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Summary 

Response of a metallic capsule to a transient internal pressure is 

analyzed adopting two models. The first is a two-dimensional (2-D) model 

with finite extent in the plane of the capsule's cross-section and infinite 

length normal to that plane. The second is a three-dimensional (3-D) 

axisymmetric model consisting of a short thin cylinder capped by thin disks. 

In both models, transfer matrices relate state vectors of tractions and 

displacements at two segment boundaries. The time interval from pressure 

initiation to failure of its material measures the capsule's effectiveness 

as a confining boundary. 
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1. Introduction 

Ceramic materials are used to harden vehicles and structures against 

ballistic events. These materials benefit from a higher compressive strength 

compared to metals yet their tensile strength is reduced by brittle failure. 

Following impact, a ceramic material shocks the projectile initiating 

damage. As time progresses and tensile release waves form, micro-cracks 

propagate and multiply in the material culminating in total failure. Strain 

energy in the virgin material then converts into kinetic energy ejecting the 

debris away from the projectile's path. Prolonging the time interval when 

comminuted material remains in this path after failure is one way to extend 

the material's utility in eroding the projectile. 

In what follows a quantitative account is given of an experimental 

project duplicated in two laboratories and aimed at evaluating ballistic 
-

performance of stacked configurations. This account is interesting as 

unplanned differences in experimental setups revealed the strong effect of 

confinement on penetration. 

Controlled ballistic experiments on periodic stacks of ceramic layers 

bonded by thin polymer films were performed at two laboratories named "A" 

and "B" for shortness (Weber and Hohler (1997), Weber, et. al. (1999)). 

Ballistic performance was measured by the residual penetration Pr of the 

projectile into a thick Aluminum backing block. In this way Pr is a measure 

of the projectile's residual kinetic energy. All experiments consisted of 

stacks made of lOOmm x 100mm square Aluminum Nitride (AlN) tiles and 38mm 

total thickness of either: 1 x 3Bmm monolith, 2 x 19mm layers, 3 x 12.7mm 

layers, or 6 x 6.35mm layers. All layers were bonded by 0.254mm uniform 

polyurethane film, adhering to the tiles by heating. 

In Series 3c, the stacks in the "B" setup were confined laterally by 14cm x 

14cm square steel tubing 12.5mm thick, and axially by a 5mm thick steel 

cover plate perforated centrally with a 30mm diameter hole allowing the 

projectile to strike the stack (Fig. l(a)). The stack rested on a 60mm 

Aluminum backing block to serve as witness plate for Pr measurements. The 

"A" setup was laterally confined was achieved by welding four 6.35mm plates 

along the edges to form a box keeping a 5mm clearance around the stack, and 

covered by a 6.35mm plate. The cylindrical projectile was made of Tungsten 

alloy with 8.33mm diameter and length to diameter ratio of 6, weighing 50g, 

with velocity near 1170 m/s. Fig. 1(b) plots Pr versus number of layers in 
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the stack for all "Au and "8° stacks tested. In this Figure, data from each 

series of experiments is labled by a different symbol like e, 6., D, 0 and 

X. At first, results from "Au and "Bu did not match. "Au measured Pr =30mm 

for the 1. sa monolith, and Pr =Omm for the 1/2° layer stack ( e Fig. 1 (b)) 

"8° measured Pr =Omm for the 38mm monolith and 6mm for the 12. 7mm layer 

stack (not shown in Fig. 1(b)). A review of the "Au experimental setup 

revealed that lateral confinement failed at the corner welds, ejecting the 

side plates laterally immediately following impact thus negating the effect 

of confinement. This confirmed that the principal cause for the 

substantially lower Pr in the "8° setup was the strong confinement that 

delayed removal of comminuted materiaL from the projectile's pa.tb,. 

increasing its erosion. This effect masked the real ballistic performance of 

ceramlc. 

