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Advances in Laminar-Turbulent Transition Modelling 

(RTO-EN-AVT-151) 

Executive Summary 

 

Accurate modeling of the laminar-turbulent transition process remains a fundamental issue for the detailed 
description of the flow around wings, aircraft bodies and control surfaces, as well as for prediction of air 
vehicles drag, control surfaces effectiveness, and aerodynamic noise generation. 
 
AGARD/FDP Lecture Series have been held at the VKI on flow stability and transition in 1984 and 1993 
The purpose of this RTO-AVT/VKI Lecture Series proceedings is to revisit the subject in view of the 
latest advances made in these last fourteen years and their potential on aircraft design, specially taking into 
account the increased capabilities in numerical simulations and in nonintrusive optical measurement 
techniques, allowing detailed use of DNS data or of experimental data to understand more deeply the 
turbulent transition mechanisms, as a necessary prerequisite for a more accurate modeling. 
 
The covered topics include a broad view of stability theory and different transition phenomena and 
scenarios. Subjects include receptivity of boundary layer to disturbances, by-pass mechanisms which 
anticipate transition, growth of 3D instabilities and their breakdown mechanisms, progress in parabolized 
Navier Stokes methods, and transition prediction and control. 
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Les avancées dans la modélisation de la transition laminaire turbulente 

(RTO-EN-AVT-151) 

Synthèse 

 

 
La modélisation précise des processus de transition laminaire/turbulent reste un problème fondamental 
pour la description détaillée des écoulements autour des ailes, des fuselages d'avion et des gouvernes, ainsi 
que pour la prédiction de la traînée aérodynamique des aéronefs, de l'efficacité des gouvernes et de la 
génération de bruits aérodynamiques. 
 
La série de conférences du FDP/AGARD sur la stabilité des flux et la transition s’est tenue au VKI en 
1984 et 1993. Le but de cette série de conférences de RTO-AVT/VKI est de revisiter le sujet compte tenu 
des avancées récentes réalisées au cours de ces quatorze dernières années et d'évaluer leur potentiel pour 
ce qui concerne la conception des avions, en prenant particulièrement en compte l'accroissement des 
capacités en matière de simulation numérique et de techniques optiques de mesure non-intrusives, de 
l'emploi des données DNS ou des données expérimentales afin de mieux comprendre les mécanismes de 
transition turbulente comme un préliminaire nécessaire à une modélisation plus précise. 
 
Les sujets couverts comprennent une vue d'ensemble de la théorie de la stabilité et des différents 
phénomènes et scénarios de transition. Les sujets incluent la perméabilité de la couche limite aux 
perturbations, les mécanismes de déviation qui précèdent la transition, la croissance des instabilités 3D et 
leurs mécanismes d’éclatement, les progrès effectués dans les méthodes Navier Stoke parabolisées et la 
prédiction et le contrôle de la transition. 
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1.
INTRODUCTION


The problems of understanding the origins of turbulent flow and transition from laminar to turbulent flow are the most important unsolved problems of fluid mechanics and aerodynamics. There is no dearth of applications for information regarding transition location and the details of the subsequent turbulent flow. A few examples can be given here. (1) Nose cone and heat shield requirements on reentry vehicles and the "National Aerospace Plane" are critical functions of transition altitude. (2) Vehicle dynamics and "observables" are modulated by the occurrence of laminar-turbulent transition. (3) Should transition be delayed with Laminar Flow Control on the wings of large transport aircraft, a 25% savings in fuel will result. (4) Lack of a reliable transition prediction scheme hampers efforts to accurately predict airfoil surface heat transfer and to cool the blades and vanes in gas turbine engines. (5) The performance and detection of submarines and torpedoes are significantly influenced by turbulent boundary-layer flows and efforts directed toward drag reduction require the details of the turbulent processes. (6) Separation and stall on low-Reynolds-number airfoils and turbine blades strongly depend on whether the boundary layer is laminar, transitional, or turbulent.


The common thread connecting each of these applications is the fact that they all deal with bounded shear flows (boundary layers) in open systems (with different upstream or initial amplitude conditions). It is well known that the stability, transition, and turbulent characteristics of bounded shear layers are fundamentally different from those of free shear layers (Morkovin 1969, 1985, 1993; Reshotko 1976; Bayley et al 1988). Likewise, the stability, transi​tion, and turbulent characteristics of open systems are fundamentally different from those of closed systems Tatsumi 1984). The distinctions are vital. Because of the influence of indigenous disturbances, surface geometry and roughness, sound, heat transfer, and ablation, it is not possible to develop general prediction schemes for transition location and the nature of turbulent structures in boundary-layer flows.


Arnal (1992) and Saric (1992) review the literature and discuss the importance of this work as it relates to aircraft skin-friction reduction, so much of this material is not repeated here. With the maturation of linear-stability methods and the conclusions that breakdown mechanisms are initial-condition dependent (Saric & Thomas 1984; Singer et al 1989; Corke 1990), more emphasis is now placed on the understanding of the receptivity problem than on the details of the latter stages of transition.


At the present time no mathematical model exists that can predict the transition Reynolds number on a flat plate. One obvious reason for this lack is the variety of influences such as freestream turbulence, surface roughness, sound, etc. which are incompletely understood, yet may trigger transition through a forced response of the flow as a nonlinear oscillator. A second reason, of course, is the poor understanding of the free response of this nonlinear oscillator, i.e., of the fundamental mechanisms which lead initially small disturbances to transition. The recent progress in this area, summarized in Corke (1990) is encouraging, in that a number of distinct transition mechanisms have been found experimentally. The theoretical work finds them to be amplitude and Reynolds-number dependent. It appears as though the possibility exists for developing a transition criterion based on more rational ideas than the 


 method.


However, the theory remains rather incomplete with regard to predicting transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs. The major need in this area is to understand how freestream disturbances are entrained into the boundary layer, i.e., to answer the question of receptivity. In all of what we discuss, receptivity will refer to the mechanism(s) that cause freestream disturbances to enter the boundary layer and create the initial amplitudes for unstable waves.


The pessimist will note that for a constant density, constant temperature, zero-pressure-gradient flow over a smooth flat plate, the location of transition to turbulence cannot be predicted. On the other hand, the optimist will describe the efforts made in the last 10 years in certain areas of modeling and predicting transition and be overjoyed at the progress.


Important sources of information regarding aerodynamic applications of transition are found in various AGARD Special Courses. The most recent courses that are relevant to this problem are: Stability and Transition of Laminar Flow (AGARD Report No. 709, 1984); Aircraft Drag Prediction and Reduction (AGARD Report No. 723, 1985); Skin Friction Drag Reduction (AGARD Report No. 786, 1992); and Progress in Transition Modeling (AGARD Report No. 793, 1993). In the first of these courses, the written lectures by Arnal (1984), Mack (1984), Reshotko (1984a,b), Poll (1984), and Herbert (1984b,c) cover vast amounts of detail and represent the state-of-of-art in 1984 on the fundamentals of stability and transition. The stability and transition material of AGARD Report 786 more or less replaces the earlier material of AGARD Report 723. Also of interest to readers of this volume are the 1993 lectures of Saric (1993), Arnal (1993), Cowley (1993), Herbert (1993), Reed (1993), and Singer (1993).


1.1
The process of transition for boundary layers in external flows


In fluids, turbulent motion is usually observed rather than laminar motion because the Reynolds-number range of laminar motion is generally limited. The transition from laminar to turbulent flow occurs because of an incipient instability of the basic flow field. This instability intimately depends on subtle, and sometimes obscure, details of the flow. The process of transition for boundary layers in external flows can be qualitatively described using the following (albeit, oversimplified) scenario. 


Disturbances in the freestream, such as sound or vorticity, enter the boundary layer as steady and/or unsteady fluctuations of the basic state. This part of the process is called receptivity (Morkovin, 1969) and although it is still not well understood, it provides the vital initial conditions of amplitude, frequency, and phase for the breakdown of laminar flow. Initially these disturbances may be too small to measure and they are observed only after the onset of an instability. A variety of different instabilities can occur independently or together and the appearance of any particular type of instability depends on Reynolds number, wall curvature, sweep, roughness, and initial conditions. The initial growth of these disturbances is described by linear stability theory (i.e. linearized, unsteady, Navier-Stokes). This growth is weak, occurs over a viscous length scale, and can be modulated by pressure gradients, surface mass transfer, temperature gradients, etc. As the amplitude grows, three-dimensional and nonlinear interactions occur in the form of secondary instabilities. Disturbance growth is very rapid in this case (now over a convective length scale) and breakdown to turbulence occurs.


Since the linear stability behavior can be calculated, transition prediction schemes are usually based on linear theory. However, since the initial conditions (receptivity) are not generally known, only correlations are possible and, most importantly, these correlations must be between two systems with similar environmental conditions. 


At times, the initial instability can be so strong that the growth of linear disturbances is by-passed (Morkovin, 1969, 1985, 1993; Breuer & Kuraishi, 1993) and turbulent spots or secondary instabilities occur and the flow quickly becomes turbulent. This phenomenon is not well understood but has been documented in cases of roughness and high freestream turbulence (Reshotko 1994; Suder et al. 1988). In this case, transition prediction schemes based on linear theory fail completely. At the present time, it is generally accepted that by-pass refers to a transition process whose initial growth is not described by the Orr-Sommerfeld Equation (see Chapter 2). A review of the physical aspects of all kinds of transition phenomena is given by Morkovin (1993). Of particular interest in the Morkovin paper is the transition "road map" and other graphics on transition processes. The neophyte should be cautioned because in an effort to be omnifarious, this road map is very difficult to understand. On the other hand, a case is made in the next section for an operational road map developed by Morkovin, Reshotko, & Herbert (1994).


1.2
Paths to transition

Until about fifteen years ago, the predominant view of laminar-turbulent transition was centered around the slow linear amplification of exponentially growing disturbances (the familiar Tollmien-Schlichting (T-S) waves), preceded by a receptivity process to the disturbance environment and followed by secondary instabilities, further non-linearity and finally a breakdown to a recognizable turbulent flow. This, in fact is the transition process that will be predominant in these lectures. 


However, there are transition phenomena in flows that are linearly stable and so could not be attributed to the aforementioned “T-S path.” These were labeled by Morkovin (1985) as “bypass transition.” The general feeling then expressed by Morkovin as well as Reshotko was that bypass transition was inherently non-linear, having bypassed the linear T-S processes. We often joked that bypass transition either bypassed the T-S processes or bypassed our knowledge, or both. This picture had to be urgently reconsidered in the early 1990’s with the emergence of a literature on transient growth.


Transient growth arises through the non-orthogonal nature of the Orr-Sommerfeld and Squire eigenfunctions. The largest effects come from the non-orthogonal superposition of slightly damped, highly oblique (near streamwise) T-S and Squire modes. These modes are subcritical with respect to the T-S neutral curve. The transient growth signature is essentially algebraic growth followed by exponential decay. A weak transient growth can also occur for two-dimensional or axisymmetric modes. So transient growth is therefore a candidate mechanism for many examples of bypass transition. 


The early developments in transient growth are described and summarized in the book by Schmid & Henningson (2001). Butler & Farrell (1992) determined optimal disturbance parameters for maximum transient growth in plane Couette, plane Poiseuille and Blasius flows. These optimal disturbances have a decided three-dimensionality. In most cases, the optimal disturbances are stationary streamwise vortices. They are for zero frequency and a particular spanwise wavenumber. It is important to emphasize that the transient growth theory is linear.

The consequence of these arguments is that transient growth can be a significant factor in the transition to turbulent flow for flows that are T-S stable. A summary of the early application of transient growth theory to cases of bypass transition is by Reshotko (2001). Consideration of transient growth has led to an enlargement and clarification of the paths to transition by Morkovin, Reshotko & Herbert (1994) and is shown in Fig. 1. 
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Figure 1. Paths to turbulence in wall layers


Five paths to transition, A through E, are shown in this figure. A discussion of each of these paths follows. Examples are given particularly where related to transient growth and bypass transition.  


Path A - Path A corresponds to the situation where transient growth is insignificant and transition is due to traditional T-S, Görtler or crossflow mechanisms. This is the traditional path to transition for low disturbance environments where modal growth is significant. Summaries of all aspects of this path - disturbance environment, receptivity, linear and nonlinear instability, transition prediction and transition control - are available by Reshotko (1994), Reed, Saric & Arnal (1996) and Saric, Reed & White (2003).


Path B - As described by Morkovin et al (1994), the Path B scenario indicates some transient growth providing a higher initial amplitude to the eigenmode growth upon crossing into an exponentially unstable region. There are no obvious examples in the literature of this scenario. It is somewhat troublesome because of the following:


Transient growth (nonmodal) is largest for stationary streamwise disturbances. Modal growth is largest for transverse disturbances at low speeds, or oblique disturbances at supersonic speeds. How a streamwise disturbance would couple to a transverse disturbance is not clear. It may be that a traveling nonmodal disturbance can couple with an oblique modal disturbance. It is more likely that the nonmodal and modal disturbances will develop independently. A good test case for Path B would be transient growth preceding a Görtler instability. Both involve streamwise disturbances of comparable wavelength.


In an interesting set of experiments, Kosorygin & Polyakov (1990) report that for Tu < 0.1%, they observe T-S bands in their spectra, 
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 profiles that conform to T-S eigenfunctions, and amplitude growth in accordance with T-S theory. For Tu > 0.7%, low frequency disturbances are strong and display the Klebanoff mode. The 
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 spectra fall monotonically with frequency. The fluctuations are three-dimensional with lateral scales of the order of a boundary layer thickness. For intermediate turbulence levels (0.1% < Tu <0.7%) Kosorygin & Polyakov report both T-S growth and Klebanoff mode growth to be concurrent and that “transition has been determined by coexistence and interaction of two kinds of eddy motion whose lateral scales differ strongly from one another. The growth of the T-S wave changes weakly as compared to the estimate by the linear stability theory.” Related experiments are by Suder et al (1988) and Sohn & Reshotko (1991). For Tu = 0.3% - 0.4%, T-S bands are observed in the hot-wire spectra. For Tu > 0.9%, there is no clear evidence of T-S bands. Unfortunately, no attempts were made in those experiments to measure a spanwise scale.


On the other hand, Cossu & Brandt (2002) suggest that the Blasius boundary layer can be stabilized by streamwise streaks of sufficiently large amplitude to cause a nonlinear distortion of the basic flow. Saric et al (1998) have demonstrated that crossflow disturbances can be stabilized by discrete roughness elements near the leading edge that again provide a nonlinear distortion of the basic flow. 


Path C - Path C is the case where eigenmode growth is absent. This is the transient growth path that has received the most attention because it covers the most salient cases of bypass transition. The optimal disturbances of Butler & Farrell (1992) show large transient energy growth factors for plane Couette flow as well as for plane Poiseuille flow below the Branch I Reynolds numbers. The particular case of Poiseuille pipe flow is described in detail by Reshotko & Tumin (2001) and discussed in a later lecture. The “blunt body paradox” will be also be discussed in a later lecture.


Path D - In Path D, the result of the transient growth is that the spectrum of disturbances in the boundary layer is full – it looks like a turbulent spectrum (even while the basic flow profiles are still laminar). The spectra decrease monotonically with increase in frequency while the intensity level increases with distance downstream. Examples of Path D are in the experimental results of Suder et al (1988) and of Sohn & Reshotko (1991) for Tu > 1%. Based on transient growth theory, Andersson et al (1999) have developed a very plausible correlation for flat plate transition at elevated freestream turbulence levels. This will also be discussed in a later lecture.


Path E - Path E represents the case of very large amplitude forcing where there is no linear regime. Such large amplitude forcing might come from chopping the free stream to obtain very large disturbance levels. The resulting freestream spectra do not resemble wind tunnel or grid turbulence spectra.


Only paths A, B and C apply to external flows. Path D is common in internal flows at elevated turbulence levels. Path E will be ignored in these lectures.
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1
LINEAR STABILITY ANALYSIS


In this chapter, the stability of steady, laminar, incompressible flows is considered. The notes concentrate on bounded shear flows that are characterized by plane Poiseuille flow and the Blasius boundary-layer flow. Inviscid free shear layers and wall jets are briefly discussed in Section 2.9. The experimental results of Nishioka et al. (1975, 1980, 1981) in plane Poiseuille flow, which compare with the classic results of Klebanoff et al. (1959, 1962) in the boundary layer, show that the basic instability and transition mechanisms in plane Poiseuille flow and the Blasius boundary layer are identical.


The analysis is initiated by formulating the stability problem for a general basic state and then simplifying the problem for one-dimensional (1‑D) basic states with linear three-dimensional (3‑D) disturbances. The role of 2‑D and 3‑D disturbances is described in Section 2.6. Energy methods are described in Section 2.7. Inviscid mechanisms are discussed in Sections 2.8 and 2.8. The rest of the Chapter is devoted to viscous mechanisms.


1.1
The General Basic State with Disturbances


Dimensionless quantities are introduced by using a suitable reference length, L, reference velocity, 
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. In terms of these normalizing variables, the incompressible Navier-Stokes equations with constant properties become:
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where the Reynolds number, R, is given by
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The normalizing length, L, will be defined for specific cases as the analysis proceeds.


Since we are considering the class of stationary basic states, we assume that each flow quantity 
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 and p(x,y,z,t) is the sum of a basic-state term, 
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and P(x,y,z), and a fluctuating term 
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(2.4)


Expressing each flow quantity in the form of Eq. (2.4) and substituting these expressions into Eqs. (2.1) and (2.2), gives
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(2.6)


The basic-state quantities are always solutions of the Navier-Stokes equations by themselves so Eqs. (2.5) and (2.6) can be separated into basic-state and disturbance-state equations.


Basic State
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Disturbance State
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(2.10)

The basic state is described by Eqs. (2.7) and (2.8) and reduces to whatever specific form is required to analyze the basic flow. The unsteady, nonlinear equations, Eqs. (2.9) and (2.10), illustrate that the disturbance state need not satisfy the Navier-Stokes equations. These equations are time-dependent and one could define a set of mean-flow equations that contain these terms along with Eqs. (2.7) and (2.8). However, for arbitrary disturbances, these equations become the time-averaged Navier-Stokes equations with "apparent" turbulent stresses. The lack of closure for this set of equations is well known and hence, the stability problem is not approached from this viewpoint. It will be assumed that the disturbance amplitudes can be ordered and that a unique basic state can be defined. Modifications to the time-dependent flow can be considered as a higher-order amplitude correction which can be determined in sequence.


These general equations are analyzed in Section 2.7. In the remainder of this section, the various classes of approximations that can be made for different basic states and different disturbances are presented.


1.2
Linear Disturbance Equations


For infinitesimal disturbances, products of the fluctuating quantities, i.e. the terms 


 are neglected in Eq. (2.10). A Cartesian coordinate system is introduced such that the y-axis is normal to the body surface and the x- and z-axes are in the plane of the body surface. The x-direction is usually called the chordwise or streamwise direction while the z‑direction is usually called the spanwise direction.


1.2.1
Three-Dimensional Basic States and Disturbance States


The basic-state equations (2.7) and (2.8) are written as
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where U, V, and W are the components of the basic-state velocity in the x, y, and z directions, respectively. For plane Poiseuille flow, only the last two terms of Eq. (2.12) will remain. If we wish to impose P = P(x,z) and the boundary-layer assumptions, Eq. (2.13) can be eliminated and 
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 in Eqs. (2.12) and (2.14). The usual boundary-layer equations will result.


For infinitesimal disturbances and the basic state given by Eqs. (2.11)‑(2.14), equations (2.9) and (2.10) are rewritten as
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(2.18)


Equations (2.11)‑(2.18) represent the linear stability equations for a general three-dimensional flow. In this form, they are not solvable, except perhaps on a huge computer, because the coefficients are functions of all three spatial variables. The next two sections describe a series of reasonable idealizations that permit an approximate analysis of (2.11)‑(2.18).


1.2.2
Two-Dimensional Basic States and Disturbance States


If the basic-state velocity field can be expressed in terms of two velocities and two independent variables, U(x,y) and V(x,y), the governing equations (2.11)‑(2.18) for two-dimensional disturbances reduce to
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where 
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By defining the Lagrange streamfunctions, 


 and 


, with the following definitions
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(2.25)
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equations (2.19) and (2.22) can be solved. By using Eqs. (2.25) and (2.26) in the disturbance equations and eliminating the pressure through cross-differentiation we arrive at:







(2.27)


Equation (2.27) is the general 2‑D equation which will be used in the discussion on non-parallel flows in Chapter 5. The justification for using 2‑D disturbances is not trivial and is discussed in Section 2.6.


The preceding result can be obtained directly by using the vorticity transport equations instead of the Navier-Stokes equations. The vorticity vector is defined as the curl of the velocity vector,







(2.28)


By taking the curl of the Navier-Stokes equations, Eq. (2.2), in order to eliminate pressure, these equations reduce to






(2.29)


the vorticity transport equation. For 2‑D flows with velocity vector v = (u, v, 0), where u = u(x,y,t) and v = v(x,y,t), the vorticity vector is reduced to 


, and Eq. (2.29) reduces to the scalar equation







(2.30)


Disturbances are introduced by letting






,    


,    




in Eq. (2.30), subtracting the basic-state solution, and linearizing to obtain







(2.31)


The streamfunction and the vorticity in an incompressible, 2‑D flow are related by







(2.32)


Combining Eqs. (2.31) and (2.32) gives Eq. (2.27) directly. The purpose of this exercise is to remind the reader that vorticity is the primary disturbance quantity in viscous flows.


1.3
One-Dimensional Basic States and Normal Modes


In this section, the stability analysis of three-dimensional disturbances in an incompressible parallel boundary-layer flow, without curvature, is presented. In this case, the convective acceleration terms vanish in Eqs. (2.12)  (2.14). These assumptions are introduced initially to simplify the exposition of basic stability ideas. The basic-state velocity vector, 
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(2.33)


where U is the chordwise velocity component, W is the spanwise velocity component, and y is the wall-normal coordinate.


It is, of course, an incongruity to speak of a parallel boundary-layer flow since no such thing can exist except under very special circumstances. However, the parallel-flow assumption is an important first approximation to the actual two-dimensional basic-state problem because the Reynolds number is very large. It is beyond the scope of this section to discuss non-parallel stability effects so the reader is referred to Mack (1984b) and Saric (1990) for a summary or Chapter 4 for the details. In spite of the fact that every year or so, someone makes some heavy weather over non-parallel effects, this is not the most important problem in boundary layer flows. Likewise, the role of compressibility in subsonic flows is minor and all of the essential physical ideas are represented in the flow of Eq. (2.33). However, compressibility is indeed important for supersonic flows and this will be discussed in Chapter 7.


The stability equations are obtained by superposing small dimensionless disturbances onto the basic state:
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where 
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 satisfy the complete dimensional Navier-Stokes equations and capital letters denote dimensionless basic-state quantities. Equation (2.34) is substituted into the unsteady Navier-Stokes equations which are made dimensionless by introducing the length scale L. The basic-state velocity components also satisfy the usual Navier-Stokes equations so that the basic-state solution drops out. Thus, equations in terms of the disturbance velocities result. These equations are further simplified by making the approximation that products of disturbance quantities are neglected (
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, etc.). This results in a set of linear disturbance equations. Hence Eqs. (2.15)  (2.18) reduce to
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where subscripts denote partial differentiation and the Reynolds number is given by 
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 for the time being. The question of stability is one of whether the solution set of Eqs. (2.35)‑(2.38) contain disturbances that grow or decay in space (or time).


1.3.1  Normal  Modes


The disturbance equations are linear and the coefficients are only functions of y. This suggests a solution in terms of separation of variables using normal modes (i.e. exponential solutions in terms of the independent variables (x, z, t) that would reduce Eqs. (2.35)‑(2.38) to ordinary differential equations. One possible normal mode is the single wave:
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where C.C. stands for complex conjugate, 
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 represents any of the disturbance quantities of Eq. (2.34), 
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 is the chordwise wavenumber, 
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 is the spanwise wavenumber, and 
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 is the frequency. Here, 
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 are, in general, complex and are given by 
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 is real. The amplitude function q(y) is complex and 
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 is real because the Navier-Stokes equations are real. It can be rigorously shown that Eq. (2.39) is the result of Fourier Transforms in x and z and a Laplace Transform in t. Thus the representation is complete and the stability problem is addressed in the transform plane. The value of the complex notation is that both amplitude and phase are kept together. For example, when one wishes to compare with experimental results, an alternate form of Eq. (2.39a) is used:
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(2.39b)


Where | | denotes absolute value and 

[image: image51.wmf](


)


y


q


q


g


g


=


 is the phase of q(y). Since the solution for the disturbances is usually obtained from an eigenvalue problem, the complex form of q(y) is arbitrary and only Eq. (2.39b) should be used for presentation of calculations.


Equation (2.39) is strictly valid only for a parallel flow. In a real boundary-layer flow, U, W, and R vary with the chord position,
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, and thus the problem changes at each location. In practice therefore, the parallel-flow assumption is essentially a local one in that, at each chord location, U and W are re-evaluated and L is chosen to be the boundary-layer reference length, i.e.  
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A rigorous form of the normal mode is to assume
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where 
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is the phase function and depends weakly on x and z and has an O(1) dependence on t. Then the wavenumbers and frequency are given by
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One then formally transforms the dependent variables in the disturbance equations using the chain rule. Substitution of (2.40)‑(2.41) into Eqs. (2.35)‑(2.38) gives
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where 
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and the usual no-slip boundary condition applies at the wall.


Although Eqs. (2.42)  (2.45) look like a 6th-order system of equations, they can be easily combined into a single 4th-order equation. Multiply (2.43) by 
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What remains are two equations in two dependent variables, 
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. Equation (2.42) is then used to eliminate
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with boundary conditions:
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The boundary conditions of 
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 and we have assumed a boundary-layer type flow where the disturbances must die out far from the boundary.


The major consequence of the transformation from sixth-order to fourth-order is that u and w cannot be recovered independently. This separation may be of value when comparing with experimental data of 3‑D disturbances. In order to recover u and w, (2.43) is multiplied by 
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(2.48)
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Here, 
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 is the disturbance vorticity in the y-direction. The companion equation comes from the continuity equation, (2.42)
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when Eqs. (2.48) and (2.50) are solved after solving Eq. (2.47), Eqs. (2.49) and (2.51) are used to recover u and w, i.e. 
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. It is also easy to see from Eq. (2.47) that any of the other 2‑D forms of the Orr-Sommerfeld equation can be easily derived.


Thus, all of the 3‑D stability characteristics for the class of flows defined by Eq. (2.33) can be found by solving Eq. (2.47). 


1.3.2  Solution  of  The  Orr-Sommerfeld  Equation


Equation (2.47), represented by the differential operator 

[image: image85.wmf](


)


0


f


=


L


 and boundary conditions 

[image: image86.wmf](


)


0


f


=


B


 is linear and homogeneous and, as such, forms an eigenvalue problem. Given the basic-state velocities, U(y) and W(y), solutions of Eq. (2.47) exist for only a specific combination of parameters of an equation such as 
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Since the Orr-Sommerfeld equation is complex, Eq. (2.52) is complex.


1.3.3  Higher  Modes


In a well-posed eigenvalue problem such as plane Poiseuille flow, Eq. (2.52) represents an infinite discrete set of eigenvalues and a corresponding infinite discrete set of eigenfunctions. For boundary layers, there is a finite discrete set of eigenvalues and a continuous spectrum. That is to say, for each 
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 combinations that satisfy Eq. (2.47). The eigenfunctions are called modes and are superposed to construct an arbitrary disturbance profile. For the incompressible cases we will consider, the least stable mode is called the first mode. For incompressible streamwise instabilities, there is no more than one unstable mode so not much attention is paid to higher modes. For compressible and centrifugal instabilities, more than one mode can be unstable. These concepts are discussed again in Sections 3.2, 3.4, and 5.2.


1.3.4  Numerical  Techniques


Since the Reynolds number is large, Eq. (2.47) is stiff and care must be taken during its integration. If finite differences or spectral methods are used, accuracy is obtained by the appropriate mesh. With these methods, Eq. (2.52) is solved as an algebraic matrix problem. If shooting techniques are used, orthonormalization works best and Eq. (2.52) is an iteration solution with boundary conditions. The algebraic solution has advantages in that all of the eigenvalues are obtained at once. The disadvantage is that it is awkward to obtain the eigenfunctions and to do spatial stability. Finite differences seem to be the most popular these days. An excellent review of current methods of solving the Orr-Sommerfeld equation is given by Malik (1988) who emphasizes finite difference and spectral methods. Mack (1984b) gives a good summary of shooting techniques. An incompressible design code, SALLY (Srokowski and Orszag, 1977), and a compressible design code COSAL (Malik and Orszag. 1981), are generally available. They use as input, tabulated velocity profiles such as those generated by a Kaups and Cebeci (1977) boundary-layer code.


The details of numerical techniques and eigenvalue searches are given in Chapter 12.


1.4 
The Adjoint System


The integrating factor of the Orr-Sommerfeld equation is the adjoint eigenfunction. This is found from the solution of the adjoint differential equation of Eq. (2.47) which is derived by using the techniques described in Section 2.8.1. The adjoint eigenvalue problem given by:
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or
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with boundary conditions (see Section 2.8.1)
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The adjoint solution will be useful later in the calculation of the group velocity. Since the eigenvalues of Eq. (2.53) are identical to those of Eq. (2.47), a check on 
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 is possible. Moreover, some eigenvalue iteration schemes seem to converge quicker with Eq. (2.53) since 
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1.5
Temporal and Spatial Stability:  Gaster's Transformation


Disturbances can be classified with respect to (1) spatial amplification, (2) temporal amplification, and (3) spatial and temporal amplification. In the spatial theory, 


 is assumed to be real, while 


 and 


 are assumed to be complex. There real parts represent the physical wavenumbers of the disturbances, while their imaginary parts represent the decay or growth rates in the x and z directions. In the temporal theory, 


 and 


 are assumed to be real, while 


 is assumed to be complex. The connection between the spatial and temporal theories is discussed in Section 2.5.4. For both temporal and spatial amplification, 
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 are assumed to be complex. 


1.5.1  Spatial  Stability


The local normal mode is given by Eq. (2.39). With 


, and 


 real, it can be rewritten as
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The spatial growth rates are given by 


 and 


 for obvious reasons. Thus disturbances can be grouped into three classes depending on the signs of 


 and 


, namely,






: amplified disturbances; unstable
(2.56a)






: no change in space; neutral
(2.56b)






: damped disturbances; stable
(2.56c)


The eigenvalue problem of Eq. (2.52) is expressed as 






(2.57)


where 


 is a complex map. Equation (2.57) yields a 


 pair when 


 and R are specified. Whereas 


 can be considered a parameter the problem, 


is one of the unknowns and another condition must be specified. Typically, the direction of disturbance growth, 


, is specified in order to complete the solution. Basically, it is assumed that the disturbances will propagate in the direction of the real group velocity.


For the wide class of flows for which the basic-state velocity, 

[image: image101.wmf]V


r


, is given by 





[image: image102.wmf](


)


,0,0


VUy


=


éù


ëû


r



(2.58)


we initially assume that the direction of growth is in the stream direction and 
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 appears as a parameter in 
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Equation (2.59) represents a wide class of streamwise instabilities and thus is an important case to discuss as an illustrative example [it should be pointed out that Eq. (2.59) may not hold in the case of the localized 3‑D disturbances].


Instead of solving for 
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 in Eq. (2.59), one could specify 
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 and 


. This results in a locus of points called the neutral-stability curve as shown in Figure 2.17. If disturbances lie inside the neutral curve they are unstable 


. If they lie outside the curve they are stable. A curve such as Figure 2.17 exists for each value of 
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, the critical Reynolds number is the Reynolds number below which no amplification occurs. The minimum critical Reynolds number, 


, is the Reynolds number below which no amplification occurs, for all values of 
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The phase speed is
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in the direction 


, given by





[image: image116.wmf]arctan


r


k


r


b


j


a


æö


=


ç÷


èø



(2.61)


The situation of 
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 corresponds to 2‑D waves. The phase speed in this case is given by 
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 in the stream direction.


2.5.2  3‑D  Temporal  Stability


In this case, the local normal mode is still given by Eq. (2.39), except that 

[image: image119.wmf]a


 and 
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 are real and positive while 
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 is complex.
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(2.62)


The temporal growth rate is given by 


 for obvious reasons. Thus disturbances can be grouped into three classes depending on the sign of 


, namely,







: amplified disturbances; unstable
(2.63a)







: no change in time; neutral
(2.63b)







: damped disturbances; stable
(2.63c)


The eigenvalue problem of Eq. (2.52) is expressed as 
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where 


 is a complex map. Equation (2.64) yields a 


 pair when 


 and R are specified. In this case there is no ambiguity as in the 3‑D spatial case. With 
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can be found from Eq. (2.64). The phase velocity vector is given by Eqs. (2.60) and (2.61) with 


 replacing 


 and 
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 replacing 
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. Unfortunately, most shear-layer problems of interest are spatial stability problems and not temporal stability problems.


2.5.3  2‑D  Temporal  Stability


The classical literature considers the important case of 


 and 


 real, along with the basic state of Eq. (2.58). In this 2‑D case, it is customary to introduce the complex phase speed, 
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, and write the normal mode as
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(2.65a)


where one can easily see the wave form of the disturbance. The growth rate can be found by splitting Eq. (2.65a) into real and imaginary parts.
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(2.65b)


The Orr-Sommerfeld equation is given by
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(2.66)


The temporal growth rate is given by 


 for obvious reasons. Thus disturbances can be grouped into three classes depending on the sign of 


, namely,







: amplified disturbances; unstable
(2.67a)







: no change in time; neutral
(2.67b)







: damped disturbances; stable
(2.67c)


The eigenvalue problem of Eq. (2.52) is expressed as 






(2.68)


where 


 is a complex map. Equation (2.68) yields a 


 pair when 


 and R are specified. The phase speed is simply 


 in this case. Because the eigenvalue, c, appears linearly in the temporal form of the differential equation, much of the early stability calculations concentrated on this case. However, the spatial theory corresponds more closely to certain physical situations such as boundary layers. With today's advanced computers, one needs a good excuse to do temporal stability in a boundary layer.


1.5.4  Conversion  From  Temporal  To  Spatial


For simplicity let us consider the case of 2‑D disturbances. In order to convert from temporal to spatial, one uses the now familiar Gaster transformation (Gaster, 1982). In a region where the disturbance growth rate is small, the weakly-dispersive wave-evolution equation can be written as:
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where 
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 is a complex wave amplitude, 
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 is a complex function that is zero for parallel flow, and 
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 is the group velocity. Since an explicit equation for the dispersion relationship, 
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, is not generally known for shear layers, it can be given locally by first differentiating the Orr-Sommerfeld equation with respect to 
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 as shown in Eq. (2.70) after some rearranging.
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(2.70)


A solution to Eq. (2.70) exists if and only if the right-hand-side is orthogonal to the solution of the homogeneous adjoint equation, 
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, given by Eq. (2.53). This is a standard solvability condition whose the details are given in Section 2.8.2. This procedure involves integration of the eigenfunction and its adjoint over the region to give:
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where
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and
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For the case of a 2‑D wave, the approximate temporal growth rate is the product of the spatial growth rate and the real part of the group velocity.
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for small 


. For other cases, see Nayfeh and Padhye (1979). These types of conversions are useful if comparing with existing calculations.


2.6
2‑D  and  3‑D  Disturbances:  Squire's  Transformation


It is worthwhile to show that the problem of 3‑D disturbances is equivalent to a 2‑D problem for the case of the 1‑D basic states of Eq. (2.33) and that the minimum critical Reynolds number can be found from a 2‑D analysis. The following transformation is introduced into Eqs. (2.42)‑(2.45):







(2.74)







(2.74a)







(2.74b)







(2.74c)


The product of 


 and Eq. (2.43) is added to the product of 


 and Eq. (2.45) and the transformed equations become:







(2.75)
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If 
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 in Eqs. (2.42)  (2.45), the result is equations similar in form to Eqs. (2.75)  (2.77). Thus, the problem of 3‑D disturbances, Eqs. (2.42)  (2.45), is equivalent to the 2‑D problem. Hence, one needs only to solve the 2‑D problem of Eqs. (2.75)  (2.77) and supplement it with the transformation of Eq. (2.74). Moreover, the transformed 3‑D problem which is made into the equivalent 2‑D problem is associated with a lower Reynolds number since 
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. The minimum critical Reynolds number is that Reynolds number below which all disturbances are stable. Since 3‑D disturbances are associated with the stability characteristics at a lower Reynolds number, 2‑D disturbances are more unstable and the minimum critical Reynolds number is given directly by the 2‑D analysis. This is a statement of Squire's theorem.


In other words, Squire's theorem specifically states that insofar as determining the minimum critical Reynolds number, 2‑D disturbances are most important. It should be pointed out that Squire's theorem breaks down for compressible flows, nonparallel flows, non-minimum critical Reynolds numbers, and for spatially instead of temporally growing disturbances (i.e. it is necessary to define a complex Reynolds number). Moreover, we shall find later that although the minimum critical Reynolds number may be important from a fundamental viewpoint, it has nothing to do with the real problem of transition to turbulence. With these caveats, it is easy to see that Squire's theorem should be invoked with caution.

1.7
Energy Method:  Universal Criterion


The disturbance equations, in the form of Eqs. (2.9) and (2.10), are written for arbitrary nonlinear disturbances. It is worthwhile to analyze these equations using the energy methods introduced in Volume I of these notes.


The operator, 
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  is the total derivative for the basic state and is defined as
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Introducing Eq. (2.78) into the general disturbance equations (2.9) and (2.10) gives







(2.79)
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Equation (2.80) is multiplied by 

[image: image155.wmf]v


¢


r


using the scalar product. It is then integrated over the region, 


, with a volume integral to arrive at:
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(2.81)


where 


 and the limits of integration are assumed to be over a particular control volume, 


 (the term 


 is written as 


 in index notation). The left-hand-side of Eq. (2.81) can be rearranged to be
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In this case, E is related to the kinetic energy of the disturbance. The stability criterion will be as follows. If 


 as 


, 


, the flow is stable. If 


 constant as


, 


, then it is neutrally stable. If E is unbounded as 
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, then the flow is unstable.


Examining the rest of Eq. (2.81), with the use of the divergence theorem and the continuity equation (2.79), gives
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where 
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 is assumed to vanish on the boundaries of the region [as before, 


 in index notation]. Substituting the results of Eqs. (2.83)  (2.85) into Eq. (2.81) leaves the following:
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For general nonlinear disturbances on a general basic state, this is as far as one can go. However, if it assumed that the basic state is 1‑D, such as
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the first integral of Eq. (2.86) can be simplified and the disturbance energy equation can be written as
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(2.88)


The last term in Eq. (2.88) is obviously stabilizing and represents the diffusion effects of viscosity. The first term on the right-hand-side of Eq. (2.88) can be either stabilizing or destabilizing depending on the relative phase between the terms in the "Reynolds stress", 


. The Reynolds stress is usually defined as the average over a characteristic length in the x-direction of the product 


 as shown in Eq. (2.89).
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One could also define 


 as an average over a characteristic time. It is obvious that the destabilization mechanism for viscous flows must be the Reynolds stress term. Moreover, it is easy to see that the basic-state vorticity term, 


, is an essential part of the production term. Thus, a uniform flow will always be stable. Instabilities can only originate in the presence of a nonuniformity. These ideas are part of the real value of Eq. (2.88). Later, in section 2.10, the discussion on the nature of the instability mechanism will center on the Reynolds-stress term.


Because of the presence of sub-critical instabilities in the shear-layer problems, attempts to derive a minimum Reynolds number from Eq. (2.88) have not reached the success of this technique in closed systems. These methods have provided results so conservative that they are of little value for shear layers. Consequently, very little work has progressed in this area. 


1.8
Notes


1.8.1  The  Adjoint  Equation


In order to find an integrating factor for the linear differential equations that we encounter, the adjoint function is defined. This is the topic of this section. Additional details are given in Ince (1956).


The general form of a nth order, linear differential operator, 
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, is given as
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where 


.


The adjoint operator, 
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 , of (2.90) is defined as
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This definition of the adjoint equation, makes 

[image: image171.wmf](


)


*


uudy


L


 an exact differential when 

[image: image172.wmf](


)


**0


u


=


L




It is easy to show that 







(2.92)


when 


 is written as
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Equation (2.92) is known as the Lagrange Identity and 


 defined in Eq. (2.93) is known as the bilinear concomitant. The necessary and sufficient condition that u* is an integrating factor of 
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Hence, (2.93) shows that the order of the differential equation is reduced by one. When an equation is identical with its adjoint, it is said to be self-adjoint.


Whereas the second-order (inviscid) stability equations and some of the higher order (viscous) equations of classical hydrodynamic stability were found to be self adjoint, the Orr-Sommerfeld equation for boundary layers is not self adjoint.


For the Orr-Sommerfeld equation (2.47),
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The adjoint is 
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and 


 is 





[image: image178.wmf](


)


(


)


(


)


(


)


(


)


3223


22


******


PDDDDDDpDDp


ffffffffffff


=-+-+-



(2.97)


For the eigenvalue problem, 
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1.8.2  Solvability Conditions


We wish to consider the inhomogeneous equation made of the nth order differential operator, 
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, defined in Eq. (2.90) and an integrable function r(y) such that
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and discuss the conditions for obtaining a solution of Eq. (2.99).


Integration of the Lagrange identity, Eq. (2.92), between the boundaries y = a and y = b gives
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Equation (2.99) is substituted into the first term of Eq. (2.100). The second term of Eq. (2.100) vanishes from Eq. (2.94) and we see that
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Thus, Eq. (2.101) is a condition for obtaining solutions to Eq. (2.99).


When we restrict the analysis to the eigenvalue problem of the nth order differential operator L defined in Eq. (2.90)
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with homogeneous boundary conditions
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The necessary and sufficient condition that the inhomogeneous equation, 
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 be orthogonal to the solution of the homogeneous adjoint equation. That is
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where the boundary conditions on 


are such that the bilinear concomitant, 


, given in Eq. (2.93), satisfies
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The most complete tutorial treatment of solvability conditions is given by Nayfeh (1981). The reader is directed there for additional details, in particular for those cases that do not have homogeneous boundary conditions.


1.9
Streamwise Instabilities: Inviscid Instability Mechanism


Streamwise instabilities are characterized by streamwise traveling waves that appear in 2‑D boundary layers and in the mid-chord region of swept wings. They may also appear as secondary instabilities of a flow with stationary streamwise vortex structures. For tutorial purposes, the basic state is initially restricted to one component of velocity with 
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. We will consider cases of temporal or spatial stability as convenient. This will be sufficient to describe the basic streamwise instability mechanisms.


In the absence of viscosity, the Orr-Sommerfeld Equation for temporal stability, Eq. (2.66), reduces to:
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with 
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 on the boundaries. This inviscid limit of the Orr-Sommerfeld equation is known as the Rayleigh equation. In this case, 
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In order to investigate the stability of inviscid parallel flows, we restrict the role of viscosity to establishing the velocity profile, but neglect its effect on the disturbances. For example, the class of one-dimensional velocity profiles characterizing the exact solutions of the Navier-Stokes equations are shown in Figures 2.1 and 2.2 and the class of quasi one-dimensional velocity profiles shown in Figures 2.3 to 2.6.


The complex conjugate of the Rayleigh equation (2.106) is given by:
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Equation (2.107) is the same as Eq. (2.106) except that it is in conjugate form (
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2.9.1 Rayleigh's Criterion


The conditions under which solutions exist when 
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 are the subject of the Rayleigh criterion. To show this, Eq. (2.106) is multiplied by
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where the limits of integration are implied. Integrating the first term by parts, splitting the wave speed, 
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 into real and imaginary parts in the third term, and imposing boundary conditions, gives
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Equating the real and imaginary parts of Eq. (2.109) to zero separately, gives
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and
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If either 


 throughout the flow or 


 throughout the flow, then 


. Therefore, Eq. (2.111) implies that a necessary condition for the existence of any unstable modes, (


), is that 


 somewhere in the flow. In other words, if the location in the region (a,b) where 


 is defined as 


, then







(2.112)


This is the well-known inflection-point instability of Rayleigh. That is, an inflection point must exist in the velocity profile for it to be unstable.


Experiments teach us that there are many viscous flows for which 


, yet instabilities exist. Boundary-layer and Poiseuille flows are examples. Obviously such flows are stable in the inviscid limit which implies that an increase in viscosity can be stabilizing.


1.9.2 Fjørtoft's Criterion


A stronger version of Rayleigh's criterion was developed by Fjørtoft (1950). Here it is instructive to follow the treatment by Drazin and Howard (1966). Define 


 as the value of the basic-state velocity at the inflection point located at 


. Then for 


, Eq. (2.111) is multiplied by 


 to obtain
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where the integration is taken over the region. Equation (2.113) is added to Eq. (2.110) to obtain







(2.114)


Thus we see that







(2.115)


somewhere in the region is necessary for instability. Furthermore, if U(y) is a monotonically increasing or decreasing function and 


 vanishes only once, then 


 throughout the region is necessary for instability, where the equality only holds at 


. This is the Fjørtoft criterion. This is equivalent to the absolute value of the basic-state vorticity,


, having a maximum inside the flow region (excluding the boundaries). This is a much stronger necessary condition than the Rayleigh criterion. Howard (1964) discusses the situation for multiple inflection points. Examples of the instability criterion are shown in Figures 2.7 to 2.10.


Figure 2.7 is an example of 
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 exist except perhaps at the boundaries. This is a model of the profiles in Figures 2.1 and 2.5 of Poiseuille and boundary-layer flows. Thus, these flows are stable in the inviscid limit.


Figure 2.8 is an example of 
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 throughout the flow. This velocity profile is also stable in the inviscid limit. This condition holds for the profile similar to Figure 2.2 which is plane Couette flow with a positive pressure gradient.


Figure 2.9 is an example of 
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. Therefore, the velocity profile is stable in the inviscid limit. This profile characterizes one type of wall-jet flows depicted in Figure 2.6.


Figure 2.10 is an example of 


 and 


 throughout the flow. The velocity profile may be unstable. This conclusion would hold for the velocity profiles of Figures 2.3 and 2.4 for the case of jets and wakes.


Lin (1955) showed that the Rayleigh criterion, Eq. (2.112) is sufficient for bounded shear flows. Drazin and Howard (1966) discuss the fact that, in general, Eqs. (2.112) and (2.115), are not sufficient conditions unless U(y) is symmetric or of the boundary-layer type. For example, 
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), but a solution of the stability equations shows that it is stable. However, experiment teaches us that for the physical shear layers of interest, the existence of an inflection point is a powerful harbinger of unstable motion.


1.9.3 Howard's Semi-Circle Theorem


Rayleigh showed that the values of the wave speed can be bounded. This is shown using the semi-circle theorem of Howard (1961, 1962).


Suppose 
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Equation (2.116) can be reduced to







(2.117)


Equation (2.117) is multiplied by the complex conjugate 


 and integrated over the region. After integration by parts the result becomes
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Equation (2.118) implies that c cannot be purely real when F is nonsingular. By assuming 


, the real and imaginary parts of Eq. (2.118) become
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and
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where
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Splitting Eqs. (2.119) and (2.120) gives
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and
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Since
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it is straightforward to write







(2.125)


Using Eqs. (2.122) and (2.123) in Eq. (2.125) gives







(2.126)


Since 
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,
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Thus, for unstable waves, c lies within the semicircle defined by







(2.128)


A graphical representation of Eq. (2.128) is shown in Figure 2.11. Any eigenvalue, c, must lie within or on the circle with center at 


 Thus,







(2.129)


1.9.4 Bounds on 
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Bounds on the order of magnitude of 


 can be found by following a procedure similar to Section 2.9.3.


Let 
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Multiplying Eq. (2.130) by 
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Multiply Eq. (2.130) by 


 and integrate to get
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whose imaginary part is
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Equation (2.133) is rewritten as
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Equation (2.134) can be simplified by noting that
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Using Eq. (2.135) in Eq. (2.134) gives
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Finally we conclude
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Equation (2.136) shows that 
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 and that an inviscid instability should grow rapidly.


1.9.5 Physical Mechanism of Inflection Point Instabilities


Here we follow Lin (1945, 1955) who provided the details of the explanation and calculations. A one-dimensional inviscid flow is considered where each fluid element retains its vorticity along a streamline i.e. 


 and therefore, Kelvin's theorem is said to hold. For the types of flows to be considered, U = U(y) and the vorticity is in the z-direction and given by 


. However, only the absolute value of 


, given by 


, will be considered. Thus, lines of constant y are lines of constant 


, transverse to the flow. Consider first, a flow similar to Figure 2.7 with monotonic vorticity distribution that has been shown to be stable. Figure 2.12 gives the vorticity distribution and a sketch of the vortex filaments arranged vertically through the flow. It is seen that 


 throughout the flow.


Consider a vortex filament 

[image: image242.wmf]1


z


, at 

[image: image243.wmf]1


yy


=


, and let it undergo a virtual displacement to 

[image: image244.wmf]2


y


. When 

[image: image245.wmf]1


z


 appears at 
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, it is in a region of lower vorticity. Hence, there is a net excess of vorticity at that point. This produces a positive vortical flow as shown in Figure 2.13a. This vortical flow entrains from the left of our displaced filament, vorticity from above which has a lower value of vorticity. It also entrains higher vorticity from below as shown in Figure 2.13b. This entrained vorticity causes an induced flow which is shown in Figure 2.13c. This induced motion tends to move the displaced filament back toward 
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 its original position, thus providing a stabilizing mechanism. Lin (1945) showed that this restoring motion produces an acceleration on the displaced vortex filament given by
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where 


 is the wall-normal disturbance velocity, 


 is the local vorticity gradient, 


 is the net circulation caused by the disturbance vorticity, and the integration is taken locally over the displaced vortex filament in its new position. For the case considered here, as the filament is displaced from 1 to 2, the net vorticity is positive, hence 


 and it is in a region where 


. Therefore, 


, i.e. in the direction of its original position. If we reverse the direction of the virtual displacement, we see the vortex filament move from 2 to 1. In this case, it is in a region of higher vorticity so that the net vorticity is negative and 


 and therefore 


 or in the direction of its original position.


Since the instability, if it exists, is associated with an extremum of vorticity, we consider the vorticity distribution shown in Figure 2.14 and the virtual displacements from 


, 


, 


, and 


. For the displacement 


, we have 


 and 


, which gives 


 i.e. an acceleration away from its original position. For the displacement 


, we have 


 and 


 which gives 


, i.e. a stabilizing acceleration. For displacements in the opposite direction, the reverse is true. Unlike previously studied physical mechanisms, not all virtual displacements are unstable, and we can only obtain a necessary condition for instability. Moreover, only the Rayleigh inflection-point criterion can be shown to be necessary and not the more powerful Fjørtoft criterion of Eq. (2.115).


If we assume normal-mode type solutions for the virtual displacements of vorticity, the previous explanation reduces to that given by Lighthill (1962) for air-over-water flows. This is given in Volume I of these notes.


1.9.6 Summary


The instability associated with an inflection point is a streamwise traveling wave called a Rayleigh wave whose wave speed, 


, is bounded between the maximum and minimum values of the basic-state velocity, i.e.


 for a bounded shear layer. The growth rate, 
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in this case.


Since this inviscid instability is strong, the appearance of inflectional profiles usually implies a rapid breakdown to turbulence.


1.10
Viscous Instability Mechanism: T‑S Waves


Consideration of a wide class of instability mechanisms can give the general impression that viscosity can only stabilize a flow. A boundary-layer velocity profile is, however, known to exhibit an instability and yet it has no inflection point.


1.10.1 Prandtl's Viscous Instability Mechanism


Prandtl (1921) first developed the fundamental ideas of a viscous instability mechanism and laid the groundwork for the understanding of bounded-shear-layer instabilities. The instability is called viscous because the boundary-layer velocity profile is stable in the inviscid limit and thus, an increase in viscosity (a decrease in Reynolds number) causes the instability to occur. Prandtl's basic idea (following the treatment by Mack, 1969) is that the distribution of the Reynolds stress through the shear layer is changed by viscosity in such a way as to destabilize the flow. The general energy analysis of Section 2.7 shows that the Reynolds stress is the production term for instabilities and that indeed, one must look there to find the source of the instability.


We begin by examining the solutions of the Orr-Sommerfeld equation outside the boundary layer. For 


, U(y) = 1, 
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, and Eq. (2.47) is written as
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Equation (2.138) has constant coefficients and solutions can be sought in terms of exponential functions. Four such exponential solutions can be found and the solution for 


 outside the boundary layer is a superposition of these solutions,
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where
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In order to satisfy the boundary condition far from the surface, 


. Then
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where
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The function 
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 is called the inviscid solution and 
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 is called the viscous solution. Obviously, 
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 is a solution of the Rayleigh equation in the case of U = 1 and
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 outside the boundary layer produces a 


 and 


 that are 90° out of phase with each other. In this case, the Reynolds stress term, which is the average of 


 over one wavelength in x, is given by
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is zero for inviscid disturbances (Mack, 1969).


For the viscous disturbance, we follow Prandtl's analysis. For large Reynolds numbers, R >> 1, the no-slip condition at the wall (y = 0) creates a narrow viscous region near the wall called the disturbance boundary layer. In this disturbance boundary layer, 


, 


, and the streamwise momentum equation is written as
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Outside this disturbance layer, the motion is inviscid and the streamwise momentum equation is
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We split the disturbance velocity into a viscous (


) and an inviscid (


) component whereby
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The inviscid component, 


, satisfies
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and the viscous component, 


, satisfies Eq. (2.144) minus Eq. (2.145)
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We substitute normal modes 
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 and note that the boundary conditions are written as:



u(0) = 0,  therefore  
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and 


 outside the disturbance boundary layer. The solution of Eq. (2.148) for the viscous component is
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This solution is obtained directly from the solution of the oscillating plate (Schlichting, 1979). Thus, the disturbance layer is analogous to the Stokes layer in an oscillating flow.


The presence of 


 induces the wall-normal velocity 


 which can be determined from the continuity equation to be
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Integration of Eq. (2.150) using Eq. (2.149) shows that this velocity does not vanish in the inviscid region (outside the disturbance boundary layer). Specifically, the wall-normal velocity is given by
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Since 


 is shifted in phase 135° with respect to 


 (due to the 1  i term), there is a Reynolds stress created by the wall viscous region. This stress exists throughout the flow and is given by
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The role of viscosity in this case establishes the no-slip boundary condition which in turn creates the Reynolds stress which may destabilize the flow. Therefore, a flow which is stable to purely inviscid disturbances may be unstable to viscous disturbances. The actual distribution of Reynolds stress throughout the boundary layer will determine whether a particular disturbance is stable or unstable.


1.10.2 T‑S Waves


All of the above discussion is contained within the framework of Eq. (2.47). Historically, the ideas of Prandtl were extended by Heisenberg (1924), Tollmien (1929), and Schlichting (1933) by the use of asymptotic solutions to the Orr-Sommerfeld equation. The existence of the viscous instability waves was confirmed experimentally by Schubauer & Skramstad (1943). Eventually the names of Tollmien and Schlichting were associated with the viscous instability mechanism and today this mechanism is called the Tollmien-Schlichting (T‑S) instability (which ignores the contributions of Prandtl and Schubauer). The historical development of this work is given in Mack (1984b). It should be mentioned that not all shear-layer instabilities are T‑S instabilities. We reserve the T‑S appellation for the viscous instability.


Since the Reynolds number is large, asymptotic analysis of the Orr-Sommerfeld equation was an active area of research for a number of years (see Drazin & Reid, 1981). Later we will describe developments in triple-deck asymptotic methods but for the most part, the existence today of decent computers obviates much of the need for asymptotic analyses. Thus we go back to the solution of Eq. (2.47).


Equation (2.47) is linear and homogeneous and forms an eigenvalue problem which consists of determining 
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, Reynolds number, R, and the basic state, U(y). The Reynolds number is usually defined as
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and is used to represent distance along the surface. In general, 
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 is the most straightforward reference length to use because of the simple form of Eq. (2.153) and because the Blasius variable, 

[image: image273.wmf]r


y


hd


=


, in

[image: image274.wmf]20


fff


¢¢¢¢¢


+=


, is the same as y in the Orr-Sommerfeld equation. The reader will still find the archaic use of 
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 as reference lengths, so care must taken in comparing data since, in using these lengths, additional constants must be carried around.


When comparing the solutions of Eq. (2.47) with experiments, the dimensionless frequency, F, is introduced as
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where f is the frequency in Hertz and is conserved for single frequency waves. The parameter F is a constant for a given flow condition.


Experiments of naturally occurring transition in low disturbance environments always show 2‑D T‑S waves as harbingers of the transition process. These are streamwise traveling waves with a phase speed, 0.3 < 


 < 0.4 whose amplitude and phase vary according to the freestream environment. In order to conduct detailed measurements, controlled (phase-locked) disturbances are introduced into the boundary layer. It is worthwhile to describe such an experiment and in doing so, permit the reader to understand the nature of a T‑S wave.


Saric (2007) presents the requirements for conducting a stability experiment. Usually, an experiment designed to observe T-S waves and to verify the 2‑D theory is conducted in a low-turbulence wind tunnel (
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= 2.59 and not from pressure measurements) where the virtual-leading-edge effect is taken into account by carefully controlled boundary-layer measurements. Disturbances are introduced by means of a 2‑D vibrating ribbon using single-frequency, multiple-frequency, step-function, or random inputs (Pupator & Saric, 1989) taking into account finite-span effects (Mack, 1984a). Hot wires measure the 
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 component of velocity in the boundary layer and d-c coupling separates the mean from the fluctuating part. In comparing with the theory, 
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Figure 2.15 shows the data of the mean flow and disturbance flow measurements from a routine single-frequency experiment (Saric, 2007). These data are compared with the Blasius solution and a solution of the Orr-Sommerfeld equation (2.47) as shown with the solid lines. In comparing the disturbance measurements (of rms
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), both profiles are normalized by their respective maximum values. The agreement between theory and experiment is quite good and illustrates that the 2‑D problem is well understood. The fact that the wave amplitude is 1.5% 
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 while still remaining linear and 2‑D is discussed in Chapter 9. The disturbance signature of Figure 2.15 is a recognizable characteristic of T-S waves. The sharp zero and second maximum of 
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 occur because of a 180º phase shift in the region of the critical layer (where 
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, the phase speed). This shape is quite unlike a turbulence distribution or even a 3‑D, T‑S wave.


The data of Figure 2.15 show a first-mode eigenfunction (see Section 2.4.3) of Eq. (2.47). The higher modes are highly damped and are gone within a few boundary-layer thicknesses downstream of the disturbance source.


When the measurements of Figure 2.15 are repeated along a series of chordwise stations, the maximum amplitude varies as shown in the schematic of Figure 2.16. At constant frequency, the disturbance amplitude initially decays until the Reynolds number at which the flow first becomes unstable is reached. This point is called the Branch I neutral stability point and is given by 
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 points as a function of frequency gives the neutral stability curve shown in Figure 2.17. In order to compare the stability behavior of Figure 2.16 with theory, Eq. (2.40) is interpreted locally and Eq. (2.39) is rewritten in the following form:
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which shows 
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as the spatial growth rate. Depending on the sign of this term, the flow is said to be stable or unstable, i.e. if
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, the disturbances grow exponentially in the streamwise direction and the neutral points are determined by finding the R at which 

[image: image296.wmf]0


=


i


a


. From the eigenvalues of Eq. (2.47), Figure 2.17 is
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. For R > 600 the theory and experiment agree very well for Blasius flow. For R < 600 the agreement is not as good because the theory is influenced by nonparallel effects and the experiment is influenced by a number of factors (Saric 2007). Virtually all problems of practical interest have R > 1000 in which case the parallel theory seems quite adequate (Saric & Nayfeh 1977). The whole theory has also been verified by direct Navier-Stokes simulations. These are reviewed by Spalart (1992).


1.11 The Smith-Van Ingen 
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One of the conjectures regarding the prediction of transition is that there exists a critical amplitude of the T‑S wave at transition. One means for predicting this is to assume that the exponential growth between Branch I and Branch II (predicted by linear theory) is largely responsible for achieving this critical amplitude. However, the best that linear theory can do is calculate an amplitude ratio, 
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, the initial disturbance amplitude, is the soul of the receptivity process). Nevertheless, the calculation of 
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 is an important process for many different reasons and the method is described forthwith.


In order to calculate the amplitude ratio (within the quasi-parallel flow approximation) when 
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 and ( = 0, Eq. (2.40) is used directly. The ratio of the disturbances 
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In this case, Eq. (2.41) is integrated along the steam direction to give:
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Since x and R are related through Eq. (2.153), Eq. (2.156) can be written as
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where 
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 is the starting point of the integration. Equation (2.157) is used in Eq. (8) in order to see how much the disturbance has changed from 
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 to R. The real part of  in Eq. (2.157) is just the phase and does not contribute to amplitude growth. Thus the change in amplitude of the disturbance is carried by the imaginary part of . This is shown in Eq. (2.158).
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Assume that the disturbances at x and at 
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(Saric 2007). In order to determine the relative amplitude ratio, 
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, or as most commonly done, the amplification factor, 
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 the absolute value of Eq. (2.158) is used to obtain:
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where 
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is the Reynolds number at which the constant-frequency disturbance first becomes unstable (Branch I of the neutral stability curve), and A and 
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. A typical calculation of Eq. (2.159) is shown in Figure 2.17. It illustrates the constant frequency growth of a disturbance and the envelope of maximum N at any R for a Blasius flow.


If the flow is not self-similar, integration with respect to 
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 may be more convenient. Mack (1984b) suggests:
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where 
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 is the local boundary-layer Reynolds number, and all lengths are made dimensionless with the reference length 
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The basic design tool is the correlation of N with transition Reynolds number, 
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, for a variety of observations. Equation (2.159) or (2.160) is integrated with respect to the known basic state. The correlation will produce a number for N (say 9), which is now used to predict 
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 for cases in which experimental data are not available. This is the celebrated 
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 method of Smith and Van Ingen (e.g. Arnal, 1984, 1992; Mack 1984b). As a transition prediction device, the 
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 method is certainly the most popular technique used today. It works within some error limits only if comparisons are made with experiments with identical disturbance environments. Since no account can be made of the initial disturbance amplitude, this method will always be suspect to large errors and should be used with extreme care. When bypasses occur, this method does not work at all. Reed, Saric, & Arnal (1996) review the efforts made in using linear stability theory to correlate transition.


The basic transition control technique endeavors to change the physical parameters and flow conditions in order to keep N within reasonable limits which in turn prevents transition. As long as laminar flow is maintained and the disturbances remain linear, this method contains all of the necessary physics to accurately predict disturbance behavior.


Mack (1984b) and Arnal (1984, 1992) give examples of growth-rate and 
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 calculations showing the effects of pressure gradients, Mach number, wall temperature, and three dimensionality for a wide variety of flows. However, before using this method, one should be cautioned by Morkovin & Reshotko (1990).
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Figure 2.1. Velocity profile of circular and plane Poiseuille flow.
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Figure 2.2. Velocity profile of plane Couette flow.
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Figure 2.3. Velocity profile of a jet.
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Figure 2.4. Velocity profile of a wake.
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Figure 2.5. Velocity Profile of a boundary layer.
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Figure 2.6. Velocity profile of a wall jet.
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Figure 2.7. Velocity and vorticity distributions of the Poiseuille flow of Figures 2.1 and 2.5.
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Figure 2.8. Velocity and vorticity distributions for the Couette flow of Figure 2.2 (with a positive pressure gradient)
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Figure 2.9. Velocity and vorticity distributions for the wall jet flows of Figure 2.6.
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Figure 2.10. Velocity and vorticity profiles of the wake and jet flows of Figures 2.3 and 2.4.


[image: image343.png]UM‘!’\

( 1% fouh\ In\ /?_






Figure 2.11. Semicircle representation of eigenvalues (cr, ci).
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Figure 2.12. Vorticity distribution in the shear flow of Figure 2.7
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Figure 2.13. Sequence of events to establish induced vortical flow.
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Figure 2.14. A possible unstable vorticity distribution
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Figure 2.15. Mean Flow and Disturbance Velocity Profile: Theory & Experiment Saric (1990)
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Figure 2.16. Maximum Disturbance Amplitude vs x
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Figure 2.17. Neutral Stability Curve for Blasius Flow
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1
SO YOU WANT TO DO A STABILITY EXPERIMENT?

Stability and transition experimentation is no trivial task and should be untaken by only the most serious researcher. The basic idea of an instability is that small disturbances in the flow can have large effects on the basic state, leading in some instances, to additional instabilities. Small changes in an experimental set-up and measurement can introduce unanticipated disturbances that can complicate the flow or skew the interpretation of the results. When transition to turbulence proceeds through loss of stability, the process critically depends on these small effects. Thus, unlike many situations in turbulent boundary layers, measurements of stability characteristics require a special sensitivity to environmental conditions. The subsequent sections aim to highlight some of the particular details required to successfully complete a stability experiment and to advise against common mistakes throughout the process. 


1.1
The Process of Transition for Boundary Layers in External Flows

In fluids, turbulent motion is usually observed rather than laminar motion because the Reynolds-number range of laminar motion is generally limited. The transition from laminar to turbulent flow occurs because of an incipient instability of the basic flow field. This instability intimately depends on subtle, and sometimes obscure, details of the flow. The process of transition for boundary layers in external flows can be qualitatively described using the following (albeit, oversimplified) scenario.


Disturbances in the freestream, such as sound or vorticity, enter the boundary layer as steady and/or unsteady fluctuations of the basic state. This part of the process is called receptivity [19] and although it is still not completely understood, it provides the vital initial conditions of amplitude, frequency, and phase for the breakdown of laminar flow. Initially these disturbances may be too small to measure and they are observed only after the onset of an instability. A variety of different instabilities can occur independently or together and the appearance of any particular type of instability depends on Reynolds number, wall curvature, sweep, roughness, and initial conditions. The initial growth of these disturbances is described by linear stability theory (i.e. linearized, unsteady, Navier-Stokes). This growth is weak, occurs over a viscous length scale, and can be modulated by pressure gradients, surface mass transfer, temperature gradients, etc. As the amplitude grows, three-dimensional and nonlinear interactions occur in the form of secondary instabilities. Disturbance growth is very rapid in this case (now over a convective length scale) and breakdown to turbulence occurs.


