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Abstract 

A rapid fire railgun launcher has been designed and fabricated and a single-shot prototype has been 
tested for the Cannon Caliber Electromagnetic Gun (CCEMG) System. Three, five round salvos of 185 g 
launch packages are to be accelerated to 1,850 m/s at a rate of 5 Hz. The 2.25 m launcher has a 30 mm 
round bore equivalent, rectangular geometry and is water-glycol cooled. Rapid fire operation is achieved 
by driving the launcher with multiple 835 kA pulses provided by the CCEMG compulsator. The launcher 
is a series augmented railgun and has demonstrated breech efficiencies over 50%. 

A high CCEMG system efficiency is in part attributable to the use of a solid armature and is enhanced 
by having a· structurally stiff rail gun. Historically, a railgun's stiffness was proportional to its weight. 
Laboratory based railguns that have respectable mechanical properties have required massive structures that 
are nowhere near meeting the requirements of future vehicle integration and weaponization. The Cannon 
Caliber railgun design incorporates a directional preloading mechanism, ceramic sidewalls and a compos­
ite overwrap which together give it a structural stiffness dominated by high modulus ceramic with an over­
all mass of only 273 kg. These characteristics make the Cannon Caliber launcher one of the most "field­
able" railguns built to date. 

Introduction 

The Cannon Caliber Electromagnetic Gun System (CCEMG) design represents the culmination of two decades 
of electromagnetic launcher research in the areas of pulsed alternator, railgun and integrated launch package (ILP) 
development. Although this paper focuses on the design and initial testing of the CCEMG railgun, the power sup­
ply[l] and ILP design must be acknowledged for their contribution to the gun's final configuration. Early in the 
design process, an optimization code called EXCALIBER was utilized to identify the ideal system parameters and 
launcher geometric and electrical configuration[2J. The resulting railgun design parameters are listed in table I. The 
railgun is 2.25 m long with an augmented turn in series with the main rails. Only the first 1.85 m of the gun is aug­
mented and the gun has an muzzle switch "tap" located at 1.9 
m. The railgun bore geometry is rectangular; 1.75 em x 3.94 
em (fig. 1). 

The CCEMG railgun incorporates several unique fea­
tures: ceramic sidewalls, directional preloading and liquid 
cooling. A developmental mentality was adopted by the pro­
gram to evaluate the gun's structural design while studying the 
performance of s'everal ILP concepts. As a result, two single­
shot guns were built (referred to as launchers IIA and liB) in 
addition to a water-glycol cooled, rapid-fire gun (launcher 
III). This paper presents test summaries and general perfor­
mance observations for launcher IIA performed at both the 
Center for Electromechanics at The University of Texas at 
Austin (CEM-UT) and U.S. Army Research Laboratory 
(ARL) at Aberdeen Proving Ground, MD. 

Design 

In addition to railgun structural and electrical design 
requirements, the Cannon Caliber gun design considerations 
include thermal management, bore wear and weight. For the 
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Table I. Cannon caliber railgun design parameters 

Performance 
Launch package mass 185 g 

Muzzle velocity 1,850 m/s 
Muzzle energy 315 kJ 

Launcher energy density 1.16 Jig 
Inductance gradient 1.1 !JHim 

Peak current 835 kA 
Number of salvos 3 

Rounds/salvo 5 
Firing rate 5 Hz 

Time between salvos 2.5 s 
Physical 

Railgun type Series augmented 
Bore dimensions Rectangular 

17.5 x 39.4 mm 
Overall length 2.25 m 

Augmented length 1.85 m 
Stiffness at peak current 0.2% deflection 

Coolant Water-ethylene glycol 
Weight 273 kg 
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Figure 1. CCEMG launcher cross section 

interested reader, reference [3] presents specific details 
of the electromagnetic (EM) and thermal design as well 
as the launcher component development. Launchers 
IIA and liB are identical to the multishot launcher with 
the exception of coolant passages and deceleration 
guide required for autoloading. A peak gun current of 
approximately 830 kA for 15 rounds requires active 
cooling between salvos by coolant passages located in 
both main and augmenting rail sets. 