The "Au and "Bu setups repeated Series 3c experiments with the 

following changes. The size of the confining tube in "Bu was increased 

allowing a 5 mm clearance around the stack for lateral expansion of the 

damaged ceramic without interference from the confining tube. Also, a 3mm 

gap was left between cover plate and top face of the stack. In the "A" 

setup, the gap between stack, sidewalls and cover plate was increased to 

20mm practically eliminating the effect of confinement. Indeed, results for 

the 12. 7mm layer stack agreed: "8° measured Pr =20mm and 23mm (6. Fig. 1 (b)), 

and "Au measured Pr =20mm and 26mm ( e Fig. 1 (b)) . For the 38mm monolith the 

mismatch in Pr persisted: "B" measured Pr =6. 8mm and Omm /:-, ) pointing to a 

possible problem in the "Bu setup. "Bu was repeated in 3 more tests on the 

38mm monolith yielding Pr=11 mm, 33mm and 46mm ( 0 Fig. 1(b)). This unusual 

scatter among "8° results for the 38mm monolith confirmed that a fundamental 

difference existed between the two setups meriting a closer look at the "B" 

setup. Examining the "Bu cover plates of the last 3 tests revealed that the 

cover plate corresponding to Pr=11mm suffered substantial plastic 

deformation, while that corresponding to Pr=46mm had very little plastic 

deformation. This suggested that the large scatter in Pr was caused by how 

the cover plate confines ejecta in the direction of impact. The 3mm gap 
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between cover plate and stack in "Bu was small enough to confine ejecta at 

times when they did not escape through the central hole in the cover plate 

remaining in the path of the projectile. This increased resistance, reducing 

Pr and creating sufficient pressure to cause the cover plate to yield. When 

ejecta escaped through the hole, the projectile encountered less resistance 

increasing Pr and keeping the cover plate intact. This demonstrated that 

even the weak confinement of the cover plate randomly affected ballistic 

performance by retaining or allowing ejecta to pass through the hole. 

An explanation was still needed to account for the match in results 

and reduced scatter in the "Bu data of Series 3c for the multiple layer 

configurations in spite of the cover plate's closeness. That explanation 

lies in the concept of phase velocity CP . For the monolith, the rate of 

formation of comminuted material in ejecta is approximately the compression 

speed of sound, which for AlN is 10km/s. For a stack made of 12.7mm ceramic 

layers bonded by o.2s4mm polyurethane film, cp ~~(Ebhc)!(pchb) = 1.7km/s 

where Pc,hc are ceramic mass density and layer thickness, and Eb,~ are film 

modulus and thickness (El-Raheb (1997)). The reduction in CP caused by 

dispersion from weak coupling reduces the rate of ejecta formation by a 

factor of 6. This raises the probability of ejecta escaping from the hole 

and in turn diminishes scatter. In fact, the reduction in Pr scatter for 

stacks with thinner ceramic layers is consistent with the corresponding 

reduction in CP . 

To bring the two setups into equivalence required adjusting the "Bu 

setup in Series 3d by increasing the distance between cover plate and stack 

from 3mm to SOmm. This allowed sufficient space for the ejecta to expand 

without restriction from confinement. With this final setup, experiments 

measured a higher Pr in two tests with the 38mm monolith: 29mm and 41mm 

([]Fig. 1(b)). Faced with this unexpectedly strong effect of confinement, 

the confining tubing in the "Bu setup was increased from 14cm to 19.5cm and 

2 more tests were performed for each stack reducing the scatter to less than 

15% in Series 3e. For the 38mm monolith, p,=25mm and 31mm (X Fig. 1(b)). 
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Note the large scatter in Pr for the monolith when gap between cover 

plate and stack was 3mm ( 6 and(> Fig. l(b)), and the reduced scatter of 

all data when that gap was increased to 50mm D and X Fig. 1 (b)) . The 

scatter diminishes as layer thickness in the stack is reduced. 

Examining the experimental results presented above, it is evident that 

metallic encapsulation of ceramic tiles may extend the time interval of 

active resistance against the projectile also known as dwell time. One 

drawback is added. weight implying that an optimization process is needed to 

determine the appropriate material properties and thickness of the capsule 

wall for maximum specific performance (performance/weight ratio) . One 

measure of increased performance is the time interval it takes from total 

commim.fting-of c~eramic to- failure oi: thE-capsule allowing -confined 

comminuted material to extend projectile erosion. 

This work focuses on the transient response of a hollow capsule 

excited internally by a time dependent pressure pulse. Two models of the 

capsule are developed 

(a) A 2-D model of 4 strips connected at the edges forming a hollow 

rectangle, with finite extent in the plane of the cross-section and 

infinite in the direction normal to it. 

(b) A 3-D axisymmetric model of a short thin cylinder capped by thin 

disks at the cylinder's ends. 

