
 

 

ACOUSTICAL AWARENESS FOR INTELLIGENT ROBOTIC 

ACTION 
 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 

By 
 
 
 

Eric Martinson 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in Computer Science 
 
 
 
 
 
 

Georgia Institute of Technology 
 

December, 2007 
 
 
 
 
 

Copyright © 2007 by Eric Martinson



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Acoustical Awareness for Intelligent Robotic Action 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Georgia Institute of Technology,School of Interactive 
Computing,Atlanta,GA,30332 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

406 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

 

ACOUSTICAL AWARENESS FOR INTELLIGENT ROBOTIC 

ACTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved by: 

 

 

Dr. Ronald Arkin, Advisor 

School of Interactive Computing 

Georgia Institute of Technology 

 

Dr. David Anderson 

School of Electrical and Computer 
Engineering 

Georgia Institute of Technology 

 

Dr. Tucker Balch 

School of Interactive Computing 

Georgia Institute of Technology 

 

 

 

Dr. Frank Dellaert 

School of Interactive Computing 

Georgia Institute of Technology 

 

Dr. Thad Starner 

School of Interactive Computing 

Georgia Institute of Technology 

 

 

Date Approved: November 9, 2007 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to thank my wife, Lilia Moshkina, for the 

countless hours she spent helping me out in many different ways.  She was always 

encouraging, helped out with the robots when it was needed, was a good sounding board 

for refining ideas, and was an excellent editor for this dissertation.  In general, Lilia was 

invaluable to this work, and this dissertation would likely not have been completed 

without her.   

Second, I would like to thank my advisor, Ron Arkin, along with the rest of my 

committee: Dave Anderson, Tucker Balch, Frank Dellaert, and Thad Starner.  Ron 

provided me with the freedom to explore this subject and truly identify a topic of my own 

choosing, while the committee was enthusiastic and helpful all the way to the end. 

Finally, I would like to thank the people at the Naval Research Laboratory Center 

for Artificial Intelligence.  In particular, thanks to Alan Schultz and Derek Brock for their 

early acceptance of this line of research.  Their experience and general support was a 

great asset towards refining the work and getting it published.  Thanks also to Ben 

Fransen, a fellow intern, for being a patient listener on numerous occasions throughout 

two summers. 

  



iv 

 

TABLE OF CONTENTS 

Acknowledgements __________________________________________ iii 

List of Tables  _____________________________________________ viii 

List of Figures _______________________________________________ x 

Summary  ______________________________________________ xv 

CHAPTER 1 - Introduction ____________________________________ 1 

1.1 Terminology_____________________________________________ 3 

1.2 Research Question _______________________________________ 4 

1.3 Contributions____________________________________________ 6 

1.4 Dissertation Overview ____________________________________ 6 

CHAPTER 2 – Related Work __________________________________ 8 

2.1 Sound Source Localization _________________________________ 9 

2.2 Natural Language Interfaces ______________________________ 17 

2.3 Audio Classification _____________________________________ 23 

2.4 Audio Probing __________________________________________ 26 

2.5 Sound Vocalization ______________________________________ 27 

2.6 Summary of Application Domains _________________________ 29 



v 

 

CHAPTER 3 – Acoustical Awareness ___________________________ 30 

3.1 Types of Awareness______________________________________ 31 

3.2 Knowledge for Acoustical Awareness _______________________ 35 

3.3 Mathematical Framework for Sound Propagation ____________ 42 

3.4 Chapter Summary ______________________________________ 66 

CHAPTER 4 – Acquiring Knowledge about the Auditory Scene _____ 69 

4.1 Building Blocks _________________________________________ 70 

4.2 Representations for Characterizing Sound Sources ___________ 84 

4.3 Path Information _______________________________________ 141 

4.4 Building Maps without Models ___________________________ 153 

4.5 Chapter Summary _____________________________________ 158 

CHAPTER 5 – The Autonomous Mobile Security Robot __________ 162 

5.1 Related Work in Security Robotics ________________________ 163 

5.2 Monitoring the Auditory Scene ___________________________ 165 

5.3 Improving the Signal-To-Noise Ratio ______________________ 203 

5.4 Chapter Summary _____________________________________ 230 

CHAPTER 6 – The Stealthy Approach Scenario _________________ 232 

6.1 How to Hide a Noisy Robot ______________________________ 235 



vi 

 

6.2 Experimental Results ___________________________________ 242 

6.3 Discussion of Results ____________________________________ 253 

6.4 Chapter Summary _____________________________________ 265 

CHAPTER 7 – Acoustical Awareness for Human-Robot Interaction 267 

7.1 A Model of Human Acoustical Awareness __________________ 269 

7.2 Robotic Adaptations ____________________________________ 274 

7.3 Combining Types of Awareness __________________________ 285 

7.4 Chapter Summary _____________________________________ 288 

CHAPTER 8 – Summary and Contributions ____________________ 290 

8.1 How Can Acoustical Awareness be Applied to Mobile Robotics? 291 

8.2 Contributions__________________________________________ 301 

8.3 Conclusion ____________________________________________ 305 

Appendix A - Software Design ________________________________ 307 

A.1. Hardware _____________________________________________ 307 

A.2. Software Processes _____________________________________ 309 

A.3. Database Design _______________________________________ 318 

Appendix B - Knowledge Gathering Tools ______________________ 330 

B.1. Spatial Likelihoods _____________________________________ 330 



vii 

 

B.2. Auditory Evidence Grids ________________________________ 333 

B.3. Directivity Models ______________________________________ 339 

B.4. Mel Frequency Cepstral Coefficients ______________________ 342 

B.5. Creating Direct Field Maps ______________________________ 346 

B.6. Ray-Tracing for Direct and/or Reverberant Field Maps ______ 347 

B.7. Sampled Data Noise Maps _______________________________ 354 

Appendix C - Guiding Robotic Movement ______________________ 358 

C.1. Clear-Space Map _______________________________________ 358 

C.2. Patrolling the Environment ______________________________ 360 

C.3. Investigation of a Sound Source __________________________ 368 

Appendix D - HRI Application _______________________________ 372 

D.1. Selecting Speech Volume ________________________________ 374 

D.2. Pausing for Interruptions ________________________________ 375 

D.3. Rotating to Face the Listener _____________________________ 376 

D.4. Relocating the Robot____________________________________ 377 

References  _____________________________________________ 380 

 

  



viii 

 

LIST OF TABLES 

Table 4.1.  The results of all phase 1 auditory evidence experiments. ______________ 94 

Table 4.2. Mean localization error when auditory evidence grids are used with data 
collected by a moving robot. _______________________________________ 113 

Table 4.3. Mean localization and orientation error as produced by the discovery process.
______________________________________________________________ 115 

Table 4.4. Mean error in identifying the direction of maximum volume, as produced by 
an area coverage task. ____________________________________________ 124 

Table 4.5. Localization and orientation accuracy of the two source discovery process 126 

Table 5.1.  List of trials completed by the robot for this scenario.  All used the same 
patrol route, but varied in the types and numbers of active sources in the 
environment. ___________________________________________________ 174 

Table 5.2. The relative performance of using the proposed maximum likelihood approach 
for detecting each type of source in the environment as a new source. ______ 179 

Table 5.3. Illustrates successes in detecting and localizing radios playing music, 
compared across different environment types.   ________________________ 185 

Table 5.4. Performance of both the detection and localization algorithms for 
environments with at least one new sound source present.   ______________ 187 

Table 5.5. Summary of belief states used for each patrol run through the environment. 194 

Table 5.6.  Results of the source change detection algorithms, compared across different 
numbers of changes in the environment. _____________________________ 196 

Table 5.7. Average reduction in noise levels using different relocation strategies to avoid 
music sources __________________________________________________ 211 

Table 5.8.  Results of the adaptive waypoint following algorithm averaged over the entire 
path. __________________________________________________________ 225 

Table 5.9. Results of the adaptive waypoint following algorithm for a 3x3-m2 region in 
front of the sound source. _________________________________________ 226 

Table 6.1. Acoustic hiding results in the presence of a 67-dB radio source.   _______ 246 



ix 

 

Table 6.2. Acoustic hiding results in the presence of a 67-dB radio source and a loud 
revereberant field.   ______________________________________________ 248 

Table 6.3. Acoustic hiding results in the presence of a 67-dB radio source located near a 
wall.   _________________________________________________________ 251 

Table 6.4.  Acoustic hiding results in the presence of a 54-dB filter source.   _______ 252 

  



x 

 

LIST OF FIGURES 

Figure 3.1. Basic reactive acoustically aware system. __________________________ 32 

Figure 3.2 Reactive acoustically-aware system with behavioral coordination. _______ 32 

Figure 3.3 Hybrid architecture for supporting acoustical awareness. _______________ 34 

Figure 3.4. 3D model of the Aware Home Laboratory used for estimating reverberation 
effects and general sound propagation.  _______________________________ 39 

Figure 3.5 Direct vs. indirect paths from source to receiver. _____________________ 45 

Figure 3.6 Relating acoustic entities to sound fields when building noise estimates.   _ 48 

Figure 3.7 The information from each acoustic entity necessary for building a direct field 
estimate.   ______________________________________________________ 51 

Figure 3.8 Modeling the image source method.   ______________________________ 53 

Figure 3.9.  The information from each acoustic entity necessary for building a 
reverberant field estimate.   _________________________________________ 60 

Figure 3.10. An example outer wall of a house used in estimating transmission of sound.  
_______________________________________________________________ 62 

Figure 3.11. The information from each acoustic entity necessary for building a 
transmitted sound estimate.  . _______________________________________ 64 

Figure 4.1.  The B21r mobile robot and the obstacle map it created using the continuous 
localization algorithm . ____________________________________________ 72 

Figure 4.2.  The Pioneer2-dxe robot and the map of the Mobile Robot Lab at Georgia 
Tech created using the PMAP software. _______________________________ 75 

Figure 4.3. Measurable time delay between signals arriving at each microphone vs. the 
angle of incidence.   ______________________________________________ 77 

Figure 4.4. A contour plot of a spatial likelihood result for detecting human speech.  
Light areas are considered more likely.  . ______________________________ 82 

Figure 4.5. Contour plot of an auditory evidence grid localizing two radios.   _______ 90 

Figure 4.6. Fully equipped B21r mobile robot used for phase 1 testing. ____________ 92 



xi 

 

Figure 4.7. Spatial evidence grid used by the robot for localization with source positions 
shown relative to the obstacle positions in the room.   ____________________ 93 

Figure 4.8. Auditory evidence grids localizing two speech sources (a stationary human 
speaker and a tape player ) from 463 data points collected at 6 positions.   ____ 98 

Figure 4.9. Stepping through the iterative clustering process, first round.   _________ 103 

Figure 4.10. Stepping through the iterative clustering process, second round.   _____ 105 

Figure 4.11.  Stepping through the iterative clustering process, conclusion. ________ 108 

Figure 4.12. An overlay of the NRL environment, showing an example waypoint path, set 
of area coverage target points, and source locations. ____________________ 111 

Figure 4.13. Auditory evidence grid created from 137 samples collected during a directed 
investigation of a source using an area coverage heuristic. _______________ 116 

Figure 4.14. Comparison of robot-created directivity models using different reverberation 
assumptions, with a hand-measured directivity model.   _________________ 120 

Figure 4.15.  Hand coded obstacle map used by the pioneer for navigation in an 
environment with two sources.   ____________________________________ 125 

Figure 4.16.  Direct field estimates created from a single source of arbitrary volume _ 127 

Figure 4.17.   Process of creating sound propagation models from sampled area coverage 
data, part 1.   ___________________________________________________ 129 

Figure 4.18.    Process of creating sound propagation models from sampled area coverage 
data, part 2.  ____________________________________________________ 130 

Figure 4.19. Process of creating sound propagation models from sampled area coverage 
data, part 3 - combined direct field for both sources ____________________ 131 

Figure 4.20. Weight vs frequency plot of a mel-scale filter bank. ________________ 133 

Figure 4.21.  Classification results vs. predicted direct field volumes for two sources, a 
filter  and a fountain, at regular intervals  around the room.   _____________ 138 

Figure 4.22. Comparison of a spatial evidence grid  collected by the robot for localization 
purposes to a  thresholded evidence grid used for reverberant field estimates _ 143 

Figure 4.23.  Maps of sound propagation created using a 2D robot-created evidence grid 
of the obstacles in the environment.   ________________________________ 146 



xii 

 

Figure 4.24. Map of the auditory scene combining a simplified direct field model with the 
reverberant field. ________________________________________________ 151 

Figure 4.25. Estimated sound levels for the combined direct and reverberant fields, 
created from purely robot-collected information.   ______________________ 153 

Figure 4.26.  Comparison of the interpolated noise map (left) to the sound fields model 
(right) for the fan source.  _________________________________________ 156 

Figure 4.27.  Comparison of the interpolated noise map (left) to the sound fields model 
(right) for the radio source.   _______________________________________ 157 

Figure 4.28. Demonstration of the effects of poor reverberation models in the NRL AI 
Center.    ______________________________________________________ 157 

Figure 5.1. Pictures of the sound sources dominating the auditory scene in the Mobile 
Robot Laboratory for the acoustic monitoring task.   ____________________ 168 

Figure 5.2. The obstacle layout used for the acoustic monitoring task.  Within this 
environment, there were two sources whose positioned never changed. _____ 170 

Figure 5.3. Discretized obstacle map through which a patrol route has been identified.  
______________________________________________________________ 172 

Figure 5.4. Graphical comparison of different relocation strategies the robot can use to to 
avoid a sound source when correcting for a poor initial acoustic location. ___ 207 

Figure 5.5. Positions of the 3 different ambient noise sources and radios within the testing 
environment for improving a poor initial acoustic location.  ______________ 210 

Figure 5.6. Predicted noise map of the poor initial acoustic location testing area modeling 
the effects of the three ambient noise sources on the auditory scene.  This map 
assumes that each source is omni-directional. _________________________ 211 

Figure 5.7. Environment for testing the improved SNR movement strategies.   _____ 215 

Figure 5.8. Paths taken by the different movement strategies overlayed on the robot-
discovered noise map: the path through the grid-cell centers, the path chosen to 
avoid loud locations. _____________________________________________ 218 

Figure 5.9. A noise map created from hand collected samples is converted to a vector 
field representation, where strength is indicated by arrow size. ____________ 219 

Figure 5.10. The behavioral controller used to reactively follow gradients along a 
waypoint path.   _________________________________________________ 220 



xiii 

 

Figure 5.11. Direct field map created from hand-measured data used in testing the 
improved SNR movement strategies. ________________________________ 223 

Figure 5.12. Direct field maps created from two different robot-measured data sets used 
in testing the improved SNR movement strategies. _____________________ 224 

Figure 5.13. Histogram of all data volumes in a 3x3-m2 region in front of the radio source 
collected by the robot during the improved SNR movement strategy trials.   _ 227 

Figure 6.1. Contour map of the estimated noise at the observer due to the robot.   ___ 238 

Figure 6.2. Contour map showing estimated impact on an observer due to a robot at any 
reachable location in the environment.   ______________________________ 241 

Figure 6.3. Layout of the acoustic hiding scenario.   __________________________ 243 

Figure 6.4. Comparison of the angular detection energy observed while the robot was 
taking the shortest path vs. the acoustic hiding path for the first environmental 
layout containing a 67-dB source. __________________________________ 246 

Figure 6.5. Bar chart comparing the angular detection energy recorded by the observer 
for each robot path. ______________________________________________ 247 

Figure 6.6. The second environmental layout used to test acoustic hiding performance.  
______________________________________________________________ 249 

Figure 6.7. Comparison of the angular detection observed while the robot was taking the 
shortest path vs. the acoustic hiding path for the second environmental layout 
containing a 67-dB source. ________________________________________ 251 

Figure 6.8. Comparison of the angular detection observed while the robot was taking the 
shortest path vs. the acoustic hiding path for the second environmental layout 
containing a 54-dB source. ________________________________________ 253 

Figure 6.9. Change in total volume plot, as predicted by ray-tracing models, for the first 
room layout with no ambient noise sources. ___________________________ 257 

Figure 6.10. Sound intensity profile at the observer’s location due to a 67-dB radio. _ 259 

Figure 6.11. Contour plot of the revised approach to estimating directional cues using 
ray-tracing.   ___________________________________________________ 260 

Figure 6.12. Contour plot of the maximum angular impact of the robot for scenario 2 with 
a loud reverberant field.   _________________________________________ 262 

Figure 6.13. General shape of the volume vs. frequency plot for sounds masked by a 
single tone.   ___________________________________________________ 264 



xiv 

 

Figure 7.1. B21R robot from iRobot, outfitted with a four microphone overhead array, bi-
clops stereo vision system, and monitor for visual feedback. ______________ 276 

Figure 7.2. Stereo vision results.   _________________________________________ 278 

Figure 7.3. The sequence of steps the robot takes while reading a story to a human 
listener.   ______________________________________________________ 286 

Figure A.1. The network configuration of the 4 computers used in the acoustically aware 
experiments.   __________________________________________________ 308 

Figure A.2. The software configuration used for acoustically-aware navigation in this 
dissertation.   ___________________________________________________ 310 

Figure A.3. Groups of information in the database are grouped by the entities they relate 
to: sound sources, environments, listeners, and representations of the auditory 
scene.   ________________________________________________________ 318 

Figure A.4. A graphical description of the tables/relationships that make up the sampled 
data entity in the database.   _______________________________________ 320 

Figure A.5. The three tables describing environmental information in the database. _ 323 

Figure A.6. Tables storing sound source information in the database. _____________ 325 

Figure A.7. Summary of the database implementation used in this dissertation.  All of the 
tables seen in previous sections are included. __________________________ 329 

Figure C.1. A Finite State Automaton guiding a robot through a series of three arbitrary 
waypoints in the environment.   ____________________________________ 361 



xv 

 

SUMMARY 

With the growth of successes in pattern recognition and signal processing, mobile 

robot applications today are increasingly equipping their hardware with microphones to 

improve the set of available sensory information.  However, if the robot, and therefore 

the microphone, ends up in a poor location acoustically, then the data will remain noisy 

and potentially useless for accomplishing the required task. This is compounded by the 

fact that there are many bad acoustic locations through which a robot is likely to pass, 

and so the results from auditory sensors often remain poor for much of the task. 

The movement of the robot, though, can also be an important tool for overcoming 

these problems, a tool that has not been exploited in the traditional signal processing 

community. Robots are not limited to a single location as are traditionally placed 

microphones, nor are they powerless over to where they will be moved as with wearable 

computers. If there is a better location available for performing its task, a robot can 

navigate to that location under its own power.  Furthermore, when deciding where to 

move, robots can develop complex models of the environment. Using an array of sensors, 

a mobile robot can build models of sound flow through an area, picking from those 

models the paths most likely to improve performance of an acoustic application. 

In this dissertation, we address the question of how to exploit robotic movement.  

Using common sensors, we present a collection of tools for gathering information about 

the auditory scene and incorporating that information into a general framework for 

acoustical awareness.  Thus equipped, robots can make intelligent decisions regarding 

control strategies to enhance their performance on the underlying acoustic application. 
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CHAPTER 1  

INTRODUCTION 

Audition on mobile robots has long been passed over in favor of vision, the 

argument being that if we could only decipher an image, then vision has all of the data 

necessary for highly successful navigation.  But the proponents of audition have been 

successfully reversing this trend in recent years by arguing that there is a wealth of 

information available to the robot outside the narrow confines of a camera’s view-space.  

If nothing else, the omni-directionality of incoming acoustic information can be used to 

direct more data-rich directional sensors to intriguing or suspicious locations.  Beyond 

that, researchers are also adding microphones to augment human-robot interfaces [Fong 

et al. 2003], improve security [Huang et al. 1997], localize themselves [Martinson and 

Dellaert 2003; Hu et al. 2006], and a variety of other applications. 

For robots, audition is a relatively young field. Elsewhere, however, it is by no 

means understudied.  Electrical engineering and digital signal processing (DSP) have 

made great strides over the last 30 years in using static mounted microphones, hand-held 

microphones, and microphone arrays.  It is a great testament to their success in areas such 

as speech recognition, classification, and source localization that roboticists are now 

considering equipping their mobile platforms with these sensors.  But as researchers have 

discovered with other sensory modalities, microphones on robots constitute a different 

problem than other microphone scenarios.     

Where traditional microphone mountings have often been subject to 

environmental interference ranging from ambient noise, to high and low frequency 
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echoes, and overlapping sound sources, robots add their own set of problems to the list.  

Many of the techniques developed to counter these problems, including filters, do work 

on mobile robots, but they are not as successful when the platform: (1) moves around the 

environment, changing its proximity to different sources; (2) generates its own noises, 

wheel and motor, which vary with the executed action; and (3) has limited computational 

and power resources, but needs to process the data in real time.  These inherent problems 

of mobile robotics, combined with the general problems associated with using 

microphones, produce daunting obstacles confronting the developers of acoustic 

applications for these platforms. 

Mobile robotics though has unique advantages all its own, which have not been 

exploited in the traditional signal processing community.  The key advantage is that 

robots can move.  They are not limited to a single location as are traditional microphone 

mountings, nor are they powerless over to where they will be moved as with wearable 

computers.  If there is a better location for performing their task, they can navigate to that 

location under their own power.  Furthermore, we are not limited to a single robot.  Robot 

teams add extra dimensions of control, by allowing fully dynamic microphone arrays that 

are not limited by a rigid internal structure, nor stuck in randomly distributed locations.  

The potential that mobility alone adds to acoustical applications is enormous, but we first 

need to figure out how to best exploit that potential. 

In this work, it is our supposition that acoustical awareness is the key to 

successful development of mobile robotic applications involving sound.  Acoustical 

awareness is defined here as the coupling of action with knowledge about the acoustic 

environment, where said knowledge could be in the form of maps, rules, measurements, 
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predictions, or anything that indicates how sound flows or will flow through the 

environment.  The underlying premise is that the more acoustical knowledge the robot 

uses, the better its global performance will be on an acoustic application.  The questions 

of how much knowledge is necessary, and how it is to be integrated into the robotic 

controller are central to the proposed research. 

1.1 TERMINOLOGY 

Acoustics is defined as “the science of sound”1.  Both auditory (listening) and 

sound generating applications are acoustic, because they work with sound.  In the grand 

picture, the two areas differ by focusing on either the receiver or the source.  In either 

case, the same principles of sound propagation through an environment apply, and an 

acoustically-aware application would require much of the same information. 

Acoustical Awareness is the coupling of action with knowledge about the acoustic 

environment, specifically anything that indicates how sound flows or will flow in the 

physical world. 

Audition refers to the act of hearing.  Like cameras with vision, microphones are 

the instruments we employ for recording sound, defined as “the mechanical energy 

transmitted by longitudinal pressure waves in a material medium (like air).”2  As with 

computer vision, however, we are not limited to what can be sensed by people.  While 

humans can hear sounds in a frequency range from 20-20000 Hz, microphones can be 

used to “listen” to much lower or higher frequencies. 

                                                 

1  Raichel, D. p.4 
2 http://www.webster.com, Accessed 8/29/04 
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The Auditory Scene contains all aspects of that which effect what a listener 

somewhere in the environment can hear.  It includes the sound sources generating the 

noise, the environment through which the sound travels, and, ultimately, the listener 

itself. 

Noise is an application-specific term referring to unwanted sound.  Even if the 

sound is desired or needed for some other purposes, but is interfering with the intended 

application, it is called noise.   

The Soundscape refers to that which can be heard.  Although often used 

interchangeably with the term Auditory Scene, the soundscape is a narrower definition, 

referring specifically to what can be heard at any location in the environment, 

independent of the listener.  

Vocalization refers to the creation of sound by the robot.  The emitted sound 

could be speech, or just noise.  It could target either human or robot listeners, or may not 

target anyone, as does the incidental creation of noise which often accompanies 

mechanical motion. 

1.2 RESEARCH QUESTION 

How can acoustical awareness be effectively incorporated into a 

navigational controller? 

 

In exploring this principal question, we address the following set of three 

subsidiary questions: 
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• What a priori information or sensory data is useful for a mobile robot 

performing an acoustic application? 

Acousticians have developed a large body of research on the flow of sound.  

Potentially everything about the environment, ranging from construction material 

performance and architectural features, to speaker and microphone models, is useful for a 

mobile robot.  However, not all of it is feasibly acquired, much less usable, given the 

limited computational, or acoustic processing resources onboard the robot.  Therefore, we 

need to determine which information can be reasonably collected for, or by, a mobile 

robot, and whether or not that information is usable in a given situational context. 

• How can we combine sensory data from multiple sources to build effective 

representations of the acoustic environment? 

Using just a single microphone located on the robotic platform provides a wealth 

of sensory information available for assisting navigation: sound pressure level, the 

frequencies present and their loudness, impulse noises vs. continuous streams, 

classification results, etc.   Beyond that a priori knowledge of the environment, other 

sensory data such as vision, other microphones, or even data from other robotic platforms 

might be available.  Somehow this data needs to be fused together to build effective and 

coherent representations of the acoustic environment in which the robot resides.   

• How does acoustical awareness change with control over the source vs. the 

receiver?  

Vocalization and audition vary only in their control over the sound source.  In 

vocal applications, the robot itself is the source.  In auditory applications, the robot is the 

receiver.  In some instances, a robot may need to be both.  In many cases, both forms 
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share the same goal, which is to control the sound being heard by the receiver (human or 

microphone).  How these goals are achieved may also be similar across vocalization and 

audition.   

1.3 CONTRIBUTIONS 

It is believed that the pursuit of answers to these questions should result in 

significant contributions to the mobile robotics community, with application to other 

fields including signal-processing, acoustical engineering, and human-computer 

interfaces.  In particular, this research will provide:  

• A conceptual and architectural framework for incorporating acoustical awareness 

into a navigational controller. 

• A novel approach for the storing, retrieval, and fusion of acoustic knowledge for 

mobile robotic applications. 

• Guidelines for applying the resulting framework to acoustic applications. In 

particular, matching the data available to the task at hand given a particular 

situational, intentional, and environmental context. 

1.4 DISSERTATION OVERVIEW 

This dissertation is described with 8 chapters.  Chapter 2 covers the types of 

acoustical applications for robots, and what work has already been done.    Chapter 3 

discusses the nature of being acoustically aware, identifying what information is needed 

to understand sound flow in the environment, and how it will be used.  Chapter 4 then 

delves into the robotic question of representations and control for acquiring the necessary 

information using a mobile platform.  Chapters 5-7 describe applications of acoustical 
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awareness to different robotic application domains, including robotic security, stealth 

robots, and human-robot interaction.  Finally, Chapter 8 summarizes the dissertation and 

outlines the contributions from this dissertation. 
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CHAPTER 2  

RELATED WORK 

Acoustic applications on mobile robots, while increasing in number, are still 

relatively rare.  But with the ready availability of microphones, and the increasing 

processing power of computers and even microcontrollers, the area is primed for an 

application explosion.  One sure sign of this potential is the growing interest in acoustical 

domains by robotics hobbyists.  Voice commands [Williams 2004], noise following 

[Predko 2003], and sound synthesis[Jones et al. 1999], are all popular applications in the 

area.  Still, the work by hobbyists tends to be overly simple algorithmically.  But if 

enough people become interested in the area, then we will see microphones and speakers 

on robots become commonplace. 

What is making acoustical applications in robotics difficult is the underlying 

complexity of the acoustical domain.  The soundscape is always changing with time, 

more so than even the visual domain tends to, and the sensors currently available for 

sampling the soundscape are noisy and only capture a relatively small selection of the 

soundscape.  Additionally, the soundscape itself is not straightforward, and varies 

significantly from environment to environment, even when the same types of noise 

sources are present.  Altogether, this creates a very hostile perceptual domain for a robot, 

which is already struggling to successfully handle routine navigational tasks.   

In order to overcome these problems in the acoustic domain, much research in 

mobile computing (including robotics), as well as biology, and digital signal processing, 

has concentrated on developing task specific solutions that take advantage of the nature 
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of sound flow through the environment in order to improve performance.  This chapter 

presents the current state of the art in robot acoustics.  The general organization of the 

chapter is by broad application categories explored in current research: specifically, 

sound source localization, natural language interfaces, classification, vocalization, and 

audio probing. 

2.1 SOUND SOURCE LOCALIZATION 

Sound source localization applications are primarily concerned with identifying 

where a sound is coming from, including determining its exact position, or simply the 

angles to the source(s), or distance estimates.  Most sound localization work is not even 

concerned with what is making the sound, and in fact, a common laboratory assumption 

is that whatever sound is being heard is the one that the robot is interested in.  This 

category is probably where the greatest amount of acoustic research on mobile robots has 

occurred to date.   

The localization problem can be roughly divided into two areas of interest.  The 

first problem is localizing individual sources in the environment.  The second lies in 

creating maps of sound sources, possibly for a robot to localize itself using a set of 

detectable noise sources.  In either of these areas, an awareness of sound propagation 

through the environment may potentially assist improving accuracy, reducing false 

positive responses, and improving the general applicability of the developed algorithms. 

2.1.1 TRADITIONAL LOCALIZATION 

Localizing sources in the environment may not seem like a difficult task to a 

person, but that is because the mechanisms for doing so are built into a humans’ auditory 
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system.  People are equipped with two ears for the purpose of localization, as are most 

mammals and birds.   With two receivers (ears) physically separated from each other on 

opposite sides of the head, sound arrives at different times, phases, and intensities in each 

ear.  These inter-aural time differences (ITD), phase differences, and intensity differences 

(IID) can be used to calculate left-to-right angular location of the sound.  There are 

different models of exactly how these features are calculated biologically [Jeffress 1948; 

Shamma 1989], but these are the physical properties available in the incoming sound 

stream, and both models make use of them. 

If there are three or more receivers, then ITD’s alone can estimate the angle of 

incidence for an arbitrary source location, and this has in fact been used on a number of 

robots [Yamasaki 1995; Huang et al. 1997; Young and Scanlon 2001].  With only two 

receivers, however, ITD’s can provide only an 180˚ estimate on the horizontal plane 

towards the location of the sound.  Localizing on front-to-back or elevation is not 

possible without additional information.  The biological solution is found in the shape of 

the head.  Sounds traveling around the back of the head arrive at different times and 

intensities than when they come from the front.  The pinna, or fleshy parts of the ears, 

also filter or focus sounds depending on which direction they come in from.  The shape 

of the head and the pinna make up the Head Related Transfer Function, or HRTF. The 

HRTF is a function, different for each individual, which the brain learns in order to pick 

out localization cues that would otherwise be hidden.  Although the use of an HRTF does 

not guarantee the same resolution at all angles around the head, it does effectively 

localize sounds from any direction and has been applied in humanoid robotics [Nakadai 

2003; Hornstein et al. 2006]. 
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Noise, however, remains a problem with ITD-based solutions.  Environmental 

noise, as well as robot-generated ego noise, can generate misleading measurements or 

mask the signal of interest.  A common feature, for this reason, among many robotics 

solutions is the use of higher quality microphones with frequency ranges that limit 

interference, and to mount them high above the robot base, away from motors and other 

noise-producing equipment.  Even then, the noise can cause problems.  Furthermore, on 

some platforms and with some applications, it is not feasible to deploy expensive 

microphones far from sources of robot ego-noise.  Humanoid platforms are a case in 

particular.  Most current humanoid robots are limited to inexpensive microphones 

mounted within the head, close to the internal machinery of the robot. 

A sound source localization solution that has been put forward by a couple of 

different robotics groups is to physically move the microphones.  Barbara Webb [Webb 

1998] explored this approach using small robots with 2 microphones.  The robot would 

always turn in the direction of the highest volume, and although the path was not entirely 

straight, the robot could find the sound source when echoes or obstacles did not interfere.  

Another more traditional solution using ITD’s, was conducted by Nakadai et. al. 

[Nakadai 2001], which would turn their humanoid robot’s head in the direction of the 

loudest sound as estimated by ITD’s.  By doing so, the robot could effectively ignore the 

internal noises when they do not change direction with the rotation, allowing the robot to 

accurately focus on the noise source.   

In addition to robot and environmental noise, another problem confronting real-

time implementations of sound localization algorithms is that the accuracy of ITD’s is 

limited in highly echoic environments.  If an echo bounces off the nearby floor, or wall, 
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then separating it from the real signal is very difficult, and leads to errors in localization.  

Unfortunately most indoor environments (especially hard floored ones), unless specially 

padded, have this echo problem in one place or another. The most common solution in 

robotics is to add another sensor with a different vulnerability.  Cameras are the obvious 

alternative, as a microphone can assist in orienting a camera towards the object of interest 

[Huang et al. 1997; Strobel 2001; Blisard et al. 2007], although heat sensors have also 

been used when applicable [Yamasaki 1995].  Noise remains a problem with the auditory 

sensing, but its use has been restricted to initializing the application. 

Without adding another sensor, another solution that has worked well in echoic 

environments is to make use of the precedence effect.  The precedence effect is a 

psychoacoustic phenomenon where an acoustic signal arriving first at the ears, suppresses 

the ability to hear any other signals for the next 40ms, in order to reduce the interference 

with echoes.  Initial work by Jie Huang [Huang 1997] generated robots that were 

successfully able to locate visually obstructed sound sources in different rooms using 

ITDs, but still resorted to vision as the primary sensor once the object became visible.  

More recent work by Martin Heckmann [Heckmann et al. 2006], however, has improved 

on this early work for binaural microphone arrays to dramatically reduce the need for the 

visual localization on their Honda robot, Asimo.  Their model of the precedence effect 

combines interaural time, intensity, and envelope differences with an echo suppression 

mechanism to allow Asimo to localize a human speaker under a large variety of ambient 

noise and environmental conditions.   
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2.1.2 CREATING AUDITORY SPATIAL MAPS  

Up until this point, we have been assuming that the sound localization algorithm 

returns angular measurements to the robot.  While, theoretically, ITD-based algorithms 

could also estimate distance from the robot, the closer together the microphones are, the 

greater the error in the distance measurement.  People, too, have a similar problem in 

estimating distance for similar reasons (the ears are too close together).  Nevertheless, if 

there are multiple sound sources in a room, people are reasonably good at localizing them 

in space, if not instantaneously, then at least over time.  To explain how people and 

animals can be good at this despite the signal processing limitations, some researchers in 

biology have proposed the notion of an auditory spatial map that maps multiple sensing 

modalities in the brain into a single ego-centric representation of stimuli position. 

The barn owl has one of the best-studied auditory systems of any species.  

Researchers of the Owllab at the University of Oregon have, as stated on their webpage, 

concentrated on "studying the neural mechanisms of auditory localization in barn owls", 

addressing questions such as how the owl localizes, how it reacts to multiple sound 

sources [Takahashi and Keller 1994], what the HRTF [Keller et al. 1998] is, etc.  What 

they have discovered is that within the inferior colliculus of the brain, individual neurons 

become attached to specific locations in the surrounding environment, only firing when a 

noise is determined to have originated from that location.  These neuronal spatial maps, 

however, are not being constructed from auditory information alone.  Hyde and Knudson 

at Stanford University claim that the Optic Tectum (OT), which directs the eyes toward 

sensory cues, is critical for the construction of an auditory map [Hyde 2000] .  Their 

studies with barn owls have indicated that without the OT, the owl's brain is no longer 
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capable of updating and aligning the separate maps of space.  Hyde and Knudson have 

also constructed a general framework for the calibration process that applies to both avian 

and mammalian species [Hyde 2000]. 

Rucci, Tononi and Edelman [Rucci et al. 1997] at the Neurosciences Institute in 

San Diego have developed an alternative model specifically for the barn owl, arguing that 

the existing model does not include enough information.  Since the barn owl cannot see 

without turning its head, they argue that the model should actually be a sensorimotor 

model.  The system takes as input ITDs and visual information to construct the visual and 

auditory maps.   The model developed is neuronal and is trained using "value-dependent 

learning" and tested in simulation under a variety of inputs.   

While this neuronal spatial map of the auditory scene suggests a tantalizing 

approach for mobile robotics, it should be understood that this is not the only biological 

model of the auditory scene.  In some animals, including people, recent research has 

failed to reveal any notion of spatial maps [Goldstein 2007].  In some other animals, such 

as guinea pigs, maps have been found at an early age, but seem to disappear as they get 

older [Ingham et al. 1998].  This does not invalidate the idea of an auditory spatial map, 

as the barn owl and the guinea pig have very clearly demonstrated the existence of such 

maps in some species, but it does suggest that there may be more than one way to track or 

at least store this information in our brains. 

In robotics, however, the idea of localizing all of the sound sources in space 

relative to the robot has more often been developed as a straightforward extension of the 

earlier angular sound localization problem, rather than as a mapping problem.  To 

alleviate the problem of microphone proximity in determining distance, the natural 
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solution is to distribute the microphones over a wider area of the environment.  Using a 

microphone array embedded into the walls of a room [Nakadai et al. 2006], some 

researchers were able to localize multiple simultaneously talking human speech sources, 

and determine the directivity.  This information can then be passed along to a mobile 

robot for interactive or avoidance purposes.  A similar setup in a home environment 

[Bian et al. 2005] extracted 3-dimensional coordinates of sound sources and estimated the 

type human activity occurring.  Another possibility, when the environment cannot be 

engineered, is to place the microphones on separate robots [Girod and Estrin 2001].  As 

the robots separate in space, differences in arrival time become more pronounced, so 

distance measurements should ideally become more accurate.  But for this technique to 

work the audio streams from the separate microphones need to be synchronized to better 

than millisecond accuracy.  For each millisecond of error in synchronization, roughly 34-

cm of error are introduced in the sound source location.  Furthermore, the robots need to 

be localized accurately in space (overhead cameras and/or laser-based obstacle maps), 

relative to each other, or the time-delay measurements will be incorrectly determined, 

even with accurate synchronization. 

While research into accurate localization of the sound sources remains an active 

field, there is also work progressing in the opposite direction.  If the robot has a map of 

where the sounds are as it moves through the environment, then the robot could localize 

itself using the map and the sounds that it can currently perceive.  Such work on the 

surface seems very similar to other landmark-based navigation strategies using databases 

of vision, laser and/or sonar measurements [Thrun et al. 2001].  In practice, there have 

been some difficulties in applying the same technique to the auditory domain.  Most 
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similar to the idea of landmark-based localization is work by Jwu-Sheng Hu with a Sony 

AIBO robot [Hu et al. 2006].  Rather than using existing environmental sources, 

however, the AIBO emits the sound being tracked, a barking sound, and then records the 

results.  Combined with a database of pre-recorded barks from different parts of the 

environment, along with a history of the robot’s movement, they can estimate position 

and orientation of the legged platform. Also utilizing robot emitted sounds, work by 

Dellaert et. al. [Dellaert et al. 2003] used distances to other robot noise sources to create 

maps of where robots had traveled through the environment.  Further work by Sebastian 

Thrun [Thrun 2005] extended a similar methodology to dynamically localizing 

microphones in an array using a series of easily recognizable impulse noises (finger 

snaps, clapping, etc.) in the environment.   

While all of these probabilistic or landmark-based approaches could potentially be 

applied to the general mapping problem around passive environmental sources, all of 

them suffer from a number of problems when applied to a real and naturally occurring 

auditory scene.  The transitory nature of sound sources is one problem, making 

comparisons between old and new data difficult.  Another problem is environmental 

echoes, which produce large defects in even small maps.  To overcome this problem, the 

robot needs a representation that still has some meaning in the environment despite some 

changes to the auditory scene.  This representational issue is exactly that the problem on 

which this thesis is focusing.  As such, we will discuss this matter in further depth in the 

next chapter. 
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2.2 NATURAL LANGUAGE INTERFACES 

Natural Language Interfaces refer to speech interfaces between computers/robots 

and humans.  This could entail the robot speaking to a person, or the person speaking to 

the robot, or both.  People are so used to communicating with each other by speaking that 

it is only natural that we would want the same interface for communicating with our 

robots.  The argument is still open, however, as to how much of a speech interface is 

actually necessary.  Most would agree though that many areas of robotics that require 

human-robot interaction would benefit from a real-time speech interface. 

The domain of natural language interfaces can be roughly divided into two parts: 

listening, and speaking.  Both parts are necessary for a full interface, but current research 

is still a long way from a completely integrated solution.  As will be discussed in both 

sections, problems that repeatedly trouble natural language interfaces are the quality of 

the detected or generated speech, and the effects of masking noise on intelligibility.  

These are often environmental effects that could be minimized by an acoustically-aware 

robot utilizing knowledge of sound flow.  Chapter 5 will discuss such an application. 

2.2.1 THE ROBOT LISTENS 

With the increased use of Hidden Markov Models (HMM), speech recognition 

rates have improved dramatically over the last decade.  Just within the last several years, 

software has become readily, even freely, available [Lamere et al. 2003] for anybody to 

add real time speech recognition to their computer application.  More and more 

roboticists are in fact, starting to do just that.  The general approach that works best 

divides all human speech into 40-50 similar sounds, called phonemes.  Each word in the 
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English language can be represented as an ordered set of these phonemes.  Using 

measured transition probabilities between phonemes as input to an HMM, we can 

identify which phonemes the speaker pronounced, and try to reconstruct the spoken 

words from those.  Russell and Norvig [Russell and Norvig 1995] estimate 80-98% 

accuracy in the best speech recognition systems, depending on the length of the input, the 

size of the vocabulary to be recognized, the variety of speakers, and the signal quality.    

On robots, however, the word recognition rate tends to be lower than that 

achieved using just a microphone.  Just as with sound localization, the internal noises 

from the robot and the variety of environments they can be located in can cause problems 

for robust audition.  Sometimes, however, very simple interaction techniques can be used 

to compensate for the lower recognition rates.  One such method, used on the robot 

HERMES [Bischoff 2000], was to ask the user for confirmation of the spoken command 

when the recognition results were poor.  More complex solutions have combined the 

spoken command with visual cues, like pointing or other gestures that the human can 

easily perform [Perzanowski et al. 2000; Kettebekov 2002].  Both of these solutions work 

best with a limited command set.   

Beyond recognizing a limited vocabulary, the next step involves actually 

understanding  the semantic meaning of the speech, so that the computer/robot can 

respond appropriately.  Just because one can recognize words does not imply natural 

language understanding.  Russell and Norvig [Russell and Norvig 1995] state the 

following regarding natural language understanding : 
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“We are given a set of ambiguous inputs, and from them we have 

to work backwards to decide what state of the world could have 

created the inputs”.
3
 

This is a very hard problem, and one that we are not close to solving in the 

general case.  However, one technique that has been employed effectively on a number of 

robots [Roy et al. 2000; 2004].  Often called something like dialog-driven interaction, it 

implies a script that both the robot and the human are expected to follow.  The person 

says one thing, the robot recognizes that it is the next line in the script, and then “says” its 

part.  Using grammatical formalisms, some variability in the allowable words can be 

introduced to the script, but the programmer has to anticipate what sentences a human 

user might respond with, and the human has to stick to the script without changing topics.   

Outside of natural language understanding, there is a second problem involving 

computer audio that is on the DSP side of speech recognition.  Stream segregation is the 

ability to separate two or more different speakers from each other, and from background 

noises, so as to identify which person is saying what.  When multiple people are 

speaking, the robot/computer has to decide which person to respond to, and remove all of 

the excess information.  Due to the nature of sound propagation, all of that speech 

information from everyone in the room is normally combined in the stream picked up by 

each receiver.  Unless somehow processed to separate the speakers, that stream is 

unintelligible as far as computer speech recognition is concerned.  This is classically 

defined as the cocktail party effect [Bregman 1990].  Although the full solution is still 

                                                 

3 Russell and Norvig, p 654 
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beyond our abilities, there do exist partial solutions.  When the number of talkers is 

relatively few, independent component analysis (ICA) has demonstrated reasonable 

performance at separating multiple speech streams and overcoming their masking effects 

using a binaural microphone array [Takeda et al. 2006].  Traditional ICA, however, is 

easily confused by reverberant environments and can have difficulties when the people 

speaking are located too close together.  A variant of ICA that works with only a single 

microphone to separate speech streams [Smaragdis 2001] has partially overcome these 

difficulties, by focusing on only the speech related cues.  This method still suffers in the 

presence of reverberation, however, as it now includes reverberant effects in the resulting 

speech stream, making speech recognition difficult.  In the case of either method, they 

remain computationally expensive, and are still limited by the length of audio segmented, 

the number of speakers or sound sources in the area, and some environmental effects. 

An alternative solution to ICA, is to incorporate the geometry of the speaker’s 

location into the algorithm.  In the simplest case, where only one speech streams needs to 

be recognized at a time, a computationally simpler approach mentioned earlier [Nakadai 

2003], is for the robot to rotate to face one speaker, and use directional microphones to 

amplify only that person’s speech.  Another partial solution based on geometric locations 

does the same without involving any motor actions by using a microphone array [Claudio 

and Parisi 2001; Argentieri et al. 2006].  If where the people speaking are located can be 

identified, then one can mathematically construct and amplify a narrow beam from the 

streams of multiple microphones.  Recent work by Valin successfully applied this 

approach on a mobile robot, for separating up to three simultaneous speech streams 

[Valin 2005].  Unfortunately, these geometric-based approaches still have difficulties 
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when the two people speaking are located too closely together, or there is significant 

reverberation from nearby surfaces.  In that case, the speech streams remain too 

intertwined for a location-based solution to separate, and may require repositioning the 

microphone array intelligently with respect to the auditory scene to change the relative 

angles to the speakers, or somehow limit the effects of reverberation. 

2.2.2 THE ROBOT SPEAKS 

If no speech recognition is required, then robot speech can be a surprisingly easy 

concept to implement.  The simplest systems use pre-recorded sound bites that are 

activated by a robotic behavior.  A human can provide the recordings, and the robot only 

needs to interject them at the correct point during its human-robot interaction.  How the 

robot chooses the correct sound bite could be in response to a single sensory stimuli like a 

clap [Jones et al. 1999], or it can even be learned by the robot.  Minerva [Schulte et al. 

1999], a robotic tour guide, adapted to the environment by monitoring how its voice 

commands affected the people densities around it. 

An alternative approach to pre-recorded audio is text-to-speech (TTS).  First, the 

text is converted to a phonetic code. Next, pitch, intonation, pausing, and rate are added.  

Finally, the audio is created from the parameterized phonetic code either by grabbing 

phonemes from a database, or synthesizing speech from basic phonetic units [Venkatagiri 

2003].  The resulting speech is clearly understandable, and the newer software available 

continues to improve in quality.  TTS was used on GRACE [Simmons et al. 2003] for the 

AAAI robot challenge to deliver a talk by the robot at the conference.  The greatest 

advantage of TTS is that the speech can be changed on the fly.  Work in affective 
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robotics (i.e. emotions, moods, etc.) has demonstrated the advantages of dynamically 

adjusting the pitch, pausing, and rate of the synthesized speech (i.e., the robot’s prosody) 

to give a robot personality [Breazeal 2001; Scheutz et al. 2006].  Work in more 

traditional human computer interfaces [Dusan and Flanagan 2002] changes not just the 

quality of the speech, but adapts the text input itself sent to the synthesizer by 

constructing grammars from human speech.   

Still, TTS systems are not without their problems.  One persistent issue is 

environmental noise.  Although commercial systems are very good in quiet 

environments, TTS in noisy surroundings can still be hard to understand [Venkatagiri 

2003].  The studies on this subject to date, however, have been performed using isolated 

phrases.  With some context behind the phrases, people may be better able to understand 

the current systems.  The problem of context though, is really a full interface problem.  

Both speech recognition and speech synthesis are necessary to provide the human 

participant with context.  Unfortunately, the two problems are unequally advanced in 

achieving human-level performance.  A study of natural language interfaces at 

Eurospeech ’97 [Bloothooft and Os 1997], suggested that the existing speech recognition 

capability was holding interfaces back.  Some users of the latest systems were at times 

completely fooled by the accurate TTS, forgetting that they were talking to a machine.  

But then when speech recognition failed, people fooled by the TTS system took longer 

than other participants in recovering from the error. 
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2.3 AUDIO CLASSIFICATION 

Passive sound classification is the problem of recognizing sounds and/or indexing 

sounds in the sound stream.  Detection of air ducts, computer fans, machinery, a human 

voice, music, etc. are all examples of sounds that a robot may encounter in the sound 

stream and that it may be expected to recognize.  To go even further, if we can recognize 

all of these factors, can we recognize the type of the environment itself?  From the 

robotic perspective, this is a potentially huge field, but can be limited by the sheer 

processing power available onboard a mobile platform.   

2.3.1 ENTITY CLASSIFICATION 

The oldest studied problem in audio classification is simply recognizing the start 

of the interesting signal.  The voice/unvoiced/silence problem was the earliest 

classification problem developed for the telephone industry.  The majority of the time in 

phone conversations is actually silence, or lack of audio content.  So if the industry could 

separate silence from content, they would not have to transmit the entire signal across 

their lines, therefore increasing the number of calls they could handle simultaneously 

given a limited bandwidth.  To compress the signal even further, they needed to also 

distinguish between voiced and unvoiced sounds.  Because people are so good at 

recognizing speech, the telephone companies wanted to automatically recognize a 

minimum signal that could still be understood by the listener, so as to remove all of the 

excess auditory information from the stream resulting in an extremely compressed signal.  

The most well-known solution was developed by Atal and Rabiner [Atal and Rabiner 

1976].  This approach detects vowel sounds in an audio stream.    Later research showed 
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that provided the vowel sounds were present, human listeners could recognize with great 

accuracy the words in the conversation even when much of the remaining signal was 

removed.  The resulting algorithm, called Linear Predictive Coding [Rabiner and Schafer 

1978], compressed the audio stream and reconstructed the stream.   

Much of the work in the Voiced/Unvoiced/Silence problem led to useful sets of 

features that could be extracted from an audio stream and applied to the more general 

classification problem, like mel-cepstrum coefficients [Quatiri 2002].  Ideally, we would 

like to classify any type of audio that is put before the computer, but it turned out that 

successful classification is highly dependent on the mathematical features extracted from 

the audio sample.  Incorrectly chosen features will allow different audio samples in 

different classes to appear similar [Duda et al. 2001].  For example, water leaks can be 

detected in pipe networks by listening for certain frequencies (GMIC) [Hetek 2004].  

However, the robot needs to know that it is near a pipe network and should be listening 

for these leaks.  The same is true for identifying bird song [Kogan and Margoliash 1998], 

where the robot has to be told when to start listening for birds.  For this reason, 

classification approaches currently have to be application specific, first choosing a set of 

classes, and then finding a good feature set and algorithm.   

Although classification on robots in general, outside of speech recognition, has 

remained relatively unexplored thus far, research is already exploding in related mobile 

computing applications.  Current classification applications using cell phones [Philips 

2004] and wearable computers [Stager et al. 2003; Lukowicz et al. 2004] may in the long 

run be applicable to robotics and autonomous control.   
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2.3.2 AUDITORY SCENE ANALYSIS 

One reason for the successes achieved in silence detection involved the 

telephones themselves.  With a telephone, the microphone is placed right next to the 

person’s mouth where the sounds are loudest. As a result, the microphone itself does not 

pick up much of the background noise.  If forced to use a different microphone, however, 

which picked up more noise, then the classification problem becomes substantially 

harder.  How can an arbitrary noise stream be separated from the “good” stream?  What 

is needed is knowledge of the auditory scene, or contextual information regarding the 

signal currently being recorded.  For instance, if the robot knows it is outside rather than 

inside, then it can use different algorithms to recognize the start and stop points, and use 

different filters on the incoming data.   

This problem is called auditory scene analysis, and people do this all the time.  

They listen for different types of events given different auditory scenes in which they are 

located, and in general, people are relatively good at recognizing the different scenes.  

Given the task of recognizing the surrounding environment from an audio clip, out of 

context, people could identify the class of surroundings 70% of the time, and often in 

20sec or less [Peltonen et al. 2002].  In comparison, a machine given a much smaller set 

of classes took almost 2 minutes to identify a much smaller, 5 vs. 25, set of classes. An 

even smaller set of classes, however, may also be useful in providing some auditory 

scene analysis.  Work by Christophe Couvreur [Couvreur 1998] using HMM's, has 

attempted to classify environmental audio into a set of 5 categories using transportation-

related sounds.  It is too small a set of categories for solving the general segmentation 

problem, but such a set could be useful to a robot which is exposed, as part of its job, 
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primarily to transportation-related auditory scenes.  In such a case, transportation sounds 

could still provide some useful auditory context for identifying the current scene and 

improving general classification results.   

Dividing the world into classes for the machine to recognize is not the only 

solution to the auditory scene analysis problem.  Work from Carnegie Mellon uses a wrist 

based light and audio sensor to detect places the wearer had been before [Maurer et al. 

2006].  Alternatively, another method has been to recognize distinct sounds within the 

sound stream, and then derive auditory context, or the auditory scene, from those sounds.  

A good example is, if you hear a car horn, you are probably on the street [Clarkson et al. 

1998].  Another, more hardware intensive solution, borrowed a wireless sensor network 

to assist the traveling microphone/processor.  If the sensors know where they are, then 

they can broadcast this information, providing both context and localization information 

[Schiele and Antifakos 2002].   

2.4 AUDIO PROBING 

The field of audio probing includes anything that requires an action by the robot 

to receive some form of audio feedback.  Ultrasonic sensing is one example of audio 

probing.  The robot emits a high-frequency sound click into the environment, and waits 

for the echo of the sound bouncing off objects in its path. It works on the same principle 

as bat echolocation, providing the robot with estimated distances to hard surfaces around 

it.  Ultrasonic probing has been used for a variety of purposes including mapping, 

classification, and, of course, obstacle avoidance.  For a more detailed description of how 

ultrasonic sensors have been used in mobile robot navigation see [Arkin 1998]. 
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Ultrasound, however, is only a very simple form of audio probing.  It takes the 

reflected sound pulse, and translates it into a single unit of distance.  More complicated 

forms of audio probing audio probing can extract different information from the returned 

sound.  For instance, by generating a loud impulse noise at some frequency, computers 

have already been able to estimate acoustic properties such as reverberation time in 

indoor environments [O'Keefe 1998].  Perhaps more compelling for robotics is the use of 

tools to generate noise.  By using metal poles to hit surfaces, robots can try to classify the 

materials used [Krotkov 1995; Femmam et al. 2001], and/or identify other structural 

characteristics of the object being probed [Amsellem et al. 2006].   

More complex forms of audio probing however, such as the classification of 

material surfaces, tend to have the same problem as classification algorithms.  The 

advantage in audio probing is that there exists a little more context for completing the 

application.  The object being classified is often in a known location, with suspected 

material properties.  However, the breadth of the classification algorithm is still quite 

limited.  In the general case, either more context is needed to narrow the range of possible 

results, or the classifier needs to be retrained for each application. 

2.5 SOUND VOCALIZATION 

The final application area is that of sound vocalization.  For statically located 

speakers, the vocalization problem is a highly specialized field.  The goal is to provide 

the best acoustical experience for the listeners, whether they are in a concert hall, or 

sitting at home in front of the television.  Toward that end, researchers have generated a 

wide number of acoustical parameters and simulation technologies that can assist the 
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creation of excellent acoustics in a variety of spaces.  On robots, however, sound 

vocalization research has remained more limited.  Typical robot audio today consists of 

prerecorded sound bytes and text to speech, played back for the user when and where the 

program says.  Some robots even do this automatically.  For example, ActivMedia's 

AmigoBot plays sounds on startup and shutdown, and Sony's AIBO can beep to indicate 

current conditions on the robot.  Proper sound vocalization, however, should also involve 

sensing the environment.  Humans, for example, will actually adapt their speech, and 

their singing or music to overcome environmental noise, or to tone down the speech 

when they are disturbing others.  Good vocalization involves analyzing the environmental 

feedback to determine how the sound output should be modified for the greatest effect. 

Sound vocalization research involving robots has largely been limited to two 

primary areas.  The first area is natural language interfaces, which were previously 

discussed, and which have not traditionally involved adapting the volume, or tone of the 

generated sound.  The second area is in music generation.  Waseda University in Japan 

has been a hotbed for musical robots.  Under the guidance of Makoto Kajitani, a series of 

WAM (Waseda Automated Manipulator) robots that could play pre-programmed routines 

on the piano were developed through the 70's.  A full humanoid, the Wabot-2 [Waseda 

2000], could play a keyboard while following a simple score using a camera for input.  

Several MUBOT's [Katijani 1989], or musician robots, were also developed which could 

play recorder, violin, or cello.  The latest work has been on a Flutist Robot that could not 

only play the flute, but also perform trills and vibrato on its instrument [Waseda 2000]. 

The original Waseda robots, however, did not actually adapt to the sounds they 

were playing.  They figured out what note should be played when, and used planning to 
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reach the necessary keys in time.  ISAC however, developed at Vanderbilt University 

[Alford 1999], actually adapted to the sound being played to improve performance on a 

Theremin.  By listening to the output from the instrument, ISAC could achieve perfect 

pitch using a reactive control system and could play a sequence of notes in time with a 

human keyboardist.  More recently in the same direction, a robot flutist has been added to 

the band that listens to its pitch and changes its blown air speed [Isoda et al. 2003].   

2.6 SUMMARY OF APPLICATION DOMAINS 

What this collection of work should demonstrate is that the need for robot 

acoustics is already large, and only getting larger.  Already, robots need to utilize sound 

for a large variety of applications, many for interacting with people, but also for 

improving quality in manufacturing and sensing, and even localizing the robot itself.  In 

nearly all of these cases, however, the role of audio is limited by the complexity of the 

domain itself.  As such, designers spend a great deal of effort building filters, and 

adaptive algorithms to remove the noise.  For the remainder of this dissertation, we are 

going to focus on an alternative to filtering and noise removal.  That alternative is acting 

with respect to the auditory scene.  An acoustically-aware robot can utilize knowledge of 

sound flow to recognize where the noise is coming from and minimize its effects on 

performance.     
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American Heritage Dictionary4
 

Having knowledge or 

cognizance. 
Vigilant; watchful. 