Since the linear stability behavior can be calculated, transition prediction schemes are usually based on linear theory. In the case of streamwise instabilities and low-disturbance environments, linear theory does very well in predicting the stability behavior. However, since the initial conditions (receptivity) are not generally known, only correlations of transition location are possible and, most importantly, these correlations must be between two systems with similar environmental conditions [28]. 


Thus, linear theory is the foundation of streamwise instabilities in low-disturbance flows. A brief review of the nomenclature of linear theory precedes the description of experimental methods. It is assumed that the reader understands the fundamental ideas of hydrodynamic stability found in [28], [9], or [6]. Background material on transition can be found in [30] and [31].


1.2
Nomenclature of Linear Theory

As a reference point, start with an incompressible, isothermal flow over a flat plate with zero pressure gradient. The basic state is assumed to be locally approximated by the parallel flow 
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 respectively. Two-dimensional disturbances are superposed on the Navier-Stokes equations which are then linearized. Assuming a normal-mode disturbance of the form
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Where 
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 represents a real disturbance quantity such as pressure or a velocity component. For spatially varying disturbances, the use of (3.1) results in the Orr-Sommerfeld equation (OSE) given by:
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where c.c. means complex conjugate, 
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The eigenvalue problem reduces then to finding 
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 is called the neutral stability curve. For a given F in Blasius flow, R is double valued. The smallest value, 

[image: image21.wmf]I


R
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, occurs at Branch II. Between these two Reynolds numbers, the flow is unstable. Transition depends on the measure of growth between 
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. The Reynolds number below which the flow is stable for all F is called the minimum critical Reynolds number, 
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Some also have used the displacement thickness, 
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, as normalizing length with an attendant re-definition of the Reynolds number. All of these choices are appropriate for boundary-layer scaling. However, since no universal Reynolds number criterion appears with either 
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 for other boundary-layer flows, the use of these scales just adds a superfluous constant. On the other hand, the use of 
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 (the Blasius similarity variable) and makes the boundary-layer Reynolds number the root of the x-Reynolds number.

In a Blasius boundary layer, R measures distance along the plate and a disturbance at the reduced frequency F is called a Tollmien-Schlichting (T‑S) wave. Under certain conditions this wave is amplified, can interact with 3-D disturbances, secondary instabilities can occur, and breakdown to turbulence can result. The generation and growth of these waves as they relate to disturbances in the basic state will be of particular interest during the experiment.


1.3
Basic Rules for Boundary-Layer Stability Experiments

Regardless of whether the experimental objectives are transition control, three dimensionality, secondary instabilities, nonlinear breakdown, or receptivity, the superseding rules of conducting a stability experiment are: (1) the linear problem must be correct and (2) initial conditions must be provided for theory and computations. These rules can be considered prime directives. 

Rule One

The first rule is to get the linear problem correct. Correlation of the experimental data with linear theory (in the appropriate range) ensures that the basic state is probably correct. Usually unintended weak pressure fields change the stability behavior but are not detected in the basic state measurements (see Sec. 1.4).


Rule Two

Full documentation of physical properties, background disturbances, initial amplitudes, and spatial variations must be provided to the analyst. It is very important to measure, whenever possible, the freestream environment (a subsection of Sec. 3.4 covers the details of measurements of the freestream turbulence and sound). Any worthwhile stability experiment is going to be accompanied by a computational effort. The experimentalist needs to be able to give as many initial conditions to the analyst running the computational simulations so that an accurate comparison can be made between both methods. This includes, of course, the specification of coordinates since experiments are done in test-section coordinates while computations are done in body-oriented coordinates. The experimentalist should also heed flow symmetry requirements that the computationalist readily assumes but requires some work to achieve in the wind tunnel (see the subsection in Sec. 1.4).


Although these seem like simple requirements, the literature has many examples of experiments that ignore these precepts. In the sections that follow, examples are discussed that illustrate the difficulty of establishing (1) and (2). However, all of the examples are real, correctable effects. The more advanced practitioner is referred to the Transition Study Group Guidelines for transition experiments [29].

1.4
Experimental Techniques

1.4.1
Use a Flat Plate that is Flat


For a Blasius boundary-layer experiment, a flat plate is needed; however, not all methods of manufacturing a flat plate are equally desirable. Plates originating from rolled metal are generally not recommended since the wavy-surface contour can produce a streamwise periodic pressure distribution as was found on the original Schubauer & Skramstad plate [44] (now at Texas A&M). The Klebanoff flat plate [13] used at NBS was treated with a 1.8‑m diameter grinding disk. This option can produce satisfactory results, but is often expensive. The Saric flat plate [39] used at Virginia Tech and Arizona State, had a 20‑mm paper honeycomb sandwiched between two 1‑mm aluminum sheets in the manner that inexpensive billiard tables are fabricated. A rule-of-thumb waviness criterion for any plate intended for stability experiments is 
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 is the T‑S wavelength. Both the Klebanoff plate and the Saric plate had a ratio of 
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1.4.2
Provide a Means for a Leading Edge


The shape of the leading edge has a large effect on the resulting flow field. Schubauer & Skramstad [44] used a sharp leading edge, which was drooped at a negative angle of attack to avoid separation that can occur with a sharp tip. Klebanoff [13] also chose this type of leading edge, but instead addressed the problem of separation at the tip by including a trailing-edge flap to introduce circulation and thus place the stagnation line on the test side. The difficulty with either technique is that it is difficult to simulate computationally. Another possible option is an elliptical leading edge with a trailing edge flap as shown in Fig. 3.1.
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Fig. 3.1: Flat plate with trailing edge flap


An ellipse with a major/minor axes ratio greater than 6:1 avoids a separation bubble on the leading edge. An ellipse has zero slope at the flat-plate intersection but has a discontinuity in curvature at that point which could be a receptivity location. The curvature discontinuity can bias an acoustic receptivity experiment so Lin et al. [16] proposed using a modified super ellipse whose contour follows
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Here, the origin is at the stagnation line and a and b are the major and minor axes of the ellipse. With this profile, the curvature goes continuously to zero as 
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. The aforementioned Klebanoff plate (now at Texas A&M), was modified by the author for receptivity experiments [42], [43] by machining directly on the plate, a 20:1 super ellipse on one end of the plate and a 40:1 super ellipse on the other end. Machining the leading edge directly on the plate avoids junction discontinuity issues that could also be a receptivity site.

1.4.3
Global Pressure Gradient

Whether one uses a blunted flat plate or a sharp flat plate at negative angle of attack, a leading-edge pressure gradient will be present and a finite distance is required for pressure recovery. Once a zero pressure gradient is obtained, the boundary-layer flow is Blasius, but referenced to a different chordwise location, 
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. Thus, there is a virtual leading edge from which the measurements and the Reynolds number must be referenced. If this is unaccounted for, it is very easy to have 20-30% errors in 
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 (and 10-15% errors in R). For example, in order for theory to agree with the linear part of the well known nonlinear work of Klebanoff et al. [13], one must apply a correction to 
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To be ensured of the correct streamwise location, measure the displacement thickness, 
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, and then calculate the virtual location and Reynolds number with respect to the Blasius boundary-layer profile:
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Where 
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. The virtual location is given by
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The effects of not differentiating between the virtual and geometric locations are repeatedly demonstrated in early stability literature. Present day researchers must be wary of which location, virtual or geometric, was used to obtain transition Reynolds numbers in past literature.


Because of traverse effects and tunnel side-wall blockage, 
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 may actually change with different chordwise measurements. Therefore, 
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 should be measured (and R calculated) at each location. With modern, computer-controlled experiments this is not a problem. On the other hand, it has been shown by Klingmann et al. [14] that it is possible to design the leading-edge pressure gradient on the flat plate to eliminate the virtual leading edge. Figure 3.2 shows a series of velocity profiles by the author that demonstrates a constant 
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Fig. 3.2: Five measured velocity profiles at x = 0.8, 1.0, 1.2, 1.5, and 1.8 m superposed on the Blasius flow calculation. Streamwise location corrected for the virtual leading edge. Freestream speed is 12 m/s.


1.3.4
Local Pressure Gradient

It is difficult to accurately measure small changes in the pressure coefficient, 
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. Thus, the flow may not be locally Blasius and the stability characteristics may be quite different. For example, a decrease in 
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 of approximately 1% over 100 mm corresponds to Falkner-Skan pressure gradient parameter, 
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, of approximately +0.1. For 
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= +0.1, the minimum critical Reynolds number, 
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, (based on 3.7) is increased by a factor of 3. In other words, the streamwise location is increased by a factor of 9.


The neutral stability curve, shown in Fig. 3.3, from [2] compares OSE, nonparallel theory (PSE), and DNS with experiments. See [2] for details. What is important is that OSE (dashed line), PSE (solid line), and DNS (points on the solid line) agree very well. The experiments only agree at low frequencies and high Reynolds numbers. The measured 
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, is around 230 and the calculations all give a value of 300. Saric [34] conjectured that this difference is due to the extreme sensitivity to the smallest of pressure gradients (in this case adverse) that exist near Branch I. This has been confirmed by Klingmann et al. [14] who designed an experiment to avoid a pressure gradient at Branch I and whose data fall on the theoretical neutral stability curve. Thus, the historical discrepancy between theory and experiment has been resolved. There are other problems with the experiments and these are discussed below.
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Fig. 3.3: Blasius neutral stability curve. Comparison between experiment, DNS, PSE, and OSE [3.2]


A weak adverse pressure gradient can also explain why instabilities are measured at dimensionless frequencies, F >250x10-6, contrary to theory. The range of unstable frequencies could increase dramatically if the measurements were made in the weak adverse pressure gradient region of the recovery zone of the leading edge. Because of the low Reynolds number needed, the measurements of 
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 [32] were conducted too close to the leading edge and too close to the disturbance source.


With extreme care one may be able to measure 
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. This may not be enough. However, one could measure 
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 = 1%. Thus, measurement of changes in the shape factor is more reliable than 
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 at each streamwise location and hence the pressure gradient can be verified at no additional work.


For Blasius flow, it is recommended that the plate be adjusted so that H = 2.59±0.005. Moreover, placing a boundary layer trip on the backside of the model helps avoid differential blockage problems by fixing the transition location on the non-test side. Velcro is the recommended trip since a 6‑mm high strip can excite all of the important scales.


This discussion concludes that whereas the zero-pressure-gradient case is an accepted reference test case, it is a rather sensitive and perverse test condition. The author’s experience with boundary layers on wings shows that modest pressure gradients ameliorate the sensitivity to small 
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. At the same time, it needs to be recognized that one should avoid measurements of 
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 Not only is this a very difficult measurement to interpret, but changes in 
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1.4.5
Probe and / or Plate Vibration


If the probe support is vibrating in a direction transverse to the shear layer, the hotwire will measure different levels of the DC component, which in turn appear as temporal fluctuations in the AC component. Carbon composites work well to stiffen a particular direction of the probe support if vibration is suspected.


Plate vibration is a very serious source of error that should be avoided at all costs. These vibrations cause oscillations in the stagnation line, as shown in Fig. 3.4, that create the initial conditions for T‑S waves.


[image: image69.jpg]





Fig. 3.4: Plate vibrations change the stagnation line


The author has used a laser vibrometer to map the vibrations of the leading edge. These studies showed vibration amplitudes on the order of one micron. If a laser vibrometer is not available, it is important to use a low‑mass accelerometer. In any case, some diagnostic tool is needed to ensure that the oscillations are not in the T‑S passband.


1.4.6
Symmetric Flow


When providing a data base for computations of the leading-edge region, it is realistic to establish symmetric flow as an appropriate reference point. The trailing-edge flap is used to control the position of the stagnation line (the shape factor and pressure measurements will determine the plate angle). The pressure difference between the two sides of the leading edge is monitored while the trailing-edge flap angle is changed. When 
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, the flow is symmetric. It is important to measure 
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 in a region of large dp/dx to maximize the sensitivity of the measurement. If differential blockage is minimized and the non-test side boundary layer is tripped properly, it is possible to have the same flap setting at different speeds. Figure 3.5 shows the relationship between flap angle, 
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, and freestream speed (unit Reynolds number).
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Fig. 3.5: Schematic and data of 
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 measurement to achieve symmetric flow


1.5
Wind Tunnel Environment


1.5.1
Model Location in the Test Section

Prior to mounting the plate in the test section, all of the vortical modes must be determined. The contraction cone has the tendency to amplify the corner vortices and produce some large scale vortical motions in the test section that may take the form of those shown in Fig. 3.6. This is especially true of tunnels with contraction ratios greater than 6. This weak secondary motion is difficult to measure directly but can be observed by spanning the tunnel with a heated wire. By doing wake scans with a “cold” hotwire (no overheat) at different streamwise locations, the temperature nonuniformity can be tracked and any in-plane rotation can be observed. The rotational nodes can be determined and the plate placed away from these nodes. Acoustic modes will also exist in the test section and these nodes must be avoided as well.


A good rule of thumb is to never mount the plate on an axis of symmetry or at locations 1/N of the tunnel span where N = 2, 3, 4, etc. Generally, a good location is somewhere between 0.38 and 0.45 unit span.
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Fig. 3.6: Determination of tunnel nodes and plate placement


1.5.2
Freestream Disturbances: Turbulence and Sound

Ordinary wind tunnels have turbulence levels high enough to mask the appearance and growth of T‑S waves. It was not until Schubauer & Skramstad [44], in a tunnel designed for low turbulence, that a successful boundary-layer stability experiment conducted. It was also recognized at that time that the flight environment also had low turbulence with regard to influencing stability and transition. After the initial success of these experiments, it was recognized that something more than reducing 
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fluctuations was needed to advance the knowledge base.


Unknown receptivity issues such as the roles of freestream turbulence and sound in creating T‑S waves and 3‑D structures inhibit the understanding and control of transition. It is certainly clear that a naked statement of rms streamwise fluctuations, 
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, is not enough to describe a particular wind-tunnel environment. Freestream disturbances are composed of rotational disturbances (turbulence) and irrotational disturbances (sound). Each plays a different role in the transition process. Crossflow waves are very sensitive to freestream turbulence level [20] while T‑S waves are very sensitive to freestream sound [43]. Naguib et al. [21] demonstrate a good second-order method for separating sound from turbulence that is easy to implement in real-time data acquisition.

Until we really understand the receptivity mechanisms, it is important to document the freestream disturbance environment as completely as possible. In addition to 
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, one should quote, in order of importance: (1) passband and spectrum for all measurements, (2) spatial correlation measurements of all components to separate turbulence from sound, (3) flat-plate transition Reynolds number at different unit Reynolds numbers, and (4) 
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at different positions. A general summary of flow-quality issues is found in [3.38] and a typical tunnel certification is given by [40].

It has been argued [14] that it is not necessary to have freestream turbulence levels down to 0.04% U( in order to measure T‑S waves. This is a naïve statement that is only true when one knows where one is looking and one knows what one is measuring. For example, Kendall [12] has been measuring T‑S waves in "high" disturbance environments for years. There are two relevant points that need to be mentioned justifying a low-disturbance freestream: (1) one can always systematically increase freestream turbulence [12] and study its effects and (2) different (unknown) breakdown mechanisms that are characteristic of the low-disturbance flight environment may be missed in a high-disturbance freestream. The observations of the subharmonic mechanisms [41], [4] fall into this category. 


Another argument for low-turbulence levels can be made when streamwise vortical structures in the basic state produce a weak spanwise periodicity that is strongly susceptible to secondary instabilities. These spanwise variations were carefully documented by Klebanoff et al. [13], Nishioka et al. [22], and Anders & Blackwelder [1]. They strongly influence the type of breakdown to transition that is observed [41], [45]. These spanwise variations were not observed in the low-turbulence tunnels in Arizona, Novosibirsk, Sendai, or Stockholm. It turns out that these tunnels had slightly lower turbulence levels and that the combination of higher turbulence levels and micro surface roughness caused transient modes to grow and create the streamwise vorticity within the boundary layer. This is a good example of why it is necessary to be able to do spanwise measurements in the tunnel and within the boundary layer. Finding a turbulence level at one spanwise location does not guarantee the same turbulence level at other spanwise locations. As a general reminder, tape or junctions act similar to the micro surface roughness in that they are receptivity locations and are to be avoided on the test surface of the plate. Even though one may have a 2-D roughness with an Rek = O(0.1), this is still a strong receptivity source [35], [43]. Therefore, in order to establish the initial conditions, one should provide the measured three-dimensional amplitude modulation within the boundary layer for comparisons with theory and computation.


1.6
T-S Measurements

1.6.1
Controlled T-S waves – Internal Disturbance Sources


Knapp & Roache [15] tried to use the background disturbances as the source of the T‑S waves and observed intermittent behavior that compromised their hotwire measurements. It becomes necessary to fix the wave in the streamwise direction and do phase-correlated measurements. The use of an artificial disturbance source will fix the amplitude and phase at one location in order to systematically track stability and transition events. The use of a vibrating ribbon to create 2‑D waves has been around since Schubauer & Skramstad [44] who used the idea of the Lorentz force generated by an alternating current in the ribbon in the presence of a stationary magnetic field. This is shown in Fig. 3.7. Sreenivasan et al. [46] has used the same principle on a wire in a slot. Corke & Mangano [4] have successfully used segmented heated wires for producing both 2‑D and 3‑D waves.
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Fig. 3.7: Schematic of vibrating ribbon


When the vibrating ribbon or wire is uniformly loaded, the displacement is of the form of a catenary. Therefore, a sufficiently long ribbon should be used to avoid end effects. The ribbon placement in the wall-normal direction is typically ideal (minimum displacement) if located at or near the critical layer [
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Even though the 2‑D wave is phase correlated when using a vibrating ribbon, the interaction of this wave with the background disturbances has a random character. The 


‑vortices observed by Saric & Thomas [41] for different types of breakdown meandered in the span direction. Although not reported, the subharmonic measurements of Kachanov & Levchenko [11] were random and "eyeball" conditional sampling was used. The only solution is to introduce the 3‑D directly with segmented heating elements [4]. The technique consists of using one continuous wire for the 2‑D wave and a set of segmented wires, whose individual phase is controlled, for the 3‑D wave.


A disturbance source such as an air jet, or heated wire, or vibrating ribbon, locally creates a disturbance that is not just a T‑S wave (see Fig. 3.8) but has all of the eigenmodes. A T‑S wave is just one of the modes in the distribution. A relaxation distance is required to attenuate the more stable modes so that the least stable (the T‑S wave) remains. If measurements are made within this relaxation distance some strong stabilizing effects may be measured. One should determine the relaxation distance downstream of the disturbance source. This would depend on the type of source used, but it should be in the range of about 10 boundary-layer thicknesses. This can be verified by first comparing 
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 with linear theory. Local growth rates should also be compared as a function of input amplitude. These comparisons should be documented if is required to measure close to the disturbance source.
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Fig. 3.8: Disturbance profile close to the ribbon

One would like to carry out stability measurements over a wide range of Reynolds numbers while keeping the disturbance source fixed. Unfortunately, a typical 2‑D disturbance source has a finite span and Mack [17] showed that the domain of dependence of a finite span disturbance source propagates from each end toward center span at angle of approximately 12° as shown in Fig. 3.9.
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Fig. 3.9: Triangle of acceptable measurement area


Outside of this triangular domain, the disturbance amplitude is different from linear theory. This is analogous to the boundary-condition domain of dependence in hyperbolic systems. If w is the span of the disturbance source and L is the distance in x from the source, then the centerline measurements should be made such that L/w < 2.3. Ross et al. [32] had a vibrating ribbon span of only 250 mm and took measurements 1 meter away. Just as one is limited in the useful chord of the model due to sidewall contamination, the distance downstream of the disturbance is similarly limited. For off-centerline measurements, this value is obviously smaller.


When one attempts to study nonlinear wave interactions, the nonlinearities of the disturbance source impose different initial conditions on the nonlinear components [39]. For example, if one wishes to study the nonlinear interaction of waves with two frequencies 


 and 


, when the disturbance source, such as a vibrating ribbon, is oscillated at too high an amplitude, the disturbance source inputs 
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, etc. into the boundary layer. As part of another difficulty, when one attempts to invoke active wave cancellation into the boundary layer through a disturbance source, a feedback signal is processed by the computer and relayed to a disturbance source. However, the D/A converter is a low-pass filter, the vibrating ribbon is a low-pass filter having a typical linear-oscillator response, and the boundary layer is a band-pass filter/amplifier having its unique response curve. Thus the boundary-layer response is much different from the original input signal. First, one must always directly measure the disturbance-source response and the boundary-layer response in order to establish the initial conditions [39]. In the case of a vibrating ribbon, the disturbance source response can be measured with an end-effect inductance probe. A tailored boundary-layer response can be obtained using inverse Fourier techniques [23].


1.6.2
Controlled T-S Waves – External Disturbance Sources


If an external sound source is used as a source of disturbance energy, say in a receptivity experiment, then the boundary-layer measurement at a particular frequency will contain probe vibrations and a component of the sound wave in addition to the T‑S wave. It is easy for external sound to force, at the oscillation frequency, the mechanical system holding the hot wire. The external sound field generates a Stokes layer imbedded inside the boundary layer. All of these signals are at the same frequency and if these signals are of comparable amplitude to the T‑S amplitude, one cannot obtain the usual T‑S profile unless some special techniques are be used to extract the T‑S wave. It is for this reason that older publications with sound/stability interactions are not reliable.


This author has tried (1) taking advantage of the exponential growth of the T‑S wave so that it is larger than the background [35]; (2) the idea of using polar plots to separate the long-wavelength Stokes wave from the short-wavelength T‑S wave [48]; (3) the idea of using a wavenumber spectrum using closely spaced points in the x direction [38]; (4) the idea of using differential surface-pressure ports [12]. For one reason or another, none of these techniques are satisfactory and are not recommended. The details are given in [36]. The major problems lie in complicated duct acoustics and reflected waves from the diffuser.


The only technique found to work is the pulsed-sound technique [42], [43]. The technique uses pulsed sound and is simple, effective, and lends itself to understanding the behavior of the T‑S wave. From linear theory, the maximum of the T‑S wave propagates at approximately one third of the freestream speed (about 1% of the speed of the downstream-traveling sound wave). Using this fact, the traveling T‑S wave can be isolated from the acoustic disturbance and associated Stokes wave by sending bursts of sound into the test section. The initial sound burst is first measured and fractions of a second later, after the sound wave has passed, the slower-traveling T‑S wave is measured. Figure 3.10 shows a time trace depicting the sound-burst wave sensed by hotwires in the freestream and boundary layer and the trailing T‑S wave measured by the boundary-layer wire for R = 1140, F = 56x10-6, f = 80 Hz and x = 1.8 m. The T‑S wave profile obtained with this method compares very well with OSE solutions.
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Fig. 3.10: Time traces of the freestream wave and the boundary-layer wave.


There are three ways to implement this technique: (1) Use the rms amplitude of the wave packet [42]; (2) Use the magnitude of the complex Fourier coefficient for each frequency present in the wave packet [43]; (3) Analyze the signal in the frequency domain [47]. The frequency-domain approach [47] appears to be the best means to correctly describe the receptivity and linear amplification process of multiple-frequency signals. This is because as wave packets travel downstream, high-frequency components of the spectra, which are present initially due to the finite extent of the pulse, decay. Meanwhile, the low-frequency components in the amplified T‑S passband grow.


A feature of short sound bursts is that since they are limited in the time domain, they are extended in the frequency domain. Thus, a single sound pulse (a single frequency sine wave within an amplitude envelope) covers a wide frequency range. In many cases the pulse spectrum covers the entire T‑S wavelength band. Therefore, using a pulsed-sound approach eliminates the distinction between single-frequency and broadband input.


1.6.2
Hotwire Measurements


The hot-wire anemometer is the accepted technique for the measurement of fluctuating velocities O(10-3U() within the boundary layer. Neither LDV nor PIV have the low-level resolution required for these measurements. Hot wires can accurately measure the streamwise and spanwise velocities (


) with the use of straight-wire and slant-wire pairs. Because laminar boundary layers are so thin (
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 due to the span of the wire.


If the temperature of the wind tunnel undergoes changes of more than a few degrees between calibrations, temperature compensation must be used. This can be done with a simple computer solution that does both velocity and temperature compensation [26].


To do this, one must understand how and what data are retrieved from a hotwire. In a real boundary layer, a hotwire measures the component of velocity perpendicular to the wire as shown in Fig. 3.11.
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Fig. 3.11: Hotwire measurements


Although the velocity is 2-D, the output signal is only a combination of U and u´ because the vector sum of U + V is approximately U since V = O(1/R). Similarly, the AC component measures u´ and not v´ because u' is superposed on U. As a result, the measurement from a hotwire is u´rms, which is proportional to 
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 from the OSE. It is straightforward to separate the DC and AC signals.


When attempting to compare with theory, one commonly sees solutions of the OSE displayed in terms of the real and imaginary parts of 
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 can be multiplied by any complex number, this is neither revealing nor unique. It is more meaningful to show amplitude, 
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. Using the acquired u´rms data, a more rigorous representation of results is to then plot y as a function of |D(|, where |D(| is a positive real quantity. The resulting plot will look similar to the disturbance state in Fig. 3.12.
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Fig. 3.12: Disturbance and basic state profiles


Once measurements are processed, they should be correlated with theory. An example with a reduced set of experimental points is shown in Fig. 3.13 [34].
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Fig. 3.13: Theory and experiment of Blasius velocity profile and T-S amplitude. Saric (1990)


To achieve such accuracy, a precision lead screw with anti-backlash bushings should be used in the wall normal direction. One should have the capability to make 100 measurements within the boundary layer which means step sizes of the order of 25 microns.


1.6.3
Wall Effects


In measuring 
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, you will need to find the wall. As the hotwire gets closer to the wall, radiation from the model removes heat from the hotwire, resulting in readings of higher velocity than is actually present. This is shown in Fig. 3.14. To compensate for this effect, stop measurements at 
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 and for mean flow, use linear extrapolation to the wall.
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Fig. 3.14: Hotwire measurements near the wall


1.6.4
Traverse Blockage

The traverse mechanism may be too large or too close to the hotwire. Moreover, a multi-wire rake may have too much local blockage. What could happen in these cases is that the weak pressure field around the probe support, although unseen in a basic-state measurement, can strongly influence T‑S wave amplitude. This can be diagnosed by fixing a very small hot wire to the plate (see Fig. 3.15) at a wall-normal location where say,
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. Establish the amplitude of a controlled T‑S wave as measured by the fixed wire. Move a traverse mounted hotwire to the same location very close to the fixed wire and see if the T‑S amplitude on the fixed wire has changed. This is the most sensitive and the only means for determining whether one has eliminated traverse and probe-support interference problems. One should be aware of the fact that traverses and probe supports that are quite suitable for turbulent boundary layers may not be suitable for laminar stability work.
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Fig. 3.15: Fixed and traverse hotwire measurements of T‑S waves


1.6.5
Hotfilm Measurements


The development and application of microthin hotfilms [7], [18] have advanced their use for stability and transition measurements. These films are in the form of vacuum deposited circuitry on a Kapton sheet. As many as 50 sensors can be concentrated in a small area and can be oriented in any direction. Although difficult to obtain an absolute calibration (one could use a Preston tube over the sensors), this techniques is very valuable for measuring wall-shear-stress fluctuations. Disturbance spectra and transition location can be determined. With the use of multiple hotfilms, phase and group velocity directions can be determined [8]. The use of hotfilm sheets are superior to individual hot film sensors in that they provide a minimum of disturbance to the flow, are robust, and are easy to apply. This is also a superior technique for flight experiments where it may not be possible to use hotwires. In their simplest, uncalibrated use, an array of sensors would indicate an order-of-magnitude increase in rms fluctuations wherever transition to turbulence occurred.


1.7
Visualization Methods

Visualization techniques are useful for qualitative information regarding scales and approximate transition location. For stability and transition work, they must always be supported by hotwire or hotfilm measurements.


1.7.1
Smoke-Wire Technique


Most smoke wires used for flow visualization have diameters in the range of 50 - 80 


m. This technique was modernized by Corke et al. [5]. The oil coating (toy train "smoke") distributes itself periodically along the span of the wire and when the wire is heated it generates a short burst of smoke streaks. The computer initiates the wire voltage and the time-delayed shutter release. When used in stability experiments the smoke wire is placed near the critical layer. Much of the interesting detail is lost if the wire strays from the critical layer. The wake of the smoke wire causes a kink in the basic-state profile which alters its stability characteristics. As a result, if one examined the amplitude growth of a T‑S wave in the stream direction, one would observe an almost step-like increase in amplitude downstream of the smoke wire. The amplitude could easily change by a factor of 3 due to the smoke wire. Thus, in contrast to its universal use in turbulent boundary layers, special care must be exercised with laminar stability.


One should always be reminded that streaklines do not correspond to streamlines in an unsteady flow. The appearance of a 3‑D structure in a streakline, is a historical event that is a result of the integration of the history of the smoke. A direct measurement at the location of an apparent 3‑D structure may reveal something different. In the same way, visualization should always be accompanied by direct measurements. This type of visualization is good for giving scales over which you need to do the other measurements. An example of the usefulness of the smoke-wire technique is found in Saric [33].


1.7.2
Surface Coatings


Surface coatings have the ability to determine the approximate location of transition and only rarely something else. The author has tried them all. Shear-sensitive liquid crystals are robust but seem more useful for detecting separation than transition [27]. This technique is difficult to apply and introduces a nontrivial surface roughness which affects the stability characteristics. Temperature sensitive paint (TSP) and pressure sensitive paint (PSP) have been used for transition detection. PSP and TSP require some application skills and perhaps are best used for complicated shapes. Infrared Thermography (IRT) is a non-obtrusive, successful technique requiring a sizable investment in IR cameras. See [37] and [49] for details. The author has had a great deal of success using naphthalene coatings [7], [24], [25] but health physics issues have arisen regarding the use of naphthalene, trichlorotrifluoroethane, trichloroethane, and other chemicals. For this reason, the author is reluctant to suggest their use.
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1.0 Introduction 


In recent years the Parabolized Stability Equation, or PSE,  have become a popular approach to stability analysis owing to their inclusion of nonparallel and nonlinear effects with relatively small additional resource requirements as compared with direct numerical simulations, or DNS.  

2.0 Formulations


In this Section we present the formulation of the PSE approach for transition problems for both 2-D and 3-D basic-state flows. Many more details may be found in Haynes & Reed (2000) and Chang (2004). Our main focus is the stability and transition of boundary-layer-type flows. An excellent review of the PSE approach is that of Herbert (1997).
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Figure 1. 2-D and axisymmetric coordinate system
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Figure 2. 3-D coordinate system


The coordinate system for 2-D and axisymmetric flows is shown in Figure 1, while that for 3-D flows is shown in Figure 2.  Note that in both cases an orthogonal body-fitted coordinate system is used.  This eases the application of proper boundary-layer scalings.  That is, basic-state quantities change rapidly in the normal-to-the-surface 
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-direction as compared with the directions tangent to the surface 
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 and 
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.  For 3-D flows, the 
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-direction is normal to the attachment line.  This allows the application of the conical flow approximation for basic-state quantities (
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 derivatives are zero) and periodic conditions for the disturbances in the spanwise (parallel to the leading edge) 
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-direction.


The analysis is performed by perturbing the complete unsteady Navier-Stokes equations about the basic state.  With 
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, and 
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being the chordwise (tangent to the surface), normal-to-the-wall, and spanwise coordinates, respectively, per Figures 1 and 2, the Navier-Stokes equations are made dimensionless by introducing the length scale
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The quantity 
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 is called the local reference boundary-layer thickness.  Quantities 
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 are the local edge velocity and kinematic viscosity, respectively.  Because the goal is a marching scheme, representative values of 
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and the quantity 
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, the square root of the 

[image: image23.wmf]0


x


-Reynolds number




[image: image24.wmf]12


0


xU


R


u


¥


æö


=


ç÷


èø


, 


is used to represent distance along the surface for the PSE formulation below.

The solution to the Navier-Stokes equations 
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 consists of two parts, the mean laminar flow solution 
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 and the disturbance fluctuation
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where 
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 represents the vector of flowfield quantities; for example in the primitive variable form 
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 are the velocity components in the 
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directions, respectively. For transition analysis, equations governing the disturbance are typically solved separately from the basic state. The quantities 
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 and 
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 are each individually solutions to the Navier-Stokes equations, however 
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 is not. The basic-state formulations are not presented or discussed here, however the validity of these formulations must also be considered since the transition process is known to be sensitive to subtle changes in the basic state. The numerical accuracy of the basic state must be very high, because the stability and transition results will be very sensitive to small departures of the mean flow from its “exact” shape. The stability of the flow can depend on small variations of the boundary conditions for the basic state, such as freestream velocity or wall temperature. Therefore, basic-state boundary conditions must also be very accurate. See the discussion of Arnal (1994) and Malik (1990).


2.1 Linear Parabolized Stability Equations (LPSE)


One uses linear PSE (LPSE) to include the effects of nonparallelism (e.g. the effects of a growing boundary).  For LPSE, a single monochromatic wave is considered as the disturbance, which is decomposed into a rapidly varying “wave function” and a slowly varying “shape function”. Using a multiple-scales approach
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The “shape function” 
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 and chordwise wavenumber 
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 depend on the slowly varying scale 
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 depends on the rapidly varying scale
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. The frequency is 
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 and the spanwise wavenumber is 
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. On infinite swept boundary layer flows, the disturbance field is assumed periodic in both the temporal and spanwise directions, so that both 
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are real and constant.  The nondimensional frequency 
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is related to the physical frequency 
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(in hertz) by
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Another nondimensional frequency often used in stability calculations is
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This gives the following form for the chordwise derivatives of disturbance quantities
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The explicit chordwise 
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second-derivative term is neglected. This yields the following system of equations
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Here 
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 is the Orr-Sommerfeld operator, 
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 contains the nonparallel basic-state terms, and 
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 arise due to the nonparallel disturbance terms.  


There is one more unknown than equations (namely 
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), and ambiguity in chordwise dependence appearing in both the shape function and the wave function.  The idea is to impose a condition on 
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 such that most of the waviness and growth of the disturbance are absorbed by the wave function part of the decomposition, making the shape function part slowly varying.   For example, one can impose the condition that the maximum of the velocity component 
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or that the change in the kinetic energy is minimized
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,  “*” is complex conjugate, “t” is transpose. 


These normalizations are not unique, and Chang et al. (1991) showed that the PSE results are insensitive to various flow variables selected for normalization.  Ideally as much of the oscillatory part of the wave is included in the wave function to minimize the shape function variation in 
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.  This allows for a low-order discretization scheme in 
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 - this is important considering the below comments on numerical instability. 


To solve this “parabolized” system numerically, one discretizes in both the normal and chordwise directions.  Assuming the solution is known at chordwise location 
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, Haynes & Reed (2000) suggest a possible chordwise marching algorithm:
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;  5. Repeat steps 2-4 until 
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 meets some tolerance.


The chordwise disturbance pressure gradient term is
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and the shape function part of this term (that is, 
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) contains residual ellipticity which means this system is only partially parabolized (Chang et al., 1991).  Numerical instability would occur in attempting to use a too small marching stepsize in 
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, similar to that observed in applications of the Parabolized Navier-Stokes equation formulation (PNS; Rubin 1981, Rubin & Tannehill 1992).  Li & Malik (1996) used Fourier analysis to prove the existence of numerical instability and quantify the bounds.  


When the disturbance flow is 3-D, the primitive variable formulation is the most straightforward.  For the primitive-variable form, the minimum step size for numerical stability is the inverse of the real part of the chordwise wavenumber.  This implies that a maximum of 
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 steps per disturbance wavelength are allowed for the marching.  Given that much of the waviness of the solution has been assigned to the wave function part of the decomposition and the solution gives the slowly varying shape function, this step-size restriction does not cause problems in terms of accuracy unless either higher resolution or the convergence of nonlinear terms is needed.  For example, Joslin et al. (1992) show that the PSE solution obtained with 3 steps per wavelength for Tollmien-Schlichting (T-S) waves in a Blasius boundary layer is in excellent agreement with very accurate direct numerical simulations of the Navier-Stokes equations (DNS) using 60 points per TS wavelength.  When a smaller step size is required, a further approximation is sometimes made to drop the 
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 term.  Li & Malik (1996) point out that since most of the pressure gradient has been absorbed into the 
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 is small in comparison.  They also demonstrate that the step-size restriction is reduced by at least an order of magnitude. 


For both the stream-function/vorticity formulation (for 2-D flows) and the vorticity/velocity formulation in which the pressure is eliminated, Li & Malik (1996) point out that the 
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 term in the governing equations now absorbs the ellipticity captured by the 
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 term in the primitive-variable formulation.  The step-size restriction is similar to that above.  When 
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 is set to zero, a numerically stable solution is obtained again for much smaller step sizes.  


One has to be concerned with the accuracy of the solution.  Per Li & Malik (1996), for Blasius flow, 
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 is a very weak function of 
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 and the accuracy of the results with and without 
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 variation in the chordwise direction is stronger, the errors in disturbance growth rates introduced due to the 
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 approximation in the primitive-variable formulation and due to the 
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 approximation in the vorticity-velocity formulation are similar and may be significant.  See the discussion in the next section on NPSE.


Once the system of equations is “parabolized”, an efficient marching solution can be obtained.  To complete the formulation, upstream (initial) and boundary conditions at both ends in the wall-normal direction must be specified. At the wall, no-slip conditions are used
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If a 5th condition is needed, either the continuity equation or wall-normal momentum equation can be used.  In the freestream, Dirichlet boundary conditions are used for subsonic modes
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For supersonic modes, the disturbance has a non-decaying oscillatory structure and the above conditions will result in spurious reflection from the freestream boundary. Here one can use a non-reflecting condition (Thompson 1987) based on the inviscid Euler equations containing only the outgoing characteristics.  


If the analysis begins in a region where the initial disturbance amplitudes are small, linear stability theory can be used to obtain the upstream (initial) conditions for the marching.  


2.2 Nonlinear Parabolized Stability Equations (NPSE)


One uses the nonlinear PSE (NPSE) to include the effects of nonparallelism and nonlinearity (e.g. for swept-wing boundary layers and concave surfaces).  The NPSE are derived in a fashion similar to LPSE with the exception that each disturbance quantity is transformed spectrally in the spanwise and temporal directions
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where
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Here each mode 
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 is the product of a “shape function” and a “wave function”. The resulting system of equations is
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where each mode 

[image: image100.wmf](


)


k


n


,


 corresponds to an individual equation.  The operators 
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 assume the same meaning as in the LPSE form except that they are applied to each particular mode 
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 are the fundamental frequency and spanwise wavenumber, respectively. Concerning the numerical resolution of the simulation, there are 2N+1 discretized points in time and 2K+1 discretized points in the spanwise direction per wavelength.  During the marching procedure, each mode must individually satisfy the normalization condition.


According to Li & Malik (1996), the results concerning the stability of  the LPSE can also be applied to NPSE.  A finite amplitude disturbance of fundamental frequency 
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 Fourier decomposition of the perturbation gives rise to equations governing each harmonic.  The left hand side of the equation set takes the same form as the LPSE, with the equation for the 
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Usually the real part of the chordwise wavenumber 
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 (satisfying the dispersion relation for the fundamental frequency 
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and the spanwise wavenumber
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) is the largest in magnitude, so that the suggested stepsize restriction becomes
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There are situations for which this step size restriction may not work: 1) In problems dealing with stationary crossflow characteristic of swept wings, with Görtler vortices over concave surfaces, and with the zero-frequency mode created in these flows corresponding to mean-flow distortion by the disturbance, a treatment of the chordwise pressure gradient term for the modes with 
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 is required.  2)  In the highly nonlinear region near transition onset, smaller step sizes may be required for convergence of the nonlinear terms, and again one must specially treat the chordwise pressure gradient term, this time for all modes.


Chang et al. (1991) suggested that the Vigneron approximation (Thompson, 1987) may be used to suppress numerical instability when small steps are required.  To this end, Chang (2004) suggests that for small marching step sizes that the chordwise disturbance pressure gradient for the affected modes be treated as




[image: image115.wmf]0


x


x


idzt


pp


ipe


xRx


axbw


a


æö


ç÷


+-


ç÷


ç÷


èø


ò


¢


¶W¶


æö


=+


ç÷


¶¶


èø




with the Vigneron parameter 
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where 
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 is a user-specified parameter for controlling the “parabolic” approximation and 
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 is the local edge chordwise Mach number.  


For the NPSE, either the Dirichlet or non-reflecting boundary conditions described in the LPSE section may be applied for each Fourier mode, except for the mean-flow distortion mode 
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for low-speed flows.  This mode should be allowed to adjust for the change in the displacement thickness and the following edge conditions are suggested:
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If a shock is present, the Rankine-Hugoniot shock conditions for disturbances may be used as suggested by Chang et al. (1990, 1997).


Please note that for the upstream conditions one must assign which modes to input and at what amplitudes.  Working with an experiment with carefully documented conditions greatly aids in this process. 

2.3 Curvature

The PSE formulation here utilizes a body-intrinsic coordinate system and the curvature is included in the associated metric coefficients. The marching procedure naturally aligns the disturbance wave propagation in the proper direction. The local radius of curvature of the wing appears in the equations through the following terms:
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where 
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 is the local dimensionless radius of curvature of the airfoil taken as positive or negative for convex or concave regions, respectively. As a special case, in the limit of infinite curvature (flat plate), 
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 are used in the stability equations.


There has been much debate about the effects of curvature. For most cases, the inclusion of curvature has a very small effect on the metric coefficients. For an airfoil shape, the maximum values of 
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, respectively. They typically both drop off sharply with increasing chordwise distance. These values may compel the researcher to neglect curvature, but the work of Haynes & Reed (2000) demonstrates conclusively that small changes in the metric coefficients can have a significant effect on the development of instabilities.  The proper PSE formulation is to include curvature.  Typically convex curvature is stabilizing and nonparallel effects are destabilizing, and the two effects tend to balance each other.  On the other hand, concave curvature is highly destabilizing to Görtler instabilities.


3.0 Verification and Validation


Here we distinguish between verification and validation. Per the designations of Roache (1997), we consider verification to mean “confirming the accuracy and correctness of the code” (i.e. is the grid resolved, are there any programming errors in the codes, etc.). Validation requires verification of the code in addition to confirming the adequacy of the equations used to model the physical problem. Strictly speaking, a code can only be validated by comparison with quality experimental data.


There are mainly three sources of error in the abstraction of continuous PDE's to a set of discrete algebraic equations; (1) discretization errors, (2) programming errors (bugs), and (3) computer round-off errors. The objective of code verification is then to completely eliminate programming errors and confirm that the accuracy of the discretization used in solving the continuous problem lies within some acceptable tolerance. Aside from specifying single or double precision, the code developer has little control over the computer round-off errors, but this is usually several orders of magnitude smaller than the discretization error and far less than the desired accuracy of the solution.


In this section we address programming and discretization errors. Many methods are discussed in the literature for code verification using grid refinement, comparison with simplified analytical cases, etc. For recent discussions see Roache (1997) and Oberkampf et al. (1995). Specific suggestions for testing a CFD code for the study of transition include (a) grid-refinement studies, (b) solving test problems for which the solution is known, (c) changing the “far-field” boundary locations systematically and re-solving, (d) comparing linear growth rates, neutral points, and eigenfunctions with linear stability theory, (e) running the unsteady code with time-independent boundary conditions to ensure that the calculations remain steady, and (f) running geometrically unsymmetric codes with symmetric conditions.


In addition to the usual code verification techniques, there is a general method to verify the discretizations and locate programming errors by comparison with “manufactured” analytical solutions (Steinberg & Roache, 1985). This method is general in that it can be applied to any system of equations. Although it is an extremely powerful tool, this method has received relatively little attention in the literature. For clarity the technique is demonstrated on the Poisson equation.
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To solve this problem, discretize the operator L using some appropriate approximation (finite differences, spectral, etc.). In general, the exact solution is not available. Therefore, for verification purposes, force the solution to be some combination of analytical functions with nontrivial derivatives. For example, consider the system 
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, which has an analytical solution 
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. The exact solution can then be compared with the computed solution. Of course, manufactured solutions should be chosen with topological qualities similar to those anticipated for the solution to the “real” problem (e.g. gradients close to the wall). Proper choice for the manufactured solutions also allows the discretization of the boundary conditions to be verified. For large systems of equations a symbol manipulator is recommended for computing g. If a bug occurs, zeroing the coefficients of some terms in the equation can help to isolate the bug.


Validation is defined as encompassing verification of the code as well as confirming that the equations used to model the physical situation are appropriate. The basis of validation is assumed to be a successful comparison with the few careful, archival experiments available in the literature. To date the PSE have been applied to a variety of 2- and 3-D flow situations and are generally regarded as appropriate for convectively unstable flows.  

4.0  2-D BASIC-STate Applications


4.1 Tollmien-Schlichting Instabilities


Chordwise instabilities are characterized by 2-D traveling waves that appear in 2-D boundary layers and in the mid-chord region of swept wings.  


Considering a wide class of instability mechanisms, the general impression is that viscosity can only stabilize a flow.  However, a flat-plate boundary layer velocity profile is known to exhibit instability and yet it has no inflection point. Prandtl (1921) first developed the fundamental ideas of a viscous instability mechanism.  The instability is called viscous because the boundary layer velocity profile is stable in the inviscid limit and thus, an increase in viscosity (a decrease in Reynolds number) causes the instability.  A general energy analysis shows that the Reynolds stress is the production term for instabilities.  Viscosity establishes the no-slip boundary condition which in turn creates the Reynolds stress which may destabilize the flow.  The actual distribution of Reynolds stress throughout the boundary layer determines whether a particular disturbance is stable or unstable.


Comparisons between the data of the mean-flow and disturbance-flow rms measurements from a single-frequency experiment and the data from the Blasius solution and a solution from linear stability theory show outstanding agreement and demonstrate that the 2-D problem is well understood.  Since the Orr-Sommerfeld problem is an eigenvalue problem, amplitude is undetermined.  The disturbance shape measured in experiments is characteristic of the first-mode eigenfunction or Tollmien-Schlichting (T-S) wave.  The sharp zero and double maximum occur because of a 180 degree phase shift in the region of the critical layer (where the local mean-flow speed equals the disturbance phase speed).  This shape is very different from a turbulence distribution or 3-D T-S wave.  The higher-mode eigenfunctions are highly damped and disappear within a few boundary layer thicknesses downstream of the disturbance source.







Figure 3:  A comparison between linear stability theory (line) and experiment (symbols) for flow over a 2-D flat plate with suction.  a) Both the basic state and the rms-amplitude distribution of the chordwise disturbance velocity are shown.  The agreement is excellent.  (From Reed & Nayfeh 1986, Reynolds & Saric 1986, Saric & Reed 1986).


At constant frequency, the disturbance amplitude initially decays as one marches in the downstream direction until the Reynolds number RI at which the flow first becomes unstable is reached.  This point is called the Branch I neutral stability point.  The amplitude grows exponentially in the downstream direction until the Branch II neutral stability point RII is reached.  The locus of RI and RII points as a function of frequency gives the neutral stability curve.


PSE.  Mack (1984) and Saric (1990, 1994) are good references for nonparallel effects.  Gaster (1974) using asymptotic theory; Herbert & Bertolotti (1987) and Bertolotti et al. (1992) using PSE; and Fasel & Konzelmann (1990) using spatial DNS, all show that the parallel neutral curve is essentially the same as the nonparallel neutral curve.  According to PSE computations for 2-D flat-plate flows, nonparallel effects are negligible for 2-D waves even for strong positive pressure gradients. This means that the parallel neutral curve is essentially the same as the nonparallel neutral curve, and linear theory provides a good model for instability growth.  Nonparallel effects do become important for compressible flows, oblique waves (Arnal 1994), and convex surfaces, however.

4.2 Secondary Instabilities and Transition Mechanisms in 2-D Boundary Layers


Thus far, three distinct transition mechanisms have been found for the flat plate experimentally (Saric 1994).  The theoretical work of Herbert (1988) successfully identified the operative mechanism in each case and found them to be amplitude and Reynolds-number dependent.  The further needs in this area are (a) to extend the catalogue of relevant mechanisms and to develop deeper understanding of their physics, (b) to model, in more detail, the breakdown process itself, and (c) to understand how freestream disturbances are linked to the mechanisms observed.  Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs.  There are different possible scenarios for the transition process, but it is generally accepted that transition is the result of the uncontrolled growth of unstable 3-D waves.  One note is that breakdown is 3-D and nonlinear.  The disturbances can be 3-D and linear however before transition.


Fundamental Mode Breakdown  The occurrence of 3-D phenomena in an otherwise 2-D flow is a necessary prerequisite for transition (Tani 1981).  Such phenomena were observed in detail by Klebanoff et al. (1962) and were attributed to a spanwise differential amplification of T-S waves through corrugations of the boundary layer.  The process leads rapidly to spanwise alternating “peaks” and “valleys”, i.e., regions of enhanced and reduced wave amplitude, and an associated system of streamwise vortices.  The peak-valley structure evolves at a rate much faster than the (viscous) amplification rates of T-S waves.  This represents the path to transition under conditions similar to Klebanoff et al. (1962) and is called a K-type breakdown.  The lambda vortices are ordered in that peaks follow peaks and valleys follow valleys.  


Subharmonic Mode Breakdown  Different types of 3-D transition phenomena observed (Saric & Thomas 1984, Kachanov et al. 1977, Thomas & Saric 1981, Kachanov & Levchenko 1984, Saric et al. 1984, Kozlov & Ramazanov 1984) are characterized by staggered patterns of peaks and valleys and by their occurrence at very low amplitudes of the fundamental T-S wave.  This pattern also evolves rapidly into transition.  Hot-wire measurements in these experiments show that the subharmonic of the fundamental wave (a necessary feature of the staggered pattern) is excited in the boundary layer and produces either the resonant wave interaction predicted by Craik (1971; called the C-type) or the secondary instability of Herbert (1984; called the H-type).  Spectral broadening to turbulence with self-excited subharmonics has been observed in acoustics, convection, and free shear layers and was not identified in boundary layers until the preliminary results of Kachanov et al. (1977).  This paper re-initiated the interest in subharmonics and prompted the simultaneous verification of C-type resonance (Thomas & Saric 1981, Kachanov & Levchenko 1984).  Subharmonics have also been confirmed for channel flows (Kozlov & Ramazanov 1984) and by direct integration of the Navier-Stokes equations (Spalart 1984, Spalart & Yang 1987).


Corke & Mangano (1989) and Corke (1994) introduced controlled 3-D subharmonics alongwith the 2-D fundamental.  Only then could detailed measurements be made of the disturbance flow field.  By using segmented heating elements, it is possible to phase shift a signal to each element and create an oblique wave at any angle or frequency.  Then the 2-D fundamental and the 3-D subharmonic are a simple electronic superposition (Corke 1994). As a result, the Corke subharmonic experiments contain the most complete and reliable set of data on subharmonic breakdown.  Both chordwise and spanwise variations of the fundamental and subharmonic are given. Corke (1990) gives several possible interactions.  Another example of the richness of this work are the disturbance streamlines that are reconstructed from numerous profiles.  These measurements are taken at different chord locations but at the same point in the oscillation cycle.  One sees an increase in intensity toward the wall as the measurements move downstream.  These are data that will positively challenge and validate the NPSE and DNS work.  The space in this report is not sufficient to cover all of the different types of behavior that are part of the subharmonic breakdown process.  The reader is encouraged to go to the original references.


The unbounded growth of disturbances and transition are very sensitive to the details of the flow.  Linear theories and weakly nonlinear theories fail after the instability waves achieve finite amplitude, and when various waves compete and grow simultaneously.  Here, still in the onset stage, nonlinear effects become significant and spatial computations are implied.  


NPSE.  A surprise that results from the analysis of Herbert (1984) and others early on, is that under amplitude conditions of the experimentally observed K-type breakdown, the subharmonic H-type is still calculated to be the dominant breakdown mechanism instead of the fundamental mode.  This was resolved by Singer et al (1989) who demonstrated that the upstream conditions for the simulations were incomplete; when streamwise vorticity (as is present in facilities) is included, the result is the appearance of the fundamental mode and the ordered peak-valley structure. 


Bertolotti et al. (1992) compared three-dimensional NPSE stability results with the experimental results of Kachanov & Levchenko (1984) for subharmonic breakdown, but only qualitative agreement was achieved. The differences are attributed to virtual leading-edge and slight pressure gradient effects in the experiment.  Comparison of the same NPSE results with DNS results of Fasel et al. (1990) and of Crouch (1988) show much better agreement. 


4.3 Supersonic Flows


Considerable uncertainty exists in both the prediction and control of transition in supersonic flows due to the dearth of reliable experiments.  The paper by Mack (1984) is the most complete description of compressible stability available anywhere. The linear stability analysis of high-speed boundary layers uncovers three major differences between it and the subsonic analysis: the presence of a generalized inflection-point, multiple acoustic modes (Mack Modes), and the dominance of 3-D viscous disturbances.  


The lowest-frequency Mack mode, the so-called second mode, is found to be the dominant instability for Mach number greater than about 4; it is more unstable than either the 3-D first mode or any of the other higher modes.  With regard to the second mode, there is a strong tuning with the boundary-layer thickness, so that the frequency of the most amplified disturbance may be predicted from this flow parameter.  In particular, the fluctuation wavelength is approximately twice the boundary-layer thickness.  This implies that if the boundary-layer thickness is changed, for example by cooling, a corresponding, predictable change in frequency should be observed. Mack observed that whereas the first mode is stabilized by cooling in air, the second mode is actually destabilized.  The Mack modes can be destabilized without the presence of a generalized inflection point.  NPSE:  As an example, Chang (2004) demonstrates the prediction of the second mode through the use of NPSE.


Through DNS, Thumm et al. (1990) and Bestek et al. (1992a,b) studied spatially growing 3-D waves in a growing 2-D flat-plate boundary layer; the disturbances were introduced via periodic wall blowing/suction.  For Mach numbers 0.4, 0.8, and 1.6 they found that the subharmonic resonance mechanism seen in incompressible flow was significantly weakened with increasing Mach number and decreasing Reynolds number.  For a Mach number of 1.6, a fairly high 2-D amplitude of 5% was necessary to initiate the subharmonic resonance.  The fundamental resonance mechanism was stronger.  They pointed out that a secondary instability calculation based on a finite 2-D amplitude may not be relevant for supersonic flow and they investigated other possible routes to turbulence at low supersonic Mach numbers.  To this end they simulated a Mach-1.6 base flow subjected to a pair of 3-D waves of amplitude O(1%) and discovered a new breakdown mechanism, termed "oblique-wave breakdown".  The disturbances quickly became nonlinear and through direct nonlinear interactions, a strong longitudinal vortex system was observed.  The resulting structures, which differed from the -shaped vortices usually reported for fundamental or subharmonic breakdown, were described as "honeycomb-like".  NPSE:  Chang (2004; LASTRAC code) demonstrates this breakdown process using NPSE.


4.4 Hypersonic Flows


Hypersonic flows are even more complicated for some of the following reasons.  1)  At hypersonic speeds, the gas often cannot be modeled as perfect because the molecular species begin to dissociate due to aerodynamic heating.  In fact, sometimes there are not enough intermolecular collisions to support local chemical equilibrium and a nonequilibrium model must be used.  2) The bow shock is very close to the edge of the boundary layer and must be included in studies of transition.  It is clear from previous researchers that the equilibrium and nonequilibrium solutions can differ significantly.  A complete quantitative description of the effects of the finite shock-layer thickness on transition modeling suggests a PSE solution.  With little experimental validation data available for this particular class of flows, validation of PSE is difficult.  The readers are asked to refer to Chapter 13 of these notes for the details on the problem formulations and the effects of chemical reactions.  


Chang et al. (1997) apply LPSE to the flowfields considered by previous researchers (who used linear stability theory) as well as to the Mach-20 flow past a 6° wedge, and consider three gas models included in the basic flow as well as the stability calculations: perfect gas, chemical equilibrium and non-equilibrium (finite-rate chemistry).  


· The first test case studied is a Mach 10 flow over an adiabatic flat plate with a freestream temperature of 350°K, and a unit Reynolds number of 6.6x106 / m..  For comparison, the linear stability results of the following groups were used:  Malik & Anderson (1991) assumed air to be in thermal and chemical equilibrium. Both equilibrium and finite-rate chemistry effects were investigated by Stuckert & Reed (1994) in a linear stability analysis of the shock layer. Hudson et al. (1997) assumed air to be in both chemical and thermal non-equilibrium state.  The results of Chang et al (1997) agree very well with Malik & Anderson (1991) while the other two investigations show a noticeable difference in growth rates and a shift in the peak growth location. Given that different mean flow codes were used in all these studies [Malik & Anderson and Chang et al. used an equilibrium gas boundary-layer code (Anderson & Lewis 1971), Stuckert & Reed used a PNS code while Hudson et al. used a Navier-Stokes code], qualitatively, the agreement is reasonable among all three investigations.

· When comparing perfect gas and real-gas effects, Chang et al (1997) verify previous results that real gas effects tend to be destabilizing for the second mode with a resulting shift (to a lower value) in the most unstable frequency.  This is to be expected with endothermic reactions that lower the temperature and cause the shock layer to be more susceptible to second-mode disturbances.

· Chang et al (1997) considered a Mach 20 flow over a 6° wedge and with the LPSE were able to account for the non-parallel effects. The unit Reynolds number for the wedge configuration was 9X105/ft and the wall temperature was constant at Tw/Tadiabatic =0.1.  For both equilibrium and finite-rate chemistry with LPSE, they found amplifying supersonic modes supersonic modes with a relative phase velocity faster than the freestream sonic speed.  These modes emerged just downstream of the unstable (subsonic) second-mode region, they generate dispersive waves that propagate into the freestream with a phase speed different from the corresponding acoustic wave, and they feature an oscillatory structure in the inviscid region of the shock layer that decays at a finite distance outside the boundary layer.  They determine that the Rankine-Hugoniot shock-jump conditions have little effect since the mode structure decays before the shock is reached.  The post shock Mach number is 12.5 with a shock angle (between the wedge and the shock) of 2.22°.  Due to the presence of the supersonic modes, Chang et al. predicted the location of the onset of transition (that is, the location at which N-factor achieves a value of 10) to be 14 feet, 24 feet, and 39 feet if one uses the equilibrium, non-equilibrium, and perfect gas models, respectively – quite a difference.  It is apparent that it is important to correctly model the chemistry, nonparallel effects, and the global nature of the instabilities.

Adam & Hornung (1997) performed boundary-layer-transition experiments on a 5-deg half-angle cone at 0-deg angle of attack in the T5 free-piston hypervelocity shock tunnel at the Graduate Aeronautical Laboratories at the California Institute of Technology (GALCIT).   This facility was designed to simulate atmospheric re-entry and match associated gases and enthalpies.  Feasibility and preliminary results of boundary-layer experiments on a sharp cone were described by Germain et al. (1993) and Germain & Hornung (1997).    For separate tests in air, nitrogen, and carbon dioxide, results suggest that there is no clear relationship between transition Reynolds number (evaluated with boundary-layer-edge conditions), and the reservoir enthalpy. Using reference conditions (Eckert 1955) to compute the transition Reynolds number, however, separates the gases according to how easily they dissociate. For all three gases, then the transition Reynolds number increases with reservoir enthalpy.  LPSE: Based on this data, Johnson & Candler (1999) assume a reacting mean flow with both thermal and chemical nonequilibrium, and use LPSE and previous linear stability theory (Johnson et al. 1998) to determine the N-factors for the 2 methods at the experimentally observed transition locations – they observed on average that N=6 for LST and N=5 for LPSE. 


A re-entry boundary-layer flight experiment called Re-entry F was conducted in the late 1970s, and a detailed log of both flight conditions and measured transition Reynolds number was published by Wright & Zoby (1977).  In the free-flight test, a 4-m-long, 5-deg half-angle cone was monitored as it entered the atmosphere from 30.48 to 18.29 km around Mach 20. Adam & Hornung (1997) compared data from this test with their T5 shock tunnel experiments. When the transition Reynolds numbers are evaluated at the boundary-layer-edge conditions, they are an order of magnitude higher than the tunnel results. When the reference conditions are used (Eckert 1955), the flight data fall within the same range as the experiments, although the trend with reservoir enthalpy is reversed. That is, in flight, the transition Reynolds number decreases with reservoir enthalpy.  LPSE:  Both Malik (2003; RFPSE code) and Johnson & Candler (2005; PSE-Chem code) modeled the reacting flow and disturbance field for the 100,000 ft. case, with Malik assuming chemical nonequilibium and Johnson & Candler assuming chemical and thermal nonequilibrium.   In spite of the differences in modelling, their N factor curves showed reasonable agreement, with Malik predicting a value of 9.5 at the experimentally measured transition location of x=2.9 m and Johnson & Candler predicting 8.7.  Malik further calculated the N-factors corresponding to the different chemistry models in his code RFPSE – see Table 1.


Table 1 N-factor results (at 100,000 feet and x = 2.9 m) for Reentry-F cone using RFPSE (Malik)



Option
Perfect gas
Equilibrium gas
Finite-rate chemistry



LST
6.5
7.9
8.1



LPSE
7.3
9.8
9.5

From heat flux profiles, transition for Reentry F at 80,000 ft was estimated to be at 2.0 m.  Wright & Zoby give bounds on the estimate of the nose radius at this point due to ablation, with the lower end being 3.8 mm and the higher end being 4.8 mm at this altitude.  For these two extremes, estimating transition locations from PSE-Chem using N=10, Johnson & Candler found the results indicated in Table 2.


Table 2. Estimated transition locations (at 80,000 feet and N=10)


 for Reentry-F cone using PSE-Chem (Johnson & Candler)


Nose Radius [mm]
Measured [m]
PSE-Chem [m]



3.8
2.01
1.89



4.8
2.01
2.09


These two estimates bracket the measured transition location almost evenly and, under the conditions that were simulated, a nose radius of 2.4 mm would match the measured transition location. Then Johnson & Candler (2006) performed a similar assessment for other altitudes, and noted, in general, challenges in trying to sort out nosetip ablation, angle of attack issues, and thermal warping of the body, with results for N-factors warranting further investigation.


Malik (2003) also used LPSE on a second flight experiment, namely, Sherman & Nakamura (1970), a 22-deg half-angle blunt cone at Mach 22 and an altitude of 110,000 ft.  Based on data presented by Berkowitz et al. (1977), Schneider (1998) inferred that the nose radius was about 0.25 in. Malik found the N-factor to be about 11.2.  Johnson & Candler (2006) again found results for N-factors warranting further investigation, and pointed out that much of the information about the geometry and flight trajectories is not available in the open literature and had to be inferred.

Future work will lie in proper stability formulation and chemistry and thermal models.  Also, the application of NPSE and DNS results for interactions and identifying the paths to transition in these flows should lead to new insights.  

4.5 Gortler Instabilities


The instability associated with concave wall curvature produces steady, streamwise-oriented, counter-rotating vortices, commonly called Görtler vortices. The subject was reviewed by Saric (1994), so that here we just recall the main ideas.


Rayleigh first explained this inviscid mechanism which involves a shear flow over a concave surface undergoing a centrifugal instability. If (U,V,W) denotes the basic state, where U=0, V=V(r), and W=0 are respectively the radial, tangential, and axial velocities in the vicinity of the concave surface, the necessary and sufficient condition for the existence of an inviscid axisymmetric instability is:


d((rV)2)/dr < 0   anywhere in the flow


Basically, the physical explanation of this criterion is that, under the above condition, the local pressure gradient is not able to compensate for the excess in angular momentum of a particle undergoing an outward virtual displacement.


When viscosity is taken into account, the Rayleigh criterion becomes only a necessary condition for a centrifugal instability.  An example, for closed systems, is the Taylor instability, originating from viscous circular Couette flow.  (Note: In the case of the inner cylinder rotating and the outer one fixed, the above criterion is satisfied.)  When a critical value of the inner-cylinder speed is reached, the instability is initially observed in the form of counter-rotating toroidal vortices, called Taylor vortices.


Another closed system is the flow in a curved channel. Rayleigh's criterion is satisfied along the outer race of the channel, where the Dean instability develops producing Dean vortices (see Saric 1994 for more details).


Görtler instability, on the other hand, is typical of open systems, such as the viscous boundary-layer flow over a concave surface. In this case, U is now the streamwise velocity component, according to boundary-layer conventions, and corresponds to V in the above criterion.  At the center of curvature rU = 0 because r=0 and at the wall rU= 0 because of the no-slip condition.  Therefore, there must exist a maximum of rU somewhere in the flow, which implies the second derivative of rU is negative in a region about the maximum of rU, so that the Rayleigh criterion is satisfied. The first application of this idea to boundary layers was due to Görtler.


The Görtler instability is known for causing transition on the wall of a supersonic nozzle in a boundary layer that would otherwise be laminar. Moreover, high-speed vehicles feature sharp leading edges requiring a series of corners or a concave surface to provide section thickness downstream. Also, the Görtler vortex structure exists in a turbulent boundary layer over a concave surface such as on turbine-compressor blades. The effects of this type of instability are clearly visible as surface striations on reentry vehicles in the Smithsonian Air & Space Museum where differential surface ablation caused locally concave surfaces.


Görtler instability is a rich area of study because of the spanwise modulation of the steady flow caused by the Görtler vortices.  This effect can destabilize TS waves and other secondary instabilities. There is opportunity for effective and efficient control similar to the success realized for stationary crossflow (Saric & Reed 2002). Breakdown to turbulence cannot be accurately predicted or described by linear stability theory (Reed et al. 1996).


