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Sparse Representations for Three-Dimensional Range Data
Restoration

Mona Mahmoudi* and Guillermo Sapiro
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN, 55455 USA
{mahmo022,guille}@umn.edu

Abstract—In this paper, the problem of denoising and occlusion
restoration of 3D range data based on dictionary learning and sparse
representation methods for image denoising is explored. We apply these
techniques after converting the noisy 3D surface into one or more images.
We present experimental results on the proposed approaches.

Index Terms—Sparse modeling, range data denoising, occlusion
restoration, range data resolution enhancement.

I. INTRODUCTION

Three-dimensional (3D) data are becoming ubiquitous. However,
models obtained from low-end 3D scanners often have imperfections.
For example, the raw data obtained from a low-cost 3D range
scanner is usually noisy and may have occlusions and missing
parts. Thus, there is an increasing need for methods for denoising
and occlusion restoration of 3D surfaces in general and range data
in particular. Recently, techniques based on dictionary learning for
sparse representation have been widely used for image and video
restoration [1], [2], [3]. In these methods, a dictionary is learned
on (overlapping) patches of the image, sparsely representing those
patches; that is, each patch of the image can be well approximated
by a combination of only a few atoms from the learned dictionary.
It has been shown that sparsely representing overlapping patches in
the image with such learned dictionaries, and then combining them to
reconstruct the image, results in an effective image denoising method.

In this work, we apply the framework of learned sparse representa-
tions to restore 3D surfaces, range data in particular. We also propose
a new framework for filling missing parts in 3D surfaces based on
ideas similar to those presented in [2]. First, we use the given 3D
surface to generate one or more images, where each pixel value of an
image represents the depth of a point on the 3D surface with respect
to a reference plane corresponding to that image. Then, this image
is denoised, using sparse modeling (dictionary learning) techniques.
Finally, we regenerate the points on the 3D surface from the image by
placing a point (x, y, z) on the 3D surface corresponding to each pixel
(x, y) with intensity z in the image. We also introduce a method to
fill the holes in the range data by applying the same sparse modeling
method, by reducing the influence of the holes while estimating
the representation. Our experimental results show that this technique
significantly enhances the quality of the data generated by a low-cost
scanner.

In many databases, the resolution of parts of the 3D range data, e.g.,
the low-curvature parts, are reduced for compression purposes. How-
ever, many applications require a higher or more uniform resolution
for the data. Hence, an effective interpolation technique is needed
to generate a higher-resolution copy of the surface, with as much
similarity to the actual 3D object as possible, and without unwanted
edges. As a byproduct of our proposed techniques, we increase the
resolution of smoother parts of the 3D surfaces by projecting it to
a high-resolution image with the same method explained above; in
doing so, the details in the high-curvature areas are preserved in the
image, but many empty pixels (holes) are generated corresponding to

low curvature areas without any samples. To interpolate these areas,
we fill the resulting holes using the sparse modeling method, where
the influence of these empty pixels are omitted in the process. We
present results on a standard 3D shape database (ISDB).

In order to further improve the denoising results, in particular when
dealing with structured (view-dependent) noise in the range data –
which is common for structured-light low-cost scanners – we propose
a local projection method. In this method, overlapping patches are
defined on the 3D surface, and then projected to image patches for
restoration, where each projection is with respect to a plane that is
dependent on the corresponding 3D patch. This is in contrast to the
aforementioned method – the global projection method, where the
whole shape is first projected to a single image, before defining the
overlapping patches. In the experimental results, we have compared
the performance of the local projection method with that of the
global projection methods, as well as a range data denoising method
proposed in [4].

The remainder of this paper is organized as follows. In Section II,
details about collection and preprocessing of the data, mainly from
the 3D scanner, are presented. In Section III, the core algorithm
for denoising 3D surfaces (range data) is presented. The method
for filling the occlusions and missing information is introduced in
Section IV, followed by Section V with the proposed approach
for interpolation. In Section VI, the method of local projections
is presented, and experimental results are provided in Section VII.
Finally we conclude the paper in Section VIII.

