,
e.g., [Quinlan, 1993]) of the degree to which an in-
dividual feature (in this case a word) can correctly
classify the observed data.
Figure 1 summarizes the encoding of information

about the current Page, Link, and Goal.

3.3 What Learning Method Should
be Used?

The task of the learner is to learn the general func-
tion UserChoice?, given a sample of training data
logged from users. In order to explore possible
learning approaches and to determine the level of
competence achievable by a learning agent, we ap-
plied the following four methods to training data

3The appendix lists the words selected by this pro-
cedure using one of our training sets.

collected by WebWatcher during 30 information
search sessions:

� Winnow [Littlestone, 1988] learns a boolean con-
cept represented as a single linear threshold
function of the instance features. Weights for
this threshold function are learned using a mul-
tiplicative update rule. In our experiments we
enriched the original 530 attributes by a trans-
formation. Each attribute a of an example vec-
tor was transformed into two attributes a,a.
One attribute is equivalent with the original,
the other is its negation. After the learning
phase we removed the threshold and used the
output of the learned linear function as an eval-
uation for instances.

� Wordstat attempts to make a prediction
whether a link is followed based directly on
the statistics of individual words. For each
feature in the Page � Goal � Link vector, it
keeps two counts: a count of the number of
times this feature was set over all training ex-
amples (total), and a count of the number of
times this feature was set and the instance was
classi�ed as positive (pos). The ratio pos=total
provides an estimate of the conditional proba-
bility that the link will be followed, given that
this feature occurs. We experimented with var-
ious ways of combining these ratios. Of the ap-
proaches we tried, the one that worked best in
our experiments, the results of which we report
here, involves assuming that these single-word
estimates are mutually independent. This as-
sumptions allows us to combine individual es-
timates in a straightforward way. If p1; :::; pn
are the individual probabilities, and I is the
set of indexes for which a bit is set in a given
test vector, then the probability that the cor-
responding link was followed is determined by
1�
Q

i2I
(1� pi).

� TFIDF with cosine similarity measure [Salton
and McGill, 1983; Lang, 1995] is a method de-
veloped in information retrieval. In the gen-
eral case at �rst a vector V of words is cre-
ated. In our experiments it is already given by
the representation described above. Every in-
stance can now be represented as a vector with
the same length as V , replacing every word
by a number. These numbers are calculated
by the formula Vi = Freq(Wordi) � [log2(n) �
log2(DocFreq(Wordi))], with n being the total
number of examples, Freq(Wordi) the number
of occurrences of Wordi in the actual exam-
ple and DocFreq(Wordi) the number of exam-
ples Wordi appears in. The length of the vec-
tor is normalized to 1. Prototype vectors for
each class of the target concept are created by
adding all training vectors of this class. In our
case we had a target concept with two classes:
positive (link was followed by the user), and
negative (link was not followed by the user).
The evaluation of an instance is calculated by

subtracting the cosine between the instance
vector and the negative prototype vector from
the cosine between the instance vector and the
positive prototype vector.

� Random To provide a baseline measure against
which to compare the learning methods, we also
measured the performance achieved by ran-
domly choosing one link on the page with uni-
form probability. The mean number of links
per page over the data used here is 16, ranging
from a minimum of 1 to a maximum of 300.

4 Results
In order to explore the potential of machine learn-
ing methods to automatically acquire search control
knowledge for WebWatcher, we collected a set of
data from 30 sessions using WebWatcher to search
for technical papers. In each session the user began
at the web page shown in Figure 1, and searched for
a particular type of technical paper following links
forward from there. Searches were conducted by
three di�erent users. The average depth of a search
was 6 steps, with 23 of the 30 searches successfully
locating a paper. Each search session provided a
set of training examples corresponding to all the
Page � Link pairs occurring on each page visited
by the user.

