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Abstract 
Recent progress in the development and understanding 

of linear induction accelerator have produced machines 
with IO's of MeV of beam energy and multi-kiloampere 
currents. Near-term machines, such as DARHT -2, are 
envisioned with microsecond pulselengths. Fast beam 
kickers, based on cylindrical electromagnetic stripline 
structures, will permit effective use of these extremely 
high-energy beams in an increasing number of 
applications. In one application, radiography, kickers are 
an essential element in resolving temporal evolution of 
hydrodynamic events by cleaving out individual pulses 
from long, microsecond beams. Advanced schemes are 
envisioned where these individual pulses are redirected 
through varying length beam lines and suitably 
recombined for stereographic imaging or tomographic 
reconstruction. 

Recent advances in fast kickers and their pulsed power 
technology are described. Kicker pulsers based on both 
planar triode and all solid-state componentry are 
discussed and future development plans are presented. 

I. INTRODUCTION 
Although direct application of Faraday's Induction Law 

as a means to accelerate particles in a circular orbit in a 
changing magnetic field [1) was utilized early in the 
history of accelerators, the technique was not successfully 
applied to linear acceleration until the mid 1960's [2]. 
Advances in pulsed power technology have enabled this 
technology to steadily develop. Modem induction linacs 
find application [3] in fields such as heavy ion fusion, 
advanced radiography, and advanced rf sources for next­
generation linear colliders. 

Stanley Livingston [4) began the practice in the late 
1950's of plotting peak particle accelerated energy as a 
function of time as accelerator technology matured. Such 
Livingston Charts have been extended [5] by modern 
researchers. Using more appropriate figures of merit for 
induction linacs, an analogous graph of either beam power 
or beam energy per pulse can be generated. As a function 
of the year in which the machine came on line, Fig. 1 
plots points for Astron [2), ERA [6], FXR [7], AT A [8], 
ETA-II [9], FXR-Upgrade [10], DARHT single axis [11], 
and DARHT-11 [12]. Although a significant degree of 
spread exists among these special-purpose machines, a 
general trend of doubling every 6-7 years seems apparent. 

Fast beam kickers and the pulsed power technology to 
drive them are an enabling technology in the full 
utilization of induction linac power, particularly for 
advanced radiography applications. 

.., 

.II: 

""OQI 
c.!! 
"' ::1 Q. 

iCii 
C) c. 
- >. ... 1:1 
Cll Cll 
~ c ow 

Q. E 
E "' 
"' Cll G>co co_ 

!! 
0 
1-

1 000 -.----,---...,-- -.----.---, 

• 

• 
& kJ/pulse 

0.1 
1960 1970 1980 1990 2000 2010 

Figure 1. Beam power in GW and beam energy per pulse 
in kJ plotted vs. time for induction Iinacs. 

II. KICKER REQUIREMENTS 
Kicker technology has evolved [13-16] to a topology 

analogous to stripline-based beam position monitors. 
LLNL kickers (Fig. 2) have demonstrated the ability [17] 
to control beam direction on nano-second time scales. 

Kickers for radiography applications are being 
developed (Fig. 3) in the 10-15 kV, 200-300 A range that 
present a 50-ohm load to the pulser. Pulse widths from 
20-200 ns are nominal. Although the overall e-beam rise 
and fall time is also a function of the kicker's "fill time", 
fast rise and fall times from the kicker pulsers is critical to 
ensure a minimum of beam interception within the 
accelerator structure. A 10-90% specification for pulser 
rise and fall time that is currently in use is 10 ns. 
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Figure 2. Schematic of stripline kicker with coaxial feeds 
and de bias windings. • Bechtel Nevada, DoFJLLNL, Livermore, CA 94550 
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Figure 3. ETA-II kicker viewed with ends and coaxial 
connections removed. 