Linear Analysis For incompressible flow and considering disturbance quantities (u,v,w,p) and basic-state quantities (U,V,W), in order to account for the weakly nonparallel nature of the basic state, a viscous parameter ε = 1/R = sqrt{υ/U∞ L} is introduced so that v and w scale with ε (that means they are O(ε), while u is O(1). See Floryan & Saric (1982). If a sinusoidal perturbation, due to the fact that the vortex structure is spanwise periodic, is added to the base flow, the NS equations can be linearized and the metric, accounting for the surface curvature, expanded in powers of ε and κ, where κ = ε L/R (R is the radius of curvature). By following these steps, the resulting equation set is:


ux + vy + β w = 0


U ux + Ux u + V uy + Uy v - uyy + β2 u  =  0


U vx + Vx u + V vy + Vy v + 2 G2 U u + py - vyy + β2 v  =  0


U wx + V wy - β p - wyy + β2 w  =  0


where G2 = κ / ε, β = 2 π ε L / λ (λ is the spanwise wavelength) and x is scaled with ε in order to account for the slow streamwise scale x = ε x* / L (x* is the dimensional streamwise coordinate).


The disturbance quantities (u,v,w,p) and the basic-state quantities (U,V,W) depend on y and z; this implies that the classical separation-of-variables method (normal-modes solution) is not allowed here (the coefficients depend on x). On the other hand, the equations are parabolic in x so that boundary conditions (at y = 0 and as y → ∞) and initial conditions (at x = x0) are required. The most correct way of solving this system is a marching-solution technique from x0. Despite this, a number of papers have appeared using the normal-modes approach, also called the local solution. A justification of the use of normal modes can be found in the large wavenumber limit, which takes place further downstream. However, one has to assume that distortion effects have not yet already taken place due to the action of the stationary vortex (a critical assumption).


Using a marching solution, Hall (1983) showed that the existence of a neutral point strongly depends on the location and shape of the initial conditions. Because of the parabolic nature of the equations, the marching solution shows the sensitivity to initial conditions and, most important, provides the means for assessing receptivity issues in Görtler flows that are not possible with eigenvalue methods. 


Although much effort has gone into linear analysis, as with stationary crossflow, it is essential to include nonlinear effects in any studies of Görtler flows. To account for the nonlinear distortion of the mean flow due to the action of the stationary vortices and the consequent breakdown, an NPSE formulation with curvature is warranted. 


Experiments  An extended review of the experiments carried out studying the Görtler instability since 1937 can be found in Saric (1994), thus here we recall only the main conclusions without detailing the experiments.


From the physical point of view, the presence of streamwise-oriented counter-rotating vortices produces a considerable mean-flow distortion because they create regions in which the flow is pushed down towards the wall and other regions where it is lifted up. As the motion continues, a mushroom-shaped distribution of an original uniform profile in z can be identified. The same phenomenon, of course, occurs in other flows with a stationary streamwise vortex structure, such as the crossflow instability on a swept wing (Saric et al. 2003).


The main consequence of this behavior is a considerable nonlinear distortion of the mean flow and the development of highly inflectional velocity profiles that would give rise to a Kelvin-Helmholtz instability.  It is apparent that the spanwise gradients are as large as the wall-normal gradients and that flows such as this are subject to strong secondary instabilities. Swearingen & Blackwelder (1986, 1987) were able to locate the source of the breakdown and thus identify which mechanism was causing breakdown in either the sinuous or varicose modes. The sinuous mode is characterized by having the disturbances (u,v,p) asymmetric and w symmetric about z=0 and is associated with the spanwise gradient (U/(z. The varicose mode has (u,v,p) symmetric and w asymmetric about z=0 and is associated with the wall-normal gradient (U/(y.


On the other hand, the nonlinear profile distortion produces disturbance energy saturation. At some streamwise location the disturbance amplitude ceases to grow and remains more or less constant. This usually occurs at modest Görtler number, bringing into question linear analyses with large Görtler number.


From this brief summary it should be clear that Görtler instability is really nonparallel and nonlinear and therefore the basic state cannot be decoupled from the disturbance state. The only reliable assumptions about the Görtler problem are that it is spanwise periodic and initially stationary. Prior to the onset of the secondary instability, the experiments teach us that there is a significant profile distortion from Blasius flow, saturation will occur and the low-momentum streaks form mushroom-shaped cross sections.


Nonlinear Analysis  No nonlinear theories can predict these events, so we begin with Hall (1988) who solved the nonlinear parabolized equations in a spatial formulation and was able to calculate the distortion of the mean flow. He chose to have the curvature vary with streamwise position and hence made it difficult to compare the flow to anything physical.  He did not observe saturation of the mean flow distortion. At low initial amplitudes, he calculated growth followed by decay. At higher initial amplitudes he calculated continuous growth. Later, Hall (1990) performed constant-curvature calculations, which he compared with data from Swearingen & Blackwelder (1987) and was able to obtain qualitative agreement.


A very successful study was that of Saric & Benmalek (1991) who solved the nonlinear parabolized disturbance equations and generated the features of the distorted profiles as observed in the experiments. The other feature of this nonlinear profile successfully predicted is saturation. At some streamwise location at modest Görtler number, the disturbance energy saturates for all of the Fourier modes used in the calculation.


Other computations are described in Saric (1994).



[image: image133]

Figure: PSE computations of Saric & Benmalek (1991) for constant curvature concave wall


Control  Of possible interest to the present research is the work of Saric & Benmalek (1991).  They show that convex curvature has an extraordinary stabilizing influence on the Görtler vortex, and they give examples of wavy-wall computations where the net result is stabilizing. The result of the computations show that an oppositely rotating vortex pair is generated in the convex region giving disturbance velocity profiles that resemble higher eigenmode distributions. They conclude that the stabilizing effects of a convex surface make it unlikely that the boundary layer over a wavy surface is subject to a strong Görtler instability.

5.0 Summary


Laminar-turbulent transition is highly initial- and operating-condition dependent, and finding careful, archival experiments for comparison is the main validation issue; careful and well documented flight and quiet wind tunnel data are needed, especially in hypersonics (where real-gas, high-enthalpy conditions must be simulated). 


The NPSE formulations are very promising for a variety of flows.  If the environment and operating conditions can be modelled and input correctly, the computations agree quantitatively with the experiments.  However, the routine use of NPSE depends on our knowledge of the connection between the freestream and the boundary-layer response.  In other words, the user needs to specify initial amplitudes and disturbance mode content as the upstream conditions.  The areas of boundary-layer receptivity and transient growth offer very promising breakthroughs.  A physically appropriate upstream or inflow condition must be specified.  As well, further work on appropriate chemistry and thermal models will aid in hypersonic flow predictions.


It is important to keep in mind the limitations of the “slowly varying” assumption.  Further incorporating ideas from Navier Stokes simulations could enable a more global version of LPSE/NPSE valid and accurate for configurations with rapid chordwise variations, such as large curvature or strong viscous-inviscid interactions, as well as advancing into the region of breakdown.
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1.0 INTRODUCTION 


Direct numerical simulations (DNS) are playing an increasingly important role in the 
investigation of transition; this trend will continue as considerable progress is made in the 
development of new, extremely powerful computers and numerical algorithms.  In such 
simulations, the full Navier-Stokes equations are solved directly by employing numerical 
methods, such as finite-difference, finite-element, finite volume, or spectral methods.  There are 
two approaches: 1) simulations in which the disturbances are computed as part of the simulation, 
and 2) simulations in which transition is estimated based on mean-flow quantities or the location 
is user specified. 


Complementary reviews include that of Kleiser & Zang (1991) and the AGARD lecture on spatial 
simulations (Reed 1994). Transition is a spatially evolving process and the spatial DNS approach 
is widely applicable since it avoids many of the restrictions that usually have to be imposed in 
other models and is the closest to mimicking experiments.  For example, very few restrictions 
with respect to the form or amplitude of the disturbances have to be imposed, because no 
linearizations or special assumptions concerning the disturbances have to be made.  Furthermore, 
this approach allows the realistic treatment of space-amplifying and -evolving disturbances as 
observed in laboratory experiments.  The temporal simulation, by contrast, uses periodic 
boundary conditions in the chordwise direction (identical inflow and outflow conditions) and 
follows the time evolution of a disturbance as it convects through the flow; upstream influence is 
limited by this assumption.  Moreover, in temporal simulations, the basic state is assumed to be 
strictly parallel, that is, invariant with respect to the chordwise coordinate.  All of these 
restrictions noted are especially suspect when considering complex geometries, 3-D boundary 
layers, receptivity, control, and the breakdown to turbulence. 


The basic idea of the spatial simulation is to disturb an established basic flow by forced, time-
dependent perturbations.  Then the reaction of this flow, that is, the temporal and spatial 
development of the perturbations, is determined by the numerical solution of the complete 
Navier-Stokes equations. 


Challenges associated with this method which preclude it from being used routinely for design 
include: 


• A large amount of computer resources (cpu and memory) is usually required for solution 
even for flow on a flat plate.  Because of the long fetch from the onset of instability to 
breakdown and the large amplitude ratios associated with this process [O(eNfactor=10) and 
larger], resolution and bit accuracy limit how far into breakdown that a spatial simulation 
can go.  Because of the large differences in amplitudes throughout the domain and the 
large growth rates known to exist near breakdown where smaller scales appear, 
truncation and round-off errors can easily contaminate the solution.  
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• There is a need to impose a nonintrusive downstream boundary condition since the 
periodic assumption (associated with temporal simulations) is no longer used.  Several 
ideas have been developed by various investigators.  However, there is typically a region 
of waste where the Navier-Stokes equations are not valid and the solution is discarded.  
In light of the discussion in (a), this adds to the resource concern. 


• The use of either the Nonlinear Parabolized Stability Equations (NPSE; Chapter 4) or 
DNS simulations, both of which account for nonlinear and nonparallel effects, is 
hampered by our current lack of knowledge of the connection between the freestream and 
the boundary-layer response.  A physically appropriate upstream or inflow condition 
must be specified.  Efforts to bridge this gap are described in these notes in the section on 
receptivity. 


 2.0 NUMERICAL METHODS 


The Navier-Stokes equations are highly nonlinear, time-dependent, and elliptic in space.  To 
simulate the spatial evolution of a disturbance field, a numerical method must account for  


• time-accurate discretization 


• phase-accurate discretization of the convective terms 


• sufficient resolution in viscous regions (e.g. close to surfaces and in free shear layers) 


• outflow, nonreflective boundary conditions, and (e) efficiency, speed, and "low" 
memory. 


The most highly studied geometry has been the flat plate.  Considering the same body-intrinsic 
coordinate system as in Chapter 4, a finite rectangular box, usually placed downstream of the 
leading edge and extending from Xo to XN in the chordwise direction normal to the leading edge, 


from 0 to YN in the direction normal to the surface, and from 0 to ZN in the spanwise direction 


parallel to the leading edge, is usually selected as the physical domain.  The reaction of this flow 
to disturbances input along the wall, at the inflow, and/or at the farfield edge of the box is then 
determined by numerical solution of the complete Navier-Stokes equations for 3-D, time-
dependent, compressible or incompressible flow.  In this formulation a downstream boundary 
condition must also be specified. 


Different formulations of the Navier-Stokes equations are possible including (for example, in 
incompressible, Cartesian form):   


• Primitive variable with three velocity components u,v,w (in the chordwise x, normal y, 
and spanwise z directions, respectively) and pressure (four unknown physical quantities).   


∂u/∂x + ∂v/∂y + ∂w/∂z = 0 


∂u/∂t + ∂u2/∂x + ∂(uv)/ ∂y + ∂(uw)/ ∂z = -∂p/∂x + Δu 


∂v/∂t + ∂(uv)/ ∂x + ∂v2/∂y + ∂(vw)/ ∂z = -∂p/∂y + Δv 


∂w/∂t + ∂(uw)/ ∂x + ∂(vw)/ ∂y + ∂w2/∂z = -∂p/∂z + Δw 


 where the Laplacian is defined as 


Δ = (Re)-1 (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) 


 and Re is the Reynolds number based on the freestream velocity U∞ and a characteristic 
length l (see below).  The restriction to incompressible introduces the computational 
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difficulty that mass contains only velocity components, and there is no obvious link with 
the pressure as there is in the compressible formulation through the density.  In general, 
the primitive-variable approach involves using a Poisson equation for the pressure in 
place of the continuity equation.  This is done to separate the majority of the "pressure 
effects" into a single equation so that the elliptic nature of the flow can be suitably 
modeled.  The pressure Poisson equation is derived by taking the divergence of the 
momentum equations.  The use of a staggered grid permits the coupling of the velocities 
and pressure at adjacent grid points and can prevent oscillatory solutions, particularly for 
the pressure, that can occur if centered differences are used to discretize the convective 
and pressure-gradient terms on a nonstaggered grid.  The global coupling implicit in 
spectral discretization of pressure derivatives can block the appearance of the intertwined 
but uncoupled pressure solutions associated with centered differences on a nonstaggered 
grid.  A discussion of appropriate boundary conditions for pressure is given by Fletcher 
(1991), Gresho & Sani (1987), and Gresho (1991). 


• Vorticity/stream function (for 2-D only) 


∂ω/∂t + u ∂ω /∂x + v ∂ω /∂y = (Re)-1 Δ ω 


Δ ψ = ω 


 where the Laplacian is defined as 


Δ = ∂2/∂x2 + ∂2/∂y2 


 and 


u = ∂ ψ /∂y 


v = - ∂ ψ ∂x 


ω = ∂u/∂y - ∂v/∂x 


 and Re is the Reynolds number based on the freestream velocity U∞ and a characteristic 
length l (see below).  The explicit appearance of the pressure is avoided.  Two unknown 
physical quantities are sought and mass conservation does not have to be treated 
explicitly.  The stream-function field must be determined to be compatible with the time-
dependent vorticity distribution at every time step.  Fletcher (1991) and Gresho (1991) 
discuss appropriate boundary conditions for the vorticity, as solid-surface boundary 
conditions are often a weak point. 


• Vorticity/velocity with three vorticity-transport equations 


∂ωx/∂t + ∂(v ωx -u ωy)/ ∂y - ∂(u ωz -w ωx)/ ∂z = (Re)-1  Δ ωx 


∂ ωy /∂t +  ∂(v ωx -u ωy)/ ∂x - ∂(w ωy -v ωz)/∂z = (Re)-1 Δ ωy 


∂ ωz /∂t + ∂(u ωz -w ωx)/ ∂x - ∂(w ωy -v ωz)/ ∂y = (Re)-1 Δ ωz 


 for the vorticity components 


ωx = ∂v/∂z - ∂w/∂y 


ωy = ∂w/∂x - ∂u/∂z 


ωz = ∂u/∂y - ∂v/∂x 


 and the three Poisson equations for the velocity components 


∂2u/∂x2 + ∂2u/∂z2 = -∂ ωy /∂z - ∂2v/∂x∂y 


Δ v = ∂ ωx /∂z - ∂ ωz /∂x 
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∂2w/∂x2 + ∂2w/∂z2 = ∂ ωy /∂x - ∂2v/∂y∂z 


 where the Laplacian is defined as 


Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 


 and Re is the Reynolds number based on the freestream velocity U∞ and a characteristic 
length l (see below).  These equations are completed by the conditions of conservation of 
mass and zero divergence of vorticity 


∂u/∂x + ∂v/∂y + ∂w/∂z = 0 


∂ ωx /∂x + ∂ ωy /∂y + ∂ ωz /∂z = 0 


 There are six unknown quantities to solve. 


The analysis is performed by perturbing the complete unsteady Navier-Stokes equations about the 
basic state.  With x , y , and z being the chordwise (tangent to the surface), normal-to-the-wall, 
and spanwise coordinates, respectively, the Navier-Stokes equations are made dimensionless by 
introducing a length scale.  An appropriate scale taking the y-direction into account is 


1 2


r
e


x
U


νδ ⎛ ⎞= ⎜ ⎟
⎝ ⎠


. 


The quantity rδ  is called the local reference boundary-layer thickness.  Quantities eU  and ν  are 
the local edge velocity and kinematic viscosity, respectively.  Because the goal is a global 
scheme, representative values of x , say 0x , and eU , say U∞ , are selected for the length scale l   


1 2
0xl U


υ
∞


⎛ ⎞= ⎜ ⎟
⎝ ⎠


, 


and the quantity R , the square root of the 0x -Reynolds number 


1 2
0x UR υ


∞⎛ ⎞= ⎜ ⎟
⎝ ⎠


, 


is used to represent distance along the surface for the DNS formulation below. 


The solution to the Navier-Stokes equations ϕ  consists of two parts, the mean laminar flow 
solution Φ  and the disturbance fluctuationϕ′ , 


ϕ ϕ′= Φ +  


where ϕ  represents the vector of total-flow quantities; for example in the primitive variable form 
( , , , , , , , , )u v w p T kϕ ρ μ λ=  and u , v , and w  are the velocity components in the x , y , and 


z directions, respectively.  


The governing equations can be solved for total-flow quantities (basic state plus disturbance) or 
disturbance quantities (basic state solved separately) and, if written in conservative form, 
quantities such as vorticity, energy, etc. are "conserved", even for finite step sizes in the 
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discretized equations.  For transition analysis, equations governing the disturbance are typically 
solved separately from the basic state. The quantities ϕ  and Φ  are each individually solutions to 
the Navier-Stokes equations, however ϕ′  is not. The basic-state formulations are not presented or 
discussed here, however the validity of these formulations must also be considered since the 
transition process is known to be sensitive to subtle changes in the basic state. The numerical 
accuracy of the basic state must be very high, because the stability and transition results will be 
very sensitive to small departures of the mean flow from its “exact” shape. The stability of the 
flow can depend on small variations of the boundary conditions for the basic state, such as 
freestream velocity or wall temperature. Therefore, basic-state boundary conditions must also be 
very accurate. See the discussion of Arnal (1994) and Malik (1990). 


Because of the need for high spatial resolution, higher than in conventional CFD applications, the 
use of high-order finite differences and spectral methods is particularly attractive.  This is 
particularly important numerically when trying to advance into regions of large growth rates, 
small scales, and breakdown.  High-order finite-difference and compact methods are attractive 
because of their enhanced accuracy, relative tolerance of inconsistent boundary conditions, 
usefulness in complex regions, and resulting matrix structure (banded matrix because they are 
local methods); these techniques are very popular in spatial-simulation studies.  Spectral and 
pseudospectral methods are global methods requiring less terms in the approximate solution and 
attractive numerically because of their high accuracy, good resolution in regions of high 
gradients, and exponential convergence properties and have become popular in transition 
simulations in various forms.  Another advantageous property of these methods is that the energy 
can be monitored in the coefficients of the higher terms in the series, thus signaling when 
resolution is inadequate and the simulation must be terminated.  Collocation methods are often 
used for their ease of application, while Galerkin methods can be used in the development of 
divergence-free basis functions and tau methods may be used when fast solvers are available.  
However, the issues of incorporating inconsistent boundary conditions, applying spectral methods 
to complex geometries and compressible flows, and solving flows with discontinuities away from 
boundaries (Gibbs phenomenon) need to be further addressed.  In general, promising active areas 
of effort include improved iterative convergence and multigrid techniques and spectral domain 
decomposition and multidomain methods. 


One must determine a workable combination of governing equations, boundary conditions, and 
numerics for each given problem.  What works for one situation may not work for another.  The 
available computer, in particular, the architecture, vector length, speed, and memory, also dictates 
what approach is taken.  Thus far, to this author's knowledge, all simulations have assumed 
periodicity in the spanwise direction and used Fourier series there.  (The use of Fourier series 
allows for the use of Fast Fourier Transforms (FFTs) for the efficient computation of derivatives.) 


Investigators are working the prohibitive-computer-resource issue by developing advanced, 
highly accurate algorithms and the time and memory savings reported by investigators have thus 
far been encouraging in allowing the spatial simulation to become a more viable tool for the 
determination of the basic physics.  More work to reduce resource requirements for general 
geometries must be vigorously pursued, however, if spatial simulations are ever to become 
routine in design. 
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3.0 DISTURBANCE BOUNDARY CONDITIONS 


3.1 Disturbance Input 
One advantage of spatial simulations is the freedom and control of what is input as a disturbance; 
the computation can be made to mimic experiments and provide some guidance.  If disturbances 
are to be introduced directly into the boundary layer along the inflow, typically normal modes 
from the linear stability theory equation and/or random disturbances have been successfully used.  
As another example, Singer et al. (1989; temporal simulation) used a combination of random 
noise and vortices as upstream conditions in the plane channel and showed that, depending on the 
amplitude of the vorticity, the route to turbulence can be altered and experimental results 
matched.  Alternatively, a periodic suction/blowing (Fasel et al. 1987, 1990) or heater strip (Kral 
& Fasel 1989, 1990) on the surface will introduce disturbances;  this is incorporated into the wall 
boundary conditions.  Spalart (1989, 1990, 1991, 1993) introduces any of random noise, 
stationary and traveling waves, packets, etc. by means of a body force added to the right-hand 
side of the momentum equation. 


Providing input upstream of the Branch I neutral point of the linear stability curve allows the 
noise to be washed out of the true disturbance signal in a region of damping before subsequent 
amplification.  All of the above techniques produce linear waves with the appropriate frequency 
and wavelength, although, the introduction of modes at the upstream boundary requires the 
smallest downstream distance for this adjustment.  However, some of the other techniques can be 
argued to more mimic the experimental setup. 


Alternatively, disturbances can be introduced along the boundaries in the freestream along and/or 
upstream of the body.  For receptivity studies, oscillatory sound and vorticity disturbances are 
prescribed. 


3.2 Freestream Conditions  
For incompressible flow, typically the computational box is extended far enough away from the 
surface to a finite height YN to enable the application of decayed-disturbance conditions at the 
edge; Dirichlet conditions of zero disturbances could be used there, but to eliminate possible 
reflections from the farfield, 


∂q'/∂y (x, z, Y
N


) = 0 


where q' = (u',v',w'), is another possibility.  In the case of receptivity, it is possible that an 
oscillation is provided along some portion of the freestream boundary (see below under 
receptivity).  Fasel & Konzelmann (1990) pointed out that extending the domain to infinity and 
mapping to a finite domain can add artificial viscosity to the system (Roache 1985), which is very 
undesirable when the objective is to accurately determine the hydrodynamic stability of a flow. 


For supersonic flow, the above conditions can result in spurious reflection from the freestream 
boundary back into the computational domain.  Here one can use a non-reflecting condition 
(Thompson 1987) based on the inviscid Euler equations containing only the outgoing 
characteristics. 


When the coordinate system for both the basic-state and stability analysis fit the body and bow 
shock as coordinate lines, linearized Rankine-Hugoniot shock-jump conditions are recommended 
for the disturbance boundary conditions. 
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3.3 Wall Conditions 
The disturbance may be input to the computational domain along some part of the wall.  
Otherwise, at the wall, no-slip conditions are used 


0u v w T′ ′ ′ ′= = = =  


If an adiabatic wall is assumed, then  


0T
y


′∂ =∂  


If a 5th condition is needed, either the continuity equation or wall-normal momentum equation can 
be used.  Wall chemistry conditions are discussed in Chapter 13 for hypersonic flows. 


3.4 Downstream Boundary Conditions  
In disturbance-propagation problems, it is necessary to impose nonreflecting outflow conditions.  
The elliptic nature of the Navier-Stokes equations comes from two sources:  the pressure term 
and the viscous terms.  Interaction of these two effects produces upstream influence; if local 
velocity perturbations interact with the condition imposed at the downstream boundary, a 
pressure pulse can be generated that is immediately felt everywhere in the flowfield including the 
inflow boundary.  For example, the popular extrapolation and characteristic conditions applied at 
the downstream boundary lead to reflections back upstream. 


Fasel and colleagues developed the wave condition 


∂2q'/ ∂x2 = -α2q' 


where α is the dominant streamwise wavenumber and q' is a disturbance quantity.  However, 
unless a single, small 2-D disturbance is the focus of the study, the downstream boundary has to 
be kept far enough ahead of the disturbance wavefront and the computation stopped before the 
disturbance hits the downstream boundary to avoid reflections.  To quote Fasel et al., "For large 
growth rates that particularly arise in the leading wave packet, the boundary conditions" above 
"were not satisfactory and caused strong distortions of the flow field. 


The boundary layer is a parabolic, convectively unstable system, where controlled disturbances 
applied upstream convect downstream and affect transition.  But once these disturbances pass by, 
the boundary layer reverts to its original state before the forcing.  As long as sufficient resolution 
is used and the boundary-layer thickness to streamwise distance is small enough to prevent the 
transmission of pressure signals over distances of the order of x, advantage can be taken of this 
property of small upstream influence in formulating the downstream condition. 


As one of many examples available in the literature, Streett & Macaraeg (1989) developed a 
buffer domain.  Here a region was appended to the downstream end of the computational domain.  
In this region, the governing equations were modified to support only downstream-moving 
waves.  By applying the multiplicative factor 


c(x) = 0.5 tanh[c1(Lh-x)] + 0.5 
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• to the streamwise viscous terms c(x) ∂2u'/∂x2 to eliminate upstream-influence effects at 
the boundary 


• to the streamwise-perturbation part of the convective velocity c(x) u' (∂U/ ∂x + ∂u'/ ∂x) to 
eliminate the possibility of advecting streamwise gradients upstream, and  


• to the right-hand side of the pressure equation  for consistency,  


these effects were reduced to zero smoothly with increasing x.  Note that when c(x) is zero, the 
pressure is decoupled from the velocity.  [Here, Lh is the half-length of the buffer domain, c1 is a 


stretching parameter, x is the streamwise coordinate measured relative to the beginning of the 
buffer domain, U' is the perturbation velocity vector, u' is the streamwise perturbation velocity, 
Ub is the base-flow velocity vector.] Joslin et al. (1992a) applied this technique to their fourth-


order central-/compact-differencing/spectral code and showed that a buffer region of only three 
Tollmien-Schlichting (T-S) wavelengths long was sufficient for damping.  Obviously, the 
solution in the buffer region is inaccurate, so that limiting the necessary extent of this region is 
important. 


Other buffer treatments have been proposed and it appears that as long as some sort of reasonable 
treatment is done downstream ahead of the boundary, the problem of wave reflection back 
upstream seems to be under control.  The major concern is to minimize the wasted region in the 
computation, in order to keep required resources to a minimum. 


4.0 VERIFICATION AND VALIDATION 


Here we distinguish between verification and validation. Per the designations of Roache (1997), 
we consider verification to mean “confirming the accuracy and correctness of the code” (i.e. is 
the grid resolved, are there any programming errors in the codes, etc.). Validation requires 
verification of the code in addition to confirming the adequacy of the equations used to model the 
physical problem. Strictly speaking, a code can only be validated by comparison with quality 
experimental data. 


There are mainly three sources of error in the abstraction of continuous PDE's to a set of discrete 
algebraic equations; (1) discretization errors, (2) programming errors (bugs), and (3) computer 
round-off errors. The objective of code verification is then to completely eliminate programming 
errors and confirm that the accuracy of the discretization used in solving the continuous problem 
lies within some acceptable tolerance. Aside from specifying single or double precision, the code 
developer has little control over the computer round-off errors, but this is usually several orders 
of magnitude smaller than the discretization error and far less than the desired accuracy of the 
solution. 


In this section we address programming and discretization errors. Many methods are discussed in 
the literature for code verification using grid refinement, comparison with simplified analytical 
cases, etc. For recent discussions see Roache (1997) and Oberkampf et al. (1995). Specific 
suggestions for testing a CFD code for the study of transition include (a) grid-refinement studies, 
(b) solving test problems for which the solution is known, (c) changing the “far-field” boundary 
locations systematically and re-solving, (d) comparing linear growth rates, neutral points, and 
eigenfunctions with linear stability theory, (e) running the unsteady code with time-independent 
boundary conditions to ensure that the calculations remain steady, and (f) running geometrically 
unsymmetric codes with symmetric conditions. 
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In addition to the usual code verification techniques, there is a general method to verify the 
discretizations and locate programming errors by comparison with “manufactured” analytical 
solutions (Steinberg & Roache, 1985). This method is general in that it can be applied to any 
system of equations. Although it is an extremely powerful tool, this method has received 
relatively little attention in the literature. For clarity the technique is demonstrated on the Poisson 
equation. 


( )yxF
y
u


x
uLu ,2


2


2


2
=


∂


∂
+


∂


∂
≡  


To solve this problem, discretize the operator L using some appropriate approximation (finite 
differences, spectral, etc.). In general, the exact solution is not available. Therefore, for 
verification purposes, force the solution to be some combination of analytical functions with 
nontrivial derivatives. For example, consider the system ( )xeLvg y 2sin5 3=≡ , which has an 
analytical solution ( )xev y 2sin3= . The exact solution can then be compared with the computed 
solution. Of course, manufactured solutions should be chosen with topological qualities similar to 
those anticipated for the solution to the “real” problem (e.g. gradients close to the wall). Proper 
choice for the manufactured solutions also allows the discretization of the boundary conditions to 
be verified. For large systems of equations a symbol manipulator is recommended for computing 
g. If a bug occurs, zeroing the coefficients of some terms in the equation can help to isolate the 
bug. 


Validation is defined as encompassing verification of the code as well as confirming that the 
equations used to model the physical situation are appropriate. The basis of validation is assumed 
to be a successful comparison with the few careful, archival experiments available in the 
literature. To date the DNS have been successfully validated for a variety of 2- and 3-D flow 
situations.   


5.0 BASIC PHYSICS AND VALIDATION 


In this section, we outline progress in DNS studies of receptivity and mechanisms for unswept 
flowfields. 


5.1 Receptivity 
In spite of progress, an overall theory remains rather incomplete with regard to predicting 
transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous 
layer strongly influence which type of transition occurs. Thus, it is necessary to understand how 
freestream disturbances are entrained into the boundary layer and create the initial amplitudes of 
unstable waves, i.e., to answer the question of receptivity. 


External disturbances common to the flight environment are typically either acoustic or vortical. 
These types of disturbances are referred to as natural disturbances. In contrast, disturbance 
environments produced by artificial means such as a vibrating ribbon or suction & blowing are 
referred to as forced disturbances. Whereas forced disturbances typically contain a broadband of 
wavelengths, naturally occurring disturbances typically have a narrow wavelength band. The 
important distinction is that acoustic waves or vortical disturbances generally will not contain a 
wavelength that coincides with the instability that is generated within the boundary layer. Thus in 
this case some mechanism for transferring energy from a much longer wavelength wave to a 
relatively small wavelength instability wave must exist.  
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For the discussion here, the focus is on 2-D boundary layers and the ultimate goal is to determine 
how the wave amplitude within the boundary layer can be found from a freestream measurement. 
Since receptivity deals with the generation rather than the evolution of instability waves in a 
boundary layer, neither departures from the linear-mode scenario nor details of the transition 
process itself are discussed here. 


For incompressible flows, receptivity has many different paths through which to introduce a 
disturbance into the boundary layer. These include the interaction of freestream sound or 
turbulence with leading-edge curvature, discontinuities in surface curvature, or surface 
inhomogeneities. Moreover, the picture for 3-D flows is expected to be different than that of 2-D 
flows. Essentially, the incoming freestream disturbance at wavenumber fsα  interacts with a non-
homogeneity of the body causing its spectrum to broaden to include the response wavenumber 


TSα . Small initial amplitudes of the disturbances tend to excite the linear normal modes of the 
boundary layer which are of the T-S type (Mack 1984). 


It is believed that the vortical parts of the freestream disturbances (turbulence) are the 
contributors to the 3-D aspects of the breakdown process (Kendall 1984, 1998) while the 
irrotational parts of the freestream disturbances (sound) contribute to the initial amplitudes of the 
2-D T-S waves Kosorygin et al (1995). Thus, freestream sound and turbulence present a different 
set of problems in the understanding, prediction, and control of boundary transition and, as such, 
each require unusual experimental and computational techniques. 


In this section we focus on recent DNS simulations of leading-edge effects and confine our 
discussion to incompressible flow.  A review of the earlier computational efforts is given by Saric 
et al (1994, 1999, 2002) and is not repeated here.  This is a critical area in need of validation 
where spatial DNS can excel if the community is to begin to accurately model how the freestream 
relates to the transition mechanisms observed in the boundary layer and ultimately predict 
transition location.  
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5.1.1 DNS of Leading-Edge Receptivity to Freestream Sound 


Theoretical Basis. Theoretical investigations into acoustic receptivity have blazed the trail in our 
understanding and identified mechanisms for the transfer of energy among disparate wavelengths. 
In the research of Lam & Rott (1960), Ackerberg & Phillips (1972), and Goldstein (1983), 
receptivity to acoustic waves impinging upon a flat-plate geometry at zero angle of incidence was 
investigated. The primary mechanism for transferring energy is the relatively rapid growth of the 
mean boundary layer and the associated pressure gradients near the stagnation point. The 
investigations were performed using the Linearized Unsteady Boundary Layer Equation 
(LUBLE) which is a parabolic equation and therefore conducive to less costly numerical 
methods. Energy from the external disturbance environment is transferred to streamwise decaying 
eigenfunctions whose wavelength decreases as the flow progresses downstream. Thus a process 
by which long wavelengths become shorter wavelengths is found in these so called Lam-Rott 
eigenfunctions. The Lam-Rott eigenfunctions match onto solutions of the linear stability theory 
downstream. Therefore if one knows the amplitude of the Lam-Rott eigenfunction the amplitude 
of the instability wave downstream is known. Goldstein et al. (1983) and Heinrich & Kerschen 
(1989) calculated leading-edge receptivity coefficients for various freestream disturbances. 
Goldstein (1985) and Goldstein & Hultgren (1987) also showed that discontinuities in slope or 
curvature in the geometry also provide a mechanism for acoustic receptivity. Regions where 
surface irregularities exist promote small-scale variations of the mean-flow boundary layer and 
therefore the mechanism is very similar to the flat-plate case with no surface irregularity. 


Heinrich et al. (1988) applied the LUBLE to acoustic waves at varying angles of incidence 
impinging upon a flat plate. The results produced show a strong dependence of initial amplitude 
of the instability wave on the angle of incidence of the impinging acoustic wave. In addition, the 
effect of angle of incidence is found to be more pronounced for smaller Mach numbers and 
singular in the limit as the Mach number approaches zero.  


The above results apply to a zero-thickness flat plate. Hammerton & Kerschen (1996, 1997) 
extend the analysis to account for a finite-thickness and -curvature leading edge by considering a 
parabolic geometry. The analysis is formulated to provide insight into the effect of nose radius, an 
effect present in any manufacturable geometry. The Mach number and the amplitude of the 
impinging acoustic disturbance are considered to be small, so that the mean-flow pressure field 
can be computed with incompressible theory. The mean flow is two-dimensional and symmetric. 
Lam & Rott (1993) generalize their eigenfunctions to account for arbitrary streamwise variation 
in the mean flow, and Hammerton & Kerschen (1996) show that their expressions are in 
agreement with these more general results. The relevant parameter is the Strouhal number based 
on the nose radius Str. The results of this work show that the receptivity coefficient is nearly unity 
when the nose radius is zero and decreases dramatically with increasing nose radius. The 
receptivity coefficient is shown to increase with increasing angle of incidence of the acoustic 
wave. Hammerton & Kerschen (1997) consider the small-Strouhal-number limit. For freestream 
acoustic waves at zero incidence, the receptivity is found to vary linearly with Strouhal number, 
giving a small increase in the receptivity coefficient relative to that for the flat-plate case. 
However, for oblique waves, the receptivity varies with the square root of the Strouhal number, 
leading to a sharp decrease in the amplitude of the receptivity coefficient compared to the flat-
plate case. 


Experiments.  A leading edge with finite curvature and thickness has been shown to produce 
instability waves. Experiments in leading-edge receptivity have shown that great care must be 
taken in order to produce results that are comparable to theory and numerical simulation (Saric 
1994). The very small amplitudes upstream are not detectable in the experiments and the 
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instability waves can only be measured after significant growth has occurred. However, once the 
amplitude of an instability wave has been determined downstream one can use linear stability 
theory to provide amplitudes in the leading-edge region. 


Receptivity Coefficient. Receptivity results can be expressed either in terms of 


• a leading-edge receptivity coefficient defined as the ratio of the T-S amplitude in the 
leading-edge region at ( )2x O U fπ∞=  to the freestream-sound amplitude: 


 LE TS acLE fs
K u u′ ′=  (1) 


or 


• a Branch I receptivity coefficient defined as the T-S amplitude at Branch I normalized 
with the freestream-sound amplitude 


 I TS acI LE
K u u′ ′=  (2) 


where  denotes absolute value or rms. 


Haddad & Corke (1998) argue that the appropriate receptivity coefficient is Equation (1), the one 
that uses the T-S amplitude at the leading edge, LETSu′ , instead of ITSu′ . The advantage is that 
one can define the receptivity coefficient, KLE, based strictly on local properties of the leading-
edge region, whereas ITSu′  and KI depend on the pressure gradient history from the leading edge 
to Branch I. Moreover, KLE decreases with nose radius and KI increases with nose radius which 
could lead to some confusion. 


These arguments are compelling, but utilitarian issues argue for the use of Equation (2).  For 
example: 


• it is impossible for an experiment to measure LETSu′  


• most transition correlation schemes begin with Branch I calculations 


• the pressure gradient history can easily be accounted for by linear stability theory 
calculations up to a region near the leading edge. 


The author strongly urges that Equation (2) be adopted as the accepted measure of receptivity. 


DNS Validation. With the spatial computational method, finite curvature can be included in the 
leading-edge region.  This feature was left out of some early unsuccessful receptivity models. Lin 
et al (1992) demonstrated that as the aspect ratio of the elliptic nose on a flat plate is sharpened 
from 3 (blunt) to 9 to 40 (very thin) and the vorticity tends to become singular. By stipulating the 
plate to have finite curvature at the leading edge, the singularity there is removed and a new 
length scale is introduced. 


Experimentally, the most popular model geometry for receptivity has been the flat plate with an 
elliptic leading edge. Thus it is reasonable that computational models consider the same 
geometry. However, the curvature at the juncture between the ellipse and the flat plate is 
discontinuous and provides a source of receptivity (Goldstein 1985; Goldstein & Hultgren 1987). 
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Lin et al (1992) introduced a new leading-edge geometry based on a modified super-ellipse 
(MSE) given by 


( )[ ] ( ) [ ] axbyaxa nxm <<=+− 0,1  


( ) [ ] 2 and 2 2 =+= naxxm  


where ( )ARba = , b is the half-thickness of the plate, and AR is the aspect ratio of the "elliptic" 
nose. For a usual super-ellipse, both m and n are constants. These super-ellipses will have the 
advantage of continuous curvature (zero) at the juncture with the flat plate as long as 


ARbxm => at  2 . The MSE, with m(x) given above, has the further advantage of having a nose 
radius and geometry (hence a pressure distribution) close to that of an ordinary ellipse. 


 


Figure 2. Lin et al. (1992) demonstrated that when the discontinuity in curvature at the 
ellipse/flat-plate juncture (left figure) was faired by a polynomial (right figure), 


receptivity was cut in half.  Note the colors in the figure on the right are less intense 
downstream near the wall.  The aspect ratio of the elliptic leading edge is 6. 


Lin et al (1992) simulated the receptivity of the laminar boundary layer on a flat plate by solving 
the full Navier-Stokes equations in general curvilinear coordinates. They used a C-type 
orthogonal grid and included the finite-thickness leading edge and curvature. Geometries tested 
included elliptic, polynomial-smoothed elliptic, and MSE leading edges of different aspect ratios. 
Various sound-like oscillations of the freestream streamwise velocity were applied along the 
boundary of the computational domain and allowed to impinge on the body. Parameters that were 
varied included disturbance amplitude and frequency, as well as leading-edge radius and 
geometry. They found the following: 


•  T-S waves appearing in the boundary layer could be linked to sound present in the 
freestream. 


• Receptivity occurred in the leading-edge region where rapid streamwise adjustments of 
the basic flow occurred. 


• The magnitude of receptivity and the disturbance response depended very strongly on 
geometry. For example: 
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• For plane freestream sound waves, T-S wave amplitude at Branch I decreased as the 
elliptic nose was sharpened. However, this is due to the relaxation of the adverse 
pressure gradient 


• When the discontinuity in curvature at the ellipse/flat-plate juncture was faired by a 
polynomial, receptivity was cut in half 


• The disturbance originated from the location of the maximum in adverse pressure 
gradient. 


• The receptivity to plane freestream sound appeared to be linear with freestream-
disturbance amplitudes up to about 5% ∞U . Thus, a linear Navier-Stokes solution could 
be used up to these levels. 


Fuciarelli et al (2000) and Wanderly & Corke (2001) obtain receptivity coefficients for a 20:1 
MSE over a range of frequencies that can be compared with the experiments of Saric & White 
(1998). The results are shown in Table 1. The receptivity coefficient, KI, is as defined above in 
Equation (2) referencing the Branch I neutral stability point. The receptivity coefficients have 
been extrapolated downstream from the numerical results by using linear stability theory. The 
results of the numerical simulations show no significant variation with frequency. The agreement 
between the computations and the experiment is excellent, and we conclude that each validates 
the other.  One notes that the experiment is exceptionally difficult and requires very special care. 


TABLE 1: Branch I receptivity coefficients for multiple frequencies as predicted by DNS 
and compared with the experiments. 


 
 Wanderley & Corke Fuciarelli et al Saric & White 
 (2001) (2000) (1998) 
Case DNS DNS Experiment 


 
F  90 82—86 88—92 
KI 0.046 0.048 0.050 ± 0.005 


 
 


 


 


 


 


 


Figure 3.  Saric & White (1998) 
demonstrate that their 
experimentally measured 
disturbance mode indeed 
matches that predicted by LST. 
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Wanderly & Corke (2001) extend the computations over the frequency spectrum at the same 
Reynolds number for the case of different leading edge shapes. This is an extraordinarily useful 
result. Not only does one have the Branch I initial amplitude for an amplification factor 
calculation (given a freestream measurement) but also a very good example of how a leading-
edge design needs to proceed. 


In the case of receptivity, theory has led the way in our understanding.  Here the DNS results are 
compared with the theoretical predictions of Goldstein (1983), Kerschen et al (1990), and 
Hammerton & Kerschen (1996) where the leading-edge receptivity coefficient is found to be 
approximately 0.95 (Equation 1). The results of Haddad & Corke (1998) show that the leading-
edge receptivity coefficient has a value of approximately 0.47 for a Strouhal number, 


∞= UfrS n π2 , of 0.01. Using the same Strouhal number, Fuciarelli et al (2000) march upstream 
to an x-location of 1/2 the wavelength of the associated instability wave [which approximates the 
LUBLE region defined by ( )]12 OUfx =∞π  and predict a leading-edge value of approximately 
0.75. In an improved calculation, Erturk & Corke (2001) predict KLE = 0.64 at S = 0.01 and KLE = 
0.76 at S = 0. All of the computations show a strong decrease in KLE with an increase in S in 
agreement with theory. In trying to do these comparisons, certain difficulties arise and hence the 
differences between the calculations is purely technical. The major uncertainty that exists in the 
DNS (and experiments) is the use of KLE and the choice of streamwise location in the leading-
edge region at which the amplitude should be sampled for comparison with the asymptotic 
theory. However crude these comparisons may be, it is clear that the essential ideas of the 
asymptotic theory have been verified experimentally and computationally. 


5.1.2 DNS of Leading-Edge Receptivity to Freestream Sound at Angle of Incidence  


Acoustic waves impinging upon the leading edge at angles of incidence αac were studied 
numerically by Haddad & Corke (1998), Fuciarelli et al (2000), and Erturk & Corke (2001).  The 
comparisons among the three are difficult for a number of reasons. The computations have a 
semi-infinite body and the theory has a finite chord. Haddad & Corke (1998) vary both body and 
incident sound angle of attack while Fuciarelli et al (2000) fix the body and vary the incident 
sound angle. Nevertheless some highlights are relevant. 


Non-symmetric forcing of the acoustic wave yielded an increase in the leading-edge receptivity 
coefficient with increasing angle of incidence but at a much smaller rate than that predicted by the 
theory for the zero-thickness flat plate. The slope of the increase in receptivity for the DNS is 
approximately 0.15 whereas the increase as predicted by Heinrich & Kerschen (1989) is about 
0.65. The DNS predicts a slope of less than 1/4 of the slope predicted by this theory. 


A comparison with the finite-nose-radius theoretical results of Hammerton & Kerschen (1996, 
1997, 2000) shows much more encouraging results.  Fuciarelli et al (2000) use an Ansatz (details 
are in the paper) for finite chord and developed the following comparison of KLE at S = 0.01. 


TABLE 2: Leading-edge receptivity coefficients for various incidence angles as 
predicted by DNS and compared with the finite-nose-radius theory. 


  Fuciarelli et al (00) Hammerton & Kerschen (96) 
    
 acα (degrees) KLE DNS KLE Theory 
 0 0.75 1.0 
 5 1.3 1.8 
 10 2.1 2.6 
 15 3.2 3.4 
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The agreement is excellent and clearly demonstrates the importance of including the effects of the 
finite nose radius in any receptivity study. 


5.1.3 Receptivity to freestream vorticity  


The characteristic length scale for freestream vorticity is the convective wavelength fU π2∞ , 
which is approximately 3 times that of the amplified T-S wave at that frequency. 


The Kendall Experiment. Over the past 20 years, Kendall has developed careful and well-
thought-out experimental setup where the freestream turbulence can systematically be controlled 
and initiation of T-S waves in the boundary layer can be examined. The specific goal of these 
experiments was to relate T-S wave amplitude to measured freestream turbulence amplitude. 


In contrast to acoustic forcing, freestream turbulence initiates three distinct motions within the 
boundary layer. The first motion is a sustained, streaky ( )δ2≈z , high amplitude 
( )∞−≈′ Uu %105  motion, which is probably due to stretching of the ingested freestream vorticity 
and the growth of transient modes. This is historically called the Klebanoff mode. The second is 
an outer-layer oscillation at T-S frequencies that grows weakly in the stream direction. These 
modes may have some connection with the continuous spectrum of the linear stability theory, but 
this is not clear. The third is the usual T-S mode, which exhibits higher growth rates.  


The KTH Experiments. The KTH experiments had as their goal the determination of the role of 
transient growth.  


• The boundary layer responds nonlinearly to an increase in freestream turbulence as first 
shown by Kendall. Again there is the conjecture that there is a continuous receptivity 
process along the streamwise extent of the boundary layer.  


• Transient (algebraic) growth plays a more important role in the boundary layer response 
as freestream turbulence is increased. Referring back to the Roadmap, the path to 
transition for the lowest freestream disturbance levels (A) does not include transient 
growth. As the freestream amplitude is increased, a point is reached where the primary 
linear stability theory modes are bypassed completely.  


• Transient growth plays a particularly strong role in the presence of distributed surface 
roughness.  


• As with Kendall experiments, the coupling coefficient has not been determined.  


DNS Validation. Buter & Reed (1994) simulated the receptivity of the laminar boundary layer on 
a flat plate by solving the full Navier-Stokes equations in general curvilinear coordinates using 
the same techniques and geometries as Lin et al (1992). A simple model of time-periodic 
freestream spanwise vorticity was introduced at the upstream computational boundary. This 
signal was decomposed into a symmetric and asymmetric streamwise velocity component with 
respect to the stagnation streamline. The computations were performed with these individual 
components specified as boundary conditions so that for small disturbances, the results could then 
be linearly superposed. Moreover, the effect of a transverse-velocity component at the leading 
edge could be ascertained as the asymmetric-velocity case had this feature while the symmetric-
velocity did not. They found the following: 
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• As the disturbance convected past the body, it was ingested into the upper part of the 
boundary layer, decaying exponentially toward the wall. This was consistent with the 
findings of Kerschen (1989) and Parekh et al (1991). 


• Different wavelengths were evident in the boundary-layer response. Signals at the T-S 
wavelength were dominant near the wall, while toward the edge of the boundary layer, 
disturbances of the freestream convective wavelength were observed. This was consistent 
with the experimental observations of Kendall (1991). 


• T-S waves appearing in the boundary layer could be linked to freestream vorticity acting 
near the basic-state stagnation streamline.  


• For the particular geometric and flow conditions considered in this study, receptivity to 
vorticity was found to be smaller than receptivity to sound by a factor of approximately 
three. 


• Modifications to the geometry which increased the surface pressure gradient along the 
nose increased receptivity. 


• For both the symmetric and asymmetric freestream velocity perturbations, the T-S 
response was linear with forcing over the range of amplitudes considered; symmetric: up 
to 4.2% ∞U  and asymmetric: up to 2.1% ∞U . 


• A superharmonic component of the disturbance motion was observed at all forcing levels 
for the asymmetric forcing. This was initially observed in the stagnation region where the 
interaction of the asymmetric gust with the basic flow induced a large transverse velocity 
component which interacted with the adverse pressure gradient upstream of the nose to 
transfer disturbance energy to the superharmonic frequency. 


5.1.4 Observation 


The past decade has seen considerable progress in the understanding of receptivity mechanisms. 
The agreement among theory, computations, and experiment on leading-edge receptivity and 2-D 
roughness (although not discussed here) is remarkable.  DNS has been established as a viable 
framework for more detailed studies on different geometries. Challenges still exist in the areas of 
freestream turbulence, transient growth, and bypasses. We expect progress to occur when 
theoretical, computational, and experimental methods are combined to address these important 
problems. 


For each configuration under consideration, the complete integrated picture of geometry and 
associated pressure gradients (both favorable and adverse) must be included in any meaningful 
evaluation of receptivity, and it is here that computations by spatial DNS can excel. A variety of 
different freestream disturbances can be implemented with this technique and the response of the 
boundary layer quantified and catalogued. Moreover, these results begin to provide the link 
between the freestream and the initial boundary-layer response and can provide the upstream 
conditions for further DNS or Parabolized Stability Equation (PSE) simulations accurately 
marching through the transition process toward turbulence. 


5.2 Secondary Instabilities and Transition Mechanisms in 2-D Boundary Layers 
There are different possible scenarios for the transition process, but it is generally accepted that 
transition is the result of the uncontrolled growth of unstable 3-D waves.  In this section, the 
reader is only glimpsing the kinds of problems that the DNS has and can tackle in our quest to 
understand, predict, and control transition.  It proves to be a powerful tool in helping sort out the 
physical mechanisms at work.  
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5.2.1 Fundamental Mode Breakdown   


The occurrence of 3-D phenomena in an otherwise 2-D flow is a necessary prerequisite for 
transition (Tani 1981).  Such phenomena were observed in detail by Klebanoff et al. (1962) and 
were attributed to a spanwise differential amplification of T-S waves through corrugations of the 
boundary layer.  The process leads rapidly to spanwise alternating “peaks” and “valleys”, i.e., 
regions of enhanced and reduced wave amplitude, and an associated system of streamwise 
vortices.  The peak-valley structure evolves at a rate much faster than the (viscous) amplification 
rates of T-S waves.  This represents the path to transition under conditions similar to Klebanoff et 
al. (1962) and is called a K-type breakdown.  The lambda vortices are ordered in that peaks 
follow peaks and valleys follow valleys.  Since the pioneering work of Nishioka et al. (1975, 
1980), it is accepted that the basic transition phenomena observed in plane channel flow are the 
same as those observed in boundary layers.  Therefore, little distinction will be given here as to 
whether work was done in a channel or a boundary layer.  From the theoretical and computational 
viewpoint, the plane channel is particularly convenient since the Reynolds number is constant, the 
mean flow is strictly parallel, certain symmetry conditions apply, and one is able to apply 
temporal theory.  Thus progress was first made with the channel-flow problem. 


 
Figure 4a.  Visualization of K-type breakdown (Saric 1986). Flow is from left to right. 
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Figure 4b. Sketch depicting K-type breakdown.  Flow is from left to right. 


5.2.2 Subharmonic Mode Breakdown   


Different types of 3-D transition phenomena observed (Saric & Thomas 1984, Kachanov et al. 
1977, Thomas & Saric 1981, Kachanov & Levchenko 1984, Saric et al. 1984, Kozlov & 
Ramazanov 1984) are characterized by staggered patterns of peaks and valleys and by their 
occurrence at very low amplitudes of the fundamental T-S wave.  This pattern also evolves 
rapidly into transition.  Hot-wire measurements in these experiments show that the subharmonic 
of the fundamental wave (a necessary feature of the staggered pattern) is excited in the boundary 
layer and produces either the resonant wave interaction predicted by Craik (1971; called the C-
type) or the secondary instability of Herbert (1984; called the H-type).  Spectral broadening to 
turbulence with self-excited subharmonics has been observed in acoustics, convection, and free 
shear layers and was not identified in boundary layers until the preliminary results of Kachanov et 
al. (1977).  This paper re-initiated the interest in subharmonics and prompted the simultaneous 
verification of C-type resonance (Thomas & Saric 1981, Kachanov & Levchenko 1984).  
Subharmonics have also been confirmed for channel flows (Kozlov & Ramazanov 1984) and by 
direct integration of the Navier-Stokes equations (Spalart 1984, Spalart & Yang 1987). 
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Figure 5a.  Experimental visualization of different transition mechanisms on a flat plate. 


Successive images (top to bottom) represent the same operating conditions on the 
same flat plate in the same quiet wind tunnel, but with increasing introduced initial 
disturbance amplitude.  Figures (a) – full laminar flow, (b) Craik-type or C-type triad 


resonance, (c) Herbert-type or H-type subharmonic breakdown, (d) Klebanoff-type or K-
type breakdown.  Note the very significant differences in the transition location due to 


differences in upstream conditions and associated breakdown processes.  Flow is from 
left to right.  From Saric (1986). 
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Figure 5b.  Sketch depicting H-type breakdown.  Flow is from left to right. 


 
Corke & Mangano (1989) and Corke (1994) introduced controlled 3-D subharmonics alongwith 
the 2-D fundamental.  Only then could detailed measurements be made of the disturbance flow 
field.  By using segmented heating elements, it is possible to phase shift a signal to each element 
and create an oblique wave at any angle or frequency.  Then the 2-D fundamental and the 3-D 
subharmonic are a simple electronic superposition (Corke 1994). As a result, the Corke 
subharmonic experiments contain the most complete and reliable set of data on subharmonic 
breakdown.  Both chordwise and spanwise variations of the fundamental and subharmonic are 
given. Corke (1990) gives several possible interactions.  Another example of the richness of this 
work are the disturbance streamlines that are reconstructed from numerous profiles.  These 
measurements are taken at different chord locations but at the same point in the oscillation cycle.  
One sees an increase in intensity toward the wall as the measurements move downstream.  These 
are data that will positively challenge and validate the NPSE and DNS work.  The space in this 
report is not sufficient to cover all of the different types of behavior that are part of the 
subharmonic breakdown process.  The reader is encouraged to go to the original references. 


5.2.3 Direct Numerical Simulation. 


A surprise that results from the analytical model of Herbert (1984) and the Navier-Stokes 
computations of Singer et al. (1986, 1989), is that under amplitude conditions of the 
experimentally observed K-type breakdown, the subharmonic H-type is still calculated to be the 
dominant breakdown mechanism instead of the fundamental mode.  This is in contrast to 
Klebanoff's experiment, confirmed by Nishioka et al. (1975, 1980), Kachanov et al. (1977), Saric 
& Thomas (1984), Saric et al. (1984), and Kozlov & Ramazanov (1984) where only the 
breakdown of the fundamental into higher harmonics was observed.  Only Kozlov and 
Ramazanov observed the H-type in their channel experiments and only when they artificially 
introduced the subharmonic. 


This apparent contradiction was resolved by Singer et al. (1989).  Under the conditions of a 
forced 2-D, T-S wave and random noise as initial conditions, the subharmonic mode is present as 
predicted by theory but not seen experimentally.  However, when streamwise vorticity (as is 
present in the flow from the turbulence screens upstream of the nozzle) is also included, the 
subharmonic mode is overshadowed by the fundamental mode (as in the experiments!).  When 
streamwise vortices are included with the theoretical parabolic shape, the resulting pattern is an 
ordered peak-valley structure.  Here is a case in which the computations have explained 
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discrepancies between theory and experiments.  In the presence of streamwise vorticity, the 
fundamental mode is preferred over the subharmonic; this agrees with experimental observations, 
but not with theory (which does not account for this presence).  Without streamwise vorticity, the 
subharmonic modes dominate as predicted by theory and confirmed by computational 
simulations.  In the presence of streamwise vorticity characteristic of wind-tunnel experiments, 
the K-type  instability dominates and the numerical simulations predict the experimental results.  
Thus, each experiment is naturally contaminated with low-level streamwise vorticity that 
provides the background 3-D that leads to the secondary instabilities.  Moreover, ongoing 
developments in studies of transient growth promise to put the role of streamwise vorticity on a 
firm footing; see the section on transient growth.  


 
 


Experimental measurements of streamwise velocity at various spanwise positions in 
Poiseuille flow channel (Nishioka et al. 1975) 


 


Direct Numerical Simulation and Transition: 2-D Flows 


5 - 22 RTO-EN-AVT-151 


 


 







 


 
Figure 6.  Computations including streamwise vorticity in Poiseuille flow channel 


(Singer et al. 1989) 


 


    
Figure 7.  DNS of plane Poiseuille with forcing of fundamental and random noise shows 
H-type breakdown.  Under same flow conditions, experiment shows K-type breakdown 
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Figure 8.  DNS of plane Poiseuille with forcing of fundamental, streamwise vortices, 


and random noise shows K-type breakdown.  Under same flow conditions, experiment 
shows K-type breakdown. 


 
 
Computations by Fasel et al. (1990) and Fasel (1990) under the conditions of Klebanoff et al. 
(1962) showed poor agreement of the spatial growth at peak and valley stations, until a small 
streamwise pressure gradient was added to the computations.  This pressure gradient was present 
in the experiments of Klebanoff et al.  Rist & Kachanov (1995) made very detailed comparisons 
of the results of hot-wire measurements and DNS for K-type breakdown and showed very good 
agreement of the spatial disturbance development, the disturbance spectra, the instantaneous 
velocity traces, and the local frequency/spanwise-wavenumber spectra.  By detailed quantitative 
comparisons of experimental measurements and  results of DNS, they have generated a validated 
data base that may be used for the validation of different theories. 


Joslin & Streett (1992) simulated the subharmonic experiments of Kachanov & Levchenko 
(1984) and found good qualitative agreement.  There were some modal discrepancies observed 
between the two, though, which were resolved when the computations included a small adverse 
pressure gradient and a small effective frequency variation in the disturbance. 


5.2.4 Point-Source Disturbances   


Another important class of experiments deals with the point source within the boundary layer as a 
generator of 3-D disturbances.  The classical experiment in this area is that of Gaster & Grant 
(1975).  In this work, wave packets are created by impulse disturbances that are introduced at the 
wall.  The initial impulse excites many different modes which are selectively amplified and can 
undergo interference within the boundary layer.  Thus one sees a 3-D packet of waves that grows 
and spreads in the flow direction.  The idea is that this is a model of “natural” disturbance 
generation within the boundary layer with which many common features are shared. Gaster & 
Grant (1975) show a series of hot-wire traces at different downstream distances along the 
centerline and the shape of the disturbed region is shown in contour plots.  Wavenumber-
frequency data are also given with enough detail as to provide the grist for the theoretician's mill.  
See Konzelmann & Fasel (1991) for early efforts (the DNS comparisons are reviewed by Reed 
1994). 


The Gaster & Grant (1975) work provided the foundation paper for looking at stability and 
transition phenomena that was not initiated by 2-D waves (and their subsequent interaction with 
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3-D) and as such, it is one of the important breakdown mechanisms that must be considered.  It 
should be pointed out that one cannot rank the importance of different initial conditions that lead 
to transition because experience has shown that almost anything can happen.   


Breuer & Haritonidis (1990) and Breuer & Landahl (1990) did linear experiments along with 
linear theory and temporal DNS for large disturbances in the case of an impulsive point 
disturbance.  The linear results look classical although no direct comparison between theory and 
experiment is given.  The nonlinear calculations, are useful in that they illustrate the presence of 
strongly inflected velocity profiles that could give rise to secondary instabilities. 


5.2.5 Large-Amplitude-Disturbance Input  


Under-resolved DNS solvers may possibly still capture the gross or mean features of transition.  
But this is not yet clear, and the present author suggests caution even if your goal is just a 
qualitative or ballpark prediction of transition location.  If the details of the transition process are 
important, then this approach will more than likely give misleading results.  Another observation 
with these high-freestream-turbulence computations is that there is definitely a need for accurate 
descriptions and cataloguing of the freestream environment, since transition has been well 
documented to be highly sensitive to this. 


5.2.6 Supersonic/Hypersonic Flows   


Following the discussion in Chapter 4, in contrast to incompressible flows, there is no guidance 
from experiments regarding the nonlinear stages of transition in supersonic and hypersonic flows. 
There is no comparable Klebanoff experiment.   Initial CFD efforts have indicated that the 
amount of resources required can far exceed an incompressible calculation; gradients of 
disturbance quantities are generally steeper and compressibility is known to reduce disturbance 
amplitudes, thus “delaying” the normal appearance of breakdown in a given computational box. 
Supersonic and hypersonic flow are instances in which CFD (NPSE and DNS) must lead and 
guide what experiments should be performed and measurements taken for validation. 


Thumm et al. (1990) and Bestek et al. (1992) studied spatially growing 3-D waves in a growing 
2-D flat-plate boundary layer; the disturbances were introduced via periodic wall 
blowing/suction.  They pointed out that a secondary instability calculation based on a finite 2-D 
amplitude may not be relevant for supersonic flow and they investigated other possible routes to 
turbulence at low supersonic Mach numbers.  To this end they simulated a Mach-1.6 base flow 
subjected to a pair of 3-D waves and discovered a new breakdown mechanism, termed “oblique-
wave breakdown”.  The disturbances quickly became nonlinear and through direct nonlinear 
interactions, a strong longitudinal vortex system was observed.  The resulting structures, which 
differed from the Λ-shaped vortices usually reported for fundamental or subharmonic breakdown, 
were described as “honeycomb-like”. 


The inclusion of the bow shock is especially critical to studies of leading-edge receptivity and 
stability in hypersonics, as demonstrated by Zhong (1997).  His DNS results over a blunt 
parabolic-leading-edge wedge at Mach 15 show that the instability waves developed behind the 
bow shock consist of both first and second modes.  That is, free-stream acoustic disturbances can 
manifest themselves as first- and second-mode instabilities. The frequencies and growth rates 
found using DNS are comparable to those found using LST. His results also indicate that external 
disturbances, especially entropy and vorticity disturbances, enter the boundary layer to generate 
instability waves mainly in the leading-edge region.   In an accompanying investigation, Hu and 
Zhong (1997) show a matching between a receptivity region and a linear growth region. 
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Furthermore, they show that disturbances found using the DNS approach have first-mode, 
second-mode, and shock-mode elements.  


More recently, Zhong and Ma (2005) investigated receptivity mechanisms and instability mode 
interactions.  They considered the receptivity of the blunted-cone flow investigated by Stetson et 
al. (1984), again showing a matching between a receptivity region and a linear-growth region. In 
a DNS simulation, all spatial and temporal scales of the flow are resolved by the simulation so 
that instability and transition mechanisms can be revealed by careful simulation and theoretical 
analysis of the results. DNS leads to large of amount of data which require analytical analysis in 
order to gain a deeper understanding of the underlining physics in hypersonic boundary-layer 
transition. A close collaboration between numerical and theoretical study will not only verify both 
sets of results, but also lead to better understanding of flow physics. Tumin et al. (2007) have 
been collaborating on joint theoretical and DNS studies of hypersonic boundary layer instability 
and receptivity mechanisms. As an example, direct numerical simulation of receptivity in a Mach 
8 boundary layer over a sharp wedge of half-angle was carried out with perturbations introduced 
into the flow by blowing-suction through a slot. The perturbation flow-field downstream from the 
slot was decomposed into normal modes with the help of the biorthogonal eigenfunction system. 
Filtered-out amplitudes of two discrete normal modes and of the fast acoustic modes are 
compared with the linear receptivity problem solution. Figure 9 shows a comparison of the 
theoretical receptivity coefficient with the amplitude filtered out from the computational results 
by the theoretical analysis. One can see from the figure that there is an excellent agreement 
between amplitudes calculated with the help of the theoretical receptivity model.  


 


 


 
Figure 9. Numerical simulation of receptivity of the Mach 8 flow over a sharp wedge to 
wall blowing-suction: 1) instantaneous pressure perturbation field; 2) comparison of 


the theoretical prediction for the receptivity coefficient and comparison with data 
filtered out from the computational results (Tumin, Wang and Zhong 2007). 
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Much recent work has occurred investigating nonlinear breakdown mechanisms, including the 
‘classical’ subharmonic breakdown scenario (Boutin et al., 2008 for a Mach 6 cone), and other 
new scenarios by Husmeier and Fasel (2007) for cones (both sharp and blunt cones) at Mach 8 
under the Stetson wind-tunnel conditions (Stetson et al. 1983). In addition to oblique breakdown, 
Fasel identified several other nonlinear mechanisms that may cause transition. Typical results 
from these investigations are displayed in Figure 10, where the vortical structures over one 
spanwise wave length are shown (Figure 10, right). At the upstream end of the computational 
domain, close to the cone tip, the primary second-mode oblique waves dominate the flow 
structures, because the off-set between the structures over one streamwise wave length is equiva-
lent to the wave angle of the primary wave (Ψ=20°). The spanwise extent of these structures 
decreases when the steady vortex (0,2) reaches high amplitude levels, as can be observed in 
Figure 10 (left).  Far downstream, close to the outflow, all flow structures are aligned along two 
streaks associated with the longitudinal vortex (0,2). From these simulations, they have also 
found preliminary evidence how in the “noisy” Stetson experiments large nonlinear mechanisms 
are initiated by acoustic free stream disturbances, which excite large amplitude supersonic second 
mode disturbances and thus may lead directly to a bypass nonlinear breakdown 


.  
Figure 10.  Oblique breakdown for the sharp cone at Mach 7.95 (Stetson wind tunnel 


conditions). Left: Streamwise ρ’-amplitude development. Right: Vortical structures. The 
nonlinear generation of higher modes (grey curves in the left figure) are an indication 


of the onset of the later stages of transition. 