In the 2-D model, the transfer matrix approach is utilized to relate state 

vectors at the two ends of a 2-D strip. In the 3-D axisymmetric model, a 

transfer matrix is also used for the cylinder, while each disk is modeled as 

dynamic impedances relating force to displacement vectors along the 

boundary. 

The internal pressure generated by the expanding comminuted material 

is approximated by a hyperbolic cosine bell shaped distribution with origin 

at the center of the faceplates simulating peak pressure at impact and 

pressure decay remote from impact. This approximation is consistent with 

both a hydro-acoustic model of the comminuted material based on the small 

amplitude acoustic equation and a numerical distribution determined by 

"EPIC" a general purpose "hydrocode". 

Presented in a forthcoming paper, the acoustic model for internal 

pressure requires the compliance of the capsule walls. An appropriate 

measure for compliance is dynamic mobility of the capsule that relates 
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internal pressure to normal acceleration at the boundary. Dynamic mobility 

is derived from frequency response adopting modal method. 

Finally, a parametric analysis compares histories from the 2-D and 3-D 

models with emphasis on peak stress and its location. Also, frequency 

response of driving point mobility yields its frequency-averaged radial 

distribution serving as an input to the acoustic model for internal 

pressure. 

Since the 3-D axisymmetric model combines disk and cylinder, a 

literature survey focuses on each component separately as analysis on 

structures combining both is rare as the preferred approach relies on 

general-purpose computer programs. 

A large body of references exists treating static and dynamic problems 

of isotropic, orthotropic, stiffened and rotating disks. A major portion 

concerns frequency response while a smaller portion treats transient 

response. Soamidas and Ganesan (1991) analyze variable thickness polar 

orthotropic disks. Xiang et al. (1996) treat linear axisymmetric frequency 

response with concentric stiffeners. Karunasena et al. (1997) treat the 

static axisymmetric response of a disk with annular supports adopting 

Mindlin's plate equations. Liew and Yang (2000) solve the three-dimensional 

free vibration problem of solid and annular plates for symmetric and 

asymmetric modes by an approximate polynomial-Ritz method. El-Raheb and 

Wagner (1987), (1994) study the axisymmetric wave propagation in a disk from 

impulse of short duration adopting a plate flexural model and a 3-D 

elasticity model. El-Raheb and Wagner (2001) then extend the axisymmetric 

flexure model to asymmetric response from off-center impact. 

For thin cylinders, Wang et al. (1997) utilize the Ritz method in the 

modal response of ring-stiffened cylinders. Urn and Kitipornchai (1998) 

derive 3-D elasticity solutions to frequency response of open cylinders. Lin 

and Jen (2003) adopt the Chebyshev collocation method in the analysis of 

laminated anisotropic cylinders. El-Raheb and Wagner (1989) treat wave 

propagation in a thin cylinder with concentrated masses attached to its 

surface adopting a modal approach. El-Raheb and Wagner (1985), (1986) and 

(1989) adopt transfer matrices to treat frequency response of cylinders 

connected to toroidal shells stiffened by discrete rings and annular disks 

and damped by constrained visco-elastic layers applied to the surface. 

2. 2-D model 
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Fig. 2(a) depicts the capsule geometry in the 2-D model. In this 

model, a rectangular plate with finite extent along the local X axis and 

infinite length along the local z axis is termed a 2-D strip. A schematic 

of strips joining at corners through mobilit~es is shown in Fig. 2(b) where 

reference coordinate system (X,Y) is shown as dashed lines. Corner "i" 

(enclosed in a circle) joins three branches j, j+l and }+2' through 

linkage mobilities Yi,J' Yi,J+I and Yi,J+ 2 respectively where (i,j) stands for the 

corner-branch dyad. In the frequency domain where time dependence is 

sinusoidal with frequency OJ 

y =[z rl 
l,) l,j 

iaJ =(-mOJ2 +k+iOJr)(aJ a 1 2 i = Cl 
l,) ":> l,j ' = ' ' 'If- 1 

(1) 

and Z is a 2x2 diagonal impedance matrix with components the one-degree 
l,) 

A 

of freedom oscillators with mass m , spring k, viscous damper r;, along the 

local coordinates (x,y) of the /h branch. Let Ai,; be the 4x4 

transformation matrix relating local to reference state vectors sloe~ sref 

S"/ =A S'"' 
i,; i,J i,] ' 

= [ai,J 0.] 
0 a 

l,) 

(2) 

where {f, g};,f are force and displacement vectors at the end of branch (i, j) 

and a is the 2x2 transformation sub-matrix. Define f and g as 
l,j 

(3) 

j~,qy,n1z are extensional force, shear force and moment, and ux,uy,lf/z are 

corresponding displacements and rotation along local axes depicted in Fig. 