L. Kaelbling and S. Rosenchein 

A tight coupling between 

sensing and action [Kaelbling 

and Rosenschein 1991] 

P. Dourish and V. Bellotti 

“An understanding of the 

activities of others, which 

provides a context for your own 

activities.” [Dourish and 

Bellotti 1992] 

M. Endsley 

“The perception of the elements 

in the environment within a 

volume of time and space, the 

comprehension of their 

meaning, and the projection of 

their status in the near future” 

[Endsley 1988] 

 

CHAPTER 3   

ACOUSTICAL AWARENESS 

The concept of awareness has many definitions (see below4).  Typically, though, 

it implies some knowledge of the surroundings at a conscious level.  This could be 

specific knowledge about a particular object [Dourish and Bellotti 1992], or it could be 

raw data which generates an appropriate response [Kaelbling and Rosenschein 1991].  

More specifically, however, being aware suggests an explicit recognition and 

understanding of the meaning behind what is sensed.  Not only that, but once the 

recognition and understanding are in place, being aware means being capable of acting 

upon that sensed information.  That is how being aware is different from simply 

recording the data, analyzing it, and filing it away for other truly aware beings to use.  

                                                 

4 The American Heritage® Dictionary of the English Language, Fourth Edition 
Copyright © 2000 by Houghton Mifflin Company. Published by Houghton Mifflin 
Company. 
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Awareness means acting with respect to the knowledge of the surroundings.  Acoustical 

awareness, therefore, is coupling action with knowledge about the acoustic environment, 

specifically anything that indicates how sound flows or will flow in the physical world. 

3.1 TYPES OF AWARENESS 

The general definition of awareness, as suggested by the previous definitions, 

may be too broad for our use.  As awareness is defined, it can be applied to any 

application that perceives the environment, or has prior knowledge of it, and makes 

control decisions based on that information.  But there are at least two different levels of 

being aware.  First, there is simply reacting to a stimulus from the environment.  Most of 

the robotics applications discussed in chapter 2 fall into this category.  Second, there is 

understanding the context and the nature of the perceptual stimuli, and then making an 

intelligent, informed decision based on that knowledge.  In robotics, this has classically 

been termed as reactive versus deliberative control, and both should have their place in a 

real acoustically-aware system.   

3.1.1 REACTIVE ACOUSTICAL AWARENESS 

Common acoustics applications in robotics today mostly fall under the category 

of reactive acoustical awareness.  Simply stated, all reactive processes can be defined in 

terms of connections between 4 parts.  At any time t, the signal (dt) from the acoustic 

perceptual hardware is transformed by some perceptual software processes, referred to 

here as perceptual schemas (P).  Then the perceptual schema results are fed into a motor 

schema, or behavior (B), which transforms the results of the perceptual schema into 

commands for the motor controller (Mt).  This process, involving 4 parts can be seen in 
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completing the task (both a priori and historical), which cannot be directly perceived by 

the robot, has to be built into the design of the controller component.  This could be 

algorithmic manipulation of the perceptual data, or it could be facilitated by enhanced 

behavioral coordination mechanisms [Arkin 1998].  In either case, it places a large onus 

on the system designer, who must not only know the task extremely well, but also have to 

predict large numbers of failure situations and design control solutions that do not 

interfere with each other when operating simultaneously.  It is still an open question as to 

whether or not general awareness can be achieved using sufficiently complex reactive 

systems, but in today’s practice the required complexity for such a task is beyond the 

scope of a human designer. 

3.1.2 KNOWLEDGE BASED ACOUSTICAL AWARENESS 

For more complex tasks, some form of internal state needs to be added to the 

system.  Starting with the reactive aware system in Figure 3.3, this can be accomplished 

by adding a knowledge component to the architecture.  The defining characteristics of a 

knowledge component are: 1) it takes as input data from the perceptual system and the 

memory of its previous state(s), and 2) outputs the result of some computational 

processing to the reactive component (behaviors or coordination mechanism).  Without 

the output to the reactive component, the knowledge component is limited to logging and 

monitoring tasks only.   The resulting combined controller forms a hybrid reactive-

deliberative robotic controller (Figure 3.3).  In this figure, the knowledge component has 

been further subdivided into two pieces: (1) a knowledge planner (K), responsible for 

maintaining world models and creating plans for active perception, and (2) a task 
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manager (T), responsible for selecting, modifying, and following a plan.  This 

subdivision of the deliberative component is equivalent to subdivisions made in earlier 

hybrid reactive-deliberative robotic architectures such as AuRA [Arkin 1998] or 

Atlantis[Gat 1991].  In these architectures, perceptual schema data is traditionally passed 

through the reactive component before reaching the knowledge component, but this is 

equivalent to the direct link between perception and the knowledge component, which is 

common in other knowledge acquisition architectures [Johansson 2003] so as to emphasis 

the importance of data collection.   

The drawbacks to a knowledge component within the controller are 

synchronization, and general processing speed difficulties.  As there is no limit on the 

amount of data stored in the knowledge components memory, there is no guarantee that 

any processing on that data can be completed fast enough to facilitate real time control.  

The solution, as proposed by some in the robotic architecture community [Gat 1991], is 

to run the knowledge acquisition components and motor control components 

asynchronously.  At any given time-step, the motor controller has available to it the 

perceptual data processed at that time-step, and the most recent result of the knowledge 

 

Figure 3.3 Hybrid architecture for supporting acoustical 

awareness. 
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acquisition system.  With this design, the knowledge component facilitates the 

performance of the reactive system, assisting where possible. 

In this dissertation, we are focusing on the development of this second type of 

acoustical awareness.  As discussed in chapter 2, there has already been extensive work 

in developing behaviors that connect acoustical sensors with action, and there is likely to 

be much more in the future as acoustical applications become more commonplace.  What 

has not received much attention is the augmentation of these behavioral systems with the 

deliberative form of acoustical awareness.  Where behavioral systems can fail because of 

the difficult nature of acoustic inputs in arbitrary environments, supplemental knowledge 

of how sound flows through the environment can be used to suggest actions for avoiding 

failure cases and overcoming local minima inherent to the acoustic domain. 

In the remainder of this chapter, we will concentrate primarily on identifying the 

type of information needed to guide an acoustically-aware robot through this type of 

deliberative robotic architecture.  This corresponds to the first of the three critical sub-

questions described at the beginning of this thesis: What types of data and information 

about the auditory scene are useful for an acoustically-aware robot?  After identifying the 

set of potentially useful information, we will then describe how this information can be 

utilized in a mathematical framework for estimating sound flow through an environment.   

3.2 KNOWLEDGE FOR ACOUSTICAL AWARENESS 

Acoustics is an entity-driven perceptual domain.  The problem of sound flow 

through the environment can be thought of in terms of its primary entities and how they 

interact: (1) Where is the sound coming from? (sources) (2) How will it travel around the 
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environment? (paths) and ultimately, (3) How will it appear to the listener? (receiver) 

Improving robotic applications requiring sensing or transmitting sound requires at least a 

basic understanding of all of these parts. 

“Every building acoustics problem, whether the enhancement of 

desired sounds, or the control of undesired sounds (noise), can be 

considered in terms of a system of sound sources, paths, and 

receivers.”
5
  

For the remainder of this section, we will discuss the various aspects of each of 

these three primary acoustic entities.  What are the types of information that an 

acoustically-aware robot may want to know?  In the next section, we will discuss how 

this information can be combined together to model sound flow through an environment, 

and discuss why all of this information may or may not be needed for guiding an 

acoustically-aware robot.   

3.2.1 SOUND SOURCE MODEL 

The sound source is the most obvious of the three acoustic entities.  These are the 

objects that emit that sound which ultimately arrives at a microphone, or receiver.  

Furthermore, they are also the entities that are most likely to change over the time during 

which a robot is executing some task.  As such, it is imperative that a robot be able to 

acquire as much information as possible about the sound sources that may be effecting 

                                                 

5  
Cavanaugh, W. (1999) , p.3 
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the environment in which it is situated.  For each source in the environment, this includes 

information about: 

• Position – coordinates of the sound source’s location and orientation in 

environment. 

• Directivity – the variation in amplitude of the outgoing signal due to angle of 

departure.  This variation in amplitude may vary with frequency, as some 

frequencies may be better absorbed or transmitted by the materials from which the 

sound source is constructed. 

• Sound Function – the sound produced by the sound source.  This includes 

frequency, volume, and changes in these properties over time. 

Of these three types of information, position is the only one that must always be 

known to some degree of accuracy.  If the source position is not known, then the robot 

cannot predict anything about its effects on the environment.  In the absence of further 

information, simplified models can be substituted for the other two properties. Without 

directivity information, the source can be approximated as omni-directional, invariant to 

both frequency and angle.  Without specific knowledge of the wave function, a robot can 

approximate the sound source as a constant volume pink noise source.  A pink noise 

source assumes equal energy frequency bands, and produces sound similar to fan or wind 

noise.  

Given enough time, all three of these pieces of information about a source are 

determinable to some extent by a mobile robot.  Chapter 4 discusses in more detail how 

this is possible, and Chapters 5 and 6 apply this information to robotic applications. 
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3.2.2 ENVIRONMENTAL INFORMATION - PATHS 

The environment ultimately controls how much of the sound emitted by the sound 

sources reach the receiver.  If there are walls in between the source and the receiver, then 

the sound will have to either travel around them, or through them.  Either method reduces 

the volume, or otherwise changes the sound arriving at the receiver.  How much that 

sound is changed is dependent upon the following properties of the path model: 

• Geometrical layout: includes obstacle positions, walls, and all other surfaces in 

the environment (Figure 3.4).  Used for predicting reflections, and regions of 

acoustic shadow. 

• Material Properties: what materials are each of the surfaces made of, and what 

are the acoustic properties of those materials?  Used for determining how much 

sound is transmitted through a wall, absorbed by the wall, or reflected from it. 

• Structural Composition:  what does the support structure of the building look like, 

such as would be found on an architectural blueprint.  Used to determine 

absorption rates when calculating the strength of transmitted sound. 

If this information is not provided a priori to the application, then acquiring 

detailed information about the environment can be very difficult (although not 

impossible) for a mobile robot.  Luckily, simplistic yet reasonable assumptions are 

available for all of these.  The simplest geometrical layout is an unobstructed outdoor 

environment.  For indoor applications, sound propagation models generated under this 

assumption are better when the walls are far away, and the environment is relatively 

uncluttered, but they may still have some value depending upon the application.  For 

better performance, what is needed is a map of the primary architectural features of the  
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Figure 3.4. 3D model of the Aware Home Laboratory used for estimating reverberation 

effects and general sound propagation.  Small obstacles in the environment, such as 

plants, dishes, etc. are less important for reverberation models than architectural 

specifications of surrounding floors, walls, and ceilings.  The visualization was created by 

the software, Odeon 6.5 Combined. 
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environment, including large pieces of furniture and/or machines.  The larger the object 

the more effect it will have on sound propagation, but also the less likely it will be moved 

around.  For instance, a small houseplant, which could block the path of a robot moving 

through the environment, does not affect sound flow very much even if it is moved from 

place to place.  Figure 3.4 demonstrates an example 3D geometric layout used with the 

Odeon acoustical modeling software for sound flow through a kitchen/living room.  In 

Chapter 4, we will discuss the acquisition and use of the geometric layout for an 

acoustically aware robot.   Chapter 6 will then discuss the application of a 2D model to 

real robotic scenarios.  

Without knowledge of the geometrical layout, there is no need for material 

properties or structural composition of the environment.  If the layout is available, 

however, but material and structural properties are not (a very common occurrence), then 

a simplifying assumption that can be used is that the walls are thick and solid (i.e. non-

transmitting), and that all materials are perfectly reflective.  In this dissertation, we will 

always be using these simplifying assumptions in our sound flow models, since material 

and structural composition are usually unavailable to the robot.  As discussed in chapter 

2, however, some material properties are potentially determinable by the robot, as may 

some structural composition.  In future applications of acoustical awareness, additional 

knowledge, even if pertaining only to individual surfaces or walls, could still be used in 

conjunction with these simplifying assumptions to improve the accuracy of overall sound 

flow models.   
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3.2.3 RECEIVERS 

The final acoustic entity needing some description is the receiver.  Usually, with a 

robotic application, this will refer to a microphone, or array of microphones, situated on a 

mobile robot. Sometimes, however, a robot might be producing noise, or speech, for a 

human listener to hear, in which case the receiver would refer to the human listener’s 

auditory system.  In this chapter of the dissertation, we are interested in building a model 

of sound flow through the environment, so as to predict what a listener will hear at any 

location in the environment.  In order to estimate what the listener might hear, however, 

the robot also needs a model of that receiver.  While the range of information that can be 

stored and collected for each receiver will vary significantly between applications, the 

following are typical attributes for a receiver model that a robot might need: 

• Position – coordinates of the receivers location in environment 

• Directivity: the variation in the perceived amplitude of the incoming signal due to 

angle of incidence. 

• Frequency Response: a range of frequencies the receiver can detect, and the 

relative amplitude across frequency bands.  

As with sound sources, the position of the receiver is a critical piece of 

information. Without knowing anything about the position of the receiver, it is impossible 

to guess what the receiver might hear.  Since the receiver is often mobile, however, the 

position of the receiver is often initially estimated as a set of possible positions, or an area 

over which the receiver might move about.  This allows a broad initial estimate in the 

form of a map, or guide, that a robot can then use to predict what it will hear at any given 

reachable location. 
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The second two attributes of the receiver, directivity and frequency response, are 

less important to the sound flow estimation process.  Without further information, the 

receiver can be simply modeled as an ideal point sampler.  That is, any pressure changes 

occurring at that location are assumed to be perfectly recorded by the microphone, 

regardless of the frequency or the angle of incidence to the receiver.  In this dissertation, 

our receiver information is always restricted to position only, as we used omni-directional 

microphones in all of the experiments, and did not separate out frequencies.   

3.3 MATHEMATICAL FRAMEWORK FOR SOUND PROPAGATION 

The previous section identified a large amount of knowledge that can be collected 

from each of the three primary acoustic entities in the soundscape: sources, paths, and 

receivers.  That knowledge, however, does not by itself indicate what a robot would 

experience as it moves about the environment.  Ideally, an acoustically-aware robot 

should be able to predict what it will hear so that it can make decisions about either 

avoiding the noise, or moving towards the noise, so as to improve its performance at 

some acoustic task.  How do we bridge the gap between the information available to the 

robot, and this predictive capability?  Thankfully, this problem is already of great interest 

to another research community, the field of architectural acoustics.  When designing a 

building, engineers often need to consider the ramifications of their design choice on the 

flow of sound.  In the case of concert halls, the aim is to aid sound propagation, so that 

the sound reaches more people, and does so in a fashion befitting the type of music being 

played.  In more typical mundane buildings, such as offices or homes, the goal is usually 

the opposite, trying to minimize the effects of ambient noise on people trying to work or 
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live.  Whatever the target building of the acoustical engineer, the goal requires the same 

knowledge, knowledge about the flow of sound from source to receiver, through the 

environment.  This is exactly what our acoustically-aware robot needs. 

Of the methods for modeling, or understanding, sound flow through an 

environment, the theory of sound fields is one of the most commonly utilized.  The 

theory itself is based on the physical principles of sound propagation, as laid out in 

common acoustic textbooks [Wilson 1994; Cavanaugh 1999; Raichel 2000].  Although 

this is not the only method for predicting sound flow through an environment, it is 

particularly suited to mobile robotics as it provides a framework into which many 

different types of information can be inserted.  Furthermore, the resulting framework 

allows for unattainable knowledge, breaking down gracefully in the presence of unknown 

quantities.  If the robot does not have available to it some knowledge, either a priori or 

through self-acquisition, then the resulting estimates of sound flow can still guide a robot 

to or away from sound sources, improving performance over an uninformed robot (see 

Chapter 5). Other solutions are not quite as appropriate for robotics.  In particular, it is 

possible to solve the wave equation directly using certain assumptions and 

approximations for unknown quantities.  However, solving the equation typically trades 

speed for accuracy, and degrades quickly with missing information.  As computation is 

still at a premium for a mobile platform, and missing information is common, this 

solution may not be as applicable in robotics where an estimation of sound flow across 

large areas may need to be known. 
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3.3.1 THEORY OF SOUND FIELDS 

The theory of sound fields [Svensson 2002] is used to make predictions about the 

soundscape given the knowledge available.  Although called a theory, it is more of 

methodology that separates different types of acoustic knowledge from each other, so as 

to make useful estimates about the sound present at any given location in the environment 

even with only partial information. 

To describe the theory, let us first make the following assumptions: 

1. Assume there exists a function Sn(x,y,z,t), for each sound source (n) in the 

environment, which can determine the instantaneous pressure generated by that 

sound source at time (t) and location (x,y,z) in the environment.   

2. Assume that all functions Sn in the environment are independent of each other.  In 

the case of sounds in the audible range at typical volumes, the flow of sound due 

to each source is generally unaffected by other sources. 

Using these assumptions, the theory of superpositioning says that the total 

pressure at a given time and location (dx,y,z,t) can be estimated as the ambient pressure (P0) 

plus the sum of the effects of each sound source in the environment.   

But what is the nature of the sound source function S?  Although the effects of 

each sound source in the environment can be separated from each other, the function S 

cannot be separated from the physical environment itself.  If we have a spherical sound 

source, which generates a single pressure pulse, then that pulse will propagate 
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spherically, decaying in amplitude, until it hits a physical obstacle.  At that point, on a 

smooth surface in a perfectly rigid environment, the entire pulse is reflected from the wall 

back into the environment at some angle relative to the angle of the incoming pressure 

wave.  If the surface is not smooth however, then some scattering will occur at the impact 

point, generating uneven reflection from the wall.  Moreover, if the surface is not 

perfectly rigid, then the wall will absorb some of the sound, and some will be transmitted 

through to the other side.   

Fortunately, however, the nature of sound again promotes the use of 

superpositioning.  Where before the soundscape was split into component sound 

functions, now the component sound functions may be split into their component parts.  

In this case, the separable parts of interest are: 

• Direct Sound – sound waves with an unobstructed path from source to receiver. 

• Diffraction – the bending of sound around barriers/obstacles. 

 

Figure 3.5 Direct (dashed) vs. indirect 

paths from source to receiver. 
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• Reflection – throwing back sound waves from a surface.  Includes absorption and 

scattering effects due to rough, non-rigid surfaces. 

• Structure-Borne Vibration – sound absorbed by walls/obstacles may generate 

vibrations that can travel a long way through a solid medium before re-entering 

the air as sound.  A good example is a vibration that travels from the basement to 

the third floor of a high rise, using the steel skeleton of the building as a conduit. 

• Transmission – sound waves that continue through the wall/obstacle to emerge as 

waves on the opposite side. 

It is more common in the acoustics literature [Raichel 2000], however, to group a 

number of these effects together into separable sound fields.  A sound field can be 

described loosely as the sound in the region of interest around the source.  The direct 

field is then the sound field created only by direct sound.  A reverberant field includes 

diffraction, reflection, and surface diffusion effects.  Since these fields are assumed to be 

independent of each other, the sound function (Sn) can then be described as the 

summation of the effects of each field on the location (x,y,z) plus some transmission 

effects at given time t. 

Where: 

D = direct field. 

R = reverberant field, including reverberations, surface diffusion, and diffraction 

effects. 

T = transmitted and structure-borne sound 

TFDSn ++=  Equation 3.2 
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Although the exact form of these sound fields is impossible to determine at any 

given point in time, some reasonable estimates may be generated for a number of these 

fields using existing tools.  As will be discussed in the following sections, the selection of 

tools, how they are applied, and even what information they need actually varies 

significantly from field to field.  However the estimates for each field are generated, the 

beauty of the sound fields model is that as long as the effects being modeled are 

independent of each other (or have relatively small effect on each other), they can still be 

summed together to estimate the whole.  Furthermore, if some effect or sound source is 

not currently being modeled, for whatever reason, then while the accuracy will decrease, 

the knowledge about the flow of sound in the environment is still correct, and still 

potentially useful for effecting robotic movement.   

While constructing this model of separable sound fields, we have assumed that all 

of the fields are independent of one another, it should be noted that in reality the 

transmission and structure-borne effects are not actually independent of either the direct 

or reverberant fields.  The origin of the sound to be transmitted has to come from 

somewhere, and may originate in either the direct or reverberant field.  Then, any sound 

that is actually transmitted, i.e., reaching the other side of an obstruction, will continue to 

reflect around the environment and contribute to the reverberant field.  In practice, 

however, transmitted sound is not included in either field because the calculation 

methods for estimating either transmitted or structure-borne sound differ substantially 

from those for calculating the other fields.   

In Figure 3.6, we demonstrate the overall relationship between the separable 

sound fields model and the previously described acoustic entities.  The robot will be 
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gathering as much information as it is able to about each of the three acoustic entities.  

That information will then be used to construct each of the sound fields that build our 

final noise estimate.   

3.3.2 DIRECT FIELD 

To describe the direct field, let us start by describing the source itself.  Using 

Fourier’s theorem, any waveform can be described as the super-positioning of some 

number (N) of harmonic waves at different amplitudes, frequencies, and phases.  

Where: 

A
r

 = amplitude vector of length N 

ω = fundamental frequency 

n
r

 = [1, 2, 3, 4,…,N]  
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⋅=+⋅= sin)(
 

Equation 3.3 

 

Figure 3.6 Relating acoustic entities to sound fields when 

building noise estimates.  Each of the sound fields makes 

use of information from all three of the acoustic entities to 

estimate sound propagation. 
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ϕ
r

 = phase angle vector  

C
r

 = complex amplitude vector. 

Determining the effects of the direct field on the receiver is the simplest sound 

field to estimate.  Assuming an ideal spherical source at a distance (l) from an ideal point 

receiver, and a constant speed of sound (c), then the amplitude of the incident wave can 

be approximated by a linear drop off with the distance (l).  If no unobstructed path exists 

between source and receiver, then l approaches infinity. 

( ) 







−=

c

l
tp

l
tlDn

vv 1
,  Equation 3.4 

In practice, however, receivers are never ideal.  A real microphone is limited in 

the detectable frequency range.  Microphones detect minute changes in pressure (sound 

waves) only when those changes cause mechanical elements inside the microphone to 

move, which in turn generates an electric signal.  However, the shape and the material 

properties determine the frequency range to which the microphone responds, and there is 

no single element design that resonates in response to all frequencies.  Even those 

frequencies that do cause resonance in the sensing element, vary in the size of the 

resulting amplitude of vibration, in turn affecting the value of the “sensed” signal.  This is 

called the microphones frequency response ( r
v

), and is usually provided by the 

manufacturer.   

The other adjustment that needs to be made for real microphones, is the variation 

in directivity.  An ideal microphone is omni-directional, reacting equally to signals 

arriving from all directions.  A real microphone is not.  Even the microphones sold as 

omni-directional usually have blind spots where the physical cable connects to the 
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microphone.  In practice, this can be adjusted for using a scalar adjustment (Qθ,φ), 

depending on the incident angle (θ,φ).  In reality, the directivity value at a given angle 

should probably be a vector that varies with frequency, but the amount of error 

introduced by the scalar assumption is relatively low in comparison to other assumption-

induced error. 

To define the resulting direct field effect, let us first define an element-wise vector 

product operation (*), where, for all elements in vector { }NBBBBB ,...,,, 321=
r

: 

DCB
rrr

 *=      implies  iii DCB ⋅=  

Then, then the direct field effects from an omni-directional point source, on a 

directional microphone can be estimated as the element-wise vector product of the 

magnitude of the individual frequency components, and the directivity pattern (Qr) of the 

microphone at that angle towards the source (θ,φ). 

Where: 

l – path length from source to receiver 

),( φθrQ – directivity adjustment, for incident angle (θ,φ) 

r
v

– frequency response of the receiver 

( )tp
v

– sound function generated by the source at time t 

c – speed of sound  

Receivers are not the only directional entity in the equation.  Sources, too, are 

directional, and are typically modeled by a similar directivity function (Qs(θ,φ) ).  In the 
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Equation 3.5 
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source case however, (θ,φ), are measured from the front of the source to the receiver 

instead of vice versa.  So if we differentiate between the angle of departure from the 

source (θs,φs), and the angle of incidence on the receiver, (θr,φr), Equation 3.5 can be re-

written to include both source and receiver directivity: 

So, to summarize the estimation of the direct field, there are a number of different 

pieces of information that can be used.  A source location is necessary to calculate the 

path length to each location in the field, and a source function is necessary to scale the 

response at each possible receiver location.  Even the source function, however, does not 
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Equation 3.6 

 

Figure 3.7 The information from each acoustic entity necessary for building a direct field 

estimate.  Only the position and volume of the sound source, and the position of the 

receiver (solid circles) are absolutely necessary.  Other information that can also assist in 

the calculation (dashed circles) includes directivity of the source and receiver, frequency 

output of the source, the frequency response of the receiver, and the geometric layout. 

Position

Sound

Function

Directivity

Geometric

Layout

Volume

Freq.

Output

Receivers

Environment

Transmitted

Sound

Sources

Reverberant

Direct

+

Acoustic 

Knowledge 
Sound Fields

Noise 

Estimate

Freq.

Response

Directivity

Position

Position

Sound

Function

Directivity

Geometric

Layout

Volume

Freq.

Output

Receivers

Environment

Transmitted

Sound

Sources

Reverberant

Direct

+

Acoustic 

Knowledge 
Sound Fields

Noise 

Estimate

Freq.

Response

Directivity

Position



52 

 

need to be complete, as a simple volume is good enough for making an estimate. 

Everything else is optional.  Equation 3-4, which uses just path length and source 

function is probably the simplest estimate of the direct field to use with new sources.  

Then, as more information becomes known about the microphone and the directionality 

of the source, these can also be incorporated into the equation to hopefully improve the 

results.  Figure 3.7 graphically displays the set of information that needs to, or just can, 

be included in the direct field calculations.  Unlike the other fields, recalculating the 

direct field is a real-time operation even at its most complex that can be done quickly 

whenever new information becomes available.  In Chapter 4, we will discuss the creation 

of direct field estimates from source position, directivity, and volume using this 

approach.  It is left for future work the incorporation of time varying sound functions and 

microphone information into the field calculations. 

3.3.3 REVERBERANT FIELD 

A reverberant sound field can be described as a field created from the reflection, 

diffusion, and diffraction of sound waves in an environment with physical obstructions to 

the flow of sound.  Without the physical obstructions, it would be only the direct field, 

but with them, sound waves can take many alternate paths to reach the same location in 

the environment.  When a sound wave hits a hard, smooth surface, it will bounce off at an 

angle of reflectance (θr) equivalent to the angle of incidence (θi), see Figure 3.8.  If the 

surface is perfectly rigid, then no energy is lost at the transmission point, and only the 

phase of the wave is changed.  Otherwise, the amplitude of the wave is affected relative 
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to the frequency of the incident wave.  How many of these reflected waves ultimately 

reach the receiver is determined by the shape of the environment.   

Image Source Method 

The simplest model of reverberant environments in fact uses this relation of equal 

angles to describe the reverberations as the effects of “mirror-image” sources.  Figure 3.8 

describes the idea.  Each reflecting surface can be replaced by an equivalent source (S’), 

which is located at a mirror-image position about the reflecting surface from the original 

source.  The summation of the direct field effects from all of these sources then 

constitutes an estimate of the reverberant field.  This is called the image source method 

(ISM) [Savioja 1999]. 

 

Figure 3.8 Modeling the image source method.  In a normal reflection, an incident 

wave is reflected off of smooth surface at incident angle θI=θr.  The image source 

method uses this principle to replace reflections with equivalent sources having the 

same angle of incidence as the reflection 
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In Equation 3.7 the image source method is used to estimate the combined effects 

of all 1st order reflections from a single source n to a receiver located in the environment.  

The order in this case, refers to the number of reflections that have occurred in the path 

from source to receiver, so 1st order means only one reflection between the source and the 

receiver.  

Where:  

li = path length from the real source n to the receiver. 

),( rrrQ φθ = directivity adjustment at microphone, for incident angle (θr,i,φr,i) 

),(, ssnsQ φθ = directivity adjustment due to source n, for departure angle (θs,i,φs,i) 

from the image source. 

r
v

= frequency response of the receiver 

( )tpn

v
= sound function generated by the source at time t 

c = speed of sound  

iE
r

= Environmental adjustment to the amplitude, depending upon the materials 

reflected off along the path.   

The image source method however, is not without problems, largely because of its 

simplicity.  For one, each reflecting surface needs to be flat in order to estimate the 

reverberant effects as that of a mirror-image source.  Second, the surface also needs to be 

smooth, otherwise diffusion (or scattering) effects occur as a multitude of waves are 

generated from each intersection point, which image source methods cannot accurately 
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model.  Thirdly, image-source methods do not scale well for calculating higher-order 

reflections.  Even with just 1st order reflections, the positions for all mirror image sources 

have to be calculated first, before directivity and path lengths can be determined.  As the 

order of the reflections increases, however, the number of image sources grows 

exponentially.  Furthermore, the computational effort required for estimating the position, 

path length, and directivity of each higher-order source also grows along with the order, 

so even though the final summation of results is relatively easy, the finding of the image-

sources themselves is highly inefficient.   

Another problem not already mentioned is that the image-source method is very 

inefficient in estimating the entire field.  For each possible position of the receiver an 

entirely new set of image-sources has to be calculated.  Now, if the original source 

position is known at compile time, the positions of all image-sources for all receiver 

locations can actually be calculated in advance (which also alleviates the computational 

inefficiency problem), and then stored for quick access in a database, making the image-

source method feasible in real-time.  However, if the original source position is not 

known, then calculating all of the image-sources for all positions in the environment 

when it does become known will most likely require further compromises in accuracy to 

speed up the calculation time.  Such compromises may include reducing the order of 

reflections calculated and estimating the field in a more limited area, perhaps for making 

spot updates to a pre-existing reverberant field model. For this reason, as well as the 

earlier problems, the image-source method was not implented as part of this dissertation 

to describe the reverberant field.  Instead, it was only included because its simplicity may 
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prove useful to other robot designers.  A greater description of the image source method 

and its effectiveness can be found in [Allen and Berkely 1979; Svensson 2002]. 

Ray-Tracing 

The image source method is loosely based on the concept of wave propagation.  

Instead of handling individual wave reflections though, it models the reflections as 

sources.  Although it has been revealed to be computationally very expensive it was 

originally proposed as a faster alternative to a ray-tracing model of wave propagation[A. 

Krokstad 1968], which was capable of modeling surface scattering.  Modern processing 

speeds however have made ray-tracing feasible and it has been implemented in a number 

of commercial platforms including Catt-Acoustic, Ease/Ears, and Odeon. 

The basic idea behind ray-tracing is that a number of rays (often in the form of 

cones) are generated at random angles from the source into the room.  When a ray hits a 

surface, it is reflected either specularly (as in image-source methods) or diffusely, 

depending on the scattering coefficient of the intersecting surface.  Greater accuracy 

could be received by generating a new batch of rays at each surface to reflect on the level 

of scattering, but doing so quickly escalates computationally as the number of reflections 

is increased.  To then determine the estimated effect on a single receiver then is only a 

matter of determining which rays intersect with the position of the receiver and summing 

them together (use Equation 3.6, substituting ray characteristics for sources). 

What ray-tracing does not do well are two things.  First, if the amount of diffusion 

at each surface depends on frequency, then without generating new rays at each 

intersection, the simulation may have to be repeated for each octave band.  Second, ray-
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tracing does not simulate edge diffraction effects.  Sound waves will bend around 

corners, or partial barriers, but the ray-tracing model does not support this phenomenon.  

However, there are some methods for estimating diffraction around partial barriers 

[Pierce 1989] that may potentially be used to estimate the effects of diffraction 

independently of ray-tracing. 

Although the later augmentations to overcome diffusion and edge-diffraction 

effects have not yet been implementetd for this dissertation work, ray-tracing is used for 

modeling the reverberant field in Chapters 4 and 6.  Chapter 4 in particular describes the 

data collection process by our mobile robot, and the creation of a reverberant field model 

from that data.  A pseudocode description of our implementation is also available in 

Appendix B.6. 

Other Methods for Estimating Reverberation 

Besideds the image-source method and ray-tracing, there are also a number of 

other methods for calculating the reverberant field.  Although these approaches were not 

implemented during dissertation work, these alternatives each have their own 

advantages/disadvantages, and are included here for completeness: 

• Beam-tracing [Funkhauser et al. 2004]  

also uses rays, but creates beams out of adjacent rays.  The advantage is 

that edges can “split” beams to model diffraction effects.  Beam-tracing is 

similar in computational complexity to ray-tracing, but does not easily 

model surface scattering. 
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• Radiosity [Korany 2000]  

Another computer graphics inspired method which predetermines the wall 

reflection values as parts of larger wall elements.  It is computationally 

efficient and easily handles a moving receiver.  However, while scattering 

is simple to predict, specular reflections are more difficult to incorporate.  

In addition, it does not handle edge diffraction. 

• Solving the wave equation  

There are also several numerical solutions to the wave equation for 

estimating the reverberant field.  Volume element methods, such as the 

finite difference method in the time domain (FDTD) [Botteldooren 1995],  

discretize the air volume, and calculate the sound propagation as a 

function of neighboring units.  Surface element methods, such as the 

boundary element method (BEM), discretize all boundaries and estimate 

their contributions to the sound pressure and particle velocity[Savioja 

1999].  Numerical solutions provide very good details about diffraction, 

diffusion, reflectance, and surface scattering, but are extremely heavy 

computationally, so are generally practical only in either small or very 

simple environments. 

The general purpose of being able to estimate the reverberant sound field is to 

integrate some information that was not previously available into the robotic controller.  

Unlike creating virtual spaces [Svensson 2002], or building concert halls [O'Keefe 1998], 

where accuracy is critical, there is already so much noise inherent to mobile robotics that 

obtaining the highest level of accuracy in acoustic simulations of the reverberant field is 
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unnecessary.  What the availability of all these tools for estimating the reverberant field 

means is that the level of accuracy in estimating the field can be tailored to the 

acoustically-aware application.  If diffraction effects are particularly strong in that target 

environment, then an alternative method to ray-tracing may be used.  Hybrid 

combinations of two or more methods [Svensson 2002] are also easily fitted to this 

computational approach.   

In general, the differences between each of the approaches for modeling 

reverberant effects are the complexity of the computational model and the specific effects 

included in the reverberant model.  All of the approaches, however, from the image-

source method to solving the wave equation, make use of the same information.  They 

need the same information that the direct field required, plus knowledge of the geometric 

layout.  Furthermore, these methods can now incorporate material properties of the 

surface if they are available.  Figure 3.9 summarizes the set of information required for 

building a reverberant field estimate. 

3.3.4 TRANSMISSION 

The transmission of sound occurs when not all of the sound is reflected from an 

obstacle.  In that case, some energy from the incident wave (EI) is reflected (ER), some is 

absorbed by the wall (EA), and some is transmitted through the wall (ET) and out the other 

side.   

 

TARI EEEE =−−  Equation 3.8 
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Figure 3.9.  The information from each acoustic entity necessary for building a 

reverberant field estimate.  Any non-trivial reverberant field requires a geometric 

layout in addition to the same information required by the direct field.  Also, in the 

reverberant field equations, we see the use of material properties as optional 

information. 
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Unfortunately, even assuming a flat, relatively thin, panel in air with uniform 

density, the resulting transmitted energy is not easily estimated.  It is not quite as simple 

as calculating either the direct or reverberant fields, because even if an accurate enough 

model of the environment (including geometrical layout and material properties) was 

available, then accurately estimating transmission would still depend on having accurate 

representations of the driving source functions.  Due, in part, to the difficulty of acquiring 

accurate enough knowledge about the domain, our robots will not be estimating 

transmitted energy in the experiments described in this dissertation.  However, if 

transmission plays an important role in the environment a robot is being deployed to, then 

there are still some techniques that can be used to make rough approximates of 

transmission for use by a mobile robot.  These techniques, which will be described in the 
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following sections, are divided into two different sets, each estimating different types of 

transmitted energy.  The first type is direct transmission, which calculates the 

transmission loss (i.e. the fraction of sound power transmitted to incident sound power) 

of a wave traveling directly through an obstacle.  The second type is structure-borne 

transmission, which happens when energy absorbed drives vibrations that travel through 

the structure to reappear as sound in a new location. 

Direct Transmission 

Direct transmission of sound is the transmission of sound through the obstacle, so 

that the angle of the waving leaving the obstacle is relative to the angle of incidence.  

Most typically, it is calculated with respect to walls in an environment, particularly outer 

walls that are designed to reduce noise interference from outside the structure.  

Unfortunately, modern building construction tends to make exact models of the structure 

difficult.  Accurate transmission calculations would require knowing, not only what 

materials were used, but also where the studs, pipes, insulating materials, and especially 

air gaps between any of the materials are located.  This information is just not available.  

What is available, however, are average transmission loss estimates for walls of similar 

make and construction.  The same thing can usually be found for a variety of other 

materials that might also affect transmission, including windowpanes, doors, and even 

floor constructions.  These then can be combined together to produce a single estimate of 

the transmission loss due to a given wall.   

If, for the wall seen in Figure 3.10, we have the transmission coefficient (τi), and 

the surface area of each material exposed to the sound source (Ai) then the combined 



62 

 

transmission loss due to the wall can be estimated from the following equations found in 

[Raichel 2000]: 

Where: 

Ai = Area of surface i. 

τI = transmission coefficient of surface i. 

TLi = transmission loss due to the wall 
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Equation 3.9 

 

Figure 3.10. An example outer wall of a house used in estimating 

transmission of sound.  This wall has 4 separate materials blocking 

entrance to outside noise: (1) Oak, (2) Glass, (3) Air, (4) Painted Brick.  

Even though the oak and brick walls are good at preventing transmission 

of sound, much noise will be transmitted through the air gap and the 

glass window. 
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This equation makes the assumption that the source is far enough way that the 

sound hitting the wall is roughly the same at every location on the wall.  While this 

estimate may not be ideal for sound sources inside a house, it is a good enough 

approximation for estimating the noise interference due to traffic, industry, or even 

airports, which are a common source of outside noise for home environments.   

If the transmission coefficient is not available for a particular material in the wall 

then it is also possible to estimate the transmission coefficient given other properties of 

the material used: 

Where: 

ρ = the density of air 

c = the speed of sound in air  

θ = the angle of incidence on the panel  

m = panel mass density per unit area 

ω = frequency 

B = panel bending stiffness 

η = a composite loss factor 

In practice, estimating transmission loss with any degree of accuracy is very 

difficult.  Even with the ability to estimate transmission coefficients and some idea of the 
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structural composition of the wall, identifying all possible paths for sound to travel 

through the wall is unlikely, so the transmission loss equations can only provide a good 

initial estimate of how much sound is lost.  To identify how much sound is hitting the 

wall in the first place, the robot needs to build direct and/or reverberant field estimates for 

other side of the wall.  Figure 3.11 summarizes the large amount of information required 

to estimate transmitted sound.  

Despite the apparent problems with acquiring so much information to build 

transmitted sound estimates, however, this area of the sound fields model may be of great 

importance to many applications.  The reason is that cars, trains, airplanes, etc all impact 

everyday environments on a regular basis, transmitting significant quantities of noise 

through the walls from outdoors.  Although a robot cannot predict exactly when a car will 

 

Figure 3.11. The information from each acoustic entity necessary for building a 

transmitted sound estimate.  Estimating transmitted sound requires information about not 

only the sound source, but also the environment on both sides of the wall, and material 

properties.  

 

Position

Sound

Function

Directivity

Geometric

Layout

Volume

Freq.

Output

Receivers

Environment

Transmitted

Sound

Sources

Reverberant

Direct

+

Acoustic 

Entities 
Sound Fields

Noise 

Estimate

Freq.

Response

Directivity

Materials

Structural

Composition

Position

Position

Sound

Function

Directivity

Geometric

Layout

Volume

Freq.

Output

Receivers

Environment

Transmitted

Sound

Sources

Reverberant

Direct

+

Acoustic 

Entities 
Sound Fields

Noise 

Estimate

Freq.

Response

Directivity

Materials

Structural

Composition

Position



65 

 

pass by, it can use its knowledge of transmission loss to improve its performance by 

predict where sound levels will be higher or lower due to these external noise sources.  

This, however, is left for future work. 

Structure-Borne Sound 

Another type of transmitted noise is structure-borne sound.  Structure-borne 

sound is sound that reaches the receiver in at least part due to the vibration of a solid 

structure.  Direct transmission through the wall is technically structure borne, because the 

wall must vibrate to generate the noise on the other side, but direct transmission is not 

usually what is meant by structure-borne sound.  A good example of structure borne 

noise might be the plumbing in the house.  As the pipes are all highly interconnected, and 

pressurized, a vibration at one end could easily generate noise at the other end of the 

house.  Another good example are HVAC (heating, ventilation, and air conditioning) 

systems in office buildings.  Besides the noise generated from the moving air, an HVAC 

in the basement can generate vibrations that travel through the building’s frame to cause 

noise in seemingly arbitrary locations on other floors. 

Of course, for a robot that is working in a small environment, structure-borne 

noise can often be modeled as a new source seemingly co-located with the wall.  

Transmission due to unobserved noise sources may also, sometimes, be modeled this 

way.  If the robot needs to know, however, the relation between certain structurally-borne 

noise and an HVAC system (or any other known sound source) then there are some ways 

of estimating the structure-borne noise.  Most commonly, identifying the transmission 

due to structure borne sound is done experimentally.  If two noise sources are known to 
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be interconnected, then samples are taken by hand at different frequencies to determine 

the exact relation.  A robot with appropriate a priori knowledge, such as the fact that all 

water noise in the house should be inter-related, could also do this same task. 

There has also been some limited work in using Statistical Energy Analysis (SEA) 

to estimate structure-borne effects.  Like direct transmission, however, the models for 

SEA have to be fairly reliable in order to demonstrate any real accuracy, but there are 

some available programs that have been successfully demonstrated for analyzing building 

interiors [Koizumi et al. 2002], so that might be something to check out in the long run. 

3.4 CHAPTER SUMMARY 

This chapter has focused on identifying the nature of acoustic awareness.  More 

specifically: 

• What does it mean to be acoustically aware? 

Being acoustically aware means a coupling of action with knowledge 

about sound flow through the acoustic environment.  There are, however, 

two levels of awareness, reactive vs. deliberative, that could be used for 

navigating a robot with respect to the auditory scene.  Reactive awareness 

has been demonstrated in many of the applications in Chapter 2, as the 

robot listens, and then reacts to its current situation.  To generalize the 

application to multiple environments and different types of tasks, we are 

focusing in this dissertation on the second type of awareness.  A 

deliberative awareness of the auditory scene emphasizes the importance of 
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knowledge of sound flow in the environment for guiding robotic 

navigation. 

• What types of information can, or should, an acoustically-aware robot 

acquire? 

The soundscape can be divided into three primary acoustic entities: sound 

sources, paths, and receivers.  The sound source is the source of noise 

propagating through the environment.  The path entity incorporates 

knowledge of the environment to identify how the sound travels from the 

source to the listener.  Finally, the receiver describes the listener, 

microphone or human ear, that has its own limitations on what it can hear, 

and from what angles. 

• How can the information be combined together to estimate sound flow? 

The theory of sound fields was identified in this chapter as a convenient 

framework in which to insert information about the three primary acoustic 

entities, so as to generate a model of sound flow.  The framework itself is 

not new, and, in fact, has been steadily improved over the past two 

decades by commercial software companies including Odeon and Catt-

Acoustic.  Although their exact computational methods are proprietary, 

their published works [Naylor] suggest they make use of both the theory 

of sound fields and wave-equation calculations to provide their estimates.   

What is new to this work, however, is the use of any part of this 

framework for real-robot applications.  The theory of sound fields 
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provides a necessary middle-step along the path to an acoustically-aware 

robot.   

In the following chapters, we will build parts of this generic model of information 

and sound flow estimates into a real robotic application.  Chapter 4 describes how to 

autonomously gather the necessary information for constructing models of both the direct 

and reverberant field, and demonstrates how lacking some information can still allow for 

useful models of sound flow through the environment.  Chapter’s 5-7 then describe 

robotic applications, demonstrating how to move the theoretical models from this chapter 

onto real robots and showing the advantages of being acoustically aware. 
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CHAPTER 4  

ACQUIRING KNOWLEDGE ABOUT THE AUDITORY SCENE 

In Chapter 3, we used the theory of sound fields to identify information useful to a 

mobile robot in understanding the flow of sound through the environment.  With 

knowledge about the receivers, the sources, and the paths through the environment, a 

model can be created of the auditory scene to guide the robot in improving its 

performance.  From where, however, can a robot reasonably expect to acquire this 

information?  When not available a priori, the answer, by necessity, must be that the 

robot can determine this information using the sensors available to it.  In this chapter, we 

focus on the problem of how, answering the second sub-question posed in Chapter 1. 

How can we combine data from multiple sensors to build effective representations of the 

acoustic environment? 

The remainder of this chapter is organized as follows.  The first section discusses 

existing work in localizing sound sources with static-mounted arrays and mapping the 

environment.  These domains have been well studied as part of other problems for many 

years, and have produced well-established algorithms that can be used as a basis for 

further work.  The next two sections build on this groundwork to extend the problem of 

sound localization to the more general auditory mapping domain.  Multiple 

simultaneously operating sound sources are localized in 2-3 dimensions relative to the 

moving robot, and their volume and directivity are determined.  Then, in the path domain, 

how to extract the geometric layout is discussed, and reverberant fields are created.  

Finally, from these sources of information we then build models of sound flow using the 
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equations in Chapter 3 and compare the results to sample-based representations of the 

environment. 

4.1 BUILDING BLOCKS 

The development of an acoustically-aware robot has really been made possible by 

the scientific advances in three fields.  The first field, architectural acoustics, contributed 

the mathematical framework described in Chapter 3 for combining information together 

into estimates of sound flow through the environment.  The second two fields then 

contributed to the building of tools, and representations, from which the necessary 

information for the sound fields framework is extracted.   

From the field of mobile robotics, the recent successes [Thrun 2002] in localizing 

the robot with respect to the environment and its past locations have contributed heavily 

to this work.  Without relative position data a robot can be reactively aware to the 

auditory scene, sampling the environment and making decisions based primarily on local 

information.  By incorporating knowledge of where the robot has been, the robot can now 

fuse its disparate collection of sampled data together into spatial representations of the 

environment, predicting where to move and where to avoid.  Furthermore, with 

localization information, a robot can plan paths through the environment using those 

representations as a navigation guide. 

From the field of digital signal processing, the last of the three scientific advances 

has been the work in localizing sound sources using arrays of microphones. Driven by 

interests in teleconferencing and military applications, researchers have developed 

reasonably robust algorithms for estimating angles and, sometimes, distances to the 
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sound sources in the environment.  Although the developed solutions for acquiring 

distance and angle need some adjustments for robotic deployment (Section 4.2.1), the 

underlying algorithms are essential in acquiring a critical piece of knowledge about the 

auditory scene, the angle to the sound source.  

Together, these three fields together will serve as the building blocks from which 

we can build additional representations.  They will assist in gathering the information 

necessary for building an acoustically-aware robot. 

4.1.1 ROBOT  MAPPING AND LOCALIZATION 

The problem of mapping the environment has been of great interest to the robotic 

community for many years, as maps are convenient tools for planning and sharing 

information with other robots or human observers.  One of the simplest methods for 

building such a map makes use of robot localization, i.e. a robot knowing where it is 

located with respect to its previous positions, to spatially fuse sensor data into maps.  The 

evidence grid [Elfes 1992], or occupancy grid, is the representation through which data is 

combined to predict the probability of something occurring in each grid cell in a discrete 

map of the environment.  Traditionally the sensor data being combined together are the 

robot positions, and the laser or sonar readings to obstacles in the environment, resulting 

in obstacle maps useful for guiding robotic navigation (Figure 4.1, Bottom).  In Section 

4.4, we will use such an obstacle map representation for building reverberant field 

models.  The evidence grid representation, however, is not limited to sensing obstacles.  

In Section 4.2, we will apply the same representation to sound source localization, 

estimating the likelihood of a sound source appearing within each grid cell.   
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Figure 4.1.  The B21r mobile robot (Top) and 

the obstacle map it created using the 

continuous localization algorithm (Bottom). 
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Unfortunately, reliably determining the robot’s relative position to create such 

fused data maps can be a very difficult problem.  The extended Kalman filter is an 

algorithmic method designed to do just that by fusing data together from a variety of 

sensors, including GPS, accelerometers, gyroscopes, odometric positions sensors, etc.  Its 

accuracy, however, while substantially better than that of individual sensors, can still 

vary wildly with the precision, and cost, of the sensors being fused together.  Simply 

placing a map building algorithm on top of this fused localization process may not be the 

best way to build an accurate map.  For this very reason, the problem of localizing the 

robot has often been combined with mapping the environment.  The combined problem is 

called the simultaneous localization and mapping problem (SLAM).  This combined field 

has been actively researched for over a decade, and many good algorithms have been 

developed to exploit the advantages of mapping the environment while minimizing the 

disadvantages and uncertainty of robotic movement.  A good source for specific details 

about many of these algorithms can be found in [Thrun et al. 2005]. 

After many years of development, robotic localization and mapping tools have 

recently become available to the wider mobile robot research community.  Although such 

tools still have inherent problems in mapping dynamic or large scale environments 

[Thrun 2002], they are reasonably robust in structured indoor environments spanning a 

few rooms.  For this dissertation, we made use of two such freely available tools to build 

two-dimensional maps of the environment and localize the robot using a SICK laser 

measurement system (LMS).  The first such tool is based on the continuous localization 

algorithm [Schultz and Adams 1998], which extends the evidence grid representation to 

the simultaneous localization and mapping problem.  This localization algorithm was 
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used on an iRobot B21r located at the Naval Research Laboratory, Center for Artificial 

Intelligence.  Both the robot and its evidence grid map can be seen in Figure 4.1.   

The second tool utilized for robot localization came bundled with the Player/Stage 

software for mobile robotic control [Gerkey et al. 2003].  The pmap software developed 

by Andrew Howard [Howard 2004] uses particle filters to build a discrete, probabilistic 

representation of the environment.  This representation is then used in real-time by a 

mobile robot to localize itself using an adaptive monte-carlo localization driver equipped 

with Player/Stage.  This combined solution was deployed on an ActivMedia Pioneer 2-

dxe robot in the Mobile Robot Lab at the Georgia Institute of Technology.  The fully 

equipped robot and the resulting map can be seen in Figure 4.2. 

4.1.2 SOUND SOURCE LOCALIZATION 

The problem of sound source localization is one of the fundamental issues in 

modeling the acoustic environment:  from where does the sound originate?  Before we 

can predict the effects on the surrounding environment, even if that environment is 

assumed anechoic or otherwise acoustically simple, we must know from where the sound 

is being generated.   

The fundamental property of sound that drives most localization algorithms is its 

finite, and relatively low (compared to light) speed as it propagates across the room.  

Given an array of microphones in an anechoic environment, the signal received at each 

microphone should be the same signal, only delayed by different amounts.  Therefore, if 

we knew the delay between the arrival of the signal at each microphone we could also 

identify the position in environment from which the sound is originating.  Assuming a  
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map of the Mobile Robot Lab at 

created using the PMAP software (Bottom).
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Figure 4.2.  The Pioneer2-dxe robot (Top) and the 

map of the Mobile Robot Lab at Georgia Tech 

created using the PMAP software (Bottom). 
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constant speed of sound (c = 343 m/s), the time (T) required to travel the distance (dl,m) 

from a source at position L to a microphone at position m is the distance traveled divided 

by the speed of sound: 

          
( ) cdmlT ml ,, =

 Equation 4.1 

Therefore, the delay between the signal arriving at the microphone located at m 

and the signal arriving at the microphone located at n is: 

            
( ) cddnmdelay nlml ,,),( −=

 Equation 4.2 

This delay is usually referred to as the time difference on arrival (TDOA), and 

measuring it can be difficult.  If the microphones are in close proximity to each other, as 

is typical for most on-robot microphone arrays, then the delay between the signal’s 

arrival at each microphone is very small.  At 343-m/sec, microphones that are 0.3-m from 

each other (a likely maximum for a small robot array) experience maximum delays of 

less than 1-msec when the sound source is in line with both microphones.  When the 

source is not in line, then this delay decays to 0-msec as the angle approaches 

perpendicular to the center of the array (Figure 4.3).  With such small delays, accurate 

measurement in the time-domain is impossible.  Instead, the signals recorded at each 

microphone are usually converted to the frequency domain using the Fourier transform, 

where signals can be compared at much finer delay increments than in the time domain. 

The next problem in estimating the TDOA is comparing the signals.  In any real 

environment, the signal of interest will be corrupted by some amount of noise, either 

from other ambient noise sources or reverberation from the environment.  Therefore, in 
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actuality, the microphones are measuring multiple signals arriving from all different 

directions.  Which signal is the robot interested in localizing?  If the type of signal to be 

measured, such as speech, is known, then a filter can often be applied to the incoming 

signal to significantly reduce the effects of ambient noise sources.  For reverberant 

effects, however, or when the ambient noise sources mask the same frequencies as the 

source being localized, a filter cannot completely clean the signal.  If greater knowledge 

about reverberant paths or knowledge of ambient noise sources is available, then noise 

cancellation techniques can go beyond filtering to clean the signal within the frequency 

bands of interest.  Even with both filtering and noise cancellation, the signal will rarely 

be free of noise, so any method for comparing signals recorded at each microphone needs 

to take into account the existence of noise. 

 

Figure 4.3. Measurable time delay between signals arriving at each microphone vs. the 

angle of incidence.  This graph assumes 0.3-m between microphones in a binaural array, 

and a 1-m distance to the sound source.  The gray region indicates the face-to-face 

interaction region for a binaural array mounted as ears on a humanoid.  
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Adaptations to Robotics 

Overcoming these problems in microphone arrays small enough to fit on a robot 

have generally been restricted to three types of algorithms.  The first type of algorithm 

uses the steered response of a beamformer for identifying the angle to one or more 

sources [DiBiase et al. 2001].  The advantage of using a beamformer, commonly used for 

combining acoustical signals in voice capture applications, is that it can be tailored using 

filters for the specific environment and placement of the microphone array.  The basic 

algorithm uses the general TDOA principle to delay the incoming signal from each 

microphone some amount, effectively maximizing the energy for a specified angle.  

Localizing a source is then identifying the angle of incidence with the greatest energy.  

The drawback to beamforming systems can be their computational complexity.  

Especially once distance and environmental customization is included in the estimation, 

the amount of processing can be orders of magnitude greater than other localization 

methods. 

The second type of algorithm uses high-resolution spectral estimation to locate 

sound sources.  The MUSIC algorithm (MUltiple SIgnal Classification) is such an 

approach that has recently been applied to robotic platforms for speech localization 

[Argentieri and Danes, 2007].  Adapted from the field of high-resolution spectral 

analysis, these spectral estimation techniques are designed to handle multi-source 

localization problems.  The difficulty with these approaches, however, is the amount of 

information required for high-resolution localization.  An uninformed system requires 

many assumptions that decrease its effectiveness, especially under reverberant conditions 

[DiBiase et al. 2001].  
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The final approach, and the one most commonly used in robotic systems, is to 

calculate time-delay estimates using a generalized cross correlation algorithm [Martinson 

and Dellaert 2003; Blisard et al. 2007; Valin et. al. 2005].  This approach estimates the 

energy associated with a number of specified angle/distance pairs, and then maximizes 

the energy to localize a sound source.  Although the specific generalized cross correlation 

approach has also been used with traditional beamforming, the real difference is in the 

computationally simpler weighting scheme.  Instead of customizing the algorithm for a 

particular environment and/or signal type, an uninformed weighting localizes sources 

with a wide variety of sound functions.  As this final approach is the one used for this 

entire dissertation, we will now describe this algorithm in greater depth. 

Time Delay Estimates Using Generalized Cross Correlation 

The solution most commonly employed by TDOA estimation algorithms is 

generalized cross correlation (GCC).  For discrete-time signals, cross-correlation 

provides an estimate of similarity by bit-wise multiplying two signals together and 

summing the result.  Two identical signals should produce an energy value equal to the 

sum of square of the signal, where two random signals would be significantly less.  To 

find the TDOA estimate, the cross correlation algorithm is run many times, each time 

delaying the second signal by some amount.  The delay that produces the highest cross-

correlation energy is the best estimate of the TDOA between a microphone pair.  Cross-

correlation in the frequency domain works on a similar principle, maximizing the energy 

between microphone pairs, only now the cross-correlation is done in the frequency 

domain.  Equation 4.3 demonstrates this equation for one pair of microphones. 
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where (Ma) is the Fourier transform of the signal received by microphone (a), 
bM  

is the complex conjugate of the Fourier transform of the signal received by microphone 

(b),  (ω) is the frequency in [rad/s], and (W) is a frequency dependent weighting function.  

Called the “phase transform” (PHAT) [Mungamuru and Aarabi 2004], this weighting 

scheme depends on the current magnitude at each frequency to evenly weight all 

frequencies present in the signal (Equation 4.4): 
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Equation 4.4 

The position (l) that corresponds to the highest cross correlation value (Fl) is then 

the most likely position to contain the sound source.   

Besides the PHAT weighting scheme, a weighting scheme that is also commonly 

employed in sound localization is maximum likelihood (ML) weights.  This weighting 

scheme is most appropriate for tracking sound sources, such as human speech, which are 

not always present in the environment and cover a broad frequency spectrum.  ML 

weights use knowledge of the noise (i.e. ambient sound not being tracked) affecting each 

microphone to attach greater weight to frequencies present in the tracked signal that are 

not present in the ambient sound.  Equation 4.5 demonstrates the creation of ML weights 

from the noise spectra (Na and Nb) corrupting each microphone: 
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The drawbacks to ML weights, however, often prevent their regular use.  

