CORBA and HLA: Enabling Future Network-Centric Vehicle
Systems?

William Pritchett & William Protzman Robert Kling
DCS Corporation US Army TACOM

Abstract

Increased emphasis on simulation-based acquisition and network-centric warfare within the
objective force has posed key challenges within the embedded ground vehicle community. While
simulation-based acquisition enables a faster time to field through increased concurrency, tighter
decision cycles, more efficient and effective testing; the ultimate goal of rapidly transitioning
outputs from the simulation phase of a program to the vehicle design and integration phase is
minimally met in today’s environment due to varied architectures, levels of fidelity, and design
methodologies. In the same respect, the dynamic nature of network-centric warfare further
strains legacy architectures, as they cannot handle the new and often dynamic operational
requirements. Two technologies currently under consideration with respect to their ability to solve
some or all of these design and architectural gaps are the Common Object Request Broker
Architecture (CORBA) family of services and the High-Level Architecture (HLA). CORBA is a
distributed object architecture developed by the Object Management Group (OMG), and though
originally developed for information systems, has been extended to accommodate real-time and
embedded requirements. HLA is the Department of Defense mandated architecture for
distributed simulation. HLA includes a runtime infrastructure (RTI) and one or more federates
combined to form the simulation system, or federation. Though both CORBA and HLA are used
to build complex, distributed systems, there are differences in these two architectures that
complicate their use within a single system. This paper evaluates the suitability of both CORBA
and HLA for use in ground combat vehicles, as both stand-alone technologies and in conjunction
with one another.

1 Background

To better respond to changing world threats, the Army is in the midst of a major force
transformation grounded in concepts for future joint and combined operations. At the
center of the transformation is the unit of action, a strategically responsive force, rapidly
deployable anywhere in the world in 96 hours after liftoff, providing overmatching
lethality with advanced survivability against any threat, versatile and responsive to the
needs of the Joint Task Force Commander, while able to transition rapidly between
missions, tactical engagements and battles with minimal organizational adjustment. The
makeup of a unit of action includes a highly-networked combination of manned and
unmanned ground vehicles being developed under the auspices of the Future Combat
System (FCS).

From the ground combat vehicle weapon system perspective, the paradigm shift
catalyzed by the FCS program is based in an accelerated convergence of architectures
(depicted in Figure 1). These architectures are the Platform Architecture (e.g., vehicle
computers, weapons, mobility, crew stations, and electronics), C4ISR Architecture (e.g.,
sensors, battlefield command and control, situational awareness), and Modeling and
Simulation Architecture (e.g., computer-based and embedded training, mission rehearsal,
terrain registration).
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Figure 1 Platform, C4ISR, and Simulation Architecture Relationships

There is, however, an underlying barrier present in today’s environment that limits the
ability to leverage across these architectures. That barrier is that these architectures are
grounded in distinct domains, which have traditionally focused on and evolved from
discrete technologies and infrastructure to realize the development and integration of
resultant domain applications. For example, platform applications tend to drive towards
embedded real-time systems, imposing resource and timing constraints; C4ISR
applications tend to be developed as enterprise/information technology systems targeted
for workstation class computers; and modeling and simulation applications tend to focus
on force simulations, system-level model based acquisition, and training.

Today, cross-architecture technologies are typically incorporated into Army vehicle
weapon systems via a bolt on vs. integrated approach. An example is an FBCB2
appliqué computer running a command and control/situational awareness application
providing its own display and integrated to the vehicle system via Ethernet and radio
interfaces.  As specific FCS vehicle system(s) architectures are designed and
implemented, a high degree of cohesion among these three converging architectures will
be not only desired, but necessary in order to integrate/leverage required technologies in
accordance with the Objective Force system/system of system concepts and requirements
(to include acquisition, development, deployment, management and sustainment).

An approach to facilitating this cross-architecture application reuse/leveraging within
FCS can be realized through the analysis of the application infrastructure (distribution
middleware) and identification of an approach to better correlate these middleware layers
leading to application insertion as opposed to application and computer bolt on
integration.

Figure 2 Platform, C4ISR, and Simulation Domain Middleware



Figure 2 depicts the three architectures, highlighting the middleware dominant within the
application domains. Applications within the Platform Domain utilize a real-time
operating system (RTOS) and often incorporate an operating environment (OE)
middleware isolation layer, isolating hardware dependencies and maximizing application
portability. Applications within the C4ISR Domain utilize workstation-based operating
systems (e.g., Unix, Linux) and incorporate CORBA services. Applications within the
M&S domain utilize a variety of operating systems (dependent on the simulation) and are
developed in HLA and integrated via the HLA RunTime Infrastructure (RTI).