2 (c) . Let l be branch length then the st~te vector at X= l,. . is related to 
l,j ,) 

that at X= 0 by the transfer matrix 

{
f(l)} [til S .(l)= =T (O~l)S (0)= 

l,j (l) I,J I,J t 
g i,j 21 

t12 ] {f(O)} 
t22 i,J g(O) i,; 

(4) 

For a 2-D strip the transfer matrix is derived in Appendix I. Since linkage 

mobilities y and corner impedances Z connect branch ends to rigid corners, 

S at a rigid corner is related to S at a branch end by 
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~1 [~ 
!,] 

&ez] {f} & ={ 1 at X=O 
I g e -l at X = l . 

l,j !,] l ,] 

( 5) 

At each corner, equilibrium of f and compatibility of g take the form 

nbi 

Lai,j ri./ c:e = o , i = l,nc 
j~l 

- -
ai,Jgi,/ = ai,lgi,l ' j = 2,nbi' i = l,nc 

where nbi is number of branches joined at corner 

( 6) 

and nc is total number of 

corners. Substituting (5) in (6) and expressing si,/(,) in terms of sl,j(O) 

using (4) produces 6nc simultaneous equations in the global SG(O), the 

ensemble Of al_l si,J(9) iTl t:he configurat~Oll._ 

(7) 

Transient response is determined by modal analysis. The eigenset of 

(7) derives from 

( s) 

{0;m}k is the k~ eigenset formed of the eigenvector 

(Sa) 

and corresponding eigenvalue mk . The modal analysis proceeds by expanding 

the global displacement vector gG(x,t) in terms of the orthogonal set (Sa) 

ga(x,t) = Lbk(t) $k(x) ( 9) 

k 

Substituting (9) in the forced elasto-dynamic equations of motion and 

enforcing orthogonality of the {$k(x)} set yields uncoupled ordinary 

differential equations in bk (t) 

bk (t) + m~bk (t) = N fk j(t) I Nkk 
(10) 

N fk = (p(x) I p0k(x)), Nkk = ($k(x) I p0k(x)) 

(') is time derivative, p(x) is spatial vector of external excitation, j(t) 

is its time dependence, and p is density. Equation (10) admits the solution 

(11) 
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3. 3-D axisymmetric model 

The 3-D axisymmetric model consists of two thin disks capping the two 

ends of a short cylinder (see Fig. 3(a)). The cylinder transfer matrix is 

derived in Section 3a. Dynamic impedance of the disk at its boundary is 

derived in Section 3(b). Finally, the procedure of coupling motions of 

cylinder and disks is derived in Section 3c. 

3a. Cylinder transfer matrix 

The cylinder has radius ac, length~, plate thickness he, modulus 

Ec, Poisson ratio Vc, and mass density Pc. Forces and displacements of a 

cylinder element are shown in Fig. 3(b). For periodic motions in time with 

frequency W , the coupled axisymmetric elasto-dynamic equations of the 

cylinder are 

h3 
Q =a 114 - Pc c xw2a w 

X XLY~ XX 12 X C ' 

2K 
x=1+--

1-vc 

(12) 

(x,B) are axial and circumferential coordinates, ~c,wc) are axial and radial 

displacement, the factor X multiplying rotatory inertia accounts for shear 

deformation and K is shear constant (El-Raheb and Wagner (1998)), and 

(Nxx,Qxx,A1xx) are axial, shear and moment resultants relating to 

displacements by the constitutive law 

Eh [ w] N =-c_c_ au -v _c 
xx 1_ v2 x c c a 

c c 

N =--c_c_vau--c E h [ w l 
BB 1_ V2 c x c a 

c c 

(13) 

Substituting (13) in (12) leads to a sixth order system of ordinary 

differential equations in (uc, wJ 
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Since the operator De has constant coefficients, the solution is in terms 

of exponentials 

( 15) 

Substituting (15) in (14) yields a homogeneous set of simultaneous equations 

The implicit eigenvalue problem (16a) yields the eigenvalues Acf, 

eigenvectors {Ccuf,Ccwjr, and solutions for uc,wc 

6 6 

uc(x):::: :bCcul~x , .li'"(x)_::::._:b_Ccwf.e~~-~--·-----~-
j=l j=l 

Define the state vector Sc(x) as 

Sc(x) = {fc(x)} 
gc(x) 

fc ={Nxx,Qxx,Mxxr ' 