Tracking human speech works well, particularly in conjunction with a speech detection 

algorithm, because speech sounds are significantly different in frequency from common 

ambient noise sources like as HVAC systems.   Other types of sound sources, 

unfortunately, are not tracked as well using ML weights.  In particular, counter-weighting 

ambient noise is detrimental to tracking those ambient noise sources, so ML weights 

should not be used when the sound sources of interest cannot be turned off.  Furthermore, 

sound sources with frequency signatures similar to the ambient noise will be minimized 

using this weighting scheme.  This problem is especially difficult in indoor environments 

where air vents, fans, and to a lesser extent, plumbing noise, may be of interest to a robot. 

Using either PHAT weighting or ML weights, Equation 4.2 still only applies to a 

single microphone pair.  When the microphone array consists of more than two 

microphones, it can obviously be broken up into pairs of microphones, but how can the 

results be combined together?  The simplest method for extending the GCC algorithm is 

to identify not the set of delays, but rather all possible locations in the environment from 

which sound might be originating.  Knowing the speed of sound and the distance to the 

microphone array, we can predict the TDOA associated with a single microphone pair, 

and calculate the GCC energy for that location in the environment.  With multiple 

microphone pairs (for n microphones in an array, there are ))!2(!2/(! −nn  sets of two 

microphones), we use the same location method, but now identify the delay associated 

with that location for every microphone pair, calculate the GCC energy for each 

microphone pair, and sum the resulting energy for that location over all microphone 
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pairs.  Equation 4.6 restates the original GCC equation in terms of the location, summing 

across all microphone pairs {a,b} in the array: 
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Equation  

4.6 

This version of the generalized cross-correlation algorithm is often referred to as a 

spatial likelihood [Mungamuru and Aarabi 2004] as the resulting GCC energy directly 

corresponds to the likelihood of a sound source occurring in any given location.  Figure 

4.4 shows a contour plot of a spatial likelihood created for a 6x6m2 grid centered about 

the microphone array.  Appendix B.1 provides pseudocode for creating this grid 

representation of a spatial likelihood. 

 

 

Figure 4.4. A contour plot of a spatial likelihood result for 

detecting human speech.  Light areas are considered more 

likely.  This result demonstrates the common problem of a 

strong angular performance, but poor distance estimates. 
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Figure 4.4 also demonstrates the drawbacks to the TDOA approach.  In theory, 

given enough microphones in an array, it should be possible to exactly localize upon the 

source generating the noise.  In practice, however, given the small distances between 

microphones in an on-robot array, as well as the levels of ambient noise and echoes from 

the environment, we have observed high amounts of error in the localization from one 

location.  That error tends to be concentrated mostly along the axis stretching from the 

center of the array out through the sound source location, meaning that the cross 

correlation results are generally better at estimating angle to the sound source rather than 

distance.   

Identifying Angle and Distance 

In general, the problem of accuracy using on-robot microphone arrays is a 

problem of the domain and not the algorithm.  Beamforming suffers from a similar 

problem in identifying distance to the sound source.  With an on-robot array, there is just 

not enough difference between the signals arriving at each microphone to extract two-

dimensional coordinates of the sound source from a single position.  To overcome the 

missing distance problem, a common solution is to widely distribute the sensors about the 

environment.  With a wide distribution of microphones, ideally placing the sound source 

within the convex hull created by the array, there have been a number of successfully 

deployed systems that could provide 3D coordinates for sound sources [Girod and Estrin 

2001; Nakadai et al. 2006].  Work by Thrun demonstrates how not only the sources can 

be localized in this situation, but also the microphones themselves [Thrun 2005].   
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When a widely distributed network of microphones is available, a robot can 

certainly use this localization system for modeling sound propagation through the 

environment.  A robot of large enough size could even be used to distribute the 

microphones in the first place if the situation is appropriate [Zhang and Sukhatme 2005], 

as could a team of robots, each with their own microphones [Martinson and Dellaert 

2003; Parker et al. 2003].  However, such a system is not always available.  In military or 

police situations, the robot is likely to be in hostile territory where people or robots 

cannot move in ahead of time to place microphones.  Alternatively, maybe the funds are 

simply not available for placing, synchronizing, and utilizing large numbers of 

microphones distributed about the area.  When the robot does not have the assistance of a 

microphone network to localize the sound source, there is another solution to acquiring 

more accurate coordinates.  The robot can move itself to a new location and using its 

small microphone array with bearing dominated measurements to triangulate on the 

source from a different angle.  In Section 4.2.1, we will demonstrate how this fusion of 

data can be done in real-time to extract sound the relative position of one or more sound 

sources in the environment. 

4.2 REPRESENTATIONS FOR CHARACTERIZING SOUND SOURCES 

The minimal information necessary for estimating sound fields, or the barest of 

information required by the mathematical framework, is the position of the sound source 

and the average volume at which it is producing noise.  From this information alone, we 

can estimate the effects of the direct field up to some arbitrary distance about the source.  

As we acquire more information about the sound source, these effects can be estimated 
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with greater detail and accuracy, ultimately contributing to estimates for both the direct 

and reverberant fields.  If the information about the sound source is not known a priori, 

however, then what information can a robot collect to build the sound field estimates? 

In this section, we will discuss the set of representations, or tools, that a robot can 

use to acquire the two-dimensional location of one or more sound sources in the room, 

and then determine their volume, directivity, and sound function.  These representations 

will build on the mathematics presented in the previous chapter.  For now, we are 

focusing on medium to long duration sources that can be expected to remain relatively 

static over the time the robot is collecting this information.  In the long run, however, 

more information about the sound source function could also be collected by a mobile 

robot and incorporated into the sound fields framework. 

4.2.1 IDENTIFYING SOURCE LOCATION IN 2D 

For the purpose of modeling sound sources in the environment, we need sound 

source localization that includes more than just the angle from the center of the array.  

Specifically, assuming that every sound source can be represented as a point source, we 

need to identify a specific centroid coordinate in 2 or 3 dimensions.  The reason for this 

simplifying assumption (point source) is that even though sound is usually generated 

from a vibrating surface, and the sound-fields framework can work with a more 

complicated model, sound source localization algorithms typically operate on the 

assumption that the sound is loudest from a given point.  Greater information about the 

nature and size of the vibrating surface, such as might be needed accurately describing 
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the effects of larger sources, may require more a priori information about the source 

being localized or more sensory information (e.g. camera).   

As mentioned at the end of Section 4.1.2, the way to acquire these 2D coordinates 

using an on-robot microphone array is through robotic movement.  By moving the robot 

from place to place in the environment, we can use combine the results of an angular 

source localization algorithm to triangulate upon the two dimensional location of the 

source centroid.   

Depending on which underlying sound localization algorithm is being used, there 

are different possible methods, concurrently developed, for triangulating on sources in 

the environment.  Using a steered-beamformer, the first method identifies the angle to 

one or more sources, and then mathematically minimizes the squared error identify sound 

source locations [Sasaki et al. 2006].  The drawback to this approach, however, is that if 

the error is high in the original beamforming results, the algorithm may not localize the 

sound source at all, or have a high false-positive rate.  In their paper, the authors 

developed a specialized 32-element microphone array with an ideal beam pattern for their 

scenario to counter this effect.  Even then, they still could not localize sound sources in 

the vicinity of walls or other highly reverberant areas of the environment.   

As an alternative to using beamforming, a second approach developed for this 

dissertation [Martinson and Schultz 2006] uses time delay estimates (particularly, spatial 

likelihoods) to localize sound sources with a moving robot.  While the robot moves 

through the environment, it creates a spatial likelihood for each collected sample, and 

combines the disparate measurements together into an auditory evidence grid.  Unlike the 

concurrently developed beamforming approach, the auditory evidence grid representation 
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does not require specialized hardware.  Furthermore, although better microphone arrays 

and anechoic environments still demonstrate the best performance, the algorithm 

degrades gracefully in the presence of noise, allowing for a variety of environmental and 

hardware configurations.  In the worst-case configuration, using the bare minimum 

microphone array (i.e. binaural) in a reverberant environment, sources can still be 

localized to some degree of accuracy.   

The remainder of this section on localizing sound sources will focus on this 

second approach using auditory evidence grids.  We will first describe the algorithm, 

including a review of evidence grids in general, and how to adapt them to auditory 

information.  Next, we will investigate the performance of the algorithm under different 

hardware configurations, robotic movement strategies, and sound source types, with the 

goal of automating the process.  With this experience, we then devise an automated 

process for extracting the sound source coordinates from the resulting grid and devise, 

and test, some autonomous robotic movement strategies for accurately estimating the 

location of sources in the environment.   

Some of this work has appeared in other publications, prior to this dissertation.  

The initial description of how to construct an auditory evidence grid, along with the first 

phase of testing was originally reported in [Martinson and Schultz 2006].  Then in 

[Martinson and Schultz 2007] the robotic movement strategies and the second phase of 

testing for measuring accuracy were described.  
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Auditory Evidence Grid - Algorithm 

The underlying algorithm for auditory evidence grids is the same evidence grid 

algorithm used in creating obstacle maps of the environment (Section 4.1.1).  Only 

instead of using measurements to obstacles, as returned by lasers or other similar sensors, 

we are using estimates of distance to sound sources, collected aurally by a microphone 

array.  The name auditory evidence grid, therefore, follows the change in information 

being mapped, from obstacles and spatial layouts to sound sources and auditory layouts. 

As with spatial evidence grids, the auditory evidence grid uses Bayesian updating 

to estimate the probability of something being located in a set of predetermined locations 

(i.e. grid cell centers).  Since we will be feeding the algorithm spatial likelihood 

measurements collected by the microphone array, that something being estimated is the 

probability of a sound source.  Initially, it is assumed that every grid cell has a 50% 

probability of containing a sound source.  Then as each new spatial likelihood is created 

from a sensor measurement, those probabilities for each grid cell are adjusted.  For the 

simplicity of adding measurements together, we use the log odds notation to update the 

evidence grid.  Equation 4.7, from [Thrun 2002], demonstrates this additive process for 

each new measurement 
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Eq. 4.7 

In these equations, zt and st are the sensor measurement and robot pose 

respectively recorded at time t,  zt and st are the set of all sensor measurements and robot 

poses recorded up until time t, and SSxy is a particular grid cell in the evidence grid.  

Therefore, p(SSx,y|z
t
,s

t
) is the probability of grid cell SSxy being occupied given all 
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evidence collected up until time t, and p(SSx,y|zt,st) is the inverse sensor model,  or 

probability that a single grid cell contains the sound source based on a single 

measurement. 

The inverse sensor model used in this work is based on the spatial likelihood 

measurements described in Section 4.1.2.  Every time a sample is collected from the 

microphone array a spatial likelihood is created by estimating the generalized cross 

correlation (GCC) energy over a set of pre-determined locations.  For creating auditory 

evidence grids, we generally restricted the set of pre-determined locations to a 3-m radius 

about the robot, so as to limit the computational requirements of calculating a spatial 

likelihood.  By itself, however, the spatial likelihood needs some additional modification 

for use with the evidence grid representation.  In particular, we need a likelihood varying 

ideally from 0-100%, but the range of energy values returned is nowhere near that range.  

The energy from most unlikely to most likely in a single measurement often varies by a 

factor of 104.  Furthermore, different environmental conditions, source types, etc. can 

then shift the entire grid by a similar factor either higher or lower.  Therefore, to estimate 

p(SSx,y|zt,st), we use an inverse sensor model that scales and shifts each spatial likelihood 

measurement, so that the result lies between two chosen probabilities [Plow and Phigh] 

where the lowest cross correlation value resulted in a probability of Plow and the highest 

in Phigh.  Equation 4.8 shows how this scaling and shifting process is accomplished: 
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Where Fmin(t) and Fmax(t)  are the lowest and highest Fl values calculated for the 

measurement taken at time (t).  To then extract the resulting p(SSx,y|zt,st) from p(SSl|zt) the 

robot pose (st) is used to convert from local coordinates (l) to global coordinates (x,y).  

Figure 4.5 demonstrates an auditory evidence grid resulting from this process, localizing 

two radios in the environment.  Appendix B.2 describes this creation process in more 

detail, providing pseudocode for the implementation used throughout this dissertation. 

The remainder of this section on localizing sound sources in 2D is focused on 

testing the auditory evidence grid, and then automating the collection of samples and 

localization of sound sources.  For all of these tests using the auditory evidence grid, the 

spatial likelihood results were typically scaled between [0.2, 0.95], but this could be 

 

Figure 4.5. Contour plot of an auditory evidence grid localizing two radios.  This 

contour plot combines 190 samples collected from a moving robot with four 

microphones.  The darkest areas indicate the most likely sound source positions.  

To reduce the noise of a moving robot, a square sliding window (0.6-m in width) 

was used to produce smoother contours. 
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varied when tracking different types of sources. These scaling numbers were chosen 

empirically based on spatial likelihood reliability.  As the spatial likelihoods would 

generally only point at one source at a time, areas not indicated with a high cross 

correlation result were not necessarily devoid of sources so setting the probability at 0 

would unfairly penalize quieter sources.  Similarly, spatial likelihoods could also make a 

mistake in the direction they pointed, and so 100% confidence was inappropriate in 

scaling the results.  

Testing Phase 1 – Investigating the Range of Auditory Evidence Grid Performance 

Testing of the auditory evidence grid algorithm was performed in two phases, 

both taking place at the Navy Center for Research in Artificial Intelligence, located on 

the Naval Research Laboratory.  In this first phase of testing, a human-operator manually 

tele-operated the robot in a loop in the vicinity of some set of sound sources to test the 

performance of the algorithm under different operating conditions.  

• How many sources can be successfully localized?  

• How does robotic movement affect the results?   

• How many microphones need to be used?   

• Does filtering the data assist in localization?  

From the answers to these questions, we will next construct an algorithm for 

automating this process by extracting sound source coordinates and moving the robot for 

better sample collection. 

This phase of testing, with some modification, was originally reported in 

[Martinson and Schultz 2006]. 
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Hardware Setup 

The robot hardware used in this work was a B21R research robot manufactured 

by iRobot (seen in Figure 4.6).  The robot is equipped with a SICK laser measurement 

system (LMS) mounted in the robot base, and two onboard computers for processing.  

Robot pose information is then provided by the continuous localization[Schultz and 

Adams 1998] algorithm, which uses a spatial evidence grid representation (different from 

auditory evidence grids) constructed from LMS range data and robot base odometry. The 

robot also has an additional SICK LMS mounted above the robot base and a full sonar 

ring that were not used in these experiments.   

The equipment used for gathering the acoustic data was an array of (4) Audio-

Technica AT831b lavalier microphones mounted at the top of the robot.  These 

microphones were each connected to battery powered preamps mounted inside the robot 

body and then to an 8-Channel PCMCIA data acquisition board.   

 

Figure 4.6. Fully equipped B21r mobile robot used for phase 

1 testing. 
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Results 

To test the algorithm, the robot was run in 20 trials, varying two parameters: (1) 

the set of sources active in the environment, and (2) whether or not the robot was moving 

while gathering data.  A total of 10 different configurations of sources were tested, where 

a source configuration is defined as a unique set of active sources in the environment. For 

the following trials, 9 sources were mapped by the robot: 2 human speakers (male and 

female), 1 tape recording of human speech, 2 radios playing different types of music, and 

4 air vents in the laboratory.  Figure 4.7 shows the relative positioning of each of the 

sources, along with the grid used for localizing the robot in the 12x12-m2 laboratory.  In 

 

Figure 4.7. Spatial evidence grid used by the robot for 

localization with source positions shown relative to the 

obstacle positions in the room.  Note that not all sources were 

active in every test. 
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general, the robot was not always exploring the entire area, but was instead restricted to a 

subsection in the vicinity of the sound sources of interest.   

Robot movement during these tests was varied according to whether or not it was 

stationary while sampling audio data.  In both cases, the robot was tele-operated in a 

large circle in the vicinity of the sound sources.  In the first case, however, the robot 

would stop 6-7 times to gather samples of the auditory scene using its microphone array.  

In the second case, the robot would continue to gather microphone array measurements 

while it was moving.  The reason for the different data collection techniques was to 

evaluate the effect of increased ego-noise on the robot, as movement increased the 

volume of wheel and motor noise generated present.  

The results of all mapping experiments are shown in Table 4.1, where a 

successful test is defined as correctly placing a peak in the smoothed contour map within 

1-m of the true source location for all active sources.  The number of sources listed in this 

table does not include air vents.  As the vents could not be fully disabled, they were on 

during all trials, but were too quiet to detect except when all other sources were disabled.      

 Table 4.1. The results of all phase 1 auditory evidence 

experiments. 

# of 

Sources 

# of 

Source 

Config. 

Successes: 

Pausing 

while 

Collecting 

Successes: 

Moving 

while 

Collecting 

1 5 5 5 (4) 

2 4 4 3 

>2 2 1 1 
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In general, as demonstrated by the table results, the auditory evidence grid 

algorithm worked very well for mapping one or two sources.  In only one test with two 

sources, did the robot fail to correctly map all of the active sources.  There was an 

additional test using one active source, in which a phantom, or illusory, peak appeared 

strong enough in the evidence grid to be mistaken for a real source, but the active source 

was also found in the same evidence grid.  Note that in both of these trials, the robot was 

moving while collecting data instead of stopping, so movement obviously did introduce 

some additional error, but the algorithm still succeeded in most cases to successfully map 

1-2 sources. 

Larger numbers of sources were not as successful, but this may have been due to 

the relative scarcity of samples.  The trial that succeeded in localizing 3 sources had all 

three sources in a relatively small area, while the trial that failed involved a large area and 

multiple widely spaced sound sources (the air vents).  In addition to these being relatively 

quiet sources, the robot did not sample equally in the vicinity of all sources due to the 

large area being sampled, thereby limiting the effectiveness of the localization results.  A 

solution to this problem used in the following phase of testing is to investigate individual 

sources, sampling extensively in their vicinity to improve localization results, and 

ultimately gather sound source characteristics. 

Besides the general sound source distribution problem, this first phase of testing 

was designed to test to reveal the effects of different design decisions on the quality of 

the map.  What follows here is a discussion of those results: 
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• Moving when gathering auditory data   

As was seen earlier, the evidence grid representation still works when the 

robot is moving while sampling, but more problems occurred in trials 

where the robot was moving than when not.  There are two reasons for this 

decreased accuracy in evidence grid.  The first reason is that, when 

moving, the robot pose estimation algorithm introduces more relative error 

into the representation.  As the robot pose estimates are used to align 

overlapping spatial likelihood measurements, this results in wider, lower 

peaks in the resulting evidence grid.  The second problem when moving 

comes from the louder robot ego-noise generated by the robots wheels and 

motors.  If the robot is generating more noise when moving, than there 

will be more noise present in the environment that can partially or totally 

mask the active sound sources being investigated.  Algorithmically, this 

results in degraded spatial likelihood results, and less certainty on the 

origin of the loudest sound.  The effect of this on the resulting evidence 

grid is twofold: (1) poorer spatial likelihood accuracy results in more 

phantom peaks, making it harder to distinguish actual sources; and (2) 

rougher object contours will be evident in the final map.   

• Number of Microphones  

Many robots are now being equipped with a binaural microphone array 

(i.e. two microphones) to mimic human hearing, and there is no reason 

why spatial likelihoods cannot be computed using only 2 microphones.  

However, with a binaural setup, the accuracy of calculated spatial 
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likelihoods decreases in both distance and angle.  So to test the effect of a 

binaural setup on auditory evidence grid, we reused the data from the 

same trials discussed earlier, and only used two microphones streams 

instead of all four to generate the spatial likelihoods.  The resulting effects 

on the evidence grid from this binaural approach is actually very similar to 

those seen when moving while gathering audio data: (1) more phantom 

noise sources, or peaks in the evidence grid are generated, and (2) the 

object peaks have rougher contours.  However, as demonstrated in Figure 

4.8, the same sources were generally still evident for both 2 and 4 

microphone configurations in most trials. 

• Map Resolution  

To detect sources in real-time the evidence grid and spatial likelihood grid 

cell size was a minimum of 0.3m.  This is a relatively coarse resolution 

that may have affected the resulting accuracy.   To determine exactly how 

the resulting map was affected, we recreated the trial maps at a higher 

resolution (0.1m) using the data collected earlier.  The result of increasing 

resolution was that it shifted the center of the peak in the evidence grid 

towards a more accurate center.  However, that center would have 

otherwise been included in a larger grid cell at a lower resolution, so it 

was not unexpected.  Unfortunately, though, changing resolution did not 

appear to affect the creation of phantom peaks or rougher contours. 
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Figure 4.8. Auditory evidence grids localizing two speech sources (a stationary human 

speaker and a tape player ) from 463 data points collected at 6 positions.  Both grids are 

created from the same 463 recorded samples (not all are speech) using either a 2 

(Bottom) or 4 (Top) microphone array, and thresholded to display only points more than 

50% likely.  Note the rougher contours and phantom peaks found in the grid created by 

only 2 microphones. 
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• Filtering the Sample Set  

If a priori knowledge exists about the set of sound sources being mapped, 

then another method for removing error from the map is to filter the 

sample set.  One such filter tested was an rms threshold, like that 

employed in Linear Predictive Coding [Tremain 1982] for detecting 

speech over the telephone.  The resulting maps for speech sources had 

smoother contours and better defined peaks.  There is a tradeoff, however, 

in that fewer samples were used to create the maps in general, and that 

some source types (non-speech) were removed by this filter entirely. 

Iterative Clustering 

After gathering enough data, the resulting auditory evidence grid representation 

estimates the combined likelihood of a source being located at any position.  By itself, 

however, the auditory evidence grid does not localize sources in space.  What we need 

for use with the mathematical framework discussed in Chapter 3 are two- or three-

dimensional coordinates of the source, but, as seen in Figure 4.8, sound sources in the 

auditory evidence grid are merely peaks of varying heights and contours in the map.  An 

algorithm for extracting coordinates from the grid is required. 

By applying a threshold to the auditory evidence grid (Figure 4.8), we can see that 

sound sources appear as clusters in the map.  Using a nearest-neighbor clustering 

algorithm [Duda et al. 2001] on these evidence grids, we can easily extract the two 

largest speech sources and estimate their centers.   With the large number of samples used 

to build evidence grids in phase 1 nearest-neighbor clustering algorithm typically 
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produced errors of 0.3-m for clearly evident clusters such as seen in Figure 4.8 (Top).  

When using only two microphones, however, or moving the robot, phantom peaks often 

showed up in a thresholded grid.  The first question we needed to address when using a 

nearest-neighboring clustering algorithm, was, therefore, how do we separate these from 

valid sound source positions?   

The second question we needed to address when building the algorithm was 

discovered while watching the evidence grids form in real-time with more than three 

sources in the environment.  As each new measurement was collected by the robot and 

added to the grid, all of the sources would appear for a time while the robot was in close 

proximity, but then, as the robot moved away from the source, one or more sources 

would be suppressed by new measurements.  The reason for these suppressive effects 

over time is two-fold.  First, it has to do with the nature of sound, as the sound volume 

and resulting GCC measurement will naturally fade both with distance from the source, 

and, of course, with variations in the source volume. Second, this suppressive effect is 

then further exacerbated by linearly scaling the GCC data.  As mentioned in Section 

4.1.2, each spatial likelihood measurement is most strongly associated with a single 

sound source.  By scaling between two set values, however, each measurement that 

points at one source will effectively suppress the evidence grid in other areas not being 

pointed at, including areas containing another sources.  Therefore, if too few 

measurements point at a source because it is too quiet or too far away, then the 

cumulative effect of the suppression may end up being greater than the cumulative 

positive effect.   
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To overcome both the phantom peak problem and the suppressive effect over 

time, we developed an iterative approach to source localization, extracting one source at a 

time from the evidence grid.  By taking advantage of the angular nature of spatial 

likelihoods, we can then match newly extracted sources with the spatial likelihoods that 

point at them.  Firstly, this allows us to find more sources that might have been 

suppressed by those samples.  Secondly, a minimum number of associated samples can 

be used as a convenient baseline for eliminating phantom peaks, which typically are 

created by one or two very strong echoes.    

• Step 1 - Scale and Threshold the Map 

To prepare the map for clustering, it is first scaled so that the most likely 

point is no more than 99% likely, and the least likely point is no less than 

1% likely.  A threshold of 75% is then applied to the map (or 1 in a log-

likelihood grid) to eliminate points unlikely to contain a sound source.  

Lower thresholds were also tested, but often led to joint clusters when 

Steps in the Iterative Clustering Algorithm 

 

Step 1. Scale and Threshold the map. 

Step 2. Cluster points together using nearest-

neighbor clustering. 

Step 3. Localize the largest source. 

Step 4. Identify spatial likelihoods pointing at the 

largest source. 

Step 5. Create a new evidence without largest 

source. 

Step 6.  Repeat until all sources are found. 
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sound sources were located too close together.  Figure 4.9 demonstrate an 

evidence grid before (Top) and after (Bottom) thresholding. 

• Step 2 - Cluster points together using nearest-neighbor clustering  

A nearest-neighbor clustering algorithm is then used to collect all points 

together that are within 0.3-m of each other. Appendix B.2.1 provides 

algorithmic detail on accomplishing this clustering task. 

• Step 3 -  Localize the largest source 

 A weighted centroid of the largest cluster is calculated using the 

likelihood at each grid cell as the weight. Appendix B.2.1 describes how 

to calculate this weighted centroid as part of the clustering process.  If the 

cluster is larger than 0.5-m2 in area (determined empirically), then it is 

identified as a potential sound source and its centroid is used as the source 

position.  If the area is too small, then no sources were successfully 

detected using this map.  Figure 4.9 (Bottom) demonstrates the 

thresholding and clustering process. 

• Step 4 -  Identify the set of samples that point at the largest source  

While every spatial likelihood measurement does contain information 

about multiple sources (and echoes), each spatial likelihood measurement 

at the time of sampling.  Appendix B.1.1 provides pseudocode for 

estimating the most likely angle detected by a single spatial likelihood 

measurement.  So for each measurement we can calculate the most likely 

angle to the “loudest” source by compressing the log-likelihoods along the 

angular axis at some increment δ.  Let Fθ be the log-likelihood of the 
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Figure 4.9. Stepping through the iterative 

clustering process, first round.  (Top) Original 

auditory evidence grid with one dominant peak. 

(Bottom) Thresholded result with largest cluster 

circled. 
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detected source being located along angle θ, and Fφ,r be the log-likelihood 

of the sound source being located at cylindrical coordinates (φ,r).  Then 

the most likely angle towards the detected source is the angle (θ) with the 

highest log-likelihood: 

thresholdsourcerobotbest ≤−+ αθθ  Equation 4.9 

Now, using this notion of most likely source angle, we can determine 

which spatial likelihood measurements actually point at sources found: 

∑ ∑
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where θbest is the most likely angle as predicted by the spatial likelihood 

function in local coordinates, θrobot is the orientation of the robot in global 

coordinates, and αsource is the angle from the robot to a detected source in 

global coordinates.  If the difference between the angle to the source 

location (as predicted by the evidence grid) and the most likely angle (as 

predicted by a single spatial likelihood measurement) is less than some 

threshold, then that measurement is estimated to be pointing at the source.   

• Step 5 - Create a new auditory evidence grid without the largest source 

 Using just those spatial likelihood measurements that are not estimated to 

be pointing at a previously localized source, create a new auditory  

evidence grid.  Figure 4.10 demonstrates a new auditory evidence grid 

created from this reduced sample set.  Appendix B.2 describes how, in  
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Figure 4.10. Stepping through the iterative 

clustering process, second round.  (Top) Original 

auditory evidence grid with one dominant peak. 

(Bottom) Thresholded result with largest cluster 

circled. 
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pseudocode, source information can be incorporated into the auditory 

evidence grid creation algorithm. 

• Step 6 - Repeat steps 1-5 until all sources have been localized  

Knowing when to stop this iterative process is the difficult part.  There are 

a number of properties that can be used to predict the end of this iterative 

process: 

1. The largest remaining cluster belongs to a source that has already been 

detected and removed during this iterative process. 

2. The largest cluster remaining has a very large variance since it was 

formed from samples dominated by reverberant sound.  The variance 

is defined in Equation 4.11: 

( )∑ −=
i

iii xWV
2

µ
 

Equation 4.11 

3. where, for all locations (i) included in the cluster, (Wi) is the log odds 

probability predicted by the auditory evidence grid for that location, 

(xi) is the centroid for that cell in the auditory evidence grid, and (µi) is 

the centroid of the detected cluster. 

4. The numbers of samples pointing at the largest remaining cluster is 

very small, since the peak was formed from samples pointing in 

arbitrary directions. 

None of these properties are singularly perfect at identifying when no 

more sources are remaining in the environment to be localized.  Together, 

however, they can usually detect the end of the iterative process.  
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Therefore, each of the previous steps should be repeated until either no 

source is localized during step 3, the largest remaining source is already 

known or has very large variance, or the number of remaining 

measurements used in step 5 is too small.  For this work, a minimum of 20 

samples was required for mapping. Figure 4.11 demonstrates a third 

source detected by iteration (Top), and a final evidence grid on which the 

iteration stops due to large variance (Bottom). 

This iterative approach to localizing stationary sound sources worked well when applied 

to data collected from the first phase of testing.  Except for the test localizing air vents, 

this iterative clustering approach could extract all of the sound sources from maps 

creating using either of the sampling strategies.  Furthermore, the accuracy appeared high 

for most extracted sound sources, generally within 0.3-m (note that the source position 

was only recorded to within 0.3-m accuracy).  The one source that was not localized well 

was a human speaker in the presence of other noise sources.   The iterative approach still 

found a separate cluster for a source within the vicinity of the speaker, but possibly due to 

movement by the source or the scarcity of samples primarily indicating the human target,  

at least one localized source was off by 1-m.  The next sub-section will focus more on 

this question of accuracy.  

 Ultimately, what should be gathered from these results and the results of the next 

section is that, in the short-term, this iterative approach to localizing stationary sound 

sources will prove highly useful to an acoustically-aware robot.  It allows a robot to 

localize stationary sound sources in the environment, filling a critical gap in the 

mathematical framework for sound propagation discussed in Chapter 3.  As such, we will  



108 

 

 

 
 

 

 

 

Figure 4.11.  Stepping through the iterative clustering 

process, conclusion. (Top) Third evidence grid, focusing 

on single source.  (Bottom) Final evidence grid on which 

algorithm stops, because it is very noisy and created from 

only 8 samples.  Notice that the level of noise in the 

measurements makes separating the sources very difficult. 
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continue to use auditory evidence grids, and the accompanying iterative clustering 

approach, for the remainder of this dissertation.  However, the results also reveal that 

there remains work to be done in this area.  For one, the current approach has problems in 

localizing large numbers of sources in the environment.  This could be due to a poor 

sensor model choice, so a better sensor model that incorporates models of sound 

propagation or environmental effects may actually the need for this iterative heuristic.  

Alternatively, the use of greedy exploration techniques designed to flush out an evidence 

grid [Thrun et al. 2005] in combination with short-duration auditory evidence grid 

creation may serve the same purpose. 

A second problem that was highlighted by the tracking of human speakers was 

localizing sources in the presence of moving sound sources.  Although it is explicitly 

stated that this technique is designed to localize stationary sound sources, moving sound 

sources are likely to be present in many of the environments.  If the source is always 

moving around, then the source should not be localized, or interfere more than any other 

type of noise with the localization of other sound sources.  If, however, the source 

remains still for some period of time, and then moves again, like humans or robots in the 

environment, then that source is likely to have a larger impact on source localization.  

Not only will it appear as a source in the evidence grid, but it could also mask other 

sources that a robot is trying to localize.  Given that knowledge of moving sound sources 

is of general interest to a mobile robot anyways, future work in mapping sound sources in 

the environment needs to incorporate models of moving sound sources into the 

representation. 
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Testing Phase 2 – Determining Accuracy 

Where the first phase of testing focused on identifying requisite hardware and 

control strategies, the second phase of testing focused on determining the accuracy of the 

resulting estimates, when collected by an autonomous robot.  While a human may 

sometimes be available for guiding a robot, the localization of sound sources should not 

require human assistance.  Therefore, given an autonomous robot, what are some 

different control strategies for acquiring localization information, and how does the 

accuracy vary between strategies? 

The two strategies tested here for autonomous localization of sound sources are a 

waypoint path and an area-coverage heuristic, each having a different goal in the 

localization of sound source.  The purpose of the waypoint-path is to quickly cover a 

large area, identifying potential sound source locations in the environment.  The purpose 

of the second algorithm, an area-coverage heuristic, is to spend more time in the vicinity 

of the source, verify that a source is present, and more accurately identify source 

properties.  Combined, the hope is that the two robotic movement strategies will present a 

common strategy for localizing unknown sources in an arbitrary environment.  The robot 

follows a waypoint path, effectively patrolling the environment, until something is 

detected, at which time it changes to an area-coverage heuristic focused on investigating 

the potential sound source identified during while patrolling the area. 

The data used for this phase of testing was originally reported on in [Martinson 

and Schultz 2007].  Since the original publication, this section has been updated to reflect 

recent modifications to the algorithm. 
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Experimental Setup 

In this second stage of testing, the same B21r robot used in the first stage was 

again used in the AI Center Laboratory at the U.S. Naval Research Laboratory (NRL).  

The layout of obstacles was slightly different from the first stage, however, so as to allow 

the robot access to multiple sides of the sound source.  Figure 4.12 illustrates this 

modified layout. 

During this second phase of testing, the B21r was used to localize each of three 

pc-speakers with unknown {x,y,θ} 5 times, for a total of 15 trials.  Figure 4.12 illustrates 

their respective positions in the environment.  During any one test, only one speaker was 

 

 

Figure 4.12. An overlay of the NRL environment, showing an example waypoint 

path, set of area coverage target points, and source locations. 
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playing and all speakers played the same nature sounds track (rain) at a 65dB volume.  

For each test, the robot first followed a waypoint path, quickly estimating the location of 

the sound source in the environment.  Then it would dynamically choose where to center 

and execute its area-coverage heuristic based on the waypoint-path localization results. 

Waypoint Path 

The first type of autonomous movement is the waypoint-path, described by a set 

of ordered waypoints in the environment for the robot to visit (see Figure 4.12).  The 

purpose of this phase is to expose the robot to as much of its environment as possible so 

that it will be able to detect any significant ambient noise sources.     

Provided with a waypoint path, the robot uses a path-planner (Trulla, [Hughes et 

al. 1992]) to guide it from its current position to each waypoint in turn while dynamically 

avoiding obstacles.  Upon arriving within some threshold distance (0.4-m) of the desired 

waypoint, the robot selects the next waypoint in the specified order as a target, and the 

cycle repeats.  To account for inconsistencies between the real world and the map, a 

timeout mechanism monitors the robot progress and forces it to move on to the next 

waypoint after 3 minutes.  The task is finished when the robot has successfully visited or 

tried to visit all specified waypoints.  After completing one loop through the 

environment, the robot then processes its auditory data using the auditory evidence grid 

and iterative clustering process to search for likely source position candidates.   

The expected goal of this type of autonomous movement is the quick localization 

of possible sound sources.  As such, the robot sampled while moving through the 

environment to reduce time, resulting in an increased localization error.  After quickly 
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patrolling the environment (collecting an average of 40 samples per run) the robot was 

still able to identify an approximate location for the source in every trial (Table 4.2).   

Unfortunately, however, this quick patrol strategy produced a relatively high error 

over each of these trials, even though it was localizing only a single source.  This error 

was due to the very limited number of samples recorded in the vicinity of each sound 

source.  Usually, less than half of the samples were even within the 3-m range over which 

the spatial likelihoods were calculating, and even then the distance to the source varied 

significantly.  Source 3 was particularly poorly detected for this latter reason, as the robot 

never came closer than 1.7-m to a source situated on a bookshelf next to the wall.   

Given the high error demonstrated during these tests, it is clear that this strategy 

of using a moving robot to quickly localize the source is not going to produce accurate 

enough results for estimating sound flow.  However, what this patrol strategy did do was 

correctly localize something in the vicinity of the source.  Therefore, to overcome the 

error introduced by this scarcity of data, a second type of robotic movement is needed.  

Table 4.2. Mean localization error when 

auditory evidence grids are used with data 

collected by a moving robot. 

 Localization 

Error (m) 

Source 1 1.0 

Source 2 0.93 

Source 3 1.5 

Combined 1.1 
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Either the robot needs to travel slower, and pause and sample, along the waypoint path, 

or, when the application has enough time, the robot can use the coordinates provided by 

the quick pass through the environment to thoroughly investigate the source and improve 

accuracy.  This second type of investigatory movement is explored in the next section. 

Area-Coverage 

The second type of autonomous control is a directed investigation of each source 

using an area-coverage heuristic.  As it is impractical to investigate the entire lab space, 

this type of control requires an initial target around which to center the area-coverage 

activities.  For this purpose, we used the results of the waypoint-path phase previously 

described.  Therefore, once a coordinate was identified, the robot would move to that area 

and begin the area-coverage task.  The goal of this control strategy was to acquire as 

many samples pertaining to this sound source as possible, so as to ideally improve on the 

localization result provided by following a waypoint-path.  

Provided with a target set of sound source coordinates to investigate, a set of 

unobstructed locations is identified within a 3.5-m radius of the target using the obstacle 

map of the environment.  A smaller radius could also be used when identifying 

unobstructed locations, but the goal of this phase was to identify the location as 

accurately as possible, so a large area was selected for investigation.  These unobstructed 

locations become waypoints for the robot to visit, effectively performing an area 

coverage task in the vicinity of the suspected sound source.  Unlike the waypoint task, 

however, visiting these waypoints does not need to be done in any particular order, and 

so the robot will always travel to the nearest waypoint.  The circles in Figure 4-10 show a 
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set of waypoints to be used for investigating a single source.  Also unlike the waypoint 

task, the robot will stop at each target to collect samples.  Movement during sampling 

introduces additional error to the estimate (as discussed during phase 1 of testing), so 

stopping the robot should improve accuracy at the expense of time.  Appendix C.3 

describes the area-coverage heuristic in more detail.   

After completing the investigation of a single source, the robot now has enough 

data to refine the position of the source using iterative clustering.  The accuracy of the 

entire process, from waypoint path to investigated source, is given in Table 4.3 for each 

of the three sound sources: 

Even though the initial investigation coordinates may have had a high error 

due to the quick nature of the waypoint-path estimation, the resulting estimates after 

performing an area-coverage task in the vicinity have relatively low error, and are 

ideal for building estimates of the direct or reverberant fields.  Figure 4.13 demonstrates 

an example evidence grid created from a directed investigation of the source using area 

Table 4.3. Mean localization and orientation 

error as produced by the discovery process. 

 Localization 

Error (m) 

Standard 

Deviation (m) 

Source 1 0.32 0.26 

Source 2 0.13 0.20 

Source 3 0.19 0.22 

Combined 0.21 0.23 
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coverage.  Notice the smooth, singular nature of the peak, which makes it easy to extract 

using nearest-neighbor clustering. 

4.2.2 SOUND SOURCE VOLUME AND DIRECTIVITY 

After determining the position of the sound source, the next step is to determine 

the volume of (i.e. sound pressure level generated by) the sound source so that we can 

estimate the effects of the direct field.  If there is little time or need for an accurate model 

of the source, then the simplest source model is an ideal omni-directional source.  Using 

the average sound pressure level of a few samples taken at known distances from the 

source, a relative volume can be quickly established and the source inserted into our 

models of the auditory scene.  This simplistic model of volume, however, is far from 

being correct.  Most sources, usually due to their physical shape, are not omni-

directional, meaning that the direct sound produced by that source varies in volume 

 

Figure 4.13. Auditory evidence grid created from 137 samples collected during a 

directed investigation of a source using an area coverage heuristic. 
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depending upon the angle to the source.  Therefore, without a model of directivity to 

estimate how the volume changes with direction, averaging a few samples collected at 

random locations around the source will not produce a good estimate of the source 

volume. 

The challenge in building a model of source directivity and volume is the 

difference between the ideal method for constructing such a model and the actual nature 

of the data from which to construct it.  In the ideal method for determining source 

directivity, the sound source would be located in an anechoic chamber where the 

magnitude of any reflections is negligible, and the sound could be measured at a constant 

distance from the source.  With the robot, however, we are in a real environment where 

there is a substantial reverberant component to measured sound.  Furthermore, due to the 

presence of obstacles in the environment, the collection of data gathered comes from an 

arbitrary set of distances and angles to the source.  How do we overcome these 

differences?  The solution, originally described in [Martinson and Schultz 2007], is to 

work backwards from the sound source propagation model discussed in Chapter 3.   

Determining Directivity - Algorithm 

When the robot records a sample of the auditory scene, it is actually measuring 

some energy from the direct field of each sound source in the room, plus some amount of 

reverberant energy and some amount of transmitted energy.  Equation 3.2 described this 

sum in terms of field effects.  Equation 4.12 re-writes this equation in terms of pressure: 
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Where ps is the rms pressure of the sample (s), pdirect_i,s is the rms pressure due to 

un-reflected sound from source i, preverb,s is the rms pressure due to reflected sound 

waves, and ptrans,s is the rms pressure due to transmitted sound.  The loudness of the direct 

sound for one particular source is the quantity we are the most interested in, so we will be 

limiting the set of samples used to those in close proximity to the source being modeled.  

As a simplifying assumption, we will, for now, assume that active sources are not located 

close together, therefore we can ignore the effects of their direct field on samples taken 

near another source.  We will also assume that transmitted sound is negligible, leaving 

only the direct field component for a single source and the reverberant field:  
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 Equation 4.13 

To remove any more components from the equation is impractical.  The direct 

field component is what we need for estimating directivity, while the reverberant 

component will almost always be too large to ignore when estimating the volume.  As is, 

however, this equation still has too many unknowns.  To identify the separate 

components, we need additional equations provided by 2 simplifying assumptions. The 

first such assumption is that the loudness due to reverberant sound will remain constant 

over the entire room.  Since reverberant sound describes the contribution of reflected 

sound waves, and sound waves will reflect many times all over the room before either 

decaying to nothing or reaching a receiver, this is a good first approximation often used 

for estimating the reverberant field [Raichel 2000]. 

The second simplifying assumption involves the contribution of the direct field.  

As the direct field describes the volume of un-reflected sound emanating from the source, 
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conservation of energy (prms
2) tells us that the energy of the direct field should decay 

linearly with square of the distance.  So the farther away the robot is from the source, the 

greater the energy coming from reverberant sound and the less from direct sound.  

Equation 4.14 illustrates how to estimate the original volume of the source at a distance 

d0 given an actual distance ds. 

Therefore, we can also assume that after some distance the contribution due to the 

direct field is minimal, and then estimate SPLreverb as the mean volume of the sampled 

data taken beyond dr meters from the source.  In this work, we used two meters as a good 

approximation, where the volume of the direct field will have dropped 6dB from the 

volume at 1-m from the source.   

Now that we have estimated the contribution of the direct field, the final step is to 

combine all of the data collected from arbitrary distances and angles into a single model 

estimating volume for any specified distance and angle.  For this purpose, we first use 

Equation 4.14 to calculate pdirect,d0 at the specified distance d0, and then we apply a 

Gaussian smoothing function centered on the desired angle (ω).  The final equation for 

the model of directivity is: 
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Equation 4.15 

Where (ds,θs) is the position of the sample relative to the center of the source, and 

σ is the standard deviation of the applied Gaussian.  Figure 4.14 demonstrates a 
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directivity model for a pc-speaker at a distance of 1-m.  Appendix B.3 presents the 

pseudocode for creating this directivity model from sampled data. 

Given this directivity model, the volume of the source is angle dependant, i.e. the 

volume is determined directly from the directivity equation using the known angle to the 

source.  Furthermore, this same model can account for changes in volume of the source 

over time.  If the robot returns to the area some time later, it can re-measure some small 

area (preferably away from the walls), and use that new volume (Vm), measured at a 

known position (dm) and angle (ωm), to add a constant multiplicative offset to the 

directivity model to reflect the change in the sound source: 
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Figure 4.14. Comparison of robot-created directivity models using different reverberation 

assumptions, with a hand-measured directivity model.  The three models assumed a 

maximum volume of 59.5-dB, as measured by the sound pressure level meter. 
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In the same manner, this representation of directivity can also handle differences 

between measuring equipment.  Sensitivity differences between microphones is handled 

similarly.  If two robots measure the same source using different microphone arrays, then 

their results can be compared by using a similar offset and the difference in estimated 

volume between the two microphones. 

In Figure 4.14 that constant offset is used to compare three different directivity 

models of the same radio at a 1-m distance.  The solid line is created from hand-measured 

data using a directional sound pressure level meter (Type II accuracy).  The dotted line 

uses robot-measured data with Equation 4-15 and all of the stated assumptions.  Finally, 

the dashed line uses the same robot measured data and equation, but assumes that the 

reverberant component is negligible (i.e. preverb = 0).  What this figure demonstrates is the 

effect of the reverberant field assumption on our resulting model.  Each of the directivity 

models demonstrate the same cardioid centered at 0°, which should be the result for a 

radio speaker.  However, using the hand-measured model as the ground-truth, assuming a 

negligible reverberant field underestimated the difference between peak volume and 

minimum volume.  In contrast, assuming a constant reverberant field overestimated the 

difference in volume.   

In practice, the actual difference between these two assumptions and the ground 

truth is likely to depend heavily on the type of environment.  For example, a smaller 

environment with similar materials may better fit the constant reverberant field 

assumption.  In the future, improving this model should probably incorporate more 

information about the nature of the reverberant field.  As will be demonstrated in Chapter 
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5, however, the constant reverberant field assumption is good enough for many 

applications. 

Identifying Source Orientation 

Given the variation in the resulting directivity models due to environmental 

effects, experimental testing of the source modeling process was focused on the correct 

identification of source orientation.  If a robot can identify the direction of maximum 

volume (i.e. the source orientation), then avoiding or maximizing the effects of the sound 

source is possible, regardless of the noise in the rest of the directivity model.  As such, 

testing this source orientation detection was divided into three stages.  In the first stage, 

we tested the accuracy at which source orientation was estimated by using a mobile to 

investigate one source with known {x,y} and unknown θ.  In the second stage, we tested 

the autonomous localization and modeling process for a single source of unknown 

{x,y,θ}, using the same data from the phase 2 testing in Section 4.2.1.   Finally, in the 

third stage, we tested the ability of the robot to localize, and identify source orientation of 

multiple simultaneously operating sources of unknown {x,y,θ}.   

The first two stages use data collected by the B21r for localizing sources, while 

the third stage uses the Pioneer2-dxe robot in a different environment, so as demonstrate 

generality.  During each of these three stages, we applied a 10th order highpass FIR filter 

(300-Hz cutoff frequency) to every sample before analyzing the data.  Since the ambient 

noise sources being measured had significant high frequency components, the filter had 

little effect on the auditory evidence grid creation.  What the filter did do, however, is 

reduce the impact of robot motor noise on determining directivity.  Since the robot’s 
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motor was in close proximity to the microphone array, it could overpower the weak 

volumes measured farther away from the source. 

Stage 1 - Known {x,y}, Unknown θ 

In this first stage of testing, a single source of known centroid position was 

rotated through 7 different angles in 45° increments.  Provided with the ground truth 

source location, the B21r was used to investigate the source once for each different angle 

using just the area-coverage algorithm with a 3.5-m range.  One angle was not tested due 

to the source pointing at a solid wall where the robot could not investigate.  The sound 

source used in this stage was a pc-speaker playing nature sounds (rain) measured as being 

65 dB at 1-m from the source (including both direct and reverberant sound).   

Over 7 trials, the mean error for estimated source orientation was 0.2-rad of 

ground truth with a maximum error of 0.5-rad.  Given that the source itself is a pc-

speaker with a wide frontal lobe, this approximation should be adequate to guide the 

robot away from the loudest areas surrounding the source. 

Stage 2 – Unknown {x,y,θ} 

In the second stage testing, the B21r was used to localize each of three pc-

speakers with unknown {x,y,θ} 5 times, for a total of 15 tests.  During any one test, only 

one speaker was playing.  All speakers played the same nature sounds track (rain) at a 65-

dB volume.  For each test, the robot first moved along the same patrol route, localizing 

the active source.  Then it would dynamically choose where to center its investigation 

using area-coverage.  After sampling the area, the sound source orientation was estimated 
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along with the original location.  This same data was used reported earlier for estimating 

source location coordinates using an auditory evidence grid.  The layout of the room and 

the source positions can be seen in Figure 4.12.  Table 4.4 shows the mean error in source 

orientation, for each source: 

These results demonstrate the reliability of the discovery process in accurately finding 

and modeling sources.  Sources 1 and 2 were located in areas where the robot could 

completely encircle the source, and therefore gather data from all directions.  Source 3, 

however, was against a wall, so the robot was limited to gathering data in the 180° 

foreground.  Due to this limited area, as well as the proximity to the wall and its echoic 

effects, the orientation error is highest for this third source. 

Stage 3 – Multiple Sources 

The final stage of robotic testing demonstrated the ability of the robot to detect 

multiple simultaneously operating sources and identify their characteristics.  Two 

Table 4.4. Mean error in identifying the 

direction of maximum volume, as produced by 

an area coverage task. 

 Mean 

Orientation 

Error (rad) 

Standard Dev. 

Orientation 

Error (rad) 

Source 1 0.22 0.23 

Source 2 0.18 0.08 

Source 3 0.32 0.23 

Combined 0.24 0.17 
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sources, an air filter (0.5-m x 0.3-m x 0.3-m) and a two-speaker radio generating static 

noise, were placed 5.8-m from each other.  Figure 4.15 shows their relative placement.  

The pioneer2-dxe robot (Figure 4.2) was then used to localize and model each source.  

Following the initial patrol phase, the robot identified two potential clusters, 

corresponding to each of the two sources.  Both initial clusters were within 1-m of the 

actual source location.  Upon further investigation, the robot improved the localization 

accuracy for the air filter to within 0.2-m, and to 0.4-m for the radio.  The orientation 

accuracy for each source was 0.64-radians and 0.4-radians respectively.   

 

 

Figure 4.15.  Hand coded obstacle map used by the pioneer for navigation in an 

environment with two sources.  The black line shows the waypoint path followed during a 

patrol, while the circles illustrate a set of targets reached by the robot to complete an area 

coverage task for a single detected source. 
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4.2.3  USING SOURCE INFORMATION WITH THE SOUND FIELDS FRAMEWORK 

 So far in this section, we identified three different properties of sound sources 

that could be used in conjunction with the sound fields framework to estimate the flow of 

sound through an environment: source location, average volume, and directivity.   

The position of the sound source was estimated using an auditory evidence grid in 

conjunction with an iterative nearest neighbor clustering algorithm.  By itself, however, 

the source location does not contribute much to the sound flow estimation problem.  In 

Figure 4.16 (Top), the shape of the direct field is plotted for some distance around a 

detected sound source of unknown volume.  The displayed map assumes that the receiver 

can reach any location around the source (i.e. the geometric layout is unknown), and that 

the source is omni-directional.  These estimates of sound flow without knowledge of the 

volume can certainly be used to guide a robot to or away from a sound source, but they 

are not very realistic.  Without volume, there is little way to compare sources (unless they 

are assumed equally loud), or estimate how much noise a robot might be exposed to as it 

moves through the environment. 

Volume, however, is not necessarily difficult to estimate for a source that does not 

vary over time.  As discussed in Section 4.2.2, a simple estimate for volume is to collect  

Table 4.5. Localization and orientation accuracy of the two source discovery process 

 

 Localization 

Accuracy (m) 

Orientaion 

Accuracy (rad) 

Filter 0.2 0.64 

Radio 0.4 0.4 
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Figure 4.16.  Direct field estimates created from a single source of 

arbitrary volume (Top) and two sources of known volume (Bottom). The 

obstacles in these field estimates are there for scale purposes, and were 

not used to predicting occlusions or reverberant effects. 
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some number of samples in the vicinity of the source and average the result to estimate 

volume.  Using this simple method for estimating volume, and still assuming omni-

directional sources, we can estimate the combined volume of two detected sound sources 

over an arbitrary sized environment (Figure 4.16, Bottom).  Still estimating only the 

direct field, the robot can predict that the lowest sound between the sources is not actually 

in the middle, but rather closer to the quieter fan source on the left. 

To increase the accuracy of the sound fields estimate even further, the last piece of 

information discussed, which the robot can gather, is the directionality of the sound 

source.  Although we can estimate the volume very simply for each source, the perceived 

volume should actually depend on the angle from the receiver to the sound source.  Given 

time to investigate a sound source and collect enough samples from a variety of angles, a 

robot can build a model of directionality, predicting the volume detected at each angle to 

the source.  Figure 4.17-19 demonstrates how knowing the directivity of each of the 

sound sources can be used to build directional fields for each source, and then combined 

together into a representation of overall sound flow due to direct sound.  Appendix B.5 

describes the pseudocode implementation of the algorithm used to construct each of these 

direct field models. 

In general, what this information about sound sources allows a robot to do is 

make some predictions about the shape of the acoustic environment in the area where it 

may need to travel.  For instance, the robot can use this modeling ability to predict the 

regions of loudest environmental noise, so as to either avoid or move into areas of loudest 

sound.  These two applications will be demonstrated in Chapters 5 (Improving the Signal- 
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Figure 4.17.   Process of creating sound propagation models from sampled area coverage 

data, part 1.  (Top) Directivity results for the mostly omni-directional air filter.  (Bottom) 

Direct field for the air filter, showing the spherical spreading common to mostly omni-

directional sources 
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Figure 4.18.    Process of creating sound propagation models from sampled area 

coverage data, part 2. (Top) Directivity results for the radio.  (Bottom) Direct 

field for the radio, showing a distinctly louder region in front of the radio.   
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To-Noise Radio) and 6 (Stealthy Approach).  Another possible use of this information is 

predicting which sound source will be loudest in a given area.  By knowing what source 

dominates each region of the environment, a robot can detect and track changes to the 

auditory scene over time (Acoustic Monitoring – Chapter 5).  This information that the 

robot can gather about active sound sources in the environment serves as the basis for 

many applications.  Although receivers and environments are important for refining 

accuracy, knowledge about the sound sources is critical for virtually all applications 

reacting to or making use of sound levels in the environment. 

4.2.4 IDENTIFYING AND REPRESENTING SOUND FUNCTIONS 

The final piece of information about the sound source that we will be using in this 

dissertation is the sound function.  In general, the sound function refers to the sound 

being generated by a sound source at any given time, including the volume of the sound 

 

Figure 4.19. Process of creating sound propagation 

models from sampled area coverage data, part 3 - 

combined direct field for both sources 

 



132 

 

source.  For example, the sound function of a radio playing a single song is the recording 

of that music, modified by the volume at which it is being played, the properties of the 

amplifiers/speakers playing the song, and the time at which it is started.  Therefore, for 

any non-repeating source, knowing the sound function exactly would require knowing an 

infinite stream of data.  If the exact output of the sound source is not needed, however, 

then the sound function can be reduced down to a more compact representation 

depending upon the application.   

In this dissertation, we will use the source sound function for classification.  

Assuming that our robot has collected some number of samples from the environment, 

our goal is that the robot should be able to use its representation of the sound function to 

determine which source was loudest in each of the collected samples.  Furthermore, we 

would like to use the representation of the sound function to separate out any new sources 

from known sources in the environment, and determine whether or not the sound source 

is on or off.  In short, we would like to use the sound source function representation for 

classifying samples as belonging to, or most importantly, not belonging to any particular 

source.  The representation that has been used successfully by a number of others for this 

purpose in audio classification is mel-frequency cepstral coefficients or MFCCs [Slaney 

1994; Quatiri 2002]. 

The MFCC Implementation 

MFCCs are a classification feature set based on the mel-scale filter bank, a filter 

bank designed to group frequencies in a manner similar to human perception.  In this 

filter bank, low frequencies are traditionally grouped equal spaced bands, while higher 



 

frequencies are grouped in bands that increase logarithmically in size with the frequency

Figure 4.20 demonstrates the triangular weighting in the frequency band charac

a mel-scale filter bank.  

transform of the energy of these mel

to calculate MFCCs can be found in 

Although the mathematics behind MFCCs is generally the same across all 

implementations, the specific details of frame size, window size, pre

etc. vary from implementation to implementatio

code for calculating the coefficients was derived from the Auditory Toolbox 

implementation [Slaney 1994]

website6.   

                                        

6 http://cobweb.ecn.purdue.edu/~malcolm/interval/1998

Figure 4.20.  Weight 
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frequencies are grouped in bands that increase logarithmically in size with the frequency

demonstrates the triangular weighting in the frequency band charac

  MFCCs are then calculated by taking the discrete cosine 

transform of the energy of these mel-scale frequency bands.  A good description of how 

to calculate MFCCs can be found in [Quatiri 2002]. 

Although the mathematics behind MFCCs is generally the same across all 

implementations, the specific details of frame size, window size, pre-filtering algorithm, 

etc. vary from implementation to implementation [Zheng et al. 2001].  In this work, the

code for calculating the coefficients was derived from the Auditory Toolbox 

[Slaney 1994], which can be downloaded from Malcolm Slaney’s 

                                                 

ecn.purdue.edu/~malcolm/interval/1998-010/, Accessed Aug 25, 2007

.  Weight vs frequency plot of a mel-scale filter bank.
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• Frame Size – 10-msec 

• Window Size – 31-msec (length of 256 at 8192-Hz) 

• Pre-Filtering – a hamming window 

What these numbers mean is that a single 250-msec sample collected by the robot 

is run through an iterative algorithm which, for every 10-msec (the frame size):  

• Collects the next 31-msec (the window size) 

• Applies a Hamming window to the samples 

• Calculates the first 8 MFCCs for these samples.  

Therefore, for a single 250-msec sample, we get 21 sets of 8 coefficients.  We 

then discard the first coefficient of every set, because it is generally unreliable for 

classification [Zheng et al. 2001].  Our classification feature set is then the mean and 

variance of these 7 MFCC’s over that sample, for a total of 14 features.  Appendix B.4 

describes the creation of this classification feature set in more detail. 

