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Abstract 

A thyristor- like optoelectronic switch with high current density is 

investigated. The switch is based on the optoelectronic bistability 

exhibited by certain GaP light emitting diode-type structures at 77K. 

The bistability is based on the negative differential resistance that 

occurs during the forward biased current-voltage (I-V) 

characteristic. A model has been developed to explain the observed 

s-shape I-V characteristic and describe the dependence of the I-V 

characteristic on the geometry of the device, doping species and 

concentrations. The switching time depends on the intensity of 

optical gating signal, bias voltage and doping concentrations. The 

device has high current density capability ( -104 A/cm2), can be 

triggered optically, and its geometry and doping concentrations can 

be readily controlled and varied. The model has a general 

applicability to III-V based pulsed power switches. 

Introduction 

A thyristor-like optoelectronic switch is investigated for high current 

applications. The switch is based on the optoelectronic bistable 

behavior exhibited by gallium phosphide light emitting diodes 

[1],[2]. Recent results include the development of a model that 

explains the observed thyristor like I-V characteristic in terms of an 

electron lifetime increase due to the saturation of electron traps and a 

thermal effect due to current increase. The switching mechanism is 

similar to that present in diodes with asymmetric doping and long 

base, compared to the diffusion length of the minority carriers, [3]­

[6]. Experimentally observed results indicate the strong dependence 

of the switching time delay on the bias voltage and the optical trigger 

signal intensity. 
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Experimental results-Modeling 

The GaP diodes studied, showed bistable characteristics in the 

current, the optical output intensity and the optical output peak 

wavelength. The ON state current was observed to reach as high as 

700 rnA with a forward voltage drop of approximately 8 V. 

Switching to the ON state is achieved with an optical trigger signal 

(a 500-nm, 100 !J.I, 5-ns dye laser pulse). The negative resistance 

region in the I-V characteristic extends over several hundred rnA for 

a device with area -500 11m2. The shift in electro luminescence 

frequency from the low current state (with A-568nm) to the high 

current state (A-547nm) is tentatively attributed to the nitrogen 

related radiative recombination centers which become active at 

different current states [7]. 

Based on the model described below, initially the bulk region of the 

diode is of high resistivity (> 103 Ohm.cm). The p-side bulk is 

partially compensated by deep oxygen donors which are positively 

charged at thermal equilibrium at 77K. At low voltages the current 

consists of minority diffusion components on either side of the 

junction. Radiative recombination occurs inside the space charge 

region of the junction mainly through nitrogen and donor-acceptor 

routes. The electron diffusion length is short (less than lJ.!m). 

At a certain current value the electron injection rate mto the p-s1de 

bulk region becomes higher than the recombination rate. When this 

occurs radiative recombination will extend deeper into the p-side 

bulk region. A gradual saturation of the electron traps occurs, 

leading to an increase in the electron diffusion length (10-20 times 

longer). This causes an increase in the bulk conductivity starting 

near the junction and extending deeper into the p-side bulk [8]. The 

voltage across the bulk is then lowered. That leads to the appearance 

of negative differential resistance region in the I-V characteristic 

(Fig. I). The necessary condition for switching to occur is that the 

lifetime of the minority carriers, (in our case electrons), to be much 

shorter than the majority carrier lifetime, at low injection 

conditions. 
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Modelin& of the effect 

The differential equations describing the rate of change in the 

number or' free carriers and in the recombination centers are solved 

numerically. Recombination centers are considered to be those of 

Zn, O, Zn-0, and N in the p-side of the junction. Non-radiative 

recombination route is also allowed for each center. The rate 

equations used, together with the boundary conditions are the 

following: 

with 

dn 1aJn 
dt = Gn - Rn+ e az 

~- .l~ 
dt - Gp- Rp - e dz 

dnt 
dt=Rn-Rp 

Rn = I: en n ( Nt - nt) - I: en nt Nc 
Rp = I: cp p nt - I: ep ( Nt - nt ) Nv 
dE e 
-d =- [( p -Po) - (n- no) - I: nt1 z e 

Jn=njlneE+kTj.!n dn 
dz 

Jp= PllpeE - kTilp ~ 
J=Jn+Jp 

and boundary Conditions: 

E=O 
n= flo 

at z=O 
at z=L 

n = n0 exp(eVj I akT) at z=O, 

p n = ni2 exp(eVj /kD at z=O 

J(O)=J(L) 

1<a<2 

where cp,cn are the products <<JpVth>,<<JnVth> of the capture 

cross sections and the thermal velocities of the carriers. Nt 

represents the concentrations of the recombination centers and traps, 

while nt represents the number of electrons in the recombination 

centers and traps. 
L is the length of the p-side bulk and n0 and p0 are the thermal 

equilibrium densities of the carriers. Yj is the potential drop across 

the junction and Gn,Gp represent the generation rates of free 

carriers. 

