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Mass-Conserved Phase Field Models for Binary Fluids

Jie Shen∗, Xiaofeng Yang†and Qi Wang‡

Abstract

The commonly used incompressible phase field models for non-reactive, binary fluids, in which
the Cahn-Hilliard equation is used for the transport of phase variables, conserve the total volume of
each phase as well as the material volume, but do not conserve the mass of the fluid mixture when
the densities of two components are different. In this paper, we formulate the phase field theory for
mixtures of two incompressible fluids, consistent with the quasi-compressible theory [28], to ensure
the conservation of mass and momentum for the fluid mixture as well as the volume for each fluid
phase. In this formulation, the mass-average velocity is no longer divergence-free (solenoidal) when
the densities of two components in the mixture are not equal, making it a compressible model subject
to an internal constraint. An efficient numerical method is then devised to enforce this compressible
internal constraint. Numerical simulations in confined geometries for both the compressible and the
incompressible models are carried out using spatially high order spectral methods to contrast the model
predictions. Numerical comparisons show that (a) the predictions by the two models agree qualitatively
in the situation where the interfacial mixing layer is thin; and (b) the predictions differ significantly in
binary fluid mixtures undergoing mixing with a large mixing zone. The numerical study delineates the
limitation of the commonly used incompressible phase field model and thereby cautions its predictive
value in simulating well-mixed binary fluids.

1 Introduction

Phase field models have been used successfully to study a variety of interfacial phenomena like equi-
librium shapes of vesicle membranes [12, 13, 14, 15, 16, 35], blends of polymeric liquids [36, 37, 38, 17],
multiphase fluid flows [19, 23, 24, 28, 25, 41, 40, 42, 43, 44, 45], dentritic growth in solidification, mi-
crostructure evolution [21, 29, 22], grain growth [8], crack propagation [9], morphological pattern forma-
tion in thin films and on surfaces [26, 30], self-assembly dynamics of two-phase monolayer on an elastic
substrate [27], a wide variety of diffusive and diffusion-less solid-state phase transitions [10, 39], dislo-
cation modeling in microstructure, electro-migration and multiscale modeling [34]. Multiple phase-field
methods can be devised to study multiphase materials [40]. Recently, phase field models are applied to
study liquid crystal drop deformation in another fluid, liquid films, polymer nanocomposites, and biofilms
[19, 23, 24, 28, 25, 41, 40, 42, 43, 44, 18, 46, 5].

Comparing to other mathematical and computational technologies available for studying multi-phase
materials, the phase-field approach exhibits a clear advantage in its simplicity in model formulation, ease of
numerical implementation, and the ability to explore essential interfacial physics at the interfacial regions
etc. Computing the interface without explicitly tracking the interface is the most attractive numerical feature
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of this modeling and computational technology. Since the pioneering work of Cahn and Hilliard in the
50’s of the last century, the Cahn-Hilliard equation has been the foundation for various phase field models
[6, 7]. It arises naturally as a model for multiphase fluid mixtures should the entropic and mixing energy
of the mixture system be known. For immiscible binary fluid mixtures, one commonly uses a labeling or
a phase variable (also known as a volume fraction or an order parameter) φ to distinguish between distinct
fluid phases. For instance φ = 1 indicates one fluid phase while φ = 0 denotes the other fluid phase in an
immiscible binary mixture. The interfacial region is tracked by 0 < φ < 1. Given the historical reason,
most mixing energies are calculated in terms of the volume fraction instead of the mass fraction in the
literature [20, 11]. Consequently, the system free energy including the entropic and mixing contribution has
been formulated in the volume fraction as well [20, 11]. We denote the system free energy for the material
system to be modeled by F(φ,∇φ, · · · ). A transport equation for the volume fraction φ along with the
conservation equation of momentum and continuity equation constitutes the essential part of the governing
system of equations for the binary fluid mixture. The volume fraction serves as an interval variable for the
fluid mixture.