4.1 How Accurately Can
UserChoice? Be Learned?

Given the above representation and learning
method, the obvious question is \How well can Web-
Watcher learn to advise the user?" To estimate the
answer to this question, the available data was split
into training and testing sets. Each learning method
was applied to the set of training sessions and eval-
uated according to how frequently it recommended
the hyperlink taken by the user in the separate test-
ing sessions.
In order to obtain more statistically signi�cant es-

timates of learning accuracy, the training data was
separated into 29 training sessions and one test ses-
sion, in each of the 30 possible ways. Each learn-
ing method was then applied to each training ses-
sion collection and evaluated on the test session.
The results of these 30 experiments were averaged.
This procedure was run for each of the four learning
methods.
Figure 6 plots the results of this experiment. The

vertical axis indicates the fraction of test cases in
which the user-selected hyperlink was among those
recommended by the learned knowledge. The hori-
zontal axis indicates the number of hyperlinks that
the learner was allowed to recommend for each page.
Thus, the leftmost point of each line indicates the
fraction of cases in which the user chose the learner's
highest-rated link. The second point to the left in-
dicates the fraction of cases in which the user chose
one of the two highest-rated links, and so on.
Notice that all three learning methods signi�-

cantly outperform randomly generated advice. For

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

F
ra

ct
io

n
C

or
re

ct

Number of Links to Advise

WebWatcher Predictive Accuracy

Winnow
Wordstat

TFIDF
Random

Worst Case

Figure 6: Accuracy of advice for di�erent meth-
ods. The vertical axis indicates the fraction of pages
for which the recommended hyperlinks included the
link chosen by the user. The horizontal axis in-
dicates the number of hyperlinks recommended per
page. The worst case line shows the fraction of pages
having N or fewer links total.

example, Winnow recommends the user-selected link
as its �rst choice in 30% of the test cases, and among
its top three choices in 54% of the cases. Given the
mean of 16 links per page in this data, random ad-
vice chooses the user-selected link only 6% of the
time.

4.2 Can Accuracy be Improved by
Sacri�cing Coverage?

Some users may prefer that the agent provide more
accurate advice, even if this requires that it make
recommendations more sparingly. To determine the
feasibility of increasing advice accuracy by reducing
coverage, we experimented with adding a thresh-
old on the con�dence of the advice. For each of
the learning methods considered here, the learner's
output is a real{valued number that can be used
to estimate its con�dence in recommending the
link. Therefore, it is easy to introduce a con�dence
threshold in each of these cases.
Figure 7 shows how advice accuracy varies with

coverage, as the con�dence threshold is varied. For
high values of the con�dence threshold, the agent
provides advice less often, but can usually achieve
higher accuracy. In this case, accuracy is measured
by the fraction of test cases for which the learner's
top ranked hyperlink is the link selected by the user.
Thus, the rightmost points in the plots of �gure 7
correspond exactly to the leftmost plots in �gure 6
(i.e., 100% coverage).
Notice that the accuracy of Winnow's top-ranked

recommendation increases from 30% to 53% as its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
C

or
re

ct

Fraction of Predictions Considered

WebWatcher Precision-Recall

Winnow
TFIDF

Wordstat

Figure 7: Increasing accuracy by reducing cover-
age. The vertical axis indicates the fraction of test
pages for which the learner's top recommendation
was taken by the user. The horizontal axis indicates
the fraction of test cases covered by advice as the
con�dence threshold is varied from high con�dence
(left) to low (right).

coverage is decreased to a more selective 10% of the
cases. Interestingly, while Wordstat's advice is rel-
atively accurate in general, its accuracy degrades
drastically at higher thresholds. The presence of
features which occur very infrequently in the train-
ing set, resulting in poor probability estimates, and
the inter-feature independence assumption, which
the training set by no means justi�es, appear to ac-
count for this phenomenon.