Substituting (16b) in (13) then in (17) 

(16a) 

( 17) 

(18) 

Bc(x) is a matrix of exponentials. Evaluating (18) at the two boundaries of 

the cylinder X= 0, lc then eliminating Cc 

(19a) 

Tc(O~lJ is the cylinder transfer matrix relating Scat its two 

boundaries. Eq. (19a) can be expressed in terms of four sub-matrices 

(19b) 

3b. Disk impedance matrix 

Each disk has radius ac which is the same as the cylinder's, plate 

thickness hd, and modulus Ed, Poisson ratio Vc and mass density pd. Forces 

and displacements of a disk element are shown in Fig. 3(c). For periodic 
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motions in time with frequency W , the in-plane axisymmetric equation of the 

disk is 

::l N +(Nrr-Nee) =ph ,.-,,2u 
Ur rr d dtv d (20) 

r 

(r,B) are radial and circumferential coordinates, Ud is radial displacement, 

and (Nrr•NM) are radial and circumferential stress resultants relating to 

displacements by the constitutive law 

E h [ u ] N = _____E___!!_ a u + v _.E._ 
rr 

1 
2 rd d 

-vd r 
(21) 

Edhd [ ud J Nee= ---2 vd orud +-
1-vd r 

-subsi:±L"uting ~J.} -tn (~-) yte-lds -

2 1 n2 
v =o +-o --n rr r 

(22) 
r r 

with solution 

(23) 

Mindlin's axisymmetric flexural plate equations of the disk are (El-Raheb 

and Wagner (2001)) 

~ [ (1- vd) V~lfd +(1 + vd) Orrlfd J- KGdhd(lfd + orw d)=- p;~~ W 2
1fd 

J5 = Edh~ 
12(1-v;) 

(24) 

with constitutive relations 

(25) 

Wd,lfd are axial displacement and rotation, Qr,Mrr are shear and moment 

resultants, and K is shear constant. Eliminating lfr in (24) yields the 4th 

order equation in Wd 

(26) 

with general solution in terms of Bessel functions 
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(27) 

Substituting (27) in (26) yields the dispersion relation 

(28) 

The four roots AIJ of (28) correspond to four primitives where only the two 

regular at r = 0 are retained 

2 

wd(r) = 'LCdW] J 0 (AI]r) 
j~l 

2 

V/d(r)='LCdvr;J~ (A17r), 
j~l 

c =--
1 (A2 e)c dvr 1 A . ry + rs dwj 
I] 

( )
I • • 

is derivat1ve Wlth respect to the argument. 

Define the state vector Sd combining in and out of the plane 

variables 

sd = {fd,gdr 

rd ={N",Q"Mrrt, gd ={ud,wd,Vfdt 

Substituting (23) and (29) in (21) and (25) yields 

fd(r) = B 1d(r) Cd , gAr)= Bgd(r) Cd 

cd = B~~(aJ gd(aJ, cd ={Cdu,cdwPcdw2r 

(29) 

(3 0) 

(31) 

Bfd and Bgd are 3x3 matrices. Eliminating cd from (31) determines the 

disk impedance matrix 

(32) 

Zd(aJ=B1d(aJ·B~~(aJ is the impedance matrix of the disk at the boundary. 

3c .. Coupling cylinder and disks 

Continuity of S at the cylinder-disk interface X= Xe = 0, fc and r = ac 

requires expressing {fd, gd} in the coordinate system of {fc, gJ by means of a 

re-ordering matrix 



Substituting (32) in (33) then eliminating gd 

f/0) = Zc gc(O), fJfJ = -Zc gc(/J 

Zc = -Rr Zd(aJ R~1 

(33) 

(34) 

Zc is disk impedance in the cylinder coordinate system. Applying (34) at 

the two boundaries of the cylinder and relating fc(lJ,gc(lJ to fc(O),gJO) 

using (19b) produces the homogeneous equations 

---- ---- ----~-~ 
._._~ 

-y-~ ::_-z; 
c 

-o ~lr --~-"" ·----·~ ··--~-

M {S,(0)}-{0} tell tcl2 -1 0 
M= 

c Sc(lJ - 0 ' c 
tc2l tc22 0 -I 

(35) 