In the literature on immiscible binary mixtures of incompressible fluids, one uses the concept of chem-
ical potential to formulate the transport equation for the volume fractions of the fluids φ1 and φ2. In this
formulation, the material incompressibility is on the one hand modeled by the continuity equation

∇ ·v = 0, (1.1)

while on the other hand, interpreted as the invariant property of the sum of the volume fractions for the
two fluid components, i.e., φ1 + φ2 = 1 if we denote φ = φ1 and φ2 = 1− φ. This assumption is plausible
and indeed consistent with the fluid compressibility (1.1) only if the two components are either completely
separated by phase boundaries when their densities are not equal or possibly mixed when the densities are
identical. Otherwise, there is a potential inconsistency with the usual conservation of mass. This inconsis-
tency has been identified in [28], but ignored by many practitioners using phase field modeling technologies.
We note that this inconsistency occurs only in the mixed region of the two incompressible fluids, where the
incompressible condition (1.1) is no longer valid, indicating the mixture is no longer incompressible despite
that each fluid component participating in mixing is incompressible. This type of fluids is referred to as
quasi-compressible in [28].

This paper aims at discussing the inconsistency for binary mixtures of two incompressible fluids of un-
matched densities and viscosities and providing a quantitative assessment for the quasi-compressible phase
field model that obeys the conservation of both mass and volume against the incompressible one that only
respects the volume conservation. The paper is organized as follows. First we discuss the mathematical
formulation of the phase field theory for binary viscous fluid mixtures and its various approximations and
their ramifications. Secondly, we develop a new set of numerical algorithms, which enforce the mass con-
servation, to solve the governing system of fluid flow equations. Thirdly, we implement the algorithms using
spatially high order spectral methods and discuss the discrepancies between the ad hoc incompressible phase
field model and the quasi-compressible phase field model in two representative examples.

2 The mathematical model

We revisit the derivation of the governing system of equations for a binary mixture of incompressible
viscous fluids, which includes the transport equation for a phase variable (the volume fraction) and the
conservation equations for mass and linear momentum. The conservation equations for a binary system can
be formulated in two different ways: either as a two fluid model or a one fluid two component model [1,
4, 2]. For nontrivial fluid simulations, the one fluid multi-component formulation often yields a convenient
governing system of equations and easy-to-implement boundary conditions for the model’s hydro-dynamical
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variables. The phase field theory falls naturally into the one fluid two component formulation [6]. In the
phase field formulation, chemical reaction between the two distinct components can take place so that one
component can be turned into the other component. However, the overall mass must be conserved. In
this paper, we will not address the phase field formulation with chemical reactions. This topic deserves a
separate discussion of its own.

2.1 Governing equations

In a phase field theory, the transport equation for the volume fraction of one fluid phase is given by

φt +∇ · (φv) = ∇ · (λ∇μ), (2.1)

where v is an average velocity to be clarified below, λ = λ(φ) is the mobility function, and μ = δF
δφ is the

chemical potential of the material system. The mobility function λ is often taken as a constant λ0, but is
preferably a function of φ in the form:

λ= λ0φ(1−φ). (2.2)

The Cahn-Hilliard equation with the volume fraction dependent mobility is called singular or modified
Cahn-Hilliard equation. Often, it is approximated simply by a constant value λ = λ0 in studying phase
separated, immiscible fluids. The resultant equation is the well-known Cahn-Hilliard equation.

The free energy of the mixture system is normally a function of the labeling function of phase function
and its higher order derivatives (only the first order is included here for brevity):

F = F(φ,∇φ). (2.3)

In this paper, we consider the mixture of two incompressible fluids with constant mass density ρ1 and ρ2,
respectively. The total density of the mixture is then given by

ρ= ρ1φ+ρ2(1−φ). (2.4)

We identify v as the mass-average velocity for the mixture. Then, the conservation equations for mass and
momentum are given by

ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρvv) = ∇ · (τ)−φ∇μ+Fe,
(2.5)

where Fe is the external force and φ∇μ is the ”elastic force” or the ”surface force” due to the interfacial
energy f (φ). The surface force −φ∇μ can be replaced by μ∇φ modulo a surface term which is normally
zero. In light of the transport equation for the volume fraction, we have

ρ∇ ·v =−(ρ1−ρ2)(φt +v ·∇φ) =−(ρ1−ρ2)(∇ · (λ∇μ)−φ∇ ·v), (2.6)

we then derive from the above and (2.1) that

∇ ·v =
ρ2 −ρ1

ρ2
[φt +∇ · (φv)] = ρ2 −ρ1

ρ2
[∇ · (λ∇μ)]. (2.7)

It is apparent that the divergence free condition for the mass-average velocity field is satisfied only if ρ1 = ρ2

or ∇ · (λ∇μ) = 0. Otherwise, the mass conservation equation serves as a constraint for the velocity field,
which determines the undetermined pressure in the constraint hydrodynamic theory for fluid mixtures. We
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note that ∇ · (λ∇μ) is normally not zero for a spatially inhomogeneous system. Hence, as long as ρ1 �= ρ2,
eq. (2.7) serves as a constraint.