5 Conclusions

Software assistance is already needed to deal with
the growing ood of information available on the
WWW. The design of WebWatcher is based on the
assumption that knowledge about how to search the
web can be learned by interactively assisting and
watching searches performed by humans. If suc-
cessful, di�erent copies of WebWatcher could easily
be attached to any web page for which a specialized
search assistant would be useful. Over time, each
copy could learn expertise specializing in the types
of users, information needs, and information sources
commonly encountered through its page.
In the preliminary learning experiments reported

here, WebWatcher was able to learn search control
knowledge that approximately predicts the hyper-
link selected by users, conditional on the current
page, link, and goal. These experiments also showed
that the accuracy of the agent's advice can be in-
creased by allowing it to give advice only when it
has high con�dence. While these experimental re-
sults are positive, they are based on a small number

of training sessions, searching for a particular type
of information, from a speci�c web page. We do not
yet know whether the results reported here are rep-
resentative of what can be expected for other search
goals, users, and web localities.
Based on our initial exploration, we are optimistic

that a learning apprentice for the world wide web is
feasible. Although learned knowledge may provide
only imperfect advice, even a modest reduction in
the number of hyperlinks considered at each page
leads to an exponential improvement in the overall
search. Moreover, we believe learning can be made
more e�ective by taking advantage of the abundant
data available from many users on the web, and by
considering methods beyond those reported here.
For additional information, see the WebWatcher

project page, http://www.cs.cmu.edu:8001/afs/cs.cmu.edu

/project/theo-6/web-agent/www/project-home.html.

6 Acknowledgments

We thank Ken Lang for providing much of the soft-
ware for learning over pages of text, and for sug-
gesting the idea of implementing the agent by dy-
namically editing web pages. Thanks to Michael
Mauldin for software and advice on the construc-
tion of a web-based text-retrieval system. We are
grateful to Rich Caruana and Ken Lang for helpful
comments on this paper. This research is supported
by a Rotary International fellowship grant, an NSF
graduate fellowship, and by Arpa under grant num-
ber F33615-93-1-1330.

References

[Mitchell et al., 1985] T. Mitchell, S. Mahadevan,
and L. Steinberg, \LEAP: A Learning Ap-
prentice for VLSI Design," Ninth Interna-
tional Joint Conference on Arti�cial Intelli-
gence, August 1985.

[Mitchell et. al., 1994] T.M. Mitchell, R. Caruana,
D. Freitag, J. McDermott, and D. Zabowski,
\Experience with a Learning Personal Assis-
tant," Communications of the ACM, Vol. 37,
No. 7, pp. 81-91, July 1994.

[Salton and McGill, 1983] G. Salton and M.J.
McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, Inc., 1983.

[Lang, 1995] K. Lang, NewsWeeder: Learning to
Filter Netnews, to be submitted to the In-
ternational Conference on Machine Learn-
ing, 1995

[Littlestone, 1988] N. Littlestone, \Learning
quickly when irrelevant attributes abound,"
Machine Learning, 2:4, pp. 285{318 .

[Quinlan, 1993] J.R. Quinlan, C4.5: Programs
for Machine Learning, Morgan Kaufmann,
1993.

Appendix The following lists show the words
used to encodePage � Link � Goal into a feature
vector as summarized in Figure 1. Words are listed
in order, beginning with the word with highest mu-
tual information.
Underlined words: papers, uci, other, publications,