 


Fasel and his colleagues are also performing DNS in support of the ongoing and planned 
experiments in the M=3.5 quiet tunnel at NASA Langley Research Center. Towards this end, they 
have developed a new high-order accurate Navier-Stokes code, which is especially tailored 
towards accurate and efficient simulations of supersonic and hypersonic transition, in particular 
for cone geometries. This code has been thoroughly verified by comparing results obtained with 
small amplitude disturbances to LST (Laible et al. 2008). Preliminary nonlinear simulations for a 
circular cone at Mach 3.5 indicate that oblique breakdown may be a viable route to transition for 
the NASA wind tunnel conditions (see Figure 11). Moreover, the code has the capability of 
simulating effects of isolated 3D roughness elements.  
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Figure 11. Oblique breakdown on 7°-cone at Mach 3.5 initiated by oblique wave with 


azimuthal mode number kc = 12 and frequency F = 4.0 ·10-5. Shown are isocontours of 
spanwise vorticity (blue: ωx=-50, red: ωx=50). NASA Langley M=3.5 quiet wind tunnel. 


 


Most DNS studies of hypersonic boundary layer transition so far have been limited to “cold” 
hypersonic flow for which the perfect gas model can be used. For true hypersonic flight 
conditions, real gas effects, which include vibrational excitation, species 
dissociation/recombination, ionization, etc. are significant and have strong effects on the 
transition processes. Moreover, the effects of surface chemistry and ablation, the bow shock, nose 
bluntness, and the entropy layer are expected to be significant. Several groups are using DNS for 
simulating hypersonic flows with real effects, including Stemmer (2006) and X. Zhong’s group at 
UCLA, and the community looks forward to understanding of the effects on transition. Also, 
DNS will aid in evaluating promising means of flow control, including ultrasonically absorptive 
coatings (UAC) that stabilize the second mode by extracting acoustic disturbance energy 
(Fedorov et al. 2001).  


 


6.0 CONCLUDING REMARKS 


DNS has been established as a viable framework and partner in the understanding of transition 
mechanisms. With the appropriate disturbance input conditions, the agreement among theory, 
computations, and experiments is remarkable, and from recent successes in the research 
community it is clear that advances in prediction methods and in identification of basic 
mechanisms will come from those groups working hand-in-hand: 


• One must perform complementary computations and experiments on the same 
geometries and operating conditions. 


• Because of sensitivity of transition to initial and operating conditions, computations 
provide validation of experiments and vice versa. 


As we aspire to understand the effects of freestream disturbances and transition in high-speed, 
flight-Reynolds-number, and complex-geometry flows, this kind of collaboration becomes even 
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more critical. Detailed measurements are often more difficult and costly in these flows. Here, 
computations can guide the experiments as to what effects are important and what needs to be 
measured. As a good example, for flat-plate flow, computations have identified new breakdown 
mechanisms in high-speed flows different from those found in the seminal work of Klebanoff et 
al. (1962) and Herbert (1988) in low-speed flows, e.g. "oblique-wave breakdown" (Thumm et al., 
1990). 
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1. INTRODUCTION


As stated in the opening lecture, the predominant view of laminar-turbulent transition until the early 1990’s was centered around the slow linear amplification of exponentially growing disturbances (the familiar T–S waves), preceded by a receptivity process to the disturbance environment and followed by secondary instabilities, further nonlinearity and finally a breakdown to a recognizable turbulent flow. However, there are transition phenomena that could not be attributed to the aforementioned ‘‘T–S path’’ and so were labeled by Morkovin (1985) as bypass transition. The general feeling expressed by Morkovin as well as the present lecturer was that bypass transition was inherently nonlinear, having bypassed the linear T–S processes. We often joked that bypass transition either bypassed the T–S processes or bypassed our knowledge, or both. This picture had to be urgently reconsidered in the early 1990s with the emergence of a literature on transient growth.


Transient growth arises through the nonorthogonal nature of the Orr–Sommerfeld and Squire eigenfunctions. The largest effects come from the nonorthogonal superposition of slightly damped, highly oblique (near streamwise) T–S and Squire modes. These modes are subcritical with respect to the T–S neutral curve. The transient growth signature is essentially algebraic growth followed by exponential decay. A weak transient growth can also occur for two-dimensional or axisymmetric modes. So transient growth is therefore a candidate mechanism for many examples of bypass transition. 


The study of transient growth emanates from Landahl’s (1980) ‘‘lift-up’’ mechanism, a localized three-dimensional up–down motion in regions of high mean shear (near the wall) that grows algebraically in time in Landahl’s temporal inviscid formulation. This was further developed by Hultgren & Gustavsson (1981), Boberg & Brosa (1988), and Trefethen et al (1993). The more formal basis for transient growth is described by Schmid et al (1996). Butler & Farrell (1992) determined optimal disturbance parameters for maximum transient growth in plane Couette, plane Poiseuille, and Blasius flows. These optimal disturbances have a decided three dimensionality. In most cases, the optimal disturbances are stationary. They are for zero frequency and a particular spanwise wave number. All of the above papers use a temporal formulation of the disturbance equations, that is, that the disturbances grow in time rather than in space. In the examples of the present paper, a spatial formulation will be introduced as well. (The first analysis of spatial transient growth was carried out by Schmid, Lundbladh, & Henningson (1994) for plane Poiseuille flow. They interpreted the complex half-plane with αi<0 as ‘‘the unstable half-plane.’’ This is incorrect as will be pointed out later.)


In Sec. II, the character of transient disturbances will be described using a model problem. This will be followed in the later sections by more detailed consideration of flat-plate flow, Poiseuille pipe flow and transition due to elevated turbulence level. 


2. TRANSIENT DISTURBANCES


The character of transient disturbances will here be described using a model problem based somewhat on the description of Boberg & Brosa 1988). The Orr–Sommerfeld/Squire system of disturbance equations can be described as follows:
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where ζ is the disturbance vorticity in the x – z plane normal to the direction of wave propagation, η is the disturbance vorticity normal to the bounding surface, Los and Ls are the homogeneous Orr–Sommerfeld and Squire operators, respectively, minus their time-dependent terms, and γ is the coupling coefficient. For two-dimensional basic flows, 
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 If in Eq. (1) the operators are replaced by their eigenvalues, then a simple model solution can be obtained. This is not, of course, a proper solution to Eq.(1) but the results are illustrative of the character of transient growth behavior. 


Let 
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 and η(0)=η0. Both chosen eigenvalues represent damped disturbances. The ‘‘solution’’ to Eq. (1) is
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Note that the homogeneous Orr–Sommerfeld and Squire solutions are both damped. However, the coupling term has a very special behavior. For small times, it is linear in time while for large time, the component terms decay exponentially in time. For the special case,
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, linear growth followed by exponential decay. The maximum of this curve is the transient growth factor, G, that will be referred to frequently in this paper. The combination of wave numbers and Reynolds numbers that maximize the transient growth factor are the ‘‘optimal disturbances’’ as in, for example, the Butler & Farrell (1992) paper. These transient growth factors are of course flow dependent and in many cases can become very large. It is important to note from the aforementioned arguments that transient growth processes are linear. The consequence of these arguments is that transient growth can be a significant factor in the transition to turbulent flow for flows that are T–S stable (e.g., plane Couette and Poiseuille pipe flows), as well as in providing significant subcritical disturbance growth ahead of the T–S growth region in flows that are later T–S unstable. Consideration of transient growth has led to an enlargement and clarification of the paths to transition by Morkovin, Reshotko, & Herbert (1994) as shown in the opening lecture. Of the five paths to transition, the ones relevant to this lecture are Path C, the case where eigenmode growth is absent and Path D, modeling the effects of elevated free stream turbulence on transition.

3. GROWTH FACTOR AND ENERGY NORMS


Quantification of transient growth information is done by defining a growth factor G.



G = E/Ein

where E and Ein are energy norms. An example of the spatial variation of the growth factor is shown in Fig. 1. This is for a flat plate flow. The growth factor G scales with length Reynolds number or with the square of a thickness Reynolds number.


[image: image11]

Fig. 1. Spatial variation of growth factor


The maximum value on the curve, Gmax/ReL is a function of the spanwise wave number, β. The optimum growth factor Gopt/ReL is the highest value of Gmax/ReL and occurs for the optimum spanwise wavenumber, βopt. The curve shown in Fig. 1 happens to be for the optimum spanwise wavenumber for the incompressible flat plate boundary layer.


For incompressible flow, the energy norm is just the integral of the disturbance kinetic energy over the flow domain.
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For compressible flow, the energy norm also includes density and temperature fluctuation terms. This is the form originally derived by Mack (1969).
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By an order of magnitude analysis, Luchini (2000) deduced that the input energy norm is due just to the streamwise vortices.
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And the subsequent downstream energy norm is 




[image: image15.wmf](


)


2


2


22


1


e


e


o


Eudy


TM


q


r


g


¥


éù


¢


¢


=+


êú


-


êú


ëû


ò




This implies that as a result of transient growth, the streamwise vortices are converted into streamwise streaks as shown if Fig. 2. Tumin & Reshotko (2003) have done many calculations using both the complete energy norms and the Luchini norms and found the results to be indistinguishable. 
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Fig. 2. Input and output of transient growth


Except where specified otherwise, the results presented herein are from the parallel-flow spatial-transient growth formulation. A more formal synopsis of the spatial theory is given in the Appendix. 


4. TRANSIENT GROWTH IN FLAT PLATE FLOW


The first case considered is the Blasius boundary layer over a flat plate. The results presented here are principally from Tumin & Reshotko (2001) (T&R). Fig. 3 shows the maximum growth factor as a function of spanwise wavenumber β in units of (l)-1 = (μeL/ρeUe)-1/2.
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Fig. 3. Optimal energy at x/L =1 as a function of spanwise wavenumber


β. ReL = 106, ω = 0, Me = 0

The quantity l is just the height to η = 1 in the boundary-layer formulation. One can see that the optimum growth factor is achieved at βl = 0.45 as also obtained by Andersson et al (1999) using the linearized boundary layer equations. Figure 4 shows the optimal energy as a function of the downstream coordinate for βl = 0.45.

[image: image18.png]..............






Fig. 4. Optimum growth factor versus downstream coordinate


at β l = 0.45. ReL = 106, ω = 0, Me = 0.1. 1 – T&R, 2 – linearized boundary layer equations, Andersson et al.


The small quantitative discrepancy between the T&R and Andersson et al curves is attributed to the nonparallel effects included in Andersson et al. Fig. 5(a) shows the optimal initial disturbance profiles of v and w velocities (at x=0) corresponding to the optimum at x/L = 1, and Fig. 5(b) the resulting u velocity disturbance at x/L=1. This illustrates again what was shown in Fig. 2. 
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Fig. 5. (a) Optimal velocity profiles v(y) and w(y) at x/L = 0 providing


maximum growth at x/L = 1. (b) Streamwise velocity disturbance


profile corresponding to the optimal disturbance. β l = 0.45,


ReL = 106, ω = 0, Me = 0.
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Fig. 6. Effect of streamwise pressure gradient on the optimal


growth. Rel = 103, ω = 0, Me = 0

The effect of pressure gradient is shown in Fig. 6. One can see that favorable pressure gradient decrease the overall growth. Comparison of transient growth for steady (ω=0) and nonsteady (ω =0.005) disturbances is shown in Fig. 7 for βl = 0.45. Unsteadiness decreases the optimum growth factor.
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Fig. 7. Comparison of transient growths. 1 – steady disturbances, ω=0,


2 – nonsteady disturbances ω =0.005. βl = 0.45, ReL = 106, Me = 0

The maximum growth factors for the compressible flat plate boundary layer at adiabatic wall conditions are shown in Fig. 8. While the optimum growth factor does not change very much, the optimum spanwise wavenumber decreases as the Mach number increases. 
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Fig. 8. Maximum growth factors as a function of β at four 


Mach numbers. ReL = 9 x 104, ω=0. Adiabatic wall


The effect of cooling at M=0.5 is shown in Fig. 9. Note the almost ten-fold increase in Gmax/ReL for Tw/Taw = 0.25. This however is not representative of what happens at higher Mach numbers. 
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Fig. 9. Effect of wall cooling on the growth factor.


ReL = 9 x 104, βl = 0.45, ω = 0, Me = 0

From Reshotko & Tumin (2004), the optimum growth factors for supersonic flat plate boundary layers is shown in Fig.10. With initial cooling (from adiabatic), the optimal growth factors decrease. For M < 2.5, the optimum growth factors increase with further cooling while for M > 2.5, they decrease with further cooling. 


[image: image24.png]i —oMa1.5,T,=333K

—a-20
000651 —v-25
—-30

- =
. %/
00035
—
oo0s0} X
>
00025

02 03 04 05 05 07 08 09 10 11
T






Fig. 10. Optimal growth factors for zero pressure gradient,


ReL = 9 x 104, ω=0.


The corresponding optimal spanwise wavenumbers are shown in Fig. 11. Despite the large variation, the optimal spanwise wavelengths are all between 3 and 3.5 boundary layer thicknesses. (For the Blasius boundary layer, λ/δ = 2.79).
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Fig. 11. Optimal spanwise wavenumber for zero pressure


gradient, ReL = 9 x 104, ω=0

5. TRANSIENT GROWTH IN POISEUILLE PIPE FLOW


The Poiseuille pipe flow is stable with respect to modal infinitesimal disturbances whether they are axisymmetric or nonaxisymmetric. Accordingly, transition in this case is often considered to be bypass transition. (Morkovin & Reshotko 1990, Morkovin 1993, Reshotko 1994). The temporal stability of this flow has been studied by many over the last 70 years. The spatial stability calculations are more recent. To be cited specifically is the work of Garg & Rouleau (1972) and the receptivity study of Tumin (1996). A comparison of temporal and spatial spectra is shown in Fig. 12.
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Fig. 12. Linear stability eigenvalue distribution for particular cases of Poiseuille pipe


flow (figure supplied by A. Tumin).


While the spectra look different, they can be seen to closely relate to each other upon comparing phase velocities 

[image: image27.wmf](


)


r


wa


. There are two eigenvalues in the spatial spectrum that have no counterpart in the temporal spectrum. The one with 
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 is associated with the flow region upstream of the disturbance source as pointed out by Gill (1965) (and later by Ashpis & Reshotko 1990 for boundary layer flows). The one with 
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is an upstream traveling disturbance that is included in the present calculations but is of little consequence.


The initial transient growth studies for this flow were all temporal. These include DNS studies (Schmid et al 1993, O’Sullivan & Breuer 1994, Ma et al 1999) and theoretical formulations (Bergstrom 1992, 1993, Schmid & Henningson 1994, Trefethen et al 1999)). Early experimental studies are by Leite (1955) and Kaskel (1961) Later experiments are reported by Bergstrom (1995) and Eliahou et al (1998). 


In 1958, the present author, under the guidance of Janos Laufer at JPL, set up a laminar pipe flow (Reshotko 1958) for the purpose of studying its stability. A disturbance generator was built and initial results showed disturbance decay as had been earlier observed by Leite (1955). The experiment was later repeated by Kaskel (1961) (again under Laufer’s supervision). 
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Fig. 13. Experimental observations of Kaskel (1961) for 
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Figure 13 shows the response of a hot wire with distance downstream of Kaskel’s disturbance generator at two different frequencies. To be noted is the marked initial growth of the response before the decay sets in. This result was presented without explanation. However, after the transient growth phenomenon became known, Mayer and Reshotko (1997) completed a temporal transient growth analysis of the Kaskel (1961) results. The balance of the discussion in this section is on the temporal and spatial analyses of the Kaskel results.

5.1. Results of the Temporal Analysis


As indicated earlier, the transient growth is the result of interaction (or superposition) of decaying modes. It is therefore illuminating to look at the inner products matrix which clearly indicates the non-normality of the stability operator. Figure 14 taken from Mayer & Reshotko (1997) shows the L2 inner products matrix of the vector velocities for the first 80 decaying temporal modes for azimuthal index n=1 normalized to the value at zero time. The conditions are those of the Kaskel experiment Re = 7600, f = 10 Hz. The wave number, 
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 (that has to be specified in a temporal analysis) is that measured in the experiment.
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Fig. 14. 80-temporal eigenfunction inner products matrix (symbolic form) for pipe flow at ReD = 7600, n = 0 and 
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 (f = 10 Hz).


Matrix elements whose magnitude is between 0.1 and 1 are indicated by the symbol 1. Elements of magnitude 0.01 to 0.1 are indicated by the symbol 0, and those elements that are less than 0.01 are shown by a dash. Were this a normal operator, the inner products matrix would be simply the identity matrix. However, the thick band of ones about the diagonal clearly show the non-normality of the matrix. The band of ones is thickest between rows (and columns) 15–30 which corresponds to the intersection of the three branches of the spectrum in the complex plane (see Fig. 12). This is where the largest contribution to the transient growth occurs, rather than from the modes that have the smallest decay rates. The corresponding diagram for axisymmetric disturbances, n = 0, shown in Fig. 15 shows two separate matrices. This is because for n = 0, the Orr–Sommerfeld and Squire modes are uncoupled. The upper left and lower right corner are, respectively, the matrix elements for the Orr–Sommerfeld and Squire modes. For the present problem it was found that the maximum nonmodal growth for n = 0 is due entirely to the Orr–Sommerfeld modes. The results f = 15 Hz (
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) are similar.
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Fig. 15. 80-temporal eigenfunction inner products matrix (symbolic form) for pipe flow


at ReD = 7600, n= 0 and 

[image: image37.wmf]=1.12


α


 (f = 10 Hz).

The resulting amplitude growths A(t) for the two frequencies are shown in Figs. 16 and 17. A(t) is the square root of the kinetic energy growth factor. For both frequencies, the maximum transient growth occurs for n=3, but is larger at 10 Hz than at 15 Hz. The response for axisymmetric disturbances (n=0) is relatively very weak, but curiously larger at 15 Hz than at 10 Hz. Also to be noted is that the decay is faster at the higher frequency. This is consistent with the experimental result of Fig. 13, except that the experiment is spatial and Figs. 16 and 17 are temporal. For a more detailed comparison, one must consider that the disturbance generator was a vibrating ribbon suspended at six equally spaced points of the pipe’s inside circumference with all elements excited in phase. A Fourier analysis of the disturbance generator shows the excited modes are n = 0, 6, 12,..., 6m. The first three influence coefficients are c0 = 0.955, c6 = 0.0666, c12 = -0.013, accounting for 99.7% of the potential response. Figures 18 and 19 show the comparison between the composite calculations and experiment. The experimentally measured group velocity has been used for the space-time conversion. The curve fits are somewhat arbitrary since the experimental data have no definite scale. Nevertheless, the computations follow the trends of the experimental data and Mayer & Reshotko (1997) conclude that the Kaskel (1961) data display transient growth. However, to be noted is that in the temporal analysis, the wave number and group velocity had to be taken from experiment. Clearly a spatial analysis is preferred.
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Fig. 16. Nondimensional temporal amplitude growth for pipe flow at ReD = 7600,
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 (f = 10 Hz)
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Fig. 17. Nondimensional temporal amplitude growth for pipe flow at 

[image: image41.wmf]=7600,=1.75


D


Re


α


 (f = 15 Hz) at various azimuthal disturbance wave numbers. 
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Fig. 18. Experimental traces vs temporal theoretical predictions of amplitude


growth, f = 15 Hz.
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Fig.19. Experimental traces vs temporal theoretical predictions of amplitude growth, 


f = 10 Hz.


5.2. Results of Spatial Analysis


The problems of temporal and spatial transient growth formulations are quite different. The temporal analysis simply goes forward in time. But an initial-value problem for spatial disturbances of prescribed frequency is ill-posed. Resolution of this issue (Reshotko & Tumin 2001) comes from the work of Ashpis & Reshotko (1990) who studied the spatial response to a vibrating ribbon in a Blasius boundary layer. For a given real frequency, and in the absence of growing T–S waves, they showed that the upper half of the complex 
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-plane contains the decaying eigenvalues that apply to the domain downstream of the vibrating ribbon while the lower half of the complex 

[image: image45.wmf]a


-plane contains the decaying eigenvalues that apply to the upstream domain. Thus for the case of the downstream response to a vibrating ribbon in the present pipe flow, one need consider only those eigenvalues in the upper half plane of the spatial spectrum such as that shown in Fig. 12. The balance of the analysis parallels that done for the temporal case. 


Figure 20 shows the normalized amplitude response with axial distance for the various azimuthal modes at f =10 Hz. The amplitude A(z) is the square root of the growth factor G(z) which in turn is the 2-norm of the disturbance kinetic energy matrix. As with the temporal calculation, the axisymmetric response is weak. The maximum growth occurs at azimuthal index, n = 3 result; furthermore, the peak value of 23 is identical to the temporal result. Comparison with Kaskel’s experimental results again requires 
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Fig. 20. Nondimensional spatial amplitude growth for pipe flow at 
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 (f = 10 Hz) at various azimuthal wave numbers. 


considering the composite response for Kaskel’s disturbance generator. With c0 = 0.9555, c6 = 0.055, and c12 = 0.013, the composite spatial response for f=10 Hz is shown in Fig. 21. Two sets of curves are shown. Figure 21(a) includes the full set of decaying wave numbers (0.0<
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i<6.0) while Fig. 21(b) truncates a range of wave numbers with the weakest decay (0.1<
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i<6.0). This truncation is based on a receptivity study by Tumin (1996) of a pipe flow with a disturbance source placed on the wall. Tumin showed that the least decaying modes could not be efficiently excited.
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Fig. 21. Effect of receptivity argument on nondimensional spatial amplitude growth for pipe flow at 
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 (f = 15 Hz). (a) All decaying eigenfunctions, (b) only those eigenfunctions with 
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Comparison of Figs. 21(a) and 21(b) shows that the peak values for the composite amplitude are about the same but that the subsequent decay is more rapid without the least decaying modes.


Since the major input to the composite signal comes from the axisymmetric mode, this mode merits further examination. Figure 22 shows the streamwise velocity disturbance amplitude profile w(r) for the f = 10 Hz case at z = 8.6. The local maximum is near the wall at r = 0.92. The instantaneous streamwise velocity component at r = 0.92 is then shown as a function of z in Fig. 23. This figure enables a calculation of phase angle as a function of z and therefore a calculation of the local wave number. Figure 24 compares the calculated phase of the streamwise velocity with expectations for 
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 equal to 0.9 and 1.1. One can see that α = 1.1 provides a reasonable fit to the calculated phase in the interval of 3–6 pipe radii from the point of origin. Although this calculation is limited to the n=0 mode, it gives a reasonable fit to the experimentally measured wave number, α = 1.12. A similar calculation has been carried out for the f =15 Hz case. There the best fit to the calculated phase distribution yielded a value of 
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 >1.5 as compared to Kaskel’s measured value of α =1.75.
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Fig. 22. Spatial streamwise disturbance velocity amplitude at z = 8.6, 
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Fig. 23. Instantaneous distribution of disturbance velocity component w at r = 0.92, 
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Fig. 24. Phase of the streamwise velocity disturbance at r – 0.92, 
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5.3. Concluding Comment


Thus we are again able to argue that the phenomenon of transient growth was observed in the Kaskel (1961) experiment. Furthermore, the spatial treatment did not require an assumption of any space-time conversion speed and the wave number is a result of the calculation rather than being taken from the experiment as in the temporal treatment. A more detailed treatment of spatial transient growth in Poiseuille pipe flow is given in Reshotko & Tumin (2001).

6. EFFECTS OF ELEVATED FRESTREAM TURBULENCE LEVEL ON TRANSITION AT M = 0.


It is known from wind tunnel studies that the flat plate transition Reynolds number is very sensitive to freestream turbulence level. This example taken from Andersson et al (1999) shows the use of transient growth results in modeling this effect. 


Let the energy norm at “transition” be related to the input energy norm by the growth factor G.



 Etr = G Ein

where Ein is taken as the square of the turbulence level, Tu. Then



Etr = (G/Rex) Rex,tr Tu2

where (G/Rex) is obtained from transient growth results. For M = 0, Tw/Taw = 1, this is just a number. Accordingly we can write


Rex,tr Tu2 = K2

or



 Rex,tr = K2/Tu2
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Fig. 25. Transition Reynolds number, Rex,tr vs. free stream turbulence level (in percent).


The line is the model with K=1200. * are by a model proposed by van Driest &


Blumer (1963).


With the turbulence level given in percent, a value of K = 1200 matches the data for Tu > 1% as seen in Fig. 25. Variations of this modeling will be used in developing transition relationships for roughness-induced transition.


7. SUMMARY AND IMPLICATIONS


It is clear from what has been presented that transient growth is a validated physical phenomenon and can be used to explain a number of examples of bypass transition. 


Transient growth is subject to a receptivity process that has not been here considered in any depth. It does imply however that the ‘‘optimal’’ disturbances, the focus of many transient growth studies in the literature, are not generally realizable unless their parameters (frequency or wave number) are part of the disturbance input.


APPENDIX - Spatial Theory of Optimal Disturbances


The spatial formulation of the transient growth theory within the scope of linearized Navier-Stokes equations was introduced in Reshotko & Tumin 2000, 2001, Tumin & Reshotko 2001. For the sake of consistency, we recapitulate briefly the key elements of the theoretical model.


The linearized Navier-Stokes equations for three-dimensional disturbances 
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 of prescribed frequency ω and transverse wave number β are reduced to a system of ordinary differential equations in the following form
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where 
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 is a five-element vector comprised of the complex amplitude functions for the 
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-component of velocity (superscript 
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 matrices (nonzero elements are given in the Appendix of Tumin & Reshotko 2001) and 
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. The boundary conditions for equation (1) are
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The boundary condition (2) outside the boundary layer allows decaying eigenmodes (

[image: image75.wmf]5


124


: ,,,0


y


®¥FFFF®


) that represent the discrete spectrum, and non-growing, non-decaying modes as well, that represent the continuous spectrum.


The signaling problem suggests that at the moment of time 
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 a localized disturbance source is switched on. Analysis of the linearized Navier-Stokes equations under the assumption that the downstream and upstream boundaries are at 
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 leads to the conclusion that only branches corresponding to the decaying modes of the continuous spectrum apply to the solution downstream of the source.


Following from the signaling problem, the flowfield downstream of a disturbance source may be represented as an expansion in eigenfunctions including the decaying modes of the continuous and discrete spectrum plus any growing discrete modes if present. Having selected the downstream eigenmodes, one can continue the analysis as an initial value problem spanned by the eigenmodes, and the method of analysis developed by Schmid & Henningson 1994 for temporal stability theory may be applied.


We introduce a vector-function 
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where the matrix 
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The definition of the scalar product (3) leads to the energy norm introduced by Mack (1969)
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Expanding the vector-function 
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 into 
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 decaying eigenmodes (they might belong to the discrete spectrum or to the numerical discretization of the continuous spectrum), we obtain
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The vector-function 
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 is comprised of three velocity components, density and temperature perturbations corresponding to 
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 are optimized to achieve the maximum energy growth at the specific downstream coordinate 
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where 
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 corresponds to the energy at the initial location.

One can find details of the numerical procedure for the base flow and for the eigenmode analysis in Tumin & Reshotko 2001. To consider the curvature effect, the governing equations were written in spherical coordinates under the parallel flow approximation. The latter led to the appearance of the ratio 
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 in the coefficients and some new terms (i.e. centrifugal terms). The curvature-associated corrections of the coefficients were neglected in the viscous terms of the equations.

Although the numerical results in Tumin & Reshotko 2001 were obtained under the parallel flow approximation, recent non-parallel results (Tumin & Reshotko 2003) within the scope of partial differential equations demonstrate that the approximation is satisfactory for the quantitative and qualitative analysis of the transient growth phenomena.
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1. Introduction


To describe the laminar-turbulent transition process in two-dimensional (2D) or three-dimensional (3D) flows in a low free-stream disturbance environment, it is usual to distinguish three successive steps. The first step, which takes place close to the leading edge, is called receptivity. Receptivity describes the means by which forced disturbances such as free-stream noise, free-stream turbulence, vibrations, small roughness elements… enter the laminar boundary layer and excite its eigenmodes. In the second phase, these eigenmodes take the form of periodic waves, the energy of which is convected in the streamwise direction. Some of them are amplified and will be responsible for transition. Their evolution is fairly well described by the linear stability theory. When the wave amplitude becomes finite, nonlinear interactions occur and lead to turbulence.


In 2D flows, the linearly growing waves are referred to as Tollmien-Schlichting (TS) waves. In 3D flows, for instance on a swept wing, the mean velocity profile has two components, see figure 1.1: a streamwise component u in the external streamline direction, and a crossflow component w in the direction normal to the previous one. The streamwise velocity profile is unstable in regions of zero or positive pressure gradient (decelerated flows, downstream of XM in figure 1.1). It generates waves similar to the 2D TS waves. For low speed flows, their wavenumber vector is nearly aligned with the free-stream direction. The crossflow velocity profile is highly unstable in negative pressure gradients (accelerated flows, upstream of XM). It generates crossflow (CF) waves with a wavenumber vector making an angle of 85 to 89º with respect to the free-stream direction. A peculiar feature of CF instability is that it amplifies zero frequency disturbances. This leads to the formation of stationary, corotating vortices practically aligned in the streamwise direction. In the experiments, CF vortices are observed as regularly spaced streaks, see figure 2.2. 

		[image: image84.jpg]







		Figure 1.1- Laminar boundary layer development on a swept wing. XM is the location of the inviscid streamline inflection point. 0 is the angle between the wall and potential streamlines.





As it will be explained in the next paragraphs, the receptivity process and the nonlinear interactions are very different for TS and CF disturbances. In the intermediate phase, however, the same linear stability theories are applicable for both TS and CF waves. Therefore this theory constitutes the basis for most of the current transition prediction methods. 


This Lecture is organized as follows. In paragraph 2, the practical problem of transition definition and detection is addressed. Paragraph 3 gives a survey of the prediction methods based on linear stability theory, either in its local or in its non-local formulation. This theory represents the main ingredient of the well known eN method. It is shown that the application of this method becomes more and more delicate with increasing mean flow complexity, as illustrated by several examples of application. Simpler and more complex prediction methods are described in paragraph 4 and 5, respectively. The simpler methods include data base methods and analytical criteria, while more complex approaches use the nonlinear PSE (Parabolized Stability Equations). The last paragraph illustrates the difficulty of implementing the previous methods into Navier-Stokes codes. 


As indicated in the title, this Lecture mainly focuses on subsonic and transonic applications. However, as most of the prevision methods described below remain valid at higher speeds, a limited number of supersonic applications will also be presented.   

2. Preliminary remarks : experimental transition detection


The practical transition prediction methods are aimed at estimating some “transition location”. As they are calibrated and validated by comparison with experimental data, this “transition location” needs to be defined; then the same definition must be adopted for practical applications.


2.1. Intermittency factor 


Transition starts when the first turbulent structures (the so-called Emmons spots) appear in the laminar boundary layer. In natural conditions, the spots originate in a more or less random fashion. Once created, they are swept along with the mean flow, growing laterally and axially, and finally covering the entire surface. The “transition region” is defined as the region where the spots grow, overlap and form a turbulent boundary layer. When a hot wire is placed near the wall (or when a hot film is mounted flush to the model surface), the fluctuations which are recorded in the transition region show the successive appearance of turbulent spots and of laminar region: it is the intermittency phenomenon. The intermittency factor  represents the fraction of the total time that the flow is turbulent. It is equal to 0 in laminar flow and 1 in fully turbulent flow (see figure 2.1). In principle, the transition prediction methods provide the abscissa where  starts to increase. Then the transition region can be modelled by some empirical “intermittency function”. 
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		Figure 2.1- Extent of the transition region


on a flat plate: shape factor and hot wire signals

		Figure 2.2- Example of visualization (sublimation) of the wall of a swept wing showing stationary vortices





As shown in figure 2.1, the extent x of the transition region is not negligible when compared to the length xT of the initial laminar region. For 2D low speed flows in zero or moderate pressure gradient, the ratio x/xT is of the order of 30 to 40%. It increases with increasing Mach number, as indicated, for example, by the empirical relationship proposed by Chen and Thyson (1971). 


2.2. Transition detection


When the chordwise evolution of the mean velocity profiles is measured by a Pitot tube or by a hot wire, the beginning of transition is often taken as the point of initial measurable deviation of a characteristic parameter from its natural evolution. This can be, for instance, the beginning of the decrease in the shape factor H or the minimum of the skin friction coefficient Cf. The rms value of the velocity fluctuations recorded near the wall starts to increase a short distance upstream, but, in practice, the definitions of the “transition location” from the mean values and from the fluctuating quantities are close together. 


In the transition region, quantities such as rms voltage, skin friction, wall heat flux… reach a maximum at nearly the same location and then decrease more or less slowly toward fully turbulent levels. The peak value of these quantities is sometimes used to define the “transition location”, because its position is easy to measure accurately. However, this position is located in the middle of the transition region, the intermittency factor being around 0.5. 


Very often, for instance in free flight conditions or in high speed wind tunnels, detailed measurements of the mean flow field are not possible, and transition is detected by global techniques such as infrared thermography. The infrared images are usually analyzed in a qualitative manner only, and transition is defined as the point where the colour changes significantly. In fact, quantitative analyses demonstrate that this point roughly corresponds to the middle of the transition region. The same kind of problem arises when using thermosensitive paints. The transition location determined by sublimation techniques (acenaphtene or naphthalene flow visualizations) moves slowly upstream when the wind tunnel running time increases.   


Up to now, it was assumed that the transition front is a straight line. This assumption is a good approximation for 2D flows, but it becomes questionable in 3D flows when stationary CF waves dominate the transition process. In this case, the transition front exhibits a saw-tooth pattern, which makes an accurate definition of the “transition location” difficult. In addition, the initial amplitude of the stationary waves depends on the leading edge surface polishing, which is not always uniform in the spanwise direction (Radeztsky et al, 1993). As a consequence, the waves do not break down at the same abscissa. The difficulty of defining an accurate transition location is illustrated in figure 2.2.


These observations can explain to a great extent the large scatter which is observed in transition data. They also explain why transition prediction is so difficult. Inconsistent choices of experimental criteria for the beginning of transition can lead to erroneous conclusions concerning the validity of the transition prediction methods.    


3. Prediction methods based on linear stability theory : eN method

3.1. Linear stability theory


The oldest method to characterise the boundary layer instabilities is based on the well-known linear Orr-Sommerfeld equation. The disturbances are written as:
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r’ is a velocity, pressure or density fluctuation. r is an amplitude function. y is normal to the surface. On a swept wing, x is often measured along the wing surface in the direction normal to the leading edge, z being the spanwise direction.  and  are complex numbers representing the wavenumber components in the x and z directions; in the framework of the spatial theory,  is real and represents the wave frequency. Assuming that the mean flow is parallel, the introduction of the previous expression into the linearized Navier-Stokes equations leads to ordinary differential equations for the amplitude functions. This implies that the stability of the flow at a particular station (x,z) is determined by the local conditions at that station independently of all others. Numerically, one has to solve an eigenvalue problem: when the mean flow is specified, nontrivial solutions exist for particular combinations of () only.


If it is assumed that there is no amplification in the spanwise direction z,  is real and the disturbances take the form:  
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where r and i are the real and imaginary parts of . In the following,  denotes the wave number angle, i.e. the angle between the external streamline and the wave vector (r, ) direction. Values of  between 85 and 90° correspond to the crossflow (CF) instability. The value of  for streamwise or Tollmien-Schlichting (TS) instability is close to 0° for low speed flows; it increases up to 30-40° for transonic flows. x= 2r and z= 2 are the chordwise and spanwise wavelengths of the considered disturbance. 


The linear PSE (Parabolized Stability Equations) approach provides an improvement to the Orr-Sommerfeld theory, see Herbert, 1993, Reed, 2008. The mean flow field and the amplitude functions now depend on both x and y, and  depends on x, so that the disturbances are expressed as:
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              (2)

 is complex,  and  are real numbers. Substituting the previous expression into the linearized Navier-Stokes equations and assuming that the x-dependence of  and r is weak yield a partial differential equation of the form:
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where L, M and N are operators in y with coefficients that depend on x and y through the appearance of the basic flow profiles. When  is computed from a so-called normalization condition, the previous equation can be solved using a marching procedure in x (parabolic system) with prescribed initial conditions. As the results at a given x station depend on the upstream history of the disturbances, this approach is called non-local. The physical growth rate of any disturbance quantity Q is defined as:
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Usually, Q is taken to be u’, v’, w’, T’, (u)’ or the disturbance kinetic energy, either at some fixed y position or at the location where the considered quantity reaches its maximum value. In the general case, different disturbance quantities exhibit different growth rates, whereas they exhibit the same growth rate in the framework of the local theory. It is important to notice that the PSE make it possible to take into account not only the nonparallel effects but also the wall curvature effects. 


3.2. Application of the eN method using the local approach


In order to predict transition location, use is made of eN method, originally developed by Smith and Gamberoni (1956) and by van Ingen (1956) for low speed flows and then extended to compressible and/or three-dimensional flows, see Arnal (1993) for an overview at the beginning of the 90’s. This method is based on linear theory only, so that many fundamental aspects of the transition process are not accounted for. However, one has to keep in mind that there is no other practical method presently available for industrial applications.


The eN method can be used either with the local stability approach or with the non-local stability approach. The first possibility is examined in the present paragraph; the second one will be discussed in paragraph 3.3. 


3.2.1. Application to 2D, incompressible flows


In the simple case of a two-dimensional, incompressible flow, it can be demonstrated that it is sufficient to consider waves with  = 0 or  = 0. The disturbances are amplified or damped according to the sign of  = - i.  


The principle of the eN method can be understood from figure 3.1. Let us consider a wave which propagates downstream with a fixed frequency f1. This wave passes at first through the stable region. It is damped up to x0, then amplified up to x1, and then it is damped again downstream of x1. At a given station x, the total amplification rate of a spatially growing wave can be defined as:
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where A is the wave amplitude at any abscissa and A0 is the wave amplitude at the abscissa x0 where it becomes unstable (critical abscissa). After the total growth rate has been determined for a series of unstable disturbances (f1, f2, f3,…), it is easy to compute the so-called N factor:
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The eN method assumes that transition occurs for a predefined value of the N factor, denoted as NT. This means that the breakdown to turbulence is observed when the most amplified wave has been amplified by a critical ratio exp (NT). 
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		Figure 3.1- Principle of the


eN method

		

		Figure 3.2- Application of the eN method using 


Mack’s relationship (flat plate, low speed) 





As a first approximation, it can be assumed that transition occurs for a more or less “universal” value AT of the most amplified wave amplitude. AT and the initial amplitude A0 of the wave are linked together through the N factor at transition: AT = A0 exp(NT). This shows that increasing A0 (i.e. increasing the amplitude of the excitation) will reduce N at transition. In other words, NT is a measure of the quality of the disturbance environment. Mack (1977) proposed to relate NT to the free-stream turbulence level Tu by the following relationship:
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Figure 3.2 shows that this relationship correlates low speed wind tunnel data without pressure gradient. It can be applied with some confidence for 10-3 < Tu < 10-2. For Tu = 10-3 (typical value for a low disturbance subsonic wind tunnel), NT = 8.15. For Tu =10-2 (typical high disturbance environment), NT = 2.62. If Tu = 2.98 10-2, the N factor at transition becomes equal to zero, which means that transition occurs at the critical Reynolds number. Flight tests conducted at the DLR Braunschweig on an LFU aircraft equipped with a quasi-2D laminar glove showed transition N factors around 10 in a low speed range (see Horstmann et al, 1990). 


Mack’s relationship cannot be used, in principle, for Tu < 10-3, because noise becomes the dominant parameter and the excitation is frequency dependent. For Tu > 10-2, TS waves are not clearly discernable in the boundary layer, and the transition process is dominated by low frequency, 3D disturbances elongated in the streamwise direction (streamwise streaks, or Klebanoff modes). Nevertheless, Mack’s relationship is often used for moderate and high values of Tu, even if it does not represent the physical transition mechanisms. It can also be observed that relation (6) does not take into account the free-stream turbulence spectrum.


Another parameter acting on transition in 2D, incompressible flows is the streamwise pressure gradient. It is automatically taken into account in the eN method through the shape of the mean velocity profile. It is well known that a positive pressure gradient (decelerated flow) decreases the critical Reynolds number, increases the disturbance growth rate and thus reduces the transition Reynolds number. A negative pressure gradient (accelerated flow) increases the critical Reynolds number, decreases the disturbance growth rate and increases the transition Reynolds number. The transition movement on a given body in different flow conditions can be accurately predicted with a single value of NT, provided the free-stream disturbance environment remains the same. 
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		Figure 3.3- 


N factor at separation


(M0 = 0.22, Rc = 8.6 106)





At this point, it is important to emphasize the problem of calibrating the eN method from experimental data. This problem is illustrated in figure 3.3 which is related to flight tests performed on a Beechcraft aircraft equipped with a 2D laminar glove (Obara and Holmes, 1985). It shows the pressure distribution on the upper surface as well as the total growth rate of the most unstable TS waves. Due to the positive pressure gradient, the N factor curve is very steep downstream of the pressure peak: it can be seen that N increases from 10 to 17 between 36 and 40 percent chord. Because of the uncertainty in the experimental definition of the transition location, which occurs “in close proximity” of the laminar separation point (x/c ≈ 0.40), this kind of pressure gradient is not suitable for calibrating the eN method. For a rigorous calibration, the N factor curve must present a regular evolution (not too steep, not too flat) from the critical abscissa to the transition point. In this case, however, it is necessary to define accurately the “transition point”. As pointed out in paragraph 2, the extent of the transition region can represent 30 to 40% of the distance between the stagnation point and the onset of transition. As a consequence, the N factors at the first appearance of turbulent spots and at a position detected by infrared thermography (middle of the transition region) can differ by 15 to 20%. Obviously, the previous remarks also apply to compressible and 3D flows. 

3.2.2. Application to 2D, compressible flows


When compressibility begins to play a role, the problem becomes more difficult, because the most unstable waves are often oblique waves, even if the mean flow is 2D. As a consequence, a new parameter enters the dispersion relation: the angle  between the streamwise direction and the wavenumber vector (or the spanwise wavenumber r). It is still assumed that the amplification takes place in the x-direction only, i.e. i = 0, but  = r (or ) needs to be specified or computed. There are mainly two strategies allowing taking into account oblique waves. 


The first possibility is to use the envelope strategy. At a given streamwise position x and for a fixed value of f, the growth rate  is calculated as a function of  in order to determine the most unstable wavenumber direction, denoted as max. The total growth rate and the N factor are then computed by replacing  by max = (max) in (4).


A second solution is the fixed  strategy. Here the total growth rate is integrated by following waves with constant physical values of f and , and the final maximization is done with respect to both parameters. In other words, the N factor represents the envelope of several envelope curves (it is often denoted as EoE). As for the envelope strategy, transition is assumed to occur for some more or less “universal” value of N. It is interesting to notice that the fixed  strategy is consistent with the PSE formulation, whilst the envelope strategy is not.

Fortunately, the numerical results show that both strategies provide N factors which are very close together. The explanation is that, for a given frequency, the most unstable direction max and the most unstable spanwise wavenumber max, are practically constant in the streamwise direction.


In transonic wind tunnels, typical values of the transition N factor are 5-6 for noisy facilities (porous and/or slotted wall wind tunnels) and of the order of 8-10 for quieter facilities (solid-wall wind tunnels). As suggested by Bushnell et al (1988), an “equivalent free-stream turbulence level” can be deduced from the free-stream sound field and used to estimate NT according to Mack’s relationship. In free flight conditions, an extensive experimental data base was obtained from the well known AEDC cone experiments, see Fisher and Dougerthy (1982). The results in the transonic and low supersonic range were rather well correlated with N factors around 10, as for low speed flows.


The effects of the streamwise pressure gradient, of the free-stream Mach number Me and of the wall temperature Tw are automatically accounted for in the stability analyses through the changes in the shape of the mean velocity and mean temperature profiles:


· Positive (respectively negative) pressure gradients are destabilizing (respectively stabilizing);


· Increasing Me (on an adiabatic wall) exerts a strong stabilizing effect up to Me around 2;


· Wall cooling (respectively wall heating) is stabilizing (respectively destabilizing) in air.


The combined effects of pressure gradient and Mach number are illustrated in figure 3.4, which shows a comparison between experimental data and computations for a 2D airfoil (CAST10 airfoil) which was tested in transonic conditions by Blanchard et al (1985). The left hand part of the figure shows the free-stream Mach number distributions for different values of the angle of attack . The right hand part presents a comparison between measured and predicted transition locations, as a function of . Two values of N are used: 8 and 9. The agreement is satisfactory. The dotted curve was obtained with N = 8 from incompressible stability computations, i.e. the free-stream Mach number was set to zero in the stability equations. It can be seen that the compressibility effect in this Mach number range (around Me = 1) reduces the growth rates by a factor 2. On the other side, reducing the amplitude of the suction peak in the leading edge region reduces the intensity of the positive pressure gradient and moves transition downstream. This example demonstrates that the eN method is an efficient tool for parametric studies: for a given test model and for a given disturbance environment, this method is able to predict the movement of the transition location when the parameters governing the stability properties are changed. 
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		Figure 3.4- Transition N factors for 2D transonic experiments





3.2.3. Application to 3D flows


3.2.3.1. Receptivity mechanisms in 3D flows


As explained previously, transition in 3D flows can be triggered either by Tollmien-Schlichting (TS) waves or by crossflow (CF) waves. Before to discuss the application of the eN method, it is necessary to remind some basic features concerning the receptivity process in such configurations. 


As TS waves on a 3D body are similar to TS waves encountered in 2D flows, their initial amplitude is imposed by the free-stream disturbance environment (free-stream turbulence level Tu, free-stream noise). As a first approximation, it is still possible to use Mack’s relationship (6) to estimate the transition N factor. 


On the other side, two types of CF instabilities need to be distinguished: the stationary CF waves and the travelling CF waves. As stated by Crouch and Ng (2000), they must be considered as distinct families of modes, because they are generated by different receptivity mechanisms. Stationary CF disturbances are excited directly by steady surface variations (surface polishing or suction). Travelling CF waves require an unsteady source such as free-stream turbulence, but the receptivity mechanisms probably differ from those for TS waves. The relative importance of stationary and travelling CF modes depends on the relative importance of steady and unsteady excitations. The general idea for CF-induced transition is that stationary CF waves dominate in free flight conditions and in very low free-stream disturbance wind tunnels, while travelling CF waves play the major role in more classical wind tunnels. The link between the transition N factors of CF disturbances and the environmental conditions is discussed in paragraph 3.2.3.6.

3.2.3.2. Strategies for the N factor(s) computation


The extension of the eN method to three-dimensional flows is not straightforward. The first reason is that the assumption i = 0 (i.e. no amplification in the z direction) is not necessarily correct. Hence i must be assigned or computed. Several solutions have been proposed to solve this problem, see review by Arnal (1993). For instance it is possible to use the wave packet theory and to impose the ratio ∂/∂ to be real (Cebeci and Stewartson, 1980). A simpler solution is to impose that the growth rate direction is the group velocity direction or the potential flow direction. In the case of infinite swept wings, it is often assumed that there is no amplification in the spanwise direction. Usually these different possibilities do not result in significant differences in the N factor. For the sake of simplicity, it will be assumed that i = 0.

After one of the previous assumptions for i has been adopted, one has to integrate the local growth rates in order to compute the N factor. Several strategies are available:

· Envelope strategy: this approach was previously described for 2D, compressible flows.


· EoE strategies: these “Envelope of Envelopes” approaches include the fixed  strategy (also described previously), the fixed  strategy, the fixed  strategy ( is the physical disturbance wavelength). The N factor integrations are performed by following waves having a given dimensional frequency f and a constant value of ,  or . As the results are very close together, the following discussion will be restricted to the fixed  strategy.  


· NCF-NTS method: the principle is to compute separately two N factors, one for TS disturbances (the so-called NTS) and another for CF disturbances (the so-called NCF). Transition is assumed to occur for particular combinations of these parameters. 


As it can be expected, each strategy gives a different value of the N factor at the onset of transition. 


3.2.3.3. Comparison between the envelope and the fixed  strategies


Systematic comparisons between the envelope and the fixed  strategies were carried out for experimental data obtained in the transonic range and in free flight conditions in the framework of the ELFIN (European Laminar Flow INvestigation) project funded by the European Commission. The ELFIN project, ended in 1996, constituted a collaborative venture, bringing together the majority of European airframe manufacturers, research institutes and universities. In the first phase of the project, NLF (Natural Laminar Flow) experiments were conducted on a glove bonded to the original wing surface of a Fokker F100 aircraft (Voogt, 1996). This aircraft was instrumented with two infrared cameras for transition detection, one above and one below the wing. A series of flight tests was conducted in 1991 and analysed during the second phase of the project. The main objective of the numerical work was to apply different strategies of integration of the N factor in order to compare their capabilities and shortcomings, see Schrauf (1994) and Schrauf et al (1996, 1997). Additional computations were carried out more recently (2007). 


Two typical examples are discussed below in order to compare in detail the performances of the envelope and of the fixed  strategies. The flight conditions for these two cases are:


		

		M0

		Rc

		 (°)

		xT/C (%)



		Case 1

		0.719

		19.6 106

		22.5

		32-37



		Case 2

		0.719

		29.9 106

		20.2

		34-36





The free-stream velocity distributions are plotted in figure 3.5. Transition occurs in a negative pressure gradient in case 1 and around the point of minimum pressure in case 2.  
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		Case 1

		Case 2



		Figure 3.5- F100 experiments: free-stream velocity distributions


The arrows indicate the measured transition location





The numerical results are plotted in figures 3.6 and 3.7 for case 1. Here s is the curvilinear abscissa measured along the wing surface from the attachment line (s/C and x/C differs by 1 to 2% chord only). It can be seen in figure 3.6 that the transition N factor is in the range 18.5-19.5 for the envelope strategy and around 10 for the fixed  strategy. Let us recall that each curve in the left hand part of the figure is associated to a single parameter (the frequency), whilst each curve in the right hand part is associated to two parameters (the frequency and the spanwise wavenumber). The “wave” responsible for transition is f = 1 kHz with the envelope strategy; it is f = 1 kHz,  = 1000 m-1 with the fixed  strategy. 
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		Figure 3.6- F100 experiments, case 1: N factor





Figure 3.7 shows the variation of the wavenumber angle  for the unstable disturbances. The dotted curves are associated with the waves exhibiting the largest N factors at the measured transition location. The dominant instability is CF according to the fixed  strategy ( around 85°) and quasi-CF according to the envelope strategy ( decreasing from 86° to 80°). 
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		Figure 3.7- F100 experiments, case 1: wavenumber angle





The same kind of result is presented in figures 3.8 and 3.9 for case 2. Transition N factors close to 21 and 7.5 are given by the envelope and the fixed  strategies, respectively. The  angle deduced from the fixed  strategy remains practically constant, whilst it decreases from CF values (close to 85°) to quasi-TS values (around 40°) according to the envelope strategy. 
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		Figure 3.8- F100 experiments, case 2: N factor
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		Figure 3.9- F100 experiments, case 2: wavenumber angle








In fact, the envelope strategy does not make any distinction between TS and CF disturbances; waves with a fixed frequency are unstable first close to the leading edge due to CF instability and further downstream due to TS instability, so that the “final” transition N factor represents the cumulative effects of both phenomena. The fixed  strategy, on the contrary, implicitly separates the instability mechanisms, because a fixed value of  is associated to a practically constant value of : Large values of  (in the leading edge region) correspond to CF instability, lower values (when approaching the pressure peak) correspond to TS instability. The fact that CF and TS instability mechanisms are active successively is expressed in figure 3.9 by the existence of two groups of N factor curves, one for CF waves (starting at the leading edge), the second for TS waves (starting at s/C ≈ 0.1).     


From systematic analyses of the F100 data, the recommended values for the transition N factor can be summarized as follows:  


· Fixed  strategy: NT lies in the range 7-8 for TS induced transitions and in the range 8-10 for CF induced transition.


· Envelope strategies: NT lies in the range 15-20. It is close to the upper limit, or even larger, when transition is triggered by TS waves (these high values are explained by the cumulative effect of CF and TS disturbances). 


Let us recall that, because the transition location was determined from infra-red images, these values are relative to the middle of the transition region.


Similar investigations were performed at ONERA using an experimental set-up especially designed for this purpose (see Gasparian, 1998, Arnal et al, 1998). The experiments were carried out in the F2 wind tunnel at Le Fauga-Mauzac ONERA centre. The so-called DTP-B model was a swept wing with a chord (normal to the leading edge) of 0.7 m and a span of about 2.5 m. The pressure side was equipped with 7 independent suction chambers (in the chordwise direction) from 5 to 25% chord. Transition was detected on the pressure side by hot film sensors and by infrared thermography. The transition location was defined as the abscissa where the rms fluctuation level delivered by the hot films started to increase. A systematic variation of the suction velocity Vw and of the angle of attack  has been performed for wind tunnel speeds of 75 and 95 ms-1 and for sweep angles  of 40 and 50°. Variations of these parameters made it possible to generate different transition mechanisms, from the pure TS to the pure CF type. For a given configuration, the suction velocity was held constant in the different suction chambers.


Systematic stability calculations were then performed by using both the envelope and the fixed  strategies. As for the F100 experiments, large values of the transition N factor were found in some cases. The idea arose to consider the mean value of , denoted as 
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, for the waves leading to transition. This quantity is simply defined as: 
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where x0 denotes the critical abscissa for the “wave” which is the most amplified at the transition location xT. The values of the N factor at transition are plotted as function of 
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 in figure 3.10 (envelope strategy on the left hand side and fixed  strategy on the right hand side). 
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		Envelope strategy

		Fixed  strategy



		Figure 3.10- Local N factors at transition





The results obtained with the envelope strategy exhibit large values of N for 
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 between 40 and 80°, i.e. for cases where the N factor is the sum of a CF contribution close to the leading edge and of a TS contribution further downstream. When there is only one dominant instability mechanism (
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 smaller than 40° and 
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 close to 90°), the N factor at transition is smaller and in the range 6-8. On the other side, the N factors given by the fixed  strategy take into account a single instability mechanism, which is either TS or CF (there is only one point at an intermediate value of 
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), and the scatter is smaller. In the present investigation, the values of N for “pure” TS and “pure” CF transition processes are not very different, but it cannot be claimed that this result is universal: a different wind tunnel with a different model could provide smaller transition N factors in the TS range and larger N factors in the CF range, or the contrary. However, the values plotted in figures 3.10 can be considered as rough guidelines for transition prediction on swept wing models with a good surface polishing, placed in subsonic wind tunnels with Tu ≈ 0.1%.    


In the range 80° < 
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 < 90°, the general trend of the fixed  strategy is a decrease of the transition N factor when the suction velocity Vw increases. This can be attributed to disturbances generated by the suction holes, which enhance the initial amplitude of the stationary vortices generated by the crossflow instability. 

3.2.3.4. The NCF-NTS strategy


  
      This strategy explicitly separates TS and CF disturbances. The criterion for transition is not a unique value of NTS or NCF, but a curve NCF (NTS) established from experimental data. Figure 3.11 shows three possible NCF - NTS diagrams (Redeker et al, 1990). The regions below and above the curves indicate laminar and turbulent boundary layers, respectively. The concave curve represents the case of a strong interaction between CF and TS instabilities: a small amount of CF instability coupled with a small amount of TS instability is sufficient for triggering transition. The straight line NCF + NTS = constant represents a moderate interaction, and the convex curve indicates that the interaction is weak: in this case, the breakdown to turbulence is induced either by TS waves or by CF waves. 
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The practical use of this strategy is illustrated in figure 3.12. Let us assume that the critical curve NCF(NTS) has been established for a certain type of problems, for instance for transonic swept wings. For a given problem, NCF and NTS factors are determined simultaneously as the computation proceeds downstream. This allows defining a curve which intersects the critical curve at the transition point. 


The NCF-NTS strategy is systematically used in Europe by Airbus-Deutschland and at DLR for swept wing problems. NTS is defined as the envelope of the N factors computed for unstable frequencies with  = 0° (which is only an approximation for transonic flows because the most unstable direction for TS waves is around 40°). NCF is computed for stationary waves only (which is correct for free flight conditions but questionable for wind tunnel conditions). Figure 3.13 presents the values of NCF and NTS at transition computed by Schrauf (2001) for three series of flight experiments: 


· NLF (Natural Laminar Flow) experiments performed on an ATTAS aircraft (see Redeker et al, 1990, Horstmann et al, 1990), 


· NLF experiments performed on a Fokker F100 aircraft (ELFIN project, see above), 


· experiments with suction performed on an Airbus A320 fin (see Henke, 1999). 
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		Figure 3.13- NCF and NTS factors for free flight data:


(: ATTAS (NLF)  ■: Fokker 100 (NLF)  ◊: A320 fin (suction)





The N factors on the left hand part of the figure were obtained from the incompressible stability theory, those on the right hand part from the compressible stability theory. As expected, compressibility exerts a more pronounced effect on TS waves than on CF waves. The fact that the NCF values for the ATTAS data are larger than those for the F100 data is attributed to differences in the surface polishing. The analysis also shows that the NTS values for the F100 and ATTAS data are larger than those for the A320 data; the reason could be the sound of the suction system installed in the fin. 


In spite of a large scatter, each set of data exhibits coherent trends. Referring to figure 3.11, it seems that the NCF - NTS data are of the “weak interaction” type. It can also be observed that the compressible NCF and NTS values for the F100 experiments are in the same range than those given by the fixed  strategy. 


3.2.3.5.  “Pathological” cases


Let us summarize the advantages and shortcomings of the N factor integration strategies:


· The envelope strategy is very simple and requires a small computing time. However, as the N factor for a given frequency sometimes represents the cumulative effects of CF and TS instabilities, it can reach very large (and unphysical) values at the transition location.


· The fixed  method implicitly separates CF waves (large values of ) and TS waves (small values of ) and is coherent with the linear PSE approach. As many combinations of f and  need to be considered, it requires some computational effort.


· The NCF-NTS strategy explicitly separates CF and TS waves. For compressible flows, the distinction between TS and CF waves is not always easy numerically due to the large values of the wavenumber angle  for TS disturbances. Its calibration requires establishing a complete critical (NCF-NTS) curve.   
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		Figure 3.14-A pathological case (Fokker 100): comparison between local (left) and non-local (right) 


N factors. Measured transition location at x ≈ 1 m





A common shortcoming of the fixed  and NCF-NTS strategies is the appearance of “pathological” cases. The example shown in the left hand side of figure 3.14 is related to a particular flight point of the F100 data (M0 = 0.746, geometrical sweep angle = 19.7°, chord Reynolds number ≈ 21 106, upper surface, outer wing) . It is analyzed using the fixed  strategy. As for the case shown in the right hand part of figure 3.8, two groups of (f, ) curves can be distinguished, one close to the leading edge corresponding to CF disturbances, with a maximum N factor between 8 and 9, the second further downstream corresponding to TS waves, with a maximum N factor around 7. Experimentally, transition is detected at x ≈ 1 m, i.e. at the location of the second maximum. However, assuming a transition N factor in the range 8-10 for CF disturbances would predict transition at the location of the first maximum. Schrauf et al (1997) experienced the same kind of problem with the NCF-NTS method. In general, the envelope strategy allows avoiding these pathological behaviours. 
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		Correlation proposed by Crouch and Ng (2000), low speed

		Correlation proposed by Archambaud et al (2004),


supersonic flows



		Figure 3.15- Variation of stationary CF-instability N factors with surface roughness 








3.2.3.6.  Transition N factor for “pure” CF transitions


Let us consider experimental conditions such that transition is dominated by pure CF disturbances. For a very low free-stream disturbance environment, stationary modes play the major role in the transition process. By using a simplified receptivity model, Crouch and Ng (2000) demonstrated that:


NSCF = NSCF0 - ln

NSCF is the stationary CF-instability N factor at transition, NSCF0 is a reference N factor and  is a measure of the surface roughness (or suction) variation which governs the initial amplitude of the stationary vortices. The left hand side of figure 3.15 shows the variation of NSCF as a function of  = hrms/* for the experiments performed by Radeztsky et al (1999) at a free-stream turbulence intensity Tu = 0.02%. The roughness height hrms is an integral rms level (between 0.25 and 3.3 m), * is the streamwise displacement thickness at the neutral point of the most amplified modes. A good correlation was found with NSCF0 = 2.3.  


When the previous relationship is applied to the experimental data of Deyhle and Bippes (1996), the correlation is not so good. As the free-stream turbulence level Tu in these experiments was 0.15%, it was conjectured that travelling waves may be more strongly linked to the occurrence of transition. Therefore Crouch and Ng propose to express the transition N factor for travelling waves (NTCF) as:


   NTCF = NTCF0 - ln

In this case, the reference N factor NTCF0 depends on Tu. A good correlation with the data of Deyhle and Bippes was achieved with NTCF0 = 9.4.  

Archambaud et al (2004) developed a correlation of the same type for supersonic experiments performed at Mach 3 on two swept models. The transition N factor for CF disturbances was fairly well correlated by a “surface polishing” Reynolds number Rk = Ukk/k. k is a measure of the surface polishing at the critical point (typically between 1 and 10 m), Uk and k are the mean velocity and the kinematic viscosity at the altitude y = k. This correlation is shown in the right hand side of figure 3.15. 

3.3. Application of the eN method using the nonlocal approach (PSE)

3.3.1. General features


Let us recall first the general expression of the disturbances described by the non-local (PSE) theory:
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where is complex,  and  being real numbers. 

By contrast with the local approach, it is no longer necessary to impose additional condition(s) for computing non-local N factors in compressible and/or three-dimensional flows. This is due to the fact that  is real and constant:


· because  is real, the amplification vector has only one component in the x direction;


· because  is constant, the N factor will be computed in a way which is similar to the fixed  theory described previously.


This does not mean that the non-local approach produces a unique N factor. As pointed out before, different disturbance quantities lead to different growth rates, which in turn produce different N factors, see relation (3). 

It is clear that the PSE equations must be solved in a coordinate system which is coherent with the assumptions made on the mathematical nature of . For the case of a swept wing of “infinite” span, the obvious choice is to consider x as the direction normal to the leading edge and z as the spanwise direction. It must be noted that the surface curvature of the body is taken into account by the PSE approach. Because the curvature effects are of the same order of magnitude as the non-parallel effects, it is not coherent to include curvature terms into the local stability equations, but these terms have to be accounted for in non-local stability computations. To summarize, PSE results with curvature can be compared only with local results obtained without curvature by using the fixed  local strategy.


From a numerical point of view, the computing times requested for solving the local and non-local equations are similar. The PSE approach does not present particular convergence problems, even in difficult cases, for instance when the Kp distribution presents wiggles or when a discontinuous suction is applied at the wall. The difficulty sometimes lies in the choice of the initial location, which must be located upstream of the non-local neutral point; some numerical transients can make the final results dependent on the starting point.   


3.3.2. Comparison between local and non-local results for swept wings


The experimental data base obtained at ONERA on the DTP B swept wing with and without suction (paragraph 3.2.3.3) has been used for the purpose of comparison between local and non-local approaches (Gasparian, 1998, Arnal and Casalis, 2000). The results demonstrated that non-parallel effects are strongly destabilizing in regions where CF disturbances are dominant, i.e. close to the leading edge. However, introducing curvature terms into the PSE equations reduce the difference between local and non-local N factors, i.e. curvature terms are stabilizing. The right hand side of figure 3.16 shows some non-local N factors at transition given by the non-local approach with curvature terms included (the N factors are computed using the disturbance kinetic energy integrated across the boundary layer). If these results are compared with those given by the local fixed  strategy without curvature terms (left hand side of figure 3.16), it can be observed that:


· The difference is negligible for TS dominated cases, because these waves start to develop “far” from the leading edge, in regions where non-parallel et curvature effects are small;


· For CF dominated cases, non-local effects lead to an increase N ≈ 2, which means that the non-parallel effects are more important than the curvature effects (this cannot be considered as a general rule). But the local and non-local values of  are close together, and the unstable frequency ranges are quite similar.
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		Local theory

		Non-local theory



		Figure 3.16- Local and non-local N factors at transition





The problem of comparison between local and non-local results was also addressed within the EUROTRANS (EUROpean program for TRANSition prediction) project funded by the EC (1996-1999, see Arnal et al, 1996). The main objective was to extend the theoretical work previously performed within ELFIN by trying to improve the transition prediction methods. In particular, non-local computations were carried out for selected Fokker F100 test cases and also for some wind tunnel data obtained in the S1MA wind tunnel. 


The non-local computations with curvature terms included revealed that the N factors based on different quantities (maximum of the streamwise and spanwise fluctuating quantities, maximum of the mass flow disturbances, disturbance kinetic energy) could be significantly different at the measured transition point. In some cases, the difference N between the extreme values was up to 2 for mean values of N in the range 9-11. In general, the non-local theory (with curvature) gave higher values of N factors at transition point, compared to local theory (without curvature). However, the difference between both theories was of the same order as the difference due to the different definitions of the non-local N factor. As a consequence, the non-local approach did not reduce the scatter in the N factor for the considered series of 19 test cases. 


An interesting advantage of the non-local theory is its ability to eliminate some of the “pathological” cases appearing when using the local theory. Non-local results are plotted in the right hand side of figure 3.14 for the “pathological” case discussed in paragraph 3.2.3.5 and compared to the local results. Around the leading edge, the curvature effects reduce the N factor for CF disturbances. Further downstream, the nonparallel effects increase the N factor for TS disturbances, so that a critical N factor around 8 provides a correct prevision of the transition location. 


4. Simpler methods

As the use of the eN method is often time consuming, the development of simplified methods presents an unquestionable practical interest. The simplest solution is to apply analytical criteria expressing relationships between boundary layer integral parameters at the transition point; examples of such criteria will be provided in paragraph 4.2. Another possibility is to use simplified stability methods, the complexity of which is intermediate between analytical criteria and exact stability computations. These “data base” methods are presented below. 


4.1. Simplified stability methods (data base methods)


4.1.1. Overview


The general principle is to compute the disturbance growth rate from tabulated values or from analytical relationships which have been established from exact stability computations performed, in general, for self-similar mean velocity profiles (Falkner-Skan profiles in 2D, incompressible flows). For this reason, these methods are often referred to as “data base” methods. As soon as the growth rate is known, the N factor can be estimated in a classical way. 