Directional preloading mechanisms called "flatjacks" 
located between the main and augmenting rails (fig. 1) 
are utilized to counter electromagnetic loading and 
maintain a compressive state in alumina ceramic side-
walls. This results in an extremely stiff design. Preload 

is reacted against a filament wound composite overwrap composed of 82%, 90° graphite fibers and 18%, oo fiber­
glass. The overwrap reacts the preload plus a fraction of the EM loading and provides stiffness to the launcher in the 
axial direction. These features give the launcher a peak bore growth of 0.2% at full electromagnetic loading and an 
overall weight of 273 kg. 

The success of the launcher design depends heavily on the flatjacks ability to apply a pressure to the main rails 
so that the ceramic sidewalls (AD-96 alumina) remain in compression throughout the discharge. The flatjacks have 
received much attention during fabrication and initial testing. Launcher IIA experienced a flatjack failure due to an 
electrical arc and a flatjack in launcher liB failed during its initial pressurization. Both setbacks, however unfortu­
nate have proved beneficial in identifying weak areas of the launcher design. Nevertheless, both launchers are still 
fully functional, each operating on a single flatjack. Failure of the flatjack in launcher IIA and repair is discussed in 
more detail in the CEM-UT testing section. Launcher liB was repaired, boxed, and is awaiting testing at ARL. 
Design improvements are being incorporated into launcher III. 

The flatjacks are formed by a series of cold drawing operations on a seamless Inconel 718 tube. Manifolds and 
fill tubes are welded to the ends. The flatjacks are pressurized to 138 MPa for a full current shot and must endure a 
displacement of approximately 1.3 mm. Inconel 718 in the annealed condition fulfills the strength, ductility, and non­
magnetic requirements of this application. 

Chromium"copper (C18200) was chosen as the rail material because of its strength (310 MPa yield), conduc­
tivity (82% lACS), relatively low cost and its dimensional stability. The rails of launcher IIA have to date experi­
enced a total of 45 shots. Coolant passages in launcher III are formed from 8 mm holes (two parallel) drilled the 
length of the main and augmenting rail forgings. To attain the launcher's high breech efficiency, the main rails are 
slit (1.6 mm wide on 3.2 mm centers) transverse to the gun's axis to the mid-point of the ceramic sidewall. This 
region of the main rail is required for structural purposes but is detrimental to performance and therefore is slit to 
minimize its current-carrying ability. 

CEM-UT Testing 

Testing of single-shot launcher IIA has been performed both at CEM-UT and ARL. A total of 11 shots were 
performed at CEM-UT and as of the writing of this paper ARL has shot 34 times. Testing at CEM-UT was success­
ful in verifying the predicted mechanical and electrical performance of the launcher. Launcher IIA was powered with 
the 1 MJ/pulse, iron core compulsator (ICC) (fig. 2). A schematic of the ICC/launcher IIA circuit is shown in figure 3. 

A total of 11 shots were performed with a gradual increase in system energy. Table II lists the system parame­
ters and projectile performance for selected CEM-UT and ARL tests. Prior to electrical testing, bore straightness was 
measured before and after flatjack pressurization to determine the flatjacks effect on straightness. Very little change 
in the bore straightness was observed, indicating that a uniform amount of axial strain was being applied to the struc­
ture, or the flatjack axial strains have little effect on the structure. The peak deviation from a straight line for either 
the sidewall or rail direction was 0.2 mm. Honing of the bore was performed between shots to remove armature 
deposits with no attempt to remove rail material; the bore dimensions remained consistent throughout testing. The 
bore straightness was checked after CEM-UT shot #11 and again there was no significant changes in bore straight­
ness as compared to the initial measurements. CEM-UT range diagnostics consisted a single set of orthogonal muz­
zle x-rays, velocity screens and a single yaw card located at 6.4 m. Launcher instrumentation included b-dots, a flux 
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Figure 2. CEM-UT testing: CCEMG launcher ITA and the iron core compulsator 

ruler and voltage and current measurements. Several unsuccessful attempts were made at measuring flatjack pres­
sure transients with a PCB pressure transducer. 

Highest performance occurred on UT-CEM shot #7 which has a peak current of 552 kA. Voltage limitations of 
the ICC combined with the inductance of the augmented launcher prevented testing to higher current levels. Although 
the structural limits of the gun could not be fully characterized, its electrical insulation was tested by the multiple open 
circuit cycles of the ICC after a shot. During this testing, an insulation flaw was identified within launcher ITA. 