To close the system of equations, we must come up with a constitutive equation for the stress tensor τ.
We consider the mixture made up of viscous fluids. For viscous fluids, the stress constitutive equation is

τ= τc+2ηD+νtr(D)I, (2.8)

where τc is the constraint stress responsible to maintain the constraint eq. (2.7) without any contribution
to the entropy production, η is the shear viscosity, ν is the volumetric viscosity, and D is the rate of strain
tensor. The ratio between ν and η depends on the property of the material and is roughly 4.3 for water for
example. The viscosity coefficients for the fluid mixture are interpolated through the volume fraction and
given by

η= η1φ+η2(1−φ),ν= ν1φ+ν2(1−φ), (2.9)

where η1,2,ν1,2 are constant shear and volumetric viscosities for fluid 1 and fluid 2, respectively.
To deal with constraint (2.7), we augment the free energy with a term F̄ called the constraint response:

F = F + F̄. (2.10)

Based on the second law of thermodynamics in the form of the Clausius-Duhem inequality, the constraint
response does not contribute to entropy production, i.e.,

τc : D− δF̄
δφ

φ̇= 0, (2.11)

where φ̇= ∂φ
∂t +∇ · (vφ) is the material derivative. We rewrite eq. (2.7) as

I : D+
ρ1 −ρ2

ρ2
φ̇= 0. (2.12)

For eq. (2.11) must be valid for all thermodynamic processes that obeys (2.12), we deduce that

τc =−pI (2.13)

where p is the hydrodynamic pressure, and the free energy component (F̄) corresponding to the constraint
response:

F̄ =
ρ1 −ρ2

ρ2
φp. (2.14)

If we choose μ= δF
δφ , we obtain a set of equations that respect the conservation of mass and total volume:

φt +∇ · (φv) = ∇ · (λ∇μ), (2.15a)

(ρv)t +∇ · (ρvv) = ρ[vt +v ·∇v] = ∇ · (2ηD+νtr(D)I)−∇p−φ∇μ+Fe

= ∇ · (η∇v)+∇((η+ν)∇ ·v)−∇p−φ∇μ+Fe, (2.15b)

∇ ·v =
ρ2 −ρ1

ρ2
[∇ · (λ∇μ)], (2.15c)

μ=
δF
δφ

=
δF
δφ

+
ρ1−ρ2

ρ2
p. (2.15d)
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We refer (2.15) as the compressible model 2 in this paper. On the other hand, if we set μ= δF
δφ in the system

of equations listed above, we obtain another set of equations, which we refer as the compressible model 1.
With the help of (2.15c), the transport equation for φ can be recast into

φt +∇ · (φv) = ρ2

ρ2 −ρ1
∇ ·v (2.16)

provided ρ1 �= ρ2.
The above compressible models preserve the mass conservation and are compressible inside the mix-

ing/interfacial region. On the other hand, the incompressible model, in which the mass average velocity
field is assumed solenoidal, consists of the following equations:

φt +∇ · (φv) = ∇ · (λ∇μ), (2.17a)

ρ[vt +v ·∇v] = ∇ · (η∇v))−∇p−φ∇μ+Fe, (2.17b)

∇ ·v = 0, (2.17c)

μ=
δF
δφ

. (2.17d)

This model assumes that the flow is incompressible everywhere at the expense of local mass conservation
inside the interfacial/mixing region.

For the compressible models, we define the total energy as

E(t) =
∫
Ω
[
ρ‖v‖2

2
+F ]dx, (2.18)

where x is the Eulerian coordinate. For compressible model 1, the rate of change in the total energy is given
by

dE
dt

=−
∫
Ω
[λ‖∇μ‖2 +(τ− τc) : D]dx+

ρ1 −ρ2

ρ2

∫
Ω
φ(v ·∇p+

∂p
∂t

)dx. (2.19)