Such methods have been proposed by Gaster and Jiang (1994), van Ingen (1996), Stock (1996). Drela (2003) incorporated a three-parameter data base into a viscous/inviscid flow solver, the boundary layer properties being determined from an integral method. The applications were restricted to 2D, low speed flows. A 3D, compressible data base method was developed by Langlois et al (2002). It is based on the stability properties computed for compressible Falkner-Skan-Cooke similar boundary layer profiles. The data base is a table containing the values of three stability parameters as functions of four mean flow parameters. The so-called “parabola method” developed at ONERA (Arnal, 1988, Casalis and Arnal, 1996) is described in the next paragraphs.


Crouch et al (2002) proposed an original approach using neural networks (which can be considered as data bases) in order to compute the TS and CF N factors for swept wings at low speed. The training set is based on exact stability solutions for the Falkner-Skan-Cooke mean velocity profiles. At each chordwise station, the input vector consists of 16 mean flow variables, and the network output provides the local TS and CF growth rates. Then the values of NCF and NTS are easily deduced.    


4.1.2. Parabola method for 2D flows


The parabola method was first established for 2D, incompressible and compressible flows (Arnal, 1988). The principle is the following. For a prescribed value of the dimensionless frequency F = 2f/ue2 and for a given mean velocity profile, the curve representing the evolution of the local growth rate  = -i as a function of R1 (displacement thickness Reynolds number) is approximated by two half-parabolas, see figure 4.1:
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with Rt = R0 if R1 < RM and Rt = R1 if R1 > RM. It was also observed that the variations of M, R0, R1 and RM with F could be represented by simple, algebraic relationships, for instance: 
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K, E and the other coefficients appearing in the corresponding expressions for M, R0 and R1 are then expressed as function of some relevant mean flow parameters. For 2D flows, exact stability results for self-similar velocity profiles showed that these parameters are the local Mach number Me and the incompressible shape factor Hi, which takes into account the pressure gradient effects. 


4.1.3. Extension to 3D flows


The method was then extended to the modelling of crossflow instability, Casalis and Arnal (1996). According to Squire’s transformation, the problem is reduced to a series of 2D problems (this is an approximation, because this transformation applies to the temporal theory only). For a given value of the  angle close to 90°, the growth rates are expressed by relationships similar to those developed for 2D flows, except that the coefficients K, E,… are now functions of two parameters which are representative of a pure inflectional instability, i.e. the mean velocity Ui and the shear stress Pi taken at the inflection point of the projected velocity profile. Compressibility effects are accounted for by replacing the inflection point by the generalized inflection point. 
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		Figure 4.1- Notations for the data base method


developed at ONERA

		Figure 4.2- Supersonic wing studied by JAXA:


free-stream Mach number distribution





General 3D problems can be treated by combining the 2D data base method (which is assumed to be valid for TS disturbances) and the crossflow data base method. In the framework of the ELFIN and EUROTRANS projects, validations were made by comparison with exact stability results for swept wing flows. 


More recently, the method was successfully applied to a fully 3D supersonic wing, as illustrated in figures 4.2 and 4.3. This test case corresponds to flight conditions at Mach 2, at an altitude of 18 km and for a chord Reynolds number of 14 106 (flight conditions for the demonstrator NEXST-1 launched by JAXA in October 2005, see Tokugawa and Yoshida, 2006, Fujiwara et al, 2006). The free-stream Mach number distribution, computed by JAXA, is shown in figure 4.2. Two wing sections are considered, one in the inner wing, the other in the outer wing, corresponding to streamlines 36 and 91 in figure 4.2. The stability results are plotted in figure 4.3. The exact stability computations and the data base results are in good agreement. Both of them use the envelope strategy. As expected, exact results using the fixed  strategy give lower N factors.      
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		Inner wing

		Outer wing



		Figure 4.3- N factor computations for the supersonic wing studied by JAXA





Using the data base methods reduces the computing time by one or two orders of magnitude and provides an acceptable estimation of the N factor. It also allows automatic initializations for exact stability computations.  


4.2. Analytical criteria


Let us recall that the word criterion must be interpreted as a more or less empirical correlation between laminar boundary layer and flow parameters at the onset of transition. 


4.2.1. 2D criteria


Many empirical correlations have been proposed for 2D, incompressible flows, see review in Arnal, 1984. They were deduced from experimental data collected in low turbulence wind tunnel; they take into account the pressure gradient effects, for low values of Tu (which does not appear explicitly in the correlations). Michel, for example (1952) correlated the values of two Reynolds numbers at transition, R and Rx. Granville (1953) developed a correlation which takes into account two important parameters, namely the stability properties and the flow history. The stability is characterized by the difference RT – Rcr in momentum thickness Reynolds number from the neutral stability point to the transition location. The flow history is characterized by an averaged Pohlhausen parameter:
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In the 70’s and the 80’s, the influence of the free-stream turbulence level Tu was introduced in practical criteria. For example, Arnal et al, 1984, extended Granville’s correlation on theoretical bases (AHD criterion). Curves corresponding to several values of Tu are plotted in figure 4.4. It can be observed that the proposed criterion coincides practically with Granville’s one for Tu = 0.05 10-2 to 0.1 10-2. An analytical expression is:    
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with A = -206, B = 25.7, C = 16.8, D = 2.77. Rcr is the momentum thickness Reynolds number at the point where it becomes equal to Rcrf  defined as:
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This criterion applies for attached flows only. 


		
[image: image55]

		
[image: image56]



		Figure 4.4- AHD criterion

		Figure 4.5- C1 criterion





Another criterion for separated flows was developed at the same period by Gleyzes et al, 1985. It is based on the observation that near separation and beyond, the growth rates of the unstable TS waves are almost independent on the frequency. Moreover it is assumed that the local N factor slope dN/dR depends on the local shape factor only. The relationship between dN/dR and H was determined from exact stability calculations for separated velocity profiles. This criterion, of course, cannot be used for negative, zero or slightly positive pressure gradients.    


Recent developments of the practical methods focused on two aspects:


· A composite criterion combining AHD and Gleyzes criteria was established in order to cover both attached and separated flows (Cliquet et al, 2007). It has been verified that there is an overlap between both criteria for a shape factor range corresponding to mild positive pressure gradients. The composite criterion has been implemented in the elsA Navier-Stokes solver, see paragraph 6.3.


· The AHD criterion was extended to compressible flows up to Mach 1.3 (Cliquet and Houdeville, 2007). The general expression remains the same, but A, B, C and D now depend on the free stream Mach number Me, and Rcr depends on Hi and Me.  


4.2.2. Crossflow criteria


As far as crossflow instability is concerned, some specific criteria have been developed, see survey in Arnal, 1992. As an example, the so-called C1 criterion, proposed by Arnal et al, 1984, is plotted in figure 4.5. It is an empirical correlation between the crossflow Reynolds number R2 and the streamwise shape factor at transition. For incompressible flows, the crossflow displacement thickness Reynolds number R2 is expressed as:
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It is important to keep in mind that the use of the C1 criterion is restricted to accelerated flows in the vicinity of the leading edge of swept wings. Large values of R2 can be reached in decelerated flows downstream of the point of minimum pressure, but the shear stress at the inflection point is usually too small for being able to trigger a powerful CF instability. The C1 criterion was recently improved in order to take into account compressibility effects; R2 was simply replaced by R2/(1+0.2 Me2).

For general 3D flows, the use of empirical criteria is based on the following rule: it is assumed that turbulence will appear either by TS instability or by CF instability, which means that there is no interaction between CF and TS waves. Criteria are applied separately for each one of these mechanisms, and it is assumed that the boundary layer will cease to be laminar as soon as one of them will be satisfied. The occurrence of TS instability is predicted by 2D transition criteria following external streamlines. 


5. Advanced methods : nonlinear PSE


5.1. Principle


As explained above, the linear stability theory together with the eN method provides practical prediction for the transition location. A major shortcoming is the fact that the nonlinear processes are ignored. This can explain the lack of efficiency of the eN method in many cases. Therefore advanced stability methods such as nonlinear PSE (see Herbert, 1993, Reed, 2008) are helpful for the understanding and the modelling of the nonlinear mechanisms leading to transition. In the nonlinear PSE approach, the disturbances are expressed as a double series of (n, m) modes of the form:
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nm is complex,  and  are real numbers. Each mode is denoted as (n, m); the integers n and m characterise the frequency and the spanwise wavenumber, respectively. As it has been done for the linear PSE, the x-dependence of the (n,m) modes is shared between the amplitude functions and the exponential terms. A normalization condition is still applied in order to ensure a weak chordwise variation of the amplitude functions. It is also assumed that the complex wavenumber nm varies slowly in the x direction (weakly nonlinear approach). When these disturbances are introduced into the Navier-Stokes equations, a system of coupled partial differential equations is obtained; it is solved by a marching procedure, as it was already the case for the linear PSE. Any non-linear PSE computation requires to choose the “most interesting” interaction scenario between particular modes (“major modes”) and to impose initial amplitudes Ain for these modes. 

The choice of the interaction scenario and of the initial amplitude represents the main difficulty of the nonlinear PSE approach. As for the linear PSE, no major numerical problem is encountered, even when the boundary conditions at the wall or in the free-stream exhibit rapid variations. 


5.2. Examples of application in 2D flows


For 2D, incompressible flows, for instance for the flat plate case, the nonlinear PSE computation is usually initialized with two modes. The primary mode is denoted as (2,0); n = 2 corresponds to the most dangerous frequency and m = 0 is imposed because of the two-dimensional nature of the primary instability ( = 0). Two types of secondary modes can be introduced: the (2,1) mode for the fundamental resonance (oblique mode with the same frequency as the primary mode) or the (1,1) mode for the subharmonic resonance (half frequency). An example of subharmonic resonance is given in the left hand side of figure 5.1 for a flat plate case. The mode amplitudes (plotted with a logarithmic scale) are made dimensionless with the free-stream velocity. The numerical results show first a linear evolution of the primary (2,0) mode up to the streamwise location where its amplitude reaches a maximum of the order of 1%. Then the secondary (1,1) mode exhibits a rapid increase followed by other resonance mechanisms acting on higher harmonics and on the (0,0) mode characterizing the mean flow distortion. The abscissa where the computation breaks down is considered as representative of the physical “transition point”. For compressible 2D flows, the major modes are in general two symmetrical oblique modes (1,1) and (1,-1). The nonlinear interactions generate strong (0,0) and (0,2) modes (“wave-vortex triad”). 


5.3. Examples of application in 3D flows (swept wings)


In 3D flows, interaction scenarios similar to the previous ones have been identified when transition is triggered by pure TS disturbances.
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		Figure 5.1- Examples of nonlinear PSE calculations





In the case of a pure CF instability, the stationary modes are linearly unstable. This implies that at least one stationary mode must be imposed at the initial abscissa as a major mode. In fact, two types of nonlinear PSE computations are usually performed: one with stationary modes only and one with a combination of stationary and travelling modes:


· in the first case, one or several stationary modes (0,M), with M = 1, 2 or more, are selected as major modes with the same spanwise wavenumber  (the value of  is chosen as the most dangerous one according to the linear stability properties) and the computation provides the evolution of the different (0,m) modes. This scenario is relevant when the free-stream turbulence level is very small (the initial amplitude of the travelling modes is assumed to be negligible), typically in free flight conditions or in “quiet” wind tunnels. 


· in the second case, in addition to the (0,1) primary mode, an unsteady (1,1) mode is introduced with the same spanwise wavenumber and with some “relevant” frequency. This corresponds to situations where both stationary and travelling CF waves play a role, typically in classical wind tunnels with moderate free-stream turbulence level.   


A typical result is shown in the right hand side of figure 5.1 for a swept wing case at low speed. Three stationary primary modes (0,1), (0,2) and (0,3) are chosen with a dimensionless initial amplitude equal to 10-3. Other stationary modes (0,m), with m > 3 are generated by nonlinear interactions. A nonlinear saturation appears at x/C ≈ 0.2 and the mode amplitudes remain practically constant up to the numerical breakdown at x/C ≈ 0.43. The corresponding maximum amplitude is rather large, about 15% of the free-stream velocity, in agreement with experimental results. Due to the quasi-equilibrium state of the disturbances from 20% to 43% chord, it is impossible to clearly identify the “physical” transition point. In fact, it is well know that for this kind of problem, transition is triggered by a secondary, high frequency instability, see for instance Kohama et al (1991), White (2000). In principle, this high frequency instability can be simulated by the nonlinear PSE by considering a large number of stationary and travelling modes, as demonstrated by Hein (2006). However, in order to limit the computational effort, the high frequency disturbances are not, in general, introduced into the nonlinear PSE computations, so that the last stages of the transition process are not simulated. It can only be guessed that transition in reality will occur “somewhere” between the beginning of the saturation and the numerical breakdown.   


It is also important to keep in mind that the abscissa corresponding to the resonance (for TS waves) or to the beginning of the saturation (for CF waves) depends on the initial amplitude Ain imposed to the major modes. Increasing Ain leads to an upstream movement of this abscissa and of the numerical breakdown location. In other words, the choice of the N factor, which constitutes the major difficulty of the linear eN method, is now replaced by the choice of Ain. 


 Although the nonlinear PSE cannot yet be considered as mature enough for practical transition prediction, they represent a very efficient tool for the understanding of fundamental transition phenomena. For instance, they were used in the framework of a GARTEUR working group (Arnal et al, 1999) to investigate the possibilities of nonlinear interactions between TS and CF waves in regions where they are simultaneously present, in particular around the pressure peak of swept airfoils. It turned out that the most efficient transition scenarios were the classical TS/TS and CF/CF scenarios. No interesting CF/TS scenario was identified. This confirms the shape of the NCF-NTS critical curve(s), which seems to be of the “weak interaction” type according to the results discussed in paragraph 3.2.3.4. This also justifies the use of separated TS and CF criteria as suggested in paragraph 4.2.    


6. Coupling between NS results and transition prediction


6.1. Requested mean flow accuracy for transition prediction


Any transition prediction requires the computation of the basic flow as a prerequisite. Depending on the complexity of the problem, this basic flow may be computed by using either the boundary layer equations or the Reynolds Averaged Navier-Stokes (RANS) equations. In any case, the numerical accuracy must be extremely high, because the transition prediction tools are very sensitive to any small departure of the mean flow field from its “exact” shape. The use of simple methods (data base or criteria) requires a very accurate computation of some integral parameters, such as the shape factor, the displacement thickness or the momentum thickness, while the use of the eN method requires a very accurate computation of the mean velocity and temperature profiles. For 2D, incompressible flows, for instance, the growth rates computed at R1 = 4000 are 50% larger for a shape factor H equal to 2.591 (Blasius profile) than for a shape factor equal to 2.53.


Inaccuracies in the linear stability results arise particularly when the instability is inflectional. In this case, the growth rate depends on two parameters: the height yi of the generalized inflection point and the value of the shear stress  dU/dy at this point. It follows that the basic flow computations must be highly accurate in the neighbourhood of yi, especially when the generalized inflection point is located away from the wall, in a region where the computational grid is usually coarser than near the wall. This occurs, for instance, in 2D compressible flows (at high Mach number, the generalized inflexion point is close to the boundary layer edge) and in 3D flows (the inflection point of the crossflow profile is typically located in the middle of the boundary layer thickness). 


The problem is illustrated in figures 6.1 and 6.2 for the case of a swept wing in transonic free flight conditions. The boundary layer properties have been deduced from boundary layer and from RANS computations. It can be seen in figure 6.1 that the agreement is satisfactory for the streamwise displacement and momentum thicknesses, as well as for the crossflow displacement thickness. At first sight, the differences in these quantities are acceptable, but they are sufficient to cause strong discrepancies in the N factor curves. Figure 6.2 shows that the N factors deduced from the boundary layer results are twice those deduced from the RANS results. For instance, a transition N factor equal to 8 results in a transition location s/c between 2 and 3% chord (boundary layer) or larger than 18% chord (Navier-Stokes).  
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		Figure 6.1- Boundary layer and Navier-Stokes mean flow fields: integral thicknesses


Left: incompressible streamwise displacement (1i) and momentum (i) thicknesses


Right: incompressible crossflow displacement (2i) thickness
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		From Navier-Stokes results
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		Figure 6.2- Boundary layer and Navier-Stokes mean flow fields: N factors


s is the curvilinear abscissa along the wing surface (s/c ≈ x/c + 0.01)








6.2. Strategies for transition prediction in RANS codes


 The use of CFD codes based on RANS solvers able to handle complex flows with laminar-turbulent transition in an automatic way is of primary importance in the world of aerospace industry. Practically, it is often necessary to determine the transition location in order to obtain reliable results for wing or airfoil design. However, as illustrated before, the numerical accuracy of the RANS results is not always sufficient for a meaningful application of the transition prediction methods.


Several attempts to include transition computation into RANS solvers were carried out in the recent years:


· Direct coupling of a RANS code with a stability code;


· Coupling of a RANS code with a boundary layer code which provides the appropriate mean flow field for transition prediction;


· Direct implementation of simple prediction methods (criteria) in RANS codes


· Direct transition prediction by transport equations, either low Reynolds number turbulence transport equations (Wilcox, 1994) or a specific equation for intermittency (Steelant and Dick, 1996, Suzen and Huang, 2000) and possibly for an additional quantity (Langtry and Menter, 2005). This topic will not be covered in the present lecture.  


6.2.1. Solution 1: direct coupling of a RANS code with a stability code


The RANS results are directly used for a linear stability analysis and the application of the eN method. This strategy was used for the example presented in figures 6.1 and 6.2. Due to the difficulties encountered for obtaining accurate mean flow fields, it is limited to rather simple geometries. 


6.2.2. Solution 2: coupling of a RANS code with a boundary layer code


RANS computations are first carried out, then the free-stream velocity distribution at the viscous layer edge  is determined. It is then used as input for a laminar boundary layer calculation; transition location is finally estimated by applying the eN method or simpler methods (for applications of this strategy, see for instance Krumbein, 2003). The interest is that the boundary layer results are in general accurate enough for transition prediction. But there are two major shortcomings. Firstly, the boundary layer approach is limited to attached flows; secondly, it is not always easy to define a viscous layer edge from RANS results, especially in regions of strong wall curvature. In addition, most of the boundary layer codes are restricted to simple geometries (2D flows, infinite swept wings, swept wings with conical flow assumption), which makes the analysis of fully 3D geometries difficult.  


A variant of Solution 2 is the coupling of an Euler code with a boundary layer code. Here, the Euler results provide the inviscid velocity at the wall, which can be directly used for boundary layer computations. A shortcoming is that viscous-inviscid interactions cannot be taken into account. 


6.2.3. Solution 3: direct implementation of simple prediction methods in RANS codes


This approach is used at ONERA for transition prediction with the elsA software, which solves the Navier-Stokes equations on structured meshes with a cell-centered finite-volume discretization technique (Cambier and Gazaix, 2002). The composite AHD-Gleyzes criterion and the C1 criterion have been implemented in this code. The major difficulty lies in the accurate computation of the integral parameters entering these criteria (shape factor, streamwise momentum thickness, crossflow displacement thickness), which requires first a correct definition of the viscous layer edge. In order to overcome this problem, the formulation of the criteria has been slightly modified. For instance, the shape factor has been replaced by the Pohlhausen parameter, which can be computed with a better accuracy. Examples of application are given in the next paragraph (see details in Cliquet et al, 2007, and Cliquet, 2007).


6.3. Examples of application using solution 3 (elsA software)


The first example deals with the well-known Somers 2D airfoil, which has been designed within the framework of Natural Laminar Flow researches for sailplanes. Figure 6.3 shows a comparison between measured and computed polar curves for a free-stream Mach number of 0.1 and a chord Reynolds number of 4 106. The experiments were performed in the Langley low-turbulence pressure tunnel (Somers, 1981). In the computations, the structured mesh contains 651(241 nodes and results from a convergence study. Transition is predicted by the composite AHD-Gleyzes criterion (denoted as “ahd+gh”), then an intermittency function allows a smooth evolution up to the fully turbulent state, which is modelled by the Smith k-l model. Fully turbulent curves are also plotted in figure 6.3 (“turb”). One can notice a significant improvement in the polar curve prediction using the transition criterion.
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		Computational mesh on airfoil vicinity

		Comparison between measured and computed
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		Figure 6.3- elsA computations for the Somers airfoil





The second example is the KH3Y configuration, which is a half plane model equipped with a modern type wing designed by Airbus Germany. This model was selected for use in the European EUROLIFT projects for wind tunnel tests in a number of configurations, from clean wing to advanced flap system with pylon and nacelle. A 97 blocks, 5.5 million points structured mesh, whose surface components are shown in figure 6.4, was created by Airbus Germany. 
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		Figure 6.4-


 KH3Y case. 


View of the complete 


surface mesh





Figures 6.5 and 6.6 show RANS results obtained by Cliquet and Houdeville (2007) for a landing configuration, with slat and flap settings of 26° and 32°, respectively, at an angle of attack  = 16°. The Mach number is 0.175, and the chord Reynolds number is 1.38 106. Transition location was detected by the empirical criteria described before. In figure 6.5, the laminar (respectively turbulent) regions are in blue (respectively red). The skin friction lines (figure 6.6) indicate that transition occurs due to TS disturbances on the main wing and through a separation bubble on the flap. The same kind of computations was carried out for several angles of attack. By comparison with fully turbulent calculations, the stall prediction is improved when transition is taken into account.  
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		Figure 6.5- KH3Y case. Intermittency function

		Figure 6.6- KH3Y case. Skin friction 


and friction lines





7. Conclusion


After more than fifty years, the eN method remains the most widely used method to estimate the transition location, although its deficiencies are well identified: the receptivity mechanisms are not accounted for, and the nonlinear phase is replaced by a continuous linear amplification up to the onset of transition. It seems, however, that the eN method can be applied with some confidence for 2D flows. The problem is more complex for 3D flows due to the possible coexistence of TS and CF waves, but systematic investigations carried out during the last ten or fifteen years resulted in a rather clear picture. The advantages and shortcomings of the different integration strategies have been identified, and values of the transition N factors for “standard” conditions are available. 


The non-local, linear approach can be used without any major numerical difficulties, even in cases of pressure distributions exhibiting wiggles. By contrast with the local theory, it takes into account wall curvature and nonparallel effects, but the main problem often lies in the choice of the initial chordwise station. The computing time is similar to that required by the local, fixed  strategy. As far as the values of the N factor at transition are concerned, the scatter observed by using the local methods is not reduced. However, the non-local theory is able to eliminate (some of) the pathological behaviours appearing when using the local approach. 


The nonlinear PSE equations also do not lead to major numerical problems, but some difficulties can be pointed out: computing time, selection of the most relevant interaction scenarios, choice of the initial amplitudes. However, the experience gained by using this approach for several years allowed identifying some  “standard” interaction scenarios. Although it cannot be used today for systematic practical applications, the weakly nonlinear theory helps to understand the basic phenomena leading to transition. It also provides “indirect” information on the initial disturbance amplitudes in general or in particular conditions.  


Simple methods present an unquestionable practical interest, essentially for complex 3D geometries where exact stability computations would require an enormous computational effort. The implementation of such methods in Navier-Stokes codes already provided encouraging results. The effort in the next years will be directed toward the implementation in these codes of more and more sophisticated prediction tools. 
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1
THREE-DIMENSIONAL BOUNDARY LAYERS

1.1
Introduction


Reed & Saric (1989) review the early theoretical and experimental work in 3-D boundary layers. Swept wings, rotating disks, axisymmetric bodies (rotating cones and spheres), corner flows, attachment-line instabilities, as well as the stability of flows for other 3-D geometries are covered. This historical account and literature survey of the crossflow instability are used for references prior to 1989. Saric, Reed & White (2003) covers similar ground and refreshes the literature up to the date of that publication. Besides swept-wing flows, particular attention was paid to the new results coming from rotating-disk and swept-cylinder studies.


The nature of these lecture notes is such that tutorial material is necessary. Since the dominant applied problem in 3-D boundary layers is the swept wing, these notes will concentrate on this geometry. Since the rotating disk is not a swept wing e.g. it has absolute instabilities absent in the swept-wing boundary layer and the yawed cylinder has a strong curvature instability, the reader is referred to Saric el (2003) for the details and references on these other flows.


1.1.1
Basic Instability Mechanisms

The control of transition to turbulence, called Laminar Flow Control or LFC, is introduced in order to harvest the benefits of drag reduction. This requires the need to understand the fundamental instability mechanisms in laminar swept-wing flows. Four types of instabilities have been identified: attachment line, streamwise, centrifugal, and crossflow. The attachment-line boundary layer can undergo an instability or be subject to contamination by wing-root turbulence; these phenomena are associated with, in general, swept wings with a large leading-edge radius (Hall et al 1984, Reed & Saric 1989). The streamwise instability gives rise to the familiar Tollmien-Schlichting (T‑S) wave in two-dimensional flows (Reshotko 1976, Mack 1984, Reed et al 1996). Centrifugal instabilities appear over concave regions on the surface and result in the development of Görtler vortices (Saric 1994). The crossflow instability occurs in regions of pressure gradient on swept surfaces. In the inviscid region outside the boundary layer, the combined influences of sweep and pressure gradient produce curved streamlines at the boundary-layer edge. Inside the boundary layer, the streamwise velocity is reduced, but the pressure gradient is unchanged. Thus, the same balance between centripetal acceleration and pressure gradient that is present in the inviscid layer, does not exist does not exist in the boundary layer. This imbalance results in a secondary flow in the boundary layer, called crossflow, that is perpendicular to the direction of the inviscid streamline. The 3-D profile and resolved streamwise and crossflow boundary-layer profiles are shown in Figure 1.


[image: image1.wmf]

Figure 1 Swept-wing boundary-layer profiles.


Because the crossflow velocity must vanish at the wall and at the edge of the boundary layer, an inflection point exists and provides a source of an inviscid instability. The instability appears as co-rotating vortices whose axes are aligned to within a few degrees of the local inviscid streamlines.


When considering the control of instabilities, the crossflow is the most difficult. Attachment-line contamination can be controlled by reducing the leading-edge radius. If design considerations limit this reduction, a passive attachment-line suction patch, similar to the one used in the Boeing 757 LFC flight tests, is a suitable alternative. Then the attachment-line instability doesn’t occur for ReθAL less than 250 which is easy to achieve. T-S instabilities can be passively controlled by an accelerating flow, dCp/dx < 0, which means moving the pressure minimum as far aft as possible (and to still have good pressure recovery). Görtler instabilities can be avoided by not having concave surface curvature. However, if concave curvature is present, achieve the overall concave curvature through a series of alternating concave and convex surface variations. This is an old idea of Pfenninger that was verified by Benmalik & Saric (1994). Essentially, the convex curvature transfers energy to higher modes and is more stabilizing than the convex curvature is destabilizing.


1.1.2
Crossflow Instability

Whereas an accelerating Cp is stabilizing to T-S waves, it destabilizes crossflow. Moreover, unlike T‑S instabilities, the crossflow problem exhibits amplified disturbances that are stationary as well as traveling. Even though both types of waves are present in typical swept-wing, transition is usually caused by either one, but not both, of these waves. Although linear theory predicts that the traveling disturbances have higher growth rates, transition in many experiments is induced by stationary waves. Whether stationary or traveling waves dominate is related to the receptivity process. Stationary waves are more important in low-turbulence environments characteristic of flight, whereas traveling waves dominate in high-turbulence environments (Bippes 1997, Deyhle & Bippes 1996).


Stationary crossflow waves (
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 disturbances) are typically very weak; hence, analytical models have been based on linear theory. However, experiments with stationary crossflow waves often show evidence of strong nonlinear effects (Dagenhart et al 1989, 1990; Bippes & Nitschke-Kowsky 1990; Bippes et al 1991; Deyhle et al 1993; Radeztsky et al 1994; Reibert et al 1996; Saric et al 1998). Because the wave fronts are fixed with respect to the model and are nearly aligned with the potential-flow direction (i.e., the wavenumber vector is nearly perpendicular to the local inviscid streamline), the weak (
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) motion of the wave convects O(1) streamwise momentum producing a strong 
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 distortion in the streamwise boundary-layer profile. This integrated effect and the resulting local distortion of the mean boundary layer lead to the modification of the basic state and the early development of nonlinear effects. 


An interesting feature of the stationary crossflow waves is the creation of secondary instabilities. The 
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 distortions created by the stationary wave are time independent, resulting in a spanwise modulation of the mean streamwise velocity profile. As the distortions grow, the boundary layer develops an alternating pattern of accelerated, decelerated, and doubly inflected profiles. The inflected profiles are inviscidly unstable and, as such, are subject to a high-frequency secondary instability (Kohama et al 1991, Malik et al 1994, Wassermann & Kloker 2002, White & Saric 2005). This secondary instability is highly amplified and leads to rapid local breakdown. Because transition develops locally, the transition front is nonuniform in span and characterized by a “saw-tooth” pattern of turbulent wedges. Arnal (1997), Bippes (1999), and Kachanov (1996) review the European contributions to stability and transition in 3-D boundary layers and, as such, are companion papers to this work. Recently, improvements in both experimental techniques and computational methods have opened the door to a new understanding of transition in 3-D boundary layers. This review focuses on the latest developments, with emphasis on the experimental work and relevant comparisons with CFD.


1.2
Swept Flat Plate


A prototype of the swept wing is a swept flat plate with a pressure body (Saric & Yeates 1985) that could be used to verify the basic aspects of LST. The advantage of the flat plate is that the first neutral point can be placed away from the leading edge and thus avoids nonparallel and curvature effects. In a series of experiments on swept flat plates (Nitschke-Kowsky & Bippes 1988, Müller 1990, Deyhle et al 1993, Kachanov & Tararykin 1990, Kachanov 1996), the observed wavelength and growth rate of the crossflow wave is in general agreement with linear theory (Orr-Sommerfeld solutions). 


Deyhle et al (1993) and Kachanov (1996) developed techniques to create controlled traveling waves within the boundary layer and observed the growth of them. Linear theory was also verified in this case. Bippes (1997) put into perspective the importance of traveling modes and their dependence on freestream conditions. In general, under conditions of high freestream turbulence, traveling modes dominate and linear theory predicts the behavior of the crossflow waves. In low-turbulence flows, stationary waves dominate, the mean flow is distorted, and nonlinear behavior occurs rapidly, thus obviating the linear analysis beyond initial mode selection. As a caution, the effect of the stationary wave is not the limit of frequency going to zero with traveling waves.


Having done a swept-flat-plate experiment, this author is not convinced that this is a realistic model of swept-wing stability and transition. By virtue of the large boundary layers at the neutral point, the sensitivity to surface roughness is lost.


1.3
Receptivity


When the paper by Reed & Saric (1989) was published, very little was known regarding receptivity of 3-D boundary layers. It was acknowledged that receptivity must play a major role in determining the details of crossflow transition because of the wide range of behaviors observed using different models in various experimental facilities. In detailing a list of unanswered questions regarding these variations observed in different facilities, Reed & Saric (1989) concluded, “All of this serves notice that stability and transition phenomena are extremely dependent on initial conditions.” Since then, a significant research effort that includes experimental, theoretical, and computational work has made great progress toward an understanding of the applicable receptivity processes (the reader is referred to the review by Bippes (1999) for additional details). Owing to space constraints, we focus primarily on the recent efforts in this area.


1.3.1
Role of Freestream Fluctuations

The effect of freestream turbulence on crossflow transition was investigated by Deyhle & Bippes (1996), who performed transition measurements on a crossflow-dominated swept-plate model in a number of different wind-tunnel facilities with varying freestream-turbulence levels. They found that for the particular model used in those experiments turbulence intensities above Tu = 0.0015 produced transition behavior dominated by traveling waves, but that for lower turbulence levels stationary waves dominated. Here, Tu is defined as 
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. It is surprising to note that for increased turbulence levels where traveling waves dominate but the turbulence intensity is not too high, 0.0015 < Tu < 0.0020, transition was actually delayed relative to low-turbulence cases at the same Reynolds number. The explanation for this is that the traveling waves excited by the increased freestream turbulence were sufficiently strong to prevent stationary waves from causing transition but were not strong enough to cause transition as quickly as the stationary waves they replaced. This behavior indicates that transition results from many wind tunnels may have no bearing on flight results because quite low levels of turbulence are sufficient to generate traveling-wave-dominated behavior, counter to the stationary-wave-dominated behavior observed in flight (Carpenter et al 2008; Martin et al 2008; Saric et al 2008). 

In another experiment, Radeztsky et al (1999) found that transition behavior on a swept wing is insensitive to sound, even at amplitudes greater than 125 dB. The conclusion is that the variations observed by Deyhle & Bippes (1996) at varying levels of Tu are due primarily to variations in the vortical components of the freestream fluctuations and not to the acoustic component.


1.3.2
Role of Surface Roughness

The receptivity mechanism for the stationary vortices that are important for transition in environments with very-low-amplitude turbulent fluctuations (i.e., characteristic of the flight environment) is surface roughness. This was conclusively established by Müller & Bippes (1989), who translated a swept-flat-plate model relative to a wind-tunnel test section and found that the recurring stationary transition pattern was fixed to the model. The instability features they observed had to be related to model roughness rather than to fixed features of the freestream flow generated by nonuniformities of the screens or other effects.


Detailed roughness studies of isolated 3-D roughness features have been completed by Juillen & Arnal (1990), who found that for isolated roughness elements the correlation by von Doenhoff & Braslow (1961) describing the limit for bypass transition is correct. Radeztsky et al (1999) showed that the characteristics of isolated 3-D roughness elements whose Rek values fall below the bypass-inducing level play a very important role in transition behavior. Radeztsky et al (1999) found that roughness is most effective at generating crossflow disturbances at or just upstream of the first neutral point, that the transition location is quite sensitive to roughness height even for roughness Reynolds numbers as low as Rek = 0.1, and that the roughness diameter must be greater than 10% of the most amplified stationary wavelength to be effective.


In addition to isolated 3-D roughness, natural surface roughness can also play a significant role in transition location. Radeztsky et al (1999) found that a decrease in surface-roughness amplitude from 9.0 µm rms to 0.25 µm rms increases the transition Reynolds number by 70%. In contrast to this, experiments by Reibert et al (1996) showed that an artificial distributed roughness array with an amplitude of 6 µm or greater applied near the leading edge produces transition behavior almost completely insensitive to roughness amplitude in the range of 6--50 µm. In the experiment by Reibert et al (1996), the periodic roughness arrays concentrate the disturbances in a very narrow band of wavelengths, and these well-defined modes generally lead to nonlinear amplitude saturation of the most amplified wave. Amplitude saturation renders the initial amplitude nearly unimportant so long as it is above a threshold for which saturation occurs prior to transition. In other words, Radeztsky et al (1999) saw a strong roughness-amplitude effect for roughness conditions that did not lead to saturation, whereas Reibert et al (1996) did not see a strong roughness-amplitude effect for roughness at or above saturation-producing amplitudes.


1.3.3
Receptivity Computations

A number of theoretical and computational approaches to swept-wing crossflow receptivity have been applied. Some of the more recent include an adjoint equation approach by Fedorov (1989), a parabolized stability equation (PSE; linear PSE, LPSE; nonlinear PSE, NPSE) approach by Herbert & Lin (1993), and a direct numerical simulation (DNS) approach by Spalart (1993). Other efforts are by Crouch (1993, 1994, 1995) and Choudhari (1994), both consider the receptivity of Falkner-Skan-Cooke boundary layers as perturbations of a parallel boundary layer. The framework of their approaches allows both surface roughness and freestream acoustic disturbances to be considered as disturbance sources. Choudhari (1994) extended his work to include acoustic-wave-angle effects and a variety of different roughness configurations including isolated roughness, roughness arrays and lattices, as well as distributed random roughness. Crouch (1994) emphasized a framework equally applicable to T-S and crossflow disturbances. Because traveling-wave receptivity scales with two small parameters (the freestream velocity-fluctuation amplitude and surface-roughness amplitude), whereas the stationary-wave receptivity scales with only one (the surface roughness), both authors note that stationary waves should be expected to dominate in low-disturbance environments and that traveling waves should only appear for large freestream fluctuation levels. The experiments by Radeztsky et al (1999) confirm that acoustic forcing is not an effective receptivity source when the surface roughness is low.


The method described by Crouch (1994) is used by Ng & Crouch (1999) to model the artificial roughness arrays used in the Arizona State University (ASU) swept-wing experiments by Reibert et al (1996). Ng & Crouch (1999) give results that are in good agreement with the experiments when the receptivity of 12-mm waves (most  unstable mode) to low-amplitude (roughness height 6 or 18 µm), 12-mm-spaced roughness arrays is considered. However, the linear theory overpredicts the receptivity of the 48-µm roughness, suggesting the nonlinear effects reduce receptivity effectiveness. Results are not as good for the receptivity of 9-, 12-, and 18-mm waves to 36-mm-spaced roughness, but this problem may be complicated by the nonlinear growth and production of harmonics associated with the stationary crossflow waves. Bertolotti (2000) presented another Fourier-transform approach that includes the effects of basic flow nonparallelism. Bertolotti applied the method to both swept Hiemenz flow and the Deutschen Centrum für Luft- und Raumfhahrt (DLR) swept-flat-plate experiment by Bippes and coworkers. Comparisons between the receptivity predictions and the DLR swept-plate results are quite good.


Another recent approach by Collis & Lele (1999) consists of solving the steady Navier-Stokes equations in the leading-edge region of a swept parabolic body and of using that solution as a basic state for a linearized steady-disturbance system that includes surface roughness. Comparing the results of this approach to those obtained by Choudhari (1994) and Crouch (1994) shows that receptivity to surface roughness is enhanced by convex surface curvature and suppressed by nonparallelism. Neglecting nonparallelism causes the local approach to overpredict receptivity by as much as 77% for the most amplified stationary crossflow wave. The error introduced by neglecting nonparallelism is most severe for wavelengths in the range most amplified by the crossflow instability and for roughness close to the first neutral point. Janke (2001) confirmed overprediction of receptivity by local approaches. The implication is that amplitude-based transition-prediction methods need to employ a receptivity model that includes nonparallelism because the crossflow modes that dominate transition are most strongly affected by this influence. This result stands somewhat in contradiction to the result by Ng & Crouch (1999) that includes neither surface curvature nor nonparallelism yet shows good agreement with experimental results. 


1.3.4
Role of Turbulence/Roughness Interactions

Although receptivity models have considered the interaction of surface roughness with acoustic fluctuations, none consider the receptivity of freestream turbulence interacting with surface roughness. The experiments by Radeztsky et al (1999) and Deyhle & Bippes (1996) would suggest however that the turbulent fluctuations play a much more significant role in the transition process than acoustic fluctuations. Deyhle & Bippes (1996) give a turbulence intensity criterion that selects traveling or stationary modes, but drawing an analogy to the acoustic/roughness interaction results, one should suspect that it is the interaction of freestream turbulence with surface roughness that is the important consideration. Turbulence level alone may not be sufficient to predict whether traveling or stationary waves will be most important.


With this in mind, the experiment by White et al (2001) examined the interactions of surface roughness and freestream turbulence and confirmed that the selection of traveling-wave or stationary-wave behavior is not as straightforward as the Tu = 0.0015 criterion. In that experiment, a swept-wing model outfitted with a variable-amplitude roughness insert at x/c = 0.025 (near the first crossflow neutral point) was used to change the roughness configuration during an experiment from nominally smooth (<0.5 µm rms) to an 8-mm-spaced, 50-µm-high roughness pattern with 2-mm diameter roughness elements. A turbulence-generating grid provided a turbulence intensity of Tu = 0.003. With a nominally smooth leading edge, a sharp saw-tooth transition pattern was observed in a naphthalene flow-visualization experiment, indicating stationary-wave-dominated transition, but when the roughness array was activated, the saw-tooth transition front was replaced by a diffuse spanwise-invariant transition front indicative of traveling-wave-dominated transition. The implication is that traveling waves do result from an interaction of freestream velocity fluctuations with surface roughness and not from turbulence intensity alone. Therefore, even though stationary waves are generated by surface roughness, increasing the roughness amplitude does not necessarily make stationary waves more likely to be observed than traveling waves. Instead, both surface roughness and turbulence intensity must be considered together in a more sophisticated manner.


1.4.
Nonlinear Behavior


1.4.1
Nonlinear Saturation

In all the experiments by Bippes and coworkers, the growth of the stationary and traveling crossflow waves showed initial qualitative agreement with linear theory. However, the disturbance amplitude saturated owing to nonlinear effects. Also, the amplitude of the traveling waves showed a spanwise modulation indicating nonlinear interactions with the stationary modes. The streamwise-mode shapes had saturation amplitudes of approximately 20%.


Reibert et al (1996) investigated the nonlinear saturation of stationary waves using micron-sized artificial roughness elements to control the initial conditions. Full-span arrays of roughness elements were used to preserve the uniform spanwise periodicity of the disturbance as shown in the velocity contour plot of Figure 2. where the crossflow moves from left to right.
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Figure 2. Streamwise velocity contours in a swept-wing boundary layer


The development of crossflow occurs in two stages. The first stage is linear and is characterized by small vertical 
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 disturbance velocities convecting low-momentum fluid away from the wall and high-momentum fluid toward the wall. This exchange of momentum occurs in a region very close to the wall where there are large vertical gradients in the basic-state streamwise velocity. Because of this large gradient, the small displacements caused by the 
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 disturbance components quickly lead to large disturbances 
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 superposed on the basic state further downstream. This 
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 component soon becomes too large, and nonlinear interactions must be included in any calculations. This is the second stage, evidenced by rollover seen in the streamwise-velocity contours. By forcing the most unstable mode (according to linear theory), nonlinear saturation of the disturbance amplitude is observed well before transition. Although the initial growth rate increases with increasing roughness height, the saturation amplitude remains largely unaffected by changes in the roughness height. The presence of a large laminar extent of nonlinear saturation gives rise to a certain difficulty in using linear methods (such as eN or LPSE) to predict transition. The futility of such approaches is expressed by Arnal (1994) and Reed et al (1996), who show that linear methods do not work in correlating transition for crossflow-dominated boundary layers.


1.4.2
Modal Decomposition

Radeztsky et al (1994) described a measurement technique that allows the experimentally obtained stationary crossflow structure to be decomposed into its spatial modes. Using a high-resolution traversing mechanism, hotwires are carefully moved through the boundary layer along a predetermined path. Data are acquired at numerous spanwise locations, from which modal information is extracted using a spatial power spectrum. Reibert et al (1996) used a slightly modified technique to more objectively determine the modal content. Under certain conditions, the amplitude of the fundamental disturbance mode and eight harmonics are successfully extracted from the experimental data.


1.4.3
Excitation of Less Unstable Modes

Using the modal decomposition technique described above, Reibert et al (1996) investigated the effect of roughness-induced forcing at a wavelength three times that of the most unstable stationary mode (according to linear theory). A cascading of energy from the fundamental to higher modes (smaller wavelengths) was observed, leading to nonlinear interactions among the fundamental mode and its harmonics. Transition was observed to occur slightly earlier compared to forcing at the most unstable wavelength, and the saw-tooth transition front was much more “regular” in span. These data indicate that nonlinear interactions among multiple modes are important in determining the details of transition.


1.4.4
Excitation of Subcritical Modes

Continuing the experiments by Reibert et al (1996), Saric et al (1998) described a set of experiments in which the stationary crossflow disturbance is forced with subcritical roughness spacing, i.e., the spacing between roughness elements is less than the wavelength of the most unstable mode. Under these conditions, the rapid growth of the forced mode completely suppresses the linearly most unstable mode, thereby delaying transition beyond its “natural” location (i.e., where transition occurs in the absence of artificial roughness). These data demonstrate that surface roughness can be used to control the stationary crossflow disturbance wave-number spectrum in order to delay transition on swept wings.


1.4.5
Structure Identification Using POD

Chapman et al (1998) applied linear stochastic estimation and proper orthogonal decomposition (POD) to identify the spatio-temporal evolution of structures within a swept-wing boundary layer. Detailed measurements are acquired using multielement hotfilm, hotwire, and crosswire anemometry. These data allow the POD to objectively determine (based on energy) the modes characteristic of the measured flow. Data are acquired through the transition region, from which an objective transition-detection method is developed using the streamwise spatial POD solutions.


1.4.6
CFD Comparisons: DNS and PSE

DNS have historically been constrained by computer resources and algorithmic limitations; however, some successes have been achieved in relation to the stationary crossflow problem. Reed & Lin (1987) and Lin (1993) performed DNS for stationary waves on an infinite-span swept wing similar to the ASU experiments. Meyer & Kleiser (1990) investigated the disturbance interactions between stationary and traveling crossflow modes on a swept flat plate using Falkner-Scan-Cooke similarity profiles for the basic state. The results are compared to the experiments by Müller & Bippes (1989). With an appropriate initial disturbance field, the nonlinear development of stationary and traveling crossflow modes is simulated reasonably well up to transition. Wintergerste & Kleiser (1995) continued this work by using DNS to investigate the breakdown of crossflow vortices in the highly nonlinear final stages of transition.


Combining the ability to include nonparallel and nonlinear effects with computationally efficient parabolic marching algorithms, the PSE developed by Herbert (1997a) have recently been used to successfully model the crossflow instability. For swept-wing flows, NPSE calculations exhibit the disturbance amplitude saturation characteristic of the DLR and ASU experiments. Wang et al (1994) investigated both stationary and traveling crossflow waves for the swept airfoil used in the ASU experiments and predicted nonlinear amplitude saturation for both types of disturbances. It is suggested that the interaction between the stationary and traveling waves is an important aspect of the transition process.


Haynes & Reed (2000) recently validated the NPSE approach for 3-D flows subjected to crossflow disturbances. Here a detailed comparison of NPSE results with the experimental measurements by Reibert et al (1996) show remarkably good agreement. Haynes & Reed (2000) independently computed the inviscid flow for the model, from which the edge boundary conditions were generated for the boundary-layer code. The initial conditions for the NPSE calculation (with curvature) were obtained by solving the local LST equations at 5% chord location for the fundamental stationary mode and adjusting its RMS amplitude such that the total disturbance amplitude matched that of the experiment at 10% chord. The NPSE was then matched from 5% chord to 45% chord. Transition occurred on the experimental model at 47% chord. The primary and higher modes all grow rapidly at first and saturate at approximately 30% chord. This is due to a strong nonlinear interaction among all the modes over a large chordwise distance. An interesting discovery by Haynes & Reed (2000) is that the flow is hypersensitive to seemingly negligible streamline and body curvature and that inclusion of curvature terms is required to adequately match the experimental data. Figure 3 shows the comparison of the experimental 
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-factor (log of the amplitude ratio) with LPSE, NPSE, and LST as the crossflow vortex grows and then saturates downstream. All the computations include curvature. It is clear that the linear theories fail to accurately describe saturation for this situation.
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Figure 3 Disturbance amplitude for (a) Orr-Sommerfeld, (b) LPSE, (c) NPSE (Haynes & Reed 2000), and (d) experiments (Reibert et al 1996).


Figure 4 shows a comparison of the experimental and computational total streamwise velocity contours at 45% chord; the agreement between the NPSE and the experiments is excellent. The computations in Figures 3 and 4 use only an initial amplitude from the expeiments. The basic state is computed independently from the experimental data.
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Figure 4. Comparison of experimental data with NPSE calculations


There has been much debate about the effects of curvature. For the ASU configuration, the inclusion of curvature has a very small effect on the metric coefficients. The maximum values of metric coefficients occur at 5% chord where they are of the order of 1 + 10-2 and 10-3, respectively. They both drop off sharply with increasing chordwise distance. These values may compel the researcher to neglect curvature, but the work by Haynes & Reed (2000) demonstrates conclusively that small changes in the metric coefficients can have a significant effect on the development of crossflow vortices.


Radeztsky et al (1994) studied the effects of angle-of-attack. Here, in a case of weak favorable pressure gradient, the experiments showed that the crossflow disturbance is decaying in disagreement with various linear theories (LST, LPSE/without curvature, and LST/with curvature) that predicted a growing disturbance. Radeztsky et al (1994) concluded that the disagreement was due to nonlinearity. For this case, Haynes & Reed (2000) found that the LPSE/with curvature and NPSE/with curvature both agreed with the experiment, indicating that, in fact, the crossflow disturbance decays and that there is a strong sensitivity to changes in curvature, nonparallel effects, and pressure gradient (angle-of-attack). The disturbance was linear for this case.


1.5
Control with Distributed Roughness


Two important observations concerning the distributed roughness results byReibert et al (1996) are (a) unstable waves occur only at integer multiples of the primary disturbance wave number and (b) no subharmonic disturbances are destabilized. Spacing the roughness elements with wave number 
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Following this lead, Saric et al (1998) investigated the effects of distributed roughness whose primary disturbance wave number does not contain a harmonic at 
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 = 12 mm (the most unstable wavelength according to linear theory). By changing the fundamental disturbance wavelength (i.e., the roughness spacing) to 18 mm, the velocity contours clearly showed the presence of the 18-mm, 9-mm, and 6-mm wavelengths. However, the linearly most unstable disturbance (

[image: image24.wmf]s


l


=12 mm) has been completely suppressed. Moreover (and consistent with all previous results), no subharmonic disturbances are observed, which shows that an appropriately designed roughness configuration can, in fact, inhibit the growth of the (naturally occurring) most unstable disturbance. When the disturbance wavelength was forced at 8 mm, the growth of all disturbances of greater wavelength was suppressed. The most remarkable result obtained from the subcritical roughness spacing is the dramatic effect on transition location: In the absence of artificial roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing equal to the wavelength of the linearly most unstable wave moves transition forward to 47% chord. However, subcritical forcing at 8-mm spanwise spacing actually delays transition beyond the pressure minimum and well beyond 80% chord (the actual location was beyond view). This promising technique is currently being evaluated for supersonic flight (Saric & Reed 2002).


Subsequent to the experiments, the NPSE results (Haynes & Reed 2000) confirmed this effect. In a DNS solution, Wassermann & Kloker (2002) have shown the same stabilization due to subcritical forcing. Using the same independent approach in terms of the calculation of the basic state, they demonstrated the stabilization due to subcritical roughness and coined the name transition delay by “upstream flow deformation.”.


1.6
Secondary Instabilities


Once stationary vortices reach saturation amplitude, this state can persist for a significant streamwise distance. The velocity contours of Figures 2 and 4 show low-momentum fluid above high-momentum fluid, which produces a double inflection point in the wall-normal velocity profile. There is also an inflection point in the spanwise profile. These inflection points are high in the boundary layer, and the saturated vortices become unstable to a high-frequency secondary instability that ultimately brings about transition to turbulence. Because of the importance of the secondary instabilities in determining the location of breakdown of the laminar flow, there have been a number of investigations, both experimental and computational, in this area. Bippes (1999) included details on the German efforts, in particular, the work by Lerche (1996) that emphasizes secondary instabilities in flows with higher turbulence levels and traveling crossflow waves. Boiko et al (1995, 1999) covered recent efforts involving secondary instabilities in the Russian traveling-wave experiments.


Poll (1985) conducted the first crossflow experiment for which a high-frequency disturbance was observed prior to transition. Traveling crossflow waves were observed with a dominant frequency of 1.1 kHz for Rec = 0.9×106. Increasing the chord Reynolds number to 1.2 × 106 increased the traveling crossflow frequency to 1.5 kHz and also included an intermittent signal at 17.5 kHz superposed on the underlying traveling crossflow waves. Poll (1985) noted that increasing the Reynolds number beyond 1.2 × 106 resulted in turbulent flow at the measurement location, so the high-frequency signal appeared only in a narrow range just prior to transition. Poll (1985) attributed the existence of the high-frequency component to intermittent turbulence.


Kohama et al (1991) investigated a high-frequency secondary instability specifically as a source of breakdown. This experiment combined hotwire measurements and flow visualizations and was intended to determine the location and behavior of the secondary instability mode relative to visualized breakdown patterns. The Kohama et al (1991) experiments clearly show that there is a growing high-frequency mode in the region upstream of transition that can be associated with an inviscid instability of the distorted mean flow. However, a concern can be raised because the measurements were made without a well-controlled primary disturbance state. Experiments subsequent to this work used arrays of micron-sized roughness elements near the leading edge that established the spanwise uniformity both of the stationary vortex amplitudes and of the transition location. Without the benefit of this technique, the data obtained by Kohama et al (1991) likely spanned a wide range of stability behavior despite having been obtained at a single chord position. Improvements in experimental techniques mean that more recent secondary instability experiments have replaced the work by Kohama et al (1991) as the best source for secondary instability data.


Kohama et al (1996) provided somewhat more detail than Kohama et al (1991) by including velocity fluctuation maps that are filtered to give either primary instability or secondary instability fluctuation levels. Kohama et al (1996) concluded that a “turbulent wedge starts from the middle height of the boundary layer” and that this behavior is different from the usual picture of a turbulent wedge that originates in the high-shear regions in naphthalene flow-visualization experiments. A subsequent swept-plate experiment by Kawakami et al (1999) was conducted to further refine these measurements. This experiment featured a small speaker mounted flush with the surface that permitted tracking of particular secondary instability frequencies. Without acoustic forcing, two separate high-frequency bands of disturbances were observed to be unstable. At a chord Reynolds number of 4.9 ( 106, a band located between 600 Hz and 2.5 kHz destabilized just downstream of x/c = 0.35, and a second band located between 2.5 and 4.0 kHz destabilized just upstream of x/c = 0.50. Transition was observed around x/c = 0.70. With acoustic forcing applied, the secondary instability frequency with the largest growth between x/c = 0.40 and x/c = 0.475 was observed to be 1.5 kHz.


In an effort to provide a more concrete experimental database on the behavior of the secondary instability, White & Saric (2005) conducted a very detailed experiment that tracked the development of secondary instabilities on a swept wing throughout their development for various Reynolds numbers and roughness configurations. They found a number of unique secondary instability modes that can occur at different frequency bands and at different locations within the stationary vortex structure. In this experiment, as many as six distinct modes are observed between 2 and 20 kHz. The lowest-frequency mode is nearly always the highest amplitude of all the secondary instabilities and is always associated with an extremum in the spanwise gradient, ∂U/∂z, which Malik et al (1996, 1999) refer to as a mode-I or z mode. Higher frequency modes include both harmonics of the lowest-frequency z mode that appear at the same location within the vortex and distinct mode-II or y modes that form in the ∂U/∂y shear layer in the portion of the vortex farthest from the wall. The lowest-frequency mode is typically detected upstream of any of the higher-frequency modes. However, many higher-frequency modes appear within a very short distance downstream. All of the secondary instability modes are amplified at a much greater rate than the primary stationary vortices (even prior to their saturation). The rapid growth leads very quickly to the breakdown of laminar flow, within ~5% chord of where the secondary instability is first detected. A consequence of this for transition-prediction methodologies is that adequate engineering predictions of transition location could be obtained from simply identifying where the secondary instabilities are destabilized because they lead to turbulence in such a short distance downstream of their destabilization location. An interesting feature of the breakdown of the stationary vortex structure is that it is highly localized. spectra obtained by White & Saric (2005) at various points within the structure indicate that the first point to feature a broad, flat velocity-fluctuation spectrum characteristic of turbulence is very close to the wall in the region of highest wall shear. Other points in the structure remain essentially laminar for some distance downstream of the initial breakdown location. This finding supports the notion of a turbulent wedge originating near the wall, in contrast to what Kohama et al (1996) concluded.


A successful computational approach to the secondary instability was presented by Malik et al (1994), who used an NPSE code to calculate the primary instability behavior of stationary disturbances of a swept Hiemenz flow. As described previously, the NPSE approach successfully captures the nonlinear effects including amplitude saturation. The distorted meanflow provides a basic state for a local, temporal secondary instability calculation. The most unstable frequency is approximately one order of magnitude greater than the most unstable primary traveling wave, similar to the results by Kohama et al (1991), and the peak mode amplitude is “on top” of the stationary crossflow vortex structure. This location corresponds to what Malik et al (1996) (see below) referred to as the mode-II secondary instability.


In order to obtain a more direct comparison to experimental data, Malik et al (1996) used parameters designed to match the conditions found for the swept-cylinder experiment by Poll (1985) and the swept-wing experiment by Kohama et al (1991). The calculations by Malik et al (1996) revealed that the energy production for a mode‑I instability is dominated by the term <u2w2> ∂U2/∂z2 and the mode‑II instability is dominated by <u2v2> ∂U2/∂y2, where the subscript 2 refers to a primary-vortex-oriented coordinate system. This energy-production behavior suggests that the mode-I instability is generated primarily by inflection points in the spanwise direction and that the mode‑II instability is generated by inflection points in the wall-normal direction. This situation is analogous to the secondary instabilities of Görtler vortices (Saric 1994). Malik et al (1996) claimed that the fluctuations observed by Kohama et al (1991) are mode‑II instabilities, but the spectral data presented by Kohama et al (1991) likely includes contributions of both the type‑I and type‑II modes. Although one or the other production mechanism may dominate for a particular mode, it may be too simplistic to assume that only the spanwise or wall-normal inflection points are responsible for the appearance of a particular mode; with such a highly distorted 3‑D boundary layer, all possible instabilities must be evaluated.


Malik et al (1996) also computed the secondary instability behavior observed by Poll (1985) and predicted a 17.2‑kHz mode compared to Poll’s high-frequency signal, which occurred at 17.5 kHz. Based on the shape of this disturbance, Malik et al (1996) claimed that this is a type‑II mode. Malik et al (1999) applied the same approach to the swept-wing experiments by Reibert et al (1996). Malik et al (1999) again applied a local, temporal stability of the stationary crossflow vortices that are established by the primary instability and found that better transition correlation results can be obtained by following the growth of the secondary instability in an N‑factor calculation than by simply basing a prediction on the location at which the secondary instability destabilizes. A method based on the primary instability alone cannot adequately predict transition location.


Malik et al (1999) found that a type-II mode becomes unstable uptream of any type-I mode. This is not what was observed in the experiment by White & Saric (2005) in which type-I modes always appeared upstream of type-II modes. This apparent difference is likely due to the fact that freestream disturbance levels in the experiment are stronger at frequencies near 3 kHz that correspond to the type-I modes than at the higher frequencies near 6 kHz that correspond to the type-II modes. The theory considers only growth rates and does not account for initial disturbance levels.


An alternative to the approach used by Malik et al (1994, 1996, 1999) is presented by Koch et al (2000), who found the nonlinear equilibrium solution of the primary flow. Koch et al (2000) used the nonlinear equilibrium solution as a receptivity-independent basic state for a Floquet analysis of secondary instabilities of the saturated vortices. Yet another approach is by Janke & Balakumar (2000), who used an NPSE for the base flow and a Floquet analysis for the secondary instabilities. Both Koch et al (2000) and Janke & Balakumar (2000) are in general agreement with the various computations by Malik et al (1994,1996, 1999).


Högberg & Henningson (1998) pursued a DNS approach to the problem of the stationary-vortex saturation and the ensuing secondary instability. These authors imposed an artificial random disturbance at a point where the stationary vortices are saturated. These disturbances enhance both the low- and high-frequency disturbances downstream, and each frequency band has a distinct spatial location, with the high-frequency disturbance located in the upper part of the boundary layer and the low-frequency disturbance located in the lower part. Spectral analysis of the resulting disturbance field shows that the most amplified high frequency is somewhat more than an order of magnitude higher frequency than the most amplified traveling primary disturbance. Another high-frequency peak at approximately twice this frequency is also evident in the spectra. This peak likely corresponds to a type‑II mode, although this feature is not described by the authors.


Wassermann & Klocker (2002) present another highly resolved DNS study of nonlinear interactions of primary crossflow modes, their secondary instabilities, and eventual breakdown to turbulence. They emphasize disturbance wave packets that may be more realistic than single-mode disturbances. One of the most important findings obtained from the wave-packet approach is that unevenly spaced primary vortices of differing strengths can interact in such a way as to bring about an earlier onset of secondary instabilities and breakdown than would be found from a single-mode disturbance. Wassermann & Kloker (2002) also found that, when the forcing that initiates the high-frequency secondary instability in their simulation is removed, the secondary instability disturbances are convected downstream, out of the computational domain. This indicates that the secondary instability is convective and that the explosiveness of the growth of the secondary instability is not associated with an absolute instability. The advantage of the DNS solution by Wassermann & Kloker (2002) is its ability to reveal the rather intimate details of the breakdown process. As such, their work is one of the foundation contributions.
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Figure 5 Mode-I velocity fluctuation contours: (a) Figure 7 from Malik et al (1999), (b) Figure 20b from Wassermann & Kloker (2002), and (c) Figure 11 from White & Saric (2005).


To date, the various approaches to the secondary instability problem (experimental, NPSE, and DNS) have achieved rather remarkable agreement in terms of identifying the basic mechanisms of the secondary instability, unstable frequencies, mode shapes, and growth rates. A comparison of three of the most recent efforts is shown in Figure 5. This comparison shows agreement on the location of the breakdown and shows that it is associated with an inflection point in the spanwise direction (an extremum in ∂U/∂z).

1.7
Conclusions


Boundary-layer transition in 3-D flows is a complicated process involving complex geometries, multiple instability mechanisms, and nonlinear interactions. Yet significant progress has recently been made toward understanding the instability and transition characteristics of 3-D flows. In terms of the crossflow problem, the past decade has produced several important discoveries that include tools, such as


▪instrumentation that can be applied to the flight-test environment,


▪POD methods to interpret wind-tunnel and flight-test transition data,


▪validation with careful experiments of NPSE and DNS codes to predict all aspects of stationary disturbance growth.


Several important factors have also been identified:


▪environmental conditions on the appearance of stationary and traveling waves,


▪secondary instability causing local transition in stationary-crossflow-dominated flows,


▪extreme sensitivity of the stationary disturbance to leading-edge, very small, surface roughness,


▪nonlinear effects and modal interaction,


▪extreme sensitivity of stationary-wave growth to very weak convex curvature.


Moreover, by carefully studying the basic physics, these advances have led to the promising application of artificial roughness at the leading edge to control the crossflow instability and delay transition on swept wings.


Important factors such as receptivity (the process by which external disturbances enter the boundary layer and create the initial conditions for an instability) are still not completely understood and represent a challenge. In particular, the role of surface roughness in providing the initial conditions for the crossflow wave needs experimental data. Special attention has to be paid to critical amplitudes for the onset of nonlinear effects. 
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1. Introduction


In the lectures devoted to the practical transition prediction methods (Arnal et al, 2008), the instability mechanisms responsible for the final breakdown to turbulence took place some distance downstream of the leading edge, in regions where the external streamlines are roughly parallel to the incoming flow. In addition, it was assumed that the wall was as smooth as possible. The present lecture provides a summary of the information available for two particular problems of great practical interest, the attachment line phenomena and the surface imperfections.


The attachment line is a streamline which is particular to swept bodies. On an airfoil wing, it starts at the root and ends at the wing tip. This particular topology makes the attachment line sensitive to the contamination by the fuselage turbulent flow arriving at the wing-wall junction. If this contamination is avoided, transition is likely to occur due to a special class of unstable modes. These problems are addressed in paragraph 2.


On classical geometries, the ability to predict transition critically depends on the surface quality. In practice, small defaults (steps, gaps, rivets,…) can have a large impact on transition. As many surface imperfections are unavoidable, it is necessary to estimate their effects. Paragraph 3 gives an overview of the possible sources of premature transition as well as a summary of the existing methods aimed at predicting their influence on transition location.   

2. Attachment line problems


It is not easy to give an accurate definition of the attachment line, except for simple geometries such as symmetrical bodies of constant chord and infinite span: in this case, it is the spanwise line along which the static pressure is maximum. More intuitively, the attachment line represents a particular streamline which divides the flow into one branch following the upper surface and another branch following the lower surface. As a first approximation, the boundary layer flow along this line is either laminar, or turbulent. For a swept wing of infinite span, the boundary layer properties (physical thickness, displacement or momentum thicknesses, shape factor, skin friction) are constant along the attachment line. The mean flow characteristics are summarized in paragraph 2.1. Then two types of attachment line phenomena are discussed and described: the leading edge contamination (paragraph 2.2) and the “natural” transition (paragraph 2.3).       

2.1. Attachment line flow


Let us consider first the simple case of a swept cylinder of infinite span (figure 2.1).  is the sweep angle. The free-stream velocity Q( has a component U( = Q( cos normal to the leading edge and a component W( = Q( sin parallel to the leading edge. Z is the spanwise direction, X is the direction normal to it, X = 0 corresponding to the attachment line. U and W designate the projections of the mean velocity along X and Z, respectively. Along the attachment line, W represents the streamwise velocity, whilst U is the crossflow component. The free-stream velocity components Ue and We around the attachment line are given by:


Ue = kX    and     We = W( = constant                 (1)


For a circular cylinder of radius R, the free-stream velocity gradient k can be expressed as: 
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,   where R is the leading edge radius.

The attachment line flow at low speed is characterised by the Reynolds number 
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 defined as:
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wheree is the kinematic viscosity. For a swept cylinder, 
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 is simply expressed by:




[image: image6.wmf]2


/


1


2


tan


sin


÷


ø


ö


ç


è


æ


=


¥


j


j


n


R


Q


R



          (3)


If the attachment line flow is laminar, the mean velocity profile (invariant in the Z direction) can be obtained as an exact solution of the Navier-Stokes equations, not just the boundary layer equations. This solution is a generalization of the classical 2D Hiemenz flow. The velocity field is expressed as follows:
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Assuming that the spanwise derivatives of velocity and pressure are equal to zero, 
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are solutions of a system of ordinary differential equations with respect to 
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. Along the attachment line (X = 0), the ratio U/Ue has non zero values, but U = 0 from the wall to the free-stream because Ue = 0: there is no crossflow component along the attachment line. As it can be seen in figure 2.2, the streamwise mean velocity profile W/We resembles the Blasius solution for 2D flat plate flow. Its main characteristics are: 


H = 2.54 (Blasius: H = 2.59);   R = We/ = 0.404

[image: image12.wmf]R


;   Cf = 0.461/R   (Blasius: Cf = 0.441/R)  (5)


It is important to keep in mind that 
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 and R have different physical meanings: R is related to the laminar boundary layer properties, while 
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 characterizes the potential flow distribution around the leading edge. 
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		Figure 2.1- Attachment line flow on a cylinder 

		Figure 2.2- Attachment line and flat plate 


mean velocity profiles 





If the attachment line flow is turbulent, a self-similar solution no longer exists. Most of our knowledge comes from experimental studies performed by Cumpsty and Head (1967, 1969), Gaster (1967) or Poll (1978, 1981). The measurements have shown that the streamwise mean velocity distribution W/We is similar to that of a classical flat plate turbulent boundary layer. Depending on the value of 
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, the value of the shape factor lies between 1.7 and 1.4. For a fixed value of 
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, the ratio between the turbulent and laminar skin friction coefficients is of the order of 2 to 3 only. This ratio is 3 to 4 times larger for flat plate boundary layers. This explains why transition detection along (or close to) an attachment line by infra-red thermography is often difficult.    