This paper provides an analysis of HLA and CORBA to identify their suitability to
facilitate the leveraging, development, and integration of co-resident C4ISR and M&S
applications within the ground vehicle weapon system platform.

1.1 High-Level Architecture

The High-Level Architecture (HLA) [1], shown in Figure 3, is a component-based
software architecture developed by the U.S. Department of Defense during the 1990’s to
provide a low-cost, high-capability simulation infrastructure. The architecture calls for a
federation of individual simulations called federates. A federate can represent varying
levels of abstraction from a cockpit simulator to an entire fighting force. A federation
execution is a session of a federation executing together. Along with individual
federates, a federation contains a runtime infrastructure (RTI) and a common object
model for data exchanged between federates in a federation, call the Federation Object
Model (FOM). The specification of the architecture contains three main components: 1)
ten rules that define relationships among federation components, 2) an object model
template which specifies the form in which simulation elements are described, and 3) an
interface specification that describes the way simulations interact during execution.
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Figure 3 High Level Architecture

Of the ten rules specified by the architecture, five are federation rules and five are
federate rules. The federation rules are as follows: 1) the federation shall have a FOM
and shall be in object model template (OMT) format; 2) all representation of objects shall
be in the federates and not the RTI; 3) during federation execution, all exchange of FOM
data shall be via the RTI; 4) during federation execution, all federates shall interact with
the RTI in accordance with the interface specification; and 5) during federation



execution, an attribute of an instance of an object may be owned by only one federate at a
given time. The federate rules are: 1) federates shall have a SOM in OMT format; 2)
federates shall be able to update/reflect attributes and send/receive data in accordance
with their SOM; 3) federates shall be able to transfer/accept attribute ownership in
accordance with their SOM; 4) federates shall be able to vary the conditions under which
they provide attribute updates in accordance with their SOM; and 5) federates shall be
able to manage the local time in a way which will allow them to coordinate data
exchange with other members of the federation.

The object model template provides a common framework for HLA object model
documentation and fosters interoperability and reuse of simulations via the specification
of a common representational framework. The FOM is a description of all shared
information (objects, attributes, interactions, and parameters) essential to a particular
federation. The Simulation Object Model (SOM) describes objects, attributes, and
interactions in a particular simulation that can be used externally in a federation. An
attribute is the named portion of an object’s state. An interaction is a change in the
sending object state that may cause a state change in another (receiving) object. A
parameter is the information associated with an interaction provided by the sending
object to the receiving object. Federates update attributes by providing the new instance
attribute value for an attribute, and reflect attribute changes by receiving the new instance
attribute value for an attribute.

The HLA interface specification defines the access to RTI services. The interface
specification is provided as an application programmer interface (API) in several forms
including C++, Ada 95 and Java. The interface specification has six basic RTI service
groups:  federation management, declaration management, object management,
ownership management, time management, and data distribution management.

1.2 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) [2] is an open, vendor-
independent architecture and infrastructure that computer applications use to work
together over networks. Using the standard Internet Inter-ORB protocol (IIOP), a
CORBA-based program from any vendor, on almost any computer, operating system,
programming language, and network, can interoperate with a CORBA-based program
from the same or another vendor, on almost any other computer, operating system,
programming language, and network. The Object Management Group (OMG), a
consortium of vendors and other distributed computing stakeholders, produces and
maintains the family of CORBA-related specifications.

CORBA applications are composed of objects, individual units of running software that
combine functionality and data. For each object type, developers define an interface
using the OMG Interface Definition Language (IDL). The interface is the syntax part of
the contract that the server object offers to the clients that invoke it. Any client that
wants to invoke an operation on the object must use this IDL interface to specify the
operation it wants to perform, and to marshal the arguments that it sends. When the
invocation reaches the target object, the object request broker (ORB) uses the same



interface definition to unmarshal the arguments so that the object can perform the
requested operation with them. The ORB then uses the interface definition to marshal the
results for their trip back, and to unmarshal them when they reach their destination.
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Figure 4 CORBA Architecture

This separation of interface from implementation, as shown in Figure 4, is the essence of
CORBA—how it enables interoperability and location transparencies. Object interfaces
have very strict definitions. In contrast, the ORB hides implementation details of an
object - its running code, and its data from the rest of the system behind a boundary that
the client may not cross. Clients access objects only through their advertised interface,
invoking only those operations that the object exposes through its IDL interface, with
only those parameters (input and output) that are included in the invocation.