To ensure positivity in the first integral (2ηD+νtr(D)I) : D ≥ 0, η≥ 0,ν+ 2η
3 ≥ 0. Unfortunately, we have

no control over the sign for the second integral. For compressible model 2, the rate of change in the energy
for this system of governing equations is given by

dE
dt

=−
∫
Ω
[λ‖∇μ‖2 +(τ− τc) : D]dx+

ρ1 −ρ2

ρ2

∫
Ω
φ(
∂p
∂t

− dφ
dt

)dx. (2.20)

In either models, the energy dissipation can not be rigorously established. On the other hand, for the incom-
pressible model, the energy is defined by

E(t) =
∫
Ω
[
ρ‖v‖2

2
+F]dx. (2.21)

With the help of the divergence-free condition in the continuity equation, Shen and Yang [32, 33] showed
an energy law is available for the incompressible system:

dE
dt

=−
∫
Ω
[λ‖∇μ‖2 +(τ− τc) : D]dx ≤ 0. (2.22)

One of the traded-offs in enforcing the mass conservation is losing the energy law. Therefore, both com-
pressible models along with the incompressible mixture model in [33] are valid approximately. We note that
an analogous phase field equation (to model 1) was also derived using an energy argument in [28].
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2.2 Choice of free energy

The free energy F can take different form depending on the applications. In this paper, we consider the
free energy density in the following form:

F(φ,∇φ) = kBT γ[
1
2
‖∇φ‖2 + f (φ)], (2.23)

where kB is the Boltzmann constant, T is the absolute temperature, and γ is a parameter with the unit of a
number density per unit length. γ is in fact proportional to the product of the number density per unit volume
and the square of the persistent length.

We first look at the Ginzburg-Laudau free energy with

f (φ) =
1
ε2φ

2(1−φ)2 (2.24)

for two immiscible fluids, where ε> 0 is a small parameter characterizing the hydrophobic property between
the two fluids. Therefore,

δF
δφ

= kBT γ[−∇2φ+
1
ε2φ(1−φ)(1−2φ)]. (2.25)

We also consider the Flory-Huggins mixing free energy for two immiscible fluids to simulate the phase
separation dynamics. The Flory-Huggins mixing free energy density is given by (2.23) with

f (φ) =
1
ε2 [

φ
N1

lnφ+
1−φ
N2

ln(1−φ)+χφ(1−φ)], (2.26)

where N1 and N2 are the polymerization indices for fluid 1 and fluid 2 and χ is the mixing parameter between
0 and 2. If both are viscous fluids, we assume N1 = N2 = 1. In this case,

δF
δφ

= kBT γ[−∇2φ+
1
ε2 (

lnφ
N1

+
ln(1−φ)

N2
+χ(1−2φ))]+ const. (2.27)

2.3 Non-dimensionalization

We denote the characteristic time scale by t0 and length scale by L0. The dimensionless variables are
defined by

t̃ =
t
t0
, x̃ =

x
L0

, ṽ =
vt0
L0

, p̃ =
pt20
ρ2L2

0

. (2.28)

We will drop the˜on the dimensionless variables in the following. We choose L0 so that the dimensionless
length Ly = 1. We use Lx = 1 in the following calculations simply for convenience. The dimensionless
model parameters are defined by

Rei,s =
ρ2L0
t0ηi

, Rei,v =
ρ2L0
t0νi

, (i = 1,2) Λ= λt0kBT γ
L4

0
, ε̃= L0

ε ,

Bi = φρ1
ρ2
+(1−φ), 1

Res
= φ

Re1,s
+ 1−φ

Re2,s
, 1

Rev
= φ

Re1,v
+ 1−φ

Re2,v
.

(2.29)

Here Res and Rev denotes the Reynolds number corresponding to the shear and volumetric stress, and Λ is

the dimensionless mobility parameter. We set Ly = 1,C = kBTγt0
L4

0ρ2
= 1 in this study yielding t0 =

L4
0ρ2

kBTγ .
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The dimensionless equations for the two compressible models are given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt +∇ · (φv) = ∇ · (Λ∇μ),

Bi[vt +v ·∇v] = ∇ · ( 1
Res

∇v)+∇(( 1
Res

+ 1
Rev

)∇ ·v)−∇p−φ∇μ,

∇ ·v = (1− ρ1
ρ2
)[∇ · (Λ∇μ)],

μ=−Δφ+ f̃ (φ) (Model 1), μ=−Δφ+ f̃ (φ)+ (ρ1
ρ2
−1)p (Model 2),

(2.30)

where f̃ (φ) are given by (2.24) or (2.26) with ε replaced by ε̃.
The above system is subjected to a set of suitable initial and boundary conditions. For example, if the

mixture is confined in a domain Ω, the boundary conditions are

∂φ
∂n

|∂Ω =
∂μ
∂n

|∂Ω = 0, v|∂Ω = 0, (2.31)

where n is the outward normal.