III. KICKER PULSER DEVELOPMENT 
Fast pulsers have previously been developed [18-20] in 

conjunction with the ATA program to support both an 
Injection Current Modulation scheme and a Fast 
Correction Coil scheme to correct for time-dependent 
beam transverse motion effects such as corkscrew motion. 
Both approaches were based on Eimac YU-114 planar 
triode pairs in cascade with a fast DEI FET. The FET 
was driven by a wideband op-amp followed by an rf 
transistor in an emitter follower configuration. This basic 
circuit (Fig. 4) was packaged on a 45-degree wedge­
shaped sector. The outputs from 8 such sectors were 
paralleled and output to a 50-ohm coax. These compact 
units (Fig. 5) have been adapted to ETA-II kicker 
experiments and have proven a reliable kicker pulser. 

20 kV 

·11DVII 

Figure 4. Simplified schematic of a single sector of the 
FET and planar-triode based fast pulser design. 

In an effort to extend the linearity of these pulsers for 
finer beam control, a new design [21] based on two stages 
of planar triodes was implemented. The output stage is a 
parallel array of 18 Eimac Y -820's, a production version 
of the YU-114. The intermediate stage is based on 
developmental YU-176 tubes. A diagram of 113 of the 
final circuit is shown in Figure 6. The tubes of both 
stages are operated in grounded cathode configuration and 
a semi-rigid coax-based transmission line transformer is 
utilized for impedance matching between stages. The 
design also takes advantage of fast linear hybrid micro-

Figure 5. Photograph of the compact FET and planar­
triode based fast pulser design. 

Figure 6. Simplified schematic of new planar triode­
based kicker pulser with improved linearity. 

circuit technology developed for high-resolution CRT Figure 7. Photograph of improved-linearity kicker pulser. 
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displays. This linear hybrid is driven by an operational 
transconductance amplifier to form the bulk of the input 
stage. The completed design (Fig. 7) has recently proven 
to be stable over a wide dynamic range (Fig. 8) and 
capable of high bandwidth amplitude modulation (Fig. 9). 
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Figure 8. Overlaid 200-ns output pulses for varying drive 
levels to the improved linearity kicker pulser. 
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Figure 9. 100-ns pulse demonstrating 100% modulation 

IV. ONGOING WORK 
In recent years, our supply of high-frequency planar 

triodes has become increasingly uncertain. Particularly 
when designing for accelerators with an anticipated 
lifetime measured in decades, it seemed necessary to 
develop an all solid-state kicker pulser design to ensure 
long-term system maintainability. Based on the ARM-II 
[22] modulator technology (Fig. 10) the new kicker pulser 

.01 will be comprised of multiple, stacked modulators based 
on Metglas cores whose output is inductively added on a 
voltage-summing center stalk (Fig. 11). A capacitive 
energy store is switched through a modem enhancement­
mode MOSFET. Each stacked cell must be capable of 
full-current operation and so is comprised of multiple 
PETs. This manifold parallelling of FETs has been 
successfully demonstrated on ARM-II [22]. 

Initial tests with the STMicroelectronics STW5NB100 
from have been encouraging (Fig. 12). The FET gates are 
driven by a Siliconix totem-pole driver following an 
Elantec level shifter. Newer FET devices from IXYS and 
APT promise enhanced performance. Analog control to 
the ±10% level felt necessary for electron beam control 
will be provided by 2-4 stacks of analog modules, 
presently envisioned as "voltage subtractors" and utilizing 
PETs biased in their linear region. 

at 40 MHz from the improved linearity kicker pulser. Figure 10. ARM-II inductive adder implementation. 
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Figure 11. Cross-section of stacked modules making up an all solid state kicker pulser based on ARM-II technology. 
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Figure12. 60-ns pulsed response of partial FET assembly 
and core envisioned for an all solid-state kicker pulser. 

The beam control algorithm (Fig. 13) currently being 
implemented will also correct for non-linearities in the 
pulsers and for cable dispersion effects. 
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