During shot #11, failure occurred in three of the system components. Immediately after launch, the muzzle 
insulation of the gun broke down resulting in approximately 60 restrikes with an average current level of 50 kA. This 
event eroded about 7.6 em of the muzzle conductor and apparently melted the surface of the ceramic sidewalls up to 
5.1 em away from the muzzle. No structural cracks were observed in the sidewalls. A voltage breakdown between 
the top flatjack and its adjacent augmenting rail burned a hole in the top jack and thus ignited the high pressure (103 
MPa) glycerin. Further post-mortem examination of the launcher revealed that the voltage standoff between other 
gun components was weak. 

In order for the gun events just described to occur, two components had to fail. The SCR closing switch short­
ed inside the SCR trigger box, resulting in a single SCR to fail in the closed state. Secondly, the ICC emergency 

Table II. Launcher IIA selected shot summary 

Shot# CEM CEM CEM CEM CEM ARL ARL ARL ARL 
7 8 9 10 11 7 14 16 34 

pate 3/1194 3/4/94 3/8/94 3/11194 3/14/94 8/31/94 9/28/94 10/21194 6/1195 

Pulsed Power Supply Parameters 

CPA Speed (rpm) 3774 3493 3333 3456 3837 N/A N/A N/A N/A 

Field Excitation (A) 1489 1085 787 996 1500 N/A NIA N/A N/A 

Peak Voltage (V) 1638 1334 1095 1290 1612 8500 8400 9200 7400 
CPA Volts @trig (V) 110 90.5 142 177 220 N/A N/A N/A N/A 

Firing Angle (') 5.84 5.09 9.3 10.26 5.00 N/A N/A N/A N/A 

Peak Current (kA) 552 479 403 458 462 609 586 667* 639 
Pulse Width (ms) 4.15 4.525 4.367 4.43 4.10 1.9 2.2 !.9* 2.6 

Time to peak (ms) !.893 2.157 2.34 2.065 !.975 0.38 0.38 0.38* 0.47 

Launcher/ILP Parameters 

Velocity (m/s) !339 1034 1042 1061 1350 1886 1369 1492 1350 

ILP Mass (kg) 0.186 0.185 0.136 0.172 0.182 0.098 0.174 0.178 0.180 

Breech Efficiency(%) 51 44 42 46 30 37 42 42* 37 

Armature Insertion Force (kN) 1!.6 9.96 8.07 6.18 5.98 2.79 5.89 7.57 5.58 

Armature Current @ exit (kA) 123 28.15 4.02 9.79 94 294 263 300* 132 

Action @ exit (MA 2s) 514.8 417.1 308.5 380.5 355.9 367 436 51! 468 

* estimated 
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opening switch (EOS) attempted to open the circuit upon detecting multiple pulses however it continued to restrike 
to a nearby conductor. 

Launcher IIA was repaired by pumping the upper failed flatjack with a filled epoxy while the lower flatjack was 
depressurized to allow the epoxy in the top jack to cure at maximum displacement thus limiting displacement of the 
lower jack. Once the epoxy had cured, the remaining flatjack was repressurized to 103 MPa. The electrical resis­
tance between n~ils was deemed adequate for performing single-shot tests using capacitor banks and launcher IIA 
was shipped to ARL. 

A number of modifications were made to the electrical insulation design of launchers liB and III. These 
include: thickening the mica insulation, adding a composite insulating barrier between the flatjack manifold region 
and the augmenting rails, applying Limitrak insulating enamel to both sets of rails, and adding an additional fiber­
glass layer to the bore of the composite overwrap. In addition, several intermediate de and transient hi-pot tests were 
added to the assembly procedure. 

ARLTesting 

Test Objectives 

The test objective was to experimentally verify launcher and ILP performance in a single-shot mode of opera­
tion. The launcher's ability to convert electrical energy to kinetic energy is a strong function of attaining its rated 
peak performance. Testing was planned such that an abundance of relevant data could be obtained early in the pro­
gram without placing the hardware at unnecessary risk. To date 34 rounds have been shot from launcher IIA at ARL. 
Tests can be grouped into component characterization (shots 1-9), armature development (shots 10-16), launch 
dynamics (shots 17-27), pseudo multishot (shots 28-32), and peak performance (shots 32-34). We are presently 
increasing the peak current levels and thereby subjecting components to their design values. 