II. DATA COLLECTION AND PREPROCESSING

In this work, we apply our proposed method to restore the range
data collected from a low-cost structured-light 3D scanner [5], [6] and
some range data obtained from the AIM@SHAPE shape repository,1

and ISDB [7]. Following are details on the preprocessing step
for these datasets. There was no need for preprocessing for the
AIM@SHAPE dataset.

A. Range Data from Structured-Light 3D Scanner

The low-cost family of structured-light 3D scanners produce rela-
tively noisy range data, as well as regions with missing information
due to occlusions or lack of light reflection (Fig. 1). In addition,
commonly used horizontal stripe patterns in the projected light add
noise to the data with the shape of horizontal lines (see for example
the figures in Section VII). In order to enhance the 3D data obtained
from this scanner, we first convert the points on the shape to an image
parallel to the camera plane. Each point with coordinates (x, y, z)
corresponds to a pixel (x, y) in the image with value z, which is the
distance from the camera, of the corresponding point. Having this
natural and simple image representation, we apply the restoration

1These models are provided courtesy of IMATI by the AIM@SHAPE Shape
Repository.
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Fig. 1. Left to right, top to bottom: a picture of the toy, the real noisy
range scan of the toy with an artificial hole, noisy projected image,
restored range data.

methods explained in the following sections for denoising or filling
the missing parts. Then, we show in Section VII that if we convert
the restored image back to 3D points, the result will be an enhanced
3D shape.

B. 3D Shapes with Low Density

In the ISDB dataset, we have 3D shapes with very low density
of vertices (sampling rate) in smooth parts and higher resolution in
parts with higher curvature. Also due to very low overall resolution
of shapes, our goal is to increase the density of vertices and make it
uniform (see Section V for more details). Similarly to the range data,
we first project the 3D shapes to image planes. For each shape, we
select a plane in 3D space and project the part of the shape that is
visible from such plane. We then set the pixel corresponding to each
vertex on the shape as the intersection of the plane normal passing
through that 3D vertex (a parallel projection). The pixel value is set
to the depth of that vertex with respect to the selected image plane.
Since these shapes have low densities in some parts, the higher we
set the resolution of the image the more empty pixels (holes) we have
in the resulting projection image. In Section V, we present a method
to fill these holes in order to increase such density.

III. DENOISING SURFACES USING SPARSE MODELING

In this section, image denoising algorithms based on learned sparse
representation are reviewed [2], along with the details on the specific
sparse modeling techniques we use for 3D surface restoration.

Assume x0 is the clean image reshaped as a vector and x is
the observed noisy version of x0. Having x, we want to find the
dictionary D̂ that “best” represents the patches in x in a sparse
fashion. In order to find D̂, the following optimization problem is
addressed:

minD,A

∑
ij ‖Dαij −Rijx‖2

2,

subject to ‖dl‖2
2 = 1(l = 1..k) and |αij |p ≤ L,

(1)

where L is a given constant controlling the sparsity; p = 0, 1 and
| · |p stand for the lp norm (a pseudo-norm for p = 0); D is
the dictionary being learned, with k atoms dl of length N ; αij

is the vector of size k coefficients corresponding to the patch at
location [i, j], indicating the weight of each atom from D in the
reconstruction of the patch; and the binary matrix Rij extracts the

patch of size
√

N ×
√

N at location [i, j] from the image. The
minimization is performed over the dictionary D and the coding
coefficients A = {αij}. This non-convex optimization is solved
by standard techniques, altering between fixing the dictionary and
performing the coding (sparse coding), and fixing the code (or active
set) and updating the dictionary.