2.2. Leading edge contamination


2.2.1. Contamination criterion and validation


Leading edge contamination is likely to occur when a swept body is attached to a solid wall (fuselage, wind tunnel wall…). This problem has been widely studied for low speed flows and a simple criterion based on the value of 
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 was developed, see Pfenninger (1965), Poll (1978):


· If 
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 is lower than 250, the burts of turbulence convected along the wall are damped and vanish as they travel along the attachment line. 

· For 
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 > 250, these bursts are self-sustaining. They grow, overlap and the leading edge region becomes fully turbulent. This phenomenon, which is fully nonlinear, constitutes a typical example of “bypass”, in the sense that the linear mechanisms which control “natural” transition do not play any role. 


Many investigations have validated this criterion for many years. These studies include wind tunnel experiments, flight experiments and Direct Numerical Simulations, see overview in Arnal, 1992.   

Poll extended the leading edge contamination criterion to high speed flows by introducing a modified length scale * and a modified Reynolds number 
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which have the same definition as 
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 and 
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, except that e is replaced by *. The latter quantity is the kinematic viscosity computed at a reference temperature T* which may be estimated from an empirical relationship (Poll, 1985a):


T* = Te +A (Tw - Te)+B (Taw - Te)


where Te is the boundary layer edge temperature, Tw is the wall temperature and Taw is the adiabatic wall (recovery) temperature. The original values of the empirical constants (A = 0.1 and B = 0.6) have been modified by Dietz et al (2000) in order to account for wall cooling effects. Correlation of existing data suggested that the onset of contamination occurred for 


* = 245 ± 35. 


Two series of experiments have been performed at ONERA in order to assess the validity of this criterion, one on a swept cylinder at Mach 3, the other on a swept wing at Mach 2 and 2.5 (Arnal and Reneaux, 2001). In the first case, the Mach number normal to the leading edge was supersonic, while it was subsonic in the second case. Despite this difference, both series of experiments provided similar results. For 


* < 200 the attachment line boundary layer was laminar. For 


* ~ 200 turbulent spots appeared on the leading edge and for 


* > 250 the attachment line boundary layer was fully turbulent. However, more recent results obtained in the framework of the European SUPERTRAC project at Mach 1.7 and 2.7 led to quite different conclusions: leading edge contamination started at 


* ≈ 270 and the fully turbulent state was reached for 


* ≈ 330 (Arnal, 2007). Such a scatter in the leading edge contamination Reynolds number in supersonic conditions is certainly too large for practical applications.     


2.2.2. Practical calculation of 
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In order to compute 
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 for real swept airfoils in the subsonic-transonic range, the cylinder formula (3) is often used, R being taken as the local leading edge radius at the attachment line. This procedure often underestimates 
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 by 10 to 20%, which can lead to erroneous conclusions concerning the risk of leading edge contamination when the attachment line Reynolds number is close to the critical value. A more rigorous procedure consists in the following steps:


Step 1: the Kp distribution around the leading edge is either measured or computed. In the latter case, it is necessary to perform fully 3D computations in order to take into account the end effects (wing-wall junction and wing tip); 


Step 2: after the maximum value of Kp, denoted as Kpmax, and the attachment line location have been identified, the effective sweep angle eff is computed. For low speed flows, it is given by:


eff = cos-1 (Kpmax)1/2                 (5)

Step 3: the free-stream velocity distribution Ue(x) around the leading edge is computed by using a locally infinite swept wing assumption, i.e. it is assumed the that free-stream velocity component parallel to the leading edge is equal to Q∞ sineff;


Step 4: the velocity gradient and then 
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 are deduced from the previous computations.
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		Figure 2.3- Example of spanwise variations of attachment line characteristic parameters





Typical results are presented in figure 2.3 for the so-called “DTP A” model tested at ONERA in the subsonic F2 wind tunnel at Le Fauga-Mauzac centre (Arnal et al, 1997). This constant chord (C = 1.2 m) swept wing model was generated from a symmetrical airfoil with a diameter D = 0.4 m at the leading edge, see figure 2.6. In the present case, it is fixed to the wind tunnel floor at a geometrical sweep angle equal to 50°. The span is about 5D. The measured and 3D inviscid flow computations show that the effective sweep angle exceeds the geometrical sweep angle by 6° at mid-span (left hand part of figure 2.3). Even for this simple geometry, it can be seen in the right hand part of the figure that the “real” values of 
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 are 10% larger than those deduced from the cylinder formula. The values obtained from the inviscid flow computations are in good agreement with the experimental data.    

2.3.  “Natural” transition


If the swept model is not in contact with a solid wall, as sketched in figure 2.4, a laminar boundary layer starts to develop at point A, then possibly becomes turbulent further downstream in the spanwise direction Z: this is the so-called “natural” transition. First experimental observations of this phenomenon were made by Pfenninger and Bacon (1969) and by Poll (1978,1985b), see also Bippes (1990). These authors observed the occurrence of regular, quasi sinusoidal oscillations in the form of modulated wave packets. As these wave packets are convected along the leading edge, their amplitude increases and turbulent spots appear. In this case, a part of the leading edge is laminar, another part is transitional (intermittent) and a third part is turbulent. As these mechanisms present strong similarities with those observed in a flat plate boundary layer with a low free-stream turbulence level, it is possible to develop a linearized stability theory to obtain more quantitative information.
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		Figure 2.4-


“Natural” transition


along the attachment


line of a swept wing 





2.3.1. Classical linear stability theories for attachment line flow (low speed)


For the sake of simplicity, we consider the attachment line boundary layer at large distances from its origin. In these conditions the basic flow no longer depends on the spanwise location and is described by the swept Hiemenz flow solution described in paragraph 2.1. The simplest idea is to introduce small disturbances having the same expression as the Tollmien-Schlichting (TS) waves. In the framework of the spatial theory:
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     (6)


This relationship represents periodic fluctuations of wavenumberand frequency , growing ( > 0) or decaying ( < 0) in the spanwise direction Z. Introducing this expression in the Navier-Stokes equations, linearizing in u, v, w  and using the parallel flow approximation lead to the classical fourth-order Orr-Sommerfeld equation written for the attachment line mean velocity profile W/We. 


The parallel flow approximation implies that the vertical mean velocity component V and the X and Z-derivatives of the basic flow are neglected. These assumptions are not correct for the attachment line flow: although the mean flow field is uniform in the Z direction, the vertical velocity component takes non-zero values, and U at a fixed altitude y is a linear function of X. It is possible to follow a more rigorous approach by considering a special class of small disturbances, first introduced by Görtler (1955) and Hämmerlin (1955). These Görtler-Hämmerlin (GH) disturbances are of the form:  
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         (7)

Introducing (7) into the Navier-Stokes equations and linearizing lead, as usual, to an eigenvalue problem, but, by contrast with the Orr-Sommerfeld approach, the system of ordinary differential equations is obtained without using the parallel flow approximation. In other words, the GH disturbances are exact solutions of the linearized Navier-Stokes equations. This system is of sixth-order, while the Orr-Sommerfeld equation is fourth-order.


Figure 2.5 presents a comparison between the neutral curves computed for the TS-type disturbances (6) and for the GH disturbances (7). In both cases, the mean velocity profile is the attachment line flow described in paragraph 2.1. Two series of computations are presented for the GH waves, one obtained by Hall et al (1984), the other at ONERA (reported by Arnal, 1993). The critical Reynolds numbers 
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are 662 and 582 for the TS and for the GH disturbances, respectively. According to relation (5), these values correspond to Rcr = 267 (TS) and 235 (GH). Inside the unstable region, the growth rates of the GH waves are significantly larger than those of the TS waves.
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		Figure 2.5- Neutral curves for TS and GH


disturbances. Symbols: Hall et al (1984),


lines: ONERA 

		Figure 2.6- Cross-section of the


DTP A model (normal to the leading edge)
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		Neutral curve without suction/blowing

		Suction/blowing effect on the critical 
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		Figure 2.7- Comparison between theory and measurement for GH disturbances 





2.3.2. Comparison with experiments


As previously mentioned, Pfenninger and Bacon (1969) and Poll (1978, 1985b) observed naturally occurring disturbances along the attachment line of swept models. It was found that such disturbances existed above a critical value of R close to 230, in excellent agreement with the linear stability results for GH disturbances. More recently, low speed experiments were conducted at ONERA (see Arnal et al, 1996) in the F2 wind tunnel at the Le Fauga-Mauzac centre using the DTP A model described in paragraph 2.2.2, see figure 2.6. In the present case, the apex of the model was displaced 300 mm above the wind tunnel floor in order to avoid leading edge contamination. Six independent suction chambers were fitted along the leading edge. The sweep angle  was 50°. 


Without suction, regular waves travelling along the attachment line were detected by hot film measurements. The results are plotted in the left hand side of figure 2.7, in the (
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,  = 2f) plane and compared to the neutral curve computed for the GH disturbances. The data published by Pfenninger and Bacon (1969) and Poll (1978, 1985b) are also shown. For the three series of measurements, the measured frequency range is close to the lower branch of the neutral curve, i.e. below the theoretical range of the most amplified disturbances. Several investigations using weakly nonlinear approaches or DNS have been devoted to the understanding of this behaviour (see Hall and Malik, 1986, Jimenez et al, 1990, Joslin, 1996a, Theofilis, 1998). 


With suction (or blowing), the minimum value of 
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 at which the waves are observed increases (decreases) rapidly. It can be seen in the right hand side of figure 2.7 that the experimental data are in qualitative agreement with the theoretical curve which gives the variation of the critical Reynolds number as a function of the dimensionless suction parameter K defined as:
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where Vw is the suction velocity.


2.3.3. Application of the eN method


The application of the eN method for the attachment line flow is straightforward if one assumes that the laminar boundary layer is uniform from its origin to transition, i.e. if R is constant from point A of figure 2.4 to transition. In this case, the calculation of the total amplification rate A/A0 for a given frequency is very simple. Since R does not depend on Z, this quantity is expressed by:
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where Z = 0 corresponds to point A. If ln (A/A0) is plotted as a function of Z, a straight line is obtained for each frequency, as shown in figure 2.8. Therefore the envelope curve is reduced to the line associated with the most unstable frequency (the frequency associated to the maximum value max of  at the considered Reynolds number). By applying the eN rule, the transition location ZT is: 
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where NT is the value of N at transition. By considering TS-type disturbances, Poll (1978) found that the value of NT providing the best correlation with the existing experimental data was around 6. The agreement was improved with values from 8 to 10 for GH disturbances (reported by Arnal, 1993).
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		Figure 2.8- Growth rates of the


attachment line laminar boundary layer  

		Figure 2.9-  Application of the eN method


(DTP A model)





An attempt was made to use the eN method to predict the onset of transition along the attachment line of the DTP A model described above (Arnal et al, 1996). Figure 2.9 shows the spanwise evolution of the integrated growth rates for a case with 
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≈ 740 and K = 0 (no suction). Z = 0 corresponds to the apex (stagnation point) of the model where the attachment line starts to develop. The pressure distribution around the model was first determined from inviscid computations, then accurate boundary layer computations along the leading edge were performed by using a fully 3D code. Two N factors were computed, one for TS waves, the other for GH disturbances. In the latter case, the N factor computed using the infinite swept wing assumption (
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= 740 all along the attachment line) is compared with the N factor computed with the real 
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 distribution (
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is equal to 0 at the stagnation point then increases up to the asymptotic value). Experimentally, transition was found to occur at Z ≈ 0.6 m. This leads to the following remarks:


· When the infinite swept wing assumption is used for the GH disturbances, the transition N factor is close to 10, in agreement with previous investigations based on the same assumption;


· The N factor of the GH disturbances is reduced to 3 when the flow history is accounted for;


· The N factor for the TS waves is close to zero. 


This example illustrates the difficulty to obtain accurate values of the N factor along the attachment line. Therefore the prediction of natural transition along this line remains an open question.  


2.3.4. Biglobal linear stability approach (low speed)


A more general approach to the stability of the attachment line flow was first developed by Lin and Malik (1996) and then used by Heeg (1998), Theofilis et al (2003) and Robitaillié-Montané (2005). By contrast with the GH approach, there is no a priori assumption on the mathematical expression of the disturbances, which are now written as:
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where x and y play roles of equal importance. When this expression is introduced into the linearized Navier-Stokes equations, a system of partial differential equations is obtained. As these equations are homogeneous with homogeneous boundary conditions, one has to solve a generalized eigenvalue problem in a (x,y) plane normal to the wall. The computational domain is sketched in figure 2.10. This approach is called the biglobal approach (the word biglobal used here has no connection with the usual global instability). Numerically, the values of  and 
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 are imposed, and the calculation provides the real and imaginary parts of c, cr and ci, such that cr is the frequency and ci the temporal growth rate. 
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		Figure 2.10- Computational domain


for biglobal analysis 


around the attachment line.


x is the chordwise direction normal


to the attachment line, y is normal


to the wall

		



		

		Figure 2.11- Eigenvalue spectrum for


 

[image: image56.wmf]R


 = 800,  = 0.255 





When the biglobal approach is applied to the incompressible swept Hiemenz flow, eigenmodes identified as the classical GH modes are computed, but other modes also exist. These modes are alternatively symmetrical and asymmetrical, the GH mode being the symmetrical mode associated with the highest growth rate. Depending on the value of 
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 and , the other modes can be stable or unstable. An example of eigenvalue spectrum is shown in figure 2.11 for 
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 = 800 and  = 0.255. The results of Robitaillié-Montané are in excellent agreement with those of Lin and Malik (1996) for the four unstable modes S1, A1, S2 and A2 (S stands for symmetrical, A for antisymmetrical) appearing at nearly the same phase velocity cr ≈ 0.36. The S1 mode is identified with the GH mode. The first asymmetrical mode A1 has also been found in the DNS performed by Joslin (1996b). The modes around ci = 0 at lower values of cr are spurious modes. At a low subsonic Mach number (M ≈ 0.3), the biglobal results obtained by Robitaillié-Montané (2005) were in satisfactory agreement with the DNS results published by Le Duc (2001).  


The existence of the additional modes has important implications. Even if they are linearly stable, their combination can lead to a transient growth or to nonlinear interactions explaining some experimental features in the vicinity of the linear neutral curve.   


2.3.5. Extension to compressible flows


When compressibility effects become significant, it could be assumed that the expression of the waves is similar to that of the GH disturbances, with an additional component  of the wavenumber in the X-direction in order to take into account oblique waves:
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Unfortunately, it is no longer possible to derive a system of ordinary differential equations from the linearized compressible Navier-Stokes equations. Therefore the only possibility is to use the biglobal approach described in the previous paragraph. Results have been published by Lin and Malik (1995), Heeg (1998), Robitaillié-Montané (2005).
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		Phase velocity 

		Temporal growth rate (divided by )



		Figure 2.12- Mach number effect of the S1, A1 and S2 modes (
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 = 1500,  = 0.19)





Figure 2.12 shows the variation of the phase velocity cr and of the temporal growth rate ci as a function of the Mach number M parallel to the leading edge, for a boundary layer developing on an adiabatic attachment line. The values of 
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 and  are equal to 1500 and 0.19, respectively (Robitaillié-Montané, 2005). Three modes are considered: the first symmetrical mode S1 (corresponding to the GH mode at M = 0), the first asymmetrical mode A1 and the second symmetrical mode S2. One can observe that compressibility exerts a stabilizing influence up to M ≈ 1.5. Other calculations were carried out at Mach 0.75 for different surface temperatures. As for 2D flows, a stabilizing (destabilizing) effect of cooling (heating) was found. 


2.4. Summary and conclusions


As far as leading edge contamination is concerned, the well known criterion 
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 ≈ 250 can be applied with confidence for subsonic and transonic flows, but additional investigations are needed at higher Mach numbers. In any case, the velocity gradient around the attachment line must be accurately computed for a correct estimation of 
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, and the use of simplified formulas can lead to large errors. On aircraft wings, the critical value of this Reynolds number if often exceeded, at least in the inner part of the wing. Practical solutions for preventing leading edge contamination are described in the Lecture devoted to Laminar-turbulent transition control (Arnal and Archambaud, 2008).  


When leading edge contamination is avoided, transition is likely to occur due to the amplification of unstable waves. The GH approach provides the characteristics of the most dangerous disturbances at low speed. The more recent (and more complex) biglobal approach shows that other unstable modes also exist. By contrast with the GH theory, it can be extended to compressible problems, but its use requires a non negligible computational effort.   


3. Surface imperfections


Many surface imperfections exist in practical problems. They include waviness and bulges, steps and gaps, screws and rivets. On aircraft wings, environmental factors such as ice crystals, insects, dirt… can create localized surface irregularities. Because many imperfections cannot be avoided, it is necessary to study their effects on transition and to develop appropriate models in order to estimate these effects. In this paragraph, distinction will be made between two-dimensional and three-dimensional surface imperfections. 

3.1. 2D imperfections: steps, gaps, waviness


These imperfections are parallel to the span direction (they are normal to the main flow for 2D problems) and their spanwise extent is assumed to be infinite (no end effects). Typical examples are bumps, waviness, gaps or steps. These surface irregularities have two effects:


· They create a localized receptivity which makes the flow more sensitive to the free-stream acoustic disturbances;


· They strongly amplify the unstable waves due to the local modification of the mean flow field, with the appearance of separated or nearly separated regions around the obstacle, as demonstrated for the first time by Klebanoff and Tidstrom (1972). 


For practical purposes, it is assumed that the second effect is predominant and that it can be analyzed by using the linear stability theory. 


To predict the influence of 2D surface imperfections, empirical criteria have been proposed for many years. Most of these criteria are still used for industrial applications. More recently at least a part of the phenomena occurring on and around the surface imperfections has been modelled, and more advanced prediction methods have been developed. Both aspects are now discussed. 


3.1.1. Old (and still useful) criteria 


Waviness. Fage (1943) analyzed wind tunnel experiments in order to determine the effect of 2D surface waviness installed on a flat plate. The shape of the considered imperfections is sketched in the left hand side of figure 3.1.  is the length of the deformation, the height h can be either positive (bulges) or negative (hollows). Fage correlated the experimental data by the following criterion:
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xT is the surface length to transition. Ue represents the boundary layer edge velocity at the location of the center of the waviness for the undistorted surface. The effects of compressibility and sweep are not taken into account.  


Compressibility and sweep angle effects are accounted for in another waviness criterion proposed by Carmichael (1959) for sinusoidal bulges, the shape of which is sketched in the right hand side of figure 3.1. This correlation was deduced from experimental results (wind tunnel and flight) for waves located on airfoils more than 25 percent chord downstream of the leading edge, in regions of flow acceleration. It gives the allowable waviness amplitude h, i.e. the maximum amplitude which does not strongly modifies the transition location:
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              (9)


, C,  and Rc represent the wavelength, the streamwise chord, the leading edge sweep angle and the chord Reynolds number, respectively. Relation (9) shows that the sweep angle effect is not very important: the allowable waviness is reduced by about 10 percent from  = 0° to  = 25°. 
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		From Fage

		From Carmichael



		Figure 3.1- Shapes of the bumps studied by Fage and Carmichael 





Gaps. These surface imperfections produce localized boundary layer separations which strongly increases the growth rate of the unstable waves. Let us consider 2D rectangular gaps normal to a 2D laminar mean flow, see figure 3.2 (left). h and b denote the depth and the width of the cavity, respectively. Depending on the ratio h/b, different type of recirculating flows are observed inside the cavity. To estimate the critical value of the width b which moves the transition onset towards the gap, a simple criterion was proposed (Nenni and Gluyas, 1966):  
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The gap depth h is not included in this correlation. A limited amount of low speed data (Olive and Blanchard, 1982) demonstrated that relation (10) provided satisfactory predictions for h/1 > 5 (1 is the displacement thickness), but for smaller values of this ratio, the measurements revealed a strong influence of the gap depth.


For gaps aligned with the mean flow, it is recommended to divide the critical width deduced from (10) by a factor 7, i.e. streamwise gaps are much more efficient than spanwise gaps for boundary layer tripping and must be avoided. Little is known about the effects of gaps which are non normal to the external streamlines, in particular about gaps parallel to the leading edge of swept wings.  


Backward and forward facing steps. If a square step of height h (figure 3.3) is placed in a 2D mean flow, the allowable height is given by (Nenni and Gluyas, 1966):




[image: image71.wmf]900


=


º


¥


n


h


U


Rh


      for backward facing steps       (11)
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    for forward facing steps        (12)


These relationships show that the laminar flow is more sensitive to backward facing steps than forward facing steps, because the extent of the separated flow is larger in the first case. Holmes et al (1985) reported flight experiments with artificial forward facing steps located at 5 percent chord of an unswept glove, in a slightly favourable pressure gradient. They noticed that the tolerances for a step with a rounded corner was at least 50 percent larger than for a square step. 
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		Figure 3.2- Gaps

		Figure 3.3- Backward (left) and forward (right) facing steps





3.1.2. Linear stability results and N methods


During the last 20 years, several authors used the linear stability theory in order to characterize the effects of 2D surface imperfections on transition, see for instance:


· Nayfeh et al (1988), Cebeci and Egan (1989), Masad and Iyer (1994), Wie and Malik (1998), Wörner et al (2002), Bonaccorsi (2002), Perraud et al (2004, 2005) for waviness;


· Wörner et al (2002), Perraud et al (2004) for steps.  


In these investigations, the localized receptivity due to the surface imperfections is not taken into account. For small obstacles without separation, the mean flow can be computed from the direct boundary layer equations, but as soon as separation occurs, it becomes necessary to use an interacting boundary layer solution or to solve the Navier-Stokes equations. 
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		Backward facing steps

		Forward facing steps



		Figure 3.4- N factor computations around backward and forward facing steps





Steps. To illustrate the influence of 2D steps, figure 3.4 shows the evolution of the N factor on a flat plate with backward (left) or forward (right) facing steps, the height of which is characterized by the Reynolds number Rh (Perraud et al, 2004). In the case of a backward step, the N factor rises rapidly at the step location, then the envelope curves remain more or less parallel to that of the unperturbed case. Consequently, with the assumption that the N factor at transition remains constant, it can be deduced that the transition location moves progressively toward the step when Rh increases. For forward facing steps, the N factor curves also rises rapidly then returns to the Blasius envelope by keeping a nearly constant value. In that case, small heights do not cause any modification of transition location, but as soon as the N factor at the step location becomes close to its critical value, transition moves rapidly upstream. 


The curves plotted in the left hand part of figure 3.4 suggest a simple procedure for taking into account backward facing steps without computing the complex mean flow field in the presence of the obstacles:


· A classical linear stability theory is performed on the surface without default. 


· An increment N is computed at default location; for 2D flows with zero or mild pressure gradients, Perraud et al (2004) proposed: N = 0.0025 Rh, while Crouch et al (2006) suggested N = 4.4 h/1, where 1 is the displacement thickness.    


· A corrected N factor = N (smooth) + N allows to determine the new transition location, assuming an unchanged transition N factor on the corrected envelope. 


In case of forward facing steps, Crouch et al (2006) proposed: N = 1.6 h/1. According to Perraud et al (2004), N can be expressed as a function of Rh, R0 and R, where R0 is the momentum thickness Reynolds number at forward facing step location. 


Waviness. Linear stability results with waviness indicate that the N factor curves resemble qualitatively those obtained with backward facing steps: the N factor exhibits a jump at the waviness location, then the envelope curves with and without waviness are more or less parallel. The difficulty now is the increasing number of geometrical parameters: in addition to the waviness height h, the wavelength  and the waviness shape must be taken into account. 


Wie and Malik (1997) performed a series of computations for a wavy wall with four successive sine waves. Under certain conditions, the following relationship for N was deduced from linear PSE computations:
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           (13)   


where n is the number of waves, Re is the unit Reynolds number. This empirical equation can be used for subsonic compressible flow without pressure gradient or suction. 


The same kind of relationship was obtained by Bonaccorsi (2002), see also Perraud et al (2005), by solving the local stability equations around waves of different cross-sections. For the zero pressure gradient case, N for a single waviness is expressed as:
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K is a coefficient characterizing the shape of the hump. It is equal to 1 for waviness of triangular cross-section and equal to 1.15 for a sinusoidal cross-section. By contrast with relation (13), relation (14) shows a linear dependence of N on the local displacement thickness Reynolds number R1. 


3.1.3. Example of experimental results


Experiments were conducted in the F2 wind tunnel on an swept and unswept wing model at low speed (Perraud et al, 2004). Backward and forward facing steps of various heights, parallel to the leading edge, were manufactured by using adhesive films glued on the model surface at 25 % chord. Figure 3.5 shows the normalized variation of the transition location as a function of Rh for backward (left hand side) and forward (right hand side) steps. xt, xt0 and xR denote the actual transition location, the transition location without step and the step location, respectively. Several values of the angle of attack  and of the sweep angle  were considered.
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		Figure 3.5- Transition movement on a swept wing with backward and forward facing steps 





In most of the cases, the upstream transition movement is significantly more abrupt with forward steps than with backward steps, as conjectured from the N factor curves plotted in figure 3.4. For  = 50°,  = - 6°, the transition movement with backward steps is also very rapid; this could be an indication that CF instability, which is predominant in this case, plays a role in the transition process. The N methods were able to reproduce the details of the transition movement with a good accuracy (Perraud et al, 2004). As shown in figure 3.5, the Rh criteria roughly estimate the step heights which provoke a significant displacement of the transition point. Other experiments in 2D transonic conditions did not demonstrate a clear effect of compressibility on the N functions.


Crouch et al (2006) conducted low speed experiments on 2D flat plates with movable leading edges which created backward- and forward facing steps. The results were used to establish relationships between N and h/1, as reported in paragraph 3.1.2.    

3.2. 3D imperfections: isolated roughness elements


Transition phenomena involved with 3D irregularities (rivets, insects, dirt…) are completely different from those involved with 2D roughness elements. A common feature, however, is that 3D roughness elements also enhance the receptivity to external disturbances. The results presented in this paragraph apply to isolated 3D roughness elements or to spanwise arrays of 3D roughness elements with a spacing equal or larger to 3 times the diameter of the elements; in this case, each element acts as an isolated element, as suggested by von Doenhoff and Braslow (1961).


For isolated 3D roughness elements of height k, it has been assumed for many years that the relevant parameter is a characteristic Reynolds number Rk defined as:
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Uk and k denote the mean velocity and the kinematic viscosity at the altitude y = k, these values being computed in the undisturbed flow. 


When a protuberance of increasing size is introduced into a 2D boundary layer, the transition location is at first unaffected. However, as soon as Rk exceeds some critical value Rkcrit, the transition location moves rapidly upstream. A turbulence wedge is formed, the vertex of which is located close to the protuberance. The turbulence wedge comprises a fully turbulent core separated from the surrounding laminar flow by edges of intermittent flow. Typical values of the vertex angle range from 10 to 15°. Although the physical mechanisms are completely different, the sudden transition movement when Rk exceeds some critical value offers some similarities with the transition movement due to forward facing steps.


Many fundamental studies have been devoted to the understanding of the phenomena occurring in the wake of isolated roughness elements for subcritical and supercritical values of Rk. An excellent review of the experimental investigations has been given by Ergin and White (2006). The pioneering flow visualizations by Gregory and Walker (1951) established that the flow about an isolated 3D element consists of a steady horseshoe vortex wrapped around the upstream side of the obstacle, with two steady counter-rotating legs trailing downstream. These steady disturbances undergo suboptimal transient growth and evolve downstream into low- and high-speed streaks (Fransson et al, 2005, White et al, 2005; the topic of transient growth is covered in detail in this Lecture Series by Reshotko, 2008). The “pre-streaky” phase has been analyzed numerically by Piot et al (2008). Other studies demonstrated that streaks of moderate amplitude are able to reduce the TS growth rates and hence to delay the onset of transition, see Lecture on Laminar-turbulent transition control (Arnal and Archambaud, 2008).


At sufficiently high values of Rk, unsteady disturbances (often associated with hairpin vortices) originate from the separated region just aft of the roughness element. Their spatial location corresponds to local inflection points in the y and z directions. Their growth rate increases with increasing values of Rk. For Rk < Rkcrit, these disturbances stabilize before transition can occur. For Rk > Rkcrit, the growth rate becomes so large that nonlinear phenomena appear and that the breakdown to turbulence is observed a short distance downstream of the roughness element. The role of the unsteady mechanisms in the boundary layer tripping process has been investigated in detail by Ergin and White (2008).  


It is often assumed that the critical value of Rk for which transition moves up to the roughness element depends essentially of the ratio d/k, where d is a measure of the spanwise or chordwise extent of the protuberance (for circular cylinders normal to the wall, d is the diameter). Figure 3.6 shows the well known criterion proposed by von Doenhoff and Braslow (1961). The critical value of Rk scales roughly as (d/k)-2/5, meaning that transition occurs for progressively lower values of Rkcrit when the roughness diameter is increased for a given height. Rkcrit is of the order of 500-600 for d/k = 1 and 200-250 for d/k = 10. 
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		Figure 3.6-


Criterion for isolated


roughness elements


in 2D or 3D mean flows


(Braslow, 1999) 





The range of application of this criterion is rather large. De Bruin (1990) reported measurements in 2D, low speed flow with negative pressure gradient and concluded that both the critical value of Rk and the turbulence wedge spreading angle were unaffected by the flow acceleration. 


Braslow (1999) found that the criterion plotted in figure 3.6 remained valid for roughness elements placed on swept wings in regions of strong CF instability. He concluded that the adverse effect of CF occurred for 2D rather than for 3D roughness elements. From measurements at Mach 3 on a swept and unswept wing, Arnal et al (2004) found that the criterion correlated rather well the experimental data without and with CF instability. Saric et al (1998) demonstrated that, in certain circumstances, spanwise arrays of small roughness elements placed on the leading edge of a swept wing can delay transition due to nonlinear interaction between the stationary vortices generated by the obstacles. This happens for particular roughness height and particular spacing between the elements. If these parameters are not optimized, the classical boundary layer tripping is likely to occur.    

3.3. From 3D to 2D roughness elements


As already mentioned, the previous results are valid for isolated roughness elements and for spanwise arrays with z/d > 3, where z is the spanwise spacing of the roughness elements and d their diameter. For z/d  < 3, the critical value of Rk increases. It follows that 2D roughness elements are less efficient than 3D roughness elements for boundary layer tripping, as illustrated by the experimental results plotted in figure 3.7 (Séraudie, 2002). Isolated 3D roughness elements (arrows of vertical small cylinders) and 2D roughness elements (strips of rectangular cross-section) were placed at 10 percent chord on an airfoil with sweep angles  from 0 to 60°. The figure shows the minimum height h necessary for immediate boundary layer tripping as a function of . This height is around 0.15 mm for 3D obstacles and around 0.20 mm for 2D obstacles. The sweep angle effect seems to be more pronounced in the first case. 


In practice, 2D roughness elements have a finite spanwise length. It is usually observed that turbulence wedges start to develop at the extremities (which act as 3D obstacles) at a lower Reynolds number than in the central (2D) part of the roughness element. 
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3.4. Roughness elements on the attachment line of a swept wing


The attachment line behaves as a special streamline for the problem of boundary layer tripping by roughness elements. As long as 
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 is lower than 250, no tripping is possible. The flow is locally disturbed by the obstacle and reverts to the laminar state further downstream in the spanwise direction. The critical value 
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 ( 250 thus appears as the minimum Reynolds number for self-sustaining turbulence (Morkovin, 1984). This value applies to leading edge contamination by a turbulent boundary layer as well as to boundary layer tripping by roughness elements.


Let us assume that the attachment line boundary layer is free of leading edge contamination. When the Reynolds number is just above the limit 
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 ( 250, a roughness element placed on the attachment line makes the boundary layer immediately turbulent for a height h close to two times the displacement thickness 1 (Poll, 1978). For increasing values of 
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, the roughness height requested for boundary layer tripping decreases. However, a roughness element which provokes transition when placed on the attachment line looses its efficiency as soon as it is displaced slightly off the attachment line. In other words, the attachment line is the most sensitive location for boundary layer tripping on a leading edge (Arnal and Reneaux, 2001). 

3.5. Summary and conclusions


The physical mechanisms by which 2D roughness elements accelerate transition have been known for a long time, but the role of isolated 3D surface imperfections is not as well understood. However substantial efforts have focused on this subject in the recent years, and a rather clear picture of the complex phenomena occurring downstream of the roughness element begins to appear. 


From a practical point of view, simple criteria were developed fifty to sixty years ago in order to estimate the height of 2D or 3D surface imperfections which move significantly the onset of transition upstream of its “natural” position. These criteria are still useful as rough guidelines for surface tolerances. A part of the physics is now included in the more recent N-type methods applicable to waviness and steps, but the effect of these imperfections on localized receptivity is not taken into account today. As pointed out by Wie and Malik (1998), the extreme cases where the waviness wavelength tends to the TS wavelength also needs to be investigated. Concerning 3D roughness elements, it is hoped that the recent progress in the understanding of the physical mechanisms will help to improve the Rk criterion in the next future.  
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3-D BOUNDARY-LAYER FLOWS 


1.0  CROSSFLOW INSTABILITY 


This section addresses the crossflow instability that causes the breakdown to turbulence in 3-D 
boundary layers that are characteristic of swept-wing flows. The papers of Reed & Saric (1989), 
Kohama et al. (1991), Kachanov (1996), Arnal (1997), Bippes (1997), Saric et al. (2003), Saric et 
al. (2004), Saric et al. (2008), Reed & Saric (2008), and Carpenter et al. (2009) provide an 
extensive list of references for recent experiments, including the DLR experiments in Germany 
on a swept flat plate, a Russian swept-flat-plate experiment, the CERT/ONERA experiments on 
swept wings, the Institute of Fluid Science work in Sendai on cones and spheres, the Arizona 
State University (ASU) swept-wing experiments, and the Texas A&M flight experiments. These 
papers established the existence of both travelling and stationary crossflow vortices, saturation of 
the stationary crossflow vortex, the nonlinear secondary instability leading to transition, and the 
sensitivity to freestream disturbances and surface roughness. Here are some great challenges to 
the computationalist. 


One of the key missing ingredients in all 3-D boundary-layer experiments is the understanding of 
receptivity. Receptivity has many different paths through which to introduce a disturbance into 
the boundary layer and this “road map” is more complicated because of the amplified stationary 
vortices. In fact, many aspects of transition in 3-D boundary layers are orthogonal to 2-D 
boundary layers so such a “road map” is either not unique or too complicated. Aside from the 
usual mechanisms, such as the interaction of freestream turbulence and acoustical disturbances 
with model vibrations, leading-edge curvature, attachment-line contamination, discontinuities in 
surface curvature, etc., the presence of roughness that may enhance a stationary streamwise 
vortex is very important. In contrast to 2-D boundary layers where small 2-D roughness is 
important and 3-D roughness is less important unless it is large, the 3-D boundary layer appears 
to be ultra sensitive to micron-sized 3-D roughness within a small neighborhood of the leading 
edge. In this case, 2-D roughness is only important at its edges. 


For swept wings, the crossflow instability occurs in the regions of strong pressure gradient, 
primarily near the attachment line. In the inviscid region outside the boundary layer, the 
combined influences of sweep and pressure gradient produce curved streamlines at the boundary-
layer edge. Inside the boundary layer, the streamwise velocity is reduced but the pressure gradient 
is unchanged. Thus, the balance between centripetal acceleration and pressure gradient does not 
exist. This imbalance results in a secondary flow in the boundary layer called crossflow that is 
perpendicular to the direction of the local inviscid streamline. Because the crossflow velocity 
must vanish at the wall and at the boundary-layer edge, an inflection point exists and provides a 
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source of an inviscid instability mechanism.  The 3-D profile and resolved streamwise and 
crossflow boundary-layer profiles are shown in Figure 1. 


 


 


Figure 1.  Flow over a swept wing and the resolved local streamwise and crossflow 
boundary-layer profiles.  Note the inflection point in the crossflow profile. 


 


 


Figure 2.  Flow over a swept wing in a quiet wind tunnel showing the stationary pattern 
of the crossflow instability characteristic of flight (Radeztsky et al., 1993). 


 


1.1 Linear Stability Theory 
Linear stability theory alone is not so successful for 3-D boundary layers. Arnal (2009) reviews 


the different approaches to the application of the 
Ne  method. When applied to available flight 


and wind-tunnel experiments, there is large scatter in the values of the N  factor at the onset of 
transition among the different methods. There are three reasons for this behavior: 1) Transition 
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location is more difficult to determine accurately in 3-D flow than in 2-D flow. 2) Crossflow 
disturbances are ultra sensitive to micron-sized roughness elements which have no effect on 
streamwise disturbances (Radeztsky et al., 1993). 3) Disturbance development can be dominated 
by nonlinearities during a large part of the transition process and the use of linear theory up to 
breakdown is inappropriate and can overestimate wave amplitude (Reibert et al., 1996; Haynes & 
Reed, 2000). 


Unlike T-S instabilities, the crossflow problem exhibits stationary as well as traveling 
disturbances that are amplified. Even though both types of waves are present in typical swept-
wing or rotating-disk flows, transition is usually caused by either the stationary or the traveling 
waves. Although linear theory predicts that the traveling disturbances have higher growth rates, 
transition in many experiments is induced by stationary waves. Whether stationary or traveling 
waves dominate is related to the receptivity process. Stationary waves are more important in low-
turbulence environments characteristic of flight, while traveling waves dominate in high-
turbulence environments (Bippes 1997; Deyhle & Bippes 1996).  In the flight environment, the 
presence of micron-sized 3-D roughness at the leading edge (e.g. from a painted surface) 
establishes the stationary streamwise vortex.  In fact, the 3-D boundary layer is ultra sensitive to 
this roughness, yet this roughness has no effect on streamwise disturbances (Radeztsky et al., 
1993).  In interacting with inherent surface roughness, freestream turbulence appears to be the 
source of travelling crossflow, but freestream turbulence is not a dominant feature of flight 
conditions (White & Saric 2005). Therefore, in flight, the instability appears as stationary co-
rotating vortices whose axes are aligned to within a few degrees of the local inviscid streamlines.  
The wavelength of these vortices is approximately four times the local boundary-layer thickness. 
See Figure 2.  


 
 


Figure 3.  Typical linear stability theory results for crossflow show that traveling 
disturbances have higher growth rates (Mack 1984). 
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One of the important results to come out of the DLR group is the set of data that show early 
saturation of the disturbance amplitude and the failure of linear theory to predict the growth of the 
instability. They also report distorted mean profiles similar to those of Kohama et al. (1991) and 
Malik et al. (1994) due to the presence of the stationary corotating vortices. A similarity between 
the DLR and ASU experiments is the high N -factors and high amplitude of the mean-flow 
distortion (10%-20%). It is not surprising that linear theory fails. 


For low-amplitude crossflow waves, Radeztsky et al. (1994) find that linear stability theory 
correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but not the 
growth rates. For this case, Haynes and Reed (2000) find that LPSE including curvature correctly 
predicts the wavelengths, mode shapes, and growth rates. As discussed in the following Section, 
this is not the case for higher-amplitude crossflow and the results of Reibert et al. (1996) and 
Haynes & Reed (2000) demonstrate conclusively that a nonlinear calculation is required to obtain 
complete agreement. This is shown in the next section. 


1.2 Parabolized Stability Equations 
The NPSE approach has recently been validated for 3-D flows subjected to crossflow 
disturbances by Haynes & Reed (2000). Here a detailed comparison of NPSE results with the 
experimental measurements of Reibert et al. (1996) show remarkably good agreement. The 
configuration is an NLF(2)-0415 45°-swept airfoil at -4° angle-of-attack, so chosen to provide an 
extensive region of crossflow (at least back to mid-chord) for detailed study of the physics. A 
spanwise array of roughness elements is used near the airfoil leading edge (at 2% chord) to 
introduce spanwise-periodic crossflow disturbances into the boundary layer. According to LST, a 
spanwise spacing of 12 mm corresponds to the most highly amplified stationary crossflow 
disturbance. The walls of the ASU Unsteady Wind Tunnel were shaped to achieve a spanwise-
independent basic-state flow – an “infinite wing” in CFD terms. The freestream turbulence are 


well documented to be ( )410O −
 so that, with any surface roughness, stationary crossflow is 


expected. Reibert et al. (1996) provide all the details for the experimental facility and set-up. 


Haynes and Reed (2000) used a panel-method code to compute the inviscid flow, from which the 
edge boundary conditions were generated for the boundary-layer code. Agreement between the 


experimental and computational 
Cp  distribution is good. 


As a baseline case to study the evolution of crossflow vortices, roughness elements with a 
spanwise spacing of 12 mm were placed on the experimental model. The initial conditions for the 
NPSE calculation (with curvature) were obtained by solving the local LST equations at 5% chord 
location for the fundamental [mode (0,1)] and adjusting its RMS amplitude such that the total 
disturbance amplitude matched that of the experiment at 10% chord. The NPSE was then 
marched from 5% to 45% chord. Transition occurred on the experimental model at 52% chord. 


The primary and higher modes all grow rapidly at first and saturate at about 30% chord. This is 
due to a strong nonlinear interaction among all the modes over a large chordwise distance. From 
about 35% chord on, there is still strong nonlinear interaction among the primary and second 
harmonic, but not the others. The development of crossflow occurs in two stages. The first stage 
is linear and is characterized by small vertical v  and spanwise w  disturbance velocities 
convecting low-momentum fluid away from the wall and high-momentum fluid toward the wall. 
This exchange of momentum occurs in a region very close to the wall where there are large 
vertical gradients in the basic-state streamwise velocity. Because of this large gradient, the small 
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displacements caused by the v  and w  disturbance components quickly lead to large disturbances 
u  superposed on the basic state further downstream. This u  component soon becomes too large 
and nonlinear interactions must be included in any calculations. This is the second stage, 
evidenced by roll-over seen in the streamwise-velocity contours. Figure 4 shows a comparison of 
the experimental and computational total streamwise velocity contours at 45% chord; the 
agreement between the NPSE and the experiments is excellent. Figure 5 shows the comparison of 
the experimental N -factor curves with LPSE (with curvature), NPSE (with curvature), and LST 
(with curvature). It is clear that the linear theories fail to accurately describe the transitional flow 
for this situation. 
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Figure 4. Streamwise-velocity contours for a swept wing showing the nonlinear 
distortion due to the stationary crossflow vortex pattern typical of flight.  Example of 
successful validation:  Top figure – experiments of Reibert et al. 1996; lower figure – 


computations of Haynes & Reed (2000). 


 


Figure 5. N-factor comparisons. NPSE agrees with experiments.  LST (with curvature) 
underpredicts initial growth and overpredicts growth after nonlinear effects set in.  


LPSE (with curvature and nonparallel) successfully predicts intial growth but is quickly 
in error after nonlinear effects set in.  Experiments: Reibert et al. 1996; computations: 


Haynes & Reed 2000. 
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There has been much debate about the effects of curvature. For this configuration , the inclusion 


of curvature has a very small effect on the metric coefficients. The maximum values of 1k  and 2k
 


occur at 5% chord where they are the order of 01.1  and 
310−


, respectively. They both drop off 
sharply with increasing chordwise distance. These values may compel the researcher to neglect 
curvature, but the work of Haynes and Reed (2000) demonstrates conclusively that small changes 
in the metric coefficients can have a significant effect on the development of crossflow vortices.  
Radeztsky et al. (1994) studied the effects of angle-of-attack (AOA). Here, in a case of weak 
favorable pressure gradient, the experiments showed that the crossflow disturbance is decaying in 
disagreement with various linear theories (LST, LPSE/without curvature, and LST/with 
curvature) that predicted the disturbance to be growing. Radeztsky et al. (1994) concluded that 
the disagreement was due to nonlinearity. For this case, Haynes and Reed (2000) demonstrated 
that the LPSE/with curvature and NPSE/with curvature both agreed with the experiment, 
indicating that in fact the crossflow disturbance decays and there is a strong sensitivity to changes 
in curvature, nonparallel effects, and pressure gradient (AOA). The disturbance was linear for this 
case. 


Saric et al. (1998) observed that unstable waves occur only at integer multiples of the primary 
disturbance and no subharmonic disturbances are destabilized. They investigated the effects of 
distributed roughness whose primary disturbance wavenumber does not contain a harmonic at 12 
mm (the most unstable wavelength according to linear theory). In the absence of artificial 
roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing equal to 
the wavelength of the linearly most unstable wave moves transition forward to 52% chord. 
However, subcritical forcing at 8 mm spanwise spacing actually delays transition beyond the 
pressure minimum and onto the trailing-edge flap at 80% chord. The NPSE results confirmed this 
effect. 


1.3 Control with Distributed Roughness  
Two important observations concerning the distributed roughness results of Reibert et al (1996) 
are: (1) unstable waves occur only at integer multiples of the primary disturbance wavenumber; 
(2) no subharmonic disturbances are destabilized. Spacing the roughness elements with 
wavenumber 2 /k π λ=  apart, excites harmonic disturbances with spanwise wavenumbers of 2k, 
3k, , nk (corresponding to / 2, / 3, , / nλ λ λ ) but does not produce any unstable waves with 
“intermediate” wavelengths or with wavelengths greater than λ . 


Following this lead, Saric et al (1998) investigate the effects of distributed roughness whose 
primary disturbance wavenumber does not contain a harmonic at sλ  = 12 mm (the most unstable 
wavelength according to linear theory). By changing the fundamental disturbance wavelength 
(i.e., the roughness spacing) to 18 mm, the velocity contours clearly showed the presence of the 


18 mm, 9 mm, and 6 mm wavelengths. However, the linearly most unstable disturbance ( sλ =12 
mm) has been completely suppressed. Moreover (and consistent with all previous results), no 
subharmonic disturbances are observed. This shows that an appropriately designed roughness 
configuration can, in fact, inhibit the growth of the (naturally occurring) most-unstable 
disturbance. When the disturbance wavelength was forced at 8 mm, the growth of all disturbances 
of greater wavelength was suppressed. The most remarkable result obtained from the subcritical 
roughness spacing is the dramatic affect on transition location: In the absence of artificial 
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roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing equal to 
the wavelength of the linearly most unstable wave moves transition forward to 47% chord. 
However, subcritical forcing at 8 mm spanwise spacing actually delays transition beyond the 
pressure minimum and well beyond 80% chord (the actual location was beyond view). This 
promising technique has currently been demonstrated in flight on the O-2A at Texas A&M at 
chord Reynolds numbers of 7.5 million and on the NASA Dryden F-15B at supersonic speeds. 
(Saric et al. 2004; Saric et al. 2008; Rhodes et al. 2008). 


Subsequent to the experiments, the NPSE results (Haynes & Reed 2000) confirmed this effect. In 
a DNS solution, Wassermann & Kloker (2002) have shown the same stabilization due to 
subcritical forcing. Using the same independent approach regarding the calculation of the basic 
state, they demonstrated the stabilization due to subcritical roughness and coined the name 
transition delay by “upstream flow deformation.” 


1.4 Secondary Instabilities  
Once stationary vortices reach saturation amplitude, this state can persist for a very significant 
streamwise distance. The velocity contours show low-momentum fluid above high-momentum 
fluid which produces a double inflection point in the wall-normal velocity profile. There is also 
an inflection point in the spanwise profile. These inflection points are high in the boundary layer 
and the saturated vortices become unstable to a high-frequency secondary instability that 
ultimately brings about transition to turbulence. Because of the importance of the secondary 
instabilities in determining the location of breakdown of the laminar flow, there have been a 
number of investigations, both experimental and computational, in this area. Bippes (1999) 
includes details on the German efforts, in particular, the work by Lerche (1996) that emphasizes 
secondary instabilities in flows with higher turbulence levels and traveling crossflow waves. 
Recent efforts involving secondary instabilities in the Russian traveling wave experiments are 
covered by Boiko et al (1995, 1999). 


The first crossflow experiment for which a high-frequency disturbance was observed prior to 
transition was by Poll (1985). Traveling crossflow waves were observed with a dominant 
frequency of 1.1 kHz for Rec = 0.9×106. Increasing the chord Reynolds number to 1.2×106 
increased the traveling crossflow frequency to 1.5 kHz and also included an intermittent signal at 
17.5 kHz superposed on the underlying traveling crossflow waves. Poll noted that increasing the 
Reynolds number beyond 1.2×106 resulted in turbulent flow at the measurement location, so the 
high-frequency signal appeared only in a narrow range just prior to transition. Poll attributed the 
existence of the high-frequency component to intermittent turbulence. 


A high-frequency secondary instability was specifically investigated as a source of breakdown by 
Kohama et al (1991). This experiment combined hotwire measurements and flow visualizations 
and was intended to determine the location and behavior of the secondary instability mode 
relative to visualized breakdown patterns. It is clear from the Kohama et al (1991) experiments 
that there is a growing high-frequency mode in the region upstream of transition that can be 
associated with an inviscid instability of the distorted mean flow. However, a concern can be 
raised because the measurements were made without a well-controlled primary disturbance state. 
Experiments subsequent to this work used arrays of micron-sized roughness elements near the 
leading edge that established the spanwise uniformity both of the stationary vortex amplitudes 
and the transition location. Without the benefit of this technique, the data obtained by Kohama et 
al (1991) likely spanned a wide range of stability behavior despite having been obtained at a 
single chord position. Improvements in experimental techniques mean that more recent secondary 
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instability experiments have replaced the work by Kohama et al (1991) as the best source for 
secondary instability data. 


Kohama et al (1996) provide somewhat more detail than Kohama et al (1991) by including 
velocity fluctuation maps that are filtered to give either primary instability or secondary 
instability fluctuation levels. Kohama et al (1996) conclude that a “turbulent wedge starts from 
the middle height of the boundary layer” and that this behavior is different from the usual picture 
of a turbulent wedge that originates in the high-shear regions in naphthalene flow-visualization 
experiments. A subsequent swept plate experiment by Kawakami et al (1999) was conducted to 
further refine these measurements. Kawakami et al’s experiment featured a small speaker 
mounted flush with the surface that permitted tracking of particular secondary-instability 
frequencies. Without acoustic forcing, two separate high-frequency bands of disturbances were 
observed to be unstable. At a chord Reynolds number of 4.9 × 106, a band located between 600 
Hz and 2.5 kHz destabilized just downstream of x/c = 0.35 and a second band located 
between 2.5 and 4.0 kHz destabilized just upstream of x/c = 0.50. Transition was observed around 
x/c = 0.70. With acoustic forcing applied, the secondary instability frequency with the largest 
growth between x/c = 0.40 and x/c = 0.475 was observed to be 1.5 kHz. 


In an effort to provide a more concrete experimental database on the behavior of the secondary 
instability, White & Saric (2005) conduct a very detailed experiment that tracks the development 
of secondary instabilities on a swept wing throughout their development for various Reynolds 
numbers and roughness configurations. They found a number of unique secondary instability 
modes that can occur at different frequency bands and at different locations within the stationary 
vortex structure. In White & Saric’s experiment as many as six distinct modes are observed 
between 2 and 20 kHz. The lowest-frequency mode is nearly always the highest amplitude of all 
the secondary instabilities and is always associated with an extremum in the spanwise gradient, 
∂U/∂z which Malik et al (1996, 1999) refer to as a mode-I or z mode. Higher frequency modes 
include both harmonics of the lowest-frequency z mode that appear at the same location within 
the vortex and also distinct mode-II or y modes that form in the ∂U/∂y shear layer in the portion 
of the vortex farthest from the wall. The lowest frequency mode is typically detected upstream of 
any of the higher frequency modes. However, many higher frequency modes appear within a very 
short distance downstream. All of the secondary instability modes are amplified at a much greater 
rate than the primary stationary vortices (even prior to their saturation). The rapid growth leads 
very quickly to the breakdown of laminar flow, within about 5% chord of where the secondary 
instability is first detected. A consequence of this for transition-prediction methodologies is that 
adequate engineering predictions of transition location could be obtained from simply identifying 
where the secondary instabilities are destabilized because they lead to turbulence in such a short 
distance downstream of their destabilization location. An interesting feature of the breakdown of 
the stationary vortex structure is that it is highly localized. Spectra obtained by White & Saric at 
various points within the structure indicate that the first point to feature a broad, flat velocity-
fluctuation spectrum characteristic of turbulence is a point very close to the wall in the region of 
highest wall shear. Other points in the structure remain essentially laminar for some distance 
downstream of the initial breakdown location. This finding supports the notion of a turbulent 
wedge originating near the wall, not what was concluded by Kohama et al (1996). 


A successful computational approach to the secondary instability was presented by Malik et al 
(1994) who used a NPSE code to calculate the primary instability behavior of stationary 
disturbances of a swept Hiemenz flow. As described previously, the NPSE approach successfully 
captures the nonlinear effects including amplitude saturation. The distorted meanflow provides a 
basic state for a local, temporal secondary instability calculation. The most unstable frequency is 
approximately one order of magnitude greater than the most unstable primary traveling wave 
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similar to Kohama et al (1991) and the peak mode amplitude is “on top” of the stationary 
crossflow vortex structure. This location corresponds to what will be referred to below by Malik 
et al (1996) as the mode-II secondary instability. 


In order to obtain a more direct comparison to experimental data, Malik et al (1996) used 
parameters designed to match the conditions found for the swept-cylinder experiment of Poll 
(1985) and the swept-wing experiment of Kohama et al (1991). The calculations of Malik et al 
(1996) reveal that the energy production for a mode-I instability is dominated by the term 
<u2w2>∂U2/∂z2 and the mode-II instability is dominated by <u2v2>∂U2/∂y2 where the subscript 
“2” refers to a primary-vortex-oriented coordinate system. This energy-production behavior 
suggests that the mode-I instability is generated primarily by inflection points in the spanwise 
direction and the mode-II instability is generated by inflection points in the wall-normal direction. 
This situation is analogous to the secondary instabilities of Görtler vortices (Saric 1994). Malik et 
al (1996) claim that the fluctuations observed by Kohama et al (1991) are mode-II instabilities but 
the spectral data presented by Kohama et al (1991) likely includes contributions of both the type-I 
and type-II modes. Although one or the other production mechanism may dominate for a 
particular mode, it is too simplistic to assume that only the spanwise or wall-normal inflection 
points are responsible for the appearance of a particular mode; with such a highly distorted 3-D 
boundary layer, all possible instabilities must be evaluated. 


Malik et al (1996) also compute the secondary instability behavior observed by Poll (1985) and 
predict a 17.2-kHz mode compared to Poll's high-frequency signal occurred at 17.5 kHz. Based 
on the shape of this disturbance, Malik et al claim that this is a type-II mode. The same approach 
is applied by Malik et al (1999) to the swept wing experiments of Reibert et al (1996). Malik et al 
(1999) again apply a local, temporal stability of the stationary crossflow vortices that are 
established by the primary instability and find that better transition correlation results can be 
obtained by following the growth of the secondary instability in an N-factor calculation than 
simply basing a prediction on the location at which the secondary instability destabilizes. A 
method based on the primary instability alone cannot adequately predict transition location. 


An alternative to the approach used by Malik et al (1994, 1996, 1999) is presented by Koch et al 
(2000) who find the nonlinear equilibrium solution of the primary flow. Koch et al use the 
nonlinear equilibrium solution as a receptivity-independent basic state for a Floquet analysis of 
secondary instabilities of the saturated vortices. Yet another approach is by Janke & Balakumar 
(2000) who use a NPSE for the base flow and a Floquet analysis for the secondary instabilities. 
Both Koch et al (2000) and Janke & Balakumar (2000) are in general agreement with the various 
computations of Malik and coworkers. 


A DNS approach to the problem of the stationary-vortex saturation and the ensuing secondary 
instability was pursued by Högberg & Henningson (1998). These authors impose an artificial 
random disturbance at a point where the stationary vortices are saturated. These disturbances 
enhance both the low- and high-frequency disturbances downstream, and each frequency band 
has a distinct spatial location, with the high-frequency disturbance located in the upper part of the 
boundary layer and the low-frequency disturbance located in the lower part. Spectral analysis of 
the resulting disturbance field shows that the most-amplified high frequency is somewhat more 
than an order of magnitude higher frequency than the most-amplified traveling primary 
disturbance. Another high-frequency peak at approximately twice this frequency is also evident in 
the spectra. This peak likely corresponds to a type-II mode, although this feature is not described 
by the authors. 
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Another very highly resolved DNS study of nonlinear interactions of primary crossflow modes, 
their secondary instabilities, and eventual breakdown to turbulence is by Wassermann & Kloker 
(2002). Wassermann & Kloker emphasize disturbance wave packets that may be more realistic 
than single-mode disturbances. One of the most important findings obtained from the wave-
packet approach is that unevenly spaced primary vortices of differing strengths can interact in 
such a way to bring about an earlier onset of secondary instabilities and breakdown than would be 
found from a single-mode disturbance. Also, Wassermann & Kloker find that when the forcing 
that initiates the high-frequency secondary instability in their simulation is removed, the 
secondary-instability disturbances are convected downstream, out of the computational domain. 
This indicates that the secondary instability is convective and that the explosiveness of the 
secondary instability’s growth is not associated with an absolute instability. The advantage of 
Wasserman & Kloker’s DNS solution is its ability to reveal the rather intimate details of the 
breakdown process. As such, the work is one of the foundation contributions. 


At this time, the various approaches to the secondary instability problem, experimental, nonlinear 
PSE, and DNS, have achieved rather remarkable agreement in terms of identifying the basic 
mechanisms of the secondary instability, unstable frequencies, mode shapes, and growth rates.  A 
comparison of three of the most recent efforts is shown in Figure 6. This comparison shows 
agreement on the location of the breakdown and that it is associated with an inflection point in the 
spanwise direction (an extremum in ∂U/∂z). 


 


 


 


 


 


 


 


 


 


 


 


Figure 6.   Mode-I velocity fluctuation contours.  (a) NPSE (Figure 7 from Malik et al 
1999), (b) DNS (Figure 20b from Wassermann & Kloker 2002), and (c) Experiment 


(Figure 11 from White & Saric 2005). 
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1.5 Summary  
The DNS and NPSE with curvature for 3-D crossflow-dominated flows have shown very 
encouraging results in validating against the available carefully documented experimental 
databases, but more work is still needed to simulate physical initial conditions including the 
freestream and leading-edge surface roughness. The flight experiments of Carpenter et al (2009) 
are beginning to provide receptivity data for roughness in flight to provide these much needed 
upstream conditions for the calculations. 


2.0 Attachment Line 
The attachment-line boundary layer (see Figure 7) can undergo an instability, or be subject to 
contamination by wing-root turbulence; these phenomena are associated with, in general, swept 
wings with a large leading-edge radius (Pfenninger 1965, Cumpsty and Head 1967, Gaster 1967, 
Pfenninger and Bacon 1969, Poll 1979, Hall et al. 1984, Reed & Saric 1989).   


Control in this case is achieved by limiting the value of the attachment-line momentum-thickness 
Reynolds number.  The initial flow condition at the root of the wing determines the critical 
attachment-line momentum-thickness Reynolds.  Many experiments have been done to find 
critical Reynolds number values for both attachment-line stability and leading-edge 
contamination. 


If the wing root is contaminated with turbulence from the fuselage or some other structure 
(pylons, for instance), the disturbances feeding into the boundary layer are relatively large and 
there exists an attachment-line momentum-thickness Reynolds below which the turbulent flow 
disturbances are damped and the flow becomes laminar.  To avoid leading-edge contamination, 
that is, disturbances propagating along the attachment line and feeding into and tripping the 
boundary layer, it is necessary to keep the attachment-line Reynolds number ReθAL below 100 
(Pfenninger 1965).  


( )[ ] 1001/sintaneR404.0Re 2/1 ≤+ΛΛ′= erALθ  


where Re’ is the dimensional unit Reynolds number based on freestream conditions, r is the 
dimensional normal-to-the-LE radius, Λ is the leading-edge sweep angle, and e is the ellipticity of 
the LE (e = 0 is conservative).  Thus a finite radius is possible. 


On the other hand, if the flow is laminar at the root or if turbulent disturbances have been 
removed by suction near the wing root or by some device such as a Gaster bump, then above a 
certain value of Reθ small disturbances seem to grow and result in a turbulent attachment line.  
This is called attachment-line stability, and the current suggested design criterion is  


( ) 1/2
Re 0.404 Re tan sin / 1 245AL r eθ ′= Λ Λ + ≤⎡ ⎤⎣ ⎦  


For attachment-line stability, Gaster (1967) performed experiments an a Handley Page laminar 
flow wing at 43o sweep which indicated that the critical Reynolds number for a laminar boundary 
layer (small disturbances) was greater than 170 (the highest Reθ used in the experiment).  Gaster 
also designed a bump which bears his name, the purpose of which is to remove the turbulent 
boundary layer originating at the wing root to help stabilize the flow.  Cumpsty and Head (1969) 
conducted experiments on a swept wing model showing that laminar flow is stable up to 
ReθAL=245.  Pfenninger and Bacon (1969) performed experiments on a 45o swept airfoil and 
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found the critical ReθAL for laminar flow is 240.  The experiments by Poll (1979) indicated that 
laminar flow was stable to ReθAL =230.  A good general value for the onset of transition for an 
uncontaminated root flow is ReθAL =240.  


Under ordinary circumstances, in practice for transport flight, one is dealing with leading-edge 
contamination and one selects the sweep angle and normal-to-the-LE radius so that the 
attachment-line Reynolds number is well below 100.  Otherwise, one has tripped the boundary-
layer from the leading edge.  Here is an opportunity to use a Gaster bump or simple passive 
suction patch near the wing root.  Now one is dealing with attachment-line stability, with the 
attachment-line Reynolds number criterion now being relaxed to needing to be maintained below 
245.  In this case one has the flexibility to increase the nose radius by a factor of 6.  


 
 
 


Figure 7.  Flow around 
swept wing attachment line 


 
 
 
 
 


 


Several investigators have used DNS and linear and nonlinear analysis techniques to look at the 
nature of the instabilities and to confirm previous experimental results.  Hall, Malik, and Poll 
(1984) used nonparallel linear stability theory on a swept Hiemenz (stagnation point) flow and 
predicted a critical ReθAL =245.  Spalart (1989) used a DNS method to confirm this result.  Hall 
and Malik (1986) attempted to bridge the gap between the turbulent and laminar originating flow 
by using weakly nonlinear theory and DNS, and found that subcritical disturbance growth 
corresponds to branch II of the neutral curve.  Eigenvalue analysis of Lin and Malik (1996, 1997), 
and DNS work by Joslin (1995, 1996) has confirmed previous results. 


Although empirical, the use of the attachment-line momentum-thickness Reynolds number has 
been demonstrated to be valid in a wide range of flows from low-speed to supersonic. Analytical, 
computational, and experimental attempts to characterize attachment line transition have 
historically reduced to this criterion.  At this point this seems to be the best available engineering 
strategy for predicting transition on the attachment line. 


 


SUPERSONIC FLOWS 


Considerable uncertainty exists in both the prediction and control of transition in supersonic 
flows due to the dearth of reliable experiments.  The paper by Mack (1984) is the most complete 
description of compressible stability available anywhere. The linear stability analysis of high-
speed boundary layers uncovers three major differences between it and the subsonic analysis: the 
presence of a generalized inflection-point, the dominance of 3-D viscous disturbances, and 
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multiple acoustic modes (Mack Modes). Stability analyses of high-speed boundary layers have 
largely been limited to simple geometries such as flat plates and axisymmetric cones.  


3.0 STABILITY ANALYSES 


3.1 Generalized Inflection-Point Criterion 
The boundary layer on an adiabatic flat plate in a compressible flow always features D(ρDU) = 0 
somewhere in the flow.  Thus, even zero-pressure-gradient flows are subject to inviscid 
instabilities that grow with increasing Mach number.  As ys moves away from the wall with 
increasing Mach number, the range of unstable frequencies is enlarged at high Reynolds numbers.  
This effect occurs up to a Mach number of approximately 5.  In contrast to M=0, when viscosity 
is considered at M>1, it may be stabilizing relative to the dynamic instability. 


3.2  3-D Viscous Disturbances 
In the supersonic case (1 < Me < 10) under perfect gas assumptions, Mack completed extensive 
linear stability computations of 3-D stability maps on a flat plate and found many important 
results (see Mack 1984 for the details and comparisons with experiment).  The earliest results 
showed that above a Mach number of 1, 3-D waves corresponding to the first viscous mode have 
a larger amplification factor than the corresponding 2-D disturbance. In 1970’s, Mack validated 
Kendall’s experiments (in the JPL 20” Variable Mach Number Supersonic Tunnel) showing 
dominance of 3-D viscous modes up to Mach 4 on a flat plate. The dominance of 3-D viscous 
disturbances refers to the fact that at supersonic speeds, the 2-D viscous disturbances called 
Tollmien–Schlichting (TS) waves at lower speeds are not the most unstable viscous disturbances. 
Instead, oblique disturbances of the same general family are most amplified. These are called 
first-mode disturbances.  As the Mach number is increased above 1, the most unstable wave angle 
quickly increases to 45˚ at Me = 1.3, 55˚ at Me = 1.6, and 60˚ at Me = 2.2.  Thus, the assumption 
of 2-D viscous disturbances cannot be made in supersonic flows. 