0 0 I z c 

Me is a 12xl2 matrix, I and 0 are 3x3 unit and null matrices, and 0 is 

the null vector of order 6. A non~trivial solution of (35) yields the 

implicit eigenproblem 

(36a) 

Eq. (31) and (33) determine the disk eigenfunction <l>d(r). The global 

eigenfunction of cylinder and conjoined disks then follows 

(36b) 

S is an intrinsic coordinate along the boundary; S =X on the cylinder and 

s=r on the disks. Modal analysis proceeds by expanding the global 

displacement vector g0(s,t) = {gc(x), gd(r)r in terms of the orthogonal set 

(36b) 

g0(s,t) = Lbk(t) <l>Gk(s) (37) 

k 

Substituting (37) in the forced elasto~dynamic equations of motion of 

cylinder and disks and enforcing orthogonality of the {<l>0k(s)} set yields 

uncoupled ordinary differential equations in bk(t) 
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bk (t) +OJ: bk (t) = N1k j (t) I Nkk 

Nfk = (p(s) I P<l>ak(s)), Nkk = <<I>ak(s) I P<l>ak(s)) 
( 3 8) 

(") is time derivative, p(s) is spatial vector of external excitation, j(t) 

is its time dependence, and p is density. Equation (38) admits the solution 

( 3 9) 

For frequency re spans e, bk (t) = -OJ
2 bko e'wt reducing ( 3 8) to 

(40) 

OJ is frequency of excitation. 

4. Forcing pressure 

In the 3-D axisymmetric model, a spatial distribution of the applied 

pressure is approximated by the bell-shaped function 

p(r)= p 0 + p 1 sech(p2 r), (41) 

where the triad (p0 ,ppp2 ) of constants characterizes translation, 

magnification and maximum slope of the profile. Different triads are 

assigned to top and bottom disks (see Fig. 3(a)) _A typical normalized 

distribution is shown in Fig. 4. 

In the 2-D model, assuming that pressure acts over a distance ~ along 

z where~ is length of capsule along top or bottom faces (see Fig. 2(a)), a 

profile similar to (41) is used _but with p 0 ,p1 scaled to conserve total 

force 

p(x)= Po + p1 sech(p2 (x- 0.5/J), 0 <X< f - - X (42) 

The condition of force conservation yields 

1~ ac 

lx f p(x) dx = 2Jr J p(r)rdr , l =2a 
X C 

(43) 

0 0 

Assuming that Po I p 1 =Po I p1 , then Eq _ (43) suffices to determine the dyad 
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6. Results 

The 2-D capsule has a rectangular cross-section made of 4 plates as 

shown in Fig. 5: 

(1) top plate joining corners 1 through 5 

(2) bottom plate joining corners 6 through 10 

(3) left plate joining corners 1 and 10 

(4) right plate joining corners 5 and 6 

A global coordinate system is defined for both the 2-D and 3-D models with 

origin at corner 1 such that {X: 0 :S: X :S: lx} <8'> { Y: 0 :S: Y :S: WY} where (lx, W y) are 

length and width of the capsule. The following geometry and material 

properties are considered 

lx = 100 mm, wY = 12.5 mm, h = 2.54 mm 
-· ----·--- -~--~~--- ------~~ -- - --·- --~ -----~----" 

£=2xl012 dyn/cm 2
, p=8 g/cm 3

, v=0.3 

where h is uniform plate thickness and (E,p,v) are Young's modulus, density 

and Poisson ratio. In the 2-D model, 3 stresses are monitored along each 

segment's local X -axis: flexural stress ()xxf, shear stress rxz and 

extensional axial stress ()xxe. In the 3-D model 4 stresses are monitored; 

either o-xxf, rxz,o-xxe,o-eee along the cylinders X -axis which is the global Y-

axis, where o-eee is the extensional circumferential stress, or else 

()rrf,rrz'()rre'()eee along the disk's radius which is the global X -axis. Stress 

at a point with global coordinates (X,Y) will be referred to as o-(X,Y). 