Range Facility and Power Supply 

Testing took place at the EM Facility, Transonic Range, Aberdeen Proving Ground (APG) MD. The Facility 
consists of a (upgraded after shot 27) 1.55 MJ capacitor-based pulsed power supply (PPS) with a 222 m free-flight 
range[4]. The PPS is comprised of eight banks, each with the flexibility to be charged to different initial voltages as 
well as to be triggered independently in time. Maxwell Laboratories and General Electric capacitors are used 
throughout the PPS. Each bank is nominally 200 kJ at a rated maximum charge voltage of 10 kV. Each bank is con­
nected to a common bus through aD-size ignitron (NL-2888A) and a nominal 10 J-IH inductor. Stacks of diodes are 
connected across each bank output to prevent voltage reversal across the capacitors. Four banks use 12 PowerEx 
RA204420 diodes each while the remaining banks use International Rectifier semiconductors. The PPS, under short­
circuit load conditions, can provide a current pulse with a 375 J-IS rise time with a transfer admittance of 120 kA/kV. 
The current decays with a time constant of nearly 8 ms. With launcher IIA as the electrical load, peak current is esti­
mated to be 875 kA, occurring at 450 J-IS and a time constant of 3 ms. Launcher IIA installed in the EM Facility is 
shown in figure 4. 
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Instrumentation to monitor and assess ILP 
performance consists of bore-sighted yaw cards, 
multi-station orthogonal flash x-ray with fiducial 
cable, radar, smear and high-speed camera, and 
realistic armor targets located 222 m downrange 
from the launcher. Instrumentation to assess 
launcher performance includes b-dots, flux rulers, 
and current and voltage measurements. 

Attaining system performance is first and 
foremost dependent on ILP structural integrity, 
and subsequently, subprojectile accuracy. One 
factor affecting both is the deviation of the bore 
centerline. The "straightness" measurement is 
made routinely on conventional guns and this data 
is often used to assess the quality of the gun. 
Often, launchers exhibiting large deviations from 

ARL testing: CCEMG launcher IIA at test range centerline are not used for projectile range testing. 
Railguns offer two distinct planes for centerline: 
one for the rail plane and the other for the insula­

tor plane. The "straightness" for launcher IIA in both the rail and insulator planes, has been routinely measured by 
the Aberdeen Test Center, ATC (formerly Combat Systems Test Activity, a tenant activity at APG, MD) throughout 
the duration of all testing. On average the straightness for launcher IIA is the same for a similar caliber conventional 
gun. However, its deviations along the direction of projectile travel are smoother than those exhibited in launcher 
liAs. The deviation at the muzzle of launcher IIA is upwards in the rail plane and towards the left in the insulator 
plane (looking downrange). For nearly all of the shots the ILPs have had trajectories biased towards the left side of 
launcher line of fire. On the other hand nearly all the rounds have exited the launcher with the nose of the projectile 
oriented downwards. Phenomena at the rail/armature interface near exit may overwhelm the dynamics offered by 
bore straightness. in the rail plane for these velocities. 

Prior to all the shots the launcher bore has been cleaned by pushing a lapping tool through the bore (i.e. honed). 
Mineral spirits is used as a cleaner and lubricant with the tool. The lapping tool consists of opposing steel wedges 
with diamond faces and locked to a preset width. The width has been set to only remove any aluminum deposited 
on the rail surfaces. Consequently, very little copper rail material has been removed. After the launcher is honed the 
bore is wiped with paper towels soaked in alcohol. In the pseudo multishot tests (shots 28-32) the bore was not main­
tained between the 5 shots. No unusual launcher or projectile behavior was observed. 

The flatjack pressure is nominally at 97 MPa for the primary jack and 41 MPa for the secondary jacks. The 
pressure is measured with a standard pressure gage having increments of 0. 7 MPa. Typically, immediately after a 
shot the pressure gage reads an increase of roughly one-half an increment and subsequently settles down to its orig­
inal reading. It is uncertain as to the significance of this observation since the pressure increase is only one-half an 
increment. 