Though originally developed for information systems, the OMG has created specialized
CORBA extensions to address real-time and embedded systems. Most notable of the
adopted specialized specifications are dynamic scheduling, minimum CORBA, CORBA
event-service, CORBA notification service, and real-time CORBA. Real-time CORBA
extends CORBA by facilitating the end-to-end predictability of activities in the system
and by providing support for the management of resources. The dynamic scheduling
specification extends real-time CORBA to encompass dynamically scheduled systems.
The CORBA event and notification services provide services for asynchronous
notification of events. Minimum CORBA defines a minimal subset of CORBA for
resource constrained (embedded) environments.

The OMG also has related specifications under development including the data
distribution service, real-time notification service, and reliable ordered multicast protocol.
The data distribution service supports a Data-Centric Publish-Subscribe (DCPS) for real-
time systems and offers, optionally, a Data Local Reconstruction Layer (DLRL). The
real-time notification service will address priority ordering of events and deadline
scheduling of events. Finally, the OMG is specifying a reliable ordered multicast
protocol for those services, such as fault tolerance, that can benefit from such a protocol.

1.3 CORBA/HLA Relationship

Though dissimilar, there is a relationship between CORBA and the HLA. Developers
can use CORBA IDL to specify the interface between federates and the RTI. Further, the
OMG has specified the RTI itself in IDL and has standardized this interface as their
Facility for Distributed Simulation Systems [3]. This means that CORBA-based



applications can instantiate RTI objects as CORBA objects and incorporate them into
their system. Additionally, the nature of the ORB makes it a good candidate technology
for implementing an HLA RTI, and in fact, ORB-based implementations of both RTIs
and federates exist.

2 Suitability of HLA in Future Ground Vehicles

While HLA may be a suitable technology for large-scale distributed simulations, current
implementations have major drawbacks as a solution for real-time embedded systems.
Foremost is the lack of RTI implementations for real-time operating systems such as
Wind River’s VxWorks. There are, however, RTI products that run on Linux, an
operating system gaining in popularity within the ground vehicle community. More
investigation is needed, however, to determine whether or not Linux is a viable operating
system for a total vehicle solution.

Another weakness to using HLA for ground vehicle embedded simulation is the fact that
HLA does not specify timeliness criteria, thus limiting its usefulness in real-time
simulations. McLean et. al. states the “lack of timeliness requirements, or any additional
guidance, is a critical limitation for real-time simulation systems where the amount and
predictability of RTI overhead is an important design factor” [4]. This is important
because real-time distributed interactive simulation requires “a real-time response and
predictable behavior from the end systems in order to interact with the physical world
within the specific delay bounds and present data, images, audio, video, etc. to the users
on a real-time basis” [5]. Numerous research efforts to extend HLA to real-time
applications are addressing this problem [4][5].

The last major shortcoming to using HLA for real-time embedded simulation is the fact
that HLA is not interoperable across languages or RTI implementations. Although HLA
has multilanguage support, “the responsibility for interoperability between federates in
different languages is placed on the RTI implementers” [6]. Further, HLA leaves the
choice of protocol up to implementations. This forces systems into using a single RTI
implementation and a single programming language. This is not always feasible within
modern ground combat systems.

3 Suitability of CORBA in Future Ground Vehicles

While RTI has major limitations for use in embedded systems, CORBA is increasingly
gaining acceptance in military domains as shown by the numerous programs that have
fielded CORBA-based applications [7][8][9][10]. Common reasons cited for choosing
CORBA include improved quality of service (QoS), predictable response times, small
footprint, and real-time performance. One benchmarking study analyzed the performance
of three available real-time ORBs and found data transfer rates a high as 5 MB/s using
TCP/IP over a 10BaseT Ethernet on [11]. This performance is more than adequate for
the closed loop control rates needed for most Vehicle Electronics (vetronics) applications.
Further, CORBA’s emphasis on interfaces over implementations leads to well-defined
architectures that are more maintainable and supportable over the life cycle of a vehicle.



Additionally, the use of CORBA for middleware eliminates the need for application
programmers to have detailed knowledge of the distribution mechanisms, thus allowing
them to focus on the military-unique domain applications.

CORBA, however, is not without limitations too. The client/server paradigm used by
CORBA may not be suitable for all ground vehicle applications. While this paradigm is
proper for one-to-one object calls, network bandwidth may suffer in a data-oriented
system in which data must flow from a single source to multiple destinations. The OMG
is addressing this deficiency with their emerging data distribution specification. This
specification will enable vehicle developers, where appropriate, to use the standards-
based publish/subscribe paradigm in their software design to facilitate low-latency, high-
bandwidth communications.

Another downside to using CORBA in vetronics applications is the lack of a suitable
asynchronous notification mechanism. Though CORBA does have event and notification
services, these do not allow for deadline-based event specification or event priorities,
making it inefficient for real-time applications. The OMG is addressing these
deficiencies with the emerging real-time notification service.

4 Heterogeneous HLA/CORBA-based System Example

This section provides an overview of an example system incorporating an HLA/CORBA
based architecture to cohesively integrate a disparate M&S component into a ground
vehicle weapon system platform. The example is taken from a current system design
employed within the Army R&D community that interfaces an embedded training
capability to a ground vehicle weapon system.

The current architecture employed within the embedded simulation system is presented in
Figure 5.
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Figure 5 Embedded Simulation System

As depicted in the figure, a distributed simulation environment, representing force-level
battlespace entities, is connected to an embedded simulation computer via HLA. The
embedded simulation computer provides a gateway to the vehicle (the vehicle is
represented in the figure as an embedded computer). The embedded simulation gateway
enables the vehicle to participate in the force-level simulation as an individual entity by



providing correlated virtual world sensor views to the vehicle and representing the
vehicle via operator and system interaction (e.g., mobility, targeting, firing, ...) within the
virtual battlespace. The connection between the embedded simulation system and the
vehicle embedded computer is defined via an A/B kit interface, which is realized as a
series of bi-directional data based TCP/IP messages. The embedded simulation and
vehicle applications cannot be co-resident because they utilize different technologies and
network communication protocols (with the exception of well-defined A/B kit interface).

The ultimate goal of this analysis is to provide a robust, extensible, standards-based
embedded simulation capability that minimally impacts the operational characteristics of
the vehicle and is consistent with the rest of the vetronics architecture. To meet that goal,
the simulation infrastructure must support real-time quality of service, must be
interoperable across languages and implementations, and must be available on many
different platforms. Further, to minimize the impact on the rest of the system, the
simulation infrastructure must be able to seamlessly share data with operational vehicle
applications. This is contrary to the way developers currently design systems where they
typically integrate three distinct architectures—vetronics, C4I1SR, and simulation. Each
of these usually uses different middleware products for distributed communication.
Vetronics applications use real-time operating environments, C4ISR applications use
CORBA or a similar commercial middleware product, and embedded simulations use the
A-kit/B-kit approach described in Section 1. One way to harmonize these three
architectures is to use real-time CORBA, in conjunction with some of the related
emerging specifications (real-time notification and data distribution), as the distributed
communications middleware for all vetronics, C4ISR, and embedded simulation
applications
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Figure 6 Proposed Integrated Architecture

As shown in Figure 6, the proposed architecture uses real-time CORBA as the common
infrastructure bridging the embedded simulation and vehicle applications. Vehicle
applications use real-time CORBA for distributed communication, as does the HLA RTI.
This would allow a more efficient and maintainable coupling between the operational
vehicle software and the embedded simulation capabilities, as developers need only
integrate and maintain one middleware product. For example, consider a vehicle with
three major states as shown in Figure 7.
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In this example, transitions to the operational or training states can only occur from the
initialization state. This makes it easy to setup the required resources for a single state at
the same time. An integrated CORBA/HLA-based architecture could consist of
application objects inheriting from a CORBA object as shown in Figure 8.

CORBA Object

WBind()
Z\f
Sensor

EZAzimuth
E&Elevation

®Set Azimuth()

Figure 8 Diagram Example, Class Diagram

Then, depending on the state, i.e., training, or operational, a different implementation of
the application object could be “bound” (resolved) at runtime to achieve either simulated
or operational behavior as shown by the collaboration diagram in Figure 8. This
approach provides a flexible, non-intrusive embedded simulation capability that is
transparent to the vehicle applications. The actual vehicle software is literally unaware of
whether or not the object being interacted with is “real” or simulated. The overall system
is also more supportable and maintainable as both the embedded simulation capabilities
and the remaining vehicle software share a common distribution infrastructure. Further,
it is possible to specify the interface to the application objects in a way that hides the
actual middleware (contains no visible references to CORBA), to preserve the investment
in the application objects as both the middleware and simulation technologies evolve.
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5 Summary and Conclusions

This paper presents an open standards based architecture that seamlessly integrates
embedded simulation capabilities into a real-time embedded ground vehicle system. Of
the two standards proposed, only CORBA is mature enough for use in ground combat
vehicles. HLA, though promising, still has drawbacks in the areas of real-time
computing, interoperability, and platform availability. The future addition of CORBA-
based HLA run-time infrastructures, however, can alleviate those shortcomings. Further
work is needed, however, to validate the architecture approach and ensure that both of
these technologies can live in harmony within a single integrated platform. This
validation can be accomplished in multiple stages with the first stage consisting of
CORBA-based vehicle software and a non-CORBA, workstation-based RTI
implementation. This would both ensure that the architecture approach is sound and
would start to mature the application object interfaces. The full validation could occur as
CORBA-based RTI implementations become available on multiple platforms.
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