learning, algorithm, www, illigal, page, illinois, related, ted, beld-
ing, mitchell, people, approaches, california, soar, tom, ronny,
unit, readme, genetic, symbolic, sources, comparison, explana-
tion, laboratory, cmu's, with, cmu, abstract, machine, pazzani,
avrim, more, what, j, systems, michael, project, dortmund, my,
subject, personal, institute, conference, their, tf3, our, lhm, esf,
do, indexes, characterizing, handouts, information.html, fourier,
artici�al, tracking, ntrs, weakly, 26, readings, software, informa-
tion, knowledge, 95, lab, language, esprit, lists, html, dnf, sta�,
rl, reinforcement, univ, services, pub, links, irvine, on, home, re-
port, cognitive, list, international, that, discovery, data, z, pub-
lication, agenda, original, discussed, there, between, tex2html2,
tex2html1, method, does, tcb, perception, 468, blum, illigals, ac-
tually, it, workshop94, newell, bibilography, bottom, heck, rosen-
bloom, relationship, mine, ciir, germany, uc, tech, net, middle,
engineering, sigart, reports, mailing, network, reasoning, michi-
gan, 10, robotics, cs, groups, online, encore, next, low, tr, 4k,
pape, return, preprints, new, programs, kohavi, etc, m, group,
computing, department, document, postscript, is, proben1, com-
plete, summary, see, ls8, cultural, director, professor, references,
index, problems, gmd, dept, ml, applied, vision, cli�ord, pan,
level, faculty, introduction, call, integrated, sciences, brunk, ofai,
general, college, digest, neural, ml94, applications, mit, service,
databases, abstracts, austrian, issues, from, top, electronic, w,
homepage, emde, starting, image

Sentence words: other, illigal, uci, papers, publica-
tions, related, algorithm, page, www, lists, people, learning, soar,
ted, belding, illinois, kohavi, unit, selected, ronny, california, bot-
tom, laboratory, symbolic, sites, mitchell, approaches, sources,
avrim, comparison, more, cmu's, with, genetic, abstract, home,
pazzani, systems, document, email, abstracts, institute, confer-
ence, machine, dortmund, next, led, view, their, subject, do,
tf3, lhm, esf, background, handouts, recommend, ntrs, carry,
indexes, tracking, artici�al, 468, 26, thrun, language, explana-
tion, what, lab, same, sta�, manner, reinforcement, knowledge,
cmu, cognitive, my, tom, html, web, there, services, organized,
pub, on, irvine, esprit, 95, links, list, international, middle,
tech, readme, personal, sigart, net, ml94, are, our, engineering,
bibilography, maybe, discussed, september, actually, quick, il-
ligals, listed, heck, tex2html2, tex2html1, relationship, agenda,
event, method, does, newell, rosenbloom, tcb, publication, orig-
inal, blum, z, germany, ciir, that, rl, uc, information, reasoning,
know, report, software, to, department, new, groups, encore,
reports, test, previous, further, level, pape, preprints, tr, clus-
ters, readings, 4k, low, return, link, or, group, neural, postscript,
discovery, computing, gmd, michigan, robotics, is, issues, main-
tained, mine, general, proben1, check, �elds, investigations, im-
ages, complete, director, volumes, ls8, cultural, sciences, colt94,
at, mailing, edu, network, stanford, college, want, applications,
back, pan, online, 10, faculty, integrated, between, jump, brunk,
ofai, problems, electronic, digest

Heading words: ga, personal, pages, computing, orga-
nization, lab, this, some, of, other, evolutionary, public, neural,
data, knowledge, me, to, information, and, various, program, the,
nlp, nets, nn, home, institutions, doing, depts, on, ai, reinforce-
ment, about, return, ntrs, illigal, representation, kr, readings,
integrated, science, language, intelligence, departments, process-
ing, links, school, 11, systems, 94, meetings, �rst, try, mining,
soar, html, computer, 3k, applications, possibly, ftp, aug, in-
volved, networks, subjects, page, 10, cognitive, natural, rele-
vant, interpretation, tf3, esf, rules, indirect, lhm, act, interest,
robotics, txt, colt94, workshop, david, programmatic, you, gold-
berg, e, director, professor, apps, cogsci, 15, 681, list, handouts,
journal, starting, logic, talks, interests

User goal words: university, carnegie, learning, paz-
zani, explanation, tom, cmu, genetic, information, machine,
irvine, decision, reinforcement, soar, stanford, inductive, mis-
take, curvilinear, gigus, pattern, ste�o, ilp, ronny, higher, gold-
berg, holland, �rst, rise, phoebe, avrim, mit, occams, emde, gmd,
illinois, dnf, koza, berkeley, quinlan, computational, josef, aver-
age, salton