Armature performance is partially dependent on mechanical preload placed on the armature contacts. The pre­
load is provided by a tapered interference fit between the armature and the bore rail surface. Optimum preload is dif­
ficult to calculate but has been estimated to be 13.34 kN for this armaturel2J. Clearly, no preload will result in an 
immediately arcing contact and too much preload will result in immediate structural failure. Armature interference 
is obtained from knowledge of the rail to rail dimension. For all the shots this has been estimated by measuring the 
rail to rail dimension set by the hone. This technique has a measurement error on the order of 0.13 mm. An indica­
tion of the preload placed on the armature contacts can be assessed by measuring the amount of force it takes to insert 
the ILP in the bore. The insertion force is measured by converting the pressure gage reading in a hydraulic cylinder 
as the round is inserted into the breech, roughly 30 em from the rear face of the launcher. Lowest and highest record­
ed values for insertion force throughout the testing are 2.24 kN and 7.97 kN respectively. No anomalous armature 
behavior has been noted for these shots. In fact, the CCEMG design velocity was exceeded using a 100 g tandem 
contact slug with an insertion force of 2.79 kN (Shot 7, 1886 m/s). Afterwards, the bore rail surfaces were video 
taped and no visual evidence of gouging on the rail surface was observed. 

After shot 32, the rail to rail dimension was accurately measured as a function of launcher length by ATC. The 
nominal rail to rail dimension is 3.73 em with a +0.03 mm variation. No trend in the variation was noted as a func­
tion of launcher length. 
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Launcher Performance 

The highest launcher current to date is 667 kA and occurred on Shot 16. Also on this shot the muzzle current 
was also the highest at roughly 300 kA. Afterwards it was found that the G-10 plate at the muzzle that supports the 
secondary flatjack plumbing had separated axially from the carbon fiber overwrap. Since this launcher was not 
designed to sustain such large forces at the muzzle it is not surprising that this structural deformation occurred. The 
G-1 0 plate was subsequently epoxied and thru-bolted to help support the EM and blast loads. In order for full launch­
er and ILP performance to be realized the most recent testing incorporates an explosively activated closing switch 
connected at the muzzle "tap"[5]. To date, two shots have employed the switch. On the last reported shot (shot 34) 
a peak armature current of roughly 360 kA was successfully commutated into the muzzle switch. The launcher cur­
rent just before exit was 311 kA while the current flowing in the armature was reduced to 132 kA. No structural 
deformation at the muzzle was observed and moreover, light and sound signatures associated with a large exit cur­
rent were significantly reduced. The average time for full commutation to occur is 500 !-IS. 

The largest amount of rail wear occurs at the muzzle, primarily due to the large currents flowing through the 
launcher when the ILP exits the launcher. The wear at the muzzle end of the launcher has been monitored and found 
to be on average 0.79 mm per rail occurring over the last 10 em of rail length. This erosion accrued during the five 
pseudo-multishots with ILP exit velocities of 1,100 m/s. The erosion of the rail at 13 em from the muzzle was only 
0.10 mm per rail. 

It is found that the conversion of energy supplied to the breech to kinetic energy at the muzzle increases as peak 
current is increased. The highest recorded efficiency was obtained for shot 14 with a value of 33% and a launch 
velocity of 1,370 m/s (the current trace for shot 16 was not recorded). This value also includes the magnetic energy 
remaining in the circuit since current is not zero when the ILP leaves the barrel. The magnetic energy is transferred 
into additional ohmic heating in the resultant arc and conductors. If this energy could be converted into a charge on 
the capacitor banks (much like the compulsator rotor would spin up at projectile exit) the net efficiency would 
increase to 42%. The efficiency of converting the stored capacitive energy to kinetic energy is 21%. For a constant 
launch velocity all the efficiencies are found to decrease by a few percent for the shots that used a 100 g launch mass. 
For all 45 shots, the launcher inductance gradient has been computed from the measured current and velocity and 
found to be 1 !-lllfm. 

Conclusion 

An overview of the CCEMG launcher design has been presented and testing performed at CEM-UT and ARL 
has been described. The design incorporates directional preloading (flatjacks) and ceramic sidewalls which give the 
launcher its extremely high stiffness and low weight. A total of eleven shots have been performed at CEM-UT using 
the iron core compulsator and 34 shots at ARL using a capacitor power supply. The initial tests have demonstrated 
breech efficiencies over 50%. In addition, these tests have demonstrated the durability of the launcher's structural 
design in the presence of high and multiple muzzle currents and operation with a single flatjack. 
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