In this work, we use the unconstrained l1 penalty,

‖Dαij −Rijx‖2
2 + λ ‖αij‖1 , (2)

for each [i, j]. For the sparse coding step, we used the LARS-
Lasso algorithm [8], which is one of the most efficient algorithms
in the literature for l1 penalty problems for this type of data. We
update the dictionary using a variation of the “Method of Optimal
Direction” (MOD) [9], which updates the dictionary based on the
current coefficients to minimize the error in Equation (1). See [10]
for more details on core components of the used optimization.

In the last sparse coding step for the actual image restoration,
after the dictionary has been learned, the best results were obtained
imposing ‖αij‖0 ≤ L.2 We applied orthogonal matching pursuit
(OMP) [11], for which we can define a value ε as a threshold for
the objective function in Equation (1), to avoid restoring the noise.
Thus, when this function value in the minimization process reaches
the error ε, which is defined based on noise variance, the OMP
algorithm stops. In the case of our noisy data obtained from the low-
cost camera, having large values of noise makes it harder to define
a proper value for ε. For smaller values, a lot of noise will still be
present in the restored shape, and for larger values of ε, we lose some
of the information in the parts of shape with more details, since they
need more dictionary atoms to represent them. In order to solve this
problem, we modify the objective function in Equation (1),∑

ij

∥∥Dαij − (Rijx− DCij)
t
∥∥2

2
, (3)

where each pixel in x (after removing the DC from each patch) is
taken to the power t > 1 which is fixed for all pixels. In this case,
pixels with larger values (which are usually in higher curvature parts)
have larger effect on the error than before. We have investigated the
effects of this modification in Section VII. Although, this idea is
limited to cases where the average shape slope is parallel to the
projected image, our experimental results show that it is still helpful
for very noisy data as ours. The algorithm presented in Section VI,
which uses local projections with adaptive orientations, addresses this
issue for shape patches with other average orientations.

Now that we have an algorithm for image denoising based on
sparse modeling, we use it to denoise 3D surfaces. In order to find the
3D surface we can simply assign a point (x, y, z) to each foreground
pixel (x, y) in the image whose intensity is z. The collection of these
points makes the restored 3D shape.

IV. FILLING MISSING INFORMATION

Similar to images, in scanning 3D data occlusion or missing infor-
mation can occur. We now investigate methods for filling/inpainting
the holes in the 3D range data, assuming the location of the holes
is known.3 In [2], image inpainting was investigated using sparse
models. Based on this work, we address this problem for 3D range
data.

The main idea is to disregard or reduce the effect of the hole
pixels in the error component of Equation (2) when updating the
dictionary and coding coefficients. In the dictionary update stage, we

2We thank Julien Mairal for proposing this combination and very exhaustive
testing supporting it.

3These can often be easily detected from lack of signal.
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remove all the patches with missing information, avoiding learning
these irregular structures in the dictionary. In the last step, to find the
sparse code we define a new objective function:

minA ‖RijW ⊗ (Dαij −Rijx)‖2
2; ‖αij‖0 ≤ L, (4)

where W is an adaptive matrix of weights corresponding to each
pixel, for example,

w(i, j) =

{
1, known pixels,

0, hole pixels.
(5)

In this part, we first subtract the DC value of each patch before
estimating the coding coefficients, and add it back to the estimated
patch in the reconstruction step. For the patches containing holes we
set the average value of the non-hole pixels as the DC of the patch. In
order to denoise the image and fill the missing information (holes), we
apply Algorithm 1 to the image obtained from the damaged data. In
this algorithm, we first restore all the hole pixels in the HR step, then,
apply as many iterations as needed of IR and “Dictionary Update” to
denoise the noisy shape. Having large patches in the hole filling step
helps to use the information from a larger set of pixels and leads to
better results. However, increasing the patch size in the restoration
step makes the restored image smoother. Thus, we use large patches
for HR (N1) and smaller patches for IR (N2).