The first 10 mode shapes and corresponding resonant frequencies are 

shown in Figures 6(a-j). The fundamental at 1.063 KHz (Fig. 6(a)) is 

symmetric about the axis of bilateral symmetry. This corresponds to the 

first symmetric flexural mode of the two faces. The second mode (Fig. 6(b)) 

is the first anti-symmetric flexural mode of the faces. Higher flexural 

modes with larger wave numbers are shown in Fig. 6(c-f) and then the 

fundamental symmetric extensional mode at 21.72 KHz (Fig. 6(g)), followed by 

the first anti-symmetric extensional mode (Fig. 6(h)) at 24.54 KHz. At 

higher frequencies, (Fig. 6(i-j)) the flexural modes exhibit noticeable 

motion of the side plates, which were evanescent for frequencies below the 

fundamental symmetric extensional mode in Fig. 6(g). For each plate, modes 

belong to one of 4 groups depending on symmetry of the mode (symmetric or 

anti-symmetric) and type of mode (flexural or extensional). 
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In the 3-D axisymmetric model, a spatial distribution of the applied 

pressure on top and bottom plates is approximated by the bell-shaped 

function in Eq. (38) where the triad of constants (p0 ,p1,p2 ) characterizes 

translation, magnification and maximum normalized slope of the profile. 

Different triads are assigned to top and bottom plates (see Fig. 4). The 

normalized peak pressure for the axisymmetric excitation is unity. In the 2-

D model, the equivalent bell shaped distribution with (p0 ,p1) that conserves 

total force is determined applying Eq. (39) . The resulting (p0 ,p1) is listed 

in Table I showing that in the 2-D model, peak applied pressure on the top 

plate is Pmx = p0 + p1 = 0.4. The top plate is divided into 4 equidistant 

intervals of 12.5mm along )( while the side plate is divided into 2 

~quidistant-i~t~rvals of .U5mm along Y . The ti~-~--d~p~-;_ct;nc~cl-·th; 

pressure pulse is trapezoidal lasting 25 j.lS with 5 j.lS rise and fall times 

and a 15 j.lS plateau. 

Fig. 7 plots stress histories on the left plate for 0 :S; Y :S; l2.5mm . The 

peak of (} x.if(O, 0) reaches 38 Pmx (Fig. 7 (a)) pointing to a location where 

material may yield and ultimately fail. (}xxe (Fig. 7 (c)) is relatively small 

since it reacts to the difference between integrated pressure over the top 

plate (:::::; Pmx lx I 4 = 0(1)) and its inertia. Fig. 8 plots stress histories on the 

top plate for 12.5 :S; )( :S; 50mm at 12. 5mm intervals. The peak of CJ x.if(50, 0) 

(Fig. 8 (a)) reaches 23 Pmx pointing to another location of considerable 

flexural stress. Fig. 8(b) plots histories of shear stress T~ with peaks 

not exceeding Pmx. Fig. 8 (c) plots histories of extensional stress CJxxe in 

the plane of the plate with a peak of CJxxe(50,0) reaching 5Prnx. It is evident 

that the two most vulnerable locations with high CJxxf are at the interface 

of top and side plates and at the top plate's center. Extensional and shear 

stresses do not contribute to yielding and failure of the material unless 

deformation is sufficient to promote additional stress from nonlinear 

stretching. 

Geometry and material properties in the 3-D model replicate those in 

the 2-D model. The first 6 mode shapes are plotted in the left column of 

Fig. 9 while the corresponding modes from the 2-D model are plotted in the 
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right column for comparison. The fundamental mode 1 at 2.075 KHz is the 

first symmetric flexural mode of the disks while mode 2 at 4.714 KHz is the 

first anti-symmetric. Flexural modes 3,4 and 6 then occur before the 

fundamental symmetric extensional mode 5 occurs at 29.74 KHz. The frequency 

ratio OJ3_D!OJ2_D for modes 1,2 and 4 is approximately 2 (Fig. 9). This ratio 

drops to less than 1.3 for all following modes suggesting that the 

difference in response between 3-D and 2-D models is largest at low 

frequencies. It also implies that for a pulse of short duration compared to 

the fundamental period, transient response from the two models may be 

comparable since then response would be controlled by modes with short wave 

length. 

Fig. 10 plots stress histories on the cylinder for 0 :S; Y :S; 12.5mm . The 

--------------------· ·--\\------·-----------·· -- -- ---·- ··-------------·-··· . . --------
peak of o-x.if(O,O; (Fig. 10 (a)) is half that in 2-D while the peak of o-xxe 

(Fig. 10(c)) is almost the same as that in 2-D. o-(}(}e (fig. 10(d)) is 

approximately 1/40'xxf and has no counterpart in 2-D. Fig. 11 plots stress 

histories on the top disk for 0 :S; X :S; 50mm at 12. 5mm intervals. The peak of 

o-n1 (50,0) reaches the same magnitude as that of o-x.if(O,O) in 2-D, and the 

peak of o-rr1 (0,0) reaches the same magnitude as that of o-x.if(SO,O) in 2-D. 