3.3  Multiple Acoustic Modes:  Mack Modes 
One of the most significant developments in compressible theory comes from Mack, who 
discovered a new family of solutions to the compressible equations.  They can be explained by 
considering the inviscid stability equation in the form 


∂2ψ/∂y2 + (1-M2) ∂2ψ/∂x2 + f(M, ψ, ∂ψ/∂y) = 0 


where 


ψ = v/(αU + βW - ω) 


M = (αU + βW - ω) Me / [(α2 + β2) T] 1/2 


M(y) is the relative Mach number between the local basic-state velocity and the propagation 
speed of a neutral wave.  Me is the edge Mach number.  Here, we recall that and take advantage 
of the fact that ∂2ψ/∂x2 was the source of -(α2 + β2)ψ in the disturbance equation.  Obviously, 
when M2 < 1, this equation is elliptic and the eigenvalue is unique as it is in the case of 
incompressible inviscid theory.  When M2 > 1, this equation is hyperbolic and an infinite discrete 
set of eigenvalues can satisfy the boundary conditions.  M2 = 1 at y = ya in the boundary layer 
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and ya is called a turning point.  The solution of this equation can be found by using WKB 
methods.  For y<ya, the solutions are oscillatory and for y>ya they are exponential. 


Physically, the disturbances propagate at a speed that is subsonic relative to the edge velocity, but 
supersonic relative to the region near the wall (y<ya).  Thus, for an adiabatic flat plate with Me = 
3.8, disturbances with phase speeds cr > 0.5 are supersonic with respect to the wall region 
(Morkovin 1991).  At the same phase speed cr, a sequence of wavenumbers satisfy the 
differential equation and boundary conditions.  These extra solutions are higher modes and are 
most unstable as 2-D waves, because it is then that the relative supersonic region is of maximum 
extent.  They have shorter wavelengths than the usual T-S instability waves (first modes) since 
the wavenumber sequence is approximately 


2αn/π = 1,3,5,7, …. 


They are not T-S waves by character or behavior and it is fitting that they be called Mack modes.  
They represent inviscid acoustic waves that reflect inviscidly between the solid wall and the 
relative sonic line in the boundary layer.  See also Mack (1987). 


The lowest-frequency Mack mode, the so-called second mode, is found to be the dominant 
instability for Mach number greater than about 4; it is more unstable than either the 3-D first 
mode or any of the other higher modes.  If  M2 < 1 everywhere within the boundary layer, then 
the first mode may be present. If M2 > 1 somewhere within the boundary layer, the flow is 
unstable to “Mack” modes.  The second mode is a “subsonic” mode in that its structure 
exponentially decays with height in the inviscid region of the shock layer.  The second mode is 
found in the experiments of Kendall (1975), Demetriades (1977), and Stetson et al.(1984).  
Beyond these experiments, there has not been a systematic effort to validate Mack’s predictions 
or to investigate the conditions (roughness, bluntness, angle of attack, wall cooling, chemistry 
effects etc.) at which the first mode, second mode, transient growth or crossflow dominate 
transition. 


Mack (1984) provides additional insight to second-mode behavior, discussing the effect of the 
thermal boundary layer. Mack observes that whereas the first mode is stabilized by cooling in air, 
the second mode is actually destabilized.  The second mode is also found to be less stable with 
decreasing viscosity in air.  This idea is related to the argument about cooling in that the viscosity 
of air increases with temperature.  As temperature decreases, the local speed of sound decreases, 
which means the local Mach number M2 increases and the second mode is more unstable. 


Additionally Mack (1984) reasons that the behavior of the second mode is influenced by the 
height of the boundary layer, which is affected by both wall cooling and viscosity. There is a 
strong tuning with the boundary-layer thickness, so that the frequency of the most amplified 
disturbance may be predicted from this flow parameter.  In particular, the fluctuation wavelength 
is approximately twice the boundary-layer thickness.  This implies that if the boundary-layer 
thickness is changed, for example by cooling, a corresponding and predictable change in 
frequency should be observed. A thinning of the boundary layer decreases the wavelength and 
thus increases the frequency, with the converse being true.  


It is apparent from the discussion of Mack (1987) that the size of the region of relative supersonic 
flow is an important factor in determining second-mode behavior. That is, the thickness of the 
region between the wall and the relative sonic line in which M2 > 1 and in which the second mode 
is unstable, determines the characteristics of the instability.  The thermal boundary-layer profile 
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affects both the viscosity and the local sonic speed (and thus M2). Accordingly, particular 
attention should be given to the thermal boundary layer as a part of a second-mode investigation. 


3.4 Comparisons  


As Schneider (2001) points out, accurate depiction of the growth of a second-mode instability 
wave over a circular cone at zero-angle of attack remains a challenge, both computationally and 
experimentally. The series of experiments performed by Stetson et al. (1984), who consider the 
growth of instabilities on right-circular cones (both sharp and blunted) at zero-angle-of- attack at 
Mach 8, has provided the basis for many computational efforts.  Numerical comparisons to the 
observed growth of second-mode instabilities over the spherically blunted-cone are reported by 
Malik et al. (1990), Esfahanian (1991), Kufner et al. (1993), and Rosenbloom et al. (1999). 
Agreement with the experimentally observed growth rates can be described as qualitative. 


The Stetson et al. (1984) geometry is a 7º half-angle right-circular cone, with a blunted nose of 
radius 3.81 mm. The total length of the model is just over 1 m (s = 267). The free-stream flow is 
Mach 8, with zero-incidence with respect to the cone’s axis. The Reynolds number (based upon 
free-stream conditions and the nose radius) is 3.3×105. The focus of the experiment is the second-
mode instability, which is thought to be dominant for high-speed flows over smooth, convex, axi-
symmetric geometries in two-dimensional flow. 


Schneider (2001) summarizes the Stetson experimental conditions very efficiently. Paraphrasing 
Schneider, the total pressure is 4.00 MPa; the total temperature is 750 K. On the cone, surface 
measurements are taken for pressure and temperature. Basic-state profiles are measured using 
total-temperature and pitot-pressure probes. Basic-state comparisons between experimentally 
determined profiles and computed profiles are discussed below. For the Stetson experiment, 
disturbances are measured using a series of four hot-wire anemometers. Starting at 0.254 m (s = 
66:7), disturbance spectra are measured through 0.922 m (s = 242). The measured total-
temperature spectra are shown in Figure 11; here ω = 1 corresponds to f* = 49.5 kHz. The second-
mode disturbances correspond to the spectral peaks that appear in the range 2.5 < ω < 3. 
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Figure 11: Stetson experiment: measured disturbance spectra of total temperature. 


From Lyttle et al. (2004) 


From Figure 11, there follow some observations about the experiment. First, Schneider (2001) 
notes that the experimental (free-stream) environment is not quiet, thus Figure 11 shows the 
growth of broadband, uncontrolled disturbances that result from the free-stream noise. Second, 
one notices the presence of a harmonic of the second-mode disturbance, starting at s = 215. This 
implies that non-linear interactions may be important downstream of s = 215. Summing up, the 
validity of comparing these experimental results with linear stability theory is limited by the free-
stream disturbance environment and the possible presence of non-linear interactions. 


Following Malik et al. (1990), many numerical investigators have chosen s = 175 as the place to 
make a comparison with the second-mode growth-rates reported by Stetson. As seen in Figure 12, 
the numerically determined growth rates (including Lyttle et al. 2004) consistently peak roughly 
60% higher than the peak growth-rate reported by Stetson. There have been a variety of theories 
to try to explain this discrepancy. Schneider (2001) points out that Stetson postulates that non-
linearities are present at station 175, visible in Figure 7b in Stetson et al. (1984). It has been 
pointed-out that the wall temperature at s = 175 is not adiabatic, whereas the numerical (basic-
state) models assume an adiabatic wall. Mack (1987) points out that the origin of the disturbances 
(receptivity) is not addressed by linear-stability theory - nor by the experiment. Furthermore, 
Mack (1987) points out that the experimentally determined growth rates are found using the y-
locations that have the peak wide-band response - not with regard to the location of the peak of an 
individual frequency component. New experimental initiatives, led by Schneider et al. (2002) and 
Maslov (2001), address these issues. 
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Figure 12: Second-mode growth rates as functions of frequency at s=175. From Lyttle 


et al. (2004) 


 


Using a finite-volume code developed in-house, Lyttle et al. (2004) solve the Navier-Stokes 
equations for these conditions and use the solutions to perform linear-stability analyses to 
determine the growth of second-mode disturbances. The traditional approach for numerically 
investigating the Stetson et al. (1984) case is to model the cone-wall as being adiabatic. This is 
the standard boundary-condition used by numerical investigators, and was the intent of the 
Stetson experiment. As Schneider (2001) points out, this assumption is not supported by the 
experimental evidence. The computed adiabatic wall temperature distribution is higher than the 
experimentally measured temperature distributions. Schneider further observes that, as 
consecutive experimental runs are made, the measured temperature distribution rises from run to 
run, until an equilibrium temperature distribution is reached. Schneider hypothesizes that the heat 
capacity of the model prevents the wall temperature from reaching the adiabatic value.  Lyttle et 
al. (2004) incorporate an option to use an experimentally determined wall-temperature 
distribution for the basic state. 


Following the suggestion of Schneider (2001), comparisons are made of integrated growth-rates 
among the computations and the experiments. This may be a more appropriate comparison 
because the experiments measure the disturbance amplitudes, then calculate the growth-rates 
based on the change in disturbance amplitudes. The integrated growth-rates, N-factors, depend on 
the two integration-endpoints s0 and s1, and are calculated as follows. 
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To place the current results in the context of the Stetson experiment, the adiabatic-wall, cooled-
wall, and Stetson N-factors are compared, using s = 195 as the reference location. The current 
results’ agreement with the experimental results is best in the range of frequencies 2.4 < ω < 2.8. 
Examining the experimentally determined amplitudes from Figure 11, this frequency range 
corresponds with those frequencies that are most-amplified in the experiment. 
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Figure 13: Comparison of N-factors, s0=195, Stetson case (Lyttle et al. 2004). 


The N-factor curves for a series of individual disturbance waves are considered, using s = 195 as 
the reference location. It is surmised that if a discernible linear-growth region exists, the extent of 
such a region can be identified by choosing s0 = 195. For example, the results for ω = 2.62 are 
shown in Figure 14, demonstrating the existence of a linear-growth region. The traditional under-
prediction of growth-rates at s = 175 might also be explained by examining Figure 14. 
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Figure 14: N-factor comparison, ω=2.62, Stetson case (Lyttle et al. 2004). 


Form these results, Lyttle et al. (2004) propose that linear-stability theory describes the growth of 
second-mode disturbances for 2.4 < ω < 2.8, and for the region 195 < s < 215. The frequencies 
in this range correspond to the most-amplified second-mode frequencies. Upstream of s = 195, it 
is postulated that the amplified second-mode waves have not yet fully distinguished themselves 
from the noise. Indeed, the experimental N-factor curves suggest that the experimental-numerical 
disjoint at s = 175 may be attributed to signal-noise problems, rather than to non-linearity. For 
locations downstream of s = 215, perhaps non-linear interactions are important – behavior that 
cannot be captured using LST. Also, the agreement between the experiment and the current 
predictions appears better for the computations that use an experimentally determined wall-
temperature distribution. 


Next, Lyttle et al. (2004) consider the experiments conducted in the ITAM hypersonic wind 
tunnel T-326 by Shiplyuk, Maslov and colleagues, at a freestream Mach number of 5.95 on a 7° 
half-angle blunt-nosed cone.   For the experiments, artificial waves are generated by a high-
frequency glow discharge.  For both the simulation and the experiment, 275 kHz disturbances are 
highly amplified.  Again they find good agreement between LST and experiments in the phase 
speed and disturbance profiles (Figure 15), as well as for disturbance growth for the second mode 
(Figure 16).   
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Figure 15.  Comparison between ITAM experiments and LST for disturbance mass flow 
profile and phase within the boundary layer for the second mode.  From Lyttle et al. 


(2004) 


 
 


 


 


 


 


 


 


Figure 16.  Comparison between ITAM experiments and LST for N-factors for the 
second mode.  From Lyttle et al. (2004) 


3.5 Summary 
With little experimental validation data available for supersonic flows, validation of the physics 
predicted for stability and transition is difficult.  It is clear that further theoretical, computational 
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and experimental work will have to be a joint effort in order to further identify and validate the 
appropriate models and the fundamental causes of transition. Careful, well documented validation 
experiments in quiet facilities and at flight conditions are very much needed – conventional 
facilities may even suggest trends opposite to those in flight and available flight data are 
uncertain in operating conditions. 
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I. INTRODUCTION


Surface roughness can have a profound effect on boundary layer transition. The mechanisms associated with single roughness elements are only partially understood while those responsible for transition with distributed roughness are not yet known. This has led to a large body of empirical information in the literature that is not fully consistent. These dimensionless correlations are generally based on two-dimensional parameters such as 
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 whereas distributed roughness is inherently three-dimensional. The three-dimensionality is usually introduced by providing separate curves in the correlations for each three-dimensional shape and distribution. Nevertheless, these correlations are still the operative data base for incorporating the effects of distributed roughness in design. Because the fundamental mechanisms are not known, there is considerable uncertainty in the reliability and extrapolability of such correlations.


The present lecturer is one of a number of investigators who in the past have pursued a T-S explanation for the effects of roughness, both discrete and distributed. Only discrete two-dimensional roughness elements yield to a T-S explanation (Klebanoff & Tidstrom 1972). The attempts to find a T-S explanation for three-dimensional roughness, both discrete and distributed have failed. These attempts have been documented in Reshotko (1984) and Morkovin (1990a). 


Experimental studies by Reshotko & Leventhal (1981), Corke, Bar-Sever & Morkovin (1986) and Tadjfar et al (1985) have presented some of the physical observations of flow over distributed roughness. It is generally agreed that roughness displaces the mean flow outward affecting the profiles only within the roughness height. Subcritical amplification is observed principally at low frequencies and the growth can easily reach nonlinear levels quickly. It is suspected that in common with single 3D roughness elements, the distributed roughness gives rise to vortex structures emanating from the elements. These vortices are primarily streamwise. Papers summarizing these observations are by Reshotko (1984) and Morkovin (1990a, 1990b).


A possible unifying explanation for these observations lies in the mechanism of transient growth. 


Transient growth arises through the coupling between slightly damped, highly oblique (nearly streamwise) Orr-Sommerfeld and Squire modes leading to algebraic growth followed by exponential decay outside the T-S neutral curve. A weak transient growth can also occur for two-dimensional or axisymmetric modes since the Orr-Sommerfeld operator (also its compressible counterpart) is not self-adjoint, therefore its eigenfunctions are not strictly orthogonal.


Because transient growth factors can be extremely large in flows that are T-S stable or in parameter ranges that are T-S stable, transient growth is an attractive mechanism to consider with respect to distributed roughness effects. Recent works by Luchini (2000) and by Tumin & Reshotko (2001) show that for Blasius flow, maximum transient growth factors are for streamwise (stationary, zero frequency) disturbances. As the frequency increases, the growth factors are reduced. 

II. ROUGHNESS-INDUCED TRANSITION ON A FLAT PLATE 

As part of their study of transient growth applied to roughness-induced transition, Reshotko and Tumin (2004) computed the spatial transient growth factors for a flat plate (zero pressure gradient) in supersonic flow. The calculations are all for stationary disturbances (
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 = 0). As seen in Fig. 1, the growth factor is a function of both Mach number and surface temperature level. and scales with length Reynolds number or the square of a thickness Reynolds number. For 0.75 < 
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 < 1.0, the growth factors are essentially independent of Mach number while for colder walls, the lower the Mach number the higher the growth rate.  The corresponding optimal spanwise wavenumbers are shown in Fig. 2. For all cases, the optimal spanwise wavelengths are from 3 to 3.5 boundary layer thicknesses.
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Figure 1. Transient growth factors for a flat plate
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Fig. 2. Optimum spanwise wave lengths for flat plate flows.


These are incorporated into a transition model similar to that of Andersson et al.(1999) for freestream turbulence effects on transition. We assume that an energy norm at transition is related to an input energy through the transient growth factor G: 


Etr = GEin                        (1)


The input energy is in the form of a density times velocity squared where the roughness-induced disturbance velocities are assumed proportional to the roughness height, k. The momentum thickness θ is chosen as the reference length because it is the least sensitive to surface temperature level of any of the boundary layer scales. The resulting expression for Ein is


Ein = (ρw/ρe)(k/θ)2                                       (2)


which for a boundary layer can be approximated as


Ein = (Te/Tw)(k/θ)2                                       (3)


Again, the growth factor G scales with the length Reynolds number or the square of a thickness Reynolds number. Thus from Eqs. (1) and (3), we can write


(Etr)1/2 = (G1/2/Reθ) Reθ(k/θ)(Te/Tw)1/2            (4)


where (G1/2/Reθ )can be obtained from Fig. 2 using the following relation for a flat plate with μ~T and Pr =1 : 


(G1/2/Reθ)=1.506(G/ReL)1/2                           (5)


Assuming that transition occurs when Etr reaches some constant level, Reθ,tr can be written


Reθ,tr = const (G1/2/Reθ)-1(k/θ)-1(Tw/Te)1/2          (6)


or

              Reθ,tr(k/θ) =  Uek/νe = const (G1/2/Reθ)-1(Tw/Taw)1/2{1+r[(γ-1)/2]M2}      (7)


In the absence of better information, the const in Eq. 6 is evaluated from the experimental results of Feindt (1956) who found that Uek/νe is about 120 for incompressible flow with zero pressure gradient. Since G1/2/Reθ = 0.1021 for incompressible flat plate flow, const = 12.25. 


Fig. 3 shows Reθ,tr(k/θ) = Uek/νe vs. Mach number. Surprisingly the results plot as straight lines for M > 1.5 Note the dependence on surface temperature level and the inherent dependence on roughness height. Note also that for Tw/Taw just below 0.25, the line would go through the origin so that  Reθ,tr(k/θ)/Me  would be a constant. 
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Figure 3. Variation of roughness parameter Uek/νe with Mach number and 

                           surface temperature level.


Based on the above results for flat plates, it is recommended that roughness-induced transition data for other configurations be plotted as in Fig. 3, Uek/νe vs. Me, with wall temperature isotherms indicated. This will allow the relevant physics to be included the correlations. To be further noted is that cooling is destabilizing for transient growth, whereas for T-S disturbances, cooling stabilizes the first mode but destabilizes the second mode. 


III. ROUGHNESS-INDUCED TRANSITION IN STAGNATION POINT FLOW- 


            THE “BLUNT-BODY PARADOX” 


The ‘‘blunt body paradox’’ refers to the early transition on spherical forebodies (even those that are highly polished) observed at supersonic and hypersonic freestream speeds both in flight and in wind tunnels. This transition occurs usually in the subsonic portion of the flow behind the bow shock wave, a region of highly favorable pressure gradient that is stable to T–S waves. Surface cooling leads to even earlier transition. This phenomenon, identified in the mid-1950s, has defied clear explanation. It has always been prominent on Morkovin’s list of unsolved problems. The tentative suggestions are generally roughness related since stagnation point boundary layers are very thin. But no connection has been made between the microscopic roughness on the surface and the features of the observed early transition such as location, sensitivity to surface temperature level, etc. This has led to a search for an explanation through transient growth. This problem was recently examined by Reshotko and Tumin (2000, 2004) and this section summarizes their findings.


For the axisymmetric blunt body problem considered herein, the base mean boundary layer flow is the self-similar boundary layer for the Hartree parameter, 
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corresponding to axisymmetric stagnation point flow. The edge Mach number for the major results here presented, 
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, corresponds to a location of about 28° from the stagnation point, almost independent of flight Mach number (above 3) based on a modified Newtonian pressure distribution. The principal results here presented are for Reynolds number
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, where H is a measure of the boundary layer thickness. More specifically, 
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 corresponds to Rδ* = 1000.

The linearized compressible Navier–Stokes equations for three-dimensional disturbances in a compressible gas were solved numerically for temporally and spatially growing disturbances. The temporal optimal growth analysis is that of Hanifi, Schmid, & Henningson(1996). The energy norm for compressible flow is that of Mack (1969) independently rederived by Hanifi et al.(1996). This energy norm has terms involving the density and temperature fluctuations in addition to the kinetic energy. Since for the Reynolds number considered, the subject flow has no growing T–S waves, the spatial analysis for the downstream domain (following Ashpis and Reshotko 1990) includes only the discrete and continuous spectra in the upper half of the complex 
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 =0, there is only a continuous spectrum.


III.1  Temporal results


From Reshotko & Tumin (2000), Fig. 4 shows the temporal transient growth factor as a function of dimensionless time for three levels of surface temperature. For adiabatic wall conditions, the maximum growth factor is about 1100, quite a large value. With the surface cooled to half the adiabatic wall temperature, the growth factor G is about 5300, and for 

Tw /Taw=0.2, the maximum growth factor is about 13500. Note that as the boundary layer becomes more T–S stable because of cooling, the transient growth factors become significantly larger. Also, because of the compressibility, it is important to consider all the terms in the energy norm and not just the kinetic energy. This is shown in Fig. 5 for the 

Tw /Taw=0.2 case. With just the kinetic energy considered, the maximum growth factor is about 5700 rather than the 13500 obtained using the full energy norm.
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Fig 4. Temporal transient growth factor for axisymmetric stagnation point flow


             at different surface temperature levels.  Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762
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Fig. 5. Temporal transient growth factor based on different energy norms.


Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762, Tw/Taw = 0.2.

III.2  Spatial results


Figure 6 shows the spatial transient growth factor G as a function of dimensionless distance for the same conditions as in Fig. 4. The peak values for the three surface temperature levels are about the same as for the temporal formulation. The peak values occur at a dimensionless distance of about 0.5, which for the Reynolds number of the calculation is about 600 boundary layer thicknesses downstream of the origin. The agreement in peak values is somewhat remarkable since the transient growth factor is the result of wave superposition and the temporal and spatial formulations involve different sets of waves. In the temporal [image: image19.png]a0,
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Fig. 6. Spatial transient growth factor for axisymmetric stagnation point flow at


different surface temperature levels. Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762

formulation, the decaying temporal eigenvalues are for different frequencies corresponding to a single streamwise wave number. In the spatial formulation, the decaying spatial eigenvalues are for the different wave numbers corresponding to a single real frequency.


These calculations are relevant to the hypersonic sphere-cone nosetip configurations for which there is an extensive experimental data base and significant transition correlations (Batt & Legner 1980, 1983,  Reda 1981, 2002).  Since most of the Batt & Legner experimental data base is centered around 
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= 0.5, the results for this latter case will be emphasized here. Further, in contrast to the flat plate, curvature is a significant factor for the sphere. Curvature is included in the calculations and results to be presented.


For surface temperatures in the vicinity of 
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= 0.5, the transient growth results without curvature effects are shown in Figure 7. The optimal spanwise wavenumber is essentially 
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Fig.7. Optimal growth factors for axisymmetric stagnation point


                                 flow. 
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= 0.5.

constant over the Mach number range at 
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 = 0.28 which corresponds to about 3.2 boundary layer thicknesses. The curvature effects were included into the following correlations through the ratio 
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 of the energy growth factors with and without the curvature associated terms. At a prescribed temperature level, the result might depend on the radius of curvature, the Reynolds number and the local Mach number. For each combination of parameters, the optimization procedure has to be carried out with respect to the spanwise wave number, and the computations become very time-consuming. Initially, we computed the effect of local Mach number on the ratio at a prescribed Reynolds number, 
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 = 123. Because the results did not reveal any significant effect of the Mach number, simultaneous effects of curvature and the local Reynolds number were investigated at 
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 82, 123 and 410 were chosen for consideration at different curvature parameters, 
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Fig.8. Effect of curvature on optimal growth factor for axisymmetric

                                stagnation point flow 
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Reynolds number and the curvature parameter on the ratio 
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 The larger the curvature (smaller nose radius), the smaller the growth factor. This stabilizing effect agrees with previous experimental observations (Batt & Legner 1983). Figure 8 also illustrates a suggested curve fit for these data. Since most of the experimental runs had surface temperature level variations during the run, and since the growth factors are sensitive to surface temperature level, it has further been determined from a least squares fit of the peak values in Fig. 6 that G1/2 varies as 
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The influence of roughness on transition can be modeled in a manner similar to that used earlier for zero pressure gradient. We assume that an energy norm at transition is related to an input energy through the transient growth factor G.
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The input energy is in the form of a density times velocity squared where the roughness-induced disturbance velocities are assumed proportional to the roughness height, k. The momentum thickness, (, is chosen as the reference length since it is the least sensitive to surface temperature level of any of the boundary layer scales. For stagnation-point flow, ( is 


also constant with distance from the stagnation point. The resulting expression for Ein is
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For a boundary layer, eq. (10) can be approximated
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Again, the growth factor G scales with the square of a thickness Reynolds number or with length Reynolds number to the one power. Thus from Eqs. (9) and (11) we can write
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where 
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 is obtained from the transient growth results for the particular geometry and flow parameters. Transition is assumed to occur when, for the given flow, 
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According to Eq. (12), we have to extract the factor 
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 from the transient growth results. The calculations summarized by Eq. (8) are for parallel flows (
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 = const). However, for the stagnation point flow, the edge Mach number varies almost linearly with angle from the stagnation point. From Eq. (8), it is seen that
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Thus the growth factor is largest near the stagnation point and diminishes rapidly as the edge Mach number increases. An integration of the differential growth factors from the stagnation point to any downstream location shows that the integrated growth factor is essentially constant beyond 
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Thus, for the stagnation point in the vicinity of 
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The last relation shows the trends of transition Reynolds number with roughness height and surface temperature level. For constant surface temperature level, 
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. This is consistent with Reda’s (1981, 2002) ballistic range data as shown in Fig.9. 
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Fig. 9.  Nosetip transition data from ballistic-range experiments; 3-D distributed


                  roughness.

The PANT wind-tunnel data15,16 shown in Figs. 10a and 11a display this trend as well. In addition, some of the PANT data were taken for nearly constant 
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= 0.5. For this case, Eq. (16) shows that Re(,tr should vary as 
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. This again is supported by the PANT data as shown by comparison of the data with lines of slope n = 1.27 in Figs. 10b and 11b. To be noted is that all of the nosetip transitions in the PANT data base take place well within the sonic point on the sphere (0.2 < 
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Fig. 10. Transient growth based transition correlations of PANT Series A data
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Fig. 11. Transient growth based transition correlations of  PANT Series J data.

In treating these data, only the “revised data” are used here. The revised data are based on the Batt & Legner protocol of identifying transition location. The roughness heights are those of the original PANT data (Batt & Legner 1980,1983). The present summary relation for the PANT data base is




[image: image59.wmf]-1.27


,


-1


Re180 (/)(/2)


ew


tr


kTT


q


q


=


                                   (15)


The curvature factor is ignored as it varies only within a narrow range for the whole data base. The numerical factor of 180 is for 
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= 0.5 and comes from averaging in only those points for which 0.45 < 
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 < 0.55. The broken lines on either side of the solid line in Figs. 10a and 11a show the expected data spread for 0.45 < Tw/Te < 0.55 according to Eq. 15. 


     While the Reda correlation (Fig. 5) and the present correlation of the PANT data (Eq. 15) both vary as (k/()-1 for constant surface temperature, Reda’s ballistic range data and the PANT wind tunnel data were taken at different temperature levels. Since ( appears in the numerator of both sides of Eq. 15, this relation can be rewritten as
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The left side of Eq. (16) is the same as Reda’s (1981, 2002) Reke,tr. For 
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= 0.33, Eq. (16) gives Reda’s value of 106 (See Fig. 9).  Reda estimates his surface temperature level to have been about 0.3.


IV. ROUGHNESS RECEPTIVITY

In the transient growth developments above, it was assumed that the disturbance velocity u’ is proportional to the roughness height k. This led to the (k/θ)-1 behavior as seen in the PANT and Reda data. This behavior is contradicted however by the experimental results of White & Ergin (2003) 


The White & Ergin experiment consisted of a flat plate model with a spanwise array of circular roughness elements located at 300 mm from the leading edge. The element spacing λo is 19 mm. The elements consist of 6.35 mm diameter, 95 μm thick adhesive labels that are stacked to give heights of 390, 475, 570 and 665 μm. At a tunnel speed of 10 m/sec, the roughness heights correspond to Rek of 53, 82, 119 and 162.  Fig. 9 shows the disturbance energy scaling with Rek at two different wavelengths. The data are taken at 60 mm downstream of the roughness
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Fig. 9. Disturbance amplitude scaling with roughness amplitude at x = 360 mm.20

array. The wavelength λo/3 is close to the optimal wavelength according to transient growth theory. The results for both wavelengths scale closely with Rek2. Since Rek2 ~ k4, this implies that u’ ~ k2.


The downstream evolution of modal energy for Rek = 119 is shown in Fig. 10. On the right are the experimental results of White & Ergin (2003) while on the left are the results of a DNS computation of the experiment by Fischer & Choudhari (2004).  The computation compares very well with the experiment. For λo/3 and λo/4, the growth begins
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Fig. 10.  Streamwise evolution of modal energy in dominant Fourier components.21

immediately at the roughness elements, peaks at about x = 360 mm and then decays as would be expected from transient growth theory. The longer wavelength λo component first decays quickly and then undergoes a slow growth. The model is not long enough to determine where the λo growth peaks or if it subsequently decays.


A linear calculation of this experiment (Fig. 11) was carried out by Tumin & Reshotko (2004). The roughness elements were modeled by an appropriate velocity boundary condition on the undisturbed boundary. The results shown, which correspond to λo/3 show transient growth beginning at x = 430mm. The behavior is in qualitative agreement with the experiment but the onset of the transient growth is significantly delayed.
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Fig. 11. Energy of the harmonic (l = 6.33 mm).


So for discrete roughness elements, the receptivity is nonlinear whereas the subsequent transient growth is linear. The assumption of linear receptivity overly elongates the receptivity zone. Receptivity may be linear if the roughness height is within the lower deck of the triple deck formulation, k < x(Rex)-5/8. These findings are however for discrete roughness elements. 


Might densely packed roughness give a different response than sparse discrete elements? There is no definitive data to answer this question. The closest is a study by Schlichting (1936) where he studied the effect of packing density on turbulent skin friction. He determined the effect of packing density on the additive constant in the turbulent law-of-the-wall and then determined the equivalent Nikuradse sand grain roughness height, ks. The result is shown in Fig. 12.
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Fig. 12. Effect of packing density on equivalent sand grain roughness for a turbulent boundary layer.


Note that as the packing becomes more dense, ks rises to a maximum significantly larger than k, and then at maximum packing, it is less than k. The implication is that at maximum packing, the effective roughness height can be less than the nominal roughness height.

V. CONCLUSIONS


Under parallel flow assumptions, transient growth calculations have been performed for zero pressure gradient and stagnation point flows over Mach number and surface temperature ranges that are relevant to slender and blunt supersonic and hypersonic configurations. In addition, a model for roughness-induced transition has been developed that makes use of the transient growth results.


For flat plate flows, the results depend on Mach number and surface temperature level and of course on the roughness height. Plots of Reθ(k/θ) at transition vs. Me are straight lines who’s level increases with surface temperature. Cooling leads to earlier transition. 


For nosetip transition, the dominant transient growth takes place in the near vicinity of the stagnation point so that the resulting correlation is independent of the local Mach number at the transition location. This yields transition relations that closely reproduce the trends of the Reda and PANT data, but with exponents for roughness and surface temperature effects obtained from the transition modeling and the transient growth theory.


Transient growth offers a useful approach to dealing with three-dimensional roughnesses that generate streamwise vortices. There is no meaningful T-S explanation. 


It is still not clear under what circumstances u’ varies as k2 and under what circumstances u’ is proportional to k. There is experimental evidence for both. Does the former apply only in the receptivity region and the latter in the transient growth region?  Clearly more experiments are needed with a fully distributed surface roughness to clarify receptivity issues and effects of packing density.
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1.0 Introduction


This section discusses progress in theoretical, computational, and experimental research focused on the stability of chemically-reacting boundary layers.  An assessment of on-going and future work in each area shows that experimental validation of computational results is very much needed at this time and necessary for further computational advancements.


The U.S. Air Force has critical mission requirements for space access and rapid global strike both of which require hypersonic atmospheric flight. NASA Strategic Goal 3 seeks to “develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration.” Because any flight between the surface of the Earth or Mars and space requires transit through the hypersonic regime on ascent and entry, designing safe and capable hypersonic vehicles is a necessary step toward realizing this goal.  Key enabling challenges toward achieving these National Capabilities are to accurately predict and effectively control the transition from laminar to turbulent flow. Transition impacts high-speed vehicle and weapons-system performance, as it may critically drive system drag, thermal load, propulsive efficiency, and stability. For example, a turbulent hypersonic vehicle designed to reach low-Earth orbit would experience about five times more viscous heating and double in weight as compared with an equivalent laminar vehicle (Reed et al. 1997).


Considerable uncertainty exists regarding hypersonic flow transition due to the dearth of reliable experiments. The paper by Mack (1984) regarding the linear stability of compressible boundary layers remains the most complete description available. Mack’s LST (linear stability theory) analysis of ideal-gas high-speed flows describes three major differences between supersonic and subsonic flow: the presence of a generalized inflection-point, the dominance of 3-D viscous disturbances, and the presence of high-frequency acoustic modes now named Mack modes. The dominance of 3-D viscous disturbances refers to the fact that at supersonic speeds, the 2-D viscous disturbances called Tollmien–Schlichting (TS) waves at lower speeds are not the most unstable viscous disturbances. Instead, oblique disturbances of the same general family are most amplified. These are called first-mode disturbances.


The acoustic instability discovered by Mack arises when the edge velocity is sufficiently fast that disturbances can propagate downstream at a subsonic speed relative to the boundary-layer edge velocity but supersonic relative to the wall. Such disturbances are inviscid acoustic waves that reflect between the solid wall and the relative sonic line. The lowest-frequency Mack mode, the so-called “second mode” becomes more unstable than the first mode for freestream Mach numbers above about four. Whereas the first mode is stabilized by wall cooling, the second mode is destabilized via a decrease in the local sound speed and associated increase of the local relative Mach number. Accordingly, factors affecting the thermal boundary layer are critical to understanding the second-mode. The second mode is found in the experiments of Kendall (1975), Demetriades (1977), and Stetson et al. (1984). Beyond these experiments, there has never been a systematic effort to validate Mack’s predictions or to investigate the conditions (roughness, bluntness, angle of attack, wall cooling, chemistry effects etc.) at which the first mode, second mode, transient growth or crossflow dominate transition.


Beyond the additional Mack modes, hypersonic stability analyses are complicated for other reasons. (1) At hypersonic speeds, the ideal-gas assumption is invalid because certain molecular species dissociate due to aerodynamic heating and, in some instances, too few intermolecular collisions occur to support local chemical equilibrium. Additionally, earlier work by Malik (1990), Malik & Anderson (1991), Malik et al. (1990), Stuckert & Reed (1994), Chang et al. (1997), Hudson et al. (1997), Johnson et al. (1998), and Lyttle & Reed (2005) (as examples) shows that equilibrium and various nonequilibrium stability solutions can differ significantly, because of their influence on the thermal boundary layer. (2) The bow shock is close to the edge of the boundary layer and affects transition via the production of an entropy layer. Additionally, the finite shock thickness can be important and this suggests a PSE or DNS simulation approach is required. (3) Surface ablation can have a significant effect on stability via the introduction of roughness, varying surface properties, and localized blowing, all of which affect the thermal and/or momentum boundary layers. (4) The flow is highly 3-D in the neighborhood of drag flaps or fins, or when at angle of attack. 3-D boundary layers are susceptible to crossflow which must be included in determining the appropriate transition physics. Crossflow is ultra sensitive to roughness and freestream disturbances, and leads to important nonlinear effects across much of the transition zone. 

2.0 Perfect-Gas Linear Stability Theory


The paper by Mack (1984) is the most complete description of compressible stability available anywhere. The linear stability analysis of high-speed perfect-gas boundary layers uncovers three major differences between it and the subsonic analysis: the presence of a generalized inflection-point, multiple acoustic modes (Mack modes), and the dominance of 3-D viscous disturbances.  Stability analyses of high-speed, chemically-reacting boundary layers have largely been limited to simple geometries such as flat plates and axisymmetric cones. In these cases, the 2-D boundary layers are subject to two inviscid instabilities. The first is vortical in nature and is due to a generalized inflection point in the boundary layer that represents a maximum in angular momentum. The second is an acoustic instability that occurs when there is a region of supersonic mean flow relative to the disturbance phase velocity. The first mode is distinguished from the second mode by using a local Mach number
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, defined as the difference between the phase velocity of the disturbance 
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 somewhere within the boundary layer, the flow is unstable to “Mack” modes.  The lowest-frequency Mack mode, the so-called second mode, is found to be the dominant instability for Mach number greater than about four; it is more unstable than either the 3-D first mode or any of the other higher modes.  The second mode is a “subsonic” mode in that its structure exponentially decays with height in the inviscid region of the shock layer.  

Mack (1984) provides additional insight to second-mode behavior, discussing the effect of the thermal boundary layer. Mack observes that whereas the first mode is stabilized by cooling in air, the second mode is actually destabilized.  The second mode is also found to be less stable with decreasing viscosity in air.  This idea is related to the argument about cooling in that the viscosity of air increases with temperature.  As temperature decreases, the local speed of sound decreases, which means the local Mach number 
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increases and the second mode is more unstable.


Additionally Mack (1984) reasons that the behavior of the second mode is influenced by the height of the boundary layer, which is affected by both wall cooling and viscosity. There is a strong tuning with the boundary-layer thickness, so that the frequency of the most amplified disturbance may be predicted from this flow parameter.  In particular, the fluctuation wavelength is approximately twice the boundary-layer thickness.  

This implies that if the boundary-layer thickness is changed, for example by cooling, a corresponding and predictable change in frequency should be observed. A thinning of the boundary layer decreases the wavelength and thus increases the frequency, with the converse being true. 

It is apparent from the discussion of Mack (1987) that the size of the region of relative supersonic flow is an important factor in determining second-mode behavior. That is, the thickness of the region between the wall and the relative sonic line in which [image: image9.wmf]1
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 and in which the second mode is unstable, determines the characteristics of the instability.  The thermal boundary-layer profile affects both the viscosity and the local sonic speed (and thus
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). Accordingly, particular attention should be given to the thermal boundary layer as a part of a second-mode investigation.


3.0 Chemical Reactions


For ideal-gas airflows, as are found in conventional (non-reacting) subsonic and supersonic flight, there is an accepted set of constitutive models. For the specific heat, 
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; Sutherland’s relationships are used for viscosity and thermal conductivity, using a Prandtl number of 0.72 (or perhaps 0.7). Compressible flows can be considered using this ideal-gas assumption so long as the temperature is within the calorically perfect range. Consider an amount of air at a pressure of 1 atm., as its temperature increases. The calorically perfect assumption begins to break down at 800 K, necessitating the use of a thermally perfect gas model for a frozen mixture of N2 and O2. The molecular oxygen begins to dissociate around 2500 K, necessitating the consideration of chemical reactions.


For flows where chemical reactions are important, additional constitutive models must be chosen. For each of the species, a relationship for the specific heat must be supplied. If a finite-rate reaction model is used, the reaction rates must be supplied for each reaction. As well, for the viscosity and thermal conductivity, models that take temperature and species composition into account must be provided. 


If the flow is considered to be in thermal equilibrium, then there is a “unique” temperature for all species and vibrational nonequilibrium is neglected. For a multiple-species gas mixture such as O2, N2, O, N, NO (which has often been used for hypersonic flows – see Blottner et al. 1971, Prabhu et al. 1987), one usually assumes that each species satisfies a perfect gas relationship and Dalton’s law of partial pressures applies for each species.  The resulting equation of state for the gas mixture is 
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where 
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 is the universal gas constant, and for the N species, the quantities 
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 represent the mass concentration and molecular weight, respectively, of species 
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The governing equations for reacting flows are far more complicated due to the need to include species concentration equations for each species, coupled with the mixture mass continuity equation.  In addition, chemical reactions introduce source terms in the energy equation. In these source terms, the production rate of each species depends upon the chemistry model adopted: frozen (chemistry fixed – no reactions), equilibrium (infinite reaction rates), non-equilibrium (finite reaction rates).  Models for each individual species’ coefficients of specific heat and reaction rates are needed, and the viscosity and thermal conductivity are modeled using a mixture rule, which depends upon models for collision integrals for each species.


For the stability analysis, the governing Navier-Stokes equations are perturbed by decomposing the flow variables, species concentrations, transport and thermodynamic properties into a mean value (denoted by ~) and a fluctuation quantity (denoted by ')
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These forms are substituted into the full governing equations, and the equations governing the mean quantities are subtracted.  The resulting disturbance equations are modelled and solved by linear stability, parabolized stability equation, or direct numerical simulation techniques.


For boundary conditions at the wall and at the edge of the computational domain, the following are suggested.  At the wall, no-slip is applied to the shape function of the disturbances (see Chapter 4) so that
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If the surface material enhances the chemical reactions of the gas, the wall is called “catalytic”, and the species concentrations are determined by the corresponding equilibrium values so that
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If no recombination takes place at the wall, the wall is called “non-catalytic” and the mass flux is zero corresponding to
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For a “partially catalytic” wall, the mass flux is balanced by a prescribed catalytic rate for each species.


In the freestream (that is, the edge of the computational domain is inside the shock), Dirichlet boundary conditions are usually specified
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If the oscillatory eigenfunctions of supersonic modes are expected, then as in Chapter 4, it is suggested to use a non-reflecting boundary condition.  When the coordinate system for both the basic-state and stability analysis fit the body and bow shock as coordinate lines, linearized Rankine-Hugoniot shock-jump conditions are recommended for the disturbance boundary conditions.


For gas mixture in thermal and chemical nonequilibrium, a two-temperature model is used where the energy in the translational and rotational modes is characterized by the translational temperature TT, and the energy of the vibrational modes is characterized by the vibrational temperature TV. Thus N species equations, two momentum equations, and two energy equations are solved.


4.0 Linear Stability Theory Results for Chemically Reacting Flows


Malik (1989, 1990) and Malik & Anderson (1991) investigate the stability of an equilibrium-air boundary layer on an adiabatic flat plate.  Malik et al. (1990) use the eN method for the reentry-F experiments; the basic state was calculated by equilibrium-gas Navier-Stokes and PNS. Stuckert & Reed (1994) analyze the stability of a shock layer in chemical nonequilibrium and compared results with the flow assuming 1) local chemical equilibrium and 2) a perfect gas.  Hudson et al. (1997) and Johnson et al. (1998) include chemical nonequilibrium and thermochemical nonequilibrium. Details are provided in the next several paragraphs.

Malik & Anderson (1991) conclude that reactions in equilibrium are stabilizing for the oblique first mode. This is similar to wall cooling but the frequencies are shifted higher. Chemical equilibrium is destabilizing for the second mode, again similar to wall cooling and the frequencies shifted lower. This is most likely due to decreased temperatures in the boundary layer when the assumption of constant specific heat is removed and due to endothermic reactions which again, cool the boundary-layer and increase the region of relative supersonic flow. The Mach 10 adiabatic wall study also showed an unstable third mode, which did not appear in the perfect gas analysis. Third mode stability was found to depend on wall temperature and Mach number. Similar results were found for a Mach 15 cold wall study.

Stuckert & Reed (1994) consider a flow over a sharp cone, at zero incidence, with a freestream Mach number of 25, and include 5 species: O2, N2, O, N, NO. The free-stream speed is high enough that non-equilibrium chemical reactions result from viscous heating in the boundary layer. Because the chemical reactions affect the temperature in the boundary layer (tending to cool it), and the second-mode disturbance is tuned to the boundary-layer thickness (which is affected by the cooling), they conclude that non-equilibrium chemistry has to be considered for stability analyses of this flow.  Their coordinate system for both the basic-state and stability analysis fit the body and bow shock as coordinate lines.  This eases the application of the linearized shock-jump conditions as the disturbance boundary conditions.  At the surface of the cone, for the nonequilibrium calculations, the species mass fluxes were set to zero (noncatalytic wall), whereas for the equilibrium calculations the disturbances were assumed to be in chemical equilibrium.  It is clear that the equilibrium and nonequilibrium solutions can differ significantly depending on the rates of the reactions relative to the time scales of convection and diffusion.  For example, some of the equilibrium modes were determined to be supersonic modes, each of which was a superposition of incoming and outgoing amplified solutions in the inviscid region of the shock layer.  (No similar solutions were found for the nonequilibrium shock layer.)  The magnitudes of these modes oscillated with y in the inviscid region of the shock layer.  This behavior is possible only because the shock layer has a finite thickness.  They are also unlike Mack's higher modes (except for the second) in that the disturbance-pressure phase for all of these supersonic modes changed most across the inviscid region of the shock layer.  (The disturbance-pressure phase change for Mack's higher modes occurs across the viscous region of the flow, i.e. the boundary layer.)  In fact, the disturbance-pressure phase change for all of these supersonic modes through the boundary layer is comparable to that of Mack's second mode.

Once again, the effect of the chemical reactions is to increase the size of the region of relative supersonic flow primarily by reducing the temperature in the boundary layer through endothermic reactions, increasing the density, and hence decreasing the speed of sound.  This reduces the frequency of the higher modes; in particular, the most unstable one, the second mode.  The higher modes in the reacting-gas cases are also more unstable relative to the corresponding perfect-gas modes.  The first modes are, however, more stable.


Finally, the finite thickness of the shock layer has a significant effect on the first-mode solutions of all of the families.  The effect on higher-mode, higher-frequency solutions does not seem to be as large as long as they are subsonic.  This is perhaps what one would intuitively expect because the shock is likely "stiff" and hence difficult to perturb with smaller-wavelength, larger-wavenumber, higher-frequency disturbances.  However, the nonparallel effects are known to be large for first-mode solutions, and so a complete quantitative description of the effects of the finite shock-layer thickness needs either a PSE solution or a DNS analysis.   


Modeling using non-equilibrium chemistry captures either of the limiting cases (frozen and equilibrium), but at significant computational cost. The important conclusion of Stuckert & Reed (1994) is that the complexity of the chemistry model one uses to model the flow can affect the stability prediction. Because transition prediction is well known to be influenced by all aspects of the flow, the conclusion is that one must consider all relevant physics.


Hudson et al (1997) conduct a numerical investigation into hypersonic flat-plate flows in thermochemical non-equilibrium. Thermochemical non-equilibrium refers to the inclusion of a two-temperature model as well as finite-rate chemical reactions. Their results for both a Mach 10 adiabatic and cold wall show that this effect is stabilizing for the second mode relative to both chemical equilibrium and non-equilibrium. Cooling is found to be destabilizing for the second mode. Furthermore, they show that the effects of thermal-non-equilibrium are diminished as one advances downstream from the leading edge.


Johnson et al. (1998) follow this work by considering the linear stability of a high-speed flow, using a series of geometries that approximate an interceptor. One of the geometries they consider is a right-circular cone with a 21° half-angle. They consider a flow with a free-stream Mach number of 13.5; thermal and chemical non-equilibrium models are used. The cases they study include both a sharp cone and a spherically blunted cone with nose radius of 2.54 cm. They detail second-mode behavior for both these cases, finding stable and unstable waves for the sharp-cone case, and finding only stable second-mode waves for the blunt-cone (for the distance that they consider).  Among other results, these studies showed that thermochemical nonequilibrium was stabilizing for the second mode compared to chemical equilibrium and nonequilibrium. This result was attributed to the higher translational temperature, which is the result of decreased energy absorption by dissociation due to slow reaction rates. Another significant conclusion is that wall cooling effects dominate disturbance growth rates as compared to chemistry effects.  

5.0 PARABOLIZED STABILITY EQUATION and DIRECT NUMERICAL SIMULATION Results for Chemically Reacting Flows


Chang et al. (1997) developed the linearized parabolized stability equations (LPSE) for 2-D or axisymmetric flow under chemical equilibrium and nonequilibrium with thermal equilibrium. There were five species, eight reactants, and six reactions. The verification case was the Mach 10, flat plate with an adiabatic wall, T∞ = 350 K, and unit Reynolds number of 6.6 x 106 per meter. Comparison with LST shows qualitative agreement for the various chemistry models – chemistry is destabilizing for the second mode and a third mode appears. They also studied the effect of different mean-flow formulations on the stability results. Boundary-layer mean flows and parabolized Navier-Stokes mean flows give slightly different results but are qualitatively similar.


For three gas models: non-equilibrium with five species, equilibrium through a table look-up procedure, and perfect gas, Chang et al. (1997) considered a Mach 20 flow over a 6° wedge and with the LPSE were able to account for the non-parallel effects. The unit Reynolds number for the wedge configuration was 9X105 per foot and the wall temperature was constant at Tw/Tadiabatic = 0.1.  The post shock Mach number is 12.5 with a shock angle (between the wedge and the shock) of 2.22°.  [Recall that Stuckert & Reed (1994) found supersonic disturbance modes for equilibrium flow with LST – these modes feature an oscillatory structure in the inviscid region of the shock layer.]   For both equilibrium and finite-rate chemistry with LPSE, Chang et al. (1997) found amplifying supersonic modes with a relative phase velocity faster than the freestream sonic speed.  These modes emerged just downstream of the unstable (subsonic) second-mode region and they generate dispersive waves that propagate into the freestream with a phase speed different from the corresponding acoustic wave and the wave structure decays at a finite distance outside the boundary layer.  They determine that the Rankine-Hugoniot shock-jump conditions have little effect since the mode structure decays before the shock is reached.  Due to the presence of the supersonic modes, Chang et al. predicted the location of the onset of transition (that is, the location at which N-factor achieves a value of ten) to be 14 feet, 24 feet, and 39 feet if one uses the equilibrium, non-equilibrium, and perfect gas models, respectively – quite a difference.  It is apparent that it is important to correctly model the chemistry and the global nature of the instabilities.


Johnson & Candler (1999) do an LPSE comparison with LST for 2-D or axisymmetric flow under thermochemical nonequilibrium.conditions. They develop a two-temperature model (translational and vibrational) for five species. The verification case was the Mach 10, 0.5 meter flat plate with an adiabatic wall, T∞ = 278 K, and unit Reynolds number of 9.8425 x 106 per meter. Comparison with LST shows qualitative agreement. Variations in frequency and peak growth rate are attributed to different mean flow solvers and physical property models


Malik (2003) considers chemistry effects on PSE results using Re-Entry F data. His formulation is for 2-D or axisymmetric flow under chemical equilibrium and nonequilibrium with thermal equilibrium. There were five species, eight reactants, and six reactions. No surface ablation or mass transfer at wall is included. The model is a 5° semivertex cone at an altitude of 30.48km, M∞ = 19.295, T∞ = 228 K, and unit Reynolds number of 6.56 x 106 per meter. Non-parallel effects are destabilizing for all three gas models. Disturbance frequencies vary from 200 to 480 kHz. The inclusion of chemical reactions is destabilizing, but for this case not much difference between chemical equilibrium or finite rate chemistry is found. N-factor results at the observed transition location of x = 2.9 meters for the Reentry-F cone yield values of 6.5, 7.9, and 8.1 for perfect gas, equilibrium gas, and finite-rate chemistry, respectively, under quasi-parallel assumptions, and 7.3, 9.8, and 9.5 under nonparallel assumptions. 


Stemmer (2005) compares DNS (direct numerical simulation) results with and without chemistry on a flat plate. The DNS formulation is for thermochemical nonequilibrium with five species, a two-temperature model, an altitude of 50 km, Mach 20, p∞ = 79.78 Pa abs, T∞ = 270.65 K, and Tw = 3 T∞. For a gas in thermochemical nonequilibrium, the 3-D disturbance level is lower compared to an ideal gas without reactions.


6.0 Effect of different accepted models on stability


As has been apparent from the discussion thus far, for chemically-reacting flows, a number of thermodynamics, reaction rates, and transport models must be used, and there are several available. Also these models have greater uncertainties than those describing ideal-gas flows. Lyttle & Reed (2005) considered different accepted thermodynamic models (for species specific heats), reaction rates, and transport models (mixture viscosity and thermal conductivity), with the goal of estimating the sensitivity of linear-stability predictions to the changes made to these models, within some given uncertainties.  The selected geometry and flow conditions are the Mach 13.2 right-circular cone with a 21° half-angle (Johnson et al. 1998).  For this investigation, five different simulations are made for the “same” flow. 


· The first simulation serves as a baseline and uses the nominal constitutive relationships of Stuckert & Reed (1994).  


· For the second case, a different technique is used to model the species molar specific-heat coefficients. Stuckert & Reed use a cubic-spline technique. The alternative model uses a series of seventh-order polynomials for each of the species, as compiled by Palmer and Venkatapathy (1995). It is observed that small differences in the specific-heat curves translate to small differences in the composition curves.


· For the third case, a different technique is used to model the mixture viscosity and thermal conductivity. The Blottner (1971) model uses a series of temperature-based curve-fits for these transport properties for each species. A mixture-rule is then used to find the mixture transport properties. This model is used by Johnson et al. (1998) and in many other investigations conducted by Prof. Candler’s group. For the Stuckert & Reed model, collision integrals are determined using curve fits.  These collision integrals are combined, using a mixture rule, to form the thermal conductivity of the mixture.  


· The fourth and fifth cases focus on the reaction rates for the dissociation of O2. The uncertainty for these reaction rates is a factor of two. For the fourth case, the third-body efficiency factor for each O2-dissociation reaction is multiplied by 0.5. For the fifth case, the third-body efficiency factor for each O2-dissociation reaction is multiplied by 2.0. 


Table 1. Maximum second-mode growth-rates from different models
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Nominal
-0.1844
1.000
-0.287416
1.000



Palmer & Venkatapathy cp
-0.2047 
1.110
-0.297651
1.036



Blottner Transport
-0.2320
1.258
-0.311482
1.084



O2 Rate Factor: 0.5
-0.1819
0.986
-0.287788
1.001



O2 Rate Factor: 2.0
-0.1881
1.020
-0.286975
0.998


Table 1 demonstrates second-mode growth rates for the different cases at 2 different chordwise stations.  Changing the model for the specific-heat has little effect on the basic-state flow profiles in this region. The largest change in the thermal profile is seen for the case where a different transport model is used. Considering the second-mode behavior for each of these cases, the magnitude of change in the stability results correlates strongly with changes in the basic-state thermal boundary-layer profile. The choice of viscosity and thermal conductivity influenced the growth rates the most. Comparisons with the Goodwin (1995) model show that the amount of disagreement between Stuckert and Blottner models is reasonable. It appears that the Goodwin model lies in between the two and agrees with the Stuckert model below 1000 K, and then asymptotes into the Blottner model at higher temperatures. The conclusion is that there exist appreciable differences among generally-accepted models.  


It is recognized that a more robust study of the sensitivity of the stability predictions to these factors can be achieved by using a thermochemical non-equilibrium model as a baseline. Computational techniques, including direct numerical simulation (DNS) and non-linear parabolized stability equations (NPSE), are making tremendous strides, and are in some ways ahead of the experimental community’s ability to validate the results (Schneider 2001).  As these techniques are applied to flows in thermochemical non-equilibrium, the accuracy of the constitutive relationships should be considered.  Perhaps one approach is for the numerical community to agree on a set of baseline models in order to remove a source of disagreement among results.


7.0 Experimental Progress


Most of the early hypersonic experiments (Kendall 1975; Demetriades 1977; Stetson et al. 1984) were conducted in a “cold” environment where the hypersonic Mach numbers were achieved by lowering the speed of sound. The resulting kinetic energy was not large enough to cause molecular dissociation. Hornung & Belanger (1990) provide an extended discussion on the benefits of ground testing for “hot” hypersonic flows. Only a handful of experiments to date have addressed chemically reacting flows (He & Morgan 1994; Adam & Hornung 1997; Germain & Hornung 1997; Fedorov et al. 2001; Rasheed et al. 2002; Fujii & Hornung 2003; Maslov et al. 2008).  These studies are mainly aimed at transition detection or parametric studies of transition control techniques. Experimental techniques are generally limited to heat transfer gauges for transition detection and interferometry for flow visualization. 

Germain & Hornung (1997) imaged an instability wave in the Caltech shock tunnel T5. The enthalpy range with air or nitrogen was 3 MJ/kg < h < 25 MJ/kg, the reservoir pressure range with air or nitrogen was 20 MPa < p < 100 MPa, 4.7 < Me < 6.5 depending on h, and the test time was ~1 ms.  The model was a 5° half-angle sharp cone, 1 meter long. Several gases were used to detect real gas effects. A 15mm wave developed at 150 kHz.  This frequency corresponds to the predicted first mode instability; the second mode was estimated at 1-3 MHz by Rasheed et al. (2002).  It was suggested that perhaps the noise spectrum of the facility may be providing a non-linear bypass mechanism. 


For the same conditions and computationally, Johnson et al. (1998) found enthalpy dependence on transition to increase with the dissociation energy of the gas. They set a goal to confirm the hypothesis that “endothermic reactions occurring in higher enthalpy flows absorb energy from the instability waves”. They assumed: thermochemical nonequilibrium and a non-catalytic wall, and found that the computations over-predicted the experimental transition Reynolds number results as a function of freestream total enthalpy. 


Adam & Hornung (1997) compared results from the T5 shock tunnel with Re-Entry F flight data. Flight transition Reynolds number data were an order of magnitude higher when the Reynolds number was calculated using edge conditions; the data were of the same order when using reference conditions. Also observed were differing trends for transition Reynolds number as a function of stagnation enthalpy comparing flight and T5.

Assuming air and comparing computations with and without the chemistry included in the mean flow solution, Johnson et al. (1998) found competing effects of the chemistry. Reactions in the mean flow are destabilizing. Reactions in the disturbances are stabilizing for endothermic, and destabilizing for exothermic. The stabilization effect is more pronounced in gases with lower dissociation energy - absorbs energy fluctuations more easily.


While these experimental studies have provided very valuable results in their own rights, in most of these cases the object was not to provide data in a code validation sense and the disturbance environment was not required to be fully documented.


Control


For typical hypersonic cruise missions, the second mode is unstable in the ultrasonic frequency band. Fedorov et al. (2001) have discovered that an ultrasonically absorptive coating (UAC) can stabilize the second mode by absorbing acoustic energy at the wall. This is achieved using a porous surface tuned to provide certain acoustic impedance properties in the ultrasonic range. The stability experiment results by Fedorov et al. agree with theoretical predictions, and transition experiments by Rasheed et al. (2002) in the Caltech T5 tunnel demonstrated that equally spaced blind micro holes double the laminar run on a sharp cone at freestream Mach numbers between 5 and 6. These efforts validate the theoretical approach and demonstrate the robustness of the UAC concept. The UAC concept is especially appealing because it can be implemented into the thermal protection system (TPS) with virtually no penalties.

8.0 Assessment of Current and Future Capabilities


In summary, all analyses thus far confirm that the second mode is most unstable. The most unstable first mode wave is oblique. Results of chemically reacting boundary layers show that chemistry and high-temperature effects alter the stability of the flow and must be included in any analysis. Different but qualitatively similar results are observed for different mean flow and chemistry models, and the community needs guidance and validation from experiments and flight. As well, it is suggested that there be consensus established in the community as to which models to include. Experimental validation is needed to ensure the basic physics are accurately modeled, and this implies quiet, well-documented tunnels and flight. This is perhaps the most critical step in anticipation of the modeling of more complex flow fields and more detailed studies. Other opportunities for development include sensitivity studies for thermochemical nonequilibrium.

Based on progress in the stability of chemically reacting boundary layers, it is clear that further theoretical, computational and experimental work will have to be a joint effort in order to further identify the appropriate flow models and the fundamental causes of transition. Theoretical work contributes by providing a physics-based framework that describes how instabilities propagate in a boundary layer. The theory behind the LST has not changed since Mack’s (1969) original publication, but as described earlier, the governing equations have been updated to include the high-temperature and chemistry effects. On-going and future work includes development and use of the LPSE which take into account the non-parallel effects. Beyond linear stability, a framework for receptivity and other transition pathways is needed, including advances in nonlinear parabolized stability equations (NPSE) and DNS.  Future efforts need to address the effects of chemical reactions in 3-D boundary layers and accurately include the effects of ablation.

Since a ground experiment cannot simultaneously simulate all aspects of high-enthalpy flight, its main contribution includes an examination of the fundamental causes of transition including instability growth and transition mechanisms. Of the three research areas, experimental work is the least developed at this point in time. Only a small number of experiments under “hot” hypersonic conditions have occurred to date and although they are a first step, the stability experiments lack full documentation of the disturbance environment and test parameters necessary to couple the results to computational work.
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1. INTRODUCTION


While transition from laminar to turbulent flow has been part of our fluid mechanics lexicon for at least a century, a partial understanding of the elements of the process has come only in more recent decades. The extent of our understanding as well as what is lacking has been set forth in these lectures.


The lack of full understanding of the transition process has not however deterred us from attempting to control the process. There are many areas where control of transition can be applied constructively to achieve desired ends, and the attempts to do so are numerous. Some of them might even be called successful.


2. ELEMENTS OF THE TRANSITION PROCESS


In an environment where initial disturbances are small, the transition Reynolds number of boundary layer is very much dependent upon the nature and spectrum of the disturbance environment, the signatures in the boundary layer of these disturbances, and their excitation of the normal modes (referred to in the literature as “receptivity”), and finally the linear amplification of the growing normal modes. The wave interaction and non-linear processes that follow serve to bring transition quickly to completion once they set in. 


There is ample documentation that the factors that affect linear amplification are the primary factors that determine the magnitude of the transition Reynolds number. This is simply because the linear amplification step is the slowest of the successive multiple steps in the transition process.


Thus, for initially small disturbance levels, the delay of transition can be accomplished most directly and effectively by generating boundary layers on vehicles having profiles that are as stable as possible over as much of their development length as possible. By averting or minimizing growth of linear disturbances, laminar flow can be achieved over substantial portions of vehicle aerodynamic surfaces. The factors affecting boundary layer profile shape will be later referred to as “stability modifiers.”


One might also consider suppression or cancellation of growing linear disturbances. This would require detection of the frequencies, orientations and phase angles of the dominant elements of the spectrum of growing disturbances in the boundary layer, and then the use of a control system and appropriately located disturbance generators to effect the desired cancellation. Profile change is not involved. The stability characteristics are exploited but not altered.. It is unlikely that the complete spectrum of growing disturbances would be effectively suppressed. Any residual disturbance content would then lead to transition.

Most activity in transition control has come in association with specific applications. The more detailed discussions that follow will therefore be by application area.


3. LOW DRAG TECHNOLOGY


The drag of an airplane at cruise flight conditions is about 60% friction drag for present day transport aircraft with turbulent boundary layers on their wetted surfaces. Most of the balance is induced drag. For underwater vehicles, the friction drag is more like 90% of total drag. In each case therefore, there is significant opportunity for performance improvement through drag reduction.


The principal drag reduction opportunities lie in stabilizing the laminar boundary layer as much as possible so that more of the friction drag is at laminar rather than turbulent levels. There can additionally be reduction of the turbulent friction drag of those portions of the vehicle that cannot be laminarized. Some of the techniques envisioned for turbulent friction drag reduction are polymer additions, riblets, and microbubble additions. These will not be discussed here as they are post-transitional devices. Rather as indicated earlier, this review will discuss the application of stability modifiers to increasing the extent of laminar flow on the vehicle surfaces.



3.1. The Stability Modifiers


As known from the Rayleigh theorem of stability theory, an inflected velocity profile is inviscidly unstable. The flat plate (Blasius) boundary layer is not inflected and hence is inviscidly stable. Incompressible boundary layers under adverse pressure gradient are inflected while those under favorable pressure gradient are not. More generally, even including viscous effects, the stability of a velocity profile improves as its second derivative near the wall becomes more negative.


Thus the transition modifiers for two-dimensional boundary layers can be nicely identified by examining the two-dimensional boundary layer momentum equation in the near vicinity of a wall (Reshotko 1985):
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 more negative. The stabilizing effect of all of these factors has been demonstrated through direct computation involving the appropriate systems of disturbance equations and boundary conditions. From the above reasoning, the effects of these techniques should be additive. This has also been confirmed in the limited studies to date of combined effects. This particular lecture deals with cooling in air and heating in water.


3.2. Cooling in Air


It was noted many years ago in experiments at low subsonic speeds (Frick & McCullough 1942, Liepmann & Fila 1947) that the transition location of an airfoil boundary layer in air is advanced as a result of plate heating. This trend was confirmed by the stability calculations of Lees (1947) who showed that cooling can significantly stabilize the flat plate boundary layer while heating will destabilize the boundary layer.


These results are shown in Fig. 1 where length Reynolds number is plotted against the wall to freestream static temperature ratio. The transition data of Frick & McCullough and Liepmann & Fila both show the transition Reynolds number decreasing with heating. 
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Fig. 1. Effect of wall temperature on Remin crit and on Rex,tr 

As taken from the literature.


The difference in level reflects differences in pressure gradients on the models as well as differences in quality of the test facilities. All the other curves in Fig. 1 are of minimum critical Reynolds number. Lees’ result for M=0.7 was obtained by an approximate asymptotic procedure. Shown also are the results of Boehman & Mariscalco (1976) for M=0.6 and M=0.9 on a flat plate obtained by exact numerical solutions of the disturbance equations. Note the steep increase in minimum critical Reynolds number with cooling. If the wall is cooled to 0.7Te, the minimum critical Reynolds numbers for flat plate boundary layers are above 107 and transition Reynolds number are even higher. The favorable pressure gradients typical of airfoils and fuselages tend to further increase both the minimum critical and transition Reynolds numbers. 


Some experimental support is available for the aforementioned stability trends. Kachanov et al (1974) have abserved a doubling of the minimum critical Reynolds number by cooling a flat plate in low speed flow to 0.945Te, confirming expectations from the calculations of Gaponov & Maslov (1971). These results are also shown in Fig. 1. Kachanov et al also measure the growth rates of the uncooled and cooled boundary layers. With cooling, not only does the minimum critical Reynolds number increase but the range of amplified frequencies is diminished. Furthermore at a particular frequency that displays growth with and without cooling, the growth with cooling is much below that of the uncooled boundary layer (Fig. 2). Thus cooling clearly stabilizes the boundary layer in air at subsonic speeds and delays the onset of transition.
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Fig. 2. Growth of disturbance of dimensionless frequency F=128x10-6.


o ---- insulated plate, ● - - - -  cooled plate, Tw/Te = 0.945.