3 Numerical schemes

Shen and Yang have developed and studied efficient numerical schemes for the incompressible phase
field model in great detail in [32, 33]. In this section, we focus on extending their results to the compressible
models given for example by (2.15) for the binary fluid mixture. Since the two compressible models do
not admit a dissipative energy law, it is not possible to construct energy stable schemes for them. Instead,
we shall construct efficient and easy to implement numerical schemes to accommodates the non-vanishing
divergence velocity field so as to preserve the mass conservation.

3.1 Discretization in time

To simplify the presentation, we shall present only first-order schemes. In what follows, the superscript
n denotes the time level and Δt is the time step size.

Scheme based on a modified projection:

1. Solve (φn+1,μn+1) from:

φn+1−φn

Δt
+∇ · (φnvn) = ∇ · (Λ∇μn+1),

∂φn+1

∂n
|∂Ω = 0,

μn+1 =−Δφn+1+ f̃ (φn)+
S
ε̃2 (φ

n+1−φn),
∂μ
∂n

|∂Ω = 0,

(3.1)

where S is a computational parameter and ε is the parameter in the free energy. The last term is added
to stabilize the scheme to allow larger step sizes. Its role is to damp the high frequency or short waves
in the numerical simulation.

2. Denote

Bin+1 = φn+1ρ1

ρ2
+(1−φn+1), Ren+1

s = φn+1Re1,s +(1−φn+1)Re2,s,

Ren+1
ν = φn+1Re1,ν+(1−φn+1)Re2,ν;

(3.2)
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Solve ṽn+1 from:

Bin+1
(

ṽn+1−vn

Δt
+vn ·∇vn

)
−∇ · (Ren+1

s ∇ṽn+1)−∇((Ren+1
s +Ren+1

ν )∇ ·vn)+∇pn =−φn+1∇μn+1,

ṽn+1|∂Ω = 0;
(3.3)

3. Set c0 = 1 and solve pn+1− pn from:

−∇ · 1
Bin+1∇(p

n+1− pn) =
1
Δt

{
c0
ρ2 −ρ1

ρ2
[∇ · (Λ∇μn+1)]−∇ · ṽn+1

}
,

∂(pn+1− pn)

∂n
|∂Ω = 0,

(3.4)

where Ω is the domain occupies by the fluid mixture.

4. Finally, update

vn+1 = ṽn+1− Δt
Bin+1∇(p

n+1− pn), (3.5)

and then goto the next step.

Remarks:

• S = O(1) is a stabilizing computational parameter. We use S = 2 in all the simulations presented in
this paper.

• Setting c0 = 0 in (3.4), we get the scheme for divergence-free velocity field (∇ ·v = 0).

• η= φη1 +(1−φ)η2 and ν= φν1 +(1−φ)ν2 are the interpolated effective viscosity coefficients.

• A second-order scheme can be constructed as well.

Notice that (3.4)-(3.5) represents a modified pressure-correction projection method. One can easily
verify from (3.4)-(3.5) that vn+1 and μn+1 satisfy

∇ ·vn+1 = (1− ρ1

ρ2
)[∇ · (Λ∇μn+1)], (3.6)

which ensures the mass conservation. However, the step (3.4) in the above involves solving an elliptic equa-
tion with 1

Bi as the variable coefficient. When ρ2
ρ1

is large, this step may become very costly. So we propose
the following scheme based on the pressure-stabilization technique which only requires solving a pressure
Poisson equation. The price we pay for this simplicity is that (3.6) will only be satisfied approximately.
This strategy has been proven effective in the numerical solution of the incompressible field phase model
[32, 33].

Scheme based on a pressure-stabilization method:

1. Solve (φn+1,μn+1) from:

φn+1−φn

Δt
+∇ · (φnvn) = ∇ · (Λ∇μn+1),

∂φn+1

∂n
|∂Ω = 0,

μn+1 =−Δφn+1+ f̃ (φn)+
S
ε̃2 (φ

n+1−φn),
∂μ
∂n

|∂Ω = 0.