Algorithm 1
Parameters: J (number of iterations)
Initialization: Let W be the matrix of weights, which has value zero for
the hole pixels and one for the rest, and let D1(k1×N1) and D2(k2×N2)
be some learned dictionaries on one image or a dataset of images.
Hole Restoration (HR): Find the sparse code that minimize the weighted
objective function (4) with learned dictionary D1 for the original image
with holes, and reconstruct only the holes, avoiding over-smoothing in the
rest of the image.
Loop: Repeat J times

• Image Restoration (IR): Find the sparse code that minimize the
original non-weighted objective function with learned dictionary D2

for the restored image in the previous restoration step, and reconstruct
the image based on this code.

• Dictionary Update (DU): Update D2 based on the restored image in
the IR step.

V. INTERPOLATION

We now apply sparse modeling methods on projected images of
3D shapes to increase the resolution of their meshes and make them
more uniform. There is a lot of work in the literature on 3D com-
pression by non-uniformly sampling 3D surfaces while minimizing
the information loss. However, in some applications involving these
datasets, there is a need for interpolation methods to restore a smooth
and more uniform sampling of surface vertices. We propose using
the sparse modeling method for image and hole restoration to both
increase the 3D mesh resolution and make it uniform in 3D shapes
and range scans.

First, assume we have a 3D shape or range scan with a non-
uniform mesh, then we project it to an image which sufficiently
preserves the information in high resolution parts and leaves some
holes in the image corresponding to low resolution parts. We then
apply Algorithm 1, with only one iteration of the IR step to remove
the possible discontinuity in the results. In the case of noisy data, we
could run more iterations of the IR and DU steps.

One of the main parameters in our proposed method is the
resolution of the projection image which determines the amount of
information preserved through projection. In the case of a small
projection image (low resolution), more vertices will be projected

to one particular pixel, leading to information loss. However, in the
case of a large projection image, there will be more possibility of
holes due to lower resolution of the 3D data in the corresponding
part. In Section VII, we present examples of large projection images
compared to the shape which lead to a large amount of hole pixels,
and also the results of interpolation of these shapes using the method
proposed here.

Another idea to increase the resolution of the 3D shapes (range
data) is to add empty rows and columns to the projected image
(Figure 2) and fill them with Algorithm 1 again with one iteration
of the IR step. Figure 3, presents an example of this method on the
bunny shape.

VI. RANGE DATA DENOISING USING LOCAL PROJECTIONS

We now replace the single global projection by multiple local
ones. The motivation for this idea is the existence of structured
noise in range scans (local projections can also help to address
restoration of full 3D objects and not just range data). Since this
noise is view dependent, the averaging of restored patches with
different orientations will reduce the effect of structured noise. In the
previous sections, we formed the overlapping patches after (globally)
projecting the surface to a single image. We propose a local method
by first forming overlapping patches centered at each vertex on the
3D surface (or range data). Then, having these 3D patches, we form
an image corresponding to each patch by projecting the 3D patch to
the plane tangent to the surface at its center vertex. While generating
the image, we keep record of the vertices projected to each pixel on
the images, in order to reproduce the 3D shape after enhancement of
all the projected image patches. Applying the local projection method
to restore range data outperforms the global method, as demonstrated
next.

VII. ADDITIONAL EXPERIMENTAL RESULTS

Our additional experimental results are presented in three parts.
First, we show results of the proposed range data restoration frame-
work for data obtained by a structured-light 3D scanner. Then, we
present the results of the interpolation method on shapes from the
ISDB database. Finally, we compare between the local and global
projections, as well as the results presented in [4]. We present
our results by 3D visualizations of the surfaces. This shows the
artifacts more clearly than the depth-image visualization approaches
frequently used in the literature.