Typically, to achieve the best classification performance, a longer sample than 

250-msec is desired, with 1-sec generally considered long enough to capture the wide 

range of variation in many typical sources.  Our goal, however, was to use MFCC-based 

classification with the samples already collected by the robot when localizing sound 

sources in the environment.  With a moving platform, even 500-msec samples can 

introduce a large amount of position error.  Therefore, to improve the accuracy of the 

feature set, each MFCC feature vector is actually calculated over two successive 250-

msec samples.   
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Classification Algorithm 

In this dissertation, we make use of nearest-neighbor classification [Duda et al. 

2001] to identify sound functions with our MFCC feature set.  This classification scheme 

has successfully been used with MFCCs and other auditory feature vector sets [Ravindran 

2006] for distinguishing between a range of sound types including speech, animal noise, 

and music. 

Before a robot can use nearest-neighbor classification to identify sound types, it 

first needs to build a set of class vectors.  A class vector is essentially the mean feature 

vector for a given sound type that the robot is trying to classify.  For instance, if the robot 

is trying to identify samples that contain noise generated by a particular air filter, it needs 

to know the average feature vector of samples generated by this air filter or class of air 

filters.  This, in turn, requires that the robot have a set of samples known to 

predominantly contain noise from the air filter.  Luckily for the robot, however, this 

information is already available. 

In the previous sections, we described an area-coverage algorithm used to refine 

the source localization results and identify directivity and volume of the sound source.  

This area coverage algorithm involved collecting a large number of samples from many 

different angles and distances to the sound source.  This same collection of sampled data 

can also be used to build the class vector for the same investigated source.  Although 

some of the samples may be contaminated by other sources in the environment, most of 

the samples should have been collected within the region most strongly influenced by the 

target source, and, therefore, should be dominated by that source. 
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Using the samples collected from the investigation of the sound sources, the robot 

now has a class vector for every source it investigated.  Now, whenever the robot records 

a new sample, that sample can be classified as belonging to any of the detected sources 

using the mahalanobis distance [Duda et al. 2001] from the new samples’ feature vector 

to each of the class vectors.  The class vector that is closest in distance is therefore closest 

in sound function to the recorded sample. 

Assuming that each of the sound sources has a different sound function, this 

simple classification strategy works well for distinguishing between known classes.  

These classes could have been investigated by the robot, or provided a priori from hand-

sampled data for particularly important sound types like speech.  If the task of the robot, 

however, is to distinguish between known and unknown sounds, then this nearest-

neighbor strategy has a problem.  When the robot records a sample from a previously 

unknown source, that sample will still be matched with the nearest-neighbor class vector, 

which will still correspond to an existing source.  To overcome this problem of being 

matched to existing classes, we inserted a set of 20 random classes into the feature vector 

set.  Now, instead of matching to a known source, there is a good chance that a feature 

vector belonging to an unknown class will be closer in distance to one of the these 

random classes.   

Classification Results 

To test the efficacy of the classification algorithm, we set up a small experiment 

involving two sources.  An air filter with a significant directional component was placed 

to the right side of the room, generating noise at 50-dB.  A second source, a small 



137 

 

fountain, was then placed roughly 3-m away at the top end of the room, generating water 

noise at a measured 54-dB.  Figure 4.21 demonstrates the relative placement of these two 

sources within the environment.  

To build a class vector for each of the two sources, a microphone was manually 

moved about each of the sources to simulate the collection of samples by a moving 

mobile robot performing an area-coverage algorithm over the surrounding 2-m.  Both 

sources were enabled while the samples were being collected.  These samples then served 

as the basis for a fountain class vector, and a filter class vector.  An additional 20 random 

classes were also generated using the minimum and maximum range of the samples 

collected by the robot. 

After the source functions were approximated with a class vector, additional 

sampling was performed at each of 10 sample locations distributed about the 

environment.  Roughly the same number of samples were recorded at each location.  

Figure 4.21 shows the ratio of samples classified as belonging to the fountain vs. the filter 

at each sample location.  Since the fountain was a significantly louder source, more than 

half of the sample locations detected more samples from the fountain than the filter. 

Perhaps the most interesting part of the resulting ratios, however, was when a 

comparison was made with the predicted direct-field volume of each sound source.  

Given that the volume, directionality, and position of each source was constant 

andreadily available, it was a simple matter to estimate the predicted volume of each 

source at each sample location in the environment.  Comparing this ratio to the 

classification ratio revealed that, at all sample positions where the expected difference in  
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Figure 4.21.  Classification results vs. predicted direct field volumes for two sources, a 

filter (green triangle) and a fountain (blue triangle), at regular intervals (red stars) around 

the room.  On the top and left are the MFCC classification results, with the fountain in 

blue (nominator) and the filter in green (denominator).  On the bottom and right (in 

brackets) are the predicted volumes of the direct field.  At all sample positions where the 

expected difference in volume is greater than 2-dB, the louder source dominates the 

classification results.  For volume differences less than 2-dB, the classification result is 

more variable. 
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volume is greater than 2-dB, the louder source dominated the classification results.  For 

volume differences less than 2-dB, the classification result is more variable. 

In general, this test suggests that the predicted volume of the direct-field seems to 

be related to the classification results.  To verify these results, an additional round of 

testing was performed in the presence of three sources.  A third source, a radio playing 

music in a range of roughly 56-62 dB, was added to the environment at position [-2.5,0].  

This time, with the added variability of the music source, there were a lot more sample  

points with unpredictable classification ratios.  Still, however, those sample points that 

were closest to each of the sources, overwhelmingly favored the nearest source.   

These results suggest that MFCCs are a good choice for representing the sound 

function approximation of constant volume sound sources.  When faced with a new 

sound source, a robot is capable of not only localizing the sound source, but also 

autonomously building a classification feature vector.  Furthermore, using its knowledge 

of the surrounding acoustic environment, the robot can now also predict where to move 

to ascertain any changes to the sound function.  After determining the loudest locations in 

the environment for this source, the robot can move to one of those locations, sample, and 

re-classify the results to potentially determine changes in volume, and/or sound function 

using MFCCs.  This latter functionality will be demonstrated in Chapter 5. 

4.2.5 CHARACTERIZING SOUND SOURCES – SUMMARY 

In Chapter 3, a general sound source model was presented as being useful to an 

acoustically-aware robot (Section 3.2.1).  For each sound source, the model contains 

knowledge about the position of the sound source in the room, its directivity, and its 
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sound function.  What was not discussed in Chapter 3, however, was where the robot can 

acquire this information about each sound source.  Section 4.2 has now addressed that 

concern for each part of the model, using a combination of algorithmic data fusion and 

robotic exploration.   

The first part of the model, the location of the sound source, is determined using 

auditory evidence grids.  By collecting samples over a wide variety of locations in the 

environment and fusing them together in an auditory evidence grid, a robot can identify 

the presence and general location of new sound sources in the room.  Then the robot can 

improve on its localization accuracy for an individual sound source by investigating the 

area most likely to contain a source, collecting a large number of samples in the vicinity. 

The second part of the model, directivity, is determined using the same 

investigative sampling technique that served to improve the localization accuracy of the 

auditory evidence grid.  After collecting a large number of samples in the vicinity of the 

sound source, a robot can use its knowledge of spherical spreading to predict the volume 

of sound generated by the sound source for each angle.  This information, combined with 

the position of the sound source, can then be integrated into the sound fields framework 

for estimating sound propagation through the environment.  The resulting maps will be 

very useful in Chapters 5 and 6 for detecting changes to the environment, and avoiding or 

moving to loud areas of noise. 

The third part of the sound source model that the robot can model is the sound 

function.  Using the data collected during investigative sampling of the sound source, a 

robot can build a representation of the sound function using mel-frequency cepstral 

coefficients (MFCCs) that allow the robot to classify samples as being generated by a 
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particular sound source.  This model of the source sound function will be very useful in 

Chapter 5, where a robot is trying to identify the presence of new sound sources, or 

changes in the environment.  The model, however, currently lacks temporal information.  

As will be discussed in Chapter 6, the inclusion of such temporal information into the 

sound fields framework could be very useful to an acoustically-aware robot, and remains 

an important area of future work in developing the sound function aspects of the source 

model. 

In summary, it is these tools for filling in information in the sound source model 

that will form the basis for all of the applied acoustical awareness work in Chapters 5-7.  

Knowing position and directivity, a robot can estimate how loud different parts of the 

room will be.  Knowing the sound function, a robot can estimate what it will hear at each 

location.  Either set of information allows a robot to make estimates about different parts 

of the room in which it is not currently located, providing navigational behaviors with the 

knowledge necessary to improve and acoustically aware application.  The remainder of 

this chapter will now focus on improving those results even further by adding to the pool 

of knowledge that a robot can gather on its own.  

4.3 PATH INFORMATION 

Once we have identified characteristics of sound sources in the environment, the 

next step is to utilize information about the path to enhance the accuracy of the direct 

field and build reverberant field estimates in place of the simplified, constant-field 

assumption used in the previous section.  As discussed in Section 3.1.2, the attributes of 

the path entity that we are interested in acquiring for this purpose are the geometric 
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layout of the environment, the material properties of the surfaces, and any structural 

information for describing transmitted sound.  Unfortunately, for the latter two categories 

there is little that a robot can do to acquire this information if it is not provided a priori.   

Limited audio probing work (see Chapter 2) has had some small successes in 

identifying material properties, as have some computer vision efforts [Ragheb and 

Hancock 2003], but none of these work in the general case for characterizing an 

environment.  The same is true of knowing the support structure.  While DARPA is 

developing a sensor using RADAR to penetrate concrete and identify floorplans, material 

compounds, and enemy combatants[Miles 2006], the device is unlikely to be ready for 

robotic deployment in the near future. 

Identifying something of the geometric layout of the environment, however, is 

well within the capabilities of a mobile robot.  Section 4.1.1 described the creation of 

spatial evidence grids, or obstacle maps, by which a mobile robot can localize itself 

relative to obstacles in the area.  These same spatial evidence grid representations can be 

used to describe the geometric layout of the surroundings.   

4.3.1 BUILDING REVERBERANT FIELD ESTIMATES FROM SPATIAL EVIDENCE GRIDS 

Figure 4.22 (Top) displays a spatial evidence grid used by the Pioneer2-dxe robot 

for localization in the Mobile Robot Lab environment.  This evidence grid, built by the 

pmap utility [Howard 2004] using the measurements from a SICK Laser-Measurement-

System mounted to the Pioneer robot, consists of a collection of estimates attached to 

specific locations, or grid cells, in the environment, where each estimate specifies the 

likelihood of an obstacle occupying this cell.  These estimates range in value from 0-  
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100%, and are not always consistent from neighbor to neighbor.  To use this spatial 

evidence grid as a geometric layout in the mathematical framework, a few assumptions 

are needed about exactly where the obstacles are in the representation: 

• Which cells are occupied? 

An estimate of 0-100% cannot be easily used with reverberant field 

estimation models.  A threshold is needed to determine, based on the 

evidence grid, whether or not any given cell is occupied or not.  75% is a 

typical threshold for determining occupancy.  Figure 4.22 (Bottom) 

demonstrates the geometrical layout created by applying a threshold. 

• Where is the obstacle? 

If a grid cell was marked as containing an obstacle, then the obstacle 

boundary could be located anyplace within the area described by the grid 

cell.  Unfortunately, spatial evidence grid cell sizes often range from 0.01-

0.1m2 in area, providing a large area in which the surface might occur.  To 

simplify the representation for reverberant field estimates, each cell 

marked as containing an obstacle will be assumed to be completely filled.  

Therefore, the obstacle boundary is located at the edge of the grid cell. 

• What is the angle of the obstacle surface? 

Real surfaces in the environment are likely to occur at a variety of angles 

to the horizontal.  By assuming that the obstacle fills the grid cell 

completely, however, all surfaces will now be restricted to either the 

vertical or horizontal edges of the grid cell.  Given the large size of the 

average grid cells in spatial evidence grids used for localization, this 
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vertical or horizontal restriction will likely produce minimal error relative 

to other obstacle positioning errors.  However, as smaller area cells 

become available, this assumption may need to be replaced by some 

interpolation algorithm across neighboring cell or obstacle surfaces. 

After applying these assumptions to the spatial evidence grid and creating a 

geometric layout for the room, it is relatively simple to apply the ray-tracing algorithm 

discussed in Chapter 3 for estimating both the direct field and the reverberant field.   

Works by Savioja [Savioja 1999], and Elorza [Elorza 2005] provide implementation level 

detail of the ray-tracing algorithm and discussions of accuracy in 3D.  As our spatial 

evidence grids only model obstacles in two-dimensions, our ray-tracing models differ 

slightly from these described works by limiting all rays to a single height.  Furthermore, 

without knowledge of the specific material composition of the room, we assume that all 

surfaces are completely reflective (0% energy absorption).  Appendix B.6 describes in 

pseudocode our implementation of ray-tracing. 

In Figure 4.23, the ray-tracing algorithm is used to predict direct and reverberant 

field estimates for a filter generating wind noise at 54-dBA.  Figure 4.23 (Top) describes 

the direct field in which a gradual drop-off from the maximum sound level can be seen as 

the energy dissipates.   “Acoustic shadows” can also be seen in this direct field, where the 

sound from the direct field is blocked due to the presence of obstacles.  Figure 4.23 

(Middle) then describes a reverberant field estimate, where sound levels are still highest 

in the vicinity of the sound source due to the close proximity of the walls below and on 

the right.  Note that the highest volume in the reverberant field is actually 3 dB quieter 

than the region near the source in the direct field.  Figure 4.23 (Bottom) finally combines  
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Figure 4.23.  Maps of sound propagation created using a 2D robot-created evidence grid of 

the obstacles in the environment.  (Top) Direct field of an ideal point source with known 

volume and position, note the acoustic shadows due to the 2D assumption.  (Middle) 

Reverberant field created from the same source.  (Bottom) Combined field, demonstrating 

characteristics of both the direct field (strong acoustic shadows) and the reverberant field 

(strong response near walls). 
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the two fields, maintaining the key features of each.   The gradual drop-off in energy 

from the direct field dominates the combined field in the region near to the source, but is 

not as strong as the distance from the source increases and the reverberant field 

contributes more of the energy. 

4.3.2  IMPROVING THE ESTIMATE QUALITY 

A great advantage in using spatial evidence grids for finding the geometric layout 

is that they are created easily using software and hardware found in common mobile 

robotic applications.  As such, spatial evidence grids, unlike more complicated 

representations of the environment, can be quickly adapted for acoustically-aware 

applications.  Unfortunately, despite the ease with which evidence grids can be acquired 

and adapted to the problem of sound propagation, there are a number of inherent 

drawbacks in using them for identifying geometric layout: spatial evidence grids are very 

noisy, they do not accurately represent surfaces, and they are two-dimensional.  What 

follows here is a discussion of how each of these problems affect the final representation, 

and how the error might be reduced in future implementations. 

Noisy, Incomplete Spatial Evidence Grids 

The first problem with the geometric layouts created from spatial evidence grids 

is that they are very noisy.  While a robot travels around the room creating an evidence 

grid for localization, it does not always gather enough data about the environment to fill 

in the map completely.  This can be seen in the displayed spatial evidence grid (Figure 

4.23, Top), where some regions that should be empty are grayed, rather than white.  

Additionally, the walls have a number of holes in them, and some parts of the room are 
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completely unknown.  Our mapping software (pmap, with Player/Stage) suffered 

particularly in this case, as its purpose was localization rather than mapping.  Other 

algorithms for building maps and localizing the robot that have been rigorously initialized 

can possibly do a better job at creating the resulting map, but will still suffer from the 

same general problem.  If the robot does not enter an area, or something blocks the view 

of the robots’ sensors, then a map cannot be created of the missing area.  Without the 

missing information, however, our sound propagation models will suffer in accuracy.   

The solution to this problem requires gathering more data.  Putting more sensors 

onto the robot may have some effect, as the additional data will be gathered from a 

different viewpoint.  More importantly, however, the robot needs to explore the 

environment thoroughly, actively investigating unknown areas and trying to find better 

viewpoints for inaccessible regions  by incorporating the need for an accurate map into its 

navigational control strategy [Thrun et al. 2005]. 

Surface Estimation Errors 

The second problem with these particular maps is the accuracy of the 

representation.  As mentioned earlier, if each grid cell covers an area of 0.1m2, then the 

actual surface of the object could be located anywhere within a similar sized area.  While 

our earlier assumptions of completely occupied grid cells and reflections along the cell 

boundary allow even large-grained spatial evidence grids to be used for constructing an 

estimate of the reverberant field, knowing exactly where the ray reflects, and at what 

angle, are important characteristics for accurate sound field estimation.  
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There are, however, alternative approaches for surface estimation that already 

exist in the robotic mapping community, although none have yet been tested with sound 

propagation algorithms.  The use of particle filters to estimate the surface directly, rather 

than the presence of obstacles, should produce a closer match to the real surface.  

Unfortunately, the resulting surfaces are very noisy, and will produce significant 

refraction effects in sound propagation.  Smoothing the surface may reduce these effects, 

but may also limit the accuracy gained by using a particle filter approach.  Another 

possibility is to build predictions about the shape of the surface being mapped into the 

surface estimation algorithm.  For instance, if most of the sensor readings will be from a 

small number of flat surfaces (common with indoor environments), then the algorithm 

can estimate the number of flat surfaces, and predict which readings belong to which 

surface[Thrun 2002].  Details about small objects on the surfaces will most likely be lost, 

but the resulting surface is flatter.  If the surface is actually flat, then incorporating such 

knowledge into the algorithm may produce a better quality map for the purpose of 

modeling sound propagation. 

Two-Dimensional Descriptions of a 3D Environment 

The third drawback with these spatial evidence grid representations is that they 

are 2-dimensional.  This is due to the use of just one laser mounted on a flat surface (i.e. 

the top of the robot), which will produce models at only a single height.  Although 

modeling will still work in 2-dimensions, the ability to accurately predict soundscape 

features such as echoic locations and acoustic shadows is certain to diminish without 3-

dimensional data.  This is in part due to missing reflections from above and below, and in 
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part to inaccurate representations of obstacles.  Of particular interest are small obstacles, 

such as small boxes, which should have a minimal impact on sound levels, but are tall 

enough to be detected by a small robot.  These obstacles result can result, when using 

ray-tracing, in significant acoustic shadows (Figure 4.23, Top) that are not nearly as 

pronounced in the real environment, due to sound propagating over the top of the 

obstacle. 

Perhaps the most obvious solution to this problem is to use a 3D mapping 

algorithm on the robotic platform.  If the robot is equipped with more sensors for viewing 

upwards, rather than along a single horizontal plane, the same algorithms described for 

improving surface estimation accuracy (particle filters, including surface models, etc.) 

can also be applied to the 3-dimensional modeling problem.  There exists extensive work 

in mapping with upwards pointing lasers [Kaess et al. 2003], cameras, and combinations 

of both [Biber et al. 2004; Thrun et al. 2005].  At this point, however, none of these 

models have been tested with sound propagation due to the required hardware and/or 

software constraints.  Furthermore, improved accuracy is not guaranteed by the 

adaptation of a 3D mapping algorithm.  As with 2D evidence grids, they are still subject 

to the data collection problem and suffer from similar surface estimation errors that may 

incorrectly predict reverberation effects.  In general, the application of robot generated 

3D models to sound propagation needs more study.  

Given this variety of problems, 3D models of the environment are not a 

guaranteed way for a robot to improve accuracy.  Another possibility for overcoming this 

problem of small obstacles in 2D is to separate the direct field from the ray-tracing 

algorithm.  The direct field does not actually require ray-tracing for estimation, as the 
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direct field energy can be estimated as decreasing linearly with the square of the distance 

from the source.  The reverberant field can then still be estimated using ray-tracing.  Seen 

in Figure 4.24, the resulting combined field for the filter from this method does not 

demonstrate as pronounced of an acoustic shadow as the pure ray-tracing solution, which 

used the geometric layout in calculating both the direct and reverberant fields.  An 

acoustic shadow is still visible, due to reverberant effects, but the difference in volume is 

much less.  Of course, this method is not entirely accurate either, as some obstacles 

present in the geometric layout may have been tall or massive enough to produce large 

acoustic shadows, and even the small obstacles likely have some impact.  Still, this 

option allows the designer of a robot controller more freedom for tuning their system to a 

particular type of environment. 

 

Figure 4.24. Map of the auditory scene combining a simplified direct 

field model with the reverberant field. 
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4.3.3 PATH INFORMATION - SUMMARY 

At the conclusion of this section on path information, it should be understood that 

the use of robotic mapping for sound propagation has much work remaining.  This work 

in modeling reverberation from 2-dimensional maps has primarily served to provide 

insight into the difficulties associated with the mapping the reverberant field, rather than 

try to build a working system for use with an acoustically-aware robot.  It is a significant 

contribution to the field, because no others have used either environment maps created 

from robotic data or sound source knowledge generated by an autonomous mobile robot 

to build estimates of sound propagation through the environment.  This dissertation 

demonstrates the use of both sets of information, and applies them to both the reverberant 

and direct sound fields.  Figure 4.25 demonstrates a combined direct and reverberant field 

estimate for the two sources localized and investigated at the end of Section 4.2.   

Future work in this problem of path estimation will attempt to validate the use of 

this robot gathered information with sound propagation models.  One such validation 

method is to compare the resulting estimates with measured data at random locations in 

the environment.  Although this is the typical validation method in architectural 

acoustics, a high level of accuracy does not always transfer to improvements in robotic 

applications.  Therefore, in Chapter 6 we propose work in applying ray-tracing estimates 

from robotic data to the stealthy approach problem to improve accuracy and generality. It 

is in the context of this real robot scenario that we intend to demonstrate the usefulness of 

this information, and resolve some of the remaining issues about accuracy, such as: how 

accurate does the sound fields estimate need to be to improve performance? And, when is 

there a need for a better quality robot-generated map? 
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4.4 BUILDING MAPS WITHOUT MODELS 

The greatest advantage of estimating the auditory scene using models is that all of 

the information can be described a priori.  Once a sound source has been discovered, the 

robot can use it over and over again when building a model of the auditory scene, so long 

as it detects that it is still operating and has not significantly changed.  Identifying such 

changes may require some work on the robots’ part to occasionally check up on the 

source, but major characteristics of medium duration sources, such as directionality and 

location, are unlikely to change very often.  Such sources are instead more likely to be 

turned on/off and change volume, things easily determined by a mobile robot.  Section 

5.1 describes a scenario in which this is accomplished. 

 

Figure 4.25. Estimated sound levels for the combined direct 

and reverberant fields, created from purely robot-collected 

information.  The robot collected the obstacle map, localized 

sources, and identified directivity and volume.  For this 

sound propagation estimate, the geometric layout is only 

included in the reverberant field estimates. 

 



154 

 

The greatest drawback to estimating the auditory scene using models is that the 

robot may not have, and/or may not be able to acquire, all of the critical information 

about the environment (or the information is inaccurate).  For example, the application 

may be highly sensitive to the level of reverberant sound.  In that case, an adequate model 

may require 3D models of the environment and material specifications to accurately 

model the sound propagation.  Such information is not always easily determined a priori 

and, although work in both 3D modeling and material characteristics identification 

[Krotkov 1995] do exist, this info can be very difficult to accurately determine using a 

robotic platform.  As another example, perhaps the robot only has a single microphone 

for listening to the ambient noise.  The robot could try to use a gradient descent strategy 

to move towards and localize the sound source, but the resulting accuracy is questionable 

as the robot may become stuck in a local minima.  In either of these cases, an alternative 

to estimating sound flow from models is to measure it directly using the robot.   

As originally reported in [Martinson and Arkin 2004], a noise map for robotic use 

can be created from some arbitrary number of samples through interpolation.  Provided 

with some set of samples collected by one or more microphones, and the relative 

positions at which each sample was collected, we can use some form of function 

approximation to estimate the sound field directly from the samples without collecting 

source localization, directivity, etc.  In the original work, K-means interpolation was 

reported as it was fast and produced a quick approximation over areas that had not 

necessarily been sampled.  Cubic interpolation has since been implemented as well, as it 

produces smoother contours in densely sampled regions at the expense of increased 
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computational complexity.  The creation of a sampled data noise map using any available 

interpolation method is discussed in more detail in Appendix B.7. 

Regardless of the type of function approximation used to estimate the sound field, 

the advantage of the interpolated noise map is that, while it still requires robot 

localization, the robot only needs a single microphone to get a rough approximation of 

the entire sound field.  Array information can be incorporated as well, but it is only 

needed as separate microphone inputs.  The drawbacks to this interpolation method, 

however, are twofold.  First, the maps are heavily influenced by robot ego-noise, which 

may or may not be constant across the sampled region [Martinson and Arkin 2004].  

Second, the interpolation method cannot reliably estimate anything beyond the sampled 

region, limiting its effectiveness for guiding robotic navigation.  Given these sizeable 

drawbacks, we primarily used the interpolation method as an alternative, validating the 

sound fields estimates in areas that been heavily sampled. 

4.4.1 COMPARISON WITH MODELS 

Ideally, the sound fields framework described in Chapter 3 would lead to a 

faithful representation of the auditory scene.  In practice, however, it might vary 

significantly from the ground truth if there is missing information, such as other sources, 

transmission effects, or 2D vs 3D reverberation models.  The interpolation method for 

constructing noise maps provides a convenient alternative, at least in the sampled region.  

In Figure 4.26, the source directivity indicates that the fan source in the MRL 

environment should be loudest to the right, but should still remain fairly loud to the left, 

at least in some spots.  Both representations demonstrate these common features, 
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suggesting that the sound fields’ estimation is a reasonably good representation of the 

soundscape.  Looking at another example, the radio source (Figure 4.27) from the MRL 

environment, the different representations indicate common source orientations, or 

regions of maximum volume.  In general, the interpolation method should be reasonably 

good at predicting local phenomenon such as the direction of maximum volume or other 

hot spots due to reverberation, so if the two resulting maps do not demonstrate similar 

characteristics, then it may indicate to a potential problem to a robotic platform.    

An example of missing information can be seen in Figure 4.28.  The obstacle map 

of the NRL AI Laboratory is very cluttered, and really needs 3-dimensional data for a 

faithful reconstruction.  In this case, the source, located on a bookshelf next to the wall, is 

correctly localized and a directivity model is created.  But the final model, utilizing the  

 

Figure 4.26.  Comparison of the interpolated noise map (left) to the sound fields model 

(right) for the fan source.  In both maps, the directivity of the source is indicated as being 

loudest to the right, but still fairly loud in the rear.  Using interpolation, however, 

generates a noise map that is only valid for the small area that was sampled, while the 

sound fields map can make predictions for the entire room. 

Significant Noise on Left

Loudest to the Right

Significant Noise on Left

Loudest to the Right
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Figure 4.27.  Comparison of the interpolated noise map (left) to the sound fields model 

(right) for the radio source.  Both maps indicate the loudest region as directly to the front 

of the sound source, rather than to a side, or omni-directional. 

 

 

 

Figure 4.28. Demonstration of the effects of poor reverberation models in the NRL AI 

Center.   The interpolated map shows that the sound can still be quite loud behind the 

obstacle, while the sound fields map predicts significant decrease in volume. 
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obstacle map for direct and reverberant fields predicts an acoustic shadow behind the box 

that does not appear in the interpolated noise map.  Although the spike in the interpolated 

noise map is possibly just an artifact due to the other people in the room, there is still no 

predicted shadow behind the box.  A robot designed to spot such a deviance should 

probably reinvestigate the area. 

Naturally, spotting such discrepancies between these maps is a very hard problem.  

How significant does the difference need to be before the robot should reinvestigate?  

Even after identifying a problem, predicting a cause would be even more difficult.  For 

example, the source appearing to point in different directions could indicate a faulty 

directivity model, a missing source, poor reverberation estimates, etc.  Given the 

difficulty of the comparison problem, this dissertation only used the interpolated noise 

maps for debugging purposes.  If the human designer of the robotic system could see a 

noise map, then they had more information available for identifying problems, missing 

information, and faulty sound fields construction.  In the long term, however, the 

combined use of both types of maps could lead to more robust systems.  By identifying 

the discrepancies between maps, a robot can make use of its limited time to better direct 

its investigatory efforts. 

4.5 CHAPTER SUMMARY 

Acoustical awareness, as defined in Chapter 1, is the “coupling of action with 

knowledge about the acoustic environment”.  In Chapter 3, we then explored this 

problem in more depth, differentiating between types of awareness, and describing a 

mathematical framework for making predictions about the soundscape at different 
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locations in the environment.  This ability will, over the next 3 chapters, prove to be very 

useful to a robot performing some acoustic application, as it provides a baseline for 

constructing plans to maximize the performance of an acoustic application.   

By itself, however, the sound fields estimation framework does not make a robot 

acoustically-aware.  In order to make any predictions about the auditory scene, the robot 

must have some knowledge of the primary acoustic entities: the sound sources, the 

receivers, and the environment itself.  From where, though, does the robot acquire this 

information? Certainly some of this information could sometimes be made available a 

priori.  What happens when the information is not available? Or maybe the information 

that is available is not enough?  Or, what does the robot do when the auditory scene 

changes?  A robot that is completely dependent on a human for its information about the 

primary acoustic entities is limited in terms of scope and performance.  Chapter 4, 

therefore, focused on resolving this data collection problem that was at the heart of the 

second sub-question of the thesis, answering how and with what representations can we 

combine disparate sensory data together for the purpose of enabling acoustical awareness.  

The emphasis, in particular, was in representations, or tools, that enable the autonomous 

collection by a mobile robot of the information needed for the mathematical framework 

presented in Chapter 3: 

• Source Location in 2D 

Traditional sound source localization algorithms for microphone arrays 

were extended to incorporate robotic movement for the purpose of 

localizing one or more simultaneously operating sound sources in two-

dimensions. 
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• Directivity and Volume Models of Sound Sources 

Using an area-coverage algorithm, a robot can investigate regions 

identified as likely to contain a sound source, building models of 

directivity and overall volume for the source. 

 

• Sound Function Classification 

From samples collected during robotic investigation of a sound source, a 

model of the sound function can be constructed from mel-frequency 

cepstral coefficients, allowing the robot to classify samples as belonging 

to a particular source. 

• Geometric Layout 

Borrowing from existing work in creating spatial evidence grids, the 

geometric layout of the room can be approximated by a mobile robot for 

use with ray-tracing algorithms to estimate the direct and/or reverberant 

fields. 

In addition to acquiring information about specific characteristics of entities in the 

auditory scene, this chapter also identified a method by which a robot can model the 

combined fields simultaneously: 

• Interpolated Noise Maps 

The sound fields framework provides a convenient tool for modeling 

information about known acoustic entities.  By creating an interpolated 

noise map directly from the sample, the robot now has a tool with which it 
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can check the resulting estimate over small areas, and, through 

comparison, attempt to recognize the presence of missing knowledge. 

Each of these representations provides another tool to an acoustically-aware 

robot, enabling it to find sources, model those sources and/or the environment, and 

double check the resulting sound fields estimate.  What has also, hopefully, been 

demonstrated over the course of this chapter, however, is the flexibility of the sound 

fields framework for enabling acoustical awareness.  If information about the shape of the 

room is available a priori, then, of course, the robot does not need to re-acquire that 

knowledge through robotic mapping.  If the robot does not need accurate source 

directivity models for its application, then the robot does not have to spend the time to 

acquire those models through area coverage heuristics.  The sound fields framework 

(described in Chapter 3) allows for a wide variety of circumstances, applications, and a 

priori knowledge under which a robot can still successfully navigate with respect to the 

soundscape, can still improve its performance at acoustic tasks, and can still be 

acoustically-aware.  This chapter then demonstrates a set of tools for acquiring more 

information autonomously in order to enhance that awareness, if the robot has the need, 

the time, and the resources to acquire it. 
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CHAPTER 5  

THE AUTONOMOUS MOBILE SECURITY ROBOT 

In Chapter 3, we used the theory of sound fields to identify information useful to a 

mobile robot in understanding the flow of sound through the environment.  With 

knowledge about the receivers, the sources, and the paths through the environment, a 

model of the auditory scene can be created to guide the robot in improving its 

performance.  Then in Chapter 4, we identified how, and from where, a robot can 

reasonably expect to acquire this knowledge or information.  When available, a priori 

information can be utilized, but, in lieu of missing information, the robot itself can also 

gather enough data with reasonable accuracy to create direct and reverberant field models 

of the environment.  What has not yet been addressed by either of these chapters, 

however, is the utlity of these results.   Acoustics, and robotic applications that use 

acoustics in any fashion, are wide areas of research.  A robot can be a listener, or it could 

be a sound source.  In this chapter, we focus on the problem of how acoustically-aware 

control can be applied to a robot-listener to improve classification of sound sources, 

source localization, and the general signal-to-noise ratio.  This will answer, in part, the 

third, and final, sub-question posed in Chapter 1:  How does acoustical awareness change 

with control over the source vs. the receiver?  Chapter 6 will then discuss control over the 

sound source (a vocalization application).  The application domain in which we will 

explore this first robot-control problem is a robot security guard.   

The remainder of this chapter will focus on two robot applications designed for an 

acoustically-aware robot security guard.  The first application uses knowledge of sound 
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flow through the environment to identify changed or new sound sources along a robot’s 

patrol route.  By using prior, or self-discovered, knowledge of the environment being 

patrolled, acoustical awareness allows the robot to predict what should and should not be 

heard at different locations throughout the environment. 

The second robot security application focuses on moving the robot with respect to 

the acoustical environment.  In addition to correctly classifying data heard along a patrol 

route, an acoustically-aware robot can also augment its path acoustically to better its 

chances of detecting an acoustic event.  By making use of noise maps of the environment, 

a robot can strive to avoid areas of loud ambient noise, increasing its signal-to-noise ratio 

while listening to the environment. 

5.1 RELATED WORK IN SECURITY ROBOTICS 

Security robotics is one of the relatively few, but growing number of application 

areas for mobile robotics that have seen significant commercial investment to date.  

Companies ranging from ActivMedia Robotics7, Cybermotion8, Denning Mobile 

Robotics, and iRobot9 in the United States, to SECOM10 in Japan, and YAAN 

Technology Electronics11 in China have all developed semi-autonomous mobile robots 

for commercial and/or military security.  The reasons for this explosion in commercial 

interest are twofold.  First, awareness of security loopholes at many public and private 

institutions has been heightened by recent terrorist activities in the U.S. and Europe, as 

                                                 

7 http://www.mobilerobots.com/PatrolBot.html, Accessed 5/16/2007 
8 http://www.cybermotion.com/, Accessed 5/16/2007 
9 http://www.irobot.com/sp.cfm?pageid=138, Accessed 5/16/2007 
10 http://www.secom.co.jp/isl/e/mission/index.html, Accessed 5/16/2007 
11 http://www.chinayaan.com/en/news.htm#, Accessed 5/16/2007 
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well as the wars in Afghanistan and Iraq, creating a demand for qualified security 

personnel that has been difficult to meet.  Given the increased demand, automated 

solutions ranging from fixed surveillance networks to robotic systems that can reduce the 

number of required security personnel have been of great interest to the security 

community. 

The second reason for the increased commercial interest is the nature of the job 

itself.   Most of a security guard’s time is spent waiting for something to happen, 

watching for a potential threat to the security of the installation.  When such an event 

occurs, few dispute that a human is required (at least for now) to make judgments about 

the best course of action, and act to protect people and/or property.   What a security 

guard does while waiting for such an event, however, such as patrolling the environment 

and checking locks/doors [Carrol et al. 2002], is repetitive, usually uneventful, and an 

ideal candidate for automated assistance.  In the near future, a robot could undertake 

many of these duties autonomously, searching and/or waiting for a security event to 

happen while the security guard is busy at a remote location.  Then when something does 

happen, the robot alerts a human guard who can take control of the robot to investigate 

the incident and make decisions about appropriate future actions. 

Given the great desire for robotic assistance in the field of security, it should not 

be surprising that many different areas of research within robotics are working on 

applications that involve enhancements to security guard robots.  These fields include 

tele-autonomous control [Chien et al. 2005; Liu et al. 2005], multi-robot protection [Guo 

et al. 2004], event recognition [Treptow et al. 2005; Luo et al. 2006], and stealthy or 

covert path planning [Birgersson et al. 2003; Marzouqi and Jarvis 2005; Kennedy et al. 
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2007].  In each of these cases, being acoustically aware can help enhance performance.  

The stealthy or covert path-planning task, which will be discussed in more depth in 

Chapter 6, can use knowledge of the auditory scene in order to hide the robot from an 

observer.  All other applications need to know the auditory scene in order to separate 

significant sounds from uninteresting known ambient noise sources.  In general, having 

knowledge of the auditory scene, and being able to incorporate that knowledge into a 

security guard application is important.  In order to use this knowledge for performance 

enhancement in security operations, however, the big question that remains is how well 

can the robot monitor the auditory scene? 

5.2 MONITORING THE AUDITORY SCENE 

The job of a security robot is a difficult one.  Even when problems with vision, 

movement, localization, etc. are all removed, focusing on just its auditory role, the 

problem is very tough.  Let us imagine for a moment, a typical auditory scene 

confronting the night-watch robot for some local manufacturing company.  Just in the 

offices away from the factory floor, the robot will detect HVAC (heating, ventilation, air-

conditioning) systems blowing air into the rooms, sometimes changing in intensity as the 

building temperature fluctuates.  Office computers, some of which have been left on for 

the night, are humming at random intervals, even occasionally moved by the building 

occupants during the day to make space for other activities.  Fountains, radios, even the 

lights also emit a constant ambient noise that a robot has to ignore while searching for 

unusual auditory events signaling a security problem.  Once the robot moves onto the 

factory floor, the problem gets even worse as heavy machinery operates at all hours of the 
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night, dominating the auditory scene in their vicinity and raising the reverberation levels 

in the room to levels rendering even speech near unintelligble.  Through all of this noise, 

wherever the robot is located, it is expected to identify not only impact noises like glass 

breaking, but also unusual auditory activity associated with malfunctioning equipment, 

fires, burglars, etc.  It is a daunting task, requiring large amounts of knowledge about the 

auditory scene to complete.  Fortunately at night, the environment should be somewhat 

more predictable with few or no people present. 

In this section, we will focus on a subset of the general acoustic monitoring 

problem, tracking changes in medium-to-long duration sources present in the auditory 

scene.  Given a known state of the environment, how can the robot determine if the 

auditory scene has changed in some way?  And if it has changed, where should the robot 

focus further investigation?  Being able to answer each of these questions will allow, in 

the future, a robot to better ignore ambient noise effects, while searching for significant 

aural ambiguities that constitute a risk to security.   

Presented in this section is a set of algorithms that the robot can use to answer 

each of the three following questions after completing a single patrol through the 

environment: 

• Did the environment contain a new source?  

• If a new source was present, then where was it located?  

• Were there any changes to sources known to be active in the environment? 

Each of these algorithms is constructed using the representations developed in 

Chapter 4, particularly auditory evidence grids and mel-frequency cepstral coefficients 

(MFCCs).  Each algorithm is also designed to work with no prior knowledge, but can 
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also incorporate such knowledge from earlier passes through the environment.  The 

success rates for each algorithm are then evaluated in a series of tests, demonstrating that 

autonomous monitoring of the auditory scene is a realistic task for an acoustically-aware 

mobile robot. 

5.2.1 EXPERIMENTAL SETUP 

The robot hardware that was used for this task is the Pioneer-2dxe robot equipped 

with a SICK LMS200 for localization and obstacle avoidance.  Four ATR35S*2 omni-

directional condenser lavalier microphones are mounted to the back of the robot, sampled 

on demand by a laptop computer (located under the microphones) equipped with 

Measurement Computing’s PC-CARD DAS16/16 data acquisition card. This same robot 

configuration was used previously for performing patrol and area-coverage tasks in the 

Mobile Robot Laboratory.  The fully equipped robot can be seen in the laboratory in 

Figure 5-1.  This robot uses the underlying Player/Stage [Gerkey et al. February 2006] 

controller for robot localization, obstacle avoidance, and path planning algorithms.  More 

details about both the hardware and software setup can be found in Appendix A. 

The environment used for this phase of testing is a 10x10-m2 section of the 

Mobile Robot Laboratory.  The sources that could be detected by the robot were as 

follows: 

• Filter – a home air filtration unit for a medium sized room (Figure 5.1).  It 

generates fan noise at different volumes, depending upon the speed of the unit.  

For testing purposes the filter was set either on low, or on high.   
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Figure 5.1. Pictures of the sound sources (left) dominating the auditory scene in the 

Mobile Robot Laboratory (right) for the acoustic monitoring task.  The microphone array 

used to measure the auditory scene is shown mounted to the back of the mobile robot. 
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• Fountain – a small garden fountain (Figure 5.1) situated in the middle of the 

room.  Besides being turned on/off, it could also be turned down to a lower setting 

generating less noise.   

• Radio – a radio was placed in one of 10 randomly selected locations throughout 

the environment for a robot to detect while patrolling the environment.  The radio 

was playing miscellaneous songs from a “Best of Journey” compact disc. 

• Robot – In most trials, the most commonly detected sound function was actually 

the robot, due to the close proximity of the microphones to the robot 

motors/wheels and the absence of other loud sounds through most areas of the 

patrol route. 

Before any of the trials were completed, the sound functions (MFCC 

classification vector) were determined for the filter, the fountain, and the robot.  In the 

case of the filter and the fountain, the robot discovered and investigated each source prior 

to beginning the classification trials while only the source being investigated was 

enabled.  The sources were determined to be largely omni-directional, and of similar 

volumes (60-dB for the filter, and 61-dB for the fountain).  The sound function of the 

pioneer2-dxe ego-noise was determined separately by moving the robot through an empty 

environment while sampling and averaging the resulting MFCC vectors from those 

samples.  Details on building classification vectors from sampled data can be found in 

Chapter 4, and again in Appendix B.4. 

The obstacle map of this environment, with source positions indicated, can be 

seen in Figure 5.2.  The 10x10-m2 testing area seen in this figure fully encompassed one 

obstacle, and was intruded upon by two other obstacles, requiring the robot to possibly 
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navigate around them to reach a waypoint.  The regions closest to the walls on the bottom 

and left of this map were not included in the testing area due to difficulties in reaching 

those areas using the Player/Stage Vector Field Histogram controller [Gerkey et al. 

February 2006] for moving while avoiding obstacles. 

5.2.2 PATROLLING THE ENVIRONMENT 

Before the robot could determine if the environment had changed, it first needed 

to complete a patrol route through environment during which it collected sampled of the 

auditory scene.  The task of patrolling the environment was accomplished using a 

waypoint mission.  The robot follows the waypoints in a loop through the environment, 

sampling as it moves, and ending up back at the beginning of the route.  To make the task 

as general as possible, we tried to avoid hand-selecting a route through the environment, 

 

Figure 5.2. The obstacle layout used for the acoustic monitoring 

task.  Within this environment, there were two sources whose 

positioned never changed. 
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instead opting for an automated selection of waypoints by the robot.  The automated 

process used the known obstacle map of the environment (Figure 5.2), and the sensing 

range of the microphone array (3-m), to guarantee that the robot passed within sensing 

range of every reachable location in the environment.  The steps used to build this 

waypoint path are as follows: 

• Step 1 - Use the obstacle map to identify areas reachable by the robot. 

First eliminate all sections of the map within 0.5-m of an obstacle as 

unreachable, and then use Djikstra’s shortest path algorithm [Cormen et al. 

1990] to identify whether or not there is a path to each cell in the obstacle 

map given the remaining cells.  Appendix C-1 gives more details on 

identifying reachable areas of an obstacle map. 

• Step 2 – Divide the reachable area of the map into discrete grid-cells. 

The goal of the waypoint selection algorithm is to guarantee that the robot 

gets close enough to all locations in the environment to detect a sound 

source.  As discussed in Chapter 4, the maximum sensing range of the 

spatial likelihood algorithm is 3-m, therefore, the goal is to select a set of 

waypoints that get the robot to move within 3-m of all locations that might 

contain a sound source.  We will guarantee this by placing a set of 

waypoint targets that would accomplish this goal, regardless of the path 

chosen to reach each waypoint.  This is accomplished by, first, identifying 

the smallest square area that includes all reachable areas of the map, and 

then sub-dividing the square into smaller square regions with a diagonal 

length less than the maximum sensing range.  Since the robot might end 
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up at a corner of a cell, rather than the middle, setting the diagonal to max 

sensor range means that the robot will be able to detect changes from all 

parts of the square.  Figure 5.3 shows an example of this discretization.   

• Step 3 - Pick a target within each grid cell. 

Ideally, the robot should move to the center of each cell, so as to minimize 

its distance to all reachable areas of the map.  If, however, an obstacle 

blocks the center, then choose the next closest reachable location to the 

center. Figure 5.3 demonstrates a set of chosen waypoints.  Appendix 

 

Figure 5.3. Discretized obstacle map through which a patrol 

route has been identified.  The resulting route ensures that 

the robot passes close enough to all possible sound source 

locations to detect any sound sources. 
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C.2.1 presents pseudocode for this process of selecting waypoints for 

patroling the environment. 

• Step 4 - Find the shortest continuous patrol route through all targets. 

For this final task in identifying the patrol route, we use a traveling 

salesman heuristic.  First, start with an arbitrary ordering of targets within 

the environment.  Second, greedily swap nodes in the target order that will 

reduce the path length.  Finally, repeat the greedy node swapping until the 

path length cannot be reduced any further.  Appendix C.2.2 provides more 

detail on ordering the set of waypoints to reduce overall path length.  

Figure 5.3 demonstrates the results of the entire patrol route selection 

process on our chosen environment. 

The result of this algorithm is a continuous patrol route through the environment 

that ensures the robot travels within sensing range of all reachable locations of the 

environment.  Although this algorithm is general enough to be used within many 

environments that a robot might be located in, there are likely some non-rectangular 

environments where the chosen patrol route would be significantly less than optimal.  In 

such a case, the resulting route could still be used, or a different patrol route could be 

automatically chosen, or even hand-selected, without significantly affecting the 

performance of the following acoustic monitoring task.   It is only important that the 

selected path gets the robot close enough to likely sound source locations to be able to 

detect them. 
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5.2.3 TESTING AND EVALUATION 

 A total of 67 patrols were completed in this environment.  The trials varied by the 

types and locations of active sources in the environment.  Table 5.1 shows a complete list 

of all trials completed by the robot, ordered by the types of active sources.  For each 

source configuration, the robot followed the automatically generated waypoint path from 

start to finish, passing close enough to all areas of the environment to detect new sources 

or changes to existing sources.  As the robot followed the path, it sampled the auditory 

scene using its microphone array, and stored the results to a database for future analysis. 

Table 5.1.  List of trials completed by the robot for the acoustic monitoring scenario.  

All used the same patrol route, but varied in the types and numbers of active sources 

in the environment. 

 

  Which Sources are Active 

Trial Name 
# of 

Trials 

Quiet 

Filter 
Filter 

Quiet 

Fountain 
Fountain 

Random 

Radio 

Location 

No Noise 4 N N N N N 

R 10 N N N N Y 

FT 5 N Y N N N 

Q-FL 4 Y N N N N 

FT 5 N N N Y N 

Q-FT 4 N N Y N N 

FT+R 10 N N N Y Y 

FT+FL 5 N Y N Y N 

Q-FT+FL 4 N Y Y N N 

FT+Q-FL 4 Y N N Y N 

Q-FT+Q-FL 2 Y N Y N N 

FT+FL+R 10 N Y N Y Y 
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 Once the robot had completed a single patrol through the environment, it then 

stopped to analyze the collected data using the algorithms described in the following 

sections for detecting and localizing new sound sources, and detecting changes to 

existing sound sources.  Overall, the goal of the robot is to identify what has changed 

from its prior knowledge of the configuration of the environment.  If, for example, the 

robot believed that nothing was active in the environment (a standard assumption for a 

unexplored auditory scene), then the robot should be able to detect when any of the 

sources are active.  In comparison, if the robot believed that only the filter was active, 

then the robot should be able to detect that the fountain had been enabled, or the filter 

sound had changed, or radio had been added to the environment.  Any changes to sources 

in the auditory scene should be detectable from the sampled data collected during a single 

patrol loop through the environment.  

For each of these tests, it is assumed that if something did change, it would still be 

active after the robot has completed a full patrol of the environment.  This allows the 

robot to complete the patrol, and then check data from the entire patrol for changes, 

before going back to investigate further using the investigation process described in 

Section 4.2.  Note that this final stage of investigation after identifying what specifically 

has changed in the environment, however, was not performed as part of these tests, as the 

focus was on detecting the change in the first place. 

5.2.4 DETECTING NEW SOURCES IN THE ENVIRONMENT 

The first problem confronting an acoustically-aware security robot monitoring the 

auditory scene is the detection of new sound sources in the environment.  Given a list of 
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sources that the robot believed were active at the beginning of the patrol route, can it 

determine whether or not any sources not on its list are currently active?  This includes 

both sound sources that the robot has not seen before, as well as sound sources that the 

robot simply believed were disabled.  By being able to detect new sound sources in the 

environment, a robot can, when confronted with a new sound source, request the 

assistance of a human security guard to determine what changed, or if an old sound 

source, simply update its model of the environment to include the changes to the auditory 

scene. 

The tool that an acoustically-aware robot can use best for this task is classification 

of mel-frequency cepstral coefficients (MFCCs).  At the beginning of each trial, the robot 

knew what set of sound sources it expected to hear in the environment and what the 

MFCC class vector was for each known source.  Furthermore, the robot also knew what it 

itself sounded like, having created an MFCC class vector to describe its own ego-noise.  

If there is a new source present in the environment, then an acoustically-aware robot 

should be able to determine that by using comparisons to source sound functions (i.e., 

class vectors). 

Over the course of patrolling the environment, however, the robot may pass 

through many noisy areas.  Some of these areas may belong to known, non-threatening 

sources, while others may belong to something new, which the robot needs to identify 

and investigate further.  Unfortunately, if there are several different sources in the 

environment, the number of samples indicating a new source may be relatively small 

compared to other previously investigated sources.  Furthermore, the mere presence of 

such samples is not always indicative of a new source, since such samples may merely 
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contain an extreme example of noise from a previously investigated source.  To 

overcome this problem, we need to look at the data in smaller portions.    

According to the investigations reported in Chapter 4, MFCC classification results 

are highly dependent on volume.  The higher the volume of the new source relative to 

other sources in the environment at the measurement point, the more likely it is that the 

sample will be classified as belonging to something new.  Therefore, a new source, rather 

than being indicated by a large number of overall samples, should instead be indicated by 

regions with a large number of unexpected or unclassified samples.  For this reason, 

searching for new sources needs to be done at short regular intervals (1-m) along the 

patrol route. The algorithm for identifying the presence of a new sound source is 

completed in the following steps: 

• Step 1 – Identify Regular Intervals 

Using the data collected from an entire patrol route, identify a series of 

locations 1-m apart along the robot patrol path.  These selected points 

serve as local, regular intervals at which new sources are searched for. 

• Step 2 – Classify Samples 

Classify all samples collected by the robot along the robot patrol path.  

Identify, in particular, which samples belong to known classes vs. 

unknown classes. 

• Step 3 – Find Percentage of Unknown Samples  

For each target point, identify the percentage of samples within a 2-m 

radius belonging to unknown classes.  This sample percentage indicates 

the likelihood of a new source occurring at this location in the 
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environment.  The 2-m radius is the same radius used for identifying 

directivity of a sound source, beyond which it was estimated (see Section 

4.2.2) that the reverberant field dominated the samples. 

• Step 4 – Find the Maximum Likelihood (ML) 

The maximum likelihood along the patrol route is the likelihood, overall, 

that a new source exists in the environment.  If any given location in the 

environment was recorded as containing more than 20% “new” source 

samples, then the patrol route was classified as containing a new source.  

The choice of 20% was determined experimentally for this environment 

from a 20-trial subset of the trials listed in Table 5.1. 

This maximum likelihood approach to identifying whether or not a new source 

existed in the environment had a 92% success rate classifying sessions with no new 

sources, and an 83% success rate at classifying sessions with one new source present.  

These results were averaged over all source configurations, including those with 0, 1, and 

2 known sources present in the environment.  Overall, the average success rate for 

classifying environments as containing or not containing sources using the maximum 

MFCC concentration approach was 86%.   

Table 5.2 presents the mean maximum likelihood of a new source being present, 

averaged across the trials by the type of source being detected by the robot.  Note that the 

total number of trials listed in this table is larger than 67, as some trials could be used 

more than once with different belief states.  For example, a trial where both the fountain 

and the filter were active, could be treated as a trial with no new sound source, a trial with 

a new fountain source, or a trial with a new filter source.  In testing this algorithm, we did 
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not examine any belief states where more than one new source was present in the 

environment. 

As expected, the identification success rate shown in Table 5.2 suggest that the 

sources which are detected the best by this algorithm are the constant noise, loud sources.  

If the source has been turned down in volume, then it can be hidden by robot noise, 

which averages 52-dB as recorded by the on-robot microphone array.  Similarly, the 

detection of the radio, which was not at constant volume, and placed at multiple locations 

throughout the environment, may have also suffered from loud robot ego-noise.  It would 

mask quieter parts of the music or make classification of distant sources (2-3 m away) 

more difficult. 

5.2.5 LOCALIZING NEW SOUND SOURCES IN THE ENVIRONMENT 

The second question that a robot monitoring the auditory scene can ask is where is 

the new sound source?  This can be used in conjunction with the previous step identifying 

that a new sound source is present in the environment, and/or other sensors distributed 

Table 5.2. The relative performance of using the proposed maximum likelihood approach 

for detecting each type of source in the environment as a new source. 

 

 
No New 

Source 
Radio Filter Fountain 

Quiet Filter 

Or Quiet 

Fountain 

# of Trials 24 30 10 10 16 

Mean Likelihood 

of Detecting a 

New Source 

8% 56% 65% 65% 49% 

Identification 

Success Rate 
92% 87% 100% 90% 75% 
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through the environment could provide the same information.  The goal, regardless of the 

specific sensors/algorithm used to identify that a new sound source exists in the 

environment, is to identify the most likely place for a new sound source to be located, so 

that a robot can focus future investigation on that area.  In this fashion, a robot is using its 

accumulated acoustic knowledge from previous tasks to guide affect its decision-making 

processes. 

 The tool that will be used for this task is auditory evidence grids, and in 

particular, the iterative clustering algorithm described in Section 4.2.1 for finding sound 

sources by creating additional auditory evidence grids using subsets of the collected data.  

There are two differences, however, between this scenario and the previous work in 

auditory evidence grids.  The first such difference is that the robot has available a priori 

knowledge about the sound sources and the sound functions that should be present in the 

environment.  We already used the sound function knowledge to good effect, identifying 

whether or not a sound source is present.  Knowledge of source locations can also be 

used to reduce the iterative process.  If the robot knows that there is supposed to be a 

fountain in the room, and it is looking for something other than a fountain, then it does 

not need to localize the fountain in the first map, and can exclude samples that point at it 

from the very beginning. 

The second difference between this scenario and the earlier work is that data 

collected here are relatively sparse, leading to a higher number of phantom peaks in the 

resulting evidence grid that need to be filtered out.  The reason for this greater number of 

phantom peaks is the increased influence of a single measurement on the auditory 

evidence grid.  Usually, a single loud reverberant sound produces a spatial likelihood that 
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has little influence on the overall result, so the largest cluster is typically also the correct 

position.  With smaller numbers of samples, however, a few reverberant samples pointing 

in the same direction may build a significant phantom peak.  Therefore, instead of only 

taking the largest cluster from the resulting evidence grid and calling it the new source 

location, we will instead select all clusters that have a minimum footprint in the auditory 

evidence grid of at least 0.5-m2 and then use the characteristics of these clusters to 

separate the real sound source location from the phantom peaks. 

Picking the Most Likely Location 

As discussed in Chapter 4, there is no single criterion for correctly identifying the 

new source location.  Instead, criteria such as cluster variance and the percentage of 

samples pointing at the cluster centroid give clues to the likelihood of the cluster 

containing a sound source.  The following sequence of steps illustrates the process for 

extracting each potential source location, and the properties we use to identify the most 

likely position of the source: 

• Step 1 – Build the Auditory Evidence Grid 

Identify the set of samples that do not point at a known sound source (see 

Iterative Clustering in Section 4.2.1) in the environment and build an 

evidence grid from those samples.   

• Step 2 – Extract all potential source locations 

Apply the clustering algorithm (Section 4.2.1) to the auditory evidence 

grid, and extract the centroids of all clusters that cover an area of more 

than 0.5-m2. 
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• Step 3 – Build new Auditory Evidence Grids for each potential location 

For each centroid extracted in the previous step, build a new auditory 

evidence grid using only those samples within a 3-m radius (the estimated 

sensing range) of the centroid. As before, only include those samples not 

pointing at a known source. 

• Step 4 – Extract cluster properties from the new grids 

From each of the new grids, identify: (1) the variance of the largest 

cluster, (2) the percentage of samples pointing at the largest cluster, and 

(3) the distance the largest cluster from the center of the retargeted grid. 

This sequence of steps identifies a series of locations, and step 4 presents the three 

criteria to be used in gauging the likelihood of the new source existing at each location.  

For each of these criteria, a range of values was determined over which the apparent 

cluster was of questionable reliability, difficult to identify as being a real source or not.  

Each range was determined empirically using a 20 trial subset of the trials listed in Table 

5.1.  Note that it is very likely that some of these ranges, most noticeably the cluster 

variance, would need adjusting for different microphone/sampling hardware.  The 

following list describes each of the criteria, and the range [Worst, Best] over which a 

potential cluster is of unknown likelihood: 

• Cluster variance     - [3,1] 

The best cluster variance was less than 1.  For steady state sources, such as 

the filter or the radio static used in Chapter 4, variance was usually less 

than 2 for the best cluster.  For unsteady state source, however, such as the 
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fountain or the radio-music, variance was commonly as large as 3.  

Anything larger was usually a phantom peak. 

• Sample Percentage   -  [20%, 60%] 

If less than 20% of the samples not pointing at a known source point at the 

detected cluster, then it is most likely reverberation.  A real source should 

dominate the remaining samples in the area. 

