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Abstract 

 

Very-low-noise microwave signals are desirable for many state-of-the-art 

applications, including many types of radar and imaging systems, as well as 

secure communication.  However, even state-of-the-art rf oscillator 

technology for producing signals into the tens of gigahertz range does not 

generate signals with low enough phase noise for these important systems to 

work to their full potential.  A new approach for achieving microwave 

signals with ultra-low phase noise involves using an optical frequency 

divider that has as its reference a narrow-linewidth CW laser.  Femtosecond 

laser frequency combs provide an effective and efficient way to take an ultra-

stable optical frequency reference and divide the signal down into the 

microwave region.  In order to convert optical pulses into a usable rf signal, 

one must use high-speed photodetection; unfortunately, excess phase noise 

from both technical and fundamental sources can arise in the photodetection 

process.  In order to ultimately minimize the noise effects of the 

photodetector, we must first characterize some of the known sources for 

noise inside these devices.  In this paper, we describe two of these effects – 

power-to-phase conversion and shot noise – within three different test diodes.  

The noise performance of each diode reveals the nature of the noise sources, 

their effect on the output signal, and what design features of the photodiode 

minimize these noise effects. 
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Motivation 
Optical-to-1\tlicrowave Frequency Division 

Reference 

High-Speed 
Photodiode 

T\vo significant noise contributions 
from PD are shot noise and power
to-phase conversion. 

Optical frequency sources can 
provide good jitter and phase noise 
petformance. 
However, photodetectors at the link 
between optical and microvvave can 
add nOise that degrades those 
signals. 
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Test Photodiodes 
We consider three high-speed (> l 0 GHz) photo-detectors with internal termination of 50 Q. 

PO Diode Diameter· Bandwidth Responsivity @ 900 nm Notable Structur·e 
PDI 30 microns 22GHz 0.30 A/W SMF fiber 
PD2 30 microns 22GHz 0.26 A/W GRIN lens coupled 
PD3 60 microns 12GHz 0.34A!W Thinned InP cap laver 

GRIN lens 

30Jim 30Jim 60Jim 

I lnPcap Ill Jlffl I lnPcap Ill Jlffl 
In~ cap 

II 0.3Jim 
Absorption layer Absorption layer Absorption layer 
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Shot noise 
Thermal (Johnson, resistive) noise and shot noise are t\vo fundamenta l phenomena that occur 
\¥hen incoming photons a re converted to an electrical signa l \Vithin the semiconductor media of a 
photodiode. For photocurrents greater than ~ 1 mA, shot noise dominates over thermal noise, and 

this is the regime v·.re conside r here. 

Optical 
input 

Shot noise floor in single 
(phase) quadrature 
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Shot noise as a function of photocurrent. 
The fundamental shot noise and thermal noise floors at 10 GHz are pictured for these 
PDs [3]. The plots on the right do not include measured noise from other sources, 
including thermal, which is why the data fall below the thermal noise floor plot. 
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Power-to-Phase Conversion 
4 PD1 
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Phase Bridge Method 
•The " Phase Bridge'' method places a 20 
kHz AM modu lation on the incident 
optical light and compares the tone size 
(on an FFT analyzer) before and after the 
PD. 1-L\I comes from AC modulation on 
beam 
•Size of PM tone at the mixer is 
converted to radians using mixer gain. kd. 
•Divide radians by the fractional 
(normalized) change in power [ dP P]: 
Power in initial AM tone (dP) di,·ided by 
the optical po,,·er (P). 
•PD2 in general has lower AM-to-PM 
conversion than PD I . 
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Estimate effect on AM 
•Given a laser with AM noise (RIN). we can 
estimate the effect o r AM-to-PM conversion due to 
photodiodcs. 
•The predicted contribution or AM-to-PM to the 
single sideband phase noise is given by LR1N(t) = 
RIN + 20 log( a) - 3 dB. We choose the " worst case'· 
a for PD I and PD2 (at 4 mAin plot above). 
•To confirm . we compare to a residual phase noise 
measurement. 
•In principle. one can operate at a null to reduce 
noise e\·en further. 

The elrect of noise phenomena varies depending on the diode used and the noise of the system. 
You can choose a diode that exhibits the best performance in the spccilic application. in this case. 
generation of ultra-low microwaYe signals. 
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