(3.7)
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2. Denote

Bin+1 = φn+1ρ1

ρ2
+(1−φn+1), Ren+1

s = φn+1Re1,s +(1−φn+1)Re2,s,

Ren+1
ν = φn+1Re1,ν+(1−φn+1)ℜ2,ν;

(3.8)

Solve ṽn+1 from:

Bin+1
(

vn+1−vn

Δt
+vn ·∇vn

)
−∇ · (Ren+1

s ∇vn+1)−∇((Ren+1
s +Ren+1

ν )∇ ·vn)+∇pn =−φn+1∇μn+1,

ṽn+1|∂Ω = 0;
(3.9)

3. Set c0 = 1 and solve pn+1− pn:

−Δ(pn+1− pn) =
ρmin

Δt

{
c0
ρ2 −ρ1

ρ2
[∇ · (Λ∇μn+1)]−∇ ·vn+1

}
,

∂(pn+1− pn)

∂n
|∂Ω = 0,

(3.10)

where ρmin = min(ρ1,ρ2). Go to the next step.

We observe that the step (3.7) is a system of two second-order equations with constant coefficients, the
step (3.9) is an elliptic equation with variable coefficients and the step (3.10) is just a Poisson equation.
Hence, the above scheme is easy to implement and very efficient.

As in an usual pressure-stabilization method [33] where the divergence-free condition is satisfied ap-
proximately, it is clear from (3.10) that vn+1 and μn+1 from the above scheme only satisfy the internal
constraint (2.7) approximately with a residue of order O(Δt2). Therefore, the mass is conserved up to a
controllable error of order O(Δt2), indepedent of the interfacial width ε.

3.2 Discretization in space

The spatial discretization can be done in either a spectral method or a finite element method or a finite
difference method. However, the spatial resolution needs to be fine enough to resolve the interfacial layer.
We shall use the high resolution spectral method which requires a significantly less number of unknowns
inside the interface as compared with a lower-order method.

We focus in this paper on two-dimensional fluid flows in both drop dynamics as well as mixing dynamics
of immiscible binary fluids, and define the computational domain as Ω = [0,Lx]× [0,Ly] with the periodic
boundary condition in the x-direction. In the y-direction, the boundary conditions are:

v(x,y, t) = v(x+Lx,y, t),φ(x,y, t) = φ(x+Lx,y, t),

v(x,0, t) = v0,v(x,Ly, t) = v1,φy(x,0, t) = φy(x,Ly, t) = φyyy(x,0, t) = φyyy(x,Ly, t) = 0.
(3.11)

The boundary conditions of φ at y = 0,Ly are interpreted as the flux boundary conditions.
We shall use the Fourier expansion in the x-direction and the Legendre-Galerkin method in the y-

direction.
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Table 1: Parameter values

Parameter N M g Re1,s Re2,s ε Re1,v Re2,v
ρ1
ρ2

Λ
Value 256 256 0 1 1×10−2 0.02 4.3×Re1,s 4.3×Re2,v

1
50 1×10−6

4 Numerical results and discussions

We investigate predictive drop dynamics and phase separation dynamics computed using the two distinct
classes of models with a focus on the comparison between the phases and the phase boundaries of the
mixture. We tabulate the dimensionless parameters used in the simulations in Table 1, where N and M
denote the number of grid points in x and y direction, respectively. These are chosen based on our previous
experience with the two-phase fluid [32, 33].

We first consider the drop dynamics of fluid 1 immersed in fluid 2 and denote the volume fraction of fluid
1 as φ. For presentation purposes, we relabel the models as follows in the figures: Model 1: incompressible
model, Model 2: compressible model 1, Model 3: compressible model 2.

4.1 Drop dynamics

We first simulate a lighter fluid (fluid 1, φ = 1) drop immersed in a heavier fluid (fluid 2, φ = 0). The
density ratio we choose for this numerical example is ρ1 : ρ2 = 1 : 50 and viscosity ratio 1 : 100. In this
setting, the lighter drop will rise in the fluid channel (computational domain). The simulated results using
the compressible models and the incompressible model for mixtures agree with each other qualitatively.
The velocity components, pressure and the drop profiles obtained using the three phase field models are
shown in Figures 1-3, respectively. In the simulations, the lighter fluid drop rises; the rising drop pushes
the fluid in the front aside and pushes the fluid downward on the side of the fluid domain. The horizontal
and the vertical velocity component are plotted in Figures 1 and 2, respectively. The pressure around the
drop remains low, which is shown in Figure 3. The drop shapes obtained using the three distinct models are
contrasted at a selected time t = 3.6 in Figure 4 along with the deviations between the velocity components
of each pair of models. The predictions from model 1 and 2 are close relative to that from model 3. The
deviations in general fall into the range of O(10−2). The velocity field superimposed by the drop profile is
shown in Figure 5, where a pair of vortices are shown explicitly.