The structured-light 3D scanner finds the depth of each point based
on the image of the object after horizontal stripes are projected on
it. Because of these stripes, an additional noise in the collected data
with the shape of horizontal lines is added to the shape (Fig. 4). In
some parts of the shape these lines are deeper and more difficult to
remove. Also, since they exist in all the shapes, repetitive noise might
be learned in the dictionary learning process. We added random holes
to each image to simulate the occlusions (Fig. 4). After subtracting
the DC value of the patch, we normalized all the patches by the
maximum value among all the pixel values.

To obtain the results presented in this section, we have experimen-
tally tuned the parameters. The values of these parameters are the
following. In Equation (2) and Algorithm 1, the dictionary for the
HR step was learned on 78 projection images. Patch size for this
part was N1 = 225, and the number of atoms in the dictionary was
k1 = 550, making it over-complete. λ was experimentally set to 0.16,
L = 12, and the maximum iteration number in the dictionary learning
(JD) was set to 125, and best results were obtained by the following
parameters in SC, L = 2 and ε = 2.22. For IR, the dictionary was
learned on patches of size N2 = 25, and k2 = 63, λ = 0.48, L = 3,
and JD = 100 for dictionary learning and L = 2, ε = 0.66 for SC.
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Fig. 2. Projection images in the process of interpolation by adding extra rows and columns to the image: left to right: original image (magnified
low resolution image), after adding rows and columns, and the restored image.

Fig. 3. The result of interpolation by adding extra rows and columns to the projection image, from left to right: original 3D shape, the result of
projecting the shape to the image and back to 3D, the final result after interpolation.

In Fig. 4, examples of the scanned objects as projection images and
3D range data are presented. After the first iteration of Algorithm 1,
the holes were filled and all the noise was removed except for some
lines (caused by the scanning method). These residual imperfections
were reduced after the second iteration, using a dictionary re-learned
from the previous step restored image. The comparison between
results of Equations (1) and (3) with t = 1.5 is also presented in
Fig. 4.

Fig. 5 shows samples of learned dictionaries for different shapes.
Results of applying these dictionaries to restore a pig shape are shown
in Fig. 6.

The second set of experiments, on the ISDB database, investigates
the effectiveness of our method for interpolation. The hole restoration
parameters were the same as in the previous experiments. In the
image restoration step, the only difference was the dictionary, which
was learned on 78 shapes. The results of this experiments are
presented in Fig. 7.

The last set of experimental results demonstrate the performance
of our local projection method, described in Section VI. Moreover,
we compare these results with those of our global projection method,
as well as the experimental results presented in [4]. To facilitate the
comparison, we have used a range data that was also studied in [4].
Due to space limitation, we only present the results for one portion of
the data which contains both detailed and smooth areas. In Fig. 8 we
show the original noisy range data and the results of denoising using
both the global and local methods. For each of these two methods,
we have used two different parameter sets, one selected to obtain a
smoother outcome, and the other to preserve more details. It can be
observed that the local projection method is much more successful
in suppressing the view-dependent noise. This can be attributed to
the fact that the structured, view-dependent noise that is present in
this data will be partly hidden when the whole range data is viewed

from a single angle, while the local approach rotates each portion of
the data appropriately in order to observe as much detail as possible.

For completeness, in Fig. 9 we have included the experimental
results of [4] corresponding to the same portion of the range data as
that in Fig. 8. Although it is difficult to quantify the qualities of the
results, it can be observed that the results of our local projection
method and the method of [4] are comparable for this particular
sample. It is also important to note that the colors we have used
to visualize the data in Fig. 8 makes the noise and details more
visible than those used by [4], which we have copied in Fig. 9. This
becomes apparent by comparing the left-most pictures of these two
figures, both corresponding to the original noisy data.