In all cases 

cm2 cm2 6 em 
!ln = 1200 sec !lp = 700 sec Vth- 5x10 sec and 

L=100 jlm. 

The parameters used for the various levels are: 

T-77K. 

0: crn -10-18 cm2, crp- 10-21 cm2, Nt -10 16 cm-3 

N: crn, crp- 10-15 cm2, Nt- 1017 cm-3 
-16 -15 2 16 Zn-O:crn-2x10 ,crp-10 em ,Nt-10 em 

Quasithermal equilibrium is assumed between the carriers and the 

corresponding bands. Interlevel transitions are not taken into 

account . The above assumptions are justified by the small dielectric 

relaxation time of the carriers, the non-degenerate doping and the 

strong spatial localization of the electron wavefunction in Zn-0, N 

and 0 levels. 

The basic equations are put into discrete form by the fmite ditference 

technique using the Scharfetter-Gummel formulation [9],[10], and 

are solved by the Newton-Raphson method. Tolerance control, 

achieved with the use of an adaptive mesh size, is within 10·3 of the 

computed quantities. Solutions are obtained for the steady state. The 

doping concentrations and the device length are treated as parameters 

in the solution of the rate equations. The effect of relatively small 

changes in doping concentrations is shown in Fig. 2. 

The presence of the strong Zn-0 and N recombination routes does 

not screen out the 0 recombination route. This is mainly due to the 

larger thermal emission rates of N and Zn-0 levels for electrons, as 

compared to those of the deep 0 level. 
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I-V characteristics 
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The computed distributions of the electrons in the p-side bulk are 

shown in Fig. 3 for various current density levels. The critical 

current value or equivalently the critical voltage value depends on the 

degree of compensation, the type of dopants, and the length of the 

p-side bulk region. Optical feedback mechanisms and impact 

ionization of the various levels are considered to be, in our case, too 

weak to influence the breakdown conditions. 
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Transient Behavior 

The switching time between the low and the high conductance state 

is controlled by the applied voltage, the impurity species and their 

concentrations, and the optical energy of the trigger signal , as 

shown in Fig. 4 and Fig. 5 , for conditions appropriate for the 

experiments performed. 
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Charge redistribution among the traps and the recombination centers 

during switching is the physical process which determines the delay 

time. The rise time is determined by the transit time of the electrons 

in the p-side bulk. The latter can be shorter than microseconds, 

implying a potential operation of the switch in the range of MHz. 

Optical triggering is achieved by creating more mobile carriers, 

increasing the conductivity of the diode, thus lowering the 

breakdown voltage ( Fig. 6). Computed optical intensities of the 

order of 100 WI cm2 at 2.35 eV are needed to lower the breakdown 

voltage by 50 mY. According to the model, when the concentration 

of the recombination centers is increased the switching to the high 

current state occurs at a higher bias voltage. The current density 

ranges up to 104 A/cm2. This value can be improved by increasing 

the density of thermal equilibrium mobile carriers and the 

recombination component of the current. That can be achieved by 

increasing the doping of the n-side bulk, and the density of the 

recombination centers (N mainly) inside the junction. 
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Conclusion 

The parameters involved in the diode-type switch were investigated. 

The switching action is based on the modulation of the base 

resistance in a GaP diode. From the analysis of the effect it occurs 

that the breakover voltage (.01-0.1 KV) increases with increasing 

the length of the base (in the range of 100-200 flm) and the density 

of shallow recombination centers (1-10)x1o17 em -3. The forward 

voltage drop in the ON state can be reduced with increasing the 

doping (n or p type ) concentrations. The current density ( -104 

A/cm2), when the switch is in the ON state, increases with 

increasing the doping concentration, the density of the deep levels in 

the base, and shallow recombination levels inside the junction. The 

switching speed is increased with increasing the doping 

concentrations and decreasing the concentration of the deep, lifetime 

controlling, levels. 

GaP is a suitable material for the realization of pulsed power 

switches based on the modulation of the base resistance. Its indirect 

bandgap makes it possible to control the carrier lifetimes (and 

consequently the dynamic resistance of the base) by properly 

choosing the impurity species and their concentrations. Advantages 

of this GaP diode-type switch include the simplicity of the p-n 

structure, the capability of optical triggering, the low power 

dissipation during switching, and the easy control of the doping 

profiles and device geometry. 

Current research is aimed at achieving operation of the switch at 

room temperature by choosing the proper doping species and 

concentrations. In many semiconductor based switches, with bulk 

regions in the range of 10-200 flm, modulation of the base 

resistance can affect the performance of the switch sometimes in an 

unwanted way (early breakdown, large current, change in the 

operation point on the I-V characteristic). The presence of deep 

levels (controlling the free carrier lifetime) must be always taken into 

account in optimizing the performance of the switch. 
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