Fig. 11(b) plots histories of shear stress Tn with a peak 1/3 that in 2-D. 

o-rre and O'eee (Fig. 11 (c), (d)) have approximately the same magnitude reaching 

1/5 that of o-xxe in 2-D. Consequently in 3-D, magnitude of peak flexural 

stress is approximately the same as in 2-D but locations are reversed; 

highest stress is at the disk's center followed by that at the edge. It is 

surprising that in spite of the different dimensionality, histories of 

flexural stress from the two models agree qualitatively and quantitatively. 

The discrepancy between the two models is in the extensional stress that is 

substantially lower than flexural stress. 

Fig. 12 follows the evolution of deformation of the 3-D capsule for 

10 :S; t :S; SO ,us. The dominant mode of deformation is a symmetric bulging that is 

larger on the top plate than on the bottom due to the difference in 

magnitude of the applied pressure. 
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7. Conclusion 

Two models are presented for transient response of a thin walled 

capsule forced by a time dependent internal pressure. The 2-D model has 

finite dimensions in the plane of the cross-section and extends to infinity 

normal to this plane. The 3-D axisymmetric model includes a short thin 

cylinder capped by two thin disks. Both models adopt transfer matrices 

relating state variables at two ends of a segment and transient response 

based on modal analysis. Noteworthy results are 

1) For low wave numbers, eigen-frequencies of the 3-D model are twice 

those of the 2-D model. The difference diminishes as wave number 

rises. 

2) The assumed bell-shaped internal pressure distribution agrees with 

that determined from an acoustic model and from a numerical general 

purpose program. 

3) In both the 2-D and 3-D models, peak flexural stress occurs at the 

junction of cylinder and disks as well as center of disks. 

4) Peak extensional and shear stresses are one order of magnitude smaller 

than peak flexural stress except for circumferential stress in the 

cylinder with peak 1/4 that of flexural stress. 

5) In spite of the differ~nt dimensionality, histories from the two 

models are in good agreement. 

Appendix A. Transfer matrix of 2-D strip 

For sinusoidal time dependence with frequency OJ, the linear elasto­

dynamic equations of a 2-D strip are 

(Al) 

u,,W,If/., are displacements along local coordinates X andy (see Fig. lc), 

E G s' s,v.s,Ps are extensional and shear moduli, Poisson ratio, and mass 

density, h, is thickness and K is shear constant. The corresponding 

constitutive relations are 
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j = E,h,,. au, 
x (1- v?) ox 

-K --·' + G h (
aw ) qx - s s ax 1/f, ' 

(A2) 
-3lf/ m =D--s 

X ax 

j~,qx,mx are axial force, shear force and moment (see Fig. 1c). The general 

solution of (A1) takes the form 

0 

5 ---
1 (A 2 e) s; - A sj + ss 

Sj 

(A3) 

A., 1.2 satisfy the dispersion relation 

(A4) 

k,s = (j) I C18 , Css =~KG, I P,, 

Substituting (A4) in (A2) in terms of the state vector S, = {f,, g, }r 

S, (x) = B, (x) C, 

f, ={fx,qx,mx}: , 
(AS) 

B,.(x) is a 3x3 matrix of exponentials and C, ={Csu'~sw1 ,C,w2 f. Evaluating 

(AS) at the two ends of the strip (~Z) then eliminating C, yields the 

strip's transfer matrix 

S,(l,) = B,(l,) B~1 (0) S,(O) = T,(O ~ lJ SJO) (A6) 
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3-D model 2-D model 
I 
I 
I ,-~-

-~-----

plate Po P! Po P! P2 
I 

• _LO.j:L ________ n nr:; l n n _D22.J ________ __()_.J_J_J_ _________ -.3....-5--~------=1 

bottom 0.05 0.1 0.0325 0.065 1.5 

side 0.039 0 0.039 0 0 
i 
i 
I 

Table I. Parameters of pressure profile 
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Figure 1. Experiment: (a) setup, (b) residual penetration data 
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Figure 6. Resonant frequencies and modes of 2-D capsule 
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