• New Cluster Distance  - [1.5-m, 0.5-m] 

If there are enough samples, then the source is usually localized to within 

0.5-m of its true location.  A moving robot, however, as revealed during 

the investigation testing in Chapter 4, can add a significant amount of 

noise to the process, especially when the source is far away.  If, however, 

the cluster is re-centered more than 1.5-m (the maximum localization error 

from Table 4.2) away after adding more samples, it is unlikely that the 

cluster correctly identifies a new source location and is more likely 

tracking a phantom peak due to reverberation. 

For each of these ranged criteria, we then constructed a linear mapping in the 

form of: 

where i refers to a particular criterion (cluster variance, sample percentage, new 

cluster distance), Fi is the probability of the cluster being a real location given a particular 

criterion, Ci,s is the value of criterion i for cluster s, Wi is the worst acceptable value for 
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that criterion, and Bi is the upper bound of the range for the ith criterion (i.e. Fi(Bi)=1).  

The likelihood of a cluster s being the real location is then: 

The cluster s with the maximum likelihood (L) is the most likely location in the 

environment for a new source to be present.  It is at this location that a robot should 

center further investigations. 

New Source Localization Results  

Before discussing the general results, let us focus first on localizing radio sources 

in the environment.  Since the radios were moved around to different locations, they 

provide the best comparative performance across environment types.  Table 5.3 presents 

specific results for different radio positions in the environment. 

For now, just looking at the performance of the likelihood model on these 30 trials, the 

location of the source was predicted within 1.5-m of the true value in 70% of the trials.  

An additional three trials were within 3-m.  Although 3-m is a large area, spatial 

likelihoods can detect sources up to 3-m away, and investigations (see Section 4.2.1) of a 

potential sound source location by a mobile robot cover regions of 2-m about the 

suspected source location.  Therefore, a robot investigating the suspected source location 

is very likely to discover the true location, and ultimately localize the source, when the 

result is within 3-m of the real position.  Across all trials, this likelihood model has a 70% 

chance of placing the robot within 1.5-m of the radio sound source, and an 80% chance of 

placing it within 3-m of the radio sound source in the environment. 
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Table 5.3.  Illustrates successes in detecting and localizing radios playing music, 

compared across different environment types.  (M) means that the robot did not localize 

the source within 1.5m, but that future investigations with a range of 3-m should correctly 

localize the source.   

 

 No Active Sources Fountain Active 
Fountain and Filter    

Active 

Radio Position Found? 
Distance 

(m) 
Found? 

Distance 

(m) 
Found? 

Distance 

(m) 

[ 5.2, 0.9] Y 0.6 M 1.7 N -- 

[-0.9, 2.4] Y 0.6 Y 0.3 Y 0.1 

[2.1, 3.4] Y 0.3 Y 0.2 Y 0.6 

[1.2, 1.8] N -- Y 0.3 M 2.5 

[4.6, 2.4] Y 0.4 N 4.9 Y 1.1 

[4.3, -2.4] Y 0.3 Y 0.4 N 7.6 

[0.9, 3] Y 0.3 N 4.9 Y 0.4 

[2.7, -3] Y 0.1 Y 0.5 N 5.8 

[4.0, -0.6] Y 0.5 Y 1.5 M 2.5 

[-2.4, 2.7] Y 0.3 Y 0.2 Y 0.8 

Success Rate 90%  80%  70%  

       

Mean Detected Source Error 

(m) 
0.4  0.6  1.1 

Mean Overall Error (m) 0.4  1.5  2.4 
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As expected, the performance of the likelihood model decreases with the number 

of active sources in the environment.  With an increased number of sources there is a 

larger amount of interference from the environment, and therefore, localization should be 

harder.  For trials with no sources active in the environment, the average error is 0.4-m.  

With one source, the average distance error is 1.5-m, and with two sources, 2.4-m.  

Presumably, even larger numbers of sources would have an even larger error, which may 

need to be offset by pausing the robot while sampling, or simply taking longer to patrol 

the environment. 

In addition to the likelihood model used for localizing sources in the environment, 

we also described in the previous section an algorithm for predicting whether or not a 

new source even existed in the environment using MFCC’s.  The idea is that the robot 

would first estimate whether or not a new sound source was present in the environment, 

and then use auditory evidence grids to localize the new sound source.  That earlier 

source detection algorithm had an overall accuracy of 92%, but tended towards more 

false negatives than false positives, making for an accuracy of 87% in correctly 

classifying environments as containing a new sound source.  Unfortunately, the trials 

where the source detection algorithm failed were not usually the same as the trials where 

the source localization algorithm failed.  And efforts so far to combine the different 

algorithms have proven unsuccessful.  In Table 5.4, the source detection, source 

localization, and combined accuracy are compared across the types of sources being 

localized.    
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Table 5.4.  Performance of both the detection (Section 5.2.4) and localization 

algorithms for environments with at least one new sound source present.  Results are 

compared across the type of source being localized.  Note that mean distance only 

includes those trials where the robot identified at least one location as likely to contain 

a new sound source. 

 

   Accuracy 

New 

Source 

Type 

# of 

Trials 

Mean 

Error 

New Source 

Detection 

Source 

Localization 
Combined 

Filter 10 0.9-m 100% 100% 100% 

Fountain 10 0.7-m 90% 100% 90% 

Quiet 

Filter 

or 

Fountain 

16 1.1-m 75% 75% 69% 

Radio 30 1.4-m 87% 80% 70% 

Total 66 1.0-m 86% 85% 76% 
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From this table, we can see that, similar to the noise detection algorithm, the 

source localization algorithm works best with constant medium to loud volume sources.  

This is only natural, as they provide more data from which to be localized.  95% of the 

filter and fountain sources were not only detected in the environment, but also localized 

correctly from a single patrol’s data.   

Radios, which are loud, but not as constant in volume, were also localized 

relatively well (80%) as they were generally loud enough to be detected over other 

sounds in the environment.  Radios in earlier trials (see Chapter 4), which remained 

stationary, were generally localized better than in this trial.  This time, however, there 

were more sources located in the environment, and the radio was moved around the room 

to stress the localization performance.  When combined with the new source detection 

algorithm (Section 5.2.4), however, the combined accuracy suffered significantly.  

Although each algorithm had an accuracy of 80% or more, there was only a single trial 

that both algorithms failed, resulting in a combined accuracy of 70%. 

Localizing quiet sources resulted in the largest number of failures.  Of these 

failures, only one actually placed the sound source in the wrong location.  The others all 

failed to identify any clusters in the environment besides the known sound sources, hence 

the reason why the mean localization error is not too high.  When the source being 

localized in the environment is not much louder than the robot, or the reverberant field in 

general, these are the types of results that we would expect to see.  Even though auditory 

evidence grids are designed to mitigate the masking effects of robot ego-noise, the signal 

still needs to be loud enough to be heard over other ambient noise in the environment. 
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5.2.6 USING MFCC’S TO DETECT ENVIRONMENTAL CHANGES 

The third problem facing a robot trying to maintain a list of active sources in the 

environment is change to existing sources.  While the addition of a new sound source to 

the environment, and its localization, has already been discussed in the previous two 

sections, sources that the robot already knows about the environment can change as well.  

For instance, a sound source can be turned off, in which case it should be removed from 

the list of active sources.  Alternatively, a sound source can simply change its volume or 

its sound function.  Besides wanting to know these changes in order to improve the 

accuracy of predicted noise models, changes such as these could indicate possible 

security concerns of their own.  A computer with an altered sound function could indicate 

that someone is illicitly accessing the data on that computer, or suggest that a hardware 

failure is imminent and that the computer needs to be turned off before data is irreparably 

lost.  Whether there is anything actually wrong, or the source has simply changed, a robot 

can detect this, updates its models of the environment, and alert a human supervisor to 

the changes.   

The key to detecting any types of changes to the environment is a maintained 

belief state about the auditory scene.  Without any prior knowledge of the auditory scene, 

even the new source detection and localization algorithms would be impossible, as 

everything would be new to the robot. In this section, we demonstrate that by adding to 

this belief state only a little bit more information about the volumes and directivity of 

those sound sources, the robot can also identify changes to sound sources believed to be 

active in the environment.  Determining exactly what has changed may be rather difficult, 

but detecting that a change has occurred, and therefore directing the robot to re-
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investigate the environment can be done reliably using the information an acoustically-

aware robot can gather about the auditory scene. 

Predicting MFCC Classification Results 

In Chapter 4, we presented the results of a simple scenario in which the predicted 

volume difference between sound sources was compared to the measured difference 

between MFCC classification results.  In general, a predicted difference of greater than 2-

dB always indicated the correct source by a large margin. For a predicted difference of 

less than 2-dB, however, the result was more ambiguous.  Usually, the louder source was 

had a higher percentage of samples classified as belonging to its sound function, but there 

were exceptions.  Even though the result is not certain,  these results do suggest that the 

relative volume of a sound source may be directly related to the number of samples 

classified as belonging to that same source.  Therefore, noise maps may be useful in 

determining change to the environment. 

In the following sequence of steps, we use a noise map to do just that, predict the 

relative number of samples that should be detected as belonging to each class.  This 

information is determined first locally for particular positions along the robot’s path 

through the environment, and then normalized across all of the positions the robot visited 

while traveling through the environment: 

• Step 1 – Build noise maps 

Build a noise map of the direct field for each of the known sources in the 

environment. 
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• Step 2 – Identify volume differences between sources 

Calculate the difference in volume (∆Vi,j) between all sources (i,j) for 

location (x,y). 

( ) ( ) ( )yxVyxVyxV ijji ,,,, −=∆  Equation 5.3 

• Step 3 – Estimate the probability of being detected. 

For each sampled location, estimate the probability of this source (i) being 

heard over every other source (j) in the environment (Ci,j) 
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Eq. 5.4 

This simple linear scale relates the chances of being heard over another 

source to the volume difference between sources.  If the difference in 

sources is greater than 3-dB, then it is assumed that the quieter source will 

not be heard at all over the louder source.  If, however, the difference is 

less than 3-dB, then the chance of being detected varies linearly with the 

difference in volume.   

• Step 4 – Combine probabilities across all sources. 

Assuming that the probability of each source being heard over another 

source (Ci,j) is independent, the probability of a single source being 

detected across all other sources at a given location is estimated by using 

multiplication: 

( ) ( )∏=
j
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Equation 5.5 
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• Step 5 – Combine probabilities across all locations 

To take the local information from each sample position, and build a 

global likelihood estimate, we will sum the results and normalize.  First, 

for each source, sum up the chances of being detected across all sampled 

locations in the environment (x,y) 

( )yxWT
x y

ii ,∑∑=

 
Equation 5.6 

• Step 6 – Normalize. 

Normalize the results across all sources (and all positions) to estimate the 

percentage of samples that belong to each active sound function in the 

environment if nothing has changed: 

∑
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Equation 5.7 

This sequence of steps is designed to estimate what the robot should have 

measured if the environment was unchanged.  It is based on the hypothesis that volume 

differences between sound sources, as predicted by the sound propagation framework, are 

linearly related to the probability of classifying a recorded sample as belonging to a 

particular source.  The louder the sound source at a particular location, the more likely 

that the resulting MFCC classification vector should be closest to that sound source’s 

function than any other in the environment.  The louder the sound source is overall, the 

larger the percentage of samples that should be classified as belonging to that sound 

source across the entire route traveled by the robot.  The choice of linear relationship is 

due to the fact that the pressure of the sound wave, the unit measured by the microphone, 

decays linearly with the distance from the sound source. 
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Determining Change 

After finishing the patrol route, classifying all of the data, and making a 

prediction of what the robot should have heard if nothing had changed, we have two 

values for each known source in the environment: (1) the predicted percentage of samples 

(Pi) classified as belonging to source i, and (2) the measured percentage of samples (Mi) 

classified as belonging to source i.  To compare the predicted and measured results, we 

use a form of Bayesian updating [Thrun 2002]. 
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Equation 5.8 

Where Li is the likelihood of any given source’s distribution having changed, 

range restricted to [0.01, 0.9], and LC is the resulting combined likelihood of one or more 

sources having changed in the environment.  Note that the choice of range restrictions 

was made to prevent weak sources from dominating the equation.  As weak sources can 

change significantly, often not appearing in the data at all, their associated likelihood of 

change can quickly approach 100%.  While we need to include these effects in the 

calculation, it is important to make certain that a source that was predicted to occur in 

only 5% of the samples does not dominate the result. 

Results – Did the Environment Change? 

In these trials, we are looking only at situations where either the sources are the 

same, a source (filter or fountain) has been turned off, or a source has been turned down 
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in volume.  Given the prediction and comparison measures from the previous trials, how 

well could the robot identify that the environment had changed? 

There were a total of 37 trials that could be used for this work, 4 of which 

contained no active source, 18 of which contained only 1 active source, and 15 of which 

contained 2 active sources.  For evaluation purposes, some of these trials were used with 

multiple belief states to test for different types of changes.  Table 5.5 lists the specific 

trials tested, and the different belief states that could be used with each. 

• No Active Source 

Used with three different belief states: (1) filter active, (2) fountain active, 

and (3) filter and fountain active.  In all cases, the result should be that no 

source is active. 

Table 5.5. Summary of belief states used for each patrol run through the environment. 

 

  Belief States 

Actual State 
# of 

Trials 
Filter Fountain 

Filter + 

Fountain 

No Sources 4 X X X 

Filter Active 5 X  X 

Quiet Filter 4 X  X 

Fountain Active 5  X X 

Quiet Fountain 4  X X 

Filter and Fountain 5 X X X 

Quiet Filter + Fountain 4   X 

Filter + Quiet Fountain 4   X 

Quiet Filter + Quiet 

Fountain 
2   X 
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• Filter Active 

Used with two different belief states: (1) filter active, and (2) filter and 

fountain active.  In the first case, there should be no detected change to the 

environment.  In the second case, it should be detected that the fountain 

has changed. 

• Quiet Filter Active 

Used with two different belief states: (1) filter active, and (2) filter and 

fountain active.  In the first case, it should be detected that the filter has 

changed.  In the second case, both sources have changed, but the fountain 

should have changed the most. 

• Fountain Active 

Used with two different belief states: (1) fountain active, and (2) filter and 

fountain active.  In the first case, there should be no detected change to the 

environment.  In the second case, it should be detected that the filter has 

changed. 

• Quiet Fountain Active 

Used with two different belief states: (1) fountain active, and (2) filter and 

fountain active.  In the first case, it should be detected that the fountain has 

changed.  In the second case, both sources have changed, but the filter 

should have changed the most. 

• Filter + Fountain 

Used with one belief state, filter and fountain active.  No changes should 

be detected. 
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• Quiet Filter + Fountain 

Used with one belief state, filter and fountain active.  The filter should be 

detected as having changed. 

• Filter + Quiet Fountain 

Used with one belief state, filter and fountain active.  The fountain should 

be detected as having changed. 

• Quiet Filter + Quiet Fountain 

Used with one belief state, filter and fountain active.  Which source has 

changed the most is uncertain. 

In Table 5.6, the likelihood of a change being present in the environment (LC), as 

determined by Equation 5.8, is compared to the number of actual changes in the 

environment.  In theory, assuming that the MFCC classification results can be related to 

the predicted direct field volumes (as suggested by Section 4.2.4), and the proposed 

algorithm for predicting the MFCC classification results (Equations 5.3-5.7) is correct, 

Table 5.6.  Results of the source change detection algorithm, compared across different 

numbers of changes in the environment. 

 

 All Trials Discarding Outliers 

 
# of 

Trials 

Mean 

Likelihood 

of Change 

Standard 

Deviation 

# of 

Trials 

Mean 

Likelihood 

of Change 

Standard 

Deviation 

No Change 15 0.31 0.37 11 0.11 0.12 

1 Change 28 0.64 0.33 24 0.61 0.33 

2 Changes 15 0.97 0.05 13 0.97 0.05 
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then the likelihood of change value should increase with the number of changes in the 

environment. 

According to this table the mean likelihood of change does increase significantly 

with each additional source having changed in the environment.  Unfortunately, the 

standard deviation is particularly high, meaning that, while there still appears to be a 

trend, it is difficult to identify changes due to the wide range of variation. 

Taking a closer look at the scenarios, however, allows us to identify and discard 

some outliers.  In particular, 8 trials had results where the percentage of samples 

classified as being dominated by robot ego-noise was significantly less than some other 

source (<1.5 times another source).  Given the close proximity of the robot motors and 

wheels to the microphones mounted on its back, ambient noise sources that are only 10-

15 dB louder than the robot, and a route through the environment that gets the robot away 

from active sources for significant periods of time, the robot should be one of the most 

detected sources in the environment.  When it is not, this suggests that either another 

environmental source (besides the tested sources) is interfering with data collection, or 

that the robot’s own sound function has changed.  The latter case is particularly suspect, 

because different types of movement generate wheel noise for which no sound function 

model was available.  Furthermore, additional fans on the robot could turn on and off to 

discard excess heat, changing the sound function in the process. 

By discarding these 8 faulty trials from the results (2 Filter, 2 Filter + Fountain, 1 

Quiet Fountain, 1 Quiet Filter, and 2 Filter + Quiet Fountain), we can see a large drop in 

both the mean and standard deviation of the unchanged environment condition.  Now 

there is a significant enough separation between categories of change to identify, with 
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some certainty, whether or not something in the environment is different from what the 

robot believes. 

Discussion – Identifying What Changed 

The previous results indicate that there is a significant separation between no-

change, 1-change, and 2-change, therefore a robot should be able to identify that the 

auditory scene has changed somehow.  That alone is enough to alert a security guard to 

the altered situation, but is not very significant if the change is relatively minor.  For 

instance, did the filter (think HVAC) simply turn itself off?  If so, then the robot should 

ideally just update its current belief state to reflect any changes to the environment and 

proceed on to the next task.   

Unfortunately, the determination of exactly what changed is not completely 

straightforward.  Below we discuss three different approaches, two of which require 

further information to determine what changed: 

• Using Likelihood of Change 

The obvious strategy for determining source change would be to use the 

likelihoods calculated in the previous section (Li, Eq 5-8), taking the 

source with the highest percentage change as the most likely source.  For 

this series of testing, this strategy is actually accurate 78% of the time for 

environments with only 1 changed (quieted or disabled) source.  

Environments with changes to 2 sources (10 trials, Filter+Fountain belief 

state), however, only successfully predict which source was disabled in 

50% of the trials.  Unfortunately, this approach to determining what 
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changed is naïve.  The likelihoods calculated earlier do not reflect the 

delta change of percentage, but rather they estimate the delta volume 

change.  Therefore, when a source decreases by some delta percent, the 

other sources in the environment absorb that change, increasing their own 

relative percentage of the samples, and vice versa.  For example, let us 

assume that the collected samples for a normal environment contain 10% 

filter, 40% fountain, and 50% robot.  Now let us assume that the fountain 

decreases in volume substantially.  A plausible new distribution might be 

30% filter, 15% fountain, and 55% robot.  Using our predictive model, the 

delta change for the fountain is 63%, but the delta change for the filter is 

200%.  Which one changed?  In truth, our likelihood model is measuring, 

not the likelihood of the source changing, but rather, the likelihood of the 

distribution having changed.   

• Informed of environmental volume change 

If we know how the volume of the environment changed (i.e. did it go up 

or down), then the tools presented earlier may still be useful for 

determining which source changed.  For instance, if the environment is 

known to have become quieter, then we can look at how each source has 

changed, separating sources that went up in measured classification 

percentage from those that went down.  Only sources that become quieter 

should be considered for further investigation.   
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• With Known Source Models 

The third approach to determining what changed does not require the 

previous likelihood estimates.  Instead, it requires knowing something 

about the source functions for active sound sources in the environment.  In 

this scenario, let us assume that our active sources in the environment are 

only capable of being turned on/off.  Now, auditory evidence grids can be 

used to search for disabled sources in the environment.  By building an 

evidence grid centered on each source location, and then using the criteria 

specified previously for localizing “new” sources, a robot can identify 

inactive sources as sources where there is a 0% chance of there being a 

sound source at the proper location.  Looking at just those trials with one 

active source, including those where the active source was quiet, patrol 

data correctly indicated the disabled source in 87% of the trials (14 out of 

16).  In the two trials where this method failed, it actually suggested that 

both sources had been disabled, when in fact the second source had only 

been quieted.  This confusion could be resolved by further investigation. 

In general, the problem of identifying exactly what changed in the environment is 

still an open question, as it requires more knowledge of how the environment has 

changed.  Did the environment get louder/softer?  Was one of the ambient noise sources 

turned off?  Theoretically, the robot should be able to answer these questions using sound 

pressure level measurements of the reverberant field, or MFCC classification results that 

fail to detect a missing source.  In practice, however, the accuracy required for either of 

these operations is not yet available on the robot.  Localization error, combined with 
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changes in robotic movement, causes the average volume of a patrol route for the same 

environment to vary by several decibels.  Similarly, classification using MFCCs can 

sometimes classify small numbers of samples as belonging to a disabled source.  

Therefore, using noise maps, a robot can identify that something has changed, but 

without further knowledge or effort by the robot, it cannot yet reliably identify what 

changed.  

5.2.7 SUMMARY OF ACOUSTIC MONITORING PERFORMANCE 

The focus of this work in monitoring the environment was to identify the 

likelihood of specific changes that may have happened to the environment.  After 

completing a patrol route, the robot can use its knowledge of what the environment 

sounded like in previous runs to recognize when known sources have changed, new 

sources are enabled, and where new sources might be located.  Furthermore, the accuracy 

for each of these actions runs 80-90% for a variety of different sources common to indoor 

environments.  This is good for a first pass through the environment.  Given that many of 

these failure cases are likely due to robotic error, as demonstrated in Section 5.2.6, a 

second pass through the environment is likely to improve the accuracy rate even further. 

There are at least two improvements, however, that have yet to worked into this 

algorithmic solution, and which may improve overall accuracy.  The first such 

improvement is combining the algorithms together into a single cohesive tool for 

recognizing, and categorizing change.  As of now, MFCCs are generally used for 

detecting that something has changed across the entire range of the robot’s patrol route, 

be it a new source or a change to an existing source.  Auditory evidence grids, in contrast, 
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are used for location dependent searches, including localizing new sound sources in the 

environment, and determining whether a sound source at a specific location is still active.  

Still, there is overlap in the tasks, as demonstrated by having to first detect that a new 

source is enabled before localizing it, or recognizing that something in the environment 

has changed before determining which source was enabled.  Furthermore, results from 

Section 5.2.2 (new source localization) also suggest that the different tools have different 

strengths and weaknesses, having similar accuracy, but failing on different trials.  

Therefore, future work should concentrate on combining these tools probabilistically to 

improve accuracy in monitoring the environment. 

The second improvement is likely related to the first.  It is the inclusion of real-

time data analysis and dynamic path planning.  In the current implementation, the robot 

finishes patrolling the environment before analyzing the collected data and deciding on 

its next action.  This implementation, however, has some significant disadvantages.  The 

first such disadvantage is reaction time.  If the change to the environment is time 

sensitive (i.e. likely to disappear, or otherwise needing immediate action), then 

processing the data after completing the patrol could be too late.  Another problem is it 

may be difficult to expand the current implementation out to significantly larger areas.  

With a significantly larger environment, both the new source localization (Section 5.2.5) 

and change detection (Section 5.2.6) algorithms, which compare data across the entire 

patrol run, would require significantly larger changes to the environment in order to 

work.  If, however, the robot was processing data in real-time (which may require the 

higher accuracy of a combined MFCC and auditory evidence grid), then it could detect 

that some area of the environment was suspicious while it was still in the area, and 
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dynamically readjust its movement to investigate that area.  For example, if data collected 

thus far indicates that a source may have changed, the robot can slow down its movement 

to collect more data, or actively investigate the source.  Similarly, unexpected regions of 

“new” sound samples can be at least partially investigated, so as to better discard them 

later if better data should occur.  In general, working with local subsets of the data in 

real-time should allow the robot to accurately monitor larger areas, and respond quicker 

to changes in the auditory scene. 

5.3 IMPROVING THE SIGNAL-TO-NOISE RATIO 

The previous work demonstrated some significant advantages in using knowledge 

of sound flow to monitor the auditory scene.  What it lacked, however, was an influence 

over the robot’s navigation while patrolling the environment. If the robot is seeking a 

particular type of noise in the environment, then maybe it should avoid known, 

predictable sources of sound that will only mask the signal it is searching for?  

Alternatively, if the robot detects something odd about the area through which it is 

traveling, the robot could slow down and/or change its movement pattern to gather more 

data in the vicinity.  Being able to make high-level decisions about further investigations 

after completing the patrol is important, but so is adapting performance while the robot is 

gathering data. 

In this section, we will try to improve on the surveillance problem by limiting the 

exposure of the robot to ambient noise, thereby increasing its signal-to-noise (SNR) ratio.   

We know from the acoustic monitoring scenario (Section 5.2) that a robot is capable of 

monitoring the auditory scene with some degree of reliability.  The robot can determine 
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when existing sources have been activated, deactivated, or changed.  The robot can also 

detect new sources, and investigate them using the suite of tools provided in Chapter 4.  

Using its knowledge of the current auditory scene, the next step is to further enhance the 

listening capabilities of the robot by avoiding those known noise sources in the first 

place, improving its chances of detecting shorter duration noises from the ambient that 

are of great importance to a surveillance operation. 

The experiments performed in this section can be divided into two parts.  In the 

first part, originally presented at Human-Robot Interaction 2007 [Martinson and Brock 

2007], the robot is placed in an initially poor acoustic location and tasked with improving 

its signal-to-noise ratio using either a noise map or a reactive avoidance behavior.  In the 

second part, presented in Section 5.3.2, the robot is performing the patrol mission 

described in the acoustic monitoring task (Section 5.2.2), only adapting its route to limit 

its exposure to ambient noise.  Both of the experiments were originally proposed in the 

noise mapping paper presented at Mobile Robots XVII [Martinson and Arkin 2004].  The 

preliminary results presented in that paper, however, have since been explored in more 

depth with different robotic hardware and different environments. 

5.3.1 CORRECTING FOR A POOR INITIAL ACOUSTIC LOCATION 

While the patrol scenario discussed in Section 5.2.2 uses a robot that is constantly 

moving through the environment, there is also a need for a less active observational 

approach in many robot scenarios.  Sometimes the robot is designed to gather information 

over time rather than space, waiting for long periods in one location for something to 

happen.  For instance, continuing with the general theme of robot assisted security, let’s 
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say the police are trying to counter a string of break-ins over a well-to-do neighborhood.  

They deploy a number of small robots throughout the affected area to observe the 

environment and report back any problems to on-duty officers.  These robots, unlike 

those used for patrolling a building or other large area, are designed to remain largely 

where they have been deployed.  However, since the auditory scene may change 

significantly from the initial time of deployment  (air conditioners may activate, people 

may be having parties, sprinklers/fountains may be running, etc.), the robots are still a 

significant improvement over a fully stationary sensor.  When the auditory scene changes 

non-threateningly, a robotic sensor cannot only move away from the source, but also 

predict where to move so as to reduce its ambient noise exposure and more effectively 

monitor the surrounding environment.  

An Avoidance Response 

In response to a changing auditory scene, there are at least two types of actions 

that a robot aware of sound flow through the environment can take.  The first such action 

is a simple avoidance reaction.  Since loudness diminishes with distance from a source, 

the robot can decrease its exposure to a source of ambient noise by moving as far away 

from it as possible, while remaining within a specified area.  This can be done easiest in a 

reactive fashion by measuring the direction of maximum ambient noise energy on the 

robot, and moving in the opposite direction.  Work by Barbara Webb [Webb 1998] did 

something similar, except that instead of avoiding the noise, her phonotaxis behaviors 

moved the robots towards the sound.  The drawback to a purely reactive approach is, of 

course, local minima.  Obstacles in the surrounding environment can prevent the robot 
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from moving far enough away from the sound source, even if there are better locations 

from which the robot can listen to the ambient noise on the other side of the obstacle.  

Therefore, since our robots have maps of the environment available to them already, in 

addition to simple source localization tools, we expanded this approach to include the use 

of an obstacle map and path planning.  The algorithm for the avoidance response is as 

follows: 

• Step 1 – Identify source direction 

Using spatial likelihoods, determine the most likely angle to the sound 

source.  Appendix B.1 has more details on identifying the best angle from 

a spatial likelihood. 

• Step 2 – Localize the source 

Assuming an initial source position 1-m from the robot, move for a short 

distance while sampling tangentially to the source.  Create an auditory 

evidence grid from the samples to actually localize the sound source 

• Step 3 – Identify a better location 

Making use of the obstacle map, the robot identifies the set of reachable 

locations, and picks the farthest reachable location away from the 

estimated source position.  Appendix C.1 describes in more detail how to 

pick a reachable location from an obstacle map of the environment. 

• Step 4 – Move the robot 

Move the robot to that location using a path-planning algorithm. 
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In Figure 5.4, the dashed line shows how the robot moves to avoid the sound 

source  (red 4-pointed star) by picking the farthest reachable location, and moving around 

obstacles to reach its goal. 

An Informed Response 

The trouble with the farthest-distance-removed approach is that there might be 

additional sound sources on the other side of the room opposite the newly interfering 

sound source.  Therefore, by simply picking the farthest location away from the present 

sound source the robot may not actually be decreasing its noise exposure.  Using the tools 

in Chapter 4, however, an acoustically-aware robot might already have knowledge of 

these other ambient noise sources in the environment.  Instead of simply reacting to the 

one newly detected source, an alternative, knowledge-based response makes use of the 

 

Figure 5.4. Graphical comparison of different relocation strategies the robot can 

use to to avoid a sound source when correcting for a poor initial acoustic location.  

It can simply move as far away as possible (dashed line), or it can take into 

account ambient noise sources (5-pointed stars) when picking a new location.  

The latter choice has the robot avoiding the largest of the ambient noise sources at 

the bottom of the map. 
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mathematical framework proposed in Chapter 3.  Using the information the robot already 

knows about the environment and the sound sources within it, the robot can predict what 

its ambient noise exposure should be at any location in the environment due to the 

combined effects of all known sound sources.  The noise map it creates now provides a 

guide from which the robot can pick the quietest remaining location in the environment, 

and move to that goal using a path-planning algorithm.   

The algorithm for this informed response to changes in the auditory scene is as 

follows: 

• Step 1 – Estimate volume 

Measure the volume of the source from the current location, averaging the 

sampled data results over 10-sec.  Appendix B.7 describes how to estimate 

the sound pressure level from a single sample. 

• Step 2 – Identify source direction 

Use spatial likelihood results to determine the most likely angle to the 

sound source.   

• Step 3 – Localize the source 

Assuming an initial source position 1-m from the robot, move for a short 

distance while sampling tangentially to the source.  Create an auditory 

evidence grid from the samples to actually localize the sound source 

• Step 3 – Map the noise 

Create a noise map of the environment using the positions and estimated 

volumes of all known sound sources, including the sound source just 

detected and measured.  In this work, all of the sound sources used a 
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simplified omni-directional source model to estimate sound flow, and only 

the direct field was estimated.  Appendix B.5 has more detail on creating 

maps of the direct field. 

• Step 3 – Identify a better location 

Making use of the obstacle map, the robot identifies the set of reachable 

locations.  Then, instead of picking the farthest reachable location away 

from the estimated source position, the robot uses its predicted noise map 

to pick the quietest location. 

• Step 4 – Move the robot 

Move the robot to that location using a path-planning algorithm. 

In Figure 5.4, the solid line demonstrates the difference between the path of the 

robot using this informed algorithm versus the farthest distance response discussed 

previously.  Where the previous algorithm places the robot relatively close to a known 

ambient noise source (blue 5-pointed star), the informed approach to relocating the sensor 

places the robot in the middle of the room where it is least affected by the direct fields of 

any sound source, and is subject primarily to only reverberant effects. 

Results 

The testing of these different avoidance strategies was performed at the Navy 

Center for Applied Research in Artificial Intelligence, on the Naval Research Laboratory 

campus.  The robot used for these tests was the B-21r used in much of the auditory 

evidence grid testing described in Chapter 4.   
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The auditory scene affecting the robot in these tests can be seen in Figure 5.5.  

Three ambient noise sources, represented by blue 5-pointed stars were always active in 

the surrounding environment.  The ambient noise source at the bottom of the lab was the 

loudest, being caused by 10+ robots idling up against the wall.  Their combined effects 

were 59dB of pink fan noise.  The other two significant ambient noise sources were 

network switches with internal fans generating 52 and 54 dB of noise.  The ideal omni-

directional noise map created from these three sources is shown in Figure 5.6. 

The other three objects in the auditory scene (red 4-pointed stars) were music 

sources, each averaging 60-65dB over the course of the music played.  For a single test, 

the robot would start near a single enabled music source (the other two music sources 

would be off), detect that source, and then move to another location using one of the two  

 

Figure 5.5. Positions of the 3 different ambient noise sources and radios within the 

testing environment for improving a poor initial acoustic location.  The patterned 

region in the upper right corner indicates the area that the robot moves to while 

avoiding sources 1 and 2. 
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Figure 5.6. Predicted noise map of the poor initial acoustic location testing area modeling 

the effects of the three ambient noise sources on the auditory scene.  This map assumes 

that each source is omni-directional. 

 
 

 

 

Table 5.7. Average reduction in noise levels using different relocation 

strategies to avoid music sources 

 

 Farthest Distance Informed Decision  

Source 1 -9dB -10dB 

Source 2 -13dB -12dB 

Source 3 -2dB -5dB 
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possible relocation strategies.  This test was repeated five times for each of the music 

sources and relocation strategies, for a total of 30 runs.  Table 5.7 shows the average 

improvement in the auditory scene while avoiding each of the three sources. 

The results demonstrate the benefit of avoiding sources and the difference in 

relocation strategies.  To avoid the first two music sources, both relocation strategies led 

to similar final positions in the quietest part of the room (the upper right in Figure 5-7), 

resulting in comparable performance improvements. The relocation strategies selected 

notably different final positions, though, to avoid the third music source, which was 

located in the quiet area both strategies selected to avoid the first two music sources 

(again, the upper right in Figure 5.5).  With that part of the room now filled with noise, 

the robot was not able to demonstrate as much of a drop in average noise levels as the 

other scenarios.  However, the farthest distance strategy sent the robot to one of the fan 

sources where noise levels were only slightly less than the original position (the dashed-

line path in Figure 5.4).  The informed decision strategy resulted in a location closer to 

the middle of the room where the robot the robot had 3-dB advantage over the 

uninformed relocation strategy. 

Discussion of Relocation Effectiveness 

The goal of the relocation work was to test the effectiveness of different strategies 

for improving the signal-to-noise ratio recorded by the robot.  As expected, the most 

informed strategy for relocating the robot was the most effective overall.  If the robot 

knows about all of the significant sources of sound in the environment, then it can avoid 

selecting and moving into areas of loud ambient noise that the farthest-distance away 
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approach might fall into.  Furthermore, although not tested here, a well-informed path-

planning algorithm will have similar advantages over a purely reactive strategy.  

Although simply moving away from the loudest direction might also avoid other ambient 

noise sources, the reactive strategy could fall into areas of local minima when an 

obstacle, or other ambient noise source blocks its path to the quieter areas of the room. 

In general, however, the improvement of the informed path-planning algorithm 

over the less informed, but possibly simpler alternatives, is going to vary dramatically 

between environments.  As can be seen from the first two source results, the farthest-

distance away approach could still demonstrate a 10-dB or better decrease in ambient 

noise when the robot did not end up next to a loud ambient noise source.  If the 

environment being observed by the robot is relatively benign acoustically (i.e., few 

significant ambient noise sources), then the chances of the robot ending up in another 

poor acoustic location after relocating are small.  So if this scarcity of sources is known 

prior to the robots deployment, then the designer may not want to worry about tracking 

existing sources in the environment. 

For an unknown environment, however, there is yet another option to those 

previously discussed, an uninformed, but knowledge-based response.  In the tests already 

completed in this section, it was assumed that for the informed path selection, the robot 

had already explored the environment and identified active ambient noise sources that it 

should avoid in the future.  If, however, the robot does not have the time or power to 

explore the environment ahead of time, the framework will still work with the partial 

information available to it.  For the first relocation, it should perform comparably to the 

farthest-distance away metric.  If the robot ends up in yet another poor acoustic location, 
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however, then a new source can be added to the list of known sources and the robot can 

identify yet another location to try and improve its SNR, repeating as necessary.  The 

final result is comparable to an avoid past behavior [Balch 1993], only it incorporates the 

nature of sound propagation into the algorithm. 

5.3.2 IMPROVING SNR WHILE PATROLLING THE ENVIRONMENT 

The second set of experiments in improving the signal-to-noise ratio evaluated the 

performance of a moving robot.  We know from the previous section (Section 5.3.1) that 

the robot is capable of improving a singular position by being acoustically-aware, but, as 

demonstrated from the earlier patrol scenario, many applications may not involve the 

robot stopping to listen to the environment, at least not at first.  Patrolling the 

environment, for instance, often requires that the robot complete its patrol in a certain 

amount of time.  The robot can certainly stop and investigate once in awhile, but stopping 

every few meters to listen to the soundscape may take too long. Therefore, our second 

round of testing was designed to demonstrate an improvement in SNR while the robot 

was constantly moving throughout the environment.  This is significant because while 

moving around a mapped sound source, the robot could actually introduce more noise 

than what is gained by avoiding the source.  The new noise could be excessive wheel 

noise generated by the robot following a gradient, or other noise not accurately 

represented on the map.   

For this second round of SNR testing, we will be using the same obstacle map as 

for the acoustic monitoring task.  Seen in Figure 5.7, a radio is located on the obstacle in 

the middle room, generating static noise in a cardioid pattern to the left at 67dBA.  The 
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filter used in the acoustic monitoring task is located in the same place as before, 

generating noise at 55 dbA.  In the base case, the robot follows the same patrol route as 

used in the acoustic monitoring task, while in the noise avoiding case, the patrol route is 

revised to avoid areas of excessive noise. 

Revised Patrol Task 

For the acoustic monitoring task, the purpose of patrolling the environment was to 

identify new sound sources.  Therefore, when picking a patrol route through the 

environment, the most important characteristic of the chosen route was that the robot 

passed close enough to all areas of the environment likely to contain a new sound source.  

In this new set of experiments, we are trying to improve the signal-to-noise ratio of the 

robot by changing the path that the robot follows through the environment.  So that any 

 

Figure 5.7. Environment for testing the improved SNR 

movement strategies.  This is the same environment as the 

acoustic monitoring task, only a radio generating static 

noise replaces the fountain in the middle of the room. 
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performance improvements can be integrated back into the acoustic monitoring task, the 

basic algorithm for selecting a patrol path through the environment that was presented in 

Section 5.2.1 is also used in these scenarios, only adapted to take ambient noise levels 

into account when choosing a path through the environment.  The adapted algorithm is as 

follows (details appear in Appendix C.2):  

• Step 1 - Use the obstacle map to identify areas reachable by the robot. 

• Step 2 – Divide the reachable area of the map into discrete grid-cells. 

• Step 3 - Pick a target within each grid cell. 

This is where the first difference between the original algorithm and the 

adaptive algorithm occurs.  Instead of picking a location closest to the 

center, the robot uses its noise map to pick the location with the lowest 

expected ambient noise within each grid cell.   In the event of a tie, the 

robot selects the location closest to the center of the grid cell.  This aware 

strategy is described in more detail in Appendix C.2.1. 

• Step 4 - Find the quietest circular patrol route through all targets. 

In the acoustic monitoring task, the ordering of the waypoints was chosen 

to minimize the distance traveled by the robot.  In this case, however, we 

are trying to minimize sound exposure.  The same traveling salesman 

heuristic can be used to solve this problem, only now the cost function 

being minimized has changed.  Instead of the cost of traversing an edge 

(m,n) being the distance between waypoints m and n, the cost of traversing 

the edge is equal to the sum of the noise at all locations (χ) between m and 

n: 
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Equation 5.9. 

The noise levels in this equation would be retrieved directly from the noise 

map predicting current ambient noise levels in the environment.  Since the 

units of this map are actually in decibels, this weighting function is not 

attempting to calculate any type of average.  Instead, the weighting 

function is designed to emphasize shorter path lengths.  When two lengths 

are comparable, however, it would be best for the robot to take a longer 

path if it is less noisy.  Appendix C.2.3 describes in more detail how to 

adapt the travelling salesman heuristic from Section 5.2.2 to the noise 

minimization problem. 

In Figure 5.8, a set of waypoints selected using the given noise map are compared 

to waypoints located at the grid-cell centers.  The flexible algorithm for waypoint 

selection allows the robot to avoid particularly loud areas of the environment, by 

sampling at the edges of the grid cell instead of in the middle where the sound levels may 

be significantly higher.  In the following experiments, the grid cell size is 1.8-m (the 

same as was used in Section 5.1), so the diagonal length is 2.4-m, well less than the 

estimated maximum distance of 3-m used for localizing sources with spatial likelihoods 

(see Section 4.2 for more detail).   

Gradient Following Behavior 

A second method for improving the SNR recorded by the robot is to follow a 

gradient through the environment.  Originally suggested in [Martinson and Arkin 2004], a 

gradient following behavior allows a robot to adapt to local areas of loud noise between 
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waypoints.  The method our acoustically-aware robot uses to avoid ambient noise in the 

environment is based on the potential fields approach to robot control.  Our noise maps, 

either predicted or sampled, indicate regions of high volume noise with greater numerical 

scores.  Taking the gradient of the noise volume (N) in both the x and y dimension, we 

can easily build a vector field representation of the noise levels by converting these 

gradients to polar coordinates, indicating the best strength (str) and direction (dir), for the 

robot to move to avoid noisy regions (Equation 5-10).  In Figure 5.9, a noise map 

representation made with hand-sampled data is converted to a potential field using this 

gradient approach.   
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Figure 5.8. Paths taken by the different movement strategies 

overlayed on the robot-discovered noise map: (solid) the path through 

the grid-cell centers, (dashed) the path chosen to avoid loud locations. 
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Figure 5.9. A noise map created from hand collected samples (left) is converted 

to a vector field representation, where strength is indicated by arrow size. 
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Although the noise map suggests the best course for the robot to follow to avoid 

noisy areas in the environment, it would, by itself, cause the robot to move to the nearest 

local minima (quiet location) and stop.   For that reason, this gradient following behavior 

needs to be combined with other behaviors for following the waypoint path through the 

environment, and avoiding local minima.  Our implementation uses vector summation 

[Arkin 1998] to combine the different behaviors (seen in Figure 5-12).  Each of the 

associated behaviors is also described below: 

• Follow Noise Map     

This function uses the robots own estimated position in the environment to 

determine the size and direction of a repulsive force using a gradient field 

created from a noise map of the environment.  The end result forces the 

robot to move around areas predicted to contain particularly loud ambient 

noise. 

 

 

Figure 5.10. The behavioral controller used to reactively follow gradients along a 

waypoint path.  Individual behaviors produce vectors (strength and direction of 

movement) that are multiplied by some weight and summed together. 
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• Move To Goal     

Generates an attractive force towards a target waypoint in the environment 

[Arkin 1998] using the known position of the robot relative to the target.  

Whenever a waypoint is reached, then the robot selects the next waypoint 

in the path list as its new target. 

• Wander     

Generates a unit vector in a random direction every turn.  This behavior is 

designed to get the robot out of local minima created when the other 

behaviors conflict by pushing the robot equally in opposite directions.  

The addition of a random force can help the robot get out of these stall 

points. 

A fourth behavior, avoid-obstacles, was included in the original work to 

reactively guide the robot away from detected obstacles in the environment.  In these 

experiments, however, we use a different controller provided by the Player/Stage 

environment.  This environment has an obstacle avoidance method based on vector field 

histograms [Borenstein and Koren 1989] built into the software controller, so this 

potential fields based method for obstacle avoidance is not needed. 

Results - Patrolling The Environment  

In this second round of SNR testing, we are particularly interested in the 

performance of the advanced methods for sound propagation modeling discussed in 

Chapters 3 and 4.  How does the robot-measured data compare to the hand-measured 
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data?  What is the quality of the reverberant field estimates from robot created obstacle 

maps? 

To examine these questions, we tested 3 different types of awareness in the patrol 

scenario: 

• Unaware 

This is the base case, in which the robot does not have a noise map to help 

guide it through the environment.  Without knowledge of the surrounding 

ambient noise, the robot moves from waypoint to waypoint along the 

shortest path without following any gradients. 

• A Priori Information – Direct Field Only 

For this second type of awareness, the robot is provided with hand-

measured information about the location, volume and directivity of both 

sources (radio and filter) in the environment.  The robot then predicts the 

levels of ambient noise in the room, using just direct field calculations.  

This noise map is shown in Figure 5.11. 

• Robot Discovered Information – Direct Field Only 

For this stage, the sound source location, volume, and directivity were not 

provided to the robot before hand.  The robot first had to patrol the 

environment without any knowledge, and investigate each of the 

discovered sources using the area-coverage heuristic discussed in Section 

4.4.  Then using this discovered sound source information, the robot 

predicted the levels of noise due to the direct field only, and used that 

information to patrol the environment.  Given that the robot was using its  
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own investigatory abilities to determine the current state of the 

environment, the ideal scenario would have the robot reinvestigate the 

scene before every patrol.  However, as that would be very time 

consuming, only two investigations of the scene were completed.  Half of 

the patrols were then run using each of the resulting scenes and the results 

averaged together.  The two noise maps created from robot investigations  

that were used to guide the robot in this stage are shown in Figure 5.12. 

Results – Patrolling the Environment 

The three patrol behaviors (unaware, with a priori info, and with discovered info) 

were each run for 16 trials.  At the beginning of each trial the robot was positioned by 

hand in the same starting location.  From there it always circled the room in a generally 

counter-clockwise fashion, passing the radio first on the left, and then the filter on the 

right.  Although the three paths were similar, the addition of the adaptive waypoint  

 

Figure 5.11. Direct field map created from hand-measured data 

used in testing the improved SNR movement strategies.   
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Figure 5.12. Direct field maps created from two different 

robot-measured data sets used in testing the improved SNR 

movement strategies.   
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selection for the last 2 cases (with a priori or discovered information) added roughly 30% 

more length to the robot’s round trip distance.   

Over the entire distance traveled during each robot trial, the addition of the 

adaptive waypoint selection and gradient following behaviors decreased the robot’s 

exposure to ambient noise by roughly 1-dB on average.    While moving through the 

environment, the adaptive algorithms averaged 58.5-dB, compared to 59.5 for the non-

adaptive algorithm.  Table 5.8 summarizes these results for the individual algorithms. 

The region of the room that should have experienced the greatest change in 

volume by following the adaptive algorithm is the area influenced most strongly by the 

direct field of the loudest source, the radio.  Looking at just those samples collected 

within the 3x3-m region directly in front of the source, Table 5.9 summarizes the slightly 

improved results recorded by the robot. 

 

Table 5.8.  Results of the adaptive waypoint following 

algorithm averaged over the entire path. These data were 

averaged across each trial before estimating mean and 

standard deviation. 

 

 Unaware 
A Priori 

Information 

Discovered 

Sound 

Sources 

Mean 

Volume 
59.5 dB 58.5 dB 58.5 dB 

Standard 

Deviation 
0.6 dB 1.2 dB 0.3 dB 
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The addition of the adaptive waypoint selection mechanism is simply not making 

a big difference in the overall ambient noise exposure of the robot.  This time we see a 

slightly larger difference between waypoint strategies, up to a 1.6-dB difference between 

the base case and the robot using hand-collected information.  Figure 5.13  plots this 

same data as histogram to demonstrate the relative numbers of samples collected at each 

volume.  Clearly, the base case collects a larger percentage of samples at higher volumes.  

Unfortunately, however, these results are not very interesting in terms of the numerical 

difference between runs.  Where a 5-10 dB drop is potentially valuable when combined 

with other filtering equipment, a 1-2 dB change is not very significant.  More variable 

noise sources such as music will easily vary 5 or more decibels over a single song.  As 

such, the extra path length required for rerouting the robot in this case do not appear to 

have been worth the improvement in signal quality.  The question that remains is why did 

the adaptive path planning not work as well as the previous repositioning tests.  

Table 5.9. Results of the adaptive waypoint following 

algorithm for a 3x3-m2 region in front of the sound source. 

These data were averaged across each trial, before 

estimating mean and standard deviation. 

 Unaware 
A Priori 

Information 

Discovered 

Sound 

Sources 

Mean 

Volume 
59.9 dB 58.2 dB 58.6 dB 

Standard 

Deviation 
0.7 dB 1.3 dB 0.4 dB 
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Theoretically, if the robot were traveling within 1-m of the sound source, which 

was reachable by the robot in this scenario, then moving the robot out to a distance of 3-

m (the average distance at which the adaptive algorithm traveled) from a 67-dB source 

should see a nearly 10-dB drop in noise levels due to the direct field.  We do not see this 

drop, and the reasons for this are twofold.  The first problem with this calculation is that 

the reverberant field tends to be stronger than the direct field after 1-2m, so the 10-dB 

drop is clearly an overestimate.  Beyond a couple of meters, the robot should not really 

see any significant drop in sound for this environment. 

The second problem with this calculation is that the robot was never traveling at a 

distance of 1-m from the source.  Given that the robot had a 3-m sensing range, the initial 

selection of waypoints for detecting new sources placed the robot almost 2-m from the 

 

Figure 5.13. Histogram of all data volumes in a 3x3-m2 region 

in front of the radio source collected by the robot during the 

improved SNR movement strategy trials.  The trials using the 

unaware route through the environment recorded more samples 

of higher volumes than either aware strategy. 
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radio at the closest.  Choosing an “informed” waypoint path only moved the robot out 

another 1-m, a maximum difference of 3-dB in the measured volume of the direct field.  

From a noise reduction standpoint, 3-dB is already uninteresting in the general case. 

Overall, these results suggest that acoustical awareness may not be necessary, 

when patrolling and sampling along a route, to improve signal-to-noise ratio in the 

general case.  Looking at the results from this environment, using noise gradients had a 

small impact in improving performance, but the size of that impact would only make a 

significant difference if the original waypoint placed the robot very close to a sound 

source.   

5.3.3 SUMMARY OF THE IMPROVED SIGNAL-TO-NOISE RATIO EXPERIMENTS 

The goal of the robot in this second set of patrol related experiments was to 

improve the signal-to-noise ratio (SNR) in order to enhance the performance of 

classification or other general auditory behaviors.  The results of these experiments, 

however, were more mixed than those of the acoustic monitoring task.  

When a robot is trying to listen for a sound in the environment while it is not 

moving through the environment, the use of a noise map allows it to more consistently 

select better locations in the environment from which to listen.  However, a more reactive 

approach, where the robot simply moves as far away from local sources as possible will 

also work in most environments.  The trade-off in using the reactive approach may be 

that more time is required to find a good location in the environment, as the robot may 

need to try out a number of locations first.  Furthermore, if the environment is very 
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cluttered acoustically, then the use of the reactive approach may result in a poorer 

solution than using a noise-map to make an informed decision. 

In contrast to the stationary listening position, the use of a noise map to improve 

SNR for a moving robot was generally not any more effective than an unaware approach 

for the one source/environment configuration that was tested.  With active sources only 

10-15 dB louder than the robot, there was only a measurable difference between the robot 

paths when the robot was within 2-m of the sound source.  In the unaware scenario, 

however, the robot was not usually within that range.  Even when it was, it was not 

located that much closer to the source than the acoustically-aware path.  If the robot had 

originally passed closer to the source, then there would have been a more significant 

difference between the chosen paths. 

Overall, this series of experiments emphasized the selective use of knowledge-

based acoustical awareness for improving SNR.  When the robot is going to be exposed 

to a significant amount of ambient noise, choosing a better path or stationary listening 

position using predicted sound flow information could make a real difference on 

performance.  When the robot is located in a region dominated by reverberant sound, 

however, selecting a better path or location in the environment is often unnecessary.  

Therefore, the type of acoustically-aware positioning or navigation used should depend 

on the environment in which the robot is being deployed.  In acoustically challenging 

environments, a robot can use knowledge-based awareness to avoid problems advance, 

while other, more benign environments may only need to react locally in regions of 

excessive ambient noise.  Further testing may clarify the limitations of these methods. 
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5.4 CHAPTER SUMMARY 

In Chapter 5, we applied acoustical awareness to the domain of the autonomous 

mobile security robot, focusing on two specific aspects of the domain: (1) monitoring the 

auditory scene, and (2) improving the signal-to-noise ratio while listening to the 

environment.  Each of these scenarios made use of the robotic discovery capabilities 

discussed in Chapter 4 to identify and localize sound sources in the environment.  Each 

algorithm also exploited the sound fields framework described in Chapter 3 for 

knowledge-based acoustically-aware applications.  The ways in which the robot used this 

knowledge to determine movement through the environment, however, differed between 

the applications. 

In the acoustic monitoring scenario, the robot used its knowledge of the auditory 

scene to determine when the environment had changed.  After completing a data 

collection run through the environment, it analyzed the data to make predictions about 

whether a new source was present, where a new source is most likely to be located, and 

whether known sources in the environment have been turned off or changed in 

volume/sound function.  The sound propagation framework described in Chapter 3, 

therefore, served primarily as a predictive tool, allowing comparisons with measured 

data.  Although the framework did not directly control robotic movement through the 

environment, it did still influence robotic movement by detecting change, which would 

require further investigation by the robot to confirm.   

In the enhanced signal-to-noise ratio scenario, the robot used its knowledge of the 

auditory scene to directly influence its movement through the environment through map 

building.  From knowledge gathered either a priori or through robotic investigation, the 
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robot made predictions (maps) about the current state of the environment and moved to 

avoid those regions believed to contain loud ambient noise.  Although the robot’s success 

in improving the SNR differed substantially between environments, the overall results 

suggested that making predictions about the room from the knowledge that was available 

and using those predictions to guide robotic movement could reduce the robots exposure 

to ambient noise.   

The goal of this chapter was to demonstrate the applicability of the sound 

propagation framework to real robotic applications.  Although the underlying physics of 

sound fields have been repeatedly validated in other research communities, they had 

never been applied to mobile robotic navigation before, and so the question of their 

usefulness to this community was in doubt.  In this chapter, however, we have concretely 

demonstrated two different methods by which an acoustically-aware robot can use 

knowledge of sound propagation to influence movement: (1) the robot can use sound 

propagation to determine change in the environment, affecting future decision making, 

and (2) the robot can directly apply sound propagation to plans for future robotic 

movement.   

In the following two chapters, we will expand upon these same general themes of 

robotic movement in response to the surrounding environment.  Chapter 6 will explore in 

more detail using sound propagation models to guide robotic movement, only from the 

perspective of the robot as a sound source, rather than the robot as a listener.  Chapter 7 

will then examine action selection in the presence of transient or short-duration noise, 

instead of just medium-to-long duration ambient noise sources.  
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CHAPTER 6  

THE STEALTHY APPROACH SCENARIO 

Chapter 5 focused on the use of acoustical awareness in applications where the 

robot is the listener.  Although the robot still had an effect on the surrounding auditory 

environment, and, therefore, on the performance of the application, the goal of the 

application was to listen for changes in the auditory scene.  In this chapter, the robot 

switches roles.  Now, instead of the robot listening for something in the environment, 

some observer in the environment is listening for the robot.  Being acoustically aware, the 

robot needs to adapt to the auditory scene to maximize its performance with respect to the 

external listener.  Combined with the work from Chapter 5 in controlling the listener, this 

set of experiments answers the third, and final, sub-question posed in Chapter 1.  How 

does acoustical awareness change with control over the source vs. the receiver?  The 

application domain in which we explore this robot-control problem is the stealthy 

approach scenario.   

As an observer, a robot’s primary virtues are patience and tolerance.  If tasked 

with watching for a tiger in the environment, the robot, like a stationary camera, can wait 

as long as it’s batteries hold up for the animal to finally cross its path.  It does not get 

bored, and it does not get uncomfortable with remaining in place for a long time.  Best of 

all, if the robot, or its human partner, decide that it is located poorly, then it can move to 

another location.  In the future, these robotic advantages of tolerance, patience, and 

mobility will serve well for observing, not only, animals, but also natural events, people, 

or even locations (e.g. security guard).  In most of the current applications, however, the 



233 

 

robotic platform being used is not a small, unobtrusive robot.  Military applications, for 

instance, often use planes to cover as wide a region as possible, accompanied by all the 

noise of keeping the plane in the air.  Ground robots, either for military, police (bomb-

squad), or building security applications, have a similar problem in that they have to be 

fairly large for the sake of robustness.  As such, these robots are noisy due to extra 

onboard cooling fans and motors designed to move heavier equipment.  How can such a 

noisy robot be used to quietly observe, or approach a target, when the target is a flight 

risk?  The one solution that has been deployed for wildlife observation relies upon cables 

hanging in the trees out of sight, limiting where, and how quickly, the robot can move 

towards the target [Estrin et al. 2003].  An alternative solution allowing closer 

observation is to hide the robot while stealthily approaching the target. But while there 

has been some limited work in visually hiding the robot from the target [Birgersson et al. 

2003; Kennedy et al. 2007], no attention has been paid to hiding the robot aurally. We 

believe that the solution to this problem lies in making a robot aware of the surrounding 

auditory scene.  By knowing something about the listener, the environment, the sound 

sources, and the physical principles that govern how they each affect sound flow, a robot 

can make predictions about how it will be perceived by a listener, and adjust its 

navigational strategies appropriately.    

In the following set of experiments, we implement a navigational controller that 

incorporates acoustical awareness into a stealthy approach scenario.  Assuming that our 

listener is capable of recognizing either overall changes in volume or significant changes 

in volume from any given direction, a stealthy robot needs to recognize how its own 

movements will be perceived by each of these listener capabilities, and incorporate that 
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into its own movement strategy.  Specifically, to reduce the acoustic impact of the 

approach on the listener, the robot needs to first estimate the overall volume of ambient 

noise the listener is exposed to at their current location and the relative masking effects of 

each source in the environment.  Then the robot predicts for all reachable locations in the 

environment how loud it will sound to the listener from that location and, combined with 

the previous information, identifies the path that will expose the listener to the 

perceptually least amount of robot- generated noise.  In this dissertation, we assume that 

the listeners’ position is known a priori, but this information could also have been 

determined by other onboard sensors such as stereo-vision [Martinson and Brock 2007]. 