We then repeat the simulation with a heavier fluid drop sediments in a lighter fluid. The density ratio is
reversed to ρ1 : ρ2 = 50 : 1 and the viscosity ratio is reversed to 100 : 1. The behavior described above for
the rising drop reverses. This time, the predictions between model 1 and model 2 and those between model
2 and model 3 are qualitatively the same; model 3 predicts the fastest drop sedimentation among all three.
To save space, we suppress the demonstration of the numerical results pertinent to this simulation.

In summary, the model predictions in both drop rising and drop sedimentation agree qualitatively. In
these cases, the interfacial layer between the two immiscible fluids are thin and the volume fraction of
the fluid involved in the mixing/interfacial zone is small. Consequently, the deviation among the model
predictions are small. We anticipate this scenario will change as the mixing/interfacial layer gets larger and
the volume fraction of the fluid involved in mixing becomes significant. We next examine an example of
fluid mixing/demixing where the mixing zone is significantly larger.

4.2 Phase separation dynamics of immiscible binary fluids

Figures 6-9 depict the phase portrait of the mixture during phase separation and the corresponding
velocity components as well as the pressure field at selected time. In Figure 6, the value of the volume
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fraction φ is plotted as a color map. The compressible models (model 2 and model 3) give well separated
islands while the incompressible model (model 1) predicts only slightly modified phase landscape. Figures 7
and 8 supports this with a much elevated velocity field in the compressible models than in the incompressible
model. Moreover, the flow pattern is drastically different between the predictions obtained from different
classes of models. Figure 9 portraits the pressure field, which correlates well with the phase portrait of
the mixture given by the level sets of the volume fraction φ. The difference between the two classes of
models are significant in this numerical example. The drastic difference between the model predictions is
an amplification of the difference in the fundamental physical mechanism on mass conservation in a much
larger mixing zone in contrast to the previous drop dynamics.

If these examples show the behavior of the transient solution, the next set of figures (Figures 10-13)
portrait the solutions up to nearly quasi-static states. The phase behavior predicted by the incompressible
model (Model 1) is distinct quantitatively from those by the compressible models (Figure 10). The prediction
on the velocity field and the pressure field made by the incompressible model and by the compressible ones
are completely different. Whereas, the difference between the compressible model predictions is minimal.

If we were to impose the constraint on the conservation of the total volume of each separate phase,
the predictions from the compressible models should be more credible since they also conserves the mass,
which is fundamentally important.

5 Conclusion

A pair of phase field models that conserve mass, momentum and total volume for each individual phase
of immiscible binary fluid mixtures are formulated. The mass-average velocity becomes non-solenoidal
when the density ratio between the two fluids is not unity. Consequentially, the new phase field theories
are compressible although a global volume conservation for each phase can be maintained over the entire
material volume. The commonly used phase field model for binary fluid mixtures is the model we refer to
as the incompressible model in this paper, in which the continuity equation is approximated by a divergence
free condition; the resulting theory preserves the material volume but not the mass.

The deviation between the predictions by the compressible models and the incompressible one depend
on the size of the mixing zone. When the size of the mixing zone is small compared to the entire fluid
domain, the model predictions agree qualitatively. However, when the mixing zone is large, the two classes
of models describe two quite different dynamics (in both transient and quasi-steady state). One numerical
example on a drop dynamics of one fluid drop immersed in another immiscible fluid matrix and the other
on the phase separation of immiscible binary fluid mixtures are carried out to illustrate the point. From the
hydrodynamics point of view, it is apparent that the fundamental conservation laws of fluids must be obeyed.
Therefore, the mass conservation should be respected in any faithful simulations employing the phase field
formulation when the mixing zone is large. The predictions made by the compressible models are consistent
in the two numerical examples, and therefore are credible regardless of the size of mixing zone.
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