VIII. CONCLUSIONS

In this paper, we introduced a new framework for the restoration
of 3D range data. We applied sparse modeling methods on projection
images obtained from 3D surfaces in order to both denoise and fill
the occluded parts of the shapes. We also applied sparse modeling
methods for interpolation of 3D surfaces. We also introduced a
method of local projection in order to further improve the results of
denoising range data. We tested these methods on data obtained from
a low-cost structured-light range scanner, the ISDB database of 3D
shapes, and range data from AIM@SHAPE shape repository. Our
experimental results demonstrate the effectiveness of the proposed
methods. A challenge for future work is to extend this work to full
3D shapes exploiting the local projection technique.
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Fig. 4. Results of the proposed method in Algorithm 1 on five shapes in the dataset. From left to right, first column shows pictures of the objects,
second column shows the noisy 3D shapes obtained from the 3D scanner, and third column is the converted range data image of the shapes in column
two, note the horizontal lines. The fourth column shows the shifted intensity value (depth) of the pixels on the three lines shown in the images on
the third column. The fifth column shows the restored shapes after the first run of Algorithm 1 with the dictionary learned on the original image and
t = 1. The sixth column is similar to the previous column only for t = 1.5, and the seventh column presents the results after the second iteration of
Algorithm 1 with the dictionary learned on the restored image in the first run and t = 1.5.

Fig. 5. Learned range data dictionaries for 78 noisy and/or occluded shapes, noisy shape of a pig with holes, and a denoised version of the pig
shape, respectively. The patches are 5 × 5, k = 63, λ = 0.24, L = 3, overlap of patches for the dictionary learning is 4 (full overlap), and each
dictionary is learned in maximum 100 iterations.

REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Proc.,
vol. 15, no. 12, pp. 3736–3745, 2006.

[2] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Processing, vol. 17, no. 1, pp. 53–69,
2008.

[3] M. Elad and M. Protter, “Image sequence denoising via sparse and
redundant representations,” IEEE Trans. Image Proc., vol. 18, no. 1,
pp. 27–35, 2008.

[4] O. Schall, A. Belyaev, and H. P. Seidel, “Adaptive feature-preserving
non-local denoising of static and time-varying range data,” Computer-
Aided Design, vol. 40, p. 701707, 2008.

[5] O. Rubinstein, Y. Honen, A. M. Bronstein, M. M. Bronstein, and
R. Kimmel, “3d color video camera,” Proc. Workshop on 3D Digital
Imaging and Modeling (3DIM), 2009.

[6] A. Bronstein, M. Bronstein, E. Gordon, and R. Kimmel, “High-
resolution structured light range scanner with automatic calibration,”
Techn. Report CIS-2003-06, Dept. of Computer Science, Technion, Israel,
2003.

[7] R. Gal, A. Shamir, and D. Cohen-Or, “Pose-oblivious shape signature,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 2, pp. 261–271, 2007.

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–451, 2004.

[9] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions
for frame design,” IEEE Int’l Conf. Acoustics, Speech and Signal
Processing(ICASSP), vol. 5, pp. 2443–2446, 1999.

[10] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” International Conference Machine Learning, Mon-
treal, Canada, June 2009.

[11] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency dictio-
naries,” IEEE Trans. Signal Processing, vol. 41, pp. 3397–3415, 1993.



6

Fig. 6. Results of applying the dictionaries presented in Fig. 5 to denoise the pig shape in Fig. 4.

Fig. 7. Examples of interpolation method. From left to right, top to
buttom: Original 3D shape, result of projecting the shape onto the image
and back to 3D (dark pixels are missing information due to low density
in the corresponding parts in the 3D shapes), 3D shape from the image
with filled holes, final result after smoothing the previous shape.

Fig. 8. Comparison of global and local projection methods: from left to
right, first row: the original noisy range data and the results of applying
global projection method with two different sets of values for L and ε in
the SC step (larger L and smaller ε for the right shape); second row: the
results of applying local projection method on the same noisy shape with
similar parameters. The dictionary used for these results was learned on
78 shapes and patch size was N = 225.

Fig. 9. The noisy shape and the result of denoising using non-local
means method, reproduced from [4], and the result of the proposed local
projection method.