For higher subsonic speeds and supersonic speeds to M=2, the results from the transition cone flight experiment (Dougherty & Fisher 1980, Fisher & Dougherty 1982) shown in Fig. 3 are very instructive. For Mach numbers between 0.55 an 2.0, the best curve fit through the data is 
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For example, for Tw/Taw = 0.95, the transition Reynolds number increases by 43%, a major increase. These are all first mode transitions. Only the first mode can be stabilized by cooling. The second (Mack) mode is destabilized by cooling.
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Fig. 3. Influence of Tw/Taw on cone transition.


Higher supersonic and hypersonic information is available from flight transition results on sharp cones (Fig.4). Superposed on the data points are e10 calculated results by Malik (1989) for both first and second modes. Note the many data points showing high transition Reynolds number in the Mach 2-4 range. These are from flight experiments on 
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Fig. 4. Flight transition results on sharp cones.


highly cooled cones done from the NASA Wallops Island facility in the 1950s. Malik’s curves are a good representation of the flight data for both adiabatic and cooled surfaces. For adiabatic walls, first mode dominates to M~7, while for cooled surfaces, the second mode comes into play at M~4.5 leading to reduced transition Reynolds numbers. The second mode cold wall results for M > 6 are well below the adiabatic curves.


Lees (1947) very early suggested that radiation cooling to the environment can be significant at even the speeds that he considered. It is even more so at supersonic and hypersonic speeds. If radiation cooling is not sufficient, then active cooling has to be considered. The latter is very much vehicle dependent. An example is the possible drag reductions by cooling in hydrogen fueled aircraft (Reshotko 1979) where cooling is obtained from the onboard liquid hydrogen fuel on its way to the engines.


3.3. Heating in Water


Many authors have confirmed that surface heating stabilizes water boundary layers. 


Fig. 5 shows the results for minimum critical Reynolds number on a flat plate by Wazzan et al (1968, 1970) and by Lowell & Reshotko (1974).The differences between the curves 
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Fig. 5. Effect of wall temperature on Remin crit

are not large and are due to different fluid property assumptions. About 70oF (39oC) of overheat raises Reδ*min,crit from about 500 to nearly 12,000 and the corresponding e9 transition Reynolds number (Fig. 6) is well over 108. The combined effects of heating and pressure gradient are shown in the very interesting Fig. 7 by Wazzan & Gazley (1977) showing that the minimum critical Reynolds numbers and transition Reynolds numbers based on e9 correlate very well with the form factor H = δ*/θ for pressure gradient, 
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Fig. 6. Variation of transition Reynolds number for a flat plate with uniformwall overheat according to an “e9” transition criterion, T∞ = 60oF.


heating or combinations of the two. Again, transition Reynolds numbers approaching 109 are indicated. 
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Fig. 7. Minimum critical Reynolds number and predicted transition Reynolds numbers for unheated and heated wedge flows in water (Wazzan & Gazley 1977).


The effects of low overheat on spatial growth rates can be seen from the theoretical results of Lowell & Reshotko (1974) (Fig. 8) and the corresponding experimental results of Strazisar et al (1977) (Fig. 9). Both the theory and experiment show a narrowing band of growing frequencies and reduced spatial growth rates with heating. However the complete stabilization shown theoretically for 8oF overheat was not obtained experimentally.
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Fig. 8. Calculated spatial disturbance growth characteristics with wall overheat, Reδ* = 800.
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Fig. 9. Experimental disturbance growth characteristics with wall overheat.


o, ΔT = 0oF, Reδ* =770; Δ, ΔT =3.15oF, Reδ* =781; , ΔT =4.97oF Reδ*=773; 


◊, ΔT =8.87oF, Reδ* = 781. smooth curves drawn through the data points.


Nevertheless, the very large transition Reynolds numbers indicated in Figs. 6 and 7 prompted a large scale “flow tube” study to determine if the predicted results were obtainable and therefore of interest in underwater vehicle design. The experiment and its results are described by Barker & Gile (1981). The experiment was performed in the hydraulics laboratory of Colorado State University where a continuous supply of water at a head of 75 m is available. An overview of the experimental apparatus is shown in Fig. 10. The test is done on the thin developing boundary layer of the 0.1 m diameter, 6.1 m long flow tube. The inside of the tube was polished to 0.1 μm and is optically aligned to be straight. The filtration tank removes all particulate greater than about 100 μm.
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Fig. 10. Flow tube experimental geometry
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Fig. 11. Settling chamber and “conventional” contraction


The turbulence management section (Fig.11) includes foam, honeycomb sections and screens. The boundary layer is removed before the contraction by a suction section. The turbulence level away from the wall boundary layer ahead of the contraction is 0.07%. The contraction ratio is 35:1. An alternate contraction (Fig.12) was designed for the purpose of eliminating Görtler instability in the contraction. This is the contraction used
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Fig. 12. Bell mouth contraction section.


for the reported data. Fig. 13 shows the transition Reynolds number behavior with overheat. Because of the favorable pressure gradient, the unheated transition Reynolds number is 15x106. The amount of favorable pressure gradient decreases as the velocity and Re increase since the boundary layer gets thinner. The transition Reynolds number further overheat. Barker & Gile attribute this possibly to roughness, particulate or rises to 47.5x106 at 8oC overheat. However there is no additional increase in Retr with curvature effects, but without resolution.


Aside from the above work, similarly large increases are reported for a heated body of revolution tested in a water tunnel by Lauchle & Gurney (1984) where the transition Reynolds number was increased from 4.5x106 to 36.4x106 for an average overheat of 25°C.
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Fig. 13. Effect of heating on transition Reynolds number for a water boundary layer.

4. VEHICLE AND ENVIRONMENTAL FACTORS 


The realization of increased lengths of laminar flow by exploiting the stabilization techniques discussed above depends on several additional factors. The factors identified as “vehicle factors: relate to the character of the vehicle surface (roughness, waviness), vibrations and noise. The environmental factors include ice crystals, rain, insects, dirt, particulate content in sea water, etc. Our knowledge about most of these factors suffers from a very poor data base. Roughness and waviness are discussed elsewhere in these lectures.


4.1. Ice Crystals, Ocean Particulate


Intermittent or partial loss of laminarizataion can occur on an aircraft when ice crystals are ingested into the boundary layer and trigger turbulent events. Fig. 14 was constructed from the performance experience with the X-21 suction LFC aircraft (Fowell & Antonatos 1965). They deduced three conditions for discernable loss of laminar flow:


a)particles must be of sufficient size, b) particles must remain in the boundary layer for sufficient time and c) incident flux of particles must be high enough to result in significant areas of turbulence over the wing. 


Similar effects can occur for underwater vehicles due to suspended ocean particulate. This issue was analyzed by Chen et al (1980) on the premise that turbulent patches are generated by those particles entering the boundary layer that are sufficiently large to trigger a turbulent event. They calculated particle trajectories in the flowfield of a sphere as a function of particle size and density and then determined the capture area for
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Fig. 14. Estimated LFC performance with ice particles in the air.


particles that would enter the boundary layer (Fig. 15). The results shown in Fig. 16 are for neutrally buoyant particles. The normalized capture area is constant up to d/δ ~ 0.4 indicating that the particles are following streamlines and are in Stokes flow. For larger particle sizes, the particles cross streamlines giving progressively larger capture areas. 
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Fig. 15. Schematic of a particle trajectory calculation in a flowfield


of a submerged sphere of radius a = 15.24 cm.
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Fig.16. Normalized capture area as a function of particle diameter, s = 1.01


The particle size distribution function can be written
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The balance of the analysis is given in the Appendix. The features are that only those particles that can cross streamlines can be large enough to trigger a turbulent event. The eventual result is that the rate of generation of turbulent event, F, is of the form
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It was estimated (Chen et al 1980) that ingested particles must be of the order of half the boundary layer thickness or larger to serve as an effective trip, and of course the degree of intermittency or loss of laminarization depends on the particle flux. Fig.17 (Barker & Gile 1981) shows measured particle size distribution functions as measured by Coulter counters (d < 10μm). For the ocean and tow basin, p ≈ 2.9. For the flow tube, p ≈ 7.1, so that the frequency of generation of turbulent events is very sensitive to velocity increases. Physically what is happening is that as the velocity increases, the boundary layer becomes thinner, so more and more particles become large enough to cause a turbulent event. This plausible scenario is however not fully substantiated.
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Fig. 17. Particle size distribution functions: flow tube, ocean water, and NSRDC tow basin

5. CONCLUDING REMARK


It has been demonstrated beyond any doubt that heating in water and cooling in air can lead to significant runs of laminar flow on aircraft and underwater vehicles. The practical use of these techniques depends also on overcoming any problems arising from the vehicle and environmental factors as discussed.


6. APPENDIX: GENERATION RATE OF TURBULENT PATCHES


The method presented here (Chen et al 1980) for estimating the generation rate of turbulent patches is based on the premise that patches are generated by those particles entering the boundary layer that are sufficiently large to trigger a turbulent event.


Assuming that the distribution of particles in the vehicle environment is homogeneous, the particle size distribution can be characterized by a single function 
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where the exponent p is evaluated from a best fit to tow tank or oceanic data. The unknown constant B is related to the total number of particles per unit volume N whose diameter is larger than 
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. (Because of notational difficulties, the differential of d appearing in the integrand is denoted 
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Given the capture area 
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 for one density ratio, the total flux rate of particles of diameter greater than 
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Among those particles which enter the boundary layer, only a fraction of them will generate turbulent patches. This fraction 

[image: image38.wmf](


)


d


h


which will be referred to as an “efficiency function” hereafter in this report, varies between 0 and 1. Then the total generation rate of turbulent patches is





[image: image39.wmf](


)


(


)


(


)


m


c


d


FUAddndd


h


¥


¥


=D


ò


 
(A3)

With 
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Equation (8b) can be evaluated only if 
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 is known. However, since the detailed mechanisms of the generation of turbulent patches by particles are not known, the evaluation of 
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Considering a particle to be a moving roughness element suggests that the efficiency function should depend on the normalized particle diameter 
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. If one further assumes that turbulent patches occur only for large particles where 
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, then the generation rate can be estimated. The capture area defined in Eq. (7) for large particles is generalized to be
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where 
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It is seen that the generation rate depends on 
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 where p is the exponent in the particle size distribution function.


For 
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. Accepting the concept of a particle as a moving roughness element, a critical particle diameter of the order of half the boundary-layer-thickness is considered to be quite plausible.
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1. Introduction


For many years, the instability of laminar flow and the transition to turbulence have maintained a constant interest in fluid mechanics problems. This interest results from the fact that transition controls important aerodynamic quantities such as drag or heat transfer. For example, the heating rates generated by a turbulent boundary layer may be several times higher than those for a laminar boundary layer. For high-subsonic speed, commercial transport aircraft, the skin friction drag represents about 50% of the total drag. Friction drag has two important generators, wings and fuselage, which have similar contributions and account for about 70% of the total friction drag (Robert, 1992). Therefore the achievement of laminar flow on the wings by delaying the onset of transition can reduce significantly the friction drag and hence the specific consumption of the aircraft. The potential benefits are important, because transition separates the laminar flow region with low drag from the turbulent region where skin friction dramatically increases. For a complete aircraft, a drag reduction of 15% can be achieved if HLFC (Hybrid Laminar Flow Control) is applied to wings, tail surfaces and nacelles.


The objective of this Lecture is to provide an overview of the techniques which are available today for controlling laminar-turbulent transition. The first problem to solve for maintaining laminar flow on a wing is to avoid leading edge contamination: if the attachment line boundary layer is turbulent, turbulence will spread over the whole wing and any attempt to control transition would be meaningless. This problem is addressed in paragraph 2.


When the attachment line flow is laminar, transition control on the wing becomes possible. Several techniques have been developed for many years for application to civil transport aircraft and can be considered as mature today. They include Natural Laminar Flow, Laminar Flow Control by full-chord suction and Hybrid Laminar Flow Control. These techniques have proven their efficiency for a long time and have been widely validated in wind tunnel and in free flight conditions, at least for subsonic and transonic conditions. Some examples of results are given in paragraph 3, with emphasis on flight experiments. 


In parallel with the continuous improvement of the “old” techniques, new possibilities of transition control have been developed during the last years. Most of them are still very far from practical applications, but they present at least a fundamental interest for the understanding of the transition mechanisms and/or the validation of the transition prediction methods. These new techniques are described and discussed in paragraph 4.  


2. How to prevent leading edge contamination ?

Let us recall that the attachment line of a swept wing is contaminated by the fuselage turbulent boundary layer when the leading edge Reynolds number 
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 exceeds a critical value close to 250. In many practical situations, 
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 is larger than this critical value, so that it is necessary to develop specific tools in order to delay leading edge contamination.


As the leading edge Reynolds number is proportional to the square root of R sin tan(Arnal et al, 2008c), where R is the leading edge radius and  the sweep angle, the first idea is to reduce the leading edge radius and/or the sweep angle near the root. As technological problems can make this solution difficult to apply, other solutions, both passive and active, have been proposed. 


2.1. Passive devices: Gaster bumps and slots

A successful device to prevent leading edge contamination is the “Gaster bump” (Gaster, 1967). This consists of a small fairing which is attached to the leading edge close to the wing root. It is shaped in such a way that the contaminating turbulent boundary layer is brought to rest at a stagnation point on the upstream side whilst a “clean” laminar boundary layer starts to develop from this stagnation point. This principle is illustrated in figure 2.1; the bump shown here was designed by ONERA around 1990. In practice, three parameters need to be optimized: the height of the device (several times the incoming attachment line boundary layer thickness), its shape (one has to avoid CF transition on the flanks and laminar separation on the rear part) and its spanwise position (neither too far nor too close to the root). Gaster bumps enable the onset of leading edge contamination to be delayed up to values of 
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 of the order of 350 to 450. Devices of this type were successfully used during flight experiments (Jet Star wing, Falcon 50 wing, Falcon 900 wing, A 320 fin). 
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		Figure 2.1-


Gaster bump 


on the leading edge


of a swept wing





Seyfang (1987) tested several passive devices aimed at restoring laminar flow on a contaminated attachment line (step-up, step-down, square trips, grooves…) The hypothesis for the mechanism leading to relaminarisation is that the devices generate trailing vortices which “pump” the attachment line turbulent fluid. The main problem is to optimise the dimensions of these devices in order to avoid boundary layer tripping effects.


A different concept for a passive anti-contamination device was proposed and tested by Gaster (1998). It consists of a thin metallic sheet with downstream part attached to the leading edge and forming a narrow slot at its upstream edge. The incoming turbulent boundary layer passes through the slot and bleeds out at the edges of the plate. A new laminar boundary layer is created on the upper surface of the plate. Low speed wind tunnel tests showed that the best designed slot was able to prevent leading edge contamination up to Reynolds numbers close to the linear stability limit, i.e. 
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 ≈ 550 to 600. According to Gaster, this very simple device has considerable incidence tolerance.   


To our knowledge, the first published investigation devoted to contamination prevention at supersonic free-stream Mach numbers was carried out by Creel et al (1991) at NASA Langley in the Mach 3.5 low disturbance wind tunnel operating in quiet conditions. The model was a cylinder of 1 inch diameter placed at  = 60( (supersonic normal Mach number) and  = 76( (subsonic normal Mach number). The relaminarisation devices were similar to those investigated by Seyfang. They included square devices (height = width), fences positioned at 30( or 13° to the leading edge and sawtooth devices. For  = 76(, square devices were successful at relaminarising the attachment line flow above a certain minimum height; for smaller heights, the devices acted as boundary layer trips. The 30( fence and sawtooth devices were marginally successful and the 14( fence was not efficient. For  = 60(, no relaminarisation was observed. The authors concluded that relaminarisation is more difficult to achieve for supersonic normal Mach numbers than for subsonic normal Mach numbers. For the successful cases, the mechanism could be similar to that proposed by Seyfang in low speed conditions.

Supersonic experiments were carried out in the ONERA S2MA wind tunnel at the Modane-Avrieux centre in the framework of the SUPERTRAC (SUPERsonic TRAnsition Control) project funded by the European Commission (Arnal, 2007). The model was a symmetrical wing fixed at a sweep angle  = 65° to a wind tunnel vertical wall. The stagnation pressure was varied from 0.3 to 1.4 bar for two free-stream Mach numbers M0 = 1.7 (subsonic normal Mach number) and 2.7 (supersonic normal Mach number). Seven different anti-contamination devices were tested. The most efficient device prevented leading edge contamination up to 
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* ≈ 320 at M0 = 1.7 and up to 
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* ≈ 400 at M0 = 2.7 (the definition of 
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* is given in the Lecture devoted to Attachment line problems, Arnal et al, 2008c). This result is in contradiction with Creel’s finding that contamination control is easier on subsonic leading edges than on supersonic leading edges.      

2.2. Active device: suction


Leading edge contamination can also be controlled by suction applied along the attachment line. The first results were obtained from DNS carried out by Spalart (1988). These computations showed that contamination could be delayed up to 

[image: image9.wmf]R


 ≈ 350-400 for K = -1. K is a dimensionless suction parameter, defined as:
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where Vw is the suction velocity. 


Basic wind tunnel experiments (Poll and Danks, 1995, Juillen and Arnal, 1995, Reneaux et al, 1996, Arnal et al, 1997, Séraudie, 2001) confirmed the efficiency of this approach. The results are summarized in figure 2.2, which shows the evolution of 
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 (the critical value of 
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 for which the first turbulent spots are detected along the attachment line) as a function of K. Despite some scatter, a relation of the type:
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correlates fairly well the measurements. 
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		Figure 2.2-


Suction effects


on the appearance


of leading edge


contamination
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		Figure 2.3-


Combined effects


of suction


and of Gaster bumps 





The combined effects of suction and of a Gaster bump were studied at ONERA in the F2 wind tunnel by using the so-called DTP A model described in a previous lecture (Arnal et al, 2008c). This model was a constant chord (C = 1.2 m) swept wing generated from a symmetrical airfoil with a radius R of 0.2 m at the leading edge. Leading edge contamination was generated by the thick turbulent boundary layer developing along the wind tunnel floor at which the model was fixed. The leading edge was equipped with suction chambers along the span and with a Gaster bump close to the wing-wall junction. In fact, two Gaster bumps were tested: bump1 had a height of 29 mm and a length (in the spanwise direction) of 365 mm, bump2 had a height of 40 mm and a length of 500 mm. The detailed results are described by Arnal et al, 1997, and by Séraudie, 2001. Figure 2.3 shows the variation of 
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 as a function of K for the cases without bump, with bump1 and with bump2 (the results with bump1 were also plotted in figure 2.2). Let us consider first the data without suction. Without bump, contamination appears for 
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 ≈ 250, as usual. Due to its too small dimensions, bump1 exerts a rather modest effect. Bump2 is much more efficient since values of 
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 around 460 are reached. For large suction rates, the three series of data collapse into a single curve approximated by relation (1), and the Gaster bump no longer plays any role.  


2.3. From attachment line contamination to “natural” transition 


Even if leading edge contamination is avoided, “natural” transition is likely to occur through the amplification of unstable waves denoted as Görtler-Hämmerlin (GH) disturbances for low speed flows. The development of these waves was investigated along the leading edge of the DTP A model, without and with suction (see the Lecture on attachment line problems, Arnal et al, 2008c).


The experimental and numerical results indicate that the minimum value of 
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 at which the GH waves are observed increases rapidly with increasing suction. Figure 2.4 shows a comparison between the Reynolds numbers for the appearance of leading edge contamination and for the appearance of GH disturbances, as a function of the suction parameter K. It is clear that relaminarizing a turbulent boundary layer requires much more suction than damping “natural” waves. 
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3. “Industrial” methods for laminar flow control 


In the 80’s and at the beginning of the 90’s, all civil aircraft manufacturers in the US and in Europe made great efforts to reduce aircraft drag. The friction drag reduction on aircraft wings by laminar-turbulent transition control appeared as the most efficient way to reach this objective. A survey of the most relevant results (in particular those obtained in free flight conditions) can be found in Arnal (1993), Collier (1993), Joslin (1998) and Braslow (1999). After a period where the industrial interest in transition control decreased, new industrial and research programs have started. This paragraph gives an overview of the former and current activities in this field.  


3.1. Preliminary remarks 


The laminar flow control techniques which are mature today are based on modifications of the mean flow field. As indicated by the inviscid linear stability theory (Rayleigh’s theorem), inflectional mean velocity profiles are highly unstable at infinite Reynolds numbers; they are also unstable at finite Reynolds numbers of practical interest. The objective of the mean flow field modifications is mainly to eliminate the inflection points or, at least, to reduce their destabilizing effect by changing their position into the boundary layer. In general, decreasing the altitude of the inflection point and/or the velocity gradient at this point reduces the growth rate of the disturbances. Clearly, the task is rather easy for TS instability; it is much more complex for CF instability because an inflection point will be always present in the crossflow mean velocity profile.


For pure 2D flows (typically on unswept wings), the analysis of the streamwise momentum equation shows that there are 3 parameters able to reduce TS instability: negative pressure gradient, cooling (in air) and suction.


· As velocity profiles subjected to negative pressure gradients do not exhibit any inflection point, increasing the streamwise distance between the stagnation point and the point of minimum pressure will increase the laminar flow area;


· Cooling at the wall modifies the kinematic viscosity and thus the shape of the velocity profile in such a way that its stability is improved;


· Suction also modifies the shape of the velocity profile; in particular it decreases the shape factor and can eliminate inflection points.


Controlling CF disturbances is a much more difficult task, because the crossflow mean velocity profiles w always exhibit at least one inflection point, which cannot be removed. Therefore the objective is to displace the inflection point towards lower altitudes and to reduce the amplitude of the crossflow velocity component (this usually leads to a decrease of the velocity gradient at the inflection point). This can be done by using wall cooling and suction, but for a given suction rate, the effect is less than in 2D flows and cooling has practically no effect on CF disturbances (Arnal, 1994). On the other side, negative pressure gradients damp out TS waves but create a crossflow velocity component which has to be minimised; such gradients are “favourable” for 2D flows only. It can be demonstrated that for a given flow acceleration between U1 at x1 and U2 at x2, the distance x2-x1 must be as short as possible in order to reduce the crossflow development.
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From these considerations, three kinds of laminar flow control have been developed:


· Optimisation of the pressure gradient (NLF, Natural Laminar Flow). On a 2D model, it is sufficient to impose extended regions of negative pressure gradients. On swept wings, the flow acceleration is strong close to the attachment line in order to control CF waves, then it is mild in order to eliminate the crossflow velocity component and to prevent TS instability;


· Full-chord suction (LFC, Laminar Flow Control) ;


· Combination of the previous techniques (HLFC, Hybrid Laminar Flow Control). On a swept aircraft wing, boundary layer suction is applied only around the leading edge, and then natural laminar flow is obtained over the wing box through a proper tailoring of the geometry. This concept avoids the undesirable characteristics of NLF, which is sweep limited, and of full-chord LFC, which is very complex. 


Figure 3.1 illustrates these concepts and shows typical pressure distributions. As explained before, the efficient use of cooling is restricted to 2D flows. 


3.2. Major NLF flight experiments


Historically, the NLF flight experiments done with an F-111 aircraft and an F-14 aircraft were of particular importance as they demonstrated the key effect of CF disturbances on swept wing transition. A glove was installed on the F-111/TACT (Transonic Aircraft Technology) airplane and tested in early 1980 through a range of sweep angles. As the glove was not designed to minimize CF instability, a strong decrease in the laminar extent was observed with increasing sweep angle. The F-14 VSTFE (Variable Sweep Transition Flight Experiment) research began in 1984 and was completed in 1987. The flight data allowed a deeper understanding of the role of TS and CF disturbances on the transition mechanisms.  
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		Figure 3.2- NLF flight experiments on the Falcon 50 fin (from Arnal and Bulgubure, 1996)





In Europe, the NLF concept was studied by Dassault Aviation at transonic conditions on a wing element mounted on the upper part of a Falcon 50 aircraft fin, which was truncated for this purpose (1985-1987), see Courty et al (1993), Arnal and Bulgubure (1996). To investigate the variation of transition with the sweep angle , the nominal 25° sweep angle could be raised to 35° by installing a wedge. Transition was detected by infrared thermography and by hot film sensors glued on the NLF wing element. The analysis of the results showed that TS waves were dominant for  = 25º, whilst transition was induced by CF disturbances for  = 35º. Transition was delayed up to mid-chord, in agreement with numerical predictions. In addition, the hot film sensors allowed estimating the extent of the transition region. A view of the aircraft and a comparison between measured and computed skin friction coefficients are shown in figure 3.2. 


In Germany, flight experiments were conducted on the VFW 614/ATTAS (ATTAS: Advanced Technologies Testing Aircraft System) research aircraft with a special glove installed on the right wing (1987). Changing the yaw angle provided sweep angle variations from = 13º to  = 23º. TS and CF instabilities were identified for variations in Mach number from 0.35 to 0.70, Reynolds numbers from 12 106 to 30 106, see Horstmann et al (1990), Redeker et al (1990).


The European Laminar Flow INvestigation (ELFIN) funded by the European Commission has been initiated in 1989. Beside the improvement of computational methods for transition prediction, it was focused on the development of laminar flow technology for application to commercial transport aircraft. This effort included transonic wind tunnel evaluation of a HLFC concept on a large scale model (see paragraph 3.3) and NLF flight demonstration on a Fokker F100 aircraft. For the flight tests, a full-chord, partial-span glove was bonded to the original wing surface. Depending on the Reynolds number, on the angle of attack and on the yaw angle, transition was triggered either by TS or by CF instability. The results have been carefully analysed in subsequent European projects such as ELFIN II or EUROTRANS.


Some interesting attempts to extend the NLF concept to supersonic flows have been made in the recent years. There are no dramatic changes in the stability properties of CF waves from subsonic to supersonic flows, but the same is not true for TS disturbances. When the free-stream Mach number Me increases from 0 to 2, the growth rate of the TS waves is strongly reduced (Arnal, 1989). For N = 10, for instance, increasing the Mach number from 0 to 2 multiplies the corresponding values of RxT on a flat plate by a factor greater than 4, RxT being the transition Reynolds number based on the streamwise distance. On supersonic swept wings, NLF is thus possible if CF instability is maintained below a critical limit in the leading edge region and if a nearly zero pressure gradient flow is achieved further downstream.


The concept of supersonic NLF was studied by the Japanese researchers of JAXA (formerly NAL) of Tokyo in the framework of the NEXST-1 (National EXperimental Supersonic Transport) programme. The objective was to keep a large part of natural laminar flow on the wings of an unpowered, unmanned demonstrator flying at Mach 2. The length of the demonstrator was 11.5 m; its span was 4.7 m. A co-operation was initiated in 2000 between ONERA and JAXA in order to predict transition on the wing shape designed by NAL (Yoshida et al, 2001). The results were confirmed at the end of 2000 during tests performed in the S2MA wind tunnel on a model (scale 1:4) of the demonstrator. After the failure of a first trial in July 2002, the demonstrator was successfully launched in October 2005. A large amount of data was obtained and showed a large portion of natural laminar flow on the right wing (Tokugawa and Yoshida, 2006, Fujiwara et al, 2006). Then Navier-Stokes, boundary layer and linear stability computations allowed computing the N factor. Figure 3.3 presents a comparison between the measured transition line and the N factor curves computed by ONERA using the envelope strategy, for the following conditions: altitude = 18 km, Mach number = 2, chord Reynolds number = 14 106 (for a mean chord of 2.754 m). In the inner wing region, the transition N factor is around 15. It decreases toward the wing tip up to values close to 7. JAXA obtained similar results. The decrease in the N factor could be due to the wing deformation, which was not taken into account in the computations. 
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		Figure 3.3-  Measured transition line and N factors on the NEXST-1 demonstrator





The idea of a supersonic NLF aircraft was also investigated for the design of the Aerion Business Jet  at a maximum operating Mach number equal to 1.6 (Matisheck, 2007, Sturdza, 2007). In order to avoid CF disturbances, the wing and tail are practically unswept. As the wing is thin, a low wave drag is expected. The transition prediction tools were validated by flight tests on an F-15, but at chord Reynolds numbers considerably smaller than will be experienced by the Aerion aircraft.   


In Europe, the renewal of interest on laminar flow technology, in particular on NLF, is illustrated by several projects funded by the European Commission. Transonic problems are investigated within TELFONA (TEsting for Laminar Flow On New Aircraft) and NACRE (New Aircraft Concept REsearch), while supersonic aspects are considered within SUPERTRAC (SUPERsonic TRAnsition Control) and HISAC (environmentally friendly HIgh Speed AirCraft).    

3.3. Major LFC and HLFC experiments


The first attempts to control transition by suction were made through slots parallel to the leading edge, see Joslin (1998) and Braslow (1999) for a detailed history of the early LFC or HLFC experiments. These investigations culminated in the successful X-21 flight tests on a swept wing ( = 30°) equipped with a large number of spanwise suction slots. Approximately 95 percent of the upper surface and 85 percent of the lower surface were slotted. At a chord Reynolds number larger than 40 106, laminarization was nearly complete on the upper surface, whilst the boundary layer was laminar up to 75 percent chord on the lower surface (Whites et al, 1966). Other practical problems, such as leading edge contamination, waviness tolerances, insect impacts, effect of acoustic disturbances were also studied during the X-21 programme, ended in 1965. The issues for laminar flow control by suction on swept wings have been summarized by Pfenninger and Reed (1966).  


Today, perforated strips (rather than spanwise suction slots) are preferably used, because they represent a closer approach to ideal continuous suction; in addition their tolerance to off-design conditions is better.


In 1980, NASA launched the LEFT (Leading Edge Flight Test) programme as a flight validation of the LFC systems. This was the first attempt to use suction under flight conditions since the X-21 programme. The right wing of a JetStar aircraft was equipped with a perforated titanium sheet from just below the attachment line back to the front spar. The suction distribution was distributed over 15 independent channels. The tests were conducted in transonic flow at 30° angle of sweep. With adequate suction distribution, laminarity could be maintained over the entire sucked region. Measurements to characterize the boundary layer state were made only on the perforated surface, so it is not known how far the transition was delayed. Details were provided by Wagner et al (1988), Maddalon et al (1990).
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		Figure 3.4- HLFC experiments on Boeing 757 aircraft (from Collier, 1993; Joslin, 1998)





A Boeing 757 aircraft was used as support for more ambitious flight testing, prepared by wind tunnel studies from 1987 to 1991. A perforated titanium sheet covered the leading edge of the left wing over a span of about 6 meters, see left hand side of figure 3.4. Farther downstream, the pressure distribution was optimized to conserve laminarity up to the shock. In the course of 150 hours of testing, parametric analyses were carried out by Mach number, unit Reynolds number and angle of attack, in and around cruising conditions (Mach number 0.8, chord Reynolds number of 30 106). Transition was delayed beyond 65% of the chord, as illustrated in the right hand side of figure 3.4. This led to an estimated total drag reduction of 6% (Collier, 1993). 

In France, Dassault Aviation performed HLFC flight tests on the inboard right wing of a Falcon 50 aircraft (1987-1990). The objective was to demonstrate the possibility of obtaining a laminar flow on a wing with high sweep angle ( around 30°) for flight Reynolds numbers up to 20 106. The perforated glove extended up to about 10% of the chord and was faired to the existing wing with an epoxy resin fairing. In addition a TKS anti-icing system was integrated into the design and performed the additional task of insect contamination avoidance. Flight without Gaster bump confirmed that the entire inboard portion of the wing was contaminated by the turbulent boundary layer developing along the fuselage. With a Gaster bump installed on the leading edge 300 mm from the root, suction allowed to maintain laminar flow up to (at least) 30% chord.


A second series of flight tests was conducted by Dassault Aviation on both wings of a Falcon 900 aircraft (1994-1996). The principle was similar to what was used in the experiments on the Falcon 50. The flight experiments fully validated the suction/de-icing compromise on the leading edge. After its certification, the Falcon 900 FLAM (Falcon LAMinaire) has been in operation at Dassault Falcon Service for two years and provided the data needed to validate laminarity at operational level (Arnal and Bulgubure, 1996). 


As mentioned before, wind tunnel experiments were carried out on a large scale HLFC model in the framework of the European ELFIN project. A VFW-614 wing capable of leading edge suction was tested in 1992 in the S1MA facility (Modane-Avrieux ONERA centre). It had a span of 4.7 m and a mean chord of 1.58 m. The perforated leading edge was about 0.95 m in span and covered about 15% of the chord on both the upper and lower surface. Infrared measurements showed a clear downstream movement of the transition front with increasing suction. Laminar flow was achieved to 50 percent chord on the upper surface and to 30 percent chord on the lower surface (Ledy et al, 1993).  

In 1987, Airbus Industry initiated a HLFC programme in close collaboration with ONERA and DLR. The vertical fin of the A 320 aircraft was chosen as the candidate for the evaluation of the feasibility of HFLC, as shown in figure 3.5. The suction system had nine suction chambers in the nose box before the front spar: five small chambers in the leading edge and two large ones on each side extending from 2 to 18 percent chord. A ½-scale fin model was tested in the ONERA S1MA facility. Flight experiments conducted in the second half of 1998 showed a large extent of laminar flow in cruise conditions (Henke, 1999, Schmitt and Archambaud, 2000).
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		Figure 3.5- HFLC flight experiments on a A320 fin


		Figure 3.6- LFC flight experiments on a F16-XL


aircraft (ship 2) 






		





The friction drag associated with modern, turbofan nacelles may be as large as 4 to 5 percent of the total aircraft drag for a typical commercial transport, so that potential specific fuel consumption reductions on the order of 1 to 1.5 percent for laminar nacelles can be expected (Collier, 1993). Therefore wind tunnel and flight experiments have been carried out on nacelles designed to achieve extended laminar flows. In the United States, a production GEAE CF6-50C2 engine nacelle was modified to incorporate two HLFC panels and installed on an Airbus A300/B2 aircraft. The flight tests resulted in laminar flow to 43 percent of the nacelle length. In addition significant laminar flow was also achieved without suction (1991-1992). Other flight tests were conducted in Europe by DLR, Rolls-Royce and MTU (1992-1993). The test vehicle was the VFW-614 aircraft which has two Rolls-Snecma M 45H turbofans. Three new nacelles were constructed in order to validate the NLF and HLFC concepts. Flight tests demonstrated that the laminar boundary layer flow was achievable over 60 percent of the nacelle length for both concepts.  

Historically, one of the first supersonic LFC experiment was performed in an AEDC wind tunnel by Groth et al. (reported by Pfenninger, 1977) on a flat plate of 1 m chord. Suction was applied through 76 spanwise slots arranged in 8 suction chambers. No attempt was made to detect transition, but measurements of the total drag (sum of the skin friction drag and of the suction drag) demonstrated that this quantity was minimum for a certain optimum suction distribution. At Mach 3 and Mach 3.5, the minimum total drag was substantially lower than the friction drag of a fully turbulent flat plate at the same Mach and Reynolds number. 


Suction effect on the stability of the highly swept wing boundary layer was numerically investigated by Pfenninger and Vemuru (1988) at Mach numbers of 1.56 and 2.52. Control of CF instability around the leading edge required relatively strong suction, but weak suction was sufficient to stabilise TS waves further downstream, partly due to the favourable effect of compressibility mentioned above. Other numerical studies showed that cooling exerts a negligible effect on CF disturbances.

Supersonic LFC flight experiments were conducted by a NASA and U.S. industry team to demonstrate the feasibility of laminar flow in supersonic flight. Two F16-XL aircraft (ship 1 and ship 2) were used as testbeds, see figure 3.6. The delta wings of these aircraft have inboard sweep of 70º and outboard sweep of 50º. In 1990, the first flight tests with a perforated suction glove on the F16-XL ship1 did not show any laminar flow at the design point; however, laminar flow was observed at off-design conditions. During the second series of flight experiments on ship 2 (1996), “significant progress toward accomplishing the goal was achieved (Joslin, 1998)”. In addition to the difficulties linked to the use of a perforated glove in supersonic flow, shocks emanating from the nose and the canopy, as well as waves emanating from beneath the wing, caused a highly 3D flow field which made laminar flow difficult to achieve in the leading edge region.

Numerical investigations related to HLFC in supersonic conditions are currently carried out in the framework of the SUPERTRAC and HISAC European projects. Fundamental experiments were also performed within SUPERTRAC at Mach 2 in the Ludwieg Tube Facility at DLR Göttingen (Schülein, 2008). The model was a swept wing equipped with a suction panel between 5 and 20% chord. Two sweep angles ( = 20 and 30°) and three unit Reynolds numbers (17, 25 and 30 106) were considered, the suction velocity being varied as a free parameter. For  = 20°, the transition Reynolds number increased by approximately 30% at suction velocity of about 0.6 ms-1; for  = 30°, it increased by nearly 300% at suction velocity of about 0.7 ms-1. eN computations are in progress in order to determine if the transition N factor remains constant without and with suction.   

3.4. Lessons learned and technological difficulties


Flight tests and large scale wind tunnel tests demonstrated the feasibility and the efficiency of the NLF, LFC and HLFC concepts. In addition, they provided a huge data base for the validation and the calibration of the transition prediction methods. Schrauf (2001), for instance, evaluated the NCF-NTS strategy by systematic computations for five series of wind tunnel and flight experiments (examples of results are given by Arnal et al, 2008b). As mentioned before, the NEXST-1 experiments allowed calibrating the envelope strategy for supersonic free flight conditions. 

The application of these control techniques, however, present some technological difficulties. The first problem, which is common to 2D and 3D flows, to NLF, LFC and HLFC, is the surface quality. Surface imperfections such as isolated roughness elements, gaps, steps, waviness, can provoke premature transition as soon as their size exceeds some critical threshold. Empirical rules or criteria are available to characterise the effects of these imperfections and to define manufacturing tolerances. These problems are discussed in the Lecture devoted to Attachment line and surface imperfection problems (Arnal et al, 2008c). Joslin (1998) has given a complete overview of the problems linked with insect contamination, ice accumulation and atmospheric particulates.  

On swept wings, simple computations using the eN criterion as well as application of the optimal control theory (Pralits and Hanifi, 2006) indicate that the best efficiency of suction (for a fixed suction mass flow rate) is obtained with strong suction at the critical point, close to the attachment line, and a decreasing suction further downstream. It follows that suction must be applied in a region of strongly accelerated flow. Even if modern manufacturing techniques can produce perforated panels with a surface quality compatible with laminarity, these panels are submitted to pressure gradients varying rapidly in the streamwise direction, so that outflow (blowing) is locally possible. It is then necessary to increase the number of suction chambers and of suction ducts; this increases the technological complexity of the problem, so that much of the HLF technology’s advantage might be obliterated by the weight of additional structures and systems. 
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		Figure 3.7- Simplified suction system (from Horstmann et al, 2002)





Therefore a simplified suction system was designed by Airbus-Germany and DLR (Horstmann et al, 2002). It consists of a double skin structure; the outer skin is the wing surface, and the inner skin is connected to the whole inner space of the leading edge box acting as one large suction chamber. Suitable orifices in the inner skin allow imposing the pressure in small chambers between the outer skin and the inner skin (figure 3.7). Although optimized for design conditions, this system shows an acceptable behaviour at off-design conditions. 

From a more fundamental point of view, it is now admitted that suction holes play the role of “negative” micron-sized roughness elements, with an equivalent height increasing when the suction rate increases. Experiments performed in the F2 wind tunnel (Arnal et al, 2000) demonstrated that the initial amplitude of the CF stationary vortices increases with increasing suction. This implies that the stabilizing effect of suction can be reduced through a decrease of NCF at transition.


4. “ Research” methods for laminar flow control

Beside the classical laminar flow control technologies discussed before, other approaches are currently investigated. Five of them are described in this paragraph: micron-sized roughness elements, localized heating, wave cancellation, streamwise streaks and plasma discharges. Micron-sized roughness elements and streamwise streaks can be considered as “passive” techniques in the sense that no energy supply is required; the other are considered as “active”. It is also possible to classify these techniques according to the physical mechanisms by which they act on transition:


· Wave cancellation acts directly on the unstable waves by linear superposition, without modifying the mean flow field;


· Localized heating, streamwise streaks and plasma discharges exert a stabilizing effect through a direct modification of the mean flow field, as it is the case for the “industrial” techniques; 


· Control by micron-sized roughness elements is more sophisticated, because it modifies indirectly the mean flow field by nonlinear interactions with unstable waves.  


4.1. Micron-sized roughness elements


This concept was developed by W.S. Saric and his team at Arizona State University (A.S.U.) and validated by experiments carried out on a swept wing in a subsonic wind tunnel (Saric et al, 1998). It is based on the fact that stationary vortices dominate the transition process when CF instability plays the major role in a low free-stream disturbance environment. These natural stationary vortices (targets) have a spanwise wavelength 1, which can be easily computed from the linear stability theory. The idea is to artificially create other stationary vortices (killers) by using a row of micron-sized roughness elements parallel to the leading edge at a chordwise position corresponding to the critical point, i.e. close to the attachment line. The wavelength 2 of the new vortices corresponds to the spacing between the roughness elements. For particular values of 2 and for particular negative pressure gradients (to be optimised), the artificial vortices interact nonlinearly with the natural vortices and with the mean flow field in such a way that the amplitude of the natural vortices is strongly reduced through the distortion of the mean flow field. If, at the same time, the amplitude of the artificial vortices remains below some critical threshold, transition is delayed. The efficiency of this passive control system was first demonstrated in subsonic wind tunnels at A.S.U. (Saric et al, 1998). More recent investigations extended this work to supersonic conditions (Saric and Reed, 2002, 2003) and to flight conditions (Saric et al, 2008). 

From a theoretical/numerical point of view, it is possible to determine the optimum value of 2 from nonlinear PSE computations. It has been demonstrated that two conditions need to be fulfilled for a successful application of this control system (Arnal et al, 2008a):


- The uncontrolled transition N factor for stationary vortices must be large enough (around 10) in order to be sure that these vortices dominate the transition process. 


- The N factor curves for the killer mode must exhibit a maximum upstream of the natural transition location, with a value around 6. 


When these conditions are fulfilled, nonlinear PSE computations show that increasing the initial amplitude of the killer mode can delay the appearance of the numerical transition; in other words, the beginning of the nonlinear saturation and the point where the computation breaks down move downstream. Another important result is that there are no “good” and “bad” pressure gradients: a given pressure gradient can be convenient or not, depending on the Reynolds number. 


The determination of the roughness height remains a key issue. DNS results by Piot et al (2007) showed that a roughness element of height h equal to 5 or 10% of the boundary layer thickness generates vortices with an initial amplitude around 10-3 Ue. This is the order of magnitude of the most appropriate values of the killer initial amplitude determined from the nonlinear analyses. 


4.2. Localized heating

Transition control is also possible by a localized surface heating (in air). The principle is the following. The wall is heated over a short streamwise distance, and a relaxation region develops downstream of the heating strip. In the relaxation region, the boundary layer temperature close to the wall is larger than the wall temperature, so that the boundary layer “sees” a cold wall. According to the linear stability theory, this leads to a decrease in the unstable disturbance growth rates. 


Wind tunnel experiments confirmed the stabilizing effect of localized surface heating, at least for some configurations (Dovgal et al, 1989, 1990, Fedorov et al, 1991). Figure 4.1 shows experimental results obtained on a 2D flat plate placed in a subsonic wind tunnel (Dovgal et al, 1989). The wall is heated from x = 0 to x = 0.1 m and the wall temperature without heating is 296 K. The figure presents the streamwise evolution of the velocity fluctuations (rms values) measured near the wall without heating and for two cases with heating (Tw = 365 and 381 K). The efficiency of the localized heating is clear. The points on the x-axis correspond to the theoretical transition location predicted by the eN method, the transition N factor being calibrated for the case without heating (Arnal, 1996). It can be seen that the computations are able to reproduce the transition movement, at least qualitatively. Other measurements demonstrated that the best results are obtained when the heated strip is located in the area where the TS waves start to develop (branch I of the neutral curve). If heating is applied downstream of this area, transition moves downstream. 
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As far as 3D flows are concerned, the experiments reported by Dovgal et al (1990) showed that is it very difficult to observe a positive effect of the localized heating when transition is dominated by CF disturbances. Computations using the eN method supported this conclusion (Arnal, 1996). .     

4.3. Wave cancellation


It is also possible to cancel growing linear fluctuations through active control based on wave superposition principle. This requires i) detection of frequencies, orientations and phase angles of the dominant (“natural”) waves and ii) introduction of out-of-phase (“artificial”) disturbances that cancel the initial waves by simple linear superposition.
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		Figure 4.2-

Active control principle





The idea of active transition control has received considerable attention, both numerically and experimentally. To our knowledge, all the experiments on transition active control have been performed on 2D bodies at low speed with transition dominated by TS waves. Two TS waves generators are often used; the first one creates disturbances playing the role of “natural” TS waves; the second one (actuator) is placed some distance downstream and creates “artificial” waves. The frequency, the amplitude and the phase of the latter waves are optimised through an open or closed loop system in order to obtain the best cancelling effect, see Figure 4.2. In the pioneering work of Liepmann and Nosenchuck (1982), the TS waves were generated by periodic heating of a flush-mounted heating strip. A substantial increase of the transition Reynolds number was observed using a feedback loop.


These experiments concentrated on the cancellation of a single-frequency wave. This work was extended by Pupator and Saric (1989) to the case of random, broad-band 2D TS waves. Two vibrating ribbons were used to simulate broad-band natural waves and artificial cancelling disturbances. With an optimum time delay of the feedback signal, the amplitude of the broad-band TS waves was reduced by an order of magnitude. Other successful closed-loop control experiments were carried at ONERA on a flat plate (Pailhas, 2001) and at the Technical University of Berlin on unswept wings (Baumann et al, 2000, Engert and Nitsche, 2008). 

On 3D aircraft wings, this control system could be used for controlling TS dominated transitions. However, the technological complexity of the closed loop system and the high frequency range to be controlled (several kHz in free flight conditions) would make this implementation difficult, if not impossible.


In 2D flows, the wave cancellation concept can also be used by exploiting the results of the receptivity theories. Let us consider a flat plate with a blunt leading edge, placed in a subsonic wind tunnel. A thin 2D roughness element is attached to the surface some distance downstream of the junction between the leading edge and the flat plate. According to the results of the receptivity theories, this set-up generates two series of TS waves, one in the leading edge region (leading edge receptivity) and the other around the roughness element (localised receptivity). A coupling of the different waves initiated by these mechanisms takes place in the vicinity of the roughness. If the disturbance amplitudes are small, the coupling is in the form of linear superposition which gives rise to destructive or constructive interference. This concept of wave cancellation was tested successfully by Kosorygin et al (1995). A destructive interference was observed for a proper choice of roughness height and position. It is clear that this passive control technique is far from practical applications. However, such experiments are of great interest to validate the receptivity theories.


4.4. Streamwise streaks


When a spanwise array of small roughness elements is placed in a 2D laminar boundary layer, streamwise vortices are generated. These vortices mix low momentum and high momentum fluid and eventually lead to the formation of spanwise periodic streamwise streaks (“lift-up effect”). Theoretical studies (Cossu and Brandt, 2004) have shown that the presence of streamwise streaks can reduce the growth rate of the TS waves due to a slight decrease of the spanwise averaged shape factor and to the creation of a spanwise shear. As a consequence, a delay in the onset of transition can be expected.
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		Figure 4.3- Effect of streamwise streaks on transition (Fransson, 2006) 





Fransson et al (2005, 2006) validated the theoretical results by performing experiments in a low speed wind tunnel. As shown in figure 4.3, streaks were generated on a flat plate by an array of cylindrical roughness elements close to the leading edge, and TS waves were artificially created by unsteady suction and blowing through a slot. The streamwise evolution of the rms velocity fluctuations is plotted in the right hand part of the figure, without streaks (red circles) and with streaks (blue symbols). In the absence of streaks, transition occurs at x ≈ 1.1 m. In the presence of streaks, the flow remains laminar. It is obvious that this type of control can be observed for well designed roughness elements only. No effect would be detected for very small elements, but too large elements would promote immediate transition.      

4.5. Plasmas


Quite recently, a few attempts have been made to control laminar-turbulent transition by cold plasma discharges. As the ionic wind generated by the plasma actuator is parallel to the model surface, it is able to modify the boundary layer characteristics and hence to exert an effect on transition.
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		Figure 4.4- DBD discharge principle

		



		

		Figure 4.5- Effect of plasma discharge on transition


(Séraudie, 2008) 





In the experiments performed at ONERA (Séraudie, 2008), the ionic wind was created by a DBD (Dielectric Barrier Discharge). Its maximum intensity was between 3 and 4 ms-1. The actuator consisted of two flat electrodes mounted on each side of a dielectric plate, see figure 4.4. The electrodes were made of very thin self-adhesive copper bands directly stuck on the dielectric. The results plotted in figure 4.5 were obtained on a flat plate with the actuator located at x = 0.15 m; the voltage and the excitation frequency were 18 kVolts and 1400 Hz, respectively. The figure shows the variation of the rms fluctuation intensity measured close to the wall at x = 0.4 m for increasing wind tunnel speed U0. Without control, transition is detected for U0 ≈ 13 ms-1. With control, it is delayed up to U0 ≈ 18 ms-1. Boundary layer measurements revealed that the ionic wind made the velocity profile fuller and thus more stable. However, if the plasma frequency is reduced to 300 Hz, which corresponds to the natural TS waves frequency, transition starts at U0 ≈ 9 ms-1. These experiments demonstrated that, depending on the frequency, plasma discharges can either stabilize the boundary layer flow by reducing the shape factor or accelerate transition by exciting TS waves. A stabilizing effect with a downstream transition movement was previously reported by Grundmann et al (2006). Porter et al (2007), on the contrary, tripped transition using a counter flow plasma actuator. 


5. Conclusion


This paper gave a survey of the techniques which can be used to delay leading edge contamination and laminar-turbulent transition. Concerning the first problem, several techniques are available, either passive (bumps, slots) or active (suction). Experimental investigations allowed estimating the range of application for each of them, with the conclusion that solutions exist for practical problems. 

“Industrial” methods for transition control on aircraft wings are based on the modification of the mean flow field by an optimisation of the pressure gradients or by suction (by cooling also in 2D flows). A large number of wind tunnel and flight experiments have demonstrated the feasibility of NLF, LFC and HFLC in subsonic and transonic conditions. However, because the application of suction technology leads to additional systems, several problems must be resolved before the aircraft industry can guarantee the sustained performance of LFC or HLFC vehicles to the airline customers. NLF is easier to apply but it is restricted to low sweep angles and low Reynolds numbers. Laminar flow control in supersonic condition is still in the infancy but promising results have been obtained.

Laminar flow control by micron-sized roughness elements belongs to a class of methods which can be considered as intermediate between “research” methods and “industrial” methods, in the sense that it has been validated in flight conditions, but at low Reynolds number. Its development was made possible thanks to the progress accomplished during the last ten years for modelling the wave interactions by nonlinear PSE. It can be imagined that CF instability control by micron-sized roughness elements could replace suction around the leading edge and will be followed further downstream by a classical shape optimisation.


The pure “research” approaches (localized heating, wave cancellation, streamwise streaks, plasmas) have been validated for low speed conditions on simple 2D bodies. Their fundamental interest is unquestionable, however they need to be applied to more realistic configurations.  
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These lectures have emphasized the preference for physics based methods of transition estimation. This however is not particularly reflected in the design literature. Although   stability and transition of boundary layers at supersonic and hypersonic speeds has been studied by the research community for more than fifty years, and much has been learned about the physics underlying the transition process through years of analysis, experiment and computation leading to physics-based methods of transition Reynolds number estimation, this wealth of information has often been ignored by the vehicle design community. Rather they have tended to rely on empirical transition correlations of questionable basis and reliability and have thus deprived themselves of dealing with transition constructively and imaginatively.


Many in the vehicle design community commit considerable CFD resources to flowfield computation. But they then expect the transition Reynolds number to be determined from simple algebraic correlations. But how can one expect a phenomenon that is rooted in the unsteady Navier-Stokes equations to be governed by a simple formula?


In this lecture, the efficacy of transition estimation methods at supersonic and hypersonic speeds will be assessed. This will be done by using examples based on validated data.


Flight Transition on Sharp Cones


Fig. 1 shows the data from flight transition results on sharp cones. Superposed on the data 
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Fig. 1. Flight transition results on sharp cones.


points are e10 calculated results by Malik (1989) for both first and second modes. Note the many data points showing high transition Reynolds number in the Mach 2-4 range. These are from flight experiments on highly cooled cones done from the NASA Wallops Island facility in the 1950s. Malik’s eN based curves are a good representation of the flight data for both adiabatic and cooled surfaces. For adiabatic walls, first mode dominates to M~7, while for cooled surfaces, the second mode comes into play at M~4.5 leading to reduced transition Reynolds numbers. The second mode cold wall results for M > 6 are well below the adiabatic curves.


Spherically Blunted Nosetips


The common transition estimation tool in the design community for transition on ablated  spherically blunted nosetips is the PANT correlation shown in Fig. 2 (Batt & Legner 1983) or the Reda (1981, 2002) correlation shown in Figs. 3 and 4. Both attribute the 




Fig. 2. Transient growth based transition correlations of  PANT Series J data.
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Fig. 3.  Nosetip transition data from ballistic-range experiments; 3-D distributed roughness.
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Fig. 4.  Nosetip transition data from ballistic-range experiments; 3-D distributed roughness.

transition to surface roughness. The PANT correlation summarizes a large number of tests of roughened bodies in a wind tunnel. The correlation considers roughness height, surface temperature level and curvature effects. The scatter in the data is very large.


Reda’s correlation is based on the Rek parameter. Both versions, Rek,k and Rek,e, show that Reθ varies as (k/θ)-1. Reda prefers the Rek,k parameter. Surface temperature level presumably enters through the use of ρk and μw.  Curvature does not enter into this correlation. For these data it turns out that ρkuk ≈ ρeue over the whole boundary layer so that the ratio of the two correlating numbers, 106 and 192 is just the ratio of μw to μe.


On the other hand, the transient growth based method (Reshotko & Tumin 2004) which yields the relations 


                           Reθ,tr = 180(k/θ)-1(2Tw/Te)1.27


or


                           Uek/νe = 180(2Tw/Te)1.27

well correlates the PANT data (Fig. 2). It displays (k/θ)-1 behavior for constant surface temperature level and at constant (k/θ), it shows the appropriate behavior with surface temperature level. For the Reda data, it yields Reda’s value of Uek/νe = 106 for Tw/Te = 0.33. Reda has estimated his temperature levels to be about 0.3. These latter relations clearly include surface temperature level. Curvature was considered and incorporated into the correlation constant. Thus the transient growth formulation is a good representation of both sets of data.


Factors to be Considered for Current Entry Vehicles


For slender shapes such as the blunted elliptic cone shape (Fig. 5), the flowfield is three-dimensional at zero angle-of-attack and even more so with angle-of-attack. There can be crossflow instability over the swept leading edges and T-S instability over the central 
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Fig. 5.  FALCON HTV-1 configuration.


regions. Swallowing of the entropy layer by the boundary layer has to be considered downstream of the blunted nose. If the surface becomes rough due to ablation or TPS material (Thermal Protection System), the disturbance flow may be subject to transient growth. There are no simple parameters that incorporate all these factors. Further, for hypersonic flows, real gas effects, air chemistry and surface catalysis effects have to be considered for the disturbance flow as well as the mean flow.
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Fig. 6.  Hypersonic blunt body flow.  


For entry capsules (Fig. 6), even though the shape is perhaps axisymmetric, the vehicle enters at angle-of attack so that the transition picture is asymmetric. Because of the high entry speeds all the real gas issues as well as the flow issues are important as highlighted on the figure.


Transition as a Design Element 

Vehicle design often starts by choosing a configuration based on inviscid reasoning and then fine tuning that configuration to optimize its features. For flight up to M=3, this generally means reducing form drag, wave drag and friction drag as well as improving the low-speed high-lift properties of the configuration. Above M=3, as flight Mach numbers increase, reducing aerodynamic heating loads becomes the primary consideration. Every attempt is made to minimize the need for active cooling. This means giving very definite attention to delaying transition and taking advantage of passive cooling through radiation from the aerodynamically heated surfaces to the surroundings. Rarely does this alter the original general shape of the configuration.


An exception is the experience with NASP – the U.S. National AeroSpace Plane program. This is a case where the baseline configuration was axisymmetric. The forebody served as the compression surface of the inlet and was subject to adverse pressure gradient, Gortler instability and crossflow instability when the body was at angle of attack. Because of the axial symmetry, the entropy layer became successively thinner with distance downstream so that the boundary layer edge conditions were beyond swallowing and subject to second and higher mode instabilities. All of these factors promote earlier transition. In this situation, The T-S as well as the Görtler and crossflow instabilities are not ameliorated by surface cooling. By the time of the configuration development, it had already been established in the NASA-Langley Quiet Pilot Tunnel that flat plates (2D) had higher transition Reynolds numbers than cones at the same freestream conditions (Chen & Malik 1988) (See Fig. 7). This had also been verified by eN calculations (Mack 1987, Elias & Eiswirth 1990).
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Fig. 7. Quiet tunnel results for cone and flat plate.
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Fig. 8.   Hyper-X (X-43) at Mach 7


This prompted a reconsideration of the geometry of the vehicle and resulted in what we now recognize as the shape of the X-43 vehicle (Fig.8). The forebody was replaced by a wedge-like configuration with rounded corners at its spanwise edges. The lower surface was again a compression surface but the upper surface had a slightly favorable pressure gradient. The leading edge of course had to be blunted for its own thermal protection. The blunting was sufficient so that the boundary layers on both the lower and upper surfaces are within the entropy layer where the edge Mach numbers are low enough that the first mode instabilities, which can be controlled by surface cooling are dominant. The upper surface could be radiation cooled over the flight range while the lower surface required active cooling through heat exchange with the cryofuel. Crossflow instabilities were confined to the rounded edge regions and did not add greatly to the cooling requirements. The transition behavior was verified by eN type calculations using a 3D code known as the “eMalik” code (Malik 1989, Malik & Balakumar 1992, Schwoerke 1993).


This case is instructive for future configuration development in that it shows that transition considerations could constructively alter the basic configurational shape of a vehicle.  

Is Reθ/Me a Meaningful Transition Criterion?


A popular design transition criterion is Reθ/Me equal to a constant or some function of other variables. Most often, there is not enough reliable information about the effects of other variables on which to base correlating factors. Thus the criterion is usually Reθ/Me = const.  Also since Reθ varies as the square root of a length Reynolds number, any scatter in Reθ is greatly amplified when inverted to get a length transition Reynolds number or a length to transition. There is no apparent physics basis for this form of transition correlation. Nevertheless, the validity of Reθ/Me correlations will be tested by recasting physics-based results in Reθ/Me  terms and examining whether they make sense. The cases to be considered are: transition due to roughness on a flat plate at supersonic speeds, roughness induced transition on spherical nosetips and flight transition data for sharp cones. 


Roughness-induced transition on a flat plate: As part of their study of transient growth applied to roughness-induced transition, Reshotko and Tumin (2004) computed the transient growth factors for a flat plate in supersonic flow. The growth factor is a function of both Mach number and surface temperature level and scales with length Reynolds number. When incorporated into a transition model similar to that of Andersson et al (1998). for freestream turbulence effects on transition, they arrived at the result shown in Fig. 9. 
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Figure 9. Variation of roughness parameter Uek/νe with Mach number and surface temperature level.


Dividing the ordinate of Fig. 9 by Me results in Fig. 10 which shows shows Reθ,tr(k/θ)/Me =  Uek/(νeMe)  vs. Mach number. This is as close to Reθ/Me as the formulation allows. Note the dependence on surface temperature level and the inherent dependence on roughness height.
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Figure 10.  Reθ,tr(k/θ)/Me =  Uek/(νeMe)    vs. Me.


The upsweep in the curves as the Mach number decreases below 2 is simply a 1/Me behavior. Were roughness data to be correlated only with Reθ/Me, one could expect lots of scatter because of the omission of k/θ and surface temperature information.


Based on the above results for flat plates, it is recommended that roughness-induced transition data for other configurations be plotted as in Fig. 9, Uek/νe vs. Me, with wall temperature isotherms indicated. This will allow the relevant physics to be included in the correlations. 


To be noted is that cooling is destabilizing for transient growth, whereas for T-S disturbances, cooling stabilizes the first mode but destabilizes the second mode. Reθ/Me  accounts for none of these effects.

Roughness-induced transition on spherical nosetips: Extensive transient growth calculations were carried out3 for axisymmetric stagnation point flows. These are relevant to the spherical nosetip of hypersonic sphere-cone configurations for which there is an extensive experimental data base and significant transition correlations (Batt & Legner 1980, 1983, Reda  1981, 2002).  A transition model (Reshotko & Tumin 2004) such as that described for the flat plate was developed that incorporated the transient growth results. This resulted in the following relation:


                              Reθ,tr = 180(k/θ)-1(2Tw/Te)1.27                                             (1)


In the above relation, the (k/θ)-1 behavior comes from the model assumption while the Tw1.27 behavior comes from the transient growth results. Since the transient growth theory is linear, the numerical factor of 180 has to come from a data set. Reshotko & Tumin demonstrate that this relation correlates the PANT (Batt & Legner 1980, 1983) and the Reda data. The agreement is both qualitative and quantitative. Since (  appears in the numerator of both sides of Eq. 1, this relation can be rewritten as
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The left side of Eq. (2) is the same as Reda’s Reke,tr.  For 
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 = 0.33, Eq. (9) gives Reda’s value of 106. Reda estimates his surface temperature level to have been about 0.3. Note further that the correlating expression does not contain the Mach number, Me. Hence Reθ/Me has no meaning in this case.

Transition on smooth sharp cones:  There is an extensive data base of supersonic flight data for smooth sharp cones as shown in Fig. 11. Included also are some Langley quiet tunnel results. The data are for various surface thermal conditions. Also shown on the figure are the calculations by Malik (1989) using an eN method that shows what is expected for adiabatic wall conditions as well as cooled conditions. The solid lines on the chart show where the first mode is dominant while the dashed lines show where the second mode is dominant.
 Since the data are well represented by Malik’s eN calculations, these eN lines will now be plotted as  Reθ vs. Me  
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Figure 11.  Transition on sharp cones


in Fig. 12  and as Reθ/Me vs. Me  in Fig. 13. Also the cold-wall curves are for 


                                      Tw/Taw = 1 – 0.05Me - 0.0025Me2                       (3)


which equals 0.8 at Me = 3.4. The curves in Fig.12 look like those in Fig. 11, except that the ordinate range has been collapsed from two orders of magnitude in Fig. 11 to one order of magnitude in Fig. 12.  Fig. 13 differs from Fig.12 only insofar as one sees the 1/Me upsweep for the lower Mach numbers as also mentioned in conjunction with Fig. 10.
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Figure 12. Transition on sharp cones, Reθ vs. Me      Figure 13. Transition on sharp cones, Reθ/Me vs. Me

No particular correlational revelations appear in Fig. 13, whereas, as mentioned earlier, the physics-based eN calculations are a good representation of the data.


Discussion: 


So is there any meaning to Reθ/Me ? When Reθ/Me  is written out (Eq. (4)), it is seen that the Ue in the numerator and denominator cancel. Also ae and μe both depend only on external temperature. For entry


Reθ/Me  = ρeUeθ/μe(Ue/ae) = ρeaeθ/μe                          (4)


vehicles, these vary slowly with altitude. The density, ρe however depends strongly on pressure and therefore varies very rapidly with altitude. Thus Reθ/Me  (or any Reynolds number criterion) might successfully correlate with the altitude at which transition occurs for a given entry vehicle. 


    The bottom line is that Reθ/Me  does not represent any physical processes. It does not by itself give correct Mach number trends and it neglects pressure gradient, surface temperature and roughness effects. Using Reθ rather than Rex tends to reduce data scatter but the benefit is lost in applying Reθ  to get Rex. For entry vehicles, Reθ/Me  might work since density is the dominant factor in Reθ/Me  and density is very sensitive to altitude. For cruise vehicles, that sensitivity is not relevant since one is interested in the x location of transition at constant altitude.


    The proper analysis of transition behavior is by physics-based eN or transient growth methods. 


    The use of correlations of questionable basis and reliability should be replaced by the physics-based methods. 
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� The calculations of Malik (1989) are up to M=7 for the adiabatic and cooled walls, and the M=6 point for the cold wall. The second mode curves beyond M=7 are by an unknown extrapolator. Actual calculations beyond M=6 depend on the gas model, the chemistry assumptions and whether one uses parallel flow or PSE methods. Some results for M>6 recently provided to this author by Malik (2007)  for both perfect gas and with chemistry show the same trends as in Fig.3 but differ somewhat numerically. Those differences do not affect the conclusions reached in this paper so they are not further elaborated upon herein. 
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The Lecture Series starts with a comprehensive review of the various paths to transition in wall boundary layers, from the traditional views to the more recent ones. Linear stability analysis is then described in detail. Experiments on boundary layer stability, both in 2-D and 3-D cases are commented, highlighting basic rules, techniques and good practice, including considerations about receptivity, flight experiments and experiments in quiet hypersonic tunnels. Parabolized stability equations are presented, including verification and validation. Direct Navier-Stokes simulations and transition for 2-D flows are then discussed. The recent approaches on transient growth, which can be a significant factor in by-pass transition, are also reviewed, including the cases of 3-D and of supersonic flows. On the practical side, transition prediction methods for subsonic, transonic, supersonic and hypersonic flows are reviewed. Control of transition by heating, cooling, is discussed, as well as design for natural laminar flow, laminar flow control, or hybrid laminar flow control. Specific subjects like attachment line instability and surface imperfection problems are also considered, and the role of chemical reactions in the case of hypersonic flows.
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