The remainder of this chapter is described in four sections.  Section 6.1 describes 

an initial heuristic developed to take advantage of a few specific masking properties of 

ambient noise sources in the room.  Section 6.2 then describes the experimental results in 

hiding a real robotic platform using this heuristic.  Using the initial results to guide 

further investigation, Section 6.3 discusses how the initial heuristic can be either replaced 

or augmented to incorporate more principles of sound propagation through the room and 

possibly hide a robot in sound functions that vary over time.  Section 6.4 then concludes 

this chapter with a summary of results, and a comparison to the work in Chapter5 using 

the robot as a sound source.  The work presented in Sections 6.1 and 6.2 is to be 

published in the proceedings of the 2007 IEEE Conference on Intelligent Robots and 

Systems (IROS) [Martinson 2007]. 
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6.1 HOW TO HIDE A NOISY ROBOT 

The scenario proposed for testing the acoustic hiding abilities of a robot is the 

stealthy approach.  The target being approached is a 4-element microphone array capable 

of detecting changes in the overall volume, as well as identifying changes in the relative 

volume from each direction.  This listening system is designed to mimic the perceptual 

capabilities of a human target, which can identify changes in overall volume, and 

separate sound sources from each other by angle.   For now, our sensor system is not 

searching for differences in pitch. 

Given this target listener with known location, the robot’s goal is to approach the 

target as quietly as needed, moving from some starting location to within a meter of the 

sound source.  If the environment is loud, however, the robot should also be able to 

recognize how the loudness limits observation by the listener, and include that into its 

stealthy approach.  For this task, the robot is given knowledge a priori of significant 

sound source locations in the environment, their directivity, and a spatial evidence grid 

from which it can localize itself with respect to the environment.  As demonstrated in 

Chapter 4, these are all pieces of knowledge that could be acquired by the robot.  Their 

acquisition, though, would require that the robot be deployed to that area at some time 

before being asked to approach the target. 

The methodology used to hide the robot’s acoustic signature is based on the 

capabilities of the target listening device.  First, the robot estimates the volume of noise 

the observer is exposed to without the presence of the robot.  Second, using the provided 

obstacle map, the robot identifies a set of discrete reachable locations in the environment.  

Then, for each location, the robot estimates a cost of visiting that location based on: (1) 
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the absolute difference in volume at the receiver due to the robots presence at that 

location, and (2) the difference in the volume coming from the direction of the robot.  

Finally, these two cost estimates are combined together using weighted summation, and a 

path-planner identifies the path of minimal cost for the robot to travel.  

6.1.1 ESTIMATING VOLUME AT THE TARGET 

The first step in hiding a noisy robot is to estimate the overall volume detected by 

listener.  This will be used to determine which areas of the environment are considered 

safe for the robot to enter undetected. 

 When making this estimate, the effects of two sound fields need to be considered: 

direct, and reverberant sound.  Any transmitted sound that the robot is aware of can be 

modeled as a separate source co-located in the wall, so we do not need to include a 

separate field describing transmitted noise.   As discussed in Chapter 3, the direct field is 

the simplest to estimate, being a linear decrease in pressure amplitude with the distance 

from the source.  Given a sound source (Si) of volume (Vi), the angle (αi) and distance (di) 

from that sound source to the listener, and the directivity function of that source (Qi(α)), 

we can re-write Equation 3.3 in terms of the sound pressure level (dB) to better compare 

with other data: 

 The effects of the reverberant field may also play a significant role in masking or 

revealing the robot’s approach.  In particular, sound sources that are not close enough to 

the target to have any direct effect on the environment, may raise the overall volume of 

the room to loud enough levels that a robot is not detected from any direction.  To 
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 Equation 6.1 
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incorporate this effect into its volume estimate, the robot samples the environment at 

some location far away from known ambient noise sources, and uses the constant 

reverberant field assumption (see Chapter3) to adjust Equation 6.1.  The estimated 

combined volume of noise heard by the listener (T) is then the logarithmic sum of the 

volume due to each source plus the reverberant field effects: 

As was discussed in Chapter 3 ray-tracing can also be used for this task of 

estimating the volume of the robot at different locations in the environment.  Section 6.3 

will demonstrate how this is true even though the robot is a moving sound.  Ray-tracing 

was not used in these experiments, however, so as to first explore the feasibility of the 

stealthy approach scenario. 

6.1.2 MINIMIZING CHANGES IN VOLUME 

After estimating the volume of noise heard by the listener, the next step is to 

estimate how loudly the robot will be detected.  Specifically, for each location in the 

environment that a robot can move through, how much additional noise would the 

listener hear due to the presence of the robot at that location?  This is accomplished by 

again using spherical propagation (Equation 6.1) to estimate the volume of sound 

reaching the listener.  Repeating this direct sound estimation for every unobstructed 

location in the environment, we can create a map of how loud the robot will appear to the 

listener for every location (Figure 6.1).   
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For now, this model does not include any reverberant obstacle or obstacle effects 

on sound propagation.  Unlike the previous section, this section requires estimating the 

effects due to a single source, the robot.  As such, the robots’ own reverberant effects on 

the environment cannot be easily estimated without more knowledge of the environment, 

or measured in the presence of other noise sources.  In the discussion section, however, 

we will describe how a ray-tracing model can be used to include both the direct field and 

reverberant field effects from a moving robot source.  

6.1.3 AVOIDING DIRECTIONAL CUES  

Knowing just the volume of the robot at the target, however, is only part of the 

problem.  Since the target is a microphone array, it is capable of estimating the angle to 

the detected sound source.  So even if the overall volume of noise did not change 

significantly, it can still detect the robot if there is a significant deviation in angular 

energy from the baseline.  Hiding the robot, therefore, requires choosing a path that also 

 

Figure 6.1. Contour map of the estimated noise at 

the observer due to the robot.  Darker is louder. 
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minimizes the change in angular energy.  Since the robot’s emitted energy is assumed to 

be the same for all positions in the environment, the only way to minimize the change in 

angular energy is to pick an approach angle obscured by large amounts of energy from 

ambient noise sources.  In most cases, such approach angles are along the line from the 

source to the listener. 

Getting the robot exactly in line with the target and the noise source, however, 

may be very difficult.  Not only can errors in robot position estimation cause the robot to 

misjudge the approach angle, but physical obstacles in the environment can also make it 

an impossible task.  The question becomes how close does the robot need to be to the 

desired approach angle?  For now, we assume that how much the robot is masked by an 

ambient noise source depends on how loud the source is, and how far the robot is from 

the axis joining the source and the listener. For this purpose, we use a heuristic to 

estimate the directional occlusion of each source separately in dB, and sum the results 

together: 

 Where Vi and Qi are the source volume and directivity, Di(x,y) is the resulting 

directional occlusive effect at position (x,y) for source i, li is the distance from the robot 

to the line between source and listener, and W is a normalized bell curve with standard 

deviation of 1-m.   
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6.1.4 PICKING A PATH 

Now that we have finished estimating the volume at the listener, the volume of 

noise due to the robot, and an occlusive effect due to each source in the environment, the 

next step is to estimate the combined impact on the listener (Ix,y) for a robot being in each 

reachable location (x,y).  In particular, we need to quantify the change in the auditory 

scene at the listener’s location due to the robot, either from changes to the total volume 

heard by the listener or changes in directional volume.  This total impact can then be used 

with a path-planning algorithm to find the path with the smallest impact. 

 The first step in our heuristic for minimizing impact is to identify the 

environmental impact on the observer (Envx,y).  This is calculated as a log summation of 

the predicted total volume (T) at the observers’ location, plus directional occlusive effects 

(D) in viewing the robot at position (x,y):  

 Next, the impact of the robot traveling through that location (Ix,y) is estimated as 

the total impact on the listener (environmental impact plus the estimated sound heard by 

the listener due to the robot, Rx,y) minus the environmental impact: 

 Finally, the robot picks a stealthy approach path by finding the shortest weighted 

path from the start to the goal using Dijkstra’s single-source shortest path algorithm with 

impact being the weight of being in any given location.  This results in a minimal impact 

approach path to the target.  Figure 6.2 shows a contour map of the estimated overall 

impact of the robot being at any unobstructed location in the environment, using these 

equations with one 57-dB source. 
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The reason for using an absolute difference in Equation 6.5 is that we would like 

the impact maps to vary with reverberant levels in the room.  If the listener is 

overwhelmed by an 80-dB noise in the area, then the impact of the environment should 

dominate the equation and reduce the impact of an approaching robot generating only 47-

dB.  If, on the other had, the environmental impact of the target is a relatively quiet 40-

dB, then the approach of the robot should be a lot easier to detect.  Using an absolute 

difference between total impact and environmental impact will reflect this difference, and 

allow the robot to adjust its path to the current level of reverberant sound in the 

environment.  

 

Figure 6.2. Contour map showing estimated impact 

on an observer due to a robot at any reachable 

location in the environment.  Darker means greater 

impact. 
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6.2 EXPERIMENTAL RESULTS 

The robot hardware that was used for this task was the Pioneer2-dxe robot 

equipped with a SICK LMS200 for localization and obstacle avoidance.  This robot 

platform emits roughly 47-dBA of noise in all directions (as measured by a Type II SPL-

Meter) from its onboard cooling fans while standing still.  Additional ego-noise in the 

form of impulse sounds from the wheels rubbing on the tile floor is also occasionally 

observed during robotic movement.   

The goal of the stealthy robot is to move from a specified start position to within 

1-m of the observer’s position as quietly as possible.  This work was tested with the 

pionner robot in a total of four scenarios spread across two different environmental 

layouts.  In each of these scenarios, the performance of the robot trying to approach the 

target stealthily is compared to a robot taking an alternative, usually shorter path.  Figure 

6.3 shows the layout of one scenario setup in the Mobile Robot Laboratory, along with 

the two paths taken by the robot in the first scenario.  The obstacles shown in the middle 

of the lab are all roughly 1-m in height.   

6.2.1 EVALUATION METRICS 

Evaluation of the robot’s performance involved analyzing the data collected from 

a 4-element microphone array located at the target’s position.  Sampling at 8192-Hz, the 

array collects 1-sec samples continuously over the duration of the run.  This includes 

collecting 30-sec of data with no robot in the room to set a baseline, and then, roughly 

100 samples for longer paths, and 50 samples for shorter paths.  Each sample was then 

analyzed to determine: 
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• Metric #1 - Overall change in volume from baseline (dB) 

• Metric #2 - Change in volume from the direction of the robot. 

This second metric required that each sample also include an estimate of where 

the robot was currently located in the room.  For this purpose, we collected the believed 

location of the robot from the player/stage amcl (Adaptive Monte-Carlo Localization) 

[Gerkey et al. February 2006] driver whenever a sample was collected.  Then, to estimate 

performance, we used a time-delay estimation algorithm, based on generalized cross 

correlation measurements, to estimate the energy at 1-m from the listener in the direction 

of the robot.  The difference between this energy (in dB) and the mean energy at that 

angle from all noise samples (in dB) is the empirical measure of angular impact on the 

listener due to the robot.  

 

 

Figure 6.3. Layout of the acoustic hiding scenario.  The 

robot that does not try to hide approaches the observer 

along the shortest distance path.  The robot that tries to 

hide its acoustic signature moves in line with the radio 

source, before approaching the observer at the goal. 
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6.2.2 FIRST ENVIRONMENTAL LAYOUT – APPROACHING FROM THE LEFT 

The layout of the first scenario is a relatively open 8x8-m2 environment, with an 

observer located relatively far from any walls and a sound source on the left of the 

observer, oriented in the observers direction (Figure 6.3).  In the first scenario using this 

environmental layout, the robot uses its knowledge of the radio in the environment to 

hide itself better than an uninformed robot taking the shortest path to the target.  In the 

second scenario using the environmental layout, the performance effects of a significantly 

louder reverberant field are examined. 

Hiding in Front of a 67-dB Source   

In this scenario, a 67-dB source was placed 4-m to the left of the listening 

microphone array.  That source was an fm radio with a typical cardioid directivity pattern 

generating static noise.  Starting from a location below the listener in the map (Figure 

6.3), the shortest path was to move upwards in a roughly straight-line while avoiding 

obstacles.  The robot that was trying to hide its acoustic signature, however, would move 

upwards to get in line with the source before approaching the target. This scenario was 

repeated 30 times for each robot path. 

Given our open environment, and the listener’s positions being all relatively far 

from the wall, the first metric did not produce significantly different results for the two 

paths except in one region.  For most of either path, the 47-dB robot added little overall 

volume (<1dB) to the total energy in the room (metric #1).  This is not surprising as the 

reverberant field averaged 54-dB for this environment, while the reverberant field due to 

the robot (measured with the sound source turned off) added a significantly smaller 43-



245 

 

dB.  The exception to this rule, however, was part of the path taken by the acoustically 

hiding robot where the robot turned relatively sharply to get in line with the radio.  This 

region is marked “turning region” in Figure 6.3.  While turning, the robot generated a 

noticeably louder amount of noise, mostly tire squeaking and equipment rattling, which 

violated the original assumption of the robot as a constant 47-dB source. 

With the exception of the turning region, the first metric had very similar results 

for either path.  The second metric measuring directional energy, however, demonstrates 

a significant difference between the paths.  Figure 6.4 demonstrates this graphically, 

plotting the average directional energy measured by the observer vs. distance of the robot 

to the observer.  This data has been smoothed using a Gaussian smoothing function with 

standard deviation of 0.1-m.  Looking at the shortest path energy from 3.5-m to the 

stopping point 1-m from the observer, a relatively steady volume can be detected until 

~1.5-m where the presence of the robot becomes more noticeable.  In contrast, the robot 

trying to hide from the observer first demonstrates higher energy while it is getting in line 

with the source, but then quickly drops in volume as the robot hides in the radio noise.   

After collecting and analyzing the samples from all runs, Table 6.1 presents the 

results of the directional energy metric (#2), broken up into the percentage of samples 

that fall into each energy range.  Figure 6.5 shows a histogram of the same data.  In 

general, the results demonstrate that the solution for hiding the robot is not perfect, as the 

robot is still detected more often than not by 3 or more decibels for both the stealthy, and 

shortest-path approaches.  The performance difference between the algorithms, however, 

becomes more apparent when looking at the number of samples where the change in 

angular energy was less than 1-dB (i.e. the robot was unnoticeable).   While the shortest  
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Figure 6.4. Comparison of the angular detection energy observed while the 

robot was taking the shortest path vs. the acoustic hiding path for the first 

environmental layout containing a 67-dB source. 

 
 

 

Table 6.1. Acoustic hiding results in the presence of a 67-dB radio source.  The 

results describe percentage of overall collected angular energy measurements 

recorded in each decibel range for distances less than 3-m from the target.   

 

 % of Samples with Directional Energy 

Energy Range ≤1 dB 1 – 2 dB 2 – 3 dB 3 – 4 dB > 4 dB 

Shortest Path 

Results 
0.28 0.00 0.03 0.32 0.37 

Acoustic 

Hiding Results 
0.46 0.00 0.02 0.19 0.33 
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path was unnoticeable 28% of the time, the robot that hid in the radio static noise was 

unnoticeable 46% of the time on a similar sized sample set (~870 samples/path).   

Loud Room Scenario 

The second test using this room layout was a repeat of the 57-dB source scenario, 

except that the reverberant field in the room was raised to over 60-dB using a loud floor 

fan placed in a far corner of the room (away from the testing area).  The hypothesis 

behind this test was that a loud enough room should eliminate the advantage of any 

particular path, because the addition of the robot will be too small.    

The effect of this change to reverberant sound levels on the robot’s path-planning 

algorithm was to logarithmically reduce the cost (or weight) of visiting any grid-cell in 

the map.  This applied nonlinear decrease in all weights meant that the shortest-path 

became less costly than the longer path, because the robot traveled across fewer grid cells 

to reach the goal.  Therefore, after detecting the change in reverberant noise, the robot 

 

Figure 6.5. Bar chart comparing the angular detection energy 

recorded by the observer for each robot path.   
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does not try to get in line with the source, but simply approaches the source from the 

shortest distance path.  To determine whether or not this path was chosen correctly, we 

also tested the path chosen for the quieter room with just the 57-dB source.  The results of 

this testing are shown in Table 6.2. 

The two paths were each tested 15 times in this loud reverberant field scenario.  

The overall increase in volume detected by the observer (metric #1) was minimal (<1-dB) 

for all parts of either path.  Measuring angular detection energy (metric #2) saw similar 

results.  Taking the shortest path meant a less than 1-dB increase in volume over the 

maximum reverberant field noise in 99% of the samples, while the robot on the longer 

path remained unobserved in 96% of the samples.  With the longer path, 90% of the 

detected samples occurred in the “turning region” where the robot is aligning itself with 

the radio.  

 

Table 6.2. Acoustic hiding results in the presence of a 67-dB radio source and a loud 

revereberant field.  The results describe percentage of overall collected angular energy 

measurements recorded in each decibel range for distances less than 3-m from the target.   

 

 % of Samples with Directional Energy 

Energy Range ≤1 dB 1 – 2 dB 2 – 3 dB 3 – 4 dB > 4 dB 

Shortest Path 

Results 
0.99 0 0 0.01 0 

Acoustic Hiding 

Results 
0.96 0.00 0.00 0.02 0.02 
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6.2.3 SECOND ROOM LAYOUT  - APPROACHING FROM BELOW 

The second room layout (Figure 6.6) was designed to add a larger reverberant 

field component to the detection of the robot.  Nearby walls would amplify the noise of 

the robot, making it easier to detect.  Since this effect is not modeled in the path-planning 

algorithm, there should be a performance decrease from the previous layout. 

In this second environmental layout, the masking effects of two different sources 

are evaluated.  In the first scenario, the radio source is shifted to a different location in the 

room and tries to duplicate the success of the previous room layout where the robot 

approached from the left.  In the second scenario using this room layout, a quieter fan 

source is substituted for the radio source, and its masking effects are compared to those of 

the radio. 

 

Figure 6.6. The second environmental layout used to 

test acoustic hiding performance.  In this scenario, 

nearby walls make the robot more easily detected due 

to reverberant effects. 
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Hiding in Front of a 67-dB Source  

In this scenario, the same radio source used in the previous room layout was 

moved to a location 4-m below the listening microphone array.   Starting from a location 

to the left of the listener in the map (Figure 6.6), the shortest path was for the robot to 

move to the right in a roughly straight-line while avoiding obstacles.  The robot that was 

trying to hide its acoustic signature, however, would move down, along the wall, before 

moving upwards to get in line with the source to approach the target. 

As expected, this scenario saw a significant decrease in performance, both overall, 

and relative to the other first room layout.  The total volume due to the robot remained 

small over the entire path, with no region exceeding the average noise level by more than 

1-dB.  Looking at the angular energy, however, we can see that the robot that is trying to 

hide in the radio’s noise was undetected (energy less than 1-dB) in only 17% of the 

samples.  While this was still better than taking the shortest path, where the robot 

remained unobserved in less than 9% of the samples, the difference between the two runs 

was not as significant as when the robot approached from the left in the shadow of the 

same ambient noise source.  The numbers for each volume range are sorted by path taken 

in Table 6.3. 

 Figure 6-7 plots this same data against the distance to the target, using a sliding 

window to smooth out the data.   The energy detected from the acoustically hiding robot 

is visibly less than that the robot taking the shortest path, but not by as much a margin as 

with the first room layout.  
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Table 6.3. Acoustic hiding results in the presence of a 67-dB radio 

source located near a wall.  The results describe percentage of overall 

collected angular energy measurements recorded in each decibel range 

for distances less than 3-m from the target.   

 

 % of Samples with Directional Energy 

Energy 

Range 

≤1 dB 1 – 2 dB 2 – 3 dB 3 – 4 dB > 4 dB 

Shortest Path 

Results 
0.09 0.00 0.02 0.22 0.67 

Acoustic 

Hiding 

Results 

0.17 0.01 0.02 0.25 0.55 

 

 

 

Figure 6.7. Comparison of the angular detection observed while the 

robot was taking the shortest path vs. the acoustic hiding path for the 

second environmental layout containing a 67-dB source. 
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Hiding in Front of a 54-dB Source 

In this last scenario, a 54-dB source was placed 4-m below the listening 

microphone array.  The source was an air filter with a bipolar directivity pattern 

generating wind noise.  With the 3-dB difference between this source and the radio 

source, it was expected that this configuration would produce another drop in 

performance. 

As with the previous 3 runs through the environment, the first metric of overall 

volume again showed little difference between the 2 paths to the target.  In general, the 

overall volume does not appear to have been a very useful metric, as the overall volume 

change remains small until the robot is very close to the target.  In contrast, however, the 

directional energy metric has shown not only a difference between runs, but also a 

difference between room and now, source layouts (Table 6.4).   

Table 6.4.  Acoustic hiding results in the presence of a 54-dB filter source.  The results 

describe percentage of overall collected angular energy measurements recorded in each 

decibel range for distances less than 3-m from the target.   

 

 % of Samples with Directional Energy 

Energy Range ≤1 dB 1 – 2 dB 2 – 3 dB 3 – 4 dB > 4 dB 

Shortest Path 

Results 

0.09 0.00 0.01 0.12 0.78 

Acoustic 

Hiding Results 

0.12 0 0.01 0.16 0.71 
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In Figure 6.8, we can see the same problem in the plot of average angular 

detection energy vs distance to the observer.  This plot shows almost a constant offset for 

the two paths.  Where the radio sources produce a sharp dip in the energy once the robot 

moves in front of the source, the fan did not produce such a dip.  Instead, the presence of 

the fan appears to merely lower the overall detection of the robot by some small amount. 

6.3 DISCUSSION OF RESULTS 

The goal of this initial work in acoustic hiding was to demonstrate that a robot 

could hide its own acoustic signature in the ambient noise.  Using the tools provided in 

Chapter 4, a robot can collect knowledge of environmental layouts, sound source 

positions, sound source directivity, and reverberant field estimates.  Then, with that 

knowledge of the auditory scene, a robot can seek to position itself between known 

sources and a target, reducing the chances of being detected by a listener at some 

arbitrary location in the environment.   

  

Figure 6.8. Comparison of the angular detection observed while 

the robot was taking the shortest path vs. the acoustic hiding path 

for the second environmental layout containing a 54-dB source.   
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In this work, two different evaluation metrics were used to test the effectiveness 

of two different approach paths: the shortest path, or a stealthy path.  The first metric, 

measuring the overall volume change, showed no improvement between either path for 

any of the four scenarios.  The addition of a 47-dB robot to the general sound field had 

little overall effect on the volume of sound observed by the target.  The second metric 

measuring changes to directional volume, however, demonstrated a significant difference 

for some environments between a robot hiding in front of a sound source and a robot 

taking the shortest path.  This difference depended upon a number of factors.  In general, 

the lower the volume of the source disguising the robot’s approach, the easier the robot 

was detected.  This was countered, however, by changes to the reverberant field.  If the 

reverberant field increased substantially, then the robot may not need a stealthy approach 

to remain undetected.  The presence of nearby walls in the environment may also make 

the robot more detectable, as will certain types of robotic movement that cause the robot 

to generate more noise.  In summary, there is much interesting research remaining in 

exploring this problem and building a real application. 

There are two additional issues in particular, however, which have not yet 

received much attention in this scenario.  The first such issue is that of an all inclusive 

impact model.  The model described in Section 6.1 was designed to force the robot to 

move in line with a source, without real consideration for sound propagation models.  

This was important in order to demonstrate the feasibility, and general interest, of the 

scenario, but it lacks the mathematical rigor appropriate for a general application.  

Section 6.3.1 will describe how the sound propagation framework covered in Chapter 3 

can be extended to the visibility model. 
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The second such issue that needs to be addressed is hiding in arbitrary sound 

functions.  Filter, or fan, noise is common to many environments, but other sources such 

as fountains, machinery, speech, and/or music are equally common.  In Section 6.3.2, we 

will discuss the application of auditory masking models to the stealthy approach scenario, 

allowing a robot to hide in a wider range of sound functions. 

6.3.1 REPLACING THE HEURISTIC WITH REVERBERATION MODELS 

In order to get a robot in line with a source while including knowledge of 

environmental reverberation effects, a heuristic using a weighted summation was used to 

combine disparate effects.  It included expected volume increases due to the direct field 

of the robot.  It also included increases in energy from the direction of the robot.  This 

heuristic, however, did not include any reverberant effects due to the robot, so a path in 

which the robot traveled along a wall was not considered necessarily any worse than any 

other path.  Using the more rigorous mathematical approach to sound propagation 

described in Chapter 3, we can estimate all of these properties useful for stealthy 

approach with a single algorithm.  The algorithm is ray-tracing. 

Chapter 3 described ray-tracing as a mathematical methodology for estimating 

sound propagation through an environment when a description of the room layout 

(obstacle-map) is available.  Appendix B.6 gives more details on ray-tracing 

implementation used in this dissertation.  In a typical ray-tracing approach, some number 

of virtual rays (3600 rays in this implementation) would be generated at random angles 

from the sound source into the room, traveling in a straight line until they hit a surface, at 

which point they are reflected back into the room.  The rays continue traveling in this 
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fashion, affecting many different receiver positions, until their energy levels become 

negligible by traveling too far away from the sound source.  The estimated effect on a 

single receiver then is only a matter of determining which rays intersect with the position 

of the receiver and summing their energy together.  From this, we can determine both the 

overall change in energy due to a robot located at a particular location, as well as changes 

in the sound intensity profile  (energy at any given angle) at the observer’s location. 

To use ray-tracing as described above, however, with the virtual rays emanating at 

random directions from the source, would be very computationally expensive for this 

scenario.  Since the source in question is a robot, this form of ray-tracing would have to 

be repeated for every reachable location in the environment in order to plan an optimal 

path through the environment.  Even with modern computers, this could take a long time, 

which only increases with the level of detail present about the environment.  For this 

scenario, however, there is a computationally cheaper alternative.  The observer does not 

move in this scenario, so to significantly reduce the number of calculations necessary to 

build a map of impact, we can reverse the ray-tracing algorithm, generating rays at the 

receiver instead of the source.  It is essentially the same problem as predicting the effects 

of a single source, since the rays themselves will still act in the same way, reflecting off 

of surfaces until they have traveled a maximum distance.   

Using this alternate formulation of the ray-tracing method, we can calculate each 

of the criteria in which we are interested in identifying for the stealthy approach scenario: 

(1) changes in volume due to the robot (from both the direct and reverberant field), and 

(2) changes in directional cues due to the robot.   
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Estimating Changes in Volume 

Change in the overall volume at the observers’ location is essentially the same 

measurement as was used in Section 5.1.1.  Only now, the estimated volumes for both the 

ambient noise and the robot are determined using ray-tracing.  In Figure 6.9, the change 

in volume plot for the first room layout, assuming no active sound sources, shows that the 

approaching direction of the robot is not very important, so long as the robot moves 

straight towards the source.  With the radio present in the environment, however, this 

change in volume plot becomes nearly uniform.  The change in volume due to the robot 

is less than 1-dB for all reachable locations in the room, suggesting that in the presence of 

significant ambient noise, the overall volume change is probably not very useful for 

gauging how well the robot’s acoustic signature is masked.  This pseudocode for creating 

a map of noise due to the robot using ray-tracing, can be found in Appendix B.6.2. 

 

Figure 6.9. Change in total volume plot, as predicted by ray-

tracing models, for the first room layout with no ambient 

noise sources. 
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Including Directional Cues 

The estimation of directional cues is where the real difference between the ray-

tracing method and the heuristic discussed in Section 5.1 occurs.  Changes in volume 

were already based on sound flow, although they did not include the reverberant field.  

Directional cues, however, were simply designed to get the robot in front of a sound 

source, without any basis in sound flow.  The use of ray-tracing to estimate directional 

cues applies the physics of sound propagation to the problem. 

To estimate the same directional cues as described in Section 5.1.2, ray-tracing is 

used to build a sound intensity profile at the observers location.  For every angle, the 

sound intensity profile estimates the onset energy coming from that direction.  Since each 

ray in ray-tracing typically estimates energy, rather than volume [Elorza 2005], the sound 

intensity profile is created by finding the set of rays that pass through the observer’s 

location, and then applying a Gaussian smoothing filter (25˚ standard deviation) across 

the approach angles to find energy.  Equation 4-14 gives an example of using Gaussian 

smoothing across angles.  Figure 6.10 shows the sound intensity profile at the observer’s 

location due to ambient noise in the second scenario.  This pseudocode for calculating 

this sound intensity profile is provided in Appendix B.6.1. 

Using this same methodology, we can also estimate the effects of the robot on the 

observer from any location in the room.  This time, however, since the rays are being 

generated from the observer rather than the source (the robot), the important thing to 

track is the departure or starting angle of each ray from the observer and the distance 

traveled as the ray crosses each possible robot location in the environment (distance is 

directly related to energy).  Then, for every reachable location, identify the set of rays 
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that cross that location and apply the Gaussian smoothing filter across the departure angle 

from the observer.  This builds a sound intensity profile at the observer’s location for any 

robot location in the environment.    

Finally, with both an ambient sound intensity profile (Amb), and a robot sound 

intensity profile (Robotx,y) available, we can estimate the impact (I) of the robot on the 

observer at some angle (θ) as the log difference between the combined field and the 

ambient field.  Seen in Equation 6.6, all units in this calculation have been converted 

from energy to pressure (dB): 

( ) ( ) ( )( ) ( )( )θθθθ AmbRobotAmbyxI yx 10,10 log10log10,, −+=
 Equation 6.6 

In Section 5.1.2, the heuristic approach only evaluated the visibility of the angle 

from the observer to the robot because that was the only angle any predictions could be 

made for.  Using ray-tracing, however, a visibility estimate can be made for every angle.  

If the angle to the robot is relatively quiet, but reflections from nearby walls are not, then 

 

Figure 6.10. Sound intensity profile at the observer’s 

location due to a 67-dB radio. 
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an observer could still be alerted of the robots approach, causing it to move or search for 

the noise source.  Therefore, it makes sense to approximate the visibility of a location as 

the maximum visibility across all angles (θ).  Figure 6.11 demonstrates the revised 

directional cues map for the second room layout where the robot approaches from below 

in the shadow of the 67-dB radio. Notice the similar cone shaped area of low impact in 

front of the ambient noise source created using the heuristic (seen in Figure 6.2).   

The pseudocode for using this reversed form of ray-tracing to create these impact 

maps is provided in Appendix B.6.2. 

Figure 6.11. Contour plot of the revised approach to estimating directional cues using 

ray-tracing.  Notice the similar cone shaped region of low visibility predicted by the 

heuristic approach (Figure 6.2).  Only now, the region is somewhat wider due to the 

inclusion of reverberation models. 
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Combining the Two Criteria 

In Section 5.1, the greatest difficulty in estimating the visibility of the robot was 

in combining the two different criteria of visibility.  If the room was loud, then that 

knowledge needed to be incorporated into the equation.  Similarly, if there were nearby 

sources that would decrease visibility in certain directions, then those effects also needed 

to be included in the equation.  This was a difficult problem because the two effects were 

not really being described using the same units.  Using ray-tracing, however, both effects 

are now described in terms of volume, so combining them becomes much easier. 

Equation 6.6 already includes some overall volume calculations.  If there are no 

ambient noise sources in the environment to mask directional cues, then this equation 

produces a visibility contour like the one seen in Figure 6.9.  By default, a robot that is 

closer to the observer, or to any walls, will be louder than a robot that is standing in the 

middle of the open room.   

To make this equation complete, we can also add knowledge about “extra” noise 

to the visibility calculations.  In the loud room scenario (first room layout), we described 

a loud environment where an unmapped sound source had raised up the ambient noise 

levels in the room to louder than expected noise levels.  Incorporating this additional 

knowledge to the visibility equation requires simply adding a constant: 

( ) ( ) ( )( )
( )( )RAmb

RRobotAmbyxV yx

+−

++=∆

θ

θθθ

10

,10

log10

log10,,

 
Equation 6.7 

Where R is the average reverberation level in the room divided by the number of 

angles being tested for visibility.  This assumes that the reverberant field due to other 
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unmapped sound sources in the room, as detected by the observer, is roughly equal in all 

directions.  

Figure 6.12 demonstrates the addition of a 61-dB reverberant field to the same 

room layout seen in Figure 6.11.  As validated by the robot testing performed earlier, the 

expected masking effects of the 67-dB radio source are significantly reduced.  Using this 

impact map, the robot should be able to ascertain that the shortest path is no worse than 

any other approach path to the target that does not move along the walls. 

6.3.2 HIDING IN AN ARBITRARY SOUND SOURCE 

The scenarios tested here ignored the sound functions of the ambient noise in the 

environment.  The sounds used, fan and static noise, were generally broad-spectrum 

 

Figure 6.12. Contour plot of the maximum angular impact 

of the robot for scenario 2 with a loud reverberant field.  

The cone of low impact the robot usually approaches the 

source in has disappeared. 
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sounds where it was simply assumed that the robot could hide itself.  For an arbitrary 

sound source, however, the robot needs to take into account the sound function in order 

to determine the true masking qualities of the source.  If the sound source is largely a low 

frequency sound source, then high-frequency noises from the robot are less likely to be 

masked.  Also, if the sound source varies in volume, as is common with heavy machinery 

conducting a repeating series of tasks, a robot that’s emitting a constant sound might 

become exposed during quieter parts of the sound function.  Therefore, a robot needs to 

have some knowledge of the masking sound function in order to successfully hide its own 

acoustic signature from an observer.  This problem, while certainly difficult, is not 

unstudied.  It is called auditory masking [Goldstein 2007]. 

In work originally published in 1950, psychologists Egan and Hake [Egan and 

Hake 1950] performed a series of experiments to understand the masking properties of a 

single sound.  In particular, the goal was to understand what frequencies and at what 

volume were masked (to the human ear) by a single arbitrary tone.  What they found was 

that a tone masks frequencies around it in a roughly triangular fashion.  A sound best 

masks those frequencies that are closest to its own frequency.  However, it also masks 

frequencies lower and higher, with a greater effect on higher frequencies (Figure 6.13).  

For instance, a tone with frequencies ranging from 365-455 Hz may mask frequencies as 

low as 150-Hz, or as high as 4000-Hz, depending upon the volume.  The reasons for 

these masking effects at frequencies other than the stated frequency have to do with the 

makeup of the human ear.  More detail on this subject can be found in [Goldstein 2007]. 

By themselves, these experiments in auditory masking seem interesting, but 

possibly difficult to apply to our scenario.  However, researchers in digital audio have 
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continued this line of research, developing mathematical algorithms to make use of the 

perceptual phenomenon [Painter and Spanias 2000].  The reason for this interest is 

compression.  Knowing that the target audience is human and that we share much the 

same set of hearing processes, a digital audio encoding standard can be created to 

maximize the perceived quality of the audio versus the size of the encoding by taking 

advantage of auditory masking.  MP3 is such an encoding standard [Noll 1998].  For 

example, let us say that the song being encoded has both quiet moments with a single 

instrument, and loud moments where many instruments are playing at once.  During 

those loud points in the song, the quality of the encoding does not need to be that great, as 

a lot of noise could be introduced during the encoding without being detected by a human 

listener.  During those quiet moments, however, it is important to encode at very high 

quality, because little bits of introduced noise would be very detectable to the human ear. 

Applied to our stealthy approach scenario, this work in auditory masking is 

potentially very relevant.  Given some knowledge of the sound functions of sources in the 

 

Figure 6.13. General shape of the volume vs. frequency plot for 

sounds masked by a single tone.  A tone played at some 

frequency masks other frequencies in a generally triangular 

fashion.  The farther away from the  tone in frequency, the lower 

the volume that can be successfully masked. 
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environment, a robot can pick a trajectory in which it will be best hidden from a human, 

or possibly animal, observer by masking its own acoustic signature with perceptually 

similar sources.  With greater knowledge of the sound function over time, the robot could 

even adjust its own movement patterns, moving slow and quietly (or not at all) during the 

quiet moments, and faster, and more loudly when the sound function is at its peak 

volume.   

6.4 CHAPTER SUMMARY 

In Chapter 6, we described the stealthy approach scenario, where a robot used its 

knowledge of the auditory scene to hide its own acoustic signature from an observer 

located someplace in the environment.  The knowledge that the robot made use of in 

order to hide its own auditory emissions as a sound source included environmental 

obstacle maps, sound source locations and directivity models.  Although this information 

about the auditory scene was provided a priori for experiments in this chapter, all this 

knowledge could be obtained using the tools described in Chapter 4.  Furthermore, while 

the current implementation uses a heuristic to estimate masking effects due to a single 

source, we have also demonstrated (Section 6.3.1) that this heuristic can be simplified 

using the physics of sound flow through the environment to model effects on the listener.  

The algorithmic tool that can make this combination of information easier, ray-tracing, 

comes from the general set of sound propagation tools included with the framework in 

Chapter 3.  In general, the work demonstrated in this chapter suggests the inclusion of 

more physics-based estimation, as well as possible variations in sound functions over 
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time (Section 6.3.2) should make hiding of the robot in ambient noise more effective 

under a variety of auditory scenes. 

The work presented in Chapter 6 is particularly interesting when compared to the 

work completed in Chapter 5.  In Chapter 5, the same set of tools were applied to both the 

acoustic monitoring task and the improved signal-to-noise ratio task as in this chapter.  

The robot needed environmental obstacle maps, sound source locations and directivity 

models, to determine differences between the believed state of the environment and the 

measured state of the environment.  The only difference in the use of those tools was that 

for the stealthy approach scenario, the robot was the sound source, and for the acoustic 

monitoring scenario, the robot was the listener.  Otherwise, the physics of sound 

propagation through an environment do not change, and the tools useful for gaining that 

knowledge are potentially appropriate no matter what the robot is.  The distinction 

between sound source and listener is really only important in choosing the perspective.  If 

the robot is listening, then the focus should be on the sound sources.  In contrast, if the 

robot is the sound source, then the focus should be on the listener.  This is the answer to 

the third, and final, sub-question posed in Chapter 1 – “How does acoustical awareness 

change with control over the source vs. the receiver?”  The emphasis changes from the 

target being the listener to the target being the sound source, but the basic principles of 

sound propagation, and tools useful in gathering information about the auditory scene are 

the same.   
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CHAPTER 7  

ACOUSTICAL AWARENESS FOR HUMAN-ROBOT 

INTERACTION 

This dissertation has so far focused on medium to long duration sounds, which a 

robot can map out and identify on a regular basis.  Using these maps, the robot can 

construct plans of action for future robotic movements, whether to investigate a sound 

source to collect more information (Chapter 4), make predictions about the environment 

(Chapter 5), or move to areas of loud noise in the environment (Chapter 6).  

Unfortunately, while these sounds certainly make up a significant portion of the auditory 

scene, they are by no means the only types of noise present in the environment.  Speech, 

for instance, is a very common transient noise in home and office environments.  Given 

that it is a known, and expected, sound in the environment, a robot may be able to map 

out where it most commonly occurs, but predicting when and how it will interfere with an 

application may be difficult.  Similarly, transportation noise, such as that generated by 

planes, trains, and automobiles may be a very common part of the acoustic landscape that 

a real robotic application will have to be able to handle.   

In this chapter, we explore the application of acoustical awareness to a more 

dynamic auditory scene.  While the medium-to-long duration noises are still present in 

the environment, and are important for an acoustically-aware robot to adapt to, 

unexpected transient noises also have a significant effect on the application.  The domain 

for this task is Human-Robot Interaction.  The robot application is a mobile information 
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kiosk.  The information kiosk is primarily a vocalization application, where a robot uses 

speech to communicate with a human listener.   In a dynamic auditory scene, it is the 

responsibility of the robot to adapt its speech and non-speech behaviors to maintain 

intelligibility under a variety of acoustic conditions. As with previous work, there is a 

significant knowledge-based acoustical awareness component to the application in 

identifying where best to move the robot with respect to auditory scene.  Speech, 

however, being a short duration vocalization itself, can be significantly masked by 

transient noises in the environment.  Therefore, in addition to the knowledge-based 

awareness, the robot also needs to have a significant reactive acoustically-aware 

component to handle transient noise in real-time.  The model for this short duration 

interaction is human speech behavior in the presence of ambient noise.   

The remainder of this chapter is covered in four sections.  The first section 

describes our vision of an acoustically-aware information kiosk, modeled after human 

behavior in dynamic auditory scenes.  The second section then describes our current 

implementation of this vision on a real robotic platform.  The third section goes beyond 

just the information kiosk algorithm to discuss general rules in incorporating in 

knowledge and, therefore, reaction to different types of sound in the environment.  

Finally, the fourth section summarizes the chapter.   

The interactive information kiosk was originally researched in cooperation with 

Derek Brock at the Naval Research Laboratory in Washington D.C.  The implementation 

was originally published at the 2nd Annual ACM/IEEE International Conference on 

Human-Robot Interaction [Martinson and Brock 2007].  
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7.1 A MODEL OF HUMAN ACOUSTICAL AWARENESS 

The purpose of an information kiosk, traditionally, has been to provide 

information about the environment to interested people.  The types of kiosks differ 

dramatically.  A very simple kiosk might just relate the day’s weather conditions, or list 

the set of departing flights at an airport.  A more advanced kiosk could be a computerized 

map, where people use a mouse, keyboard, or touchscreen to read reports about different 

objects on the map.   At the farthest end of the spectrum, even people could be considered 

as a type of mobile information kiosk prepared to answer an arbitrary set of questions to 

the best of their abilities.  Within this large range, our vision of a robotic information 

kiosk fits somewhere between a stationary computerized map and the extreme of a 

person.  An interested participant speaks the title of a story or object that he or she would 

like to have information about, and then the robot uses text-to-speech (TTS) to read aloud 

the pre-compiled story matched to that title.  Such an interface may be of particular use in 

environments or to particular subjects where constantly reading a screen is not possible 

(e.g. blind people, or people simultaneously performing some other task).  The challenge 

to this vision is a dynamic auditory scene.  A typical TTS interface is very tough to 

comprehend, even when accompanied by visual instructions, when in the presence of 

large volume or large changes in ambient noise.  The clue to overcoming these interface 

difficulties lies in human-human interaction. 

When people communicate with each other, they can achieve relatively high 

comprehension levels using speech under a variety of acoustic conditions.  Within a 

single auditory scene filled with many types of noise sources (including other human 

conversations, cars, telephones, and machinery hums), people can still communicate.  
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The reason for this success is that people are acoustically-aware of the auditory scene, 

adapting their speech and non-speech behaviors to maintain intelligibility.  Confronted 

with an arbitrary auditory scene, the ways in which people react to the environment are 

extremely varied.  Some of them are conscious behaviors requiring thought and analysis 

of their human partners’ capabilities, while others are more reactive, happening without 

our necessarily even being aware of the adaptation.  In general, however, the ways in 

which people compensate fall into three categories, each requiring some knowledge of 

the auditory scene in order to be successful: (1) the word choice is altered to increase 

contextual cues and repetition, (2) the speech waveform is altered to maximize 

intelligibility in the presence of ambient noise sources, and (3) people move about the 

environment to minimize their noise exposure and maximize speech intelligibility.  The 

following sub-categories describe each of these adaptations in more detail, and discuss 

what a robot could do using current technology. 

7.1.1 ALTERED WORD CHOICE TO INCREASE CONTEXT 

When the word level intelligibility of a spoken sentence is low due to poor 

acoustic conditions, people can still understand the meaning of sentences when there is 

context to the utterance [Goldstein 2007].  Examples of such context that have been 

demonstrated to improve intelligibility of synthesized speech are topic cues and familiar 

phrases [Drager and Reichle 2001].  If the listener knows the topic ahead of time, then 

they may consciously or subconsciously be listening for a different vocabulary.  

Similarly, familiar phrases are easier to recognize because they change for the length of 

the phrase the active vocabulary being listened for by the receiver. 
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In addition to the research on listener intelligibility, there is also evidence that a 

speaker takes advantage of this contextual intelligibility improvement.  In selecting their 

utterances, speakers use a model of the listeners’ capabilities, adapting to their needs as 

best as possible in order to maximize intelligibility and knowledge transfer.  People 

repeat words or phrases more often, change sentences syntactically, use different forms of 

expression, etc. to raise contextual cues and generate common ground in order to 

communicate whatever they wished to communicate.  Furthermore, this model appears to 

change over time as discrepancies between the model and real life become apparent, 

forcing further adaptations in speaking patterns [Bard and Aylett 2000]. 

Given the current state of technology in natural language interfaces, these 

contextual adaptations to a speech interface are very difficult for a robot to do properly.  

An acoustically-aware robot has information about the auditory scene, and can estimate 

word level intelligibility of its synthesized speech from the ambient noise conditions 

(predicted and measured) in the room, and, specifically, at the location of the listener.  

However, the robot is unable, currently, to make sensible changes to an arbitrary text 

without substantial human intervention.   

An action that an acoustically-aware robot can take, however, is to be attentive for 

requests for repetition from the user.  Maybe a listener needs to have something repeated.  

Maybe they would like more information on a given subject, which could be obtained 

through a web search.  Providing some simple interaction tools to the user is not only 

feasible, but allows the listener to get more contextual information when it is needed, and 

forego it when not needed.  In an even more aware scenario, the robot could actually use 

its knowledge of the auditory scene to make predictions about when intelligibility is 
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likely to be low, and ask the user if they need to have anything repeated, rather than 

simply waiting for a request. 

7.1.2 CHANGING THE WAVEFORM TO MAXIMIZE INTELLIGIBILITY 

The second category of human adaptation to the auditory scene is to improve the 

intelligibility of the speech waveform itself.  This phenomenon is commonly called “clear 

speech” or “Lombard speech” [Junqua 1993].  In the presence of noise or stress, people 

reflexively adapt their own speech, changing the shape and tightness of their vocal tract 

to produce a different volume, prosody, pitch, and/or timbre of their speech.  The 

resulting signal can be more intelligible to the human auditory system than an unmodified 

signal under the same noise conditions [Langer and Black 2005].  Unfortunately, this 

effect has so far proven difficult to duplicate with computers. 

The phenomenon of clear speech is best understood in the speech recognition 

community.  For a human listener, these adaptations to the speech waveform increase 

intelligibility, as they are expected in the presence of masking noise.  For a computer 

speech recognition system, however, these same adaptations are difficult to model, and 

cause decreased word recognition rates.  As such, there are a number of researchers 

currently working on alternative features for recognizing phonemes under a variety of 

noise and stress conditions [Bou-Ghazale and Hansen 2000; Boril et al. 2006]. 

Speech synthesis research has run into similar problems in increasing 

intelligibility under adverse noise conditions.  For limited speech synthesis, there has 

been some success in using recordings of people talking under different noise conditions.  

By analyzing the noise present in the environment, a computer can then pick which 
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recording of the desired utterance would be best understood by a human listener using the 

similarity between the current and recorded noise conditions [Langer and Black 2005].  

Efforts at the waveform generation level which use fully synthesized speech, however, 

have so far been able to duplicate this success.   

Despite these failures, there are still adaptations that an acoustically-aware robot 

can make to improve its auditory presentation.  One such adaptation is to change the 

volume.  Although prosody, pitch, and timbre improvements have been difficult to 

duplicate so far, automatic volume adjustments have been applied successfully to a 

number of commercial systems such as car stereos [BOSE 2007].  Another adaptation is 

to stop talking when volume adjustments are no longer feasible.  For instance, when a 

military jet flies overhead, producing very loud ambient noise levels, people commonly 

pause the conversation and wait for the noise to end.  Either of these responses, changing 

volume or pausing, allow a robot to act in the presence of noise to preserve intelligibility. 

7.1.3 CHANGING THE SPEAKER’S POSITION 

The final category of human adaptation to the auditory scene is to adjust the 

position of the speaker relative to the listener and/or the noise sources.  If there are just 

too many sources of interference, be it masking noise, or simply distractions, people do 

not have to remain stationary.  They can employ gestures, move closer to the listener, 

face the listener as much as possible, and if all else fails, move to someplace else where 

there is less interference.  With the possible exception of gestures (depending on the 

available hardware), our acoustically-aware robot can make the same decisions.  It can 

use knowledge-based awareness of the auditory scene to select ideal interaction positions 
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in the environment prior to any human-robot interaction.  It can also follow a moving 

receiver to maintain a reasonable conversation distance, and, when noise levels are 

simply too much to cope with, work with the human participant to move to another, 

quieter location in the environment. 

7.2 ROBOTIC ADAPTATIONS 

From this knowledge of acoustically-aware actions taken by humans, we 

developed an acoustically-aware information kiosk using a mobile robot base.  Given 

some of the technological limitations discussed above, only some of the proposed actions 

could actually be implemented.  In this section, we will discuss five such actions based 

on human adaptations for improving intelligibility in a dynamic auditory scene.  These 

actions include: 

• Listening and responding to simple spoken commands from a human partner 

controlling the flow of information. 

• Adapting the volume of the speech output in response to changing noise 

conditions and a speaker’ distance from the robot. 

• Pausing for speech and excessive noise that can interrupt reading and distract the 

listener 

• Rotating to face the listener, maintaining the interaction and orienting the 

loudspeaker in the correct direction. 

• Move to another location when sound levels stay too high in the current location.   

Each of these five actions has been fully implemented as part of an acoustically-

aware information kiosk application on a B21r mobile robotic platform.  While there 
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have been no formal evaluation studies of the completed interface to date, the interface 

has been informally tested by other members of the laboratory, visitors to the lab, and 

news media. 

7.2.1 ROBOT 

The information kiosk application was developed for the B21r (Figure 7.1) robot 

equipped with: 

• An overhead microphone array for ambient noise monitoring.  This array is 

composed of (4) Audio-Technica AT831b lavalier microphones mounted at the 

top of the robot.  These microphones are each connected to battery powered 

preamps mounted inside the robot body and then to an 8-Channel PCMCIA data 

acquisition board. 

• A monitor mounted at eye-level to display for new users the available topics the 

robot may talk about and list the set of speech commands the robot can 

understand.  Figure 7.1 (Right) demonstrates an example visual interface 

discussing navy ships.  Other interfaces featuring current news briefs, biographies 

of interesting people, and NRL robotics projects have also been developed.   

• A speaker and internal amplifier to allow the robot to speak at a variety of 

volumes to a human listener. 

• A stereo vision system for person tracking. 

• A SICK LMS200 to be used with continuous localization [Schultz and Adams 

1998] to provide reliable robot pose estimates. 
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Figure 7.1. (Left) B21R robot from iRobot, outfitted with a four microphone 

overhead array, bi-clops stereo vision system, and monitor for visual feedback. 

(Right) A screen capture of what is shown on the monitor while the Information 

Kiosk is running (not including the person-tracking interface).  The larger window 

lists stories that the robot can talk about (here, 2 Navy ships).  The second, smaller, 

window lists the set of available speech commands the user can employ at any 

given time. 
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In addition to the above hardware the interface also uses a separate wireless 

microphone headset to capture speech for speech recognition tasks performed using 

freely available speech recognition software (Microsoft SAPI 5.1).  This separate 

microphone was necessary to get reliable speech recognition results, as the overhead 

array was not appropriate for speech recognition tasks.  Future implementations, 

however, should be able to replace the wireless microphone with a directional 

microphone mounted on the robot body.  Combined with other efforts by the robot to 

always face the user, a directional microphone should provide reasonable speech 

recognition results with a minimum of additional effort by a user. 

Visual Person Tracking 

The vision system on the robot is an actuated TRACLabs Bi-Clops.  The rotatable 

stereo camera provides dual color images from which depth information (Figure 7.2, top) 

can be extracted.  Combined with face detection software (created using OpenCV 

[Bradski et al. 2005])12, the robot can use the camera to track, localize, and follow a 

detected person through a 180 degree arc in front of the robot (Figure 7.2, bottom).  To 

start tracking a person, the individual’s face needs to be at least 20 pixels in width, which 

corresponds to a distance of roughly 1.5-m from the robot.  After initializing a track, 

however, the camera can continue to provide depth information up to 3 meters away from 

the robot. 

 

                                                 

12 The face tracking software was implemented by Vlad Morariu 
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Figure 7.2. Stereo vision results.  (Top) Scene depth as estimated by stereo vision.  

(Bottom) The graphical output of the person tracking interface, showing a person’s 

face and hands being successfully tracked. 
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Speech Detection 

Before the cameras can be used to find a person, however, the robot needs to first 

identify and localize on speech sounds in the environment.  To detect speech sounds, we 

calculate the first 2 mel-frequency cepstrum coefficients (Appendix B.4 describes the 

creation of MFCCs from sampled data) for each microphone in the overhead array.  Each 

coefficient is averaged across all microphones, and then compared to an environment 

dependent threshold.  While this speech detection system is relatively simple, and prone 

to errors when classifying a single sound sample, it works well over time to augment 

other auditory and vision sensors tracking humans in the environment. 

7.2.2 RESPONDING TO SPEECH COMMANDS 

The purpose of this adaptation is to allow for a human user to control the flow of 

information from the robot, as suited their individual needs, so as to add some level of 

redundancy to the application even though a full natural language interface is not 

feasible.  Using a commercial speech recognition package (SAPI 5.1), the robot 

recognizes a small of set phrases spoken into the wireless microphone (to be replaced in 

the future). These phrases include titles of stories the robot can talk about plus a set of 

phrases for disabling options in the interface and controlling the flow of text during an 

interruption.  The different commands available to a listener are: 

•  “Repeat the last line” 

•  “Repeat from the beginning” 

•  “Continue where you stopped” 

• “Change to a new subject” or “Stop talking on this subject” 
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Each of these phrases effect the flow of information similar to what they mean.  

For more detail about how exactly they affect the implementation, details are available in 

pseudocode format in Appendix D.  

7.2.3 CHANGING THE VOLUME 

After a user selects a topic by speaking the title of the topic, the robot reads a 

corresponding paragraph or two of information aloud, sentence by sentence.  Before each 

sentence, the robot measures the current level of ambient noise in the room, and the 

distance at which the listener is standing to estimate an ideal volume at which to speak in 

order to maintain the desired intelligibility levels.  The louder the ambient noise in the 

environment, the louder the robot needs to speak.  Similarly, the farther away the listener 

stands, the louder the robot needs to speak.  Conversely, if the ambient noise volume or 

the listener’s distance decreases, the robot should lower its volume to avoid being 

excessively loud.  Ambient noise levels in the room are measured by the microphone 

array, and the distance to the user is measured by the stereo vision system. 

Since each of these variables, volume and distance, are measured in different 

units, they needed to be combined somehow before applying them.  Assuming that each 

variable is related exponentially to the volume (this should actually be dependent on the 

specific amplifying hardware being used), we can combine these variables together using 

the equation of an ellipse.  Equation 7.1 demonstrates how this heuristic relates the 

volume output to each of these two variables, ambient noise volume and distance. 
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Where [MinD-MaxD] is the range of distances over which a person interacting 

with the robot might be expected to stand, [MinV-MaxV] is the range of ambient noise 

that the robot might encounter in this environment, V is the current noise level, and D is 

the current distance from the robot to the human listener (as detected by the visual 

system).  A more detailed description of the volume adjustment implementation and how 

it is used within the overall HRI application can be found in Appendix D.1. 

7.2.4 PAUSING FOR INTERRUPTIONS 

Sometimes, transient noise from the surrounding environment requires that the 

robot stop reading for some period of time.  Even though the robot can raise the volume 

at which it speaks, some masking noise is too loud to talk over.  If such an event should 

occur, and the robot continued to read its text, the robot speech would not be intelligible 

during the event, thereby losing any knowledge being transferred at that time and 

frustrating the listener.  A robot with some knowledge of the primary entities in the 

auditory scene, however, knows the maximum volume at which it can speak, can estimate 

how much the listener can hear, and can then choose to pause during periods of excessive 

noise.  When ambient noise levels finally return to a reasonable level (i.e. the robot 

predicts that speech is again intelligible to the listener), the robot can resume speaking.  

To alert the listener to the fact that it is about to continue speaking, the robot starts the 

next sentence by saying, “As I was saying…” 

Another source of interruptions for a robot speech interface are other people.  

Unlike general auditory events, which reduce intelligibility by masking the speech 

signals, other speech in the environment does not necessarily reduce intelligibility below 
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acceptable levels for a human listener.  However, if that speech is directed at the listener, 

then the user’s attention will be diverted from the robot and focused on the new human 

speaker.  In this case, to preserve intelligibility, a robot should recognize that it is no 

longer the focus of attention and should pause until it regains its audience.  The audience 

is assumed to have returned when the human listener issues a speech command to the 

robot (Section 7.2.2). 

The specifics of the implemented algorithm for pausing in the presence of noise 

or speech are provided in Appendix D.2. 

7.2.5 ROTATING TO FACE THE LISTENER 

A person arriving at the information kiosk might approach from any angle.  

Although the robot ultimately uses the vision system to track its listener, it first waits for 

the person to say something and uses the speech detection and localization tools 

discussed earlier to determine the direction it should turn to face.  Then the vision system 

is initialized and the biclops camera takes over the job of continuous tracking.  As the 

camera is actuated, it can rotate independent of the robot body to follow the person 

through arcs of up to 90 degrees in each direction.  However, for intelligibility and ease 

of use, it is best to restrict this range to 30 degrees or less in each direction, and rotate the 

robot body when the person moves too far to one side or another.  This algorithm is 

described in pseudocode in Appendix D.3. 

The purpose of rotating the robot is twofold. First, it promotes ease of use because 

it frees the listener of the need to remain in place while interacting with the kiosk and it 
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places the flat-panel monitor, which displays information topics and speech commands 

for using the system, in front of the user.  

The second purpose of rotating the robot is to maintain the desired intelligibility 

levels.  The loudspeaker on the robot is not omni-directional, meaning that its apparent 

volume changes with the angle of the perceiver.  Consequently a person standing to the 

side of the robot will not hear its speech output as well as a person standing directly in 

front of it.  By not allowing the listener to stand too far to either side of the robot (i.e., by 

rotating the robot to face the listener after more than 30 degrees of angular displacement), 

an acoustically-aware interface minimizes the effects of loudspeaker directionality on 

volume levels and general intelligibility at the listener’s location.   

7.2.6 MOVING THE ROBOT  

The last action that can be taken by an acoustically-aware robot to improve the 

intelligibility of its speech output is to move the robot.  When confronted with excessive 

amounts of noise that have not faded after some period of time, a robot should recognize 

that the sound is not going to disappear, and that a new location in which to hold the 

interaction is necessary.  As human listeners typically stand very close to the robot during 

an interaction, this work assumes that the noise levels heard by the human are 

comparable to those heard by the robot.  Therefore, reducing the ambient noise exposure 

on the robot should also reduce the noise exposure on the human listener, so the robot can 

use its own knowledge of recently sensed data and combine it with knowledge of the 

auditory scene to quickly pick a quieter location in the environment and move.  The 
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effectiveness of this relocation process using the B21r was already reported on in Chapter 

5 (Section 5.3.1) under improving the signal-to-noise ratio. 

When confronted with a new medium-to-long duration sound source, the robot 

also needs to take into account whether or not it is currently involved in an interaction.  

Depending upon the answer to this question, the robot may need to take slightly different 

actions: 

• No Ongoing Interaction 

When there is not ongoing interaction, the robot can follow the same 

sequence of steps as those outlined in Section 5.3.1 for relocating the 

robot: 

Step 1. Estimate volume 

Step 2. Identify source direction 

Step 3. Move the robot to localize the source 

Step 4: Map the noise 

Step 5: Identify a better location 

Step 6: Move the robot 

• Currently Interacting with a Human 

When the robot is interacting with a human partner, then it needs to make 

two changes to this algorithm.  The first change is that the robot needs to 

ask the human if they want to move, and only relocate if the human feels 

that this is appropriate.  Otherwise, it is possible that this listener is not 

having any difficulties understanding the robot.  The second change is the 

robot should not move during step 3 to localize the sound source.  By 
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simply assuming the sound source is 1-m away, the robot can react 

quicker without annoying or frustrating the human user. 

Step 1. Ask the user if they want to move 

Step 2. Estimate the volume 

Step 3. Identify the source direction 

Step 4: Map the noise, assuming a sound source 1-m away from the robot 

Step 5: Identify a better location 

Step 6: Move the robot 

The pseudocode for this implementation of acoustically aware relocation is 

provided in Appendix D.4.  More details on individual steps can also be found in Section 

5.3.1. 

7.3 COMBINING TYPES OF AWARENESS 

The purpose of the acoustically-aware information kiosk is to provide information 

to people using speech.  As such, it has to be able intelligible in the presence of a wide 

variety of sounds, including medium-to-long duration ambient noise, short duration 

ambient noise, and a separate category, speech sounds.  Given the complexity of the 

environment, however, how can a robot effectively adapt to a changing auditory scene?  

The answer is inspired by peoples’ reactions to acoustic interference when using speech. 

People are aware of their surrounding acoustic environments, whether consciously or not, 

and the actions that people take allow them to respond to each of the above categories of 

sound.  Our robot interface should do the same. 
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For our acoustically-aware implementation of the information kiosk, the robot 

could adapt in five different human-inspired ways to the auditory scene.  The choice of 

action, by necessity, depended on the type of interference from the surrounding 

environment.  A finite-state-machine (FSM) describes the selection of these responses for 

a robot in the middle of an interaction with a human partner.  Seen in Figure 7.3, the 

robot can change its volume, wait for conversations to end, pause for short duration 

noises, and ultimately select and move to a new location in the environment if a short 

duration noise persists for too long.  Note that rotating to face the listener is not listed in 

this diagram.  Since the stereo vision system rather than the auditory array is used to 

 

Figure 7.3. The sequence of steps the robot takes while reading a story to a human 

listener.  Starting with the step in the center, the robot samples the auditory scene, 

and then if nothing is wrong, estimates a volume, reads a sentence and repeats.  

When excessive noise or speech is detected, the robot takes a different action to 

adapt its auditory output before reading the next sentence. 
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maintain the robot’s orientation once a person has initially been detected, the process of 

rotating to face the listener is run in parallel with all other actions.  Appendix D presents 

a pseudocode description of both this FSM implementation and the individual sub-

components involved in the application. 

In general, many of these adaptations are reactive in nature.  This is different from 

previous applications where the robot always had time to first investigate the sound, 

determine where it is coming from, estimate models of sound propagation through the 

room, and then react appropriately.  Although some medium-to-long duration sources do 

occur in most environments, which would remain active long enough to be detected and 

explored, many of the sounds being dealt with are transient and difficult to plan for.  The 

robot needs to be able to react appropriately to any type of sound, regardless of its 

duration.  The question therefore becomes how best to react to the unexpected?  This is a 

classic question in mobile robotics, for which many different robot architectures have 

been developed, and which we will not go into here.  Suffice it to say that the same 

problem exists in dealing with transient noise in auditory scenes.  Some of it can be 

planned for, and some of it cannot.  In this dissertation, we used an FSM to combine 

reactions to both short duration and medium-to-long duration sounds, but there are many 

other hybrid architectures available.  Whatever the choice of architecture, the important 

thing is that the robot does not simply ignore the auditory scene when the auditory scene 

can affect the application, as is the case with applications involving speech.  

In the long run, it may be possible to move even more of the currently reactive 

adaptations to the deliberative side of acoustical awareness by extending the predictive 

capabilities of the sound field framework described in Chapter 3 to the problem of sound 
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propagation over time.  When a repeating sound function the robot knows very well is 

detected, the robot can make predictions about peaks and valleys in the sound function to 

adapt its speech patterns (or word choices) ahead of difficult acoustic conditions, or 

otherwise change its plan of action to accommodate the extra noise.  For instance, if the 

robot knows that the machine in the next room will reach a crescendo in the next 5-10 

minutes, then it can suggest early on that the conversation is moved to a different location 

to avoid a situation where intelligibility decreases slowly over time until the robot has to 

move anyways.  Since such predictions will only work for sound sources that the robot is 

familiar with, the robot will still have to react somehow to unknown sounds.  But the 

additional capabilities, which are currently beyond the computational limits of modern 

computers to perform in real-time, could prove very useful in integrating more 

knowledge about the auditory scene into an action selection mechanism. 

7.4 CHAPTER SUMMARY 

In summary, this work with an information kiosk has demonstrated the 

application of acoustical awareness to an important new domain: human-robot interaction 

(HRI).  As a field in which there is much use of sound, both in audition and vocalization, 

it is only appropriate that we should have examined the application of sound propagation 

knowledge to the design of HRI applications.  As is also appropriate, we found that 

people are the best model for this type of acoustically-aware interaction.  When 

confronted with a dynamic auditory scene, people naturally adapt their speech and non-

speech behaviors to maintain the conversation.  A robot should do the same.  By taking 

into account the effects of a dynamic auditory scene on a listener’s comprehension of its 
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speech output, we built an application where an acoustically-aware robot could act in 

human-inspired ways to maintain intelligibility and, ideally, improve its user’s interaction 

experience.   

In addition to exploring a new domain, however, this chapter also touched upon 

the important topic of transient noise in the auditory scene.  While previous applications 

discussed in this dissertation focused on medium-to-long duration sound sources in the 

environment, the information kiosk was forced to handle a wide variety of sounds, both 

in volume and duration.  In order to respond appropriately to whatever came up in the 

auditory scene, we implemented acoustical awareness as part of a hybrid controller.  This 

way, when the robot recognized it had time, it could acquire the information it needed 

about the scene to plan out its actions.  But for the short duration sounds, it could quickly 

respond to preserve intelligibility.  

With respect to the general problem of acoustical awareness, the use of a hybrid 

architecture to handle transient noise is an important addition.  There has been significant 

work, as demonstrated in Chapter 2, in reacting to, or simply incorporating into an 

application, particular types of transient sounds from the environment.  While much of 

the earlier work has been focused on speech sounds, there has also been work in detecting 

and using animal sounds, transportation noise, and music.  The use of a hybrid 

architecture allows the robot designer to combine this body of research by others in the 

field of mobile robotics with the deliberative approach to acoustical awareness 

emphasized in this dissertation.  Together, they provide a comprehensive picture for 

intelligently reacting to a wide variety of noises in the auditory scene. 
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CHAPTER 8  

SUMMARY AND CONTRIBUTIONS 

The use of sound with mobile robotics is fast gaining attention among researchers.  

Although vision has usually stolen the spotlight with the large quantities of data present 

in a stream of images, it does not show the complete state of the environment.  In 

particular, vision only works in straight lines when nothing is between the target and the 

camera.  Sound, in comparison to light, travels around and even through solid objects in 

the environment.  For a robot, audition can signal the occurrence of significant events 

when the robot is facing the wrong way, or is not even located in the same room.  

Audition can also be used for diagnostics of systems that a camera cannot reach or see.   

Unfortunately, despite these advantages, there has been only limited effort so far 

to incorporate audition into general robot navigation.  The extent of most of the work to 

date has been event-oriented.  Specifically, if the robot hears something that can be 

considered significant, it repositions itself to focus another sensor on the problem.  This 

dissertation has argued that, while the event-oriented response can be valid, there are 

many situations in which having general knowledge about sound propagation through a 

room, i.e. an acoustical awareness, can allow a robot to more effectively adapt its 

navigational controller to perform tasks involving sound.  With this knowledge available 

to it, an acoustically-aware robot can make predictions about the auditory scene, 

separating signals of interest from ambient noise, and dynamically adjusting its plans to 

monitor areas for the occurrence of an auditory event.  A robot can also reposition itself 

with respect to areas of significant ambient sound, either to avoid the noise or move to it 
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in search of a good listening position.  It can also make predictions about the effects of 

noise, ambient or robot vocalized, on other listeners and change its own behaviors to 

achieve the desired effect.  Each of these is a specific scenario in which we have already 

demonstrated in this dissertation the successful use and advantages of being acoustically-

aware. This list is not designed to be all-inclusive.  Instead, it only demonstrates the wide 

variety of tasks to which acoustical awareness can be applied.  In general, having 

knowledge about the auditory scene allows a robot more flexibility with which to 

accomplish the tasks that people desire of it.   

8.1 HOW CAN ACOUSTICAL AWARENESS BE APPLIED TO MOBILE ROBOTICS? 

While the application of sound propagation to robot navigation may seem a good 

idea, the big question is how?  This was the key question answered by this dissertation, 

providing direction on how this idea of acoustical awareness be effectively incorporated 

into a navigational controller.  The answer was sub-divided into three subsidiary 

questions designed to make the result as general as possible for use by the wider robotics 

community: (1) What information or data about the auditory scene is useful to a mobile 

robot? (2) How can a robot gather this information? (3) And finally, how can a robot 

incorporate this information into its own navigational behaviors?  The answers to each of 

these three questions are summarized in the following sub-sections. 

8.1.1 WHAT INFORMATION IS USEFUL? 

The first subsidiary question asked, “what a priori information or sensory data are 

useful for a mobile robot performing an acoustic application?”  This question was 

addressed primarily in Chapter 3.  The answer to this question came from physics.  Sound 
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generated by a source in the environment travels around the environment in a relatively 

well-understood fashion, bouncing off walls or objects in the room until its energy decays 

completely.  In order to make perfect predictions about sound flow through the room, a 

robot needs a complete description of geometric and material properties of every sound 

source, every object, and every receiver in the environment.  Since no one can ever have 

a perfect description, physicists and, more recently, acoustical engineers have been 

working on a number of different approximation frameworks using different assumptions 

and sets of information.  Several of these frameworks are summarized in Chapter 3.  The 

set of information useful to an acoustically-aware robot therefore depends on the choice 

of sound propagation frameworks. 

Of these techniques, the sound fields framework stands out as particularly 

amenable to robotic deployment.  The conceptual idea of sound fields uses super-

positioning to break up the auditory scene into a number of different independent 

components. Unlike some of the other sound propagation estimation techniques, this is 

particularly advantageous to a robot where the set of information available is likely to 

vary wildly from application to application.  The bare minimum for estimating sound 

flow through the environment is a sound source location.  Then, as more information 

becomes available, either through robotic or human efforts, the estimates of sound flow 

can add volume, directivity, reverberation, transmission, etc.  The sound fields 

framework is also particularly advantageous to mobile robotic deployment because of its 

adjustable computational complexity.  Although the upper-bound on complexity can be 

quite large, the bare minimum can estimate sound levels at any location in the 

environment using a single equation without iteration.  Given the wide variety of 
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applications and hardware requirements, the flexibility of the sound fields framework 

makes it ideal for robot use.  More detail on exactly how the sound fields framework can 

be used to model sound propagation through an environment, and the set of information 

that a robot needs to model different aspects of the auditory scene is found in Chapter 3.   

8.1.2 GATHERING KNOWLEDGE ABOUT THE ACOUSTIC ENVIRONMENT 

The second subsidiary question asked, “how can we combine sensory data from 

multiple sources to build effective representations of the acoustic environment?”  This 

question was the focus of Chapter 4, where we explored a set of tools available to a 

mobile robot for storing, retrieving, and fusing together sensory data to gather acoustic 

knowledge about the environment.  Even though the sound fields framework is flexible 

enough to work with a wide range of data, its accuracy varies with the amount and 

quality of the information that the robot has about the auditory scene.  Therefore, adding 

the ability to autonomously gather a wide range of information about the acoustic 

surroundings increases the flexibility of the system even further.  Now a robot can make 

use of a priori information when it is available, and gather additional data on its own as 

needed. 

The set of tools discussed in Chapter 4 for autonomously gathering information 

about the environment were varied in purpose and origin.  Many of the tools focused 

specifically on identifying properties of sound sources in the environment, since knowing 

about them is so critical to accurate sound propagation estimates.  Two tools in particular, 

auditory evidence grids and a sound source discovery process, were developed for this 

dissertation to localize sound sources in the environment, and then estimate properties of 
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volume and directivity for each sound source.  Another tool, mel-frequency cepstral 

coefficients (MFCC’s), was developed by others for classifying sound source functions.  

This dissertation demonstrated, however, how MFCC’s could be used successfully with 

the data from the sound source discovery process to detect different types of sound 

sources in the room from a moving robotic platform. 

Other tools described in Chapter 4 for augmenting robotic knowledge about the 

auditory scene primarily focused on environmental effects.  Robotic mapping of the 

obstacles in the environment, researched extensively by others in the robotic community, 

was demonstrably applied to the problem of reverberant field estimation (part of the 

sound field framework).  Although there were a number of improvements to be made for 

quality, the use of ray-tracing with a basic evidence grid representation was shown to 

produce effects expected of a reverberant field, including reduced acoustic shadows and 

increased volume near walls or other hard surfaces.  Future work has already been 

proposed in Chapter 6 for evaluating the effectiveness of these reverberation models 

when applied to a mobile robot. 

The final tool described in Chapter 4 was noise mapping.  These are maps created 

directly from samples of noise levels in the environment, without using a predictive 

sound flow framework such as sound fields.  Acousticians have used noise maps for 

many years as a visual guide to sound flow through the environment.  This dissertation 

applied them for the first time to sensory data collected autonomously by a mobile robot.  

For now, they are largely used as validation tools for the robot designer, but in the future 

they may serve as an autonomous method of verifying the local result of the sound fields 
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estimation framework, allowing a robot to identify areas of missing knowledge that 

should be investigated further to improve accuracy.   

8.1.3 APPLYING ACOUSTIC KNOWLEDGE TO NAVIGATIONAL CONTROL 

The third subsidiary question asked, “how does acoustical awareness change with 

control over the source vs. the receiver?”  Chapters 5-7 were dedicated to answering this 

question, by breaking the problem into parts: (1) How can acoustical awareness be 

applied to a auditory task? (2) How can acoustical awareness be applied to a vocalization 

task, and what are the differences? (3) How does the type of auditory scene affect the 

choice of control?  The problems behind each of these subjects were explored by one or 

more applications, providing examples and some guidelines for applying knowledge 

about the auditory scene to robotic control. 

Applied Acoustical Awareness - Audition 

The problem of auditory task improvement was explored in two primary tasks 

described in Chapter 5, as well as in some of the acoustic knowledge gathering tasks 

described in Chapter 4.  The two primary tasks were an acoustic monitoring task where a 

security robot kept track of changes to sound sources in the auditory scene, and an 

improved signal-to-noise ratio problem, where the robot sought to reduce the amount of 

ambient noise it was exposed to in order to improve signal quality.  Between these two 

tasks, we demonstrated two different approaches to producing change in robotic 

movement due to knowledge about the auditory scene: dynamic re-planning, and map-

based navigation. 
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Dynamic re-planning was employed in both the acoustic monitoring scenario and 

the robotic discovery experiments performed in Chapter 4.  While performing the patrol 

task, the robot gathered a large collection of sampled auditory data.  When the robot had 

time, it processed the data, using its knowledge of the auditory scene to separate signals 

of interest from uninteresting ambient noise.  The acoustic monitoring task in Chapter 5 

demonstrated how the robot could use this methodology to detect the presence of new 

sound sources or changes to existing sound sources in the environment.  Then, knowing 

that something had been altered in the environment, the robot could use the tools 

presented in Chapter 4 to localize the new sound source or focus on existing sound 

sources in choosing where in the environment it should return to and investigate.  Though 

not implemented in this dissertation due to computational and data limitations, the robot 

would ideally process the data in real-time, determining areas of likely change while still 

in the vicinity of the change, so that it could cover wider areas and reposition itself with a 

minimum of backtracking.  The drawback to the real-time data analysis is that the robot 

may not have as much knowledge available to it when making a decision.    

Map-based navigation was the second type of acoustically-aware robotic 

movement strategy investigated in Chapter 5.  The scenario using this movement strategy 

was the improved signal-to-noise ratio task.  In this scenario, the robot was seeking to 

minimize its exposure to ambient noise by either repositioning itself within the 

environment, or moving dynamically away from areas predicted to contain high ambient 

noise.  To accomplish this task, the robot used its knowledge of the auditory scene to first 

build a map of the ambient noise levels in the room (using the sound fields framework), 

and then pick either a quiet stationary listening position or relatively low volume path 
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through the environment.  The results of this movement strategy, however, were mixed.  

Using such a map, a robot could clearly improve its position over areas of high ambient 

noise, and do so more consistently than avoidance strategies that did not take advantage 

of knowledge about the auditory scene.  There was not a significant improvement, 

however, in robot noise exposure in using a map to avoid areas of medium noise.  While 

there was a consistent improvement with the map, the delta change in noise exposure was 

relatively small due to the reverberant field dominating all but the loudest areas of the 

room.  As a result, this mixed performance suggested that the success of map-based 

movement strategies may be highly dependent on the specific situation for which they are 

used.  If the robot’s current situation indicates an exceptional need, such as a high volume 

sound source in close proximity, then they could be very useful.  However, if the acoustic 

situation is not very difficult (i.e. the number and effects of ambient noise sources in the 

environment is small) then an estimated map of the auditory scene may not help the robot 

much.  Such a situation may call for either more accurate modeling of the environment or 

alternative movement strategies, such as speeding up the robot to escape regions of 

moderate interference.    

Applied Acoustical Awareness - Vocalization 

Robot vocalization tasks were explored in two chapters: a stealthy approach 

scenario in Chapter 6, and a human-robot interaction problem, the acoustically-aware 

information kiosk, in Chapter 7.  The information kiosk, however, will be summarized in 

the next section, due to its emphasis on environment type. 
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From a control standpoint, the stealthy-approach scenario used a similar map-

based movement strategy to that used in the improved signal-to-noise ratio experiments.  

The difference, however, was that the robot was not trying to change the signal that it 

detected, but rather change the signal detected by an external observer listening for a 

robot.  Therefore, when the robot constructed a map, it did not make predictions about 

what it was going to hear at different locations.  Instead, the robot predicted what the 

observer would hear, given different robot locations.  Since the observer remained 

stationary, the map remained 2-dimensional, and the best path through the environment 

was fairly obvious.  But, with enough processing power, and modeling of user actions, 

this same map-based approach could serve as the basis for a cat-and-mouse scenario, 

where the listener actively avoids the robot.   

For now, the stealthy approach scenario has only been tested with heuristics for 

estimating environmental masking of robot ego-noise.  However, this dissertation also 

proposed an extension of the ray-tracing algorithm described as part of the sound fields 

framework to solve this problem in the more general case.  Assuming that the ray-tracing 

predictions are accurate enough to mask the robot, the same algorithm should also work 

in reverse, allowing the robot to improve the signal quality perceived by a listener over 

regions of extraordinary sound. 

From the overall standpoint of this dissertation, the important point of Chapter 6 

was less the application, and more the similarity between the domains of audition and 

vocalization.  In all tasks using knowledge about the auditory scene, maps were made of 

the ambient noise in the environment.  The information used in these maps for both the 

vocalization and auditory applications included sound source locations, directivity, 
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volume, and obstacle maps, each of which could be acquired using the tools in Chapter 4.  

The only real difference between these domains was the identity of the receiver.  For the 

vocalization applications, it was someone or something located someplace other than the 

robot.  For the auditory applications, it was the robot.  In both cases, the receiver could 

possibly move, the actions of the robot could affect what was perceived, and the 

underlying sound-fields framework could make predictions about how the robots actions 

would affect the observer. 

Differences in Control Due to Environmental Factors 

The final point of discussion in the applications part of this dissertation was on the 

effects of the environment type on robotic control.   For most of this dissertation, the 

emphasis was on medium-to-long duration sources.  These are a very common set of 

sources in human environments (fans, fountains, heavy machinery, radios, etc) that can 

usually be expected to remain unchanged while the robot sampled the room.  Because 

these sources remain relatively static, a robot can build action plans to detect, investigate, 

and avoid such sources.   

In Chapter 7, however, we explored a scenario in which speech was used by a 

mobile robot to interact with a human partner.  The robot, an information kiosk, was 

located in a dynamic auditory scene where there were not only medium-to-long duration 

sources, but also transient, short-duration noises.  The robot’s goal was to preserve 

intelligibility of its speech output in the face of this dynamic auditory scene, but it did not 

always have time to respond, as had the previous scenarios.  Medium-to-long duration 

sources could be treated as they were treated earlier, mapping them out and selecting a 
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better location from a map.  Transient noise, however, appeared and disappeared quickly 

enough that the robot did not have time to gather information, map the result, and plan an 

alternative behavioral response.  In the long run, as processor speeds improve, the sound 

fields framework may be extended to model some of these sounds over time, but for this 

application, behavioral responses were hard-coded into the robot controller by the 

designer. 

The important lesson learned from the acoustically-aware information kiosk was 

how to respond to different types of ambient noise.  Ultimately, knowledge-based 

approaches and reactive approaches to dealing with an auditory scene are both types of 

acoustically-aware control.  As described in Chapter 3, acoustically-aware navigation can 

be performed by reactive, deliberative, or hybrid controllers. The choice of which 

controller to use should depend on how noise exposure affects the application.  If the 

application is particularly sensitive to transient noise, such as was the case with our 

speech application, then a reactive approach to handling these sound may be the best 

choice.  If medium-to-long duration sounds are a problem, however, and the robot has 

time to acquire some knowledge about the environment, then a more deliberative 

approach can be taken, predicting the effects of robotic movement, and selecting the 

action with the best possible outcome.  If both types of sounds significantly affect the 

application, then a hybrid controller can be implemented to handle both types of sound.  
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8.2 CONTRIBUTIONS 

This dissertation has explored the use of knowledge-based acoustical awareness in 

guiding mobile robotic navigation and decision-making.  In support of this stated goal, 

three contributions have been made to the field of robotics: 

• Conceptual Framework  

A sound propagation framework based on the theory of sound fields from 

physics was validated in this dissertation for use by a mobile robot.  The 

room-level maps of the auditory scene that can be constructed using this 

framework allow for a wide range of available information, and 

demonstrably improved robotic performance in multiple applications 

involving real robots.  The sound fields that were specifically explored as 

part of this dissertation included: 

1. Direct Field – estimates of the direct field provide a quick, 

computationally simple approach to estimating the sound levels across 

a wide environment from a limited amount of information. 

2. Reverberant Field – building estimates of reverberant sound in the 

room requires more knowledge about the environment than estimating 

the direct field, but the potential for more accurate representations is 

also higher.  Ray-tracing was explored in this dissertation as an 

approach to representing both the direct and reverberant fields.  

Although the incorporation of ray-tracing into robotic applications 

remains future work, this dissertation demonstrated how a robot could 
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create models of the reverberant field using ray-tracing with robot 

gathered information about the auditory scene. 

• Tools for Gathering Acoustical Information 

A set of tools was identified in this dissertation for gathering knowledge to 

use with the sound fields framework.  Some were developed for this 

dissertation [#2-3], while others were developed in other research areas 

and applied for the first time to a sound propagation estimates with a 

mobile robot [#1, #4-6].  These tools include: 

1. Spatial Likelihoods – an algorithmic tool for estimating the direction 

of sound detected by a microphone array (Section 4.1.2). 

2. Auditory Evidence Grids – a representation for combining spatial 

likelihoods over time and space to localize sound sources in the 

environment (Section 4.2.1) 

3. Volume and Directivity Estimation – an algorithmic approach to 

identifying the volume and directivity of a sound source from a 

collection of sampled data (Section 4.2.2). 

4. Mel-Frequency Cepstral Coefficients – an algorithmic representation 

of the source sound function that can be identified by a mobile robot, 

and used to detect changes to the auditory scene (Section 4.2.4). 

5. Evidence Grid Representations of Obstacles – although the creation of 

evidence grids has been explored in much greater detail elsewhere by 

others, this dissertation demonstrated that they could also be applied to 
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the sound fields framework for estimating the reverberant field using 

ray-tracing (Section 4.3). 

6. Sampled Data Noise Maps – a representation of the auditory scene that 

was derived directly from the sampled data.  This representation 

complements the sound fields framework by providing a comparative 

metric against which missing information may potentially be identified 

(Section 4.4). 

• Examples and Guidelines for Implementation  

Four different scenarios were developed and explored as part of this 

dissertation work.  The range of these scenarios demonstrates the 

versatility of being acoustically aware: 

1. Identifying Change in the Auditory Scene – by using knowledge 

gathered while patrolling the environment in conjunction with the 

sound fields framework, a robot can identify changes to existing sound 

sources, as well as the presence and location of new sound sources in 

the environment (Section 5.2).  The test domain of this application is 

robotic security. 

2. Improving the Signal to Noise Ratio – using maps of the auditory 

scene generated by the sound fields framework, a robot can reduce its 

exposure to ambient noise in the environment (Section 5.3).  The test 

domain of this application is robotic security. 

3. Hiding the Acoustic Signature – when stealthily approaching a target, 

a acoustically-aware robot can use maps of the auditory scene to hide 
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its own ego-noise from an observer (Chapter 6).  The test domain of 

this application is robotic surveillance. 

4. Information Kiosk – a robotic information kiosk combined information 

from a number of sensory modalities in a hybrid acoustically-aware 

architecture to handle both medium-to-long duration and transient 

noise sources in the environment (Chapter 7).  The domain of this 

application is Human-Robot Interaction. 

In exploring these scenarios, we have also encountered on multiple 

occasions some general design guidelines for the application of acoustical-

awareness to mobile robotic applications: 

1. Even limited information about the auditory scene is still better than 

no information.  This was demonstrated particularly well in Section 

5.3.1, where just the knowledge of the sound source position was 

enough to significantly improve performance.  All of the applications, 

however, showed some improvement with limited information. 

2. The incorporation of robot ego-noise into sound propagation models 

can substantially improve performance.  Without the inclusion of robot 

ego-noise models in Section 5.2, changes to the environment could not 

have been identified.  Other applications, including acoustic hiding in 

Chapter 6, also demonstrated how robot ego-noise could impact 

performance.  Therefore, when available, a model of robotic 

movement may have a significant effect. 
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3. Applications where robot are generating sound and applications where 

robots are listening to the auditory scene can make use of the same 

sound fields framework, with the same robot gathered knowledge.  

The only real difference involves for whom the auditory scene 

representations are being created.  This guideline was demonstrated in 

Chapters 5 (robot as listener) and 6 (robot as sound source). 

4. Finally, in application to robotic systems, the sound fields framework 

is designed to intelligently handle significant medium-to-long duration 

interference from ambient noise.  When there is a significant transient 

noise component to the auditory scene, however, a reactive awareness 

(Chapter 3) can be used in conjunction with the deliberative aspects of 

being acoustically aware to improve overall performance (Chapter 7).  

This allows the large body of research performed by others in reacting 

to auditory cues (Chapter 2) to be integrated together with the work in 

this dissertation to achieve a comprehensive awareness of the auditory 

scene. 

8.3 CONCLUSION 

The title of this dissertation is Acoustical Awareness for Intelligent Robotic 

Action.  The focus of this work was on improving the quality of robotic applications 

using sound by adding more domain knowledge about sound propagation into the 

decision making process.  This dissertation combined knowledge from other domains 

with that of mobile robotics, sometimes developing new algorithms where none were 
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currently available, to accomplish this goal.  Given the insight, the examples, and the 

means, this dissertation has now enabled others in the field of mobile robotics to utilize 

knowledge of sound flow in their own acoustic applications. 
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Appendix A - SOFTWARE DESIGN 

The robotic experiments discussed in this dissertation all made use of the same 

underlying acoustically aware system.  Although two different robots were involved in 

these experiments, an Activ-Media Pioneer2-dxe vs. the iRobot B21r, the 

hardware/software configuration was largely the same.  The only real difference was in 

the choice of controller, Player v1.6.5 for the Pioneer robot vs. Wax [Schultz et al. 1999] 

for the B21r.  Otherwise, even the commands sent to Player or Wax were identical.  This 

appendix, therefore, describes in more detail this hardware and software configuration 

used for all experimentation in this dissertation.  Where there are differences between 

robots, the emphasis is on the implementation for the Pioneer robot.    

A.1. HARDWARE 

Our specific hardware implementation made use of 4 different computers, one of 

which was dedicated to sampling the auditory scene, and three of which were used in 

processing sensor readings and controlling the mobile robot.  Figure A-1 demonstrates 

how these four computers were networked together. 

• Internal Computer  

The Pioneer2-dxe robot was equipped with a 700-Mhz internal computer, 

connected by a 10-Mhz wireless connection to other computers in the 

room.  The onboard computer ran RedHat Linux v7.2, and was responsible 

for (1) passing sensor data over the wireless to a desktop computer, and 

(2) running the Vector-Field-Histogram controller for moving while 

avoiding obstacles.   
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• DAQ Computer  

An 800-MHz laptop running Windows-XP was mounted on the Pioneer 

robot, behind the SICK LMS so as to gather samples as requested in real-

time from the microphone array.  On the Pioneer robot, 4 Audio-Technica 

ATR35S series lavalier microphones were mounted to a box attached to 

the robots back (above the wheels).  On the B21r, 4 Audio-Technica 

AT831b series lavalier microphones were mounted to a metal frame 

attached to the top of the robot (above and behind the monitor).  Both 

robots then used a Measurement Computing PC-CARD-DAS16/16 to 

collect data from all 4 channels at 8192-Hz and pass it over the wireless 

network to the Main Computer running the database application. 

 

 

 

Figure A.8.1. The network configuration of the 4 computers used in the acoustically 

aware experiments.  2 computers on or in the robot were connected by wireless access 

point to a desktop machine and the main computer. 
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• Desktop Computer  

A 900-MHz dual processor desktop computer running Fedora Linux was 

dedicated to localization and path-planning.  This computer ran Player 

v.1.6.5, running the ‘amcl’ and ‘wavefront’ drivers locally and accepting 

the sensory data from robot’s internal computer with passthrough drivers.  

The desktop computer also ran a Player controller program based on the 

“simple” example program provided with Player v1.6.5.  This controller 

program was responsible for accepting target goals and localization 

requests from the taskmanager program over a socket interface. 

• Main Computer  

The computer responsible for running most of the acoustically aware 

programming was a 2.0-GHz Celeron laptop with 512-Mb of RAM, 

running Windows XP Professional.   This computer collected and stored 

samples from the auditory interface, processed the data to build 

representations of the auditory scene, and provided high-level control for 

guiding robotic movement.   

A.2. SOFTWARE PROCESSES 

The software implementation of acoustical awareness, as used in this dissertation, 

was based on the idea of separable executable processes communicating via socket 

interfaces.  For instance, processing sensory data was handled separate from map 

building, which was handled separately from robot control.  This separation of processes 

made the design and debugging phases simpler, by allowing processes to be seamlessly 
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distributed across different computers, and allowing for greater flexibility in extending 

the capabilities of the mobile robot to cover new application areas.  At the conclusion of 

this dissertation, the final set of processes included one database application, 6 c++ 

programs, and 2 instances of the Player robot control environment.  Figure A-2 shows 

how each of these processes were distributed, and how information flowed between the 

different executables.  The following bullets then discuss in more detail the purpose of 

each process in the acoustically-aware system. 

• Database – implemented in Microsoft SQL Server 2000 

Central to the system design used in this dissertation was a database.  The 

database acted as a blackboard, allowing processes to store all incoming 

 

Figure A.8.2. The software configuration used for acoustically-aware navigation in this 

dissertation.  A total of 9 different executable programs were involved in collecting 

information from onboard sensors, storing and manipulating that information, and then 

converting representations into robotic navigational commands. 
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sensory data for future use, as well as store intermediate results such as 

spatial likelihoods, sound pressure levels, likely sound source locations, 

and all maps created by the system.  These data could then be retrieved at 

later dates to rebuild evidence grids or noise maps as many times as 

possible with different combinations of measured data. 

• DAQ Controller – c++ program (Windows) 

The DAQ (Data Acquisition) controller software, located on the DAQ 

Computer mounted on the back of the robot, was designed to sample as 

needed from the microphone array.  As the available laptop was relatively 

slow, no processing was actually performed in this process.  Instead, when 

a sample was requested, it would collect as many seconds of data from 

each microphone and transmit it over the wireless network.  The controller 

could even apply a FIR filter to the incoming data if requested. 

• Audio Sampler – c++ program (Windows) 

The purpose of the audio sampler program was to request samples from 

the DAQ controller on a regular basis (every 250-msec) and store those 

samples to the database.  Whenever the audio sampler requested a sample 

from the DAQ, it also requested the current position of the robot from the 

Player interface so that processes could identify the position and time at 

which samples were recorded.  Also, as discussed in Chapter 4, some 

sampling strategies require sampling only when the robot is moving.  To 

enable this functionality, the task manager software could turn sampling 

by the audio sampler on and off. 
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• Map Server – c++ program (Windows) 

The map server program was designed to handle all map building tasks, 

including the creation of auditory evidence grids, sampled noise maps, 

predicted noise maps, and sound source directivity.  At the request of the 

task manager software, or the map viewer software, the map server took 

the necessary samples from the database, performed all necessary 

mathematical calculations on them (including determining sound pressure 

level and spatial likelihoods), and created a new map from those samples.  

The created map was stored in the database for later re-use, as well as 

returned to the requesting program for immediate use. 

• Task Manager – c++ program (Windows) 

The task manager software was the high-level controller behind 

acoustically aware movement.  The task manager controlled when the 

robot samples the auditory scene by communicating with the audio 

sampler.  The task manager controlled the creation of new maps of the 

environment from sampled data through the map server program.  Finally, 

the task manager controlled where the robot moved by specifying 

waypoint targets to the Player robot server (by way of the Player interface 

program).  Appendix B includes pseudocode descriptions of the different 

robotic control strategies employed by the task manager throughout this 

dissertation. 
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• Player Interface – c++ program (Linux)  

The player interface served as a network interface between the task 

manager and the Player robot server.  This program ran on the same 

machine as the robot server, so the task manager had to communicate with 

it over the wireless network.  There were three movement commands that 

the player interface accepted: (1) move the robot to a particular location in 

the environment, as specified by {x,y,θ}; (2) move the robot in a particular 

direction at a given speed, allowing a robot to follow a gradient noise map 

through the environment; and (3) stop all robotic movement.  A fourth 

command also requested the current location of the robot.  This command 

was used by both the task manager and the audio sampler programs. 

• Player Components/Drivers (Linux) 

With the exception of the work in developing auditory evidence grids 

(Chapter 4), most of the robotic experiments performed in this dissertation 

used the Pioneer2-dxe mobile robotic platform made by ActivMedia 

Robotics.  To test, communicate with and control this platform, we used 

the player/stage robot environment.  This environment was chosen 

because it already contained basic obstacle avoidance, path-planning, and 

localization behaviors for the Pioneer2-dxe robotic platform equipped with 

a SICK Laser Measurement System on the top-front.  To allow for others 

to more easily duplicate our experimental work, we provide below the 

Player configuration files used for all of the robotic experiments.   

Robot Internal Computer Configuration 
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driver ( 

  name "p2os" 

  provides ["odometry::position:0"] 

) 

driver  ( 

   name "sicklms200" 

   resolution 100 

   range_res 1 

   provides ["laser:0"] 

   port "/dev/ttyS2" 

   rate 38400 

   pose [0.1 0 0] 

 ) 

driver ( 

  name "vfh" 

  provides ["position:1"] 

  requires ["position:0" "laser:0"] 

  safety_dist 0.1 

  distance_epsilon 0.15 

  angle_epsilon 20 

  free_space_cutoff_0ms 1200000.0 

  weight_current_dir 0 

  min_turn_radius_safety_factor 0.3 
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  max_speed 0.1 

) 

Desktop Configuration 

driver ( 

  name "passthrough" 

  provides ["position:0"] 

  remote_host "128.61.119.103" 

  remote_port 6665 

  remote_index 0 

  access "a" 

) 

driver ( 

  name "passthrough" 

  provides ["position:1"] 

  remote_host "128.61.119.103" 

  remote_port 6665 

  remote_index 1 

  access "a" 

) 

driver ( 

  name "passthrough" 

  provides ["laser:0"] 

  remote_host "128.61.119.103" 
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  remote_port 6665 

  remote_index 0 

  access "r" 

) 

driver ( 

  name "mapfile" 

  provides ["map:1"] 

  filename "maps/fast_lab11.pgm" 

  #filename "maps/fast_lab9.pgm" 

  resolution 0.03 

  negate 1 

) 

driver ( 

  name "mapfile" 

  provides ["map:0"] 

  filename "maps/new_HandMap8.png" 

  resolution 0.03 

  negate 1 

) 

driver ( 

  name "amcl" 

  init_pose [-3.3 -2.1 0]  

  init_pose_var [.1 .1 .2] 
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  alwayson 1 

  update_thresh [0.1 5] 

  provides ["localize:0"] 

  requires ["odometry::position:0" "laser:0" "laser::map:1"] 

) 

driver ( 

  name "wavefront" 

  provides ["planner:0"] 

  requires ["position:1" "localize:0" "map:0"] 

  safety_dist 0.1 

  distance_epsilon 0.2 

  angle_epsilon 10 

) 

• Map Viewer – c++ program (Windows) 

The map viewer program is not really necessary for autonomous 

movement.  However, development of reliable control requires being able 

to duplicate the efforts of the robot.  For this purpose, a separate map 

viewer program acted as an interface to the map server in lieu of the task 

manager, allowing both the creation of maps and the recall of existing 

maps from the database.  The map viewer could be run simultaneously 

with the task manager to monitor the status of the robot’s efforts to model 

the auditory scene.  Maps were displayed in real time with minimal 

processing overhead. 
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A.3. DATABASE DESIGN 

The design of the database that supports our acoustically implementations was 

based on the three primary acoustic entities discussed in Chapter 3: sound sources, paths, 

and receivers.  Each of these three primary entities is related to each other: sound sources 

and receivers are found at some location in a particular environments, and sources are 

detected by (and possibly dominating) samples collected by a particular receiver.  In 

addition to these relations, each of these three primary entities is also involved in the 

creation of another composite entity, the auditory scene.  The goal of our database 

implementation was to implement these known relationships in tabular format.  Figure 

A.8.3 summarizes these relations graphically.  The squares in this figure represent a 

 

Figure A.8.3. Groups of information in the database are grouped by the entities they 

relate to: sound sources, environments, listeners, and representations of the auditory 

scene.  The arrows represent the types of relationships between these groups. 

 

Auditory 

Scene 

Representation

Sampled

Data

(Listener)

Environment

(Paths)

Sound

Sources

Used To 

Create

Used To 

Create

Detects Found In

Identifying

Collected In



319 

 

group of tables in the database describing a particular entity.  The arrows then indicate 

relationships between the entities.  The direction of the arrow indicates how to read the 

sentence, i.e. a sound source is “found in” a particular environment.   

In the following sub-sections, we discuss in greater detail the shape of each of 

these table groupings, illustrating how all the necessary information for the sound fields 

framework and other acoustically aware tasks (such as sampled noise maps) can be stored 

in a database.   

A.3.1. SAMPLED DATA 

The sampled data entity was designed to contain all of the known information 

about, and collected by, the receiver.  This includes information about specific 

microphones, microphone arrays, samples collected by the microphones, algorithmic 

transformations of the sampled data, and collections of sampled data that occur over 

similar periods of time.  Each of these concepts are represented by their own table in the 

database (illustrated in Figure A.3 by Microsoft SQL Server): 

• Data Session 

As the auditory scene changes over both location and time, it is important 

to group samples by when and where they were collected.  The data 

session table performed this grouping, connecting samples collected over a 

single run together, and identifying the environment (Loc_Name) in which 

the samples were collected.  The data session also stored active process 

information about whether these samples have been searched for sound 

sources yet, and if the session has been completed already. 
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• Microphone 

The microphone table represented a single physical receiver.  This table 

recorded information about which array the microphone belonged to, and 

where the microphone was located within that array. 

• Microphone Array 

The microphone array was a group of synchronized microphones that may 

be used for estimating spatial likelihoods or sound pressure levels.  The 

microphone array was most important in grouping together different 

microphones, and storing the centroid of the array with respect to a 

particular robots centroid (i.e. the offsest from the robot’s estimated 

 

Figure A.8.4. A graphical description of the tables/relationships that 

make up the sampled data entity in the database.  This figure was 

generated by Microsoft SQL Server 2000, where the database was 

implemented. 
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location).  Since each robot had a different microphone array (microphone 

types and positions), each robot would have its own row in the 

microphone array table.  

• Microphone Array Sample 

This table stored samples collected by a particular microphone array.  The 

audio streams from all microphones in the array were stored together, 

along with the time of the sample and the robot’s position, as estimated by 

the Player robot server, at the end of sample collection.  This table also 

stored information about the source that is expected to dominate this 

sample, as determined by the distance from a source active during this 

data session.  

• MFCC Vector 

The mel frequency cepstral coefficient (MFCC) was used to relate samples 

to particular sound sources.  In this table, the 2nd through 8th coefficients 

were stored for this purpose, including the mean and variance across some 

number of samples.  The VectorID stored in the MicArraySample table 

determined the set of samples that contributed to this vector. 

• Sound Pressure Level (SPL) 

The SPL table was a mathematically derived transformation of a sample 

from a single microphone.  Therefore, for each sample in the 

MicArraySample table, there were N samples in the SPL table, where N 

corresponded to the number of microphones in the array.  This 

representation of SPL stored both the overall sound pressure level, as well 
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as the Third Octave Band sound pressure level.  This table also stored 

whether or not any filters were used in removing particular bands of noise, 

and whether the sample had any infinity values indicative of sampling 

error.  

• Spatial Likelihood 

Like the SPL table, the Spatial Likelihood table (SpLikelihood) was a 

mathematically derived transformation of a single sample in 

MicArraySample.  Unlike SPL, however, the entries in this table did not 

vary with the number of microphones in the array.  Instead, spatial 

likelihoods could be created with different step sizes to allow for different 

levels of precision when building auditory evidence grids.  This table also 

stored for each sample the height at which the spatial likelihood was being 

estimated, the distance limit to which spatial likelihoods were being 

calculated, whether or not any filters were used in estimating the spatial 

likelihood, and the most likely angle to a sound source, as determined by 

this spatial likelihood. 

A.3.2. ENVIRONMENTS 

The environment entity is represented in this database as a group of three tables: 

obstacle maps, waypoints, and obstacle rectangles.  These three tables allowed a robot 

(task manager) to retrieve obstacle maps and lists of waypoints for these maps from the 

database for use in path planning.  These tables also allowed the map server to create 
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estimates of the reverberant field using ray-tracing.  Figure A.5 demonstrates what 

information is stored in each of these tables, and how they are related to each other. 

• Obstacle Map 

The obstacle map table stored maps of the obstacles in the environment.  

The “Map” attribute stored the map created by the pmap utility [Howard 

2004] from the laser data collected by the robot.  Also, the table stored the 

size of the environment (in terms of min/max), the threshold at which grid 

cells in “Map” contained an obstacle, and any hand created maps (such as 

those without small obstacles) used for estimating reverberation in place 

of the robot created map.   

• Obstacle Rectangle 

The purpose of this table was to store information about particular 

obstacles or walls in the environment, so as to improve the accuracy of the 

ray-tracing results.  Although this table has been implemented in the 

 

Figure A.8.5. The three tables describing environmental 

information in the database. 
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database, it was not used for any of the applications described in this 

dissertation.  The implementation of an enhanced ray-tracing estimation 

process that would use surface information remains future work. 

• Waypoint  

Waypoints are merely stored paths for a robot to follow through an 

environment.  Although the patrol scenario in Chapter 5 created these 

waypoints dynamically from obstacle maps of the environment, the work 

in Chapter 4 used hand created waypoint paths.  Such hand created paths 

were stored in this table for repeated use, identified by the environment 

that the robot needed to patrol. 

A.3.3. SOUND SOURCES 

The sound source was another relatively simple entity to represent in the database.  

This dissertation only used three tables in its work: a table representing possible source 

locations in the environment, a table representing confirmed sources, and a table for 

representing sound functions.  Figure A.6 shows the configuration of each of these three 

tables.  What this configuration for the sound source entity did not store, however, was 

temporal information.  Future work in modeling sound sources, as discussed in Chapter 6, 

should include information about how sources change over time.  Do these sources 

repeat? And if so, is there a representation of the sound function that can estimate this 

repetition?  As these are not simple questions, we did not attempt to address them in the 

current database implementation. 
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• Detected Sound Sources 

Entries in the detected sound source table were those locations indicated 

by clusters in an auditory evidence grid as being likely to contain a sound 

source.  The map server was responsible for entering detected sound 

source information into the system when it built an auditory evidence grid.  

Along with the location of the potential sound source, the detected sound 

source table also stores the size and error criteria for the cluster, to be used 

with the Iterative Source Hunter for separating real sound sources from 

false positives. 

• MFCC Class 

Following the investigation of a sound source, a sound function was 

identified for that source as the mean MFCC Vector recorded during the 

investigation.  The MFCC Class table stored that information to be used in 

classification.  This table was not merged with the Source table because it 

was possible for two sound sources to have similar sounding source 

functions, and therefore, overlapping MFCC Class vectors. 

Figure A.8.6. Tables storing sound source information in 

the database.   
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• Sound Sources 

Although there already existed a detected sound source table in the 

database, an additional table was necessary to separate real sound sources 

from possible locations.  Once a sound source had been investigated, or 

verified by hand, it was stored in this table along with its volume, 

directivity, and a pointer to its MFCC Class.  This table also allowed a 

human developer to describe sound sources, and indicate whether or not 

they were discovered by a robot or verified by a human.   

A.3.4. REPRESENTATIONS OF THE AUDITORY SCENE 

The final group of tables in the database represented the composite auditory 

scene.  Shown in Figure A.6, this group of tables is actually simpler than it appears.  The 

only table of real interest is the “Map” table, which stored all kinds of maps created by an 

acoustically aware robot.  This same table stored sampled noise maps, auditory evidence 

grids, and predicted noise maps in the same field.  It simply separated those maps by 

type, the height the scene being modeled and the grid cell size of the map.  All of the 

remaining tables in this auditory scene entity then defined the set of information used in 

building each map, setting constraints on sampled or derived data to be included.  The 

following set of bullets summarizes the different sets of information that our map server 

could use in creating a map: 

• Area 

Maps could be created with four different types of area constraints.  The 

area constraint could restrict the set of samples included in the map to 
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those collected in a particular area.  The area constraint could also restrict 

samples to those that pointed at a particular area using the spatial 

likelihood measurements.  Then, with either previous constraint, the map 

could be built from those samples that fit the constraint, or those samples 

that did not fit the constraint (i.e. the inverse).  Multiple area constraints 

were OR’d together, so, for instance, multiple target areas constraints 

would include all samples that pointed at either of those two areas. 

• Data Session 

The data session constraint limited the set of samples included in the map 

to one or more selected data sessions. 

• MFCC Class 

The MFCC Class constraint limited the set of samples included in the map 

to those that belonged to one more or selected MFCC Classes. 

• Noise Type 

In the final implementation, the Noise Type constraint had mostly been 

replaced by the MFCC Class constraint.  It was included here, however, 

because the original paper on Auditory Evidence Grids [Martinson and 

Schultz 2006] reported that auditory evidence grids could be created from 

just the set of samples determined to contain speech.  If an MFCC Class 

vector were available for defining speech, then it could be used instead of 

the Noise Type constraint.  However, the approach taken in the original 

paper was to simply use those samples that passed a particular noise 
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threshold.  This constraint, therefore, specified that only those samples in a 

particular preset noise range were to be included in the map. 

• Sound Sources 

In an auditory evidence grid or sampled noise map, the sound source 

constraint could be replaced with an area constraint.  Maps could be 

created with samples that were collected in the vicinity of a known sound 

source (or not), as well as from samples that pointed at a known sound 

source (or not).  With predicted noise maps, however, the sound source 

constraint indicated which set of sound sources should be included the 

sound fields model of the auditory scene. 

• Time of Sampling 

The time of sampling constraint was used to limit the range of times from 

which collected samples are included in an auditory evidence grid or 

sampled noise map.  This constraint is only particularly useful in modeling 

sound sources that are not on throughout an entire data session.  This way, 

a map can be created of only those times where the source is known to 

have been enabled. 

A.3.5. SUMMARY 

Each of these four entities were then connected to each other through a series of 

relationships.  Figure A.7 shows all of the tables used in the database along with the 

relationships between them.  Sampled data was connected to sound sources and 

environments.  Sound sources were connected also connected to the particular 
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environment, and to sampled data through MFCC results.  Finally, representations of the 

auditory scene were connected to many of the tables in the database to allow for a wide 

variety of scene creation mechanisms.   

 

 

Figure A.8.7. Summary of the database implementation used in this dissertation.  

All of the tables seen in previous sections are included. 
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Appendix B - KNOWLEDGE GATHERING TOOLS 

In this appendix, we concentrate on providing algorithmic descriptions of the 

acoustical knowledge gathering tools used in this dissertation.  This includes 

implementation level descriptions of: (1) spatial likelihoods, (2) auditory evidence grids, 

(3) determining the source volume and directivity, (4) mel-frequency cepstral 

coefficients, (5) building maps of the direct field, (6) the ray-tracing algorithm for direct 

and reverberant field estimates, and (7) creating sampled data noise maps.  From an 

implementation standpoint: all of these algorithms were used by the Map Server program 

so as to provide accurate maps for the Task Manager, all sampled data used by each of 

these algorithms came directly from the database, and all intermediate results were stored 

back to the database for future use by the Map Server. 

B.1. SPATIAL LIKELIHOODS 

The spatial likelihood implementation used here was developed from 

[Mungamuru and Aarabi 2004].  The theory behind them and their use with auditory 

evidence grids is described in greater detail in Chapter 4. 

Variables 

• Number of Microphones, numMics 

• Desired Height of the Estimate, H 

• SampleSize, 2048 

• signali 

This is the sampled data retrieved from the ith microphone in the array. 

• mic_posei  
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This is the [x,y,z] position of the ith microphone in the array, relative to 

the array center. 

• Spatial Likelihood Output, SpLikelihood 

SpLikelihood is an 18x18 matrix, representing a 6x6-m2 area of 0.3x0.3-

m2 gridcells, and the cross correlation energy from the signal associated 

with a source being at each of these locations in the environment. 

• Frequency, w 

w contains the frequency of each element in the FFT output, in [rad/sec] 

Pseudocode 

/*** the spatial likelihood is estimated pairwise… So for each microphone pair, estimate 
the chance of there being a sound source at each of the desired locations, and then sum 
the results across all microphone pairs ***/ 
1. for each pair of microphones [i,j] 
2. [f1real,f1imag] = FFT of signali 
3. [f2real,f2imag] = FFT of signalj 
4.     ffreal = f1real.*f2real + f1imag.*f2imag  /** The operator “.*” indicates an element-
wise multiplication of arrays **/ 
5. ffimag = f2imag .*f1real - f2real.*f1imag 
/*** estimate the weights for the phase transform ***/ 

6. 
( ) ( )

imagrealimagreal ffmagnitudeffmagnitude
G

2,2*.1,1

1
=

 
7. for cell [a,b] in the array 
  /*** estimate the time delay for this microphone pair ***/ 
8.  [x,y] = real coordinates of cell [a,b], relative to the array center 

9.  
( ) ( ) ( )222

i1 ._._.mic_pose-xd zposemicHyposemicyx ii −++−+=
   

10.  
( ) ( ) ( )222

j2 ._._.mic_pose-xd zposemicHyposemicyx jj −++−+=
 

11.  ( ) m/s;-/343d 21 dTD −=  
/*** build generalized cross correlation variables ***/ 

12.  
( ) ( )( )imagrealreal ffTDwffTDwGX *.*sin*.*cos*. −−−=

 

13.  
( ) ( )( )

realimagimag ffTDwffTDwGX *.*sin*.*cos*. −−−=
 

/*** perform trapezoidal integration across the half sample size***/ 
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14.  

( ) ( )[ ]∑
=

−−−−=
1024

2

]1[][*]1[][*5.0
i

realrealreal iXiXiwiwS

 

15.  

( ) ( )[ ]∑
=

−−−−=
1024

2

]1[][*]1[][*5.0
i

realrealimag iXiXiwiwS

 

16.  
( )

imagreal SSmagnitudebaodSpLikeliho ,]][[ =+
 

17. end for  
18. end for 

B.1.1. ESTIMATING THE BEST ANGLE 

The estimation of the most likely angle from the Spatial Likelihood result was 

performed after the spatial likelihood had been completed.  For this work, the estimation 

process uses a guassian smoothing filter on all grid cell angles, to estimate the energy at 

1-degree intervals.  Another approach for determining angle would have been to re-

estimate the energy values at a number of set angles and constant distance from the array. 

Variables 

• The Spatial Likelihood result, SpLikelihood  

an 18x18 matrix, representing a 6x6-m2 area of 0.3x0.3-m2 gridcells, and 

the cross correlation energy from the signal associated with a source being 

at each of these locations in the environment. 

• Grid Cell Angles, Th 

The angle from the center of the array to each of the grid cell centers in the 

spatial likelihood result. 

• Standard Deviation, σσσσ 

Used a standard deviation of 10-degrees for the smoothing function. 

• Angular Increment, ang_increment 
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The angular increment indicates the delta angle between successive 

angular estimates.  This work used an increment of 1-degree. 

Pseudocode  

1. P = zeros[360]; 

2. for ang = 0: ang_increment:2π 
3. num = 0 
4. den = 0 
5. for each cell [a,b] in SpLikelihood 

6.  theta = Th[a][b] – ang, normalized to -π<=theta<π 

7.  πσ

σ

2

22 2theta
e

W
−

=
 

8.  num+=W*SpLikelihood[a][b] 
9.  den+=W 
10. end for 

11. den

num
angP =][

 
12. end for 
13. Best_Angle = ang, where P[ang] is maximized 

B.2. AUDITORY EVIDENCE GRIDS 

The auditory evidence grid is an adaptation of the evidence, or occupancy grid to 

auditory localization information.  As used in this dissertation, the input to the auditory 

evidence grid is a set of spatial likelihoods.  The set of likelihoods in particular that are 

used for this purpose, however, depends on the need of the application.  The application 

chooses some criteria for creating the auditory evidence grid, and the creation algorithm 

then extracts the necessary set of spatial likelihoods from the database.  Chapters 4 and 5 

provide examples of both collecting the necessary sampled data, and then determining 

which samples should be included in the auditory evidence grid. 

Variables 

• Auditory Evidence Grid, AEG – 
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A map of size NxM, initialized to zero at all locations 

• AEG gridcell size, stepsize 

All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

• AEG Range, [MinX-MaxX,MinY-MaxY] 

The range of area described by the auditory evidence grid. 

• SessionTime 

the time at which the source was investigated, as indexed in the database 

• Set of Samples, samples 

This is the set of samples to be included in the creation of this auditory 

evidence grid. This set includes the following information as sub-

variables: 

[x,y,θ] - location of the robot when the sample was collected 

BestAngle – the most likely angle towards a sound source, as 

determined by the spatial likelihood 

SpLikelihood – spatial likelihood for this sample.  The spatial 

likelihood covers an area of 6x6-m2 around the robot 

location, in an 18x18 square grid. 

These samples can be pulled from the database using the following SQL 

statement (variables are indicated by quotation marks): 

SELECT Sp.SampleID, MAS.XLoc, MAS.YLoc, MAS.Theta, 

Sp.BestAngle, Sp.StepSize, Sp.DistLimit, Sp.Likelihoods  

FROM SpLikelihood Sp, micArraySample MAS  
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WHERE Sp.SampleID=MAS.SampleID  

AND abs(Sp.StepSize-“stepsize”)<0.01 

AND MAS.SessionTime in “SessionTime” 

Additional sampling area limitations, such as those used in Chapter 5, can 

be included with another constraint: 

MAS.XLoc>= “MinX” AND MAS.XLoc<= “MaxX” 

AND MAS.YLoc>= “MinY” AND MAS.YLoc<= “MaxY” 

• Set of Samples with no calculated math, samp_noMath 

Samples in this program are always in the database as they are retrieved 

from the DAQ without any spatial likelihood or SPL information.  

Therefore, prior to their use in building an auditory evidence grid, we have 

to identify those samples which do not yet have the necessary 

mathematical results stored in the database, determine the spatial 

likelihood for these samples, and store the results back in the database.  

Since auditory evidence grids are the only place that need spatial 

likelihoods, this is done as the first step in their creation.  The SQL code 

for retrieving the set of samples with no math from the database is as 

follows: 

SELECT *  

FROM micArraySample MAS  

WHERE SampleID not in ( 

SELECT MAS.SampleID  

FROM SpLikelihood Sp, micArraySample MAS  
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WHERE Sp.SampleID=MAS.SampleID  

AND abs(Sp.StepSize-“stepsize”)<0.01  

AND MAS.SessionTime in “SessionTime”)  

AND MAS.SessionTime in “SessionTime” 

• Excluded Source List, S 

When building auditory evidence grids, this dissertation sometimes 

wanted to exclude previously detected sources from being included in the 

next version of the auditory evidence grid.  For this reason, a list of 

excluded sources was needed, which included the following information: 

[x,y] – the location of the source being excluded 

radius – the size of the region around the source that was also 

being excluded.  This was typically a radius of 1-m. 

• Angle Increment, ang_increment 

When the best angle was calculated, it was only estimated at regular 

intervals of 1 degree.  The ang_increment describes the angular increment 

in radians, i.e. 0.02-rad.  

Pseudocode 

/*** first step is to build the spatial likelihoods for all samples that do not yet have a    
spatial likelihood entered into the database ***/ 
1. for each sample k in samp_noMath 

2. calculate spatial likelihood 
3. store the result to the database 
4. end for 
5. update samples 
6. for each sample k in samples 

7. for each cell [a,b] in samples[k].SpLikelihood 
8.  isGoodCell = true;   
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/*** now check each of the excluded sources, and make sure that this 
sample does not point at any of them ***/ 

9.  for each source A in S 

10.   ( ) ( )22
].[].[].[].[ yksamplesyASxksamplesxASd s −+−=  

11.   








−

−
=

xksamplesxAS

yksamplesyAS

].[].[

].[].[
arctanβ  

12.   







=

sd

radiusAS ].[
arctanα  

13.   ( )θβ ].[].[ ksamplesBestAksamplesang +−=∆  

14.   normalize ∆ang to between -π<= ∆ang <π 

15.   if ( )incrementangang _+≤∆ α  

16.    isGoodCell = false; 
17.   end if 
18.  end for 

/*** only continue if not pointing at an excluded source ***/ 
19.  if isGoodCell == true   
20. [xl,yl] = local coordinates of grid cell, relative to the robot’s 

position 
   /*** translate the local coordinates to global***/ 

21.   
22

ll yxrad +=
 

22.   
( )ll xyth arctan=

 

23.   
( )thksampleradxksamplexglobal ++= θ].[cos*].[

 

24.   
( )thksampleradyksampleyglobal ++= θ].[sin*].[

 
/*** we need to scale the likelihood stored in the database, because 
the calculated value is in terms of energy ***/ 

25.   

( )
( )

( )95.0/1.01
95.0/1.0*].[max

].[min
1 −







 −
=

odSpLikelihoksamples

odSpLikelihoksamples
K

 

26.   ( ) ( )( ) 95.0195.0*].[max 12 −+= KodSpLikelihoksamplesK  

27.   
( ) ( )121, ]][[].[ KKKbaodSpLikelihoksamplesprob ba −−=

 
   /*** use log-likelihoods to update the correct cell in the map 
28.   [i,j] = grid cell containing [xglobal,yglobal] 

29.   
( ) ]][[1log]][[ ,, jiAEGprobprobjiAEG baba +−=

 
30.  end if  
31. end for 
32. end for 
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B.2.1. IDENTIFYING CLUSTERS IN THE AUDITORY EVIDENCE GRID 

The purpose of the auditory evidence grid is to localize sound sources in the 

environment.  By itself, however, the auditory evidence grid is just a likelihood map.  To 

convert that into sound source position estimates, we need to identify peaks in the 

auditory evidence grid.  The algorithm we use for this purpose is nearest-neighbor 

clustering.  After thresholding the map at some value combining neighboring grid cells 

together forms clusters.  The resulting set of clusters describes the most likely positions 

to contain a sound source. 

Variables 

• Cluster List, C 

C is a queue that is initialized with the coordinates/values of all grid cells 

in the auditory evidence grid which exceed some threshold.  In this 

dissertation, this threshold was always 1.0, or apprimately 75% likely.  For 

each cluster in C, the following information was tracked and updated: 

muw – weighted centroid of the cluster 

muu – unweighted centroid of the cluster 

energy – summation of all component grid cell values 

error – the variance 

count – the number of grid cells contained in this cluster 

nodes – the positions [x,y] of all grid cells contained within this 

cluster 

• AEG gridcell size, stepsize 
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All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

Pseudocode 

1. for each cluster i in C 
2. for each remaining cluster ji in C 
3.  if any node in C[i] is less than 0.4-m from a node in C[j] 
 /*** then add the two clusters together ***/ 

4.   
yC[i].energyC[j].energ

yC[i].energ*.xC[i].mu y C[j].energ*.xC[j].mu
 .x C[i].mu ww

w
+

+
=  

5.   
yC[i].energyC[j].energ

yC[i].energ*.yC[i].mu y C[j].energ*.yC[j].mu
 .y C[i].mu ww

w
+

+
=  

6.   
C[i].countC[j].count

C[i].count*.xC[i].mu  C[j].count*.xC[j].mu
 .x C[i].mu uu

u
+

+
=   

7.   
C[i].countC[j].count

C[i].count*.yC[i].mu  C[j].count*.yC[j].mu
 .y C[i].mu uu

u
+

+
=  

8.   C[i].energy += C[j].energy 
9.   Add C[j].nodes to C[j].nodes 
10.   C[i].count += C[j].count 
11.   delete cluster j from C 
12.  end if 
13. end for 
14. end for 
15. repeat steps 1-15 until the list C does not change any more 
      /*** last step… update the variance for all remaining clusters ***/ 
16. for each remaining cluster i in C 

17. ( ) ( )yjnodesiCymuiCxjnodesiCxmuiC

valuejnodesiC
countiC

erroriC

uu

j

].[].[.].[].[].[.].[*...

...*].[].[
].[

1
].[

2
−+−

=+ ∑

 

18. end for 

B.3. DIRECTIVITY MODELS 

After sampling extensively in the vicinity of a sound source, we can create a 

model of the sources directivity.  The directivity is an estimate of volume vs. angle for a 

sound source at a known, or pre-determined (possibly using auditory evidence grids) 
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location.  The output of this algorithm is a maximum volume, and a directivity estimate 

describing each angle in terms of percentage of maximum volume emitted.  This work 

was covered theoretically in Section 4.2.2. 

Variables 

• Source Location, [Sx,Sy] 

This is the location of the sound source, as indicated by either a priori 

information, or auditory evidence grids. 

• SessionTime 

the time at which the source was investigated, as indexed in the database 

• Set of Samples, samples 

The set of samples is an array collected from the database.  It contains as 

sub-variables the following information: 

SPL – sound pressure level from each sample, for a particular 

microphone 

dist – distance of the sample from the source centroid 

angle – angle from the source to the sample location 

The set is retrieved directly from the database, using the following 

query(variables are indicated by quotation marks):  

SELECT A.SPL, SQRT((B.XLoc-(“S.x”))*(B.XLoc-(S.x)) + 

(B.YLoc-(“S.y”))*(B.YLoc-(“S.y”)), ATN2( B.YLoc-

(“S.y”), B.XLoc-(“S.x”))  

FROM SPL A,MicArraySample B  

WHERE A.Over_Threshold=0  
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AND A.SampleID=B.SampleID AND Mic_Number=2   

AND B.SessionTime in ("SessionTime")  

AND SQRT((B.XLoc-(“S.x”))*(B.XLoc-(S.x)) + (B.YLoc-

(“S.y”))*(B.YLoc-(“S.y”))<2.0 

• ReverbVolume 

This value is also retrieved directly from the database, only it is the 

average of all samples in this SessionTime located more than 2.0-m from 

the source centroid. 

• Directivity, Q 

Q is an array of real numbers, length 360 to be returned as an output of 

this function.  When completed, each element i of the array corresponds to 

the percentage of the maximum volume of the sound source at degree i. 

• Source Volume, sVolume 

This corresponds to the maximum volume of the source and is determined 

by the directivity algorithm at the end.  

 

 

 

Pseudocode 

/*** The numerator and denominator storage variables are necessary for gaussian 
smoothing.  In them, we store the intermediate results for each angle we are estimating 
directivity ***/ 
1. numerator = zeros[360]; 
2. denominator = zeros[360]; 
3. for k=1:# of samples 



342 

 

/*** determine the volume of the sample at 1-m from the source, setting to zero if 
less than the estimated reverberant field volume ***/ 

4. if ReverbVolume<samples[k].SPL 

5.  ( ) distksamplesvol verbVolumeSPL ].[*1010 10/Re10/ −=    
6. else 
7.  vol = 0; 
8. end if 

9. for i=1:360 

10.  dA = (samples[k].angle-i*π/180);   

11.  convert dA to between [-π,π] 

12.  ( ) 22
2/*1 σdA

etmp
−= ; /*** σ=0.5 rad ***/ 

13.  denominator[i] += tmp; 
14.  numerator[i] += tmp*vol; 
15. end for 
16. end for 

17. ( )atordenonumeratorQ min/.log10 10=  /** where “./” indicates element-wise 

division of the arrays **/ 
18.  sVolume = maximum of Q 

19. 
sVolume

Q
Q = ; /*** convert Q to a percentage ***/ 

B.4. MEL FREQUENCY CEPSTRAL COEFFICIENTS 

The implementation of mel-frequency cepstral coefficients used in this 

dissertation is derived from Malcolm Slaney’s Auditory Toolbox [Slaney 1994].  Our 

implementation is simplified in terms of some of the options available to the user, 

especially in terms of the number of coefficients it calculates.  For the stated assumptions, 

however, the two implementations generate the same numeric results. 

Variables 

• signal 

The 2048 sample signal recorded by one of the microphones in the array.  

Note that the MFCC results, unlike Sound Pressure Level, were not 
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calculated for all microphones, because of difficulties in classification 

across different microphones. 

• framesize, 10-msec 

The size of the frame over which each mfcc vector is calculated. 

• fft_size, 512 bytes 

The size of the fft window used with each frame,  

• SampleRate, 8192 Hz 

• WindowSize, 256 bytes 

• Output FeatureVector 

This is the 16-element MFCC feature vector describing the signal. 

• filterBank[i] 

The filterBank variable describes the range and height of the filters to be 

used in determining each coefficient.  The following sub-variables will be 

determined in the code: 

lower – indicates the lower edge of the triangle included in 

coefficient i 

center – indicates the center of the triangle included in coefficient i 

upper – indicates the upper edge of the triangle included in 

coefficient i 

height – indicates the height of the triangle filter used for 

coefficient i 

• frameLength 
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the length of the frame in bytes, calculated 

round(SampleRate/(frameSize/1000)); 

• frameCount 

the number of frames in a single sample, calculated as 

floor(size(signal)/frameLength) 

• hamm 

a Hamming window of length frameSize 

 

Pseudocode 

1. results = array[frameCount][8]; /*** store the first 8 MFCC’s for each frame ***/ 
2. window = zeros[fft_size]; 
/*** need to build the mel filter bank***/ 
3. for j=1:8 
 /*** for the first 13 coefficients, the mel-filter bank is actually linear spacing ***/ 
4. if j==1 
5.  filterBank[1].lower = 133.3333 
6. else 
7.  filterBank[j].lower = filterBank[j-1].lower +  66.66666666 
8. end if 

9. end for 
10. filterBank[8].center = filterBank[8].lower + 66.66666666; 
11. filterBank[8].upper = filterBank[8].center + 66.66666666; 
12. filterBank[8].height = 2/(filterBank[8].upper-filterBank[8].lower); 
13. for j=7:-1:1 
14. filterBank[j].center = filterBank[j+1].lower; 
15. filterBank[j].upper = filterBank[j+1].center; 
16. filterBank[j].height = 2/(filterBank[j].upper-filterBank[j].lower); 
17. end for 
/*** now go through each frame, identifying the first 8 mfcc values and storing them in 
results ***/ 
18. for i=1:frameCount 
19. start = 1+(frameCount-1)*frameSize; 
20. window[1:256] = signal[start:(start+frameSize)].*hamm; /** bitwise multiply **/ 
21. data = magnitude(FFT(window)); /*** take the absolute value of the FFT ***/ 

/*** now for each coefficient, apply a triangle filter based on the filter bank 
calculated earlier to the power spectrum data ***/ 
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22. for j=1:8 
23.  results[i][j] = 0; 
24.  a = index of FFT window corresponding to filterBank[j].lower 
25.  b = index of FFT window corresponding to filterBank[j].center 
26.  c = index of FFT window corresponding to filterBank[j].upper 
27.  if b>fftSize 
28.   b = fftSize 
29.  end if 
30.  if c>fftSize 
31.   c = fftSize 
32.  end if 
  /*** first add the data from the rising edge ***/ 

33.  ( )lowerjfiltercenterjfilterBank

heightjfilterBank
slope gri

].[].[

].[
sin

−
=

 
34.  for k=a:b 
35.   freq = frequency of kth element in FFT 
36.   if freq>=filterBank[j].lower 

38.    
( )lowerjfilterBankfreqslopeweight gri ].[*sin −=

 
39.    results[i][j] += weight*data[k]; 
40.   end if 
41.  end for 
  /*** now add the data from the falling edge ***/ 

42.  ( )centerjfilterupperjfilterBank

heightjfilterBank
slope falling

].[].[

].[

−
=

 
43.  for k=b+1:c 
44.   freq = frequency of kth element in FFT 
45.   if freq>=filterBank[j].center 

46.    
( )frequpperjfilterBankslopeweight falling −= ].[*

 
47.    results[i][j] += weight*data[k]; 
48.   end if 
49.  end for 
  /***take the log of the result to build the coefficient ***/ 
50.  results[i][j] = log10(results[i][j]) 
51. end for 
52. end for 
/*** final step, determine the mean and variance across all frames to produce the feature 
vector for coefficients 2-8 ***/ 
53. for j=2:8 
54. FeatureVector[j-1] = mean of results[i][j], across all frames i  
55. FeatureVector[j+6] = variance of results[i][j], across all frames i 
56. end for  
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B.5. CREATING DIRECT FIELD MAPS 

The theory behind the creation of direct field maps is described in Chapter 3 as 

part of the sound fields framework.  Their use with robot collected data about sound 

sources is then described in Chapter 4.  All of the applications described in this thesis 

make use of these direct field maps.  The only difference between the applications in the 

implementation is the use of sound source directivity.  When the sound source directivity 

is not known, the algorithm automatically assumes an omni-directional source (i.e. Q=1 

for all angles).   

Variables 

• Direct Field Map Output, Map – 

A noise map of size NxM, initialized to zero at all locations 

• Map gridcell size, stepsize 

All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

• Map Range, [MinX-MaxX,MinY-MaxY] 

The range of area described by the auditory evidence grid. 

• Active Sound Source List, S 

S contains all needed information about active sound sources in the 

environment.  This information included the following sub-variables: 

Directivity, dir – 360 element array 

Position, [x,y,θ] 

Maximum volume, SPL 
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If the database was up to date, then the set of active sources could be 

obtained with a very simple SQL query: 

SELECT Xloc,Yloc,Theta,Directivity,Total_SPL 

FROM Source 

WHERE IsActive = 1 

Pseudocode 

1. k = 1 
2. while k <= # of elements in S  
3. for each cell [i,j] in Map  
     /*** First… find the distance and angle from the source to the cell***/ 
4.  [Px,Py] = real coordinates of the center of grid cell [i,j] 

5.  
( ) ( )22

].[].[ ykSPyxkSPxdist −+−=
 

6.  









−

−
=

xkSPx

ykSPy
theta

].[

].[
arctan

 

7.  ( ) 







−=

π
θ

180
*].[deg kSthetaround /*convert to degrees*/ 

/*** Now calculate the effect on each cell, assuming a minimum distance of one gridcell 
from the centroid***/ 
8.  if dist<stepsize 

9.   
( )stepsizeSPLdirVeffect 10log20*[deg] −=

 
10.  else 

11.    
( )distSPLdirVeffect 10log20*[deg] −=

 
12.  end else 
     /*** Add the result to the running total for each cell ***/   
13.  Map[i][j] = 10log10(10Veffect/10 + 10Map[i][j]/10); 
14. end for 
15. k = k+1; 
16. end while 

B.6. RAY-TRACING FOR DIRECT AND/OR REVERBERANT FIELD MAPS 

The ray-tracing implementation used in this dissertation is designed after [Elorza 

2005].  Our implementation, however, makes some simplifying assumptions to work with 

a coarse-grained evidence grid representation of obstacles in the environment.  In 
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particular, rays only propagate along a plane, since our map is only 2-dimensional.  

Furthermore, it is assumed that all surfaces are flat and of only two alignments, 0-degrees 

or 90-degrees to the x-axis.  For further discussion of the limitations of this approach, see 

Chapter 4. 

Variables 

• Field Map Output, Map – 

A noise map of size NxM, initialized to zero at all locations 

• Map gridcell size, stepsize 

All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

• Map Range, [MinX-MaxX,MinY-MaxY] 

The range of area described by the auditory evidence grid. 

• Active Sound Source List, S 

S contains all needed information about active sound sources in the 

environment.  This information included the following sub-variables: 

Directivity, dir – 360 element array 

Position, [x,y,θ] 

Maximum volume, SPL 

• Ray 

This variable describes a single ray being traced through the environment.  

The following sub-variables are used to describe this ray at different 

points along its path: 

sAngle – starting angle of the ray 
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sPower – starting power of the ray 

total_dist – distance traveled by the ray 

bin_dist – distance traveled by the ray through the cell 

refl_count – the number of times the ray has been reflected 

[x,y,θ] – the last position and angle of the ray 

• Copies of Ray at Different Locations, bins 

bins[i][j] is a list, storing copies of each ray that crossed grid cell [i,j].  If 

the ray crossed the same grid cell more than once, then it is listed multiple 

times in the bins[i][j] list. 

• Obstacle Map, OBS 

OBS is a boolean obstacle map created by applying a threshold to an 

evidence grid.  Given an evidence grid that indicates the likelihood of 

containing an obstacle, a threshold of –1 would mean that all locations in 

the grid with value higher than –1 contain an obstacle, and all locations 

with value less than –1 do not contain an obstacle.  After applying the 

threshold, OBS[x][y] indicates whether or not an obstacle is located at 

arbitrary position (x,y). 

Pseudocode 

1. k = 1 
2. while k <= # of elements in S  
3. for m = 1:3600  /*** 3600 Rays per source ***/ 
  /*** initialize the ray with an origin at the source, and a random angle***/ 
4.  ray.refl_count = 0; 
5.  ray.x = S[k].x; 
6.  ray.y = S[k].y; 

7.  ray.θ = select random direction; 

8.  ray.sAngle = ray.θ; 
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9.                     ray. total_dist = -1; /*** the ray should technically emanate at 1-m from                            
the centroid, since that is where the SPL is 
calculated ***/ 

10.  deg = round((ray.θ -S[k].θ)*180/π) /*convert to degrees*/ 
/** convert SPL to power (in pico-Watts), assuming a surface area of a 1-
m cylinder, sampled at 1-m from the centroid.  See [Raichel 2000] for 
more details… finally, divide ray power by # of rays to represent an even 
power distribution **/ 

11.                   
78.010/*[deg]10. += SPLdirsPowerray  

12.  ray.sPower = ray.sPower/3600;   
  /*** identify the current cell, and add the ray to it’s list ***/ 
13.  [i,j] = grid cell containing source centroid [S[k].x,S[k].y] 

 
/*** Now follow the ray as it travels through each cell in the map, saving 
it to the appropriate lists as it travels, and changing angles when it hits an 
obstacle … the loop stops when the ray leaves the map, or the total 
distance traveled is greater than 20-m (i.e. no power left), or the number of 
reflections is to high (i.e. power is lost through surface affects) ***/ 
 

14.  do /*** loop ***/ 
15.   ray.BinDist = distance traveled across cell [i,j] 
16.   bins[i][j].add(ray) 
17.   [a,b] = next cell in map, based on ray’s current trajectory 

18.   ray.[x,y,θ]=where ray exits cell [i,j] 
 
/*** check for reflections at the boundary of the next cell.  To 
allow for sound sources that are mounted on top of an obstacle, we 
will ignore reflections that happen within 1-m of the source.  This 
will cause problems for sound sources within 1-m of a wall. ***/  
 

19.   if (ray.TotalDist>1.0-m) and (OBS[a][b]=false) 
20.    if reflecting surface is horizontal 

21.     ray.θ=π- ray.θ; 
22.    else reflecting surface is vertical 

23.     ray.θ=-1* ray.θ; 
24.    end else 
25.    [i,j] = [a,b] /*** ray is reflected back into same cell ***/ 
26.   end if 
27.   ray.TotalDist = ray.TotalDist + ray.BinDist; 
28. until (i<1 or i>N or j<1 or j>M) or (ray.TotalDist>20-m) or 

(ray.refl_count>20) 
29. end for 
30.  end while 



351 

 

/*** now that we have all of the rays recorded, go through each list and build whatever 
field needs to be built ***/ 
 
31.  for each cell [i,j] 
32. for each ray, r, in bins[i][j] 

33.  
TotalDistrjibins

r esPowerrjibinspoweronset ].][][[*].][][[_ −=  

34.  volumecell

BinDistrjibins
poweronsetIntensity rr

_

].][][[
*_=

 
35. end for 

36.       







+= ∑

r

rIntensitySPL 10log120  /*** convert intensity to sound pressure 

level ***/ 
/*** this equation built the combined direct + reverberant field.  We could also 
build just the direct field by only including rays with no reflections.  Or, we could 
build just the reverberant field by only including rays with one or more 
reflections.***/ 

37. 
( )10/]][[10/

10 1010log*10]][[ jiMapSPL
jiMap +=

 
38. end for 

B.6.1. CREATING AN INTENSITY PROFILE 

The intensity profile answers the question, for a given location in the 

environment, what direction is the sound energy coming from.  The resulting profile 

estimates energy vs. angle, and can be determined directly from the ray-tracing results 

described above.  This intensity profile is used in Section 6.3.1 to estimate environmental 

impact on a target listener. 

Variables 

• Copies of Ray at Different Locations, bins 

bins[i][j] is a list, storing copies of each ray that crossed grid cell [i,j].  If 

the ray crossed the same grid cell more than once, then it is listed multiple 

times in the bins[i][j] list. 

• Target Location, T 
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the [x,y] position of the target the intensity profile is being created for. 

• Output Intensity Profile, I 

A 360 element array describing the resulting intensity profile for the 

specified location, due to a particular source 

Pseudocode 

1. numerator = zeros[360]; 
2. denominator = zeros[360]; 
3. [i,j] = grid cell in which target T.[x,y] is located 
4. for each ray, r, in bins[i][j] 

5. 
TotalDistrjibins

r esPowerrjibinspoweronset ].][][[*].][][[_ −=  

6. volumecell

BinDistrjibins
poweronsetIntensity rr

_

].][][[
*_=

 
7. for i=1:360 

8.  dA = (samples[k].angle-i*π/180);   

9.  convert dA to between [-π,π] 

10.  ( ) 22
2/*1 σdA

etmp
−= ; /*** σ=0.4 rad ***/ 

11.  denominator[i] += tmp; 
12.  numerator[i] += tmp*Intensityr; 
13. end for 
14. end for 
15. I = numerator./denominator; /** where “./” indicates element-wise division of 

the arrays **/ 

B.6.2. MODELING THE EFFECTS OF A MOVING ROBOT 

In Section 6.3.1, we discussed the use of a reversed form of ray-tracing to 

estimate the effects on a target by a robot located at any number of locations throughout 

the environment.  Described in the following pseudocode, this implementation estimates 

the maximum difference between the intensity profile due to environmental sources, and 

the intensity profile due to the robot being located at any position in the room. 

Variables 

• Active Sound Source List, S 
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• Target Location, T 

• Environmental Intensity Profile, Amb 

The intensity profile at the target’s location due to known active sound 

sources in the environment (see Appendix B.6.1) 

• Average Reverberation Level, R 

The average reverberation level at target location T due to ambient noise 

sources. 

• Volume of the robot, rVol 

Average volume of the robot at a distance of 1-m. 

• Output Impact Map, iMap 

The resulting impact map measuring the maximum difference in angular 

energy between the intensity profile due to the robot and the 

environmental intensity profile. 

Pseudocode 

1. Use S to estimate Amb,R at location T (Appendix B.6.1). 
2. Let robot_source be a new sound source located at T with volume rVol 
3. Use ray-tracing to build the bins variable, due to the single source robot_source 

4. for all rays [i,j,r] in bins, let bins[i][j][r].θ = bins[i][j][r].sAngle  
/*** If only the volume difference between ambient noise sources is needed, then 
at this point, only regular ray-tracing (lines 32-37) is required to estimate total 
volume due to the robot.  Otherwise, for estimating the difference in angular 
energy, continue with lines 5-9 ***/ 

5. for each location [i,j] in iMap 
6. Build an intensity profile Roboti,j for location [i,j] 

/*** now estimate the detectability across all angles as the difference between the 
auditory scene at target location T with the robot, and without the robot ***/ 

7. 
( ) ( )RAmbRRobotAmbectability ji +−+−= 10,10 log10log10det

  
/*** the impact is the maximum angular detectability of the robot ***/ 

8. iMap[i][j] = max(detectability);  
9. end for 
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B.7. SAMPLED DATA NOISE MAPS 

Maps of the auditory scene can also be constructed using sampled data directly, 

rather than relying on sound propgation models and derived information about sound 

sources.  These sampled data maps rely upon interpolation to estimate the volume of 

ambient noise over a wide area.  Shown below is a description of how to create these 

maps using cubic interpolation.  As the interpolation function is taken directly from a 

mathematics library (GNU Scientific Library), it could easily be substitued for any 

number of other interpolation functions, including K-nearest neighbor, or linear 

interpolation.  More details about using sampled data maps can be found in Section 4.4. 

Variables 

• Sampled Noise Map Output, Nmap – 

A noise map of size NxM, initialized to zero at all locations 

• Set of Samples, samples 

samples is the set of samples to be included in the creation of this sampled 

data noise map.  Usually, it is associated with a single sampling session, 

but can be connected to multiple session to increase the sampling area 

and/or number of samples used to create the noise map.  The following 

sub-variables are associated with this variable:  

[x,y,θ] - location of the robot when the sample was collected 

MicNumber – the id of the microphone that collected the sample 

SPL – the sound pressure level for this sample and microphone.   

OverThreshold – identifies whether or not the sample contained 

errors from the DAQ and, therefore, should be discarded. 
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The sample can be pulled from the database using the following SQL 

statement: 

SELECT Sp.SampleID, Sp.Mic_Number, MAS.XLoc, 

MAS.YLoc, MAS.Theta, Sp.Over_Threshold, Sp.SPL  

FROM SPL Sp, micArraySample MAS  

WHERE Sp.SampleID=MAS.SampleID  

AND MAS.SessionTime in “SessionTime” 

• Set of Samples with no calculated math, samp_noMath 

As was done with the creation of auditory evidence grids, the sound 

pressure level was not calculated for individual samples until it was 

needed.  At that point, however, the result was stored to the database for 

future re-use.  This variable identifies the set of samples that do not yet 

have SPL results stored in the database.   

SELECT *  

FROM micArraySample MAS  

WHERE SampleID not in ( 

SELECT MAS.SampleID FROM SPL Sp, micArraySample MAS  

WHERE Sp.SampleID=MAS.SampleID  

AND MAS.SessionTime in “SessionTime”)  

AND MAS.SessionTime in “SessionTime” 

• Mic Array Info, mArray 

• [x,y,θθθθ] – offset from robot position 

• Microphone Position, mic_posei  
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the [x,y,z] position of the ith microphone in the array, relative to the array 

center. 

• Calibration constant, calibrateRMSi  

CalibrateRMS identifies the rms pressure of a 40-dB sound source 

detected by microphone i.  It is a calibration constant that allows us to 

compare samples recorded by the different microphones in the array.  The 

value of the constant was determined by measuring a single source of 

known volume from a number of different positions with each of the 

microphones and then averaging the result.   

Pseudocode 

/*** the first step is to calculate the sound pressure levels for all samples that do not yet 
have an SPL value entered into the database ***/ 
1. for each sample k in samp_noMath 

2. for each microphone in the array 
3.  M = magnitude(FFT(signal)); 

4.  
∑

=

=
2/

2

2 SampleSize

i

M
SampleSize

energy

 

5.  
SampleSizeenergyPrms =

 
6.  P0= calibrateRMS / 100; 
7.  SPLi = 20*log10(Prms/P0); 
8.  save the result to the database 
9. end for 

10. end for 
11. update samples 
12. for each sample k in samples 

 /** identify the global coordinate of the microphone that recorded the sample **/ 

13. 
2

].[

2

].[ ._._ yposemicxposemicrad MicNumberksamplesMicNumberksamples +=
 

14. 
( )xposemicyposemicth MicNumberksamplesMicNumberksamples ._._arctan ].[].[=

 

15. 
( )thksampleradxksamplexglobal ++= θ].[cos*].[

 

16. 
( )thksampleradyksampleyglobal ++= θ].[sin*].[

 
 /** add the global coordinates and volumes to lists **/ 
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17. X.add(xglobal); 
18. Y.add(yglobal); 
19. Z.add(samples[k].SPL) 
20. end for 
21. Use cubic interpolation with data X,Y,Z to estimate the value of all cells in Nmap  
/*** this last step was a function taken from a public library, such as the GNU scientific 
library, or Matlab.  The resulting map sets all values of NMap outside the convex hull 
created from {X,Y}as 0. ***/ 
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Appendix C - GUIDING ROBOTIC MOVEMENT 

This second appendix provides more detailed descriptions and pseudocode for the 

algorithms guiding robotic movement in Chapter 4.  The algorithms discussed in this 

Appendix are: (1) creating a map of clear space from an evidence grid representation of 

obstacles in the environment; (2) patrolling and environment by ordering a set of 

waypoints and then following the ordered path; and (3) investigating the environment by 

picking some set of waypoints from the clear-space map, and then dynamically choosing 

new targets to move towards depending upon the robots current position.  Each of these 

three algorithms were implemented in the Task Manager software (see Appendix A for 

more detail) and required communication with Player to control robotic movement. 

C.1. CLEAR-SPACE MAP 

A number of the robotic movement algorithms discussed in this dissertation 

require the identification of clear, reachable locations in the environment, including: (1) 

the investigative movement proposed in Chapter 4 for identifying location, volume, 

directivity, and sound function of a sound source; (2) the circular patrol algorithm 

proposed in Chapter 5 for surveying the auditory scene; (3) planning a path to avoid noise 

in Chapter 5; and (4) planning a path to hide in the noise in Chapter 6.  This first section 

of the appendix on robotic movement provides a more detailed description of how such 

locations in the environment are identified.  The result is a map of clear, reachable space 

that the robot can use to plan future movement. 

Variables 

• Obstacle Map – OBS 
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OBS is a boolean obstacle map created by applying a threshold to an 

evidence grid.  Given an evidence grid that indicates the likelihood of 

containing an obstacle, a threshold of –1 would mean that all locations in 

the grid with value higher than –1 contain an obstacle, and all locations 

with value less than –1 do not contain an obstacle.  After applying the 

threshold, OBS(x,y) indicates whether or not an obstacle is located at 

arbitrary position (x,y). 

• Robot Initial Position – pose 

The starting position of the robot is needed to identify at least one known 

region of clear space.  For purposes of identifying clear space, the robot 

pose only needs to contain the (x,y) location of the robot. 

• Robot Radius – robot_rad 

In addition to needing a known region of clear space, we also need to 

know the minimum size of the region reachable by a robot.  Ideally this 

would be no larger than the size, or radius, of the robot.  In practice, 

however, this dissertation added 0.4-m to the radius of the robot to allow 

for errors in obstacle-avoidance that would prevent the robot from moving 

to close to obstacles. 

• Clear Space Map – CLEAR_MAP 

The clear space map is initially set to UNKNOWN for all locations.  

When the algorithm has concluded, the value of a given cell could be any 

one of the following: (REACHABLE) meaning that the cell is both clear 

and reachable by the robot, (CLEAR) meaning that the cell is clear and 



360 

 

adjacent to a reachable location, but too close to an obstacle for the robot 

to reach, (OCCUPIED) meaning that the cell contains an obstacle, 

(UNKNOWN/UNREACHABLE) meaning that this cell is not reachable 

by the robot due to the path being blocked. 

• Location Stack – STACK 

The location stack contains locations that have been identified as being 

clear, but not yet checked for reachability.  The location stack is initialized 

with the robots current pose (robot_pose), and the algorithm terminates 

when the location stack is empty.  The stack has two operations, push and 

pop.  Push places the item at the top of the stack, above all other items in 

the stack.  Pop returns the item from the top of the stack, removing that 

item from the stack. 

Pseudocode 

1.  STACK.push(pose.x,pose.y) 
2.  while STACK is not empty 
3.  Location = STACK.pop() 
4. if  (OBS(Location.x,Location.y) is UNKNOWN) and (for all (x,y) within 

robot_rad of Location, OBS[x][y] is false)  
5.   CLEAR_MAP[Location.x][Location.y] = REACHABLE; 
6.   for each neighboring cell [i,j] of [Location.x, Location.y] 
7.    if OBS[i][j] is true 

8.     CLEAR_MAP[i][j] =  OCCUPIED 
9.    else if (CLEAR_MAP[i][j] is UNKNOWN)  
10.     CLEAR_MAP [i][j] = CLEAR 
11.     STACK.push(i,j) 
12.    end if 
13.   end for loop 
14.  end if 
15.  end while loop 

C.2. PATROLLING THE ENVIRONMENT  
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Patrolling the environment in this dissertation was implemented with a 

dynamically created finite state automaton (FSA).  At run-time, the robot would select 

some set of waypoints through which it needed to pass, choose the shortest route through 

those points, and then build and follow an FSA to completion.  An example FSA guiding 

the robot through a series of waypoints is seen in Figure C.1.  More examples of how 

FSA’s can be used to guide robotic navigation can be found in [Arkin 1998]. In this 

section of the appendix, we discuss in more detail the waypoint selection, path ordering 

and path following algorithms.   

C.2.1. SELECTING WAYPOINTS  

In Section 5.3.2, we described an algorithm for selecting waypoints for a patrol 

robot, based on the levels of ambient noise in the room.  The primary goal of the 

waypoint selection process is that there is a waypoint located within some minimum 

range of all reachable locations in the environments.  The secondary goal is then to 

 

Figure C.1. A Finite State Automaton guiding a robot through a series of 

three arbitrary waypoints in the environment.  This FSA is actually 

guides the robot in a loop, however, as the robot will return to the first 

position after moving to the third position and start all over again. 
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minimize noise impact on a robot listening at each of those locations.  The following 

pseudocode describes how we met both of these goals in the dissertation. 

Variables 

• Clear Space Map, CLEAR_MAP 

The clear space map identifies regions of clear, reachable space in the 

environment.  Appendix C.1 has more detail on creating such a map from 

an evidence grid representation of obstacles in the environment. 

• Range of reachable space, [MinX-MaxX,MinY-MaxY] 

The range of reachable space identifies a bounding box about all clear, 

reachable areas of the clear space map.   

• Noise Map, nMap 

A map of the noise levels in the room.  It does not matter how this map 

was created (e.g. direct field, ray-tracing, sampled data, etc.) 

 

 

• Maximum Grid Cell Size, gSize 

This specifies the maximum allowable grid cell size (1.8-m).  This value 

multiplied by the square root of 2 indicates the maximum allowable 

distance between a waypoint and a clear, reachable grid cell that might 

contain a sound source. 

• Output List of Waypoints, w 

The resulting list of waypoints, in real coordinates, for the robot to move 

to and sample at. 
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Pseudocode 

1. 







 −
=

gSize

MinXMaxX
ceilingsizestep x_

 

2. 







 −
=

gSize

MinYMaxY
ceilingsizestep y_

 
3. for a = MinX:step_sizex:MaxX 
4. for b = MinY:step_sizey:MaxY 
5.  rangex = [a to a+step_sizex]; 
6.  rangey = [b  to b+step_sizey]; 
7.  cell_center = [a+step_sizex/2, a+step_sizex/2];  
8. let L be the set of all REACHABLE grid cells in CLEAR_MAP within rangex 

and range y 
9. Find the cell k in L with the lowest value in nMap… choosing the cell closest to 

cell_center in the event of a tie. 
10.  w.add([L[k].x,L[k].y); /** add real coordinates of cell center to list **/ 
11. end for 
12. end for 

If the provided noise map is empty or of uniform value, then the set of resulting 

waypoints defaults to the center of each range.  Such a list is the same list as used in 

Section 5.2.2 for an uninformed waypoint selection process. 

C.2.2. PATH ORDERING BY DISTANCE 

After obtaining a set of waypoints, the first step in building the FSA controller 

was to identify the order in which the waypoints should be visited.  Assuming that all of 

the waypoints were reachable by the mobile robot, we used the Clear-Space Map 

described in the previous section to identify the all-pairs shortest path between 

waypoints.  Given the small numbers of waypoints typically involved in this scenario, our 

chosen approach was to repeatedly apply Dijkstra’s algorithm to all waypoints.  For 

significantly larger numbers of waypoints, there are a number of alternative algorithms 

that may run faster[Cormen et al. 1990].   
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Using this graph representation, our heuristic for estimating the shortest path is to 

pick an arbitrary ordering of the nodes, and greedily swap nodes in the path which 

minimize the distance traveled by the robot.   

Variables 

• The graph representation G  

G(a,b) is the path length between waypoints a and b.  It was calculated by 

repeatedly applying Dijkstra’s algorithm for determining the single-source 

shortest path to each waypoint in the waypoint list.  The map used in 

determining shortest path was a clear space map derived from an evidence 

grid representation of obstacles in the environment. 

• An initial ordering I0 of n waypoints wn 

• An alternative ordering I1(a,b 

I1(a,b) is identical to I0, except that the positions of nodes a and b are 

swapped. 

• Path length difference ∆(a,b) 

Represents the total difference in path length between I0 and I1(a,b) 

Pseudocode 

1. I0 = [w1,w2,…,wn] 
2. a = b = 1; 
3. Repeat 
4.  I0 = I1(a,b) 
5.  Find a,b such that ∆(a,b)is maximized. 
6. Until  ∆(a,b) < 0.3-m 

In the worst-case scenario, this algorithm could be less efficient than simply 

searching every possible ordering of nodes.  However, in our case, the automatically 

generated waypoints were usually close to being ordered already, as the waypoints were 
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estimated in straight lines along the clear-space map.  Using a greedy-node swap on a 

mostly ordered path meant that significant improvements in path length could be quickly 

achieved in only a few swaps. 

C.2.3. PATH ORDERING BY NOISE LEVELS 

This section details how to order a set of waypoints so as to minimize the ambient 

noise exposure of a robot.  The algorithm uses essentially the same pseudocode as in 

Appendix C.2.2, but substitutes the sum of the noise between nodes for the distance 

traveled.  The following pseudocode describes how to build the graph representation G, 

so that the cost of traveling between waypoints reflects ambient noise levels instead of 

distance.  It still uses Dijkstra’s algorithm [Cormen et al. 1990] to calculate this cost, but 

incorporates the values of a noise map into the cost estimation process. 

Variables 

• The set of waypoints, w 

• Clear space map, CLEAR_MAP 

• Noise map, nMap 

• Intermediate Path Map, pMap 

pMap stores the intermediate results.  For each cell [i,j] in pMap, the 

following information is stored: 

 cost – the cost of travelling from the path start to grid cell [i,j] 

previous_cell – the previous cell [a,b] along the path to grid cell [i,j] 

• Sorted List, Q 
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Q is a list of cells [i,j], ordered so that the head of the list is the cell in Q 

with the smallest value of pMap[i][j].cost.  The pop operation removes the 

head of Q, leaving the cell with the next smallest cost at the head of the 

list. 

• The output graph representation G  

G(a,b) is the resulting cost of traveling between waypoints a and b.   

Pseudocode 

1. for each waypoint k in w 

 /*** initialize the path map ***/ 
2. let [a,b] be the grid cell in CLEAR_MAP that contains [w[k].x,w[k].y] 
3. initialize pMap so that cost is infinity for every cell 
4. pMap[a][b].cost = 0; 
5. pMap[a][b].previous_cell = NULL; 
6. add cell [a,b] to list Q 
7. while Q is not empty 
  /*** retrieve the node with shortest cost still in Q ***/ 
8.  [a,b] = Q.head(); 
9.  Q.pop(); 
10.  for each neighboring cell [i,j] of [a,b] 
/*** add neighboring cells to Q when a new, less costly path has been identified ***/ 
11.   if CLEAR_MAP[i][j] is REACHABLE 
12.    alt = pMap[a][b].cost + nMap[i][j] 
13.    if alt<pMap[i][j].cost 
14.     pMap[i][j].cost = alt; 
15.     pMap[i][j].previous_cell = [a,b] 
16.    end if 
17.   end if 
18.  end for 
19. end while 
/*** Q being empty means that the shortest path to all grid cells has been identified… 
now extract the cost to reach each of the waypoint cells from the starting waypoint ***/ 
21.  for each waypoint l not equal to k 
22.  let [i,j] be the grid cell in CLEAR_MAP that contains [w[l].x,w[l].y]  
23.  G(k,l) = pMap[i][j].cost 
24. end for 
25. end for 
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C.2.4. PATH FOLLOWING   

After ordering the waypoints, following the path was simple.  Starting with the 

first waypoint in a non-circular path (or the closest waypoint in a circular patrol route), 

the Task Manager software would send the target coordinates to the player interface, 

which in turned passed them to the wavefront planner in Player, causing the robot to 

move to that target.  The Task Manager then constantly maintained track of the robot’s 

position while it was moving.  When the robot was within an acceptable distance (0.5-m) 

of the target, the next waypoint in the list was selected and the taskmanager would pass 

the new target to Player.  The resulting controller is a finite state automaton, where the 

state of the controller is the waypoint being moved towards by the mobile robot.   

Using this simple FSA for robotic control is described in the following 

pseudocode for a non-circular path: 

Variables 

• Current Location of the Robot – (Loc)  

Loc was estimated by the amcl driver in Player. 

• The i
th

 waypoint in the ordered path -  I0(i)  

Pseudocode 

1. i=1; 
2. while i<n+1 
3. Send Goal I0(i) to Player 
4. Update Loc 
5. while distance(Loc-I0(i))<0.5-m 
6.  Acquire Audio Sample 
7.  Update Loc 

8. end while loop 
9. i = i+1; 
10. end while loop 
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C.3. INVESTIGATION OF A SOUND SOURCE 

After the location of a potential sound source had been identified, the next stage 

of the sound source discovery process (as described in Chapter 4) was to collect a large 

number of samples in the vicinity of the source, preferably from as many angles as 

possible.  This was accomplished using the Clear-Space map (Appendix B.1) to identify a 

number of waypoints in the vicinity of the sound source, and then moving the robot to 

each of those waypoints and collecting a sample.  The remainder of this section discusses 

the implementation details of these two parts of the algorithm: (1) identifying waypoints 

in the vicinity of the source, and (2) moving to and sampling at each of the waypoints. 

C.3.1. IDENTIFYING WAYPOINTS IN THE SOURCE VICINITY 

Variables 

• Clear Space Map, CLEAR_MAP 

• Map gridcell size, stepsize 

All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

• Map Range, [MinX-MaxX,MinY-MaxY] 

The range of area described by the auditory evidence grid. 

• Suspected Source Location, [Sx, Sy] 

This is the grid cell containing the location to be investigated by the robot.  

Typically, the location’s global coordinates are determined by applying an 

auditory evidence grid to patrol data. 

• Sampling radius, radius  
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The investigation needs to sample at locations up to 2-m away from the 

source centroid.  As the robot’s movement trajectory is not precise, the 

result still contains a number of samples collected outside the 2-m radius 

which can be used for estimating the reverberant volume of the room. 

• Clear Map gridcell size, stepsize 

All gridcells were assumed to be square.  Most maps were of 0.3-m to 

each side. 

• Output - Sampling Locations, w 

The resulting locations at which the robot should sample to investigate the 

sound source. 

Pseudocode 

1. rad = radius/stepsize; 
2. for i=(a-rad):(a+rad) 
3.  for j=(b-rad):(b+rad) 
4.  if (cell [i,j] is in the map) and (CLEAR_MAP[i][j] is REACHABLE) 
5.   [x,y] = global coordinates of the center of cell [i,j] 
6.   w.add([x,y]) 
7.  end if 
8. end for 
9. end for  

In our implementation, Clear-Space maps were always of 0.3-m resolution, 

meaning that each cell in the grid was 0.3-m x 0.3-m in size.  Therefore, this choice of 

waypoints typically resulted in 100-250 sampling locations, varying with the obstacle 

density in the vicinity of the target.  The time it would take for our robot to sample at 

each of these locations was generally between 20-40 minutes.  With a different map 

resolution, these numbers would have changed because the resolution is exponentially 

related to the number of waypoints.   Therefore, given these numbers, which may already 
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be too large for many practical applications, a different algorithm may be necessary for 

extracting target locations if the map resolution is much smaller. 

C.3.2. DYNAMIC PATH PLANNING 

The resulting waypoint distribution from this strategy is very widely but densely 

distributed by distance and angle about the suspected sound source location.  Given this 

scattering of sampling targets we opted for a less informed approach to the path-planning 

problem.  If robotic localization had been completely accurate, then a path-planner would 

have been the most appropriate choice, as a pre-ordered path could minimize the 

sampling time required to complete the investigation.  Given, however, the density of the 

sampling targets and the size of the error in localizing the robot, often as large as 0.5-m, a 

pre-ordered path could actually be detrimental to performance as the robot overshot 

points in the path and then tried to return to them.  Therefore, instead we opted for a 

dynamic planner that picked the next waypoint in the path based on the robots current 

position and angle.  After the robot successfully sampled at a given target, the next 

waypoint selected should be close to the robot, and ideally, straight ahead so that the 

robot moves in lines across the sampling space.   

Variables 

• Set of remaining sampling locations - w  

When initialized, w stores the entire set of waypoints (x,y).  As each 

waypoint is moved to and sampled at, however, it is removed from the list.  

Therefore, the list decreases in size as time progresses, emptying 

completely by the time the investigation finishes. 



371 

 

• Distance to each waypoint - Distw(i)  

This variable (or function) returns the distance from the robot’s estimated 

current location to the ith
 waypoint in w 

• Angular difference to each waypoint - Angw(i)  

This variable (or function) returns the difference in angle between the 

robot’s current orientation and the vector from the robot’s current position 

to the ith
 waypoint in w 

• Turning radius of the robot – turn_rad 

 Assuming that the robot must first rotate in place to reach the target (an 

assumption that is generally true for short distances), the turning radius 

(0.3-m) allowed us to account for extra distance the robot needs to move 

in order to reach waypoints that are off to one side or behind it.  

Pseudocode 

1. while length(W)>1 
2.  Update Distw, Angw 

3.  Find i, such that (Distw(i) + Angw(i)*turn_rad) is minimized 
4.  Send goal w(i) to Player 
5.  while Distw(i)<0.5-m  /*loop until the robot reaches the target*/ 
6.   Update Distw(i) 

7.  end while loop 
8.  Stop Robotic Movement 
9.                     Acquire Audio Sample /*investigations used pause and sample 

methodology*/ 
10.  Remove ith waypoint from list w  

11. end while loop 
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Appendix D - HRI APPLICATION 

In Chapter 7, a Human-Robot Interaction application was presented which 

combined both reactive and deliberative elements of acoustical awareness together into a 

single implementation.  This appendix provides the implementation details for this 

application.  In the immediately following code, the Finite-State-Machine is implemented 

with a series of case statements.  Then in the following sections, the acoustically-aware 

actions are described, including: (1) selecting speech volume, (2) pausing for 

interruptions, (3) rotating to face the listener, and (4) relocating the robot.  Of these 

actions, the first three actions are designed to handle short duration disturbances to the 

auditory scene, while the final action makes use of the sound fields framework to respond 

to medium-to-long duration disturbances. 

Variables 

• Volume Threshold, threshold 

This is the sound pressure level threshold at which ambient noise is 

considered too loud to speak over.  This value actually depends on the 

type of noise the robot is working with, as some types of noise are easier 

for a human listener to ignore than others. 

Pseudocode 

1. do  /** loop **/ 
2.  switch (state): 
3. case WAIT_STATE: 

/*** waiting for an interaction to happen, just sample the auditory scene ***/ 
4. sample auditory scene 
5. determine volume of the sample 
6. if speech is detected 
7.  Rotate the robot to face the speaker /** Appendix D.3 **/ 
8.  transition to LISTEN_STATE 
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9. else if volume remains > threshold for more than 10-seconds 
10.  Relocate the Robot /** Appendix D.4 **/ 
11. end if 
12. case LISTEN_STATE: 
13.  sample the auditory scene 
14.  determine the volume of the sample /** Appendix B.7 **/ 
15.  if speech is detected and the speech corresponds to a report title 
16.   Rotate the robot to face the speaker /** Appendix D.3 **/ 
17.   transition to READ_STATE 
18.  else if volume remains > threshold for more than 10-seconds 
19.   Relocate the Robot /** Appendix D.4 **/ 
20.  end if 
21. case READ_STATE: 

/** read the report sentence by sentence, sampling in between to determine if the 
robot has been interrupted, and set the speech output volume **/ 

22.  for each sentence in the report 
23.   sample the auditory scene 
24.   Check for Interruptions /** Appendix D.2 **/ 
25.   Set the volume of the output /** Appendix D.1 **/ 
26.   Read the sentence 
27.   save the current location in the report 
28.  end for 
29. case WAIT_FOR_COMMAND_STATE: 

/** the robot was interrupted by speech, or the user decided not to move after a 
loud sound source **/ 

30.  Wait for a command from the speech detection engine. 
31.  switch command: 
32.  case ‘continue where you stopped’: 
33.   transition to READ_STATE 
34.  case ‘repeat last line’ 
35.   move the current report location back one sentence 
36.   transition to READ_STATE 
37.  case ‘repeat from the beginning’ 
38.   move the current report location back to the beginning 
39.   transition to READ_STATE 
40.  case ‘Change to a new subject’ 
41.   transition to LISTEN_STATE 
42.  end switch 

43.  if no command occurs within 2-minutes 
   /** assume interaction has ended **/ 
44.   transition to WAIT_STATE 
45.  end if 
46. end switch 
47. until application is turned off 
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D.1. SELECTING SPEECH VOLUME 

The volume of the robot is set every time the robot speaks.  It is determined as 

follows: 

Variables 

• Noise Range, [MinN – MaxN] 

This is the range of noise (in dB) during which the robot adjusts its 

speaking volume.  If the ambient noise volume is less than MinV then the 

robot speaks at is softest.  If the ambient noise volume is greater than 

MaxV then the robot speaks at its loudest. 

• Distance Range, [MinD – MaxD] 

This is the range of distances over which a robot can communicate with a 

human partner.  If the distance to the person is less than MinD then the 

robot speaks at is softest.  If the distance to the person is greater than 

MaxD then the robot speaks at its loudest. 

• Output Volume Range, [MinV – MaxV] 

This is the range of volumes over which the robot can talk.  The SAPI 5.1 

software had a range of 0-1.  Our volume adjustment code needed to 

choose a sub-range of 0-1 over which the robot could react to ambient 

noise volume and distance.  Our MinV was 0.4, so that the robot speech 

was still audible.  Our MaxV was 1.0. 

• Current Volume, currentV 

currentV is the current ambient noise volume in dB, as detected by the 

microphone array mounted on the robot. 



375 

 

• Current Distance, currentD 

currentD is the current distance to the user, as determined by the stereo-

vision system mounted on the robot. 

Pseudocode 

/** Need to make sure that V and D are within the necessary range by checking   
minimums and maximums**/ 
1. V = currentV 
2. if currentV<MinN 
3. V = MinN 
4. else if currentV>MaxN 
5. V = MaxN 
6. end if 
7. D = currentD 
8. if currentV<MinD 
9. D = MinD 
10. else if currentV>MaxD 
11. D = MaxD 
12. end if 
     /** identify a scaling factor using an ellipse to combine the 2 dimensions **/ 

13. 
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     /** generate an output volume based on a linear progression **/ 

14. ( )( )MinVMinVMaxVSFceilvolumeoutput +−= *_  

D.2. PAUSING FOR INTERRUPTIONS 

When speech, or otherwise significant sound, was preventing communication, the 

robot would recognize this and pause its speech output.  Depending upon the type of the 

sound disturbing the interaction, the length of the pause would vary. 

Variables 

• Volume Threshold, threshold 

This is the sound pressure level threshold at which ambient noise is 

considered too loud to speak over.  This value actually depends on the 
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type of noise the robot is working with, as some types of noise are easier 

for a human listener to ignore than others. 

Pseudocode 

1. Between every sentence, sample the environment (250-msec/sample) 
2. if speech was detected in that sample 
3. stop all interaction 
/** wait until the user directs the robot to continue using voice commands **/ 
4. transition to WAIT_FOR_COMMANDS_STATE  
5. else if the ambient noise volume > threshold 
6. repeat  /** start of loop **/ 
7.  Check the last 3-sec of samples. 
8.  if less than 10% of those samples were greater than threshold 
9.   continue speaking 
10.  end 

11.  pause for 1-sec. 
12. until 10-seconds have elapsed, or the robot started speaking again 
13. if the robot did not continue speaking 
14.  Relocate the Robot (Appendix D.4) 
15.  end if 
16. end if 

D.3. ROTATING TO FACE THE LISTENER 

Besides changing its volume in response to ambient noise, and pausing when 

noise levels interrupt the conversation, the robot also needed to rotate to keep the user in 

view.  This is accomplished through 2 sensory modalities: (1) audition, and (2) vision.  

The microphone array mounted on the robot is needed to localize the human participant 

before they are detected by the vision system.  Then, once the human has been localized, 

the robot relies upon its vision system to return regular angular measurements as it tracks 

the human through the surrounding environment. 

Unlike all other work on the human-robot interface, the rotation process is 

performed in parallel with the main controller.  In other words, once speech initializes the 
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interaction, the rotation of the robot is performed at regular intervals regardless of the 

state of the interaction. 

Variables 

• Recent sample, sample 

This is the most recent sample collected by the microphone array which 

has been determined to contain speech. 

Pseudocode 

1. SpLikelihood = spatial likelihood of sample  /** Appendix B.1 **/ 
2. BestA = most likely angle to the sound source in SpLikelihood /** Appendix B.1.1 **/ 
3. Rotate the robot to face BestA 
4. repeat 
5. Get the angle α to the human partner, using the vision system 
6. dA = α-pose.θ;  

7. Convert dA to between [-π,π] 

8. if |dA| < π/6 
9.  Rotate camera to face human /** maintains visual tracking **/ 
10. else 
11.  Rotate the robot to face α 
12. end else 

13. until interaction has ended 

D.4. RELOCATING THE ROBOT 

Once the sound source has been identified as a medium-to-long duration noise 

source, the robot can try to relocate itself in the environment by localizing the sound 

source, building a direct field map of the environment, and moving to the quietest 

predicted location.  This same work was used both in Chapter 7, and in Section 5.3.1 of 

Chapter 5. 

Variables 

• Robot position, pose 

The last known location and orientation [x,y,θ] of the robot. 
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• Clear Space Map, CLEAR_MAP 

CLEAR_MAP is a map of clear, reachable space.  Appendix C.1 describes 

in more detail how to create such a map from an evidence grid 

representation of the obstacles in the environment. 

• Active Source List, S 

This is the list of active sources in the environment.  It is needed to build 

maps of the direct field, and is updated as new sound sources are 

discovered by the mobile robot. 

Pseudocode 

1. samples = sample auditory scene for 20-seconds 
/*** Determine the average sound pressure level, Appendix B.7 describes how to 
calculate the sound pressure level from a recorded sample ***/ 
2. DetectedSource.vol = average SPL at current location    
/*** determine the direction to the sound source, Appendix B.1.1 describes how to 
estimate this value from spatial likelihood measurements ***/ 
3. Ths = most likely direction to the sound source, averaged across samples  
4. Ds = 1-m  /*** assume 1-m away to start ***/ 
5. if not interacting with anyone 

/*** with no current interactions, resort to algorithm described in Section 5.3.1 
for relocating the robot ***/ 

6. Move robot in direction (Ths + pose.θ + 90°) for 10-sec 
/*** Identify the position of the sound source by building an auditory evidence 
grid (Appendix B.2) and clustering the result (Appendix B.2.1) ***/ 

7. Build an auditory evidence grid AEG from collected samples  
8. DetectedSource.centroid = largest cluster center in AEG   
9. else 

/*** The differences are : (1) the robot asks person if they want to move before 
moving, and (2) the robot does not try to localize the sound source first, instead 
assuming the source was located only 1-m away so as to speed up the 
relocalization process ***/ 

10. Ask the user if they want to relocate to another less noisy location 
11. Wait for a response  
12. if no response was returned within 2-min 
13.  assume interaction has been canceled 
14.  return to wait state 
15. else if response is “no” 
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16. exit “Moving the Robot” state, and continue interaction at maximum volume 
17. else if response is “yes” 
18.  DetectedSource.centroid.x = pose.x+Dscos(Ths + pose.θ);  
19.  DetectedSource.centroid.y = pose.y+Dssin(Ths + pose.θ);  
20. end if 
21. end if 
22. Add DetectedSource to S 
23. Build Direct Field map, dMap, of active sources /*** Appendix B.5 ***/ 
24. Let [x,y] be the quietest location in dMap that is also REACHABLE in CLEAR_MAP 
25. Move the robot to [x,y]. 
26. if an interaction had been interrupted 
27. tell the user that the robot is ready to continue 
28. end if 
29. exit “Moving the